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Study programme: Financial Mathematics

Study branch: Faculty of Mathematics and Physics

Prague 2024



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I want to dedicate this thesis to my thesis supervisor RNDr. Šárka Hudecová,
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Introduction
In regression models, the assumption of a constant variance of errors across ob-
servations (homoscedasticity) is crucial for reliable predictions and meaningful
conclusions. Traditional estimators like ordinary least squares (OLS) rely on this
assumption. However, real-world data often exhibit heteroscedasticity, where
the variance of errors is a non-constant function of regressors. In such a case,
statistical inference based on the OLS may be incorrect, and the corresponding
conclusions misleading.

To tackle such situations, we use weighted least squares to address known het-
eroscedasticity forms or a method called Feasible Weighted Least Squares, which
requires only partial knowledge of the heteroscedasticity’s form.

In Chapter 1 we present a simple linear regression model and present meth-
ods to estimate unknown parameters within the model. In Chapter 2, we extend
the simple linear regression model by introducing the multiple linear regression
model and state assumptions that we follow for the entirety of the thesis. Finally,
we then define a generalized version of the ordinary least squares estimation and
discuss its properties. In Chapter 3 we introduce the presence of heteroscedastic-
ity within the model and explore its implications on the ordinary least squares
estimate. Additionally, to address heteroscedasticity, we define the weighted least
square estimate and later feasible weighted least square estimate.

The author’s contribution to the theoretical part of the thesis involves a more
detailed elaboration of certain proofs and rearranging the content from profes-
sional literature to align with the topic of the thesis. The main contribution
of the author resides in the practical section, where through simulation studies,
they compare the OLS, WLS, and FWLS estimators in terms of their efficiency
and bias across various scenarios, to validate the material described in the the-
ory. Furthermore, the author provides recommendations regarding the selection
between OLS and FWLS methods based on specific model characteristics.

2



1. Simple linear regression model
This chapter is based on Greene, (2003) and Wooldridge, (2013). It aims to intro-
duce a two-variable model called the simple linear regression model and means to
estimate unknown parameters within the model. The author’s contribution lies
in a detailed description of a connection between the moment method and the
ordinary least squares method.

As an introduction to regression analysis, we consider a case with two random
variables Y and X, to which we assume, that the linear relationship between Y
and X has a form of

Y = β0 + β1X + ϵ, (1.1)
where β0 ∈ R and β1 ∈ R are both unknown constants and ϵ is a random vari-
able, such that E[ϵ | X] = 0. Consequently, this gives us E[Y | X] = β0 + β1X,
implying that the conditional expected value of Y given X is linear in both the
random variable X and constants β0 and β1.

Let us contemplate a set of n observations, where for each observation i =
1, 2, . . . , n, such that (Yi, Xi) are independent and identically distributed (iid)
copies of (Y, X) from (1.1). We have

Yi = β0 + β1Xi + ϵi, i = 1, 2, . . . , n, (1.2)

where ϵi are iid random variables, satisfying E[ϵi | Xi] = 0. We designate Yi as
the dependent variables, and Xi as the independent variables, also referred to as
regressors.

Following up on (1.2), let Y be a n × 1 random vector Y = (Y1, Y2, . . . , Yn)⊤

and X be a n × 1 random vector X = (X1, X2, . . . , Xn)⊤, so that (Yi, Xi), i =
1, . . . , n represent all n observations from (1.2). We proceed by defining a two-
variable model called the simple linear regression model (SLR)

Y = β0 + β1X + ϵ, (1.3)

where β0 is an unknown constant called intercept, β1 is an unknown constant
called slope parameter, and ϵ is an n×1 vector ϵ = (ϵ1, ϵ2, . . . , ϵn)⊤ of iid random
variables ϵi called the error terms or disturbances. ϵ represents all unobserved
factors affecting Y.

1.1 Method of moments estimation
To estimate unknown values β0 and β1 we recall that

E[ϵi | Xi] = 0,

for i = 1, . . . , n. This gives us

E[ϵi] = E [E[ϵi | Xi]] = E[0] = 0,
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then
E[Xiϵi] = E [XiE [ϵi | Xi]] = 0.

Finally, we get
Cov[Xi, ϵi] = E[Xiϵi] − E[ϵi]E[Xi] = 0.

Given these assumptions, we can assert that

E[Yi − β0 − β1Xi] = 0, (1.4)

additionally
E[Xi(Yi − β0 − β1Xi)] = 0, (1.5)

for i = 1, . . . , n.

We can now construct estimate ˆ︁β0 of β0 and estimate ˆ︁β1 of β1 using a method
of moments. Hence, by estimating expected values (1.4) and (1.5) by the corre-
sponding sample averages, we get

1
n

n∑︂
i=1

(Yi − ˆ︁β0 − ˆ︁β1Xi) = 0 (1.6)

and
1
n

n∑︂
i=1

Xi(Yi − ˆ︁β0 − ˆ︁β1Xi) = 0. (1.7)

From (1.6), we deduce that ˆ︁β0 = Y − ˆ︁β1X, (1.8)
where

Y = 1
n

n∑︂
i=1

Yi.

and
X = 1

n

n∑︂
i=1

Xi. (1.9)

We can now rewrite (1.7) as
n∑︂

i=1
Xi(Yi − (Y − ˆ︁β1X) − ˆ︁β1Xi) = 0.

By rearranging it so that ˆ︁β1 is on the right
n∑︂

i=1
Xi(Yi − Y ) = ˆ︁β1

n∑︂
i=1

Xi(Xi − X),

we express ˆ︁β1 as ˆ︁β1 =
∑︁n

i=1 Xi(Yi − Y )∑︁n
i=1 Xi(Xi − X)

, (1.10)

where we assume that ∑︁n
i=1(Xi − X)2 > 0, which means that there exist at least

two distinct values of Xi.
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Using the fact that
n∑︂

i=1
(Xi − X)2 =

n∑︂
i=1

(X2
i − 2XiX + X

2)

=
n∑︂

i=1
X2

i − 2nX
2 + nX

2

=
n∑︂

i=1
X2

i − nX
2 =

n∑︂
i=1

X2
i −

n∑︂
i=1

X
2

=
n∑︂

i=1
(X2

i − X
2) =

n∑︂
i=1

Xi(Xi − X),

and
n∑︂

i=1
(Xi − X)(Yi − Y ) =

n∑︂
i=1

(XiYi − YiX − XiY + XY )

=
n∑︂

i=1
XiYi − nXY − nY X + nXY

=
n∑︂

i=1
XiYi − nXY =

n∑︂
i=1

XiYi −
n∑︂

i=1
XY

=
n∑︂

i=1
(XiYi − XY ) =

n∑︂
i=1

Xi(Yi − Y )

we rewrite (1.10), as ˆ︁β1 =
∑︁n

i=1(Xi − X)(Yi − Y )∑︁n
i=1(Xi − X)2 .

1.1.1 Ordinary least squares estimation
We will now introduce a different method to estimate β0 and β1, known as or-
dinary least squares (denoted as OLS), and compare it to the method of moments.

The fundamental concept behind the OLS method is to determine ˆ︁β0 and ˆ︁β1
that minimizes the sum of squared deviations across all n data points. First, we
define a function g as

g(β0, β1) =
n∑︂

i=1
(Yi − β0 − β1Xi)2. (1.11)

Given our objective is minimizing the sum of squares, we aim to identify

(β̂0, β̂1)⊤ = arg min
(β0,β1)⊤∈R2

g(β0, β1), (1.12)

which we seek as a stationary point. Hence, we proceed by calculating partial
derivatives

∂g

∂β0
= −2

n∑︂
i=1

(Yi − β0 − β1Xi)

∂g

∂β1
= −2

n∑︂
i=1

Xi(Yi − β0 − β1Xi).
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and solve
∂g

∂ ˆ︁β0
= 0

∂g

∂ ˆ︁β1
= 0.

The uniqueness of the solution to (1.12) can be demonstrated by obtaining the
determinant of the Hessian matrix

H(g) =
⃓⃓⃓⃓
⃓⃓ ∂2g

∂β2
0

∂2g
∂β0∂β1

∂2g
∂β1∂β0

∂2g
∂β2

1

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓ 2n 2nX
2nX 2(nX)2

⃓⃓⃓⃓
⃓ = 4n(nX)2 −4(nX)2 = 4(n−1)(nX)2.

For determinant of H(g), we have 4(n − 1)(nX)2 > 0 for n > 1, while for its mi-
nor, 2n > 0 for n > 0, implies that the Hessian matrix H(g) is positive definite,
and g is a convex function. Consequently, this yields the same problem as (1.6)
and (1.7). Therefore, we obtain equivalent estimates ˆ︁β0 and ˆ︁β1 as those in the
method of moments.

Figure 1.1 visualizes the idea behind the function g (1.11) for OLS estimation.
Blue points on the graph are singular observations (Yi, Xi), i = 1, 2, . . . , n, while
the line is described by ˆ︁β0 + ˆ︁β1X. We denote the difference between Yi andˆ︁β0 + ˆ︁β1Xi as ˆ︁ϵi.

Figure 1.1: Illustration of the idea of the ordinary least squares estimation
method.
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2. Multiple linear regression
model
This chapter is based on Greene, (2003) and Wooldridge, (2013). It aims to in-
troduce a multiple linear regression model and discuss the generalized form of the
OLS method from the first chapter. Finally, we show the properties of the OLS
estimate. The author’s contribution is in providing a more detailed breakdown
and commentary on certain proofs and derivations.

Multiple linear regression (denoted as MLR) is a statistical technique used
to analyze the relationship between a dependent variable and two or more inde-
pendent variables. It is an extension of simple linear regression, which is used to
model the relationship between two variables.

2.1 MLR model
Following up on the first chapter, let us have n observations, where for each ob-
servation i = 0, 1, . . . , n, we measure a random variable Yi and k random variables
Xij, j = 1, . . . , k. We define a (k + 1) × 1 random vector Xi = (1, Xi1, . . . , Xik)⊤,
assuming that the linear relationship between Yi and Xi, follows the form

Yi = X⊤
i β + ϵi, (2.1)

where β = (β0, β1, . . . , βk)⊤ is a (k + 1) × 1 vector of unknown real constants and
ϵi, i = 0, 1, . . . , n, are random variables satisfying

E[ϵi | Xi] = 0, i = 0, 1, . . . , n.

We refer to β0 the intercept and βj, j = 1, . . . , k as slope parameters.

As in the previous chapter, Yi is referred to as the dependent variable, while
Xij, j = 0, 1, . . . , k are referred to as independent variables or regressors.

Before defining the MLR model, let us introduce an n × (k + 1) matrix X
defined as

X =

⎡⎢⎢⎢⎢⎣
1 X11 . . . X1k

1 X21 . . . X2k
... ... . . . ...
1 Xn1 . . . Xnk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
X10 X11 . . . X1k

X20 X21 . . . X2k
... ... . . . ...

Xn0 Xn1 . . . Xnk

⎤⎥⎥⎥⎥⎦ ,

where row i of matrix X represents a (k+1)×1 vector Xi = (Xi0, Xi1, . . . , Xik)⊤,
i = 1, 2, . . . , n, with the assumption that Xi0 = 1, i = 0, 1, . . . , n. Intuitively, X
represents a specific dataset used in the MLR model.

Additionally, we define n × 1 random vector Y as

Y = (Y1, Y2, . . . , Yn)⊤.

For the remainder of the thesis, we assume the following:
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Assumption of full rank. The n × (k + 1) matrix X has a full rank (k + 1)
with probability one, indicating that all columns of X are linearly independent.

Assumption of independent and identically distributed random sam-
pling. The sample data {(Yi, Xi0, Xi1, Xi2, . . . , Xik) : i = 1, 2, . . . , n} are inde-
pendent and identically distributed.

MLR model. Using previously defined Y and X we write down the MLR
model as

Y = Xβ + ϵ, (2.2)
such that ϵ = (ϵ1, ϵ2, . . . , ϵn)⊤ is a n × 1 vector of random variables called the
error terms or disturbances. Vector ϵ represents all unobserved factors affecting
the dependent variables.

Under the MLR model, we state the following assumption for ϵ.

A1: Assumption of zero conditional mean. Assume

E[ϵ | X] =

⎛⎜⎜⎜⎜⎝
E[ϵ1 | X]
E[ϵ2 | X]

...
E[ϵn | X]

⎞⎟⎟⎟⎟⎠ = 0.

Assumption A1 implies that

E[ϵ] = E [E [ϵ | X]] = E[0] = 0,

and

E[X⊤ϵ] = E[X1ϵ1]+ . . . +E[Xnϵn] = E
[︂
X⊤

1 E [ϵ1 | X]
]︂
+ . . . +E

[︂
X⊤

n E [ϵn | X]
]︂

= 0.

Finally, we have
Cov[Xi, ϵi] = E[Xiϵi] − E[ϵi]E[Xi] = 0. (2.3)

In the subsequent section, we delve into the generalized form of the OLS
method discussed in the first chapter.

2.2 Ordinary least squares method (OLS)
The main principle of OLS is to minimize the sum of the squared deviations (the
least squares). This means finding the values of the intercept and the slope pa-
rameters that minimize the sum of squared deviations across all n data points.

Based on the Section 1.1.1, we continue with a general case of the OLS method.
We aim to obtain (k + 1) × 1 vector estimate ˆ︁β of β, by defining a function g as

g(β) =
n∑︂

i=1
(Yi − X⊤

i β)2 = (Y − Xβ)⊤(Y − Xβ).
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We write the estimate ˆ︁β as

ˆ︁β = arg min
β∈Rk+1

g(β).

By multiplying the expression

(Y − Xβ)⊤(Y − Xβ),

we obtain
Y⊤Y − Y⊤Xβ − Yβ⊤X⊤ + β⊤X⊤Xβ

= Y⊤Y − 2Y⊤Xβ + β⊤X⊤Xβ.

Thus, we get
g(β) = Y⊤Y − 2Y⊤Xβ + β⊤X⊤Xβ.

For ˆ︁β to be minimal a first-order condition must hold

∂g( ˆ︁β)
∂β

= −2X⊤Y + 2X⊤X ˆ︁β = 0. (2.4)

Finally, by rearranging (2.4), we obtain

X⊤X ˆ︁β = X⊤Y.

Theorem 1. If matrix X⊤X has full rank, then

ˆ︁β = (X⊤X)−1X⊤Y (2.5)

minimizes function g.

Proof. Since under the assumption of full rank, X⊤X is a regular matrix with
rank (k + 1) we can multiply the equation by its inverse and obtain

ˆ︁β = (X⊤X)−1X⊤Y.

Lastly, ˆ︁β minimizes function g when the second partial derivation of g is a positive
definite matrix. We have

∂2g( ˆ︁β)
∂β∂β⊤ = 2X⊤X. (2.6)

Let us have c ∈ Rk+1, and p = Xc. The matrix X⊤X is positive definite when

c⊤X⊤Xc = p⊤p =
n∑︂

i=1
p2

i > 0,

for all c ∈ Rk+1, such that c ̸= 0. Unless each element of p is zero, c⊤X⊤Xc is
positive. If vector p = 0 then Xc = 0. This would imply that there is a linear
combination of the (k + 1) columns of X that is equal to zero, which contradicts
the assumption of X having full rank.
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With Theorem 1, we can now establish that ˆ︁β is the only solution to the OLS.

Next, we define a fitted value for each of our n observations. The fitted value
of observation i is ˆ︂Yi = X⊤

i
ˆ︁β.

Hence, for ˆ︂Y = (ˆ︂Y1,ˆ︂Y2, . . . , ˆ︂Yn)⊤, we get
ˆ︂Y = X ˆ︁β.

We also define ˆ︁ϵi as a residual, where

ˆ︁ϵi = Yi −ˆ︂Yi.

Again, for ˆ︁ϵ = (ˆ︁ϵ1, ˆ︁ϵ2, . . . , ˆ︁ϵn)⊤

ˆ︁ϵ = Y − ˆ︂Y = Y − X ˆ︁β.

Example 1. As an example of the OLS estimation to obtain β, under the as-
sumption A1, we use a SLR model (1.3) to analyze a dataset of n = 100 random
samples relating video game user ratings Yi to their global sales Xi. The dataset
was obtained from Shukla, (2019).

Yi = β0 + β1Xi + ϵ

Using OLS estimates of β0 and β1 we obtain fitted line
ˆ︁Yi = ˆ︁β0 + ˆ︁β1Xi,

where we estimated the intercept β0 as 7.040 and the slope parameter β1 as 0.251.
This yields ˆ︁Yi = 7.040 + 0.251Xi.

Figure 2.1 showcases a line obtained by the OLS method, estimating the relation
between user ratings Yi and the global sales data Xi. Blue points on the graph
are singular observations (Yi, Xi), i = 1, 2, . . . , n, while the line is described byˆ︁β0 + ˆ︁β1X.

Finally, we aim to estimate the covariance matrix of ˆ︁β. For this purpose, we
state the following assumption

A2: Assumption of homoscedasticity. Assume

Var[ϵ|X] = E[ϵϵ⊤|X] = σ2In,

where In denotes the n × n identity matrix.

For independent and identically distributed (iid) data, assumption A2 is
equivalent to

Var[ϵi | Xi] = E[ϵiϵ
⊤
i | X] = σ2.

Under the assumption A2, we define the OLS estimate ˆ︁σ2 of σ2, as

ˆ︁σ2 =
∑︁n

i=1 ˆ︁ϵi
2

n − k
=

ˆ︁ϵ⊤ˆ︁ϵ
n − k

. (2.7)
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Figure 2.1: Estimating user ratings Yi from video game sales Xi with the OLS
estimate ˆ︁β.

2.3 Properties of the OLS estimate
Utilizing the assumption of zero conditional mean A1 and the assumption of ho-
moscedasticity A2 we will now derive multiple properties of OLS.

Theorem 2 (Unbiasedness of OLS). Under the assumption A1, the expected
value of the OLS estimate ˆ︁β is given by

E[ ˆ︁β] = β,

therefore ˆ︁β is an unbiased estimator of β.

Proof. For OLS we defined estimate ˆ︁β of β as
ˆ︁β = (X⊤X)−1X⊤Y.

Since, Y satisfies Y = Xβ + ϵ, we obtain
ˆ︁β = β + (X⊤X)−1X⊤ϵ.

The conditional expected value of ˆ︁β given X is

E[ ˆ︁β | X] = E[β | X] + E[(X⊤X)−1X⊤ϵ | X] = β + (X⊤X)−1X⊤E[ϵ | X].
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Because of the assumption A1, the second term is 0, which yields

E[ ˆ︁β | X] = β.

Finally, we can state that

E[ ˆ︁β] = E[E[ ˆ︁β | X]] = E[β] = β.

Theorem 3. Under the assumptions A1 and A2, the OLS estimate ˆ︁σ2 defined
in (2.7) is an unbiased estimate of σ2, that is

E[ˆ︁σ2] = σ2.

Proof. We refer to Greene, (2003) 4.6 page 76, for the proof of this claim.

Theorem 4 (Variance of the OLS estimate). Under the assumptions A1 and
A2, the conditional covariance matrix of the OLS estimator given X is

Var[ ˆ︁β | X] = σ2(X⊤X)−1.

Proof. Once more, we utilize the fact that

ˆ︁β = (X⊤X)−1X⊤Y

and

Var[ ˆ︁β | X] = E[( ˆ︁β − β)( ˆ︁β − β)⊤ | X]
= E[(X′X)−1X⊤ϵϵ⊤X(X⊤X)−1 | X]
= (X⊤X)−1X⊤E[ϵϵ⊤ | X] X(X⊤X)−1.

By the assumption of homoscedasticity E[ϵϵ⊤ | X] = σ2In, therefore the covari-
ance matrix of the OLS estimator can be written as

Var[ ˆ︁β | X] = σ2(X⊤X)−1.

We can further obtain unconditioned covariance matrix of ˆ︁β by employing a
decomposition of variance

Var[ ˆ︁β] = E[Var[ ˆ︁β | X]] + Var[E[ ˆ︁β | X]], (2.8)

where Var[E[ ˆ︁β | X]] = 0, due to E[ ˆ︁β | X] = β being a vector of constants.
Therefore,

Var[ ˆ︁β] = E[Var[ ˆ︁β | X]] = E[σ2(X⊤X)−1] = σ2E[(X⊤X)−1]. (2.9)

In the following text, we understand the term the best linear unbiased estimator
(BLUE), as a linear unbiased estimator, with the minimum covariance matrix.
By that, we mean that the covariance matrix of the BLUE estimator differs from
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a covariance matrix of any linear unbiased estimator by a positive semidefinite
matrix. In what follows, we use this notation. Let A and B be p × p square
matrices. By A ≥ B, we understand that the difference A − B = C is a positive-
definite matrix.

We aim to determine whether the OLS estimate ˆ︁β of β is the best linear
unbiased estimator. To address this, we formulate the Gauss-Markov Theorem.

Theorem 5 (Gauss-Markov Theorem). Under the assumptions A1 and A2, it
holds that:

1. The OLS estimate ˆ︁β is the best linear unbiased estimator of β.

2. Let c be a vector of constant values, then c⊤ ˆ︁β is the best linear unbiased
estimator of c⊤β.

Proof. Let β̃ be a linear unbiased estimator of β different from ˆ︁β so that

β̃ = ZY,

where (k + 1) × n matrix Z is a function of X. The expected value of β̃ can be
expressed as

E[β̃] = E[ZY | X] = E[ZXβ | X] + E[Zϵ | X] = β.

Under the assumption A1, it holds that E[Zϵ | X] = 0, we get ZXβ = β, given
any β. Following that, we make an observation that ZX = Ik+1. The covariance
matrix of β̃ given X is

Var[β̃ | X] = σ2ZZ⊤.

Now let us define a matrix D as D = Z − (X⊤X)−1X⊤. Rewriting the previous
equation in the following way yields

Var[β̃ | X] = σ2(D + (X⊤X)−1X⊤)(D + (X⊤X)−1X⊤)⊤

= σ2(D + (X⊤X)−1X⊤)(D⊤ + X(X⊤X)−1)
= σ2(DD⊤ + (X⊤X)−1 + DX(XX⊤)−1 + (X⊤X)−1(DX)⊤).

Combining the definition of D and the fact that ZX = Ik+1

DX + (X⊤X)−1(X⊤X) = ZX = Ik+1,

we can state that DX = 0, which gives us

Var[β̃ | X] = σ2(X⊤X)−1 + σ2(DD⊤) = Var[ ˆ︁β | X] + σ2(DD⊤)

where the matrix DD⊤ is positive-semidefinite.

This means that the covariance matrix of β̃ given X, differs from the covari-
ance matrix of ˆ︁β given X, by a positive-semidefinite matrix DD⊤. Hence,

Var[β̃ | X] ≥ Var[ ˆ︁β | X]. (2.10)

13



Given that, for any (k + 1) × 1 column vector p and (k + 1) × (k + 1) random
matrices V1, V2

p⊤(V1 − V2)p ≥ 0,

implies
p⊤E[V1 − V2]p ≥ 0.

We can then write
E[Var[β̃ | X]] ≥ E[Var[ ˆ︁β | X]],

which, according to (2.8) is an equivalent to

Var[β̃] ≥ Var[ ˆ︁β].

Therefore, ˆ︁β is a linear unbiased estimator of β with the minimum covariance
matrix.
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3. Heteroscedasticity data
This chapter is based on Greene, (2003), Wooldridge, (2013), Heij et al., (2004),
Harvey, (1976), Romano and Wolf, (2016). It aims to explore how the presence
of heteroscedasticity impacts the ordinary least squares (OLS) estimate. Addi-
tionally, in Chapter 3.3 we define the weighted least square estimate, and later
feasible weighted least square estimate.

The author’s contribution lies in providing a comprehensive breakdown and
analysis of specific proofs and derivations. Additionally, they provide a discussion
on the corollaries of such proofs.

In the previous chapter, we have shown that the OLS estimator is the best
linear unbiased estimator under the assumptions A1 and A2. In this chapter, we
examine the change in this behavior when the assumption of homoscedasticity
A2 is omitted, in other words when heteroscedasticity is present.

3.1 Heteroscedasticity
In the previous chapter, we assumed homoscedasticity as

Var[ϵi | Xi] = E[ϵiϵ
⊤
i | X] = σ2,

where i = 1, 2, . . . , n and σ2 is a positive constant.

We say heteroscedasticity is present when the conditional variance of the
unobserved errors ϵi is not constant across observations. Hence,

Var[ϵi | Xi] = σ2
i = h(Xi), (3.1)

where h : Rk+1 → R is a non-constant function.

Let us denote H as a n × n diagonal matrix, so that

Var[ϵ | X] = H =

⎡⎢⎢⎢⎢⎣
σ2

1 0 . . . 0
0 σ2

2 . . . 0
... ... . . . ...
0 0 . . . σ2

n

⎤⎥⎥⎥⎥⎦ . (3.2)

In some special cases, we can express (3.2) as

Var[ϵ | X] = σ2Ω = σ2

⎡⎢⎢⎢⎢⎣
ω1 0 . . . 0
0 ω2 . . . 0
... ... . . . ...
0 0 . . . ωn

⎤⎥⎥⎥⎥⎦ , (3.3)

where σ2 depicts a scale and Ω is a n×n diagonal matrix with ωi as i-th diagonal
element. Ω represents the form of heteroscedasticity for the given model.
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Example 2. Taking a look back at the data sample from Example 1, Figure 3.1
illustrates a greater variance for lower values of X, suggesting the presence of
heteroscedasticity.

Figure 3.1: Data showcasing heteroscedasticity

Next, we will discuss the properties of the OLS estimate.

3.2 Properties of the OLS estimate
We can show that in the presence of heteroscedasticity, the least squares estima-
tor ˆ︁β maintains its properties of being unbiased, consistent, and asymptotically
normally distributed.

In Theorem 2, we proved that under the assumption A1, ˆ︁β is an unbiased
estimator of β. Therefore, the presence of heteroscedasticity does not alter the
unbiasedness of the OLS estimate.

Theorem 6. Under the assumption A1, let

Q = E[XiX⊤
i ] (3.4)

be a finite positive definite matrix, then ˆ︁β is a consistent estimator of β.

Proof. We have
ˆ︁β = (X⊤X)−1X⊤Y = β + (X⊤X)−1X⊤ϵ, (3.5)
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To examine asymptotic properties of ˆ︁β we rearrange the equation (3.5) in a
following way

ˆ︁β = β +
(︄

X⊤X
n

)︄−1 (︄X⊤ϵ

n

)︄
(3.6)

then ˆ︁β − β =
(︄

X⊤X
n

)︄−1 (︄X⊤ϵ

n

)︄
. (3.7)

We can further dissolve the right side of the equation into two parts
(︂

X⊤X
n

)︂−1

and
(︂

X⊤ϵ
n

)︂
, where for

(︂
X⊤X

n

)︂−1
, by using the law of large numbers, the first part

can be expressed as(︄
X⊤X

n

)︄
= 1

n

[︄
n∑︂

i=1
XiX⊤

i

]︄
P−→ E[XiX⊤

i ] = Q,

which is a finite positive definite matrix, by the assumption made in (3.4).

For the second part
(︂

X⊤ϵ
n

)︂
, under the assumption A1, we apply the law of

large numbers and utilize the fact that Cov[Xi, ϵi] = 0 from (2.3), to derive(︄
X⊤ϵ

n

)︄
= 1

n

n∑︂
i=1

ϵiXi
P−→ E[ϵiXi] = Cov[Xi, ϵi] = 0.

Finally, for equation (3.6) we obtain

ˆ︁β P−→ β + Q−1 · 0 = β.

Hence, ˆ︁β is a consistent estimate of β.

We showed that in the presence of heteroscedasticity, ˆ︁β remains both unbiased
and consistent. The covariance matrix of OLS estimator given X is defined as

Var[ ˆ︁β|X] = E[( ˆ︁β − β)( ˆ︁β − β)⊤|X]
= E[(X⊤X)−1X⊤ϵϵ⊤(X⊤X)−1|X].

Utilizing (3.5) and (3.2), we obtain

Var[ ˆ︁β|X] = (X⊤X)−1(X⊤HX)(X⊤X)−1. (3.8)

Theorem 7. With prerequisites from Theorem 6 and function h(Xi) from (3.1),
let

W = E
[︂
h(Xi)XiX⊤

i

]︂
,

be a finite (k + 1) × (k + 1) matrix. Then
√

n
(︂ ˆ︁β − β

)︂
D−→ N(0, Q−1WQ−1),

where Q is defined in (3.4).
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Proof. To describe asymptotic distribution of ˆ︁β, we first multiply (3.7) by
√

n

√
n
(︂ ˆ︁β − β

)︂
=
(︄

X⊤X
n

)︄−1 (︄∑︁n
i=1(ϵiXi)√

n

)︄
=
(︄

1
n

[︄
n∑︂

i=1
XiX⊤

i

]︄)︄−1 (︄∑︁n
i=1(ϵiXi)√

n

)︄
.

We denote Ui as Ui = ϵiXi. Under the assumption A1

E[Ui] = E[ϵiXi] = E [E [ϵiXi | X]] = 0

and
Var [Ui] = E

[︂
UiU⊤

i

]︂
= E

[︂
ϵ2

i XiX⊤
i

]︂
= E

[︂
E
[︂
ϵ2

i XiX⊤
i | X

]︂]︂
,

whereby applying (3.1), we obtain

Var[Ui] = E
[︂
h(Xi)XiX⊤

i

]︂
= W.

Since random vectors Ui are independent and identically distributed with a finite
covariance matrix, we apply the central limit theorem and gain∑︁n

i=1 Ui√
n

D−→ N(0, W).

Finally, using the fact that
(︂

X⊤X
n

)︂−1 P−→ Q−1, we apply Slutsky’s theorem to
obtain √

n
(︂ ˆ︁β − β

)︂
D−→ N(0, Q−1WQ−1).

In this section, we have proven that removing the assumption of homoscedas-
ticity doesn’t affect the OLS estimate unbiasedness. However, it will no longer
remain the most efficient estimate. In the following section, we will explore a new
estimation approach that generally outperforms OLS in terms of efficiency.

3.3 Weighted least squares
This section discusses techniques used to estimate β, when H (3.2) can be ex-
pressed as (3.3), so that Ω is a known function of X and σ2 is an unknown
parameter.

Under the assumption A1, consider a multiple linear regression (MLR) model
(2.2)

Y = Xβ + ϵ, (3.9)
where we assume that Ω is a known positive definite n × n diagonal matrix

Ω =

⎡⎢⎢⎢⎢⎣
ω1 0 . . . 0
0 ω2 . . . 0
... ... . . . ...
0 0 . . . ωn

⎤⎥⎥⎥⎥⎦ .

Knowing the form of heteroscedasticity will allow us to transform our model so
that the transformed model satisfies the assumption A2.
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First, given that Ω is a positive definite matrix, we can define a matrix Ω− 1
2

such that
Ω− 1

2 Ω− 1
2 = Ω−1. (3.10)

This allows us to transform the MLR model by multiplying it with Ω− 1
2 from the

left, yielding
Ω− 1

2 Y = Ω− 1
2 Xβ + Ω− 1

2 ϵ. (3.11)
We reffer to (3.11), as

Y∗ = X∗β + ϵ∗, (3.12)
where Y∗ = Ω− 1

2 Y, X∗ = Ω− 1
2 X and ϵ∗ = Ω− 1

2 ϵ.

Secondly, the covariance matrix of the vector of unobserved errors ϵ can then
be written as

Var[ϵ∗ | X] = Var
[︂
Ω− 1

2 ϵ | X
]︂

= σ2Ω− 1
2 ΩΩ− 1

2 = σ2In,

where In is a n × n unit matrix.

Furthermore, for the transformed model (3.12), we find that

E[Ω− 1
2 ϵ | X] =

⎛⎜⎜⎜⎜⎜⎜⎝
E[ω− 1

2
1 ϵ1 | X]

E[ω− 1
2

2 ϵ2 | X]
...

E[ω− 1
2

n ϵn | X]

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

Hence, the transformed model (3.12) satisfies both assumptions A1 and A2.
Consequently, we obtain the OLS estimate ˆ︁βW LS of β in terms of the transformed
model (3.12). We haveˆ︁βW LS = (X∗⊤X∗)−1X∗⊤Y∗

= ((Ω− 1
2 X)⊤Ω− 1

2 X)−1(Ω− 1
2 X)⊤Ω− 1

2 Y

= (X⊤Ω−1X)−1X⊤Ω−1Y. (3.13)
The weighted least square estimator ˆ︁βW LS is by the Gauss-Markov theorem 5,
the best linear unbiased estimator (BLUE).

Weighted least squares estimate. We derived the estimate ˆ︁βW LS as the
OLS estimate in the transformed model (3.12), given byˆ︁βW LS = arg min

β∈Rk+1
(Y∗ − X∗β)⊤(Y∗ − X∗β),

minimizes the sum of squares in the transformed model (3.12). By expressing the
objective function we aim to minimize in terms of the original model (3.9), we
obtain

(Y∗ − X∗β)⊤(Y∗ − X∗β) = (Y − Xβ)⊤Ω−1(Y − Xβ)

=
n∑︂

i=1

1
ωi

(Yi − X⊤
i β)2.
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Hence, ˆ︁βW LS can be rewritten as

ˆ︁βW LS = arg min
β∈Rk+1

n∑︂
i=1

1
ωi

(Yi − X⊤
i β)2.

Due to that, ˆ︁βW LS is termed a weighted least squares (denoted as WLS) estimate.
The WLS estimate of the original model (3.9) is equivalent to the OLS estimate
of the transformed model (3.12).

Finally, utilizing (3.13), we can rewrite ˆ︁βW LS as

ˆ︁βW LS =
[︄

n∑︂
i=1

wiXiX⊤
i

]︄−1 [︄ n∑︂
i=1

wiXiYi

]︄
, (3.14)

where wi = 1
ωi

are called weigths.

Lemma 8. Let us have weigths wi > 0, for i = 1, 2, . . . , n and a constant γ ∈
R+ \ {0}. If ˆ︁βW LS is a solution to (3.14) with weigths wi and β̃W LS is a solution
to (3.14) with weigths γ · wi, then ˆ︁βW LS = β̃W LS.

Proof. From (3.14) we have

β̃W LS =
[︄

n∑︂
i=1

γ · wiXiX⊤
i

]︄−1 [︄ n∑︂
i=1

γ · wiXiYi

]︄

=
[︄

n∑︂
i=1

wiXiX⊤
i

]︄−1 [︄ n∑︂
i=1

wiXiYi

]︄
= ˆ︁βW LS.

In the following examples, we will discuss two forms of Ω. Before we do that,
let us have a model (2.2)

Y = Xβ + ϵ,

and Ω− 1
2 (3.10)

Ω− 1
2 =

⎡⎢⎢⎢⎢⎢⎢⎣

√︂
1

ω1
0 . . . 0

0
√︂

1
ω2

. . . 0
... ... . . . ...
0 0 . . .

√︂
1

ωn

⎤⎥⎥⎥⎥⎥⎥⎦ .

By rewriting the form of transformations defined in (3.12), we get

Y∗ = Ω− 1
2 Y =

⎡⎢⎢⎢⎢⎢⎣
Y1√
ω1

Y2√
ω2
...

Yn√
ωn

⎤⎥⎥⎥⎥⎥⎦ , X∗ = Ω− 1
2 X =

⎡⎢⎢⎢⎢⎢⎢⎣

X1⊤
√

ω1
X2⊤
√

ω2
...

Xn⊤
√

ωn

⎤⎥⎥⎥⎥⎥⎥⎦ , ϵ∗ = Ω− 1
2 ϵ =

⎡⎢⎢⎢⎢⎢⎣
ϵ1√
ω1

ϵ2√
ω2
...

ϵn√
ωn

⎤⎥⎥⎥⎥⎥⎦ .
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Example 3. Variance proportional to a regressor

For some fixed j = 1, . . . , k, assume that

Var[ϵi|Xi] = σ2
i = σ2Xij.

The form of the transformed model (3.12) is then

Yi√︂
Xij

= βj

√︂
Xij + β0√︂

Xij

+ β1Xi1√︂
Xij

+ . . . + βkXik√︂
Xij

+ ϵi√︂
Xij

. (3.15)

The WLS estimate (3.14) can be expressed as

ˆ︁βW LS =
[︄

n∑︂
i=1

1
Xij

XiX⊤
i

]︄−1 [︄ n∑︂
i=1

1
Xij

XiYi

]︄
.

Now let us compare the WLS estimate with the OLS estimate, using a simple
model

Yi = βXi + ϵi,

and
Var[ϵi|X] = σ2

i = σ2Xi,

where the matrix X = (X1, . . . , Xn)⊤.

From (3.15) we get
Yi√
Xi

= β
√︂

Xi + ϵi√
Xi

.

The WLS estimate (3.14) can be written as

ˆ︁βW LS =
[︄

n∑︂
i=1

1
Xi

X2
i

]︄−1 [︄ n∑︂
i=1

1
Xi

XiYi

]︄
=
[︄

n∑︂
i=1

Xi

]︄−1 [︄ n∑︂
i=1

Yi

]︄
,

while the OLS estimate as

ˆ︁β = (X⊤X)−1XY =
[︄

n∑︂
i=1

X2
i

]︄−1 [︄ n∑︂
i=1

XiYi

]︄
.

It is clear, that we obtained two different unbiased estimates, for which the general
theory states that the WLS estimate ˆ︁βW LS has lesser variance than the OLS
estimate ˆ︁β.
Example 4. Variance proportional to squared regressor

Following the previous example, let us now assume that

Var[ϵi|Xi] = σ2
i = σ2X2

ij.

Then (3.12) takes form

Yi

Xij

= βj + β0

Xij

+ β1Xi1

Xij

+ . . . + βkXik

Xij

+ ϵi

Xij

.
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The WLS estimate (3.14) is

ˆ︁βW LS =
[︄

n∑︂
i=1

1
X2

ij

XiX⊤
i

]︄−1 [︄ n∑︂
i=1

1
X2

ij

XiYi

]︄
.

We will again compare the WLS estimate with the OLS estimate using a model

Yi = βXi + ϵi,

and
Var[ϵi|X] = σ2

i = σ2X2
i .

where X = (X1, . . . , Xn)⊤.

Transforming the model according to (3.12) gives us

Yi

Xi

= β + ϵi

Xi

.

The WLS estimate (3.14) can be written as

ˆ︁βW LS =
[︄

n∑︂
i=1

1
X2

i

X2
i

]︄−1 [︄ n∑︂
i=1

1
Xi

Yi

]︄
=
[︄

n∑︂
i=1

Yi

Xi

]︄
,

While the OLS estimate as

ˆ︁β = (X⊤X)−1XY =
[︄

n∑︂
i=1

X2
i

]︄−1 [︄ n∑︂
i=1

XiYi

]︄
.

Similarly to the previous example, we obtained two different unbiased estimates,
so that the WLS estimate ˆ︁βW LS has lesser variance than the OLS estimate ˆ︁β.
Corollary 1. Under the assumption A1, if

Q = E[wiXiX⊤
i ] (3.16)

is a finite positive definite matrix, then ˆ︁βW LS is a consistent estimator of β.

Proof. The proof follows the same steps as in Theorem 6, applied on the trans-
formed model (3.12).

According to the Corollary 1, the WLS estimate (3.13) is consistent, under
the assumption A1, for all forms of Ω (given that Q 3.16 is finite). However,
in the case of more complex MLR models, identifying the exact form of Ω is
often impossible, and choosing a wrong form of Ω may result in an inefficient es-
timate. In the following section, we will explore estimation techniques applicable
in scenarios where the form of Ω is partially unknown.
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3.4 Feasible weighted least squares
Previously we assumed

Var[ϵi | Xi] = h(Xi),
where h is a non-constant function. In the preceding section, we addressed the
case where

h(x) = σ2ω(x),
such that ω is a known function. Now, we broaden this scope to situations where
X depends on some finite-dimensional parameter α. Consequently, the matrix

Ω = Ω(α)

becomes dependent on α, making the straightforward application of the WLS
estimate unfeasible. We proceed by first estimating α, thereby obtaining ˆ︁Ω =
Ω( ˆ︁α), which is used to obtain the feasible weighted least squares (denoted as
FWLS) estimate ˆ︁βF W LS, defined as

ˆ︁βF W LS = (X⊤ ˆ︁Ω−1X)−1X⊤ ˆ︁Ω−1Y. (3.17)

Example 5. In Example 4 we had Var[ϵi | Xi] = σ2X2
i for a model

Yi = βXi + ϵi.

Assuming Xi > 0 we can generalize the power exponent in the Example 4 so that

Var[ϵi | Xi] = σ2Xα
i ,

where α ∈ R is an unknown parameter. Consequently, our problem shifts towards
finding a consistent estimate ˆ︁α of α.

Based on the previous example, we formulate a parametric model for the
conditional variance of unobserved errors as follows

Var[ϵi | Xi] = h(Xi, α), (3.18)

where h is known and α ∈ Rd is a vector of unknown parameters.

3.4.1 Two-step estimation
We can summarize two-step estimation into the following steps:

1. Construct an estimate ˆ︁α of α. This is usually done by firstly obtaining
the OLS estimate ˆ︁β and using it to calculate the residuals ˆ︁ϵ. Secondly, we
estimate ˆ︁α from a auxiliary model using transformed residuals ˆ︁ϵ.

2. Use ˆ︁α to calculate the FWLS estimate ˆ︁βF W LS from (3.17).

We will demonstrate the first step of the two-step estimation method for several
selected common models.
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Multiplicative model. In this particular model, we assume the form of het-
eroscedasticity to be

Var[ϵi | Xi] = h(Xi, α) = exp[α⊤Xi],

where α = (α0, α1, . . . , αk)⊤ is a (k + 1) × 1 vector of unknown parameters.

We define a random variable Vi, so that

Vi = ϵ2
i

h(Xi, α) .

Therefore, E[Vi] = 1. We can now write

ϵ2
i = exp[α⊤Xi]Vi. (3.19)

By applying the log transform to (3.19), we get

log(ϵ2
i ) = α⊤Xi + log(Vi), (3.20)

Since the unobserved errors ϵi are unknown, we replace them with the residualsˆ︁ϵi obtained by the OLS method. Let ˆ︁β be the OLS estimate, and

ˆ︁ϵi = Yi − X⊤
i
ˆ︁β, ϵi = Yi − X⊤

i β.

Then ˆ︁ϵi = ϵi − X⊤
i ( ˆ︁β − β) = ϵi − γi.

However, since ˆ︁β P−→ β, which was shown in Theorem 6, γi will asymptotically
become negligible.
Finally, we rewrite the equation (3.20) to get a multiplicative model

log(ˆ︁ϵi
2) = α⊤Xi + log(Vi) − log(ϵ2

i ) + log(ˆ︁ϵi
2) = α⊤Xi + ei, (3.21)

where ei = log(Vi) − log(ϵ2
i ) + log(ˆ︁ϵi

2) is a random variable.

Using the OLS method on the model, we then obtain an estimate ˆ︁α =
(ˆ︁α0, ˆ︁α1, . . . , ˆ︁αk)⊤ of α, where ˆ︁α0 is not a consistent estimate of α0 while ˆ︁αj, j =
1, 2, . . . , k, are consistent estimates of αj Harvey, (1976) page 463. We define
vectors ˆ︁α∗ = (ˆ︁α1, . . . , ˆ︁αk)⊤ and X∗

i = (Xi1, Xi2, . . . , Xik)⊤, that is the original
Xi, from which we remove the first element, i.e., the absolute term. We can now
form following equation

exp[ ˆ︁α⊤Xi] = exp[ˆ︁α0] · exp[ ˆ︁α∗⊤X∗
i ]. (3.22)

Applying Lemma 8 to equation (3.22) implies that the inconsistency of ˆ︁α0 does
not affect the WLS estimate, we aim to obtain.

Finally, utilizing ˆ︁α, we can derive the estimate h(Xi, ˆ︁α) of h(Xi, α) as

h(Xi, ˆ︁α) = exp[ ˆ︁α⊤Xi].

This enables us to employ the WLS method (3.14) with weights 1
h(Xi,ˆ︁α) to com-

pute ˆ︁βF W LS (3.17).
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Additive model. We assume the form of heteroscedasticity to be

Var[ϵi | Xi] = h(Xi, α) = α⊤Xi,

so that both Xij > 0 and αj > 0, for j = 0, 1, . . . , k.

We define a random variable Vi, so that

Vi = ϵ2
i − h(Xi, α),

resulting in E[Vi] = 0.

Thus, we express
ϵ2

i = α⊤Xi + Vi. (3.23)
Using the same reasoning as for the multiplicative model, we estimate alpha from
the auxiliary model ˆ︁ϵi

2 = α⊤Xi + ei. (3.24)

Power model. We assume the form of heteroscedasticity to be

Var[ϵi | Xi] = h(Xi, α) =
(︂
X⊤

i β
)︂α

,

where α ∈ R and Yi > 0.

Utilizing Vi from the multiplicative model, we write

ϵ2
i =

(︂
X⊤

i β
)︂α

Vi. (3.25)

By applying the log transform to (3.25), we get

log(ϵ2
i ) = α log

(︂
X⊤

i β
)︂

+ log(Vi).

As for the previous models, we replace ϵi with ˆ︁ϵi. Additionally, using the fact
that ˆ︁β P−→ β, we replace β with ˆ︁β. Thus, we obtain an auxiliary model

log(ˆ︁ϵ2
i ) = α log

(︂
X⊤

i
ˆ︁β)︂+ ei = α log( ˆ︁Yi) + ei. (3.26)

Power in Xi model. The final model we present applies to the SLR model.
We assume the form of heteroscedasticity to be

Var[ϵi | Xi] = h(Xi, α) = Xα
i ,

where α ∈ R and Yi > 0.

Utilizing Vi from the multiplicative model, we write

ϵ2
i = Xα

i Vi. (3.27)

By applying the log transform to (3.27), we get

log(ϵ2
i ) = α log (Xi) + log(Vi).
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From (3.27), we get
log(ˆ︁ϵi

2) = α log(Xi) + ei. (3.28)
FWLS estimate ˆ︁βF W LS obtained by two-step estimation is no longer unbi-

ased. However, it is consistent and should be asymptotically more efficient than
the OLS estimate ˆ︁β, given Corollary 1 Heij et al., (2004) page 336. Addition-
ally, some authors suggest that iterating the two-step method may provide better
asymptotic properties Greene, (2003) page 228.

Next, we introduce an algorithm to iterate the two-step method.

3.4.2 Iterative estimation
We can describe the iterative estimation method in the following steps:

1. Obtain an OLS estimate ˆ︁β, and calculate residuals ˆ︁ϵ.

2. Use ˆ︁ϵ in a suitable model to obtain ˆ︁α.

3. Obtain ˆ︁βF W LS and use it to calcualte residuals ˆ︁ϵ.

4. Iterate step 2 and 3 until || ˆ︁βi − ˆ︁β(i+1)|| < θ, where θ > 0 and ˆ︁βi
F W LS is

obtained by i-th iteration.

In the next chapter, we will run simulation studies to examine and compare
the asymptotic properties of the models using both the two-step estimation and
iterative two-step estimation.
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4. Simulation studies
In this chapter, we compare the ordinary least squares (OLS), weighted least
squares (WLS or oracle), and feasible weighted least squares (FWLS) estimators
in terms of their performance (efficiency) across specific studies. The metric of
interest is the standard deviation (denoted as sd) of the estimator’s deviation
from the true slope coefficients and the intercept, as it allows us to compare the
efficiency of each estimate. Secondly, we measure the bias of each estimate and
discuss its asymptotic behavior.

The regressors for each study are generated using a uniform distribution
U(0, 10). Error terms are generated using a conditioned normal distribution
N (0, h(Xi)) with h(Xi) defined in (3.1) being specified in each study. Simu-
lations are executed across varying sample sizes n ∈ {30, 50, 100, 300, 500}, with
each configuration repeated 1000 times. We then calculate sd, and bias for each
n. Tables with simulation results can be found in the Attachments A.1 section.

We estimate β by 10 candidate estimators:

• OLS = Ordinary least squares (2.5),

• WLS = Weighted least squares (3.13),

• FWLS mult = FWLS, using two-step estimation with a
multiplicative model (3.21),

• FWLS add = FWLS, using two-step estimation with an
additive model (3.24),

• FWLS power = FWLS, using two-step estimation with
power model (3.26),

• FWLS powerinX = FWLS, using two-step estimation with
Power in Xi model (3.28),

• imm FWLS mult = FWLS, using iterative (3.4.2) two-step estimation with
a multiplicative model (3.21),

• iam FWLS add = FWLS, using iterative (3.4.2) two-step estimation with
an additive model (3.24),

• ipm FWLS power = FWLS, using iterative (3.4.2) two-step estimation with
power model (3.26),

• ipx FWLS powerinX = FWLS, using iterative (3.4.2) two-step estimation
with power in Xi model (3.28).

Power in Xi models are only applicable to the SLR model. Consequently, we
don’t measure them in studies under the MLR model.
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Let us have estimate ˆ︁βji,est of βj, j = 0, 1, . . . , k, where i = 0, 1, . . . , N, for
N = 1000, denotes the iteration in which we obtained the estimate, and est
is one of the candidate estimates. We calculate the metrics sd and bias in the
following way:

• sd =
√︂

1
N

∑︁N
i=1( ˆ︁βji,est − βj)2

• bias = 1
N

∑︁N
i=1

ˆ︁βji,est − βj

4.1 Study 1
In the first study, we consider a SLR model

Yi = β0 + β1Xi + ϵi = 100 + 20Xi + ϵi,

where we assume
ϵi|Xi ∼ N (0, σ2Xα

i ) = N (0, 10X2
i ).

The following graph 4.1 shows us an example of a data sample of 500 observations
generated by the Study 1 configuration.

Figure 4.1: Study 1: Generated data around 100 + 20Xi line (blue solid line).

We will now run the simulations as described in the previous section. On the
graphs in Figure 4.2 we showcase the dependence of the sd on the sample size n
for all 10 candidate estimators, both for the intercept β0 in Figure (a) and the
slope parameter β1 in Figure (b). Additionally, the simulation results are listed
in Table 4.1 for β0 and the Table 4.2 for β1.
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(a) Intercept β0. (b) Slope parameter β1.

Figure 4.2: Study 1: Dependence of the sd on the sample size n for the candidate
estimators.

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 4.443 1.163 2.332 1.838 2.178 2.118 1.963 1.769 1.743 1.607
50 3.514 0.632 1.495 1.050 1.362 1.181 1.216 1.034 1.024 0.669
100 2.378 0.297 0.883 0.530 0.754 0.450 0.784 0.529 0.627 0.301
300 1.315 0.090 0.441 0.216 0.356 0.117 0.415 0.216 0.323 0.091
500 1.007 0.051 0.326 0.150 0.262 0.060 0.309 0.150 0.241 0.052

Table 4.1: Study 1: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β0

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 1.275 0.682 0.872 0.852 0.848 0.877 0.860 0.841 0.799 0.994
50 1.028 0.506 0.646 0.633 0.628 0.644 0.634 0.631 0.593 0.662
100 0.699 0.346 0.439 0.420 0.415 0.396 0.444 0.419 0.410 0.372
300 0.394 0.191 0.245 0.232 0.230 0.206 0.250 0.232 0.234 0.193
500 0.302 0.147 0.184 0.176 0.172 0.154 0.188 0.176 0.174 0.147

Table 4.2: Study 1: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β1
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In line with the theory, the WLS estimate outperformed other estimators, a
trend we expect to continue across our studies. This fact will not be mentioned
again unless something unexpected occurs.

We can observe that the OLS estimate had the worst performance, almost
doubling the other candidate estimators in terms of sd for all n.

As for the FWLS models, the iterative and one-step (non-iterative) power
in Xi models performed the best. This is likely the case because they assume
Var[ϵi|Xi] = Xα

i and are not influenced by changes in σ2, as shown in Lemma 8.
The simulations also indicated that the power models outperform additive mod-
els in β1 estimation, but the opposite is true for β0 estimation. However, the
difference is insignificant, hence the power models are comparable to the additive
models, respectively. Out of the FWLS models, the multiplicative model was the
least efficient but still performed much better than the OLS model.

The results of simulations measuring bias dependence on the sample size n
for the candidate estimators are shown in Figure 4.3, both for the intercept β0 in
Figure (a) and the slope parameter β1 in Figure (b). Additionally, the simulation
results are listed in Table 4.3 for β0 and Table 4.4 for β1.

(a) Intercept β0. (b) Slope parameter β1.

Figure 4.3: Study 1: Dependence of the bias on the sample size n for the candidate
estimators.
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n OLS WLS mult add pwr PinX imm iam ipm ipx
30 0.17148 0.00195 0.08786 0.04977 0.10083 0.12816 0.04003 0.03093 0.03590 0.05119
50 -0.03289 0.01490 0.00835 0.01240 0.00928 0.00684 -0.01669 0.01463 -0.00212 0.00412
100 0.06936 -0.00476 -0.00269 0.01658 -0.00070 0.00076 -0.00729 0.01645 -0.00362 -0.00792
300 -0.03588 -0.00103 0.03105 0.00585 0.02808 -0.00103 0.03374 0.00585 0.03028 -0.00148
500 -0.01441 0.00089 0.00039 0.00280 0.00001 -0.00010 0.00241 0.00281 0.00217 0.00083

Table 4.3: Study 1: Dependence of the bias on the sample size n for the candidate
estimators, for parameter β0

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 -0.04234 -0.00206 -0.01888 -0.01888 -0.02005 -0.03310 -0.00478 -0.01522 -0.00775 -0.04954
50 0.01664 0.00711 0.01186 0.00683 0.01401 0.01178 0.02355 0.00636 0.01673 0.01594
100 0.00708 0.02276 0.02774 0.01737 0.02598 0.02160 0.02944 0.01739 0.02448 0.01453
300 -0.00041 -0.00426 -0.01969 -0.00891 -0.01693 -0.00559 -0.02128 -0.00891 -0.01897 -0.00282
500 -0.00607 -0.00955 -0.00957 -0.00939 -0.00896 -0.00761 -0.01064 -0.00939 -0.01065 -0.00960

Table 4.4: Study 1: Dependence of the bias on the sample size n for the candidate
estimators, for parameter β1

From these results, we can observe that all estimates are asymptotically unbi-
ased. Consequently, since the bias values for each estimate are all in the proximity
of 0, we won’t be discussing bias for other studies.

Another important factor that we can observe from the simulations is that all
the estimates are in fact consistent as n −→ ∞. We have proven that in Theorem 6
and Corrolarly 1.

The results of Study 1, demonstrated that the FWLS estimators, which as-
sume the correct partial form of heteroscedasticity (in this case power in Xi mod-
els), outperformed FWLS estimators that misspecify it. Furthermore, it may be
advisable to prefer FWLS estimators over the OLS model when accommodating
a multiplicative form of heteroscedasticity.

4.2 Study 2
In the second case, the data are generated from

Yi = β0 + β1Xi + ϵi = 2000 + 20Xi + ϵi,

where
ϵi|Xi ∼ N (0, exp[3 + 1 · Xi]).

The following graph 4.4 shows us an example of a data sample of 500 observations
generated by the Study 2 configuration.
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Figure 4.4: Study 2: Generated data around 2000 + 20Xi line (blue solid line).

On the graphs present in Figure 4.5 we showcase the dependence of the sd
on the sample size n for all 10 candidate estimators, both for the intercept β0 in
Figure (a) and the slope parameter β1 in Figure (b).

(a) Intercept β1. (b) Slope parameter β1.

Figure 4.5: Study 2: Dependence of the sd on the sample size n for the candidate
estimators.

In Study 2, we notice that the iterative and one-step (non-iterative) multi-
plicative models significantly outperformed the other FWLS estimates. That is
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the expected outcome, as multiplicative models assume Var[ϵi|Xi] = exp[αXi].
The simulation results also show that the usage of the OLS estimator performs
badly even for large data samples. Finally, we observe that the iterative power
in Xi model performed worse than the OLS estimator for n > 300 in terms of β1
estimation, whereas the one-step power in Xi model is comparable to the OLS
estimator at around n = 500. This shows us that misspecified FWLS estimators
may prove to be a worse option than the OLS estimator.

4.3 Study 3
In the third case, the data are generated from

Yi = β0 + β1Xi + ϵi = 100 + 20Xi + ϵi,

where
ϵi|Xi ∼ N (0, 100 + 50 · Xi).

The following graph 4.6 shows us an example of a data sample of 500 observations
generated by the Study 2 configuration.

Figure 4.6: Study 3: Generated data around 100 + 20Xi line (blue solid line).

On the graphs present in Figure 4.7 we showcase the dependence of the sd
on the sample size n for all 10 candidate estimators, both for the intercept β0 in
Figure (a) and the slope parameter β1 in Figure (b).
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(a) Intercept β1. (b) Slope parameter β1.

Figure 4.7: Study 3: Dependence of the sd on the sample size n for the candidate
estimators.

Overall the FWLS estimators are very comparable, except for the Power in
Xi models which are comparable to the OLS estimator. This tells us that in
regards to Study 3 configuration, it doesn’t make much difference whether we
misspecify the FWLS estimator or not. Such a result is expected, as the presence
of heteroscedasticity in this scenario is notably minimal, in contrast to previous
cases. This observation is supported by the graphical representation of simulated
data in Figure 4.6. Consequently, the impact of heteroscedasticity on the outcome
is significantly attenuated.

4.4 Study 4
In the fourth case, let us use the model

Yi = β0 + β1Xi1 + β2Xi2 + ϵi = 1000 + 5Xi1 + 3Xi2 + ϵi,

where
ϵi|Xi ∼ N (0, exp[−2 + 1 · Xi1 + 0.3 · Xi2]).

On the graphs in Figure 4.8 we showcase the dependence of the sd on the sample
size n for 8 candidate estimators, for the intercept β0 in Figure (a), the slope
parameter β1 in Figure (b), and the slope parameter β2 in Figure (c).
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(a) Intercept β0. (b) Slope parameter β1.

(c) Slope parameter β2.

Figure 4.8: Study 4: Dependence of the sd on the sample size n for the candidate
estimators.
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Note that in this study we do not employ Power in Xi models as they cannot
be applied to multiple regressors at once. The same holds for all the remaining
simulation sections.

As in Study 2, we can notice that the iterative multiplicative model has
the best efficiency, which is again expected as the multiplicative model assumes
exp[α⊤Xi]. From n > 300 it is being matched by the one-step multiplicative
model and the iterative power model. We observe that the OLS estimator per-
formed the worst, with almost the double sd of the least efficient FWLS estimator,
which is an iterative additive model. These results are expected, as misspecifying
a multiplicative form of conditioned variance by constant or linear form should
deviate significantly.

Study 4 showcases that an iterative misspecified model may produce a better
or comparable result to the of one-step model assuming the correct form.

4.5 Study 5
In the fifth case, let us have the same MLR model as in the fourth study

Yi = β0 + β1Xi1 + β2Xi2 + ϵi = 1000 + 5Xi1 + 3Xi2 + ϵi,

where
ϵi|Xi ∼ N (0, exp[−2 + 1 · Xi1 + 0.3 · Xi2]).

However, in this case, we will misspecify the weights of the WLS method to be

ϵi|Xi ∼ N (0, exp[−2 + 0.3 · Xi1 + 1 · Xi2]).

On the graphs present in Figure 4.9 we showcase the dependence of the sd on the
sample size n for 8 candidate estimators, for the intercept β0 in Figure (a), the
slope parameter β1 in Figure (b), and the slope parameter β2 in Figure (c).

This study demonstrates that choosing an incorrect form of heteroscedasticity
leads to a WLS estimate that is less efficient than the FWLS estimates.

The practical takeaway from Study 5 is that when there’s no guarantee of
accurately determining the correct form of heteroscedasticity, it may be preferable
to utilize FWLS estimators, especially in cases where it is expected that the form
has an exponential or higher order of magnitude.
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(a) Intercept β0. (b) Slope parameter β1.

(c) Slope parameter β2.

Figure 4.9: Study 5: Dependence of the sd on the sample size n for the candidate
estimators.
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4.6 Study 6
In the last case, the data are generated from

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ϵi = 200 + 6Xi1 + 4Xi2 + 3Xi3 + ϵi,

where we assume

ϵi|Xi ∼ N (0, exp[α1 · Xi1] + α2 · Xi3).

We examine the change in performance between multiplicative and additive mod-
els by making changes in α.

On the graphs present in Figure 4.10 and Figure 4.11 we showcase the depen-
dence of the sd on the sample size n for 8 candidate estimators, for the intercept
β0 in Figures (a), the slope parameter β1 in Figures (b), the slope parameter β2
in Figures (c), and the slope parameter β3 in Figures (d).

In this study we can observe that adjusting α = (0.2, 20)⊤ to α = (1, 4)⊤ led
to multiplicative models surpassing additive models in efficiency. Furthermore,
we notice the effect of amplifying the multiplicative term on the conditional vari-
ance significantly deteriorates the performance of the OLS estimator, as well as
of the power models. That is due to the orders of magnitude faster growth of the
multiplicative term.

Attachments A.1 includes results for studies, where α = (0.4, 16)⊤ (6.2),
α = (0.6, 12)⊤ (6.3), and α = (0.8, 8)⊤ (6.4).
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(a) Intercept β0. (b) Slope parameter β1.

(c) Slope parameter β2. (d) Slope parameter β3.

Figure 4.10: Study 6: Dependence of the sd on the sample size n for the candidate
estimators, where α = (0.2, 20)⊤.
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(a) Intercept β0. (b) Slope parameter β1.

(c) Slope parameter β2. (d) Slope parameter β3.

Figure 4.11: Study 6: Dependence of the sd on the sample size n for the candidate
estimators, where α = (1, 4)⊤.
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4.7 Conclusion to simulation studies
In conclusion, we observed the varying behavior of the OLS and WLS estimators,
and FWLS estimators obtained via iterative and non-iterative two-step estima-
tion, depending on the study specifications.

As a result, we provide recommendations regarding the selection between the
OLS and FWLS methods based on specific model characteristics, while high-
lighting cases where the OLS method could produce highly misleading results.
Furthermore, we emphasize the impact of misspecified heteroscedasticity, high-
lighting the risks associated with relying on the WLS or a FWLS estimator as-
suming conditioned variance of a different order of magnitude.
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Conclusion
In the theoretical part, we introduced the weighted least squares (WLS) esti-
mator, and proved its superior efficiency over the ordinary least squares (OLS)
under the assumption of heteroscedasticity with a known form. Moreover, we in-
troduced the feasible weighted least squares (FWLS) estimator as an alternative
to the WLS, requiring only partial knowledge of heteroscedasticity’s structure.

Through the simulations, we observed the varying behavior of FWLS estima-
tors obtained via two-step estimation, contingent upon the model specifications.
Consequently, we provide recommendations concerning the choice between OLS
and FWLS methods based on the specific model characteristics. Additionally,
we demonstrate that an incorrectly specified WLS estimate may exhibit inferior
performance compared to the OLS model, thereby highlighting the preferable
utilization of FWLS models. This underscores the importance of considering het-
eroscedasticity’s nuances and the potential advantages of alternative estimation
techniques in empirical research.
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A. Attachments

A.1 First Attachment
Simulations result in tables for each study:

We estimate β by 10 candidate estimators:

• OLS = Ordinary least squares (2.5),

• WLS = Weighted least squares (3.13),

• mult = FWLS, using two-step estimation with a
multiplicative model (3.21),

• add = FWLS, using two-step estimation with an
additive model (3.24),

• pwr = FWLS, using two-step estimation with
power model (3.26),

• PinX = FWLS, using two-step estimation with
Power in Xi model (3.28),

• imm = FWLS, using iterative (3.4.2) two-step estimation with a multiplica-
tive model (3.21),

• iam = FWLS, using iterative (3.4.2) two-step estimation with an additive
model (3.24),

• ipm = FWLS, using iterative (3.4.2) two-step estimation with power model
(3.26),

• ipx = FWLS, using iterative (3.4.2) two-step estimation with power in Xi

model (3.28).

Power in Xi models are only applicable to the SLR model. Consequently, we
don’t measure them in studies under the MLR model.

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 58.95 4.358 12.83 16.167 12.96 24.04 4.588 16.17 4.582 11.57
50 48.881 3.164 7.948 11.48 8.076 16.04 3.254 11.483 3.251 4.75
100 32.771 2.140 3.464 5.988 3.519 6.828 2.155 5.988 2.154 4.099
300 18.625 1.149 1.365 2.893 1.369 3.395 1.155 2.893 1.154 3.590
500 14.056 0.873 0.959 2.360 0.961 3.170 0.876 2.360 0.876 3.429

Table A.1: Study 2: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β0
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n OLS WLS mult add pwr PinX imm iam ipm ipx
30 18.669 2.690 6.293 10.054 6.374 11.57 2.819 10.054 2.82 9.44
50 15.443 2.056 4.386 7.960 4.470 8.900 2.124 7.960 2.129 7.531
100 10.524 1.475 2.305 5.183 2.355 5.319 1.498 5.183 1.499 5.477
300 6.029 0.837 1.020 2.841 1.031 3.855 0.842 2.841 0.842 5.747
500 4.548 0.608 0.677 2.142 0.682 4.125 0.611 2.142 0.611 6.326

Table A.2: Study 2: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β1

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 5.670 4.965 5.389 5.439 5.385 5.549 5.285 5.409 5.370 5.696
50 4.433 3.973 4.222 4.339 4.206 4.367 4.230 4.332 4.234 4.488
100 3.057 2.787 2.863 2.992 2.853 3.102 2.861 2.994 2.853 3.151
300 1.754 1.561 1.600 1.630 1.587 1.824 1.597 1.611 1.583 1.788
500 1.342 1.189 1.208 1.203 1.198 1.389 1.206 1.203 1.197 1.380

Table A.3: Study 3: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β0

n OLS WLS mult add pwr PinX imm iam ipm ipx
30 1.218 1.092 1.181 1.187 1.181 1.206 1.188 1.187 1.212 1.362
50 0.952 0.872 0.930 0.929 0.923 0.939 0.937 0.929 0.934 0.997
100 0.657 0.600 0.617 0.636 0.615 0.646 0.617 0.633 0.615 0.652
300 0.381 0.344 0.351 0.357 0.348 0.377 0.350 0.351 0.348 0.373
500 0.295 0.269 0.273 0.273 0.272 0.293 0.273 0.273 0.272 0.292

Table A.4: Study 3: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 23.870 1.310 6.127 11.055 10.120 1.440 11.069 5.348
50 19.370 0.796 3.177 7.809 7.090 0.830 7.815 3.575
100 13.549 0.455 1.482 4.769 4.714 0.466 4.776 1.361
300 7.689 0.227 0.415 2.581 0.719 0.228 2.582 0.252
500 6.021 0.181 0.255 1.956 0.280 0.182 1.957 0.197

Table A.5: Study 4: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β0
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n OLS WLS mult add pwr imm iam ipm
30 4.002 0.476 1.567 2.540 2.070 0.530 2.535 1.622
50 3.006 0.345 0.874 1.814 1.465 0.359 1.809 0.943
100 2.126 0.218 0.523 1.249 0.970 0.225 1.248 0.423
300 1.233 0.117 0.201 0.720 0.259 0.118 0.720 0.134
500 0.936 0.094 0.125 0.539 0.150 0.095 0.539 0.108

Table A.6: Study 4: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 2.945 0.229 0.853 1.612 1.502 0.254 1.620 1.402
50 2.434 0.154 0.472 1.213 0.972 0.160 1.218 0.591
100 1.702 0.099 0.207 0.789 0.528 0.101 0.792 0.153
300 0.948 0.052 0.066 0.427 0.096 0.053 0.428 0.061
500 0.750 0.040 0.047 0.333 0.058 0.040 0.333 0.047

Table A.7: Study 4: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β2

n OLS WLS mult add pwr imm iam ipm
30 23.870 8.316 6.127 11.055 10.120 1.440 11.069 5.348
50 19.370 4.476 3.177 7.809 7.090 0.830 7.815 3.575
100 13.549 2.188 1.482 4.769 4.714 0.466 4.776 1.361
300 7.689 1.036 0.415 2.581 0.719 0.228 2.582 0.252
500 6.021 0.768 0.255 1.956 0.280 0.182 1.957 0.197

Table A.8: Study 5: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 4.002 2.235 1.567 2.540 2.070 0.530 2.535 1.622
50 3.006 1.550 0.874 1.814 1.465 0.359 1.809 0.943
100 2.126 1.037 0.523 1.249 0.970 0.225 1.248 0.423
300 1.233 0.553 0.201 0.720 0.259 0.118 0.720 0.134
500 0.936 0.434 0.125 0.539 0.150 0.095 0.539 0.108

Table A.9: Study 5: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β1
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n OLS WLS mult add pwr imm iam ipm
30 2.945 2.047 0.853 1.612 1.502 0.254 1.620 1.402
50 2.434 1.380 0.472 1.213 0.972 0.160 1.218 0.591
100 1.702 0.835 0.207 0.789 0.528 0.101 0.792 0.153
300 0.948 0.447 0.066 0.427 0.096 0.053 0.428 0.061
500 0.750 0.336 0.047 0.333 0.058 0.040 0.333 0.047

Table A.10: Study 5: Dependence of the sd on the sample size n for the candidate
estimators, for parameter β2

n OLS WLS mult add pwr imm iam ipm
30 5.674 4.215 5.506 4.935 5.848 5.872 4.881 6.173
50 4.190 3.006 3.623 3.408 4.029 3.709 3.376 4.162
100 2.823 1.997 2.316 2.184 2.648 2.318 2.175 2.640
300 1.670 1.131 1.337 1.271 1.570 1.324 1.266 1.565
500 1.270 0.814 0.970 0.897 1.147 0.966 0.896 1.142

Table A.11: Study 6.1: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.2, 20)⊤, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 0.711 0.543 0.676 0.634 0.722 0.754 0.626 0.748
50 0.522 0.403 0.459 0.450 0.519 0.483 0.446 0.532
100 0.367 0.258 0.298 0.294 0.356 0.296 0.292 0.357
300 0.200 0.140 0.164 0.157 0.196 0.164 0.156 0.197
500 0.158 0.106 0.121 0.116 0.152 0.121 0.116 0.152

Table A.12: Study 6.1: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.2, 20)⊤, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 0.692 0.534 0.660 0.614 0.703 0.718 0.610 0.730
50 0.496 0.375 0.432 0.424 0.499 0.451 0.420 0.516
100 0.365 0.261 0.300 0.289 0.359 0.298 0.287 0.361
300 0.208 0.142 0.163 0.159 0.208 0.162 0.159 0.208
500 0.156 0.108 0.122 0.117 0.150 0.122 0.117 0.150

Table A.13: Study 6.1: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.2, 20)⊤, for parameter β2
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n OLS WLS mult add pwr imm iam ipm
30 0.685 0.570 0.687 0.631 0.713 0.787 0.630 0.744
50 0.518 0.416 0.478 0.453 0.532 0.495 0.451 0.545
100 0.363 0.286 0.321 0.313 0.367 0.318 0.312 0.373
300 0.199 0.153 0.166 0.163 0.198 0.166 0.162 0.199
500 0.157 0.120 0.132 0.127 0.157 0.131 0.127 0.157

Table A.14: Study 6.1: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.2, 20)⊤, for parameter β3

n OLS WLS mult add pwr imm iam ipm
30 5.431 4.124 5.257 4.775 5.519 5.815 4.716 5.788
50 4.032 3.087 3.617 3.441 3.840 3.720 3.411 3.870
100 2.843 1.986 2.434 2.284 2.596 2.421 2.263 2.586
300 1.636 1.096 1.285 1.213 1.464 1.276 1.207 1.455
500 1.256 0.849 0.974 0.904 1.113 0.970 0.900 1.108

Table A.15: Study 6.2: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.4, 16)⊤, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 0.668 0.545 0.675 0.612 0.677 0.758 0.608 0.709
50 0.510 0.426 0.478 0.456 0.500 0.499 0.455 0.503
100 0.356 0.289 0.315 0.308 0.346 0.313 0.307 0.346
300 0.203 0.159 0.174 0.168 0.195 0.173 0.168 0.194
500 0.154 0.118 0.130 0.125 0.146 0.129 0.125 0.146

Table A.16: Study 6.2: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.4, 16)⊤, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 0.666 0.541 0.658 0.609 0.671 0.731 0.606 0.699
50 0.486 0.389 0.457 0.435 0.485 0.466 0.433 0.486
100 0.348 0.252 0.306 0.292 0.334 0.307 0.290 0.336
300 0.196 0.146 0.162 0.158 0.188 0.162 0.158 0.188
500 0.158 0.113 0.127 0.124 0.151 0.127 0.123 0.151

Table A.17: Study 6.2: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.4, 16)⊤, for parameter β2
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n OLS WLS mult add pwr imm iam ipm
30 0.658 0.558 0.674 0.608 0.665 0.740 0.605 0.709
50 0.492 0.407 0.462 0.440 0.499 0.485 0.438 0.508
100 0.337 0.279 0.314 0.302 0.334 0.318 0.301 0.336
300 0.193 0.156 0.168 0.165 0.187 0.168 0.165 0.187
500 0.151 0.124 0.131 0.128 0.147 0.131 0.128 0.147

Table A.18: Study 6.2: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.4, 16)⊤, for parameter β3

n OLS WLS mult add pwr imm iam ipm
30 6.384 4.439 5.845 5.303 5.815 6.406 5.256 5.980
50 4.635 3.070 3.871 3.620 3.778 3.885 3.614 3.824
100 3.288 2.155 2.630 2.633 2.626 2.607 2.608 2.594
300 1.870 1.109 1.294 1.352 1.378 1.283 1.351 1.373
500 1.483 0.880 1.017 1.050 1.074 1.014 1.051 1.072

Table A.19: Study 6.3: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.6, 12)⊤, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 0.854 0.653 0.826 0.757 0.813 0.881 0.752 0.839
50 0.648 0.489 0.593 0.569 0.588 0.615 0.568 0.601
100 0.465 0.355 0.405 0.402 0.423 0.407 0.401 0.422
300 0.263 0.200 0.218 0.221 0.233 0.218 0.221 0.234
500 0.198 0.142 0.157 0.159 0.167 0.156 0.159 0.167

Table A.20: Study 6.3: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.6, 12)⊤, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 0.742 0.557 0.701 0.660 0.689 0.779 0.658 0.715
50 0.564 0.397 0.480 0.471 0.482 0.489 0.471 0.483
100 0.413 0.282 0.338 0.345 0.342 0.336 0.343 0.341
300 0.233 0.153 0.175 0.182 0.190 0.175 0.182 0.191
500 0.181 0.121 0.137 0.143 0.150 0.137 0.143 0.150

Table A.21: Study 6.3: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.6, 12)⊤, for parameter β2
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n OLS WLS mult add pwr imm iam ipm
30 0.763 0.592 0.731 0.684 0.722 0.829 0.682 0.742
50 0.583 0.437 0.526 0.515 0.530 0.542 0.512 0.545
100 0.405 0.299 0.347 0.349 0.362 0.347 0.351 0.361
300 0.233 0.164 0.183 0.193 0.195 0.183 0.193 0.195
500 0.171 0.123 0.135 0.139 0.146 0.135 0.139 0.146

Table A.22: Study 6.3: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.6, 12)⊤, for parameter β3

n OLS WLS mult add pwr imm iam ipm
30 11.85 4.926 7.058 7.556 7.952 7.105 7.446 7.519
50 8.362 3.282 4.299 4.760 4.734 4.103 4.694 4.377
100 5.834 2.074 2.669 3.368 2.97 2.565 3.359 2.818
300 3.294 1.116 1.350 1.966 1.423 1.338 1.97 1.409
500 2.562 0.891 1.064 1.726 1.107 1.057 1.683 1.10

Table A.23: Study 6.4: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.8, 8)⊤, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 1.835 0.909 1.266 1.379 1.456 1.207 1.360 1.445
50 1.376 0.672 0.857 0.990 1.056 0.808 0.980 1.015
100 0.926 0.444 0.553 0.664 0.698 0.512 0.658 0.683
300 0.561 0.255 0.293 0.397 0.382 0.290 0.397 0.380
500 0.421 0.192 0.216 0.303 0.289 0.215 0.295 0.287

Table A.24: Study 6.4: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.8, 8)⊤, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 1.450 0.603 0.842 0.952 1.056 0.848 0.941 1.068
50 1.009 0.446 0.560 0.644 0.651 0.571 0.641 0.623
100 0.699 0.276 0.342 0.453 0.406 0.343 0.450 0.407
300 0.400 0.150 0.185 0.288 0.210 0.184 0.289 0.208
500 0.312 0.122 0.149 0.252 0.168 0.149 0.243 0.167

Table A.25: Study 6.4: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.8, 8)⊤, for parameter β2
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n OLS WLS mult add pwr imm iam ipm
30 1.359 0.612 0.828 0.907 1.027 0.833 0.897 1.032
50 1.048 0.439 0.552 0.667 0.676 0.548 0.661 0.627
100 0.731 0.303 0.354 0.454 0.436 0.355 0.452 0.429
300 0.394 0.162 0.188 0.291 0.216 0.191 0.291 0.216
500 0.310 0.125 0.145 0.237 0.174 0.146 0.228 0.173

Table A.26: Study 6.4: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (0.8, 8)⊤, for parameter β3

n OLS WLS mult add pwr imm iam ipm
30 25.24 4.569 8.934 13.701 16.78 6.089 13.60 20.62
50 19.77 3.162 5.078 9.052 10.533 3.920 9.007 9.907
100 13.85 2.052 2.801 5.651 5.832 2.510 5.664 5.026
300 7.795 1.026 1.292 2.764 1.779 1.254 2.768 1.555
500 6.284 0.790 0.976 2.242 1.250 0.955 2.242 1.128

Table A.27: Study 6.5: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (1, 4)⊤, for parameter β0

n OLS WLS mult add pwr imm iam ipm
30 4.288 1.108 2.182 2.979 3.020 1.485 2.946 3.355
50 3.229 0.791 1.307 2.081 2.366 0.964 2.063 2.587
100 2.289 0.524 0.773 1.428 1.604 0.609 1.421 1.592
300 1.326 0.301 0.376 0.784 0.798 0.352 0.781 0.774
500 1.028 0.227 0.272 0.591 0.551 0.262 0.590 0.527

Table A.28: Study 6.5: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (1, 4)⊤, for parameter β1

n OLS WLS mult add pwr imm iam ipm
30 3.139 0.588 1.135 1.782 2.223 0.781 1.755 3.157
50 2.402 0.399 0.630 1.179 1.460 0.514 1.171 1.882
100 1.720 0.263 0.355 0.764 0.804 0.332 0.763 0.862
300 0.966 0.141 0.176 0.395 0.304 0.175 0.395 0.313
500 0.733 0.107 0.131 0.302 0.210 0.130 0.302 0.203

Table A.29: Study 6.5: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (1, 4)⊤, for parameter β2
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n OLS WLS mult add pwr imm iam ipm
30 2.965 0.570 1.067 1.669 2.143 0.767 1.650 2.933
50 2.315 0.406 0.594 1.159 1.347 0.499 1.148 1.650
100 1.585 0.265 0.338 0.697 0.804 0.329 0.696 0.890
300 0.940 0.151 0.181 0.393 0.309 0.184 0.392 0.317
500 0.723 0.108 0.132 0.301 0.213 0.133 0.300 0.207

Table A.30: Study 6.5: Dependence of the sd on the sample size n for the candi-
date estimators, where α = (1, 4)⊤, for parameter β3
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