
BACHELOR THESIS

Maya Mückenschnabel

Combining effects with dependent
types

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Tomáš Petříček
Study programme: Computer science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that
my work relates to the rights and obligations under the Act No. 121/2000
Sb., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copy-
right Act.

In date .
Author’s signature

I want to thank first and foremost my supervisor, Tomáš Petříček, for having
the patience with me, and for providing me with great guidance. I would
also like to thank my cat Fazolka, for helping me with some of the more
difficult theory, as she slept on my lap when I was trying to solve it. The
thanks belongs to my partner as well, as they were very accepting and sup-
portive when I talked to them about something they didn’t understand. I
wanted to thank my girlfriend for helping me formulate my thoughts and
for her support. And lastly my thanks belongs to all queer and trans people
for existing.

Title: Combining effects with dependent types

Author: Maya Mückenschnabel

Department: Department of Distributed and Dependable Systems

Supervisor: Tomáš Petříček, Department of Distributed and Dependable
Systems

Abstract: Dependent type systems provide a novel way of reasoning about
program correctness, by embedding behavior of the program into the more
expressive type system. Correctness is achieved by not allowing incorrect
states to be representable. Languages like Idris show that dependent type
systems are practically useful, not only for formal proofs, but also for creat-
ing fewer bugs in production. But the purity of computation poses a prob-
lem for composability of stateful computations and of side effects. Effect
handlers provide one possible solution for this problem. In this thesis we
propose an effect extension of dependent type systems. The resulting sys-
tem not only makes it possible to provide guarantees about correctness of a
program, but also make it easy to compose such guarantees using effects.
We formalize the type system and present a prototype implementation.

Keywords: dependent types, effect handlers, type systems

Název práce: Combining effects with dependent types

Autor: Maya Mückenschnabel

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Tomáš Petříček, Katedra distribuovaných a spo-
lehlivých systémů

Abstrakt: Závislostní typové systémy poskytují nový způsob dokazování
správnosti programů pomocí vkládání chování programu do výstižnějšího
typového systému. Správnosti je dosaženo tím, že není možné neplatné
stavy reprezentovat. Jazyky jako Idris ukazují, že závislostní typové sys-
témy jsou prakticky použitelné nejen pro formální důkazy, ale i pro vytváření
programů s méně chybami v produkci. Avšak čistota výpočtu představuje
problém z hlediska složitelnosti operací se stavem a vedlejších událostí.
Událostní lapače nabízí jedno z možných řešení tohoto problému. V této
práci navrhujeme událostní rozšíření závislostních typových systémů. Vý-
sledný systém poskytuje nejen garance správnosti programu ale rovněž činí
složitelnost těchto garancí jednodušší pomocí událostí. V této práci před-
stavujeme takovýto typový systém a jeho prototypovou implementaci.

Klíčová slova: dependent types, effect handlers, type systems

Contents

1 Introduction 6
1.1 Dependent types . 6
1.2 Effect handlers . 7
1.3 Outline . 10

2 Background 11
2.1 λ-calculus . 11
2.2 Simply-typed λ-calculus . 12
2.3 Dependent type theory . 12
2.4 Bidirectional type-checking . 14
2.5 Effect systems . 15

3 κ-calculus 18
3.1 Terms . 18
3.2 Effects . 19
3.3 Types . 19
3.4 Typing rules . 21

3.4.1 Dependent types . 22
3.4.2 Sub-typing . 23

3.5 Collections . 24
3.6 Constraints . 25

4 Kelp 27
4.1 Calculating the Fibonacci numbers 28
4.2 FizzBuzz . 29
4.3 Handler . 30
4.4 Variables . 30
4.5 Architectural specifics . 31
4.6 Current limitations . 31

5 Conclusions 32
5.1 Future work . 32

Bibliography 33

Chapter 1: Introduction
In which we describe dependent types and effects

Meredith <3
In programming, it is often vital to provide guarantees about correct-

ness. These guarantees can be either expressed by contracts or by depen-
dent typing. Unlike contracts, dependent types require a new type system.
Such system is more flexible and allows writing programs that are correct
by construction.

In this thesis we propose a combination of a dependent type system with
effects. This introductory chapter explains what dependent types and ef-
fects are, how they are useful, and how can one understand them from the
practical perspective.

1.1 Dependent types
Polymorphism has become ubiquitous in languages such as Java, C# and
C++. It allows the definition of generic methods without manual casts.1 In
Java and C# the polymorphic abilities of functions and classes can only be
expressed as parametrization per type. For example a type List<T> de-
fines a collection of all items that are of type T. In dependent systems, such
polymorphism is not restricted only to types. The nature of such parametriza-
tion is fully generic, allowing for types that are dependent on any computa-
tion. We can add compile-time information about the length of the collection
by defining a type List<T, n+m>. As such, the type conveys richer infor-
mation about the value being presented.

It may be tempting to showcase such systems using more mathematical
languages, however dependent types are something that the everyday de-
veloper may have already utilized, if they used, for example, C++ templates.

Let us define a function append on std::array<class T, size_t>,
the array that has a statically known length. Such array is itself a depen-
dent type, but let us consider a function concat (See figure 1.1) which guar-
antees that the length of the resulting array is the sum of the lengths of the
provided arrays with types.

Dependent types not only allow for greater correctness of the algorithms.2
They may also provide hints to the compiler of available optimizations. In
C++ the type-checking for dependent types is done with a certain degree of
naïveté. The type system can still be subverted easily and the inference is
lacking.

1As from the programmers perspective. In reality Java generics are type erased refer-
ences, that are automatically cast upon manipulation. Such polymorphism is called dy-
namic. In C++ every template instantiation generates a new version of the code in the
resulting binary, and thus the polymorphism is static.

2For example, giving arrays of length 2 and 3, and trying to save them into an array of
length 6 will result in a compile error.

template <std::size_t N, std::size_t M, typename T>
auto concat (std::array<T, N> a, std::array<T, M> b)
-> std::array<T, N+M>

{
std::array<T, N+M> result;
for (std::size_t i = 0; i < N; ++i)

{
result[i] = a[i];

}
for (std::size_t i = 0; i < M; ++i)

{
result[N+i] = b[i];

}
return result;

}

Figure 1.1: C++ dependent concatenation function.

Languages like Idris and Agda use more complex systems for type-check-
ing their dependently typed programs. Those do provide better guaran-
tees and also better inference. In this thesis, we use the bidirectional type-
checking strategy proposed by B. C. Pierce and D. N. Turner in their article
Local type inference[1] in the definition of our type system.

1.2 Effect handlers
Most programming languages provide some guarantees about correctness;
either a static one, i.e. type-checking, or a dynamic one, i.e. throwing an
exception. When using the static approach, we want the compiler to guar-
antee that incorrect state is unpresentable, and as such our program will
never enter an incorrect state.

The safety guarantees of a language can be plotted on two axes, dynamic
and static. On one end some languages do not provide any static guaran-
tees, but they at least guarantee that the program will terminate gracefully
without executing arbitrary code in memory. This is the area of languages
like Python and JavaScript.

On the other end of the spectrum are languages like Coq, Lean, Idris,
and Agda that can provide proofs about program correctness. This comes
with a downside. Since the computations can be proven to be correct math-
ematically, they must themselves be pure. That is, they always produce the
same output for each input.3 Typically these languages provide a way to
introduce side effects in a controlled manner, through a mechanism called
monads.[2] That sidesteps the problem by making each computation that
includes side-effects implicitly take a state and pass the possibly modified

3The computations can still not terminate or crash. In this thesis we do not provide
mathematical purity, as the problem of totality is undecidable. However we plan to release
an article on restricting such behavior into effects, without using heuristics.

int addPositiveValue(int a, int b)
throws NotPositiveException {
expensiveComputation();
if (b < 0) {

throw new NotPositiveException("b is not positive!");
} else {

return a + b;
}

}
void main() {
int a = 1;
int b = -2;
int result = Integer.MIN_VALUE;
try {

result = addPositiveValue(a, b);
} catch (NonPositiveException e) {
System.out.println(e.toString());
System.exit(1);

}
System.out.println(result);

}

Figure 1.2: Java exception handling.

state to the next computation. The state passing introduces a temporal de-
pendency between monadic computations, and models the changing state of
the environment. For example, this makes it possible to interact with the
operating system.

The problem with monads is that they cannot have generalized composi-
tion. There have been many methods proposed in, for example, Composing
monads[3]4 and Monad transformers and modular interpreters[4]5. How-
ever these methods do not provide a generalized mechanism of composition
without the use of auxiliary functions. Either directly, as it is the case in
the former article or through the lift operation which is the case in the
latter article.

As language designers, we want to provide some trade-off between static
guarantees and simplicity. Therefore the composability may not be worth it
for some designs. In cases where composability is desirable, effects provide
both generalized composability and simplicity6.

To introduce effects for the everyday developer, we consider exception
handling code in Java (See figure 1.2). This program expects that b is posi-
tive. If not, it throws an exception and exits with an error code.

What if we want this code to instead invert the b when it is not positive
4This method “depends on the existence of an auxiliary function linking the monad

structures of the components”.
5This method is the preferred by the Haskell programming language.
6We are using the term “simple” as is defined in the talk Simple made easy by Rich

Hickey[5].

so that addPositiveValue(1, -2) returns 3? And what if the function
addPositiveValue is not ours, but is it is of from another library which
we do not have access to? In such cases we could certainly perform a second
call to addPositiveValue, but that will perform expensiveComputation
twice.

This is a contrived example, but the point is illustrated quite well. Ide-
ally we would want to resume such computation instead of rerunning the
whole function again. In that case, Java exceptions prove not to be expres-
sive enough. But the extension is rather simple. We introduce a second
argument to catch, a so called resumption operation, a function that when
called, will resume the computation from where the exception was thrown,
possibly with a new value. (See figure 1.3)

int addPositiveValue(int a, int b)
throws NotPositiveException {

expensiveComputation();
if (b < 0) {

return a +
throw new NotPositiveException("b is not positive");

} else {
return a + b;

}
}
void main() {
int a = 1;
int b = -2;
int result = Integer.MIN_VALUE;
try {

result = addPositiveValue(a, b);
} catch (NonPositiveException e,

Resumption<Integer, Integer> r) {
System.out.println(e.toString() + " inverting");
result = r(-b);

}
System.out.println(result);

}

Figure 1.3: Java with exception resumption.

What we have shown here is the example of effect handlers in Java-like
language. In languages with effects we would call throw, raise and catch
a handler. As can be inferred by the reader, the resumption operation
may not be invoked. In that case, we have the standard Java exception
semantics.7

7The only difference is that Java allows for exceptions inherited from
RuntimeException not to be apart of the function type. This is generally not the
case for effect systems.

This is not the only method of introducing effects. If the developer is
familiar with coroutines or Python’s generators, the actions of yield and
resume/next mirror what raise and resume operations do in languages
with effects. This suggests that even async await operations are in fact,
a specialization of effects, and that is indeed the case.[6]

1.3 Outline
In the following chapters we will:

• Formally describe lambda-calculus, its simply typed extension, intro-
duce dependent types and effect systems, and explain and justify our
decision for using bidirectional type-checking. (Chapter 2)

• Formally define the type system, show the necessary typing rules and
introduce constraints, a solution for language constructs with non-
syntax-driven types. (Chapter 3)

• Introduce Kelp, the proof-of-concept language with compiler and in-
terpreter based on the aforementioned type system and show a few
examples of programs written in the language. (Chapter 4)

• Conclude our findings and propose further work. (Chapter 5)

Chapter 2: Background
In which we describe the basis of our thesis

In this thesis we formally describe a theoretical type system. Since this
may be a topic unfamiliar to many readers, this chapter is used as an intro-
duction to the basic theory that is built upon in chapter 3.

2.1 λ-calculus
There are several formal models of computation. A model that is widely
understood is the Turing machine, which models a program as a state ma-
chine with linear memory. In each step, the machine proceeds by reading
a symbol from the memory at the current position, writing a symbol to the
memory, incrementing or decrementing the memory position and updating
the machine state.

λ-calculus is a different approach to describing computation introduced
by Alonzo Church[7]. Computations are modeled as reductions of terms
according to specified reduction rules. Terms are either variables, abstrac-
tions or applications. Formally we define the term t as follows:

t := x Variable
| λx . t Abstraction
| t1t2 Application

There are two reduction rules, α-reduction and β-reduction. We can omit
α-reduction if we add a requirement that all bindings of variables happen
only once. We can, for example, rename all variables to unique names.1

β-reduction is the interesting rule. It is applicable to sub–terms of the
form (λx.t1)t2, that is a case where a term of the abstraction form is applied
to an argument t2. The abstraction term (λx.t1) is also often referred to as
the lambda term. β-rule reduces the application term by taking the body of
the lambda t1 and substituting every occurrence of the variable x within t1,
with the term t2.

(λx.t1)t2 →β t1[x := t2]

It may be surprising that this is all we need to describe any computation.
And in fact λ-calculus is Turing-complete[8]. It may be even more surpris-
ing that we don’t need any other values than lambdas, not even numbers or

1α-reduction only performs the renaming of variables, i.e. λ x . t[x] →α λ y . t[y].

strings. All can be simulated by giving a semantic meaning to the structure.
For example, we can define numbers as follows:

0 := λs0 . s0
1 := λs1 . 0
2 := λs2 . 1
. . .

2.2 Simply-typed λ-calculus
To extend the λ-calculus with types, we first modify the grammar. Now
every lambda annotates its argument x with a type τ. Types can be either
primitive types or composition of those types into function types τ1 → τ2.

t := x Variable
| λx : τ . t Abstraction
| t1t2 Application

The reductions remain unchanged. But before they are performed, the
program is type-checked. We define the algorithm as a set of rules. If no
rules apply, the type-checking has failed and the program is incorrect. For
that we introduce a context Γ that holds all currently known variables and
their types.

⊢ denotes that based on the left side, the right side is true. The horizon-
tal line splits the proposition and the consequence.

If x : τ is in the typing context Γ, then it is true, that x is of type τ in the
context Γ.

x : τ ∈ Γ
Γ ⊢ x : τ

If we have an extended context Γ, x : τ1 and in this context, it is true
that t : τ2, then the type of the lambda form λx . t is τ1 → τ2.

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1 . t) : τ1 → τ2

If we have an application of a lambda with type τ1 → τ2 on a term of
type τ1, it is of type τ2.

Γ ⊢ t1 : τ1 → τ2 Γ ⊢ t2 : τ1
Γ ⊢ t1t2 : τ2

2.3 Dependent type theory
Formally the extension of the simply-typed λ-calculus into a dependently
typed system is rather trivial, in that we only relax the posed restrictions.

We extend types to be not only primitive types and function types. We allow
any of the former or any term.

We write t, ρ to denote terms. We use ρ to denote that this term produces
a type, and t for regular terms. This is only a convention used throughout
this thesis and bears no syntactical meaning.

t, ρ := x Variable
| λx : ρ . t Abstraction
| t1t2 Application
| τ Type
| U Type universe
|

∏
x:ρ1

ρ2x Dependent function space

If we want to reason about dependent types, we need to introduce a new
concept, the dependent function space. One such space is the universe U
type space, denoting every possible type. The dependent function space
behaves similarly to normal lambdas, but we use a different syntax and the
dependent lambda is now instantiated during type-checking.∏

x:ρ1

ρ2x can be understood as {ρ2x | ∀x . x : ρ1}

Generally, dependent function spaces are a set of all possible types that
can be produced. The rule for this production is as follows. If ρ2 is the
lambda that produces the types and ρ1 is the input of such space, then the
dependent function space is the set of all types that are produced by taking
every possible x : ρ1 and applying ρ2 on such x.2

Γ ⊢ ρ1 : U Γ ⊢ ρ2 : ρ1 → U
Γ ⊢

∏
x:ρ1

ρ2x : U

Every type can be described by using this notation. If the type is not
dependent, it simply means that it does not depend on x, and as such ρ2 is
a lambda that ignores its argument ρ2 := λ_ . ρ3.3

When we want to instantiate a function with a dependent type, we pick
the argument to the call and apply on it ρ2.

Γ ⊢ t1 : ρ1 Γ ⊢ t2 :
∏

x:ρ1
ρ2x

Γ ⊢ t2t1 : ρ2t1
2In practice we do not generate such sets in the type-checking algorithm. We instead

produce the resulting types on demand. For example this approach is used for template
instantiation in C++.

3Convention throughout this thesis is that _ denotes an ignored variable, that can be
never referred to. If it could be referred to, we would need the α-reduction that was previ-
ously skipped.

2.4 Bidirectional type-checking
In languages that do not support dependent types, the choice of type-check-
ing algorithms is vast. One of the stronger algorithms is the Hindley-Milner
type system [9, 10]. In such system the program does not need any type
annotations. All type information can be inferred from the context of the
caller and the callee.

By introducing dependent types we now require some annotations to ap-
pear. It may be argued that some type annotations are desirable from the
language designer’s perspective. However it is evident that type inference
is still desirable, and that type annotations should only appear in places
where there are ambiguities.4

The bidirectional type system provides a facility to provide a type in-
ference algorithm in places where there are no ambiguities (like binding
a local variable) with the price that functions must always be annotated.
This type system is able to type-check even dependently typed programs
and thus it was chosen to be the type system that was used as a basis for
our own extensions.

We split the type annotation from simply-typed λ-calculus into two rules
during type-checking, the ⇒ syntesis rule and the ⇐ checking rule.

If x : τ is in the type context Γ, then x synthesizes the type τ.

x : τ ∈ Γ
Γ ⊢ x ⇒ τ

Every term t can be checked to be of type τ, if it can be synthesized to
be of type τ.

Γ ⊢ t ⇒ τ
Γ ⊢ t ⇐ τ

We can also annotate the expression to get from checking to synthesis.

Γ ⊢ t ⇐ τ
Γ ⊢ t : τ ⇒ τ

If we have an extended context Γ, x : τ1 and in it, it is true that we can
check t ⇐ τ2, then the type of the lambda λx . t checks τ1 → τ2.

Γ, x : τ1 ⊢ t ⇐ τ2

Γ ⊢ (λx . t) ⇐ τ1 → τ2

If we have an application of lambda that synthesizes type τ1 → τ2 on a
term that checks to be of type τ1, it synthesizes the type τ2.

Γ ⊢ t1 ⇒ τ1 → τ2 Γ ⊢ t2 ⇐ τ1
Γ ⊢ t1t2 ⇒ τ2

4There is a difference between ambiguities from the type-checking algorithm perspec-
tive and from the human perspective, however bidirectional type-checking strikes a decent
balance by requiring only function type annotations.

2.5 Effect systems
The notion of encoding side effects into the language semantics has been
proposed numerous times [11]. These systems only encode the side-effects
as manual additions to the type. As such, they offer a practical addition but
one that cannot be reasoned about, and does not conform to the notion of
computation that is described in λ-calculus.

In Notions of computation and monads[12] Moggi describes a general-
ized approach to define side-effects as monadic operations, including non-
determinism, interactive input and output and exceptions. This extends
the λ-calculus with the notion of side-effects and can be reasoned about.

Moggi describes two approaches to monadic side-effects. First, for rea-
soning about programming languages, Moggi introduces a metalanguage
for a category, and treats monads as unary type-constructors. Second, for
reasoning about programs, Moggi uses only one monad and the program-
ming language itself for the term language.

We describe the extension of the Moggi’s former approach by not encod-
ing monadic operations using bind operation, as it is used in the case of
the latter and Haskell, but rather, using the implicit binding between state-
ful monadic operations and operations without side-effects, need not to be
wrapped explicitly. This approach is much more permissive in terms of
composition and easier to grasp for beginners.

This thesis is not the first implementation of such systems. Prior work
includes that of Leijen[13], Plotkin and Pretnar[14] and Brachthäuser et
al.[15]. Our contribution is the extension of an effect system with a depen-
dent type system.

As the combination of a dependent type system and an effect system is
the subject of chapter 3, in this chapter we will only describe a basic effect
system that is an extension of the simply-typed λ-calculus.

We extend the calculus by introducing two new operations the raise op-
eration and the handler with operation.

The resumption operation can be used multiple times and thus this sys-
tem is, in implementation, a multi-prompt delimited continuation5 system
as described by Felleisen[16].

Assume e is an effect, the terms are then defined as follows:

t := x Variable
| λx : τ . t Abstraction
| t1t2 Application
| raise e t Effect signaling
| with e := λr.λx.t1 in t2 Effect handling
| () Unit value

In raise e t the t represents the argument passed to the handler. The
5Multi-prompt means that continuations can be called multiple times and delimited

means that such continuations can return with a value.

r and x in the with handler represent the resumption operation and the
argument that was passed to the handler t1[x := t].

The unit value () is the value of nothing. Its type is ⊤, the empty type.
It is used in places, where argument must be provided, but its value has no
meaning.

With this framework we can show an example of how effect systems can
encode side-effects. More specifically, let us take a look how state can be
encoded. This is analogous to the State monad.

We assume two primitive effects, get and set, with following types:

get : ⊤ → N
set : N → ⊤

To simplify the example, we define abbreviations for the get and set han-
dlers:

get-handler := λs : N . (r s) s
set-handler := λ_ : N . (r ()) i

Now a sample stateful computation can be written as:

computation := (with get := λr : (N → N → (N,N)) . λ_ : ⊤ . get-handler in
with set := λr : (⊤ → N → (N,N)) . λi : N . set-handler in

raise set ((raise get ()) + 1)
f 1
raise set ((raise get ()) + 1)
λs : N . (s, 1))

And run with the initial state of 0 as follows:
(computation 0)

This computation reduces to (2, 1). The second element is the return
value of the computation and the first is the final state.6 We had to manually
wrap the last line into the monad, which we do by wrapping it in a lambda
manually, not unlike return in Haskell.

The computation translated into the State monad in Haskell (Appears in
figure 2.1). We can directly translate the two handler cases, they correspond
1:1 with the set and get operations, the last statement is equivalent to
return.7

6Note that f 1 is temporally dependent to happen after the first statement and before
the second, even though there is no explicit passing of the state.

7Note that we are skipping over some details, usually all operations done on the monad
are wrapped into the State type and not just tuples. Also this implementation is missing
the definition of the monadic bind operation.

type State s a = s -> (s, a)

return :: a -> State s a
return x s = (s, x)

get :: State s s
get s = (s,s)

set :: s -> State s ()
set x s = (x, ())

f :: State Int Int
f = do
x <- get
set (x + 1)
lift $ f 1
x <- get
set (x + 1)
return 1

runState f 0

Figure 2.1: Haskell State monad

To understand why encoding of effects in Haskell is not compositional,
note that the function call f 1 is not manually lifted in the effect example
and is in the Haskell example. Consider that f is a monadic operation on
a different monad with different scope. Then the Haskell example would
need to both define a monadic transformer and define an ad-hoc lifting op-
eration between the two monads. In effect systems no such lifting is needed
and effects can be transparently propagated through handlers. This is the
biggest strength of effect systems. We can transparently compose impure
computations.

Chapter 3: κ-calculus
In which we formally define the type system

In this chapter we introduce the κ-calculus. This is a small, formally
tractable programming language that combines dependent types and ef-
fects. The κ-calculus system uses bidirectional typing rules. We follow the
basic structure and notation from David Raymond Christiansen[17]. A sys-
tem derived from the simply typed λ-calculus, that splits the classical rule
Γ ⊢ t : ρ into two judgments: a synthesis judgment Γ ⊢ t ⇒ ρ (read as “t can
synthesize a type ρ in the context Γ”) and a checking judgment Γ ⊢ t ⇐ ρ
(read as “t can be checked to have given type ρ in the context Γ”).

In this thesis we extend this system with rules for effects. We also pro-
vide more synthesis rules for list head and tail syntheses, and a new kind
of judgment for language constructs that cannot be handled using a syntax-
driven type system. For example, in Kelp, it needs to be possible to check
[1 1 1] as both a tuple and a three element list.

Let us define the formal syntactic system. Let us assume that every
program is syntactically valid, and that no variables are of the same name.
This is always possible using renaming or, for example, the technique known
as de Bruijn indices[18].

3.1 Terms
The terms of the κ-calculus are those of the λ-calculus with effects and de-
pendent types, extended with collections and conditionals.

t := x, y, . . . Variables
| e1, e2, . . . Effects
| t1t2 Application
| λx . t Abstraction
| () Unit value
| if t1 then t2 else t3 Conditional evaluation
| [t1 t2 t3 . . .] Collections
| t : ρ Type annotation
| raise e t Effect signaling
| with e := λr.λx.t1 in t2 Effect handling
| ρ Type term

Types follow an infinite hierarchy of t : τ : Τ1 : Τ2 : The U type

universe is introduced as a type, that describes every possible constructible
type. It is needed for specifying types of dependent functions.

raise e t is the effect raising construct described in section 2.5. e specifies
the effect raised, and t is a term describing its argument. As such effect
raising looks like calling a regular function.

with e := λr.λx.t1 in t2 is an effect handler. e is the effect being han-
dled. λr.λx.t1 is the effect body. When the effect is raised, this function is
applied. The variable r is bound to the resumption operation of the effect1.
The variable x is bound to the argument provided to raise. The term t2
is the handler body, from which the effects will be handled. The resump-
tion has the signature of ρ1 → ρ2, thus resumption can be invoked multiple
times and the result of a handler is the result of applying the effect body
recursively on the handler body.

3.2 Effects

e := (Effect ρ1ρ2) Effect construction
ε := (e1, e2, . . .) Effect collection

| ε1 ⊞ ε2 Effect collection composition
| ε1 ⊟ ε2 Effect collection subtraction

We denote an effect collection with ε and Ε. Ε is reserved for the current
effect context and ε is used in function type signatures.

3.3 Types
The types of κ-calculus are:

1The return to the place where the effect was raised.

ρ := t Term
| ⊤ Unit type
| ⊥ Empty type
| τ Type literal
| ρ1 → ρ2 Function type
| ρ1 →!e ρ2 Effect type
| ρ1 → ρ2 ↑! ε Function type with an effect
| U Type universe
|

∏
x⇐ρ1

ρ2x Dependent function space

| (ρ1 ρ2 . . . ρn) Tuple
| (C-List ρ n) List with known length
| (List ρ) List

The rules for t and ρ can both contain types and terms. In this thesis
we use ρ instead of t for a term, to signal that it will be used as a type. As
discussed before, this is simply to ease the reading and bears no syntactic
meaning in the language itself.

The unit type represents a one possible value type, sometimes in other
languages like C, called void, the value represented is (). However unlike
C, this type is not “incomplete” and it is allowed to be put into structures
and bound.

The empty type represents an impossible state. In C it would be repre-
sented in a function as __attribute__((noreturn)). Or type of any-
thing in an if(false) block.

The effect type ρ1 →!e ρ2 denotes the type when raising an effect e. Where
ρ1 is the accepted argument type and ρ2 is the return type. This behaves the
same as the function type. The difference is that each effect type contains
the unique identifier e of its definition and as such is unique and not equal
to any other effect.

The function type ρ1 → ρ2 is now optionally extended with ε to denote the
function’s effects. As such the full notation for function types is ρ1 → ρ2 ! ε
optionally with ! ε omitted for brevity.

The dependent function space
∏

x⇐ρ1
ρ2x denotes the type of a generic

function. The signature denotes that for each x that can be checked to be of
type ρ1, we can create a type that is the result of applying ρ2 term to x. Such
example is a function that returns a type. Types that are not dependent,
are also a dependent function space, but the result ρ2 does not depend on x.

Equality of types is defined with structural equivalence. Types can also
be sub-typed, that is, one type ρ1 is a sub-type of another type ρ2, if in every
place where term of type ρ2 can be placed, a term of type ρ1 can be placed
as well. We denote ρ1 :> ρ2 as the sub-typing relation.

3.4 Typing rules
Recall that in simply typed λ-calculus we have a type annotation x : ρ. In
bidirectional type-checking, we split this rule into two, the aforementioned
synthesis and checking rules. The type annotation is the simplest example
of the synthesis rule.

Now we begin to diverge from Christiansen’s article, as effects now need
to be considered when applying a function. Effects are produced as a part
of the raise operation and composed with application. Expressions are not
allowed unless the effect their application produces is in the effect context.
Right now the only change is the addition of Ε, the effect context.

Γ denotes the context of defined variables and their types. The type
system is thus specified using judgments of the form Γ,Ε ⊢ t ⇒ ρ and
Γ,Ε ⊢ t ⇐ ρ. Typing of variables is as before:

Var
(x : ρ) ∈ Γ

Γ,Ε ⊢ v ⇒ ρ
Checking and type annotations also behave as before. Every term t can

be checked to be of type ρ if it can be synthesized to be of type ρ.

Check
Γ,Ε ⊢ t ⇒ ρ
Γ,Ε ⊢ t ⇐ ρ

If term t can be checked to be of type ρ, then the annotation t : ρ synthe-
sized type ρ. This is the inverse operation of “Check”. It is not a bijection
however, we require an explicit annotation to switch from checking to syn-
thesizing. Therefore synthesis is a stronger requirement.

Annotate
Γ,Ε ⊢ t ⇐ τ

Γ,Ε ⊢ t : τ ⇒ τ

If we have an extended context Γ ⊞ x : ρ1
2 and in it, it is true that if we

can check t ⇐ ρ2, then the type of the lambda λx . t checks ρ1 → ρ2.

Argument body check
Γ ⊞ {x : ρ1},Ε ⊢ t ⇐ ρ2
Γ,Ε ⊢ λx . t ⇐ ρ1 → ρ2

Effects can be raised and effects can be handled. Raising an effect is
an operation that introduces side-effects, all operations not containing any
unhandled effects are side-effect-free. All functions either have a handler
for each effect, or the effect is a part of their signature, and such function
is not side-effect-free. However if the main entry point of the program does
not have any unhandled side-effects, the whole program is side-effect-free.

This allows for the existence of programs with local self-contained side
effects. Such as ones containing a mutable state, which are still side-effect-
free. Such programs are pure, meaning that for the same input, the same
output is always produced. Note that this is a stronger guarantee than that

2We have previously used Γ, x : τ to denote Γ extension. With the introduction of the Ε
effect context this is no longer practical. We use ⊞ to denote the extension from now on.

of Haskell’s purity. Haskell functions are considered pure, but still can call
fail which aborts the execution. This is not possible in our type system.
Functions can only crash due to out-of-memory events and not terminate.

Effect raising
Γ,Ε ⊢ t1 ⇒ e Γ,Ε ⊢ t2 ⇐ ρ1 e : ρ1 →! ρ2 ∈ Ε

Γ,Ε ⊢ raise t1 t2 ⇒ ρ2

When raising an effect, the effect e needs to be defined in the effect context
E. This also determines the type of its argument and result. Thus effect
context E holds not only allowed effects, but also their type signatures.

Effect handling has an interesting property. The result of the handler
is the type of t1. If no e effects are raised, then it must be true that ρ3 :>
ρ4. The resumption operation has the type ρ2 → ρ3 where ρ2 is the effect’s
raising result type, and ρ3 is the result type of the t2 computation.

Effect handling

ρ3 <: ρ4
Γ,Ε ⊞ e : ρ1 →! ρ2 ⊢ t2 ⇐ ρ3

Γ,Ε ⊢ t1 ⇒ (ρ2 → ρ3) → ρ1 → ρ4
Γ,Ε ⊢ with e := t1 in t2 ⇒ ρ4

Effects do not participate in expressions, they only do appear in function
types, as functions and handlers are the only expressions that operate on
effect context. This does pose some limitations when generic effects are
required, as effects cannot be simply retrieved from expression type.

Note that we require the function type to be synthesizable here. This
differs from the Hindley-Milner type systems and can roughly be translated
as “every function needs to be annotated with a type”. Nevertheless, this is
true for most programming languages.

Application behaves the same as in section 2.4. The only difference is
that now we require that ε is in the effect context at the point of application.

Application
Γ,Ε ⊢ t1 ⇒ ρ1 → ρ2 ↑! ε Γ,Ε ⊢ t2 ⇐ ρ1 ε ⊆ Ε

Γ,Ε ⊢ t1t2 ⇒ ρ2

Wrapping a term producing an effect in a lambda shadows it; effects
only appear as a part of the lambda type, as well as in the lambda applica-
tion. This means that it is side-effect-free to define a side-effect producing
lambda.

Lambda effect encapsulation
Γ ⊞ {x : ρ1}, ε ⊢ t ⇒ ρ2

Γ, ∅ ⊢ λx.t ⇒ ρ1 → ρ2 ↑! ε

3.4.1 Dependent types
The rules for dependent types are the same as described in section 2.3, but
now we consider the bidirectional type-checking algorithm and thus we need

to refine the rules to distinguish between checking and synthesis. We also
add the context E even though it does not actively participate in any rules.

Dependent type is an image of a function ρ2 : ρ1 → U , where the ar-
gument of type ρ1 can be any term, including a type. We can refine the
construction rule by requiring synthesis only for ρ2. The refined rule is iso-
morphic to the lambda application rule.

Dependent space construction
Γ,Ε ⊢ ρ1 ⇐ U Γ,Ε ⊢ ρ2 ⇒ ρ1 → U

Γ,Ε ⊢
∏

x⇐ρ1
ρ2x ⇐ U

If a term t1 synthesizes dependent type
∏

x⇐ρ1
ρ2x, and t2 checks to be

ρ1, then the application of t1t2 synthesizes the type ρ2t2.

Dependent space instantiation
Γ,Ε ⊢ t1 ⇒

∏
x⇐ρ1

ρ2x Γ,Ε ⊢ t2 ⇐ ρ1

Γ,Ε ⊢ t1t2 ⇒ ρ2t2

3.4.2 Sub-typing
It is beneficial to define a hierarchy between types. For example an (Int 32) <:
Integer. The bounded 232 integer type is sub-type of the big-number inte-
ger, i.e. in every place where the big integer is required, a bounded integer
is allowed.

We provide only a pair of rules for sub-typing, as it is not a subject of this
thesis. This sub-typing is partial ordering as shown by Pfenning[19].

If we have a sub-typing of ρ1 :> ρ2 and the term t synthesizes ρ1, then
we can check t to be of type ρ2.

Sub-typing
ρ1 :> ρ2 Γ,Ε ⊢ t ⇒ ρ1

Γ,Ε ⊢ t ⇐ ρ2

Function sub-typing
ρ1 :> ρ2 ρ3 <: ρ4
ρ1 → ρ3 <: ρ2 → ρ4

Dependent types are also a part of sub-typing. If a type term ρ is in the
dependent function space, it is the sub-type of such space.

Dependent sub-typing
ρ ∈

∏
x⇐ρ1

ρ2x
ρ <:

∏
x⇐ρ1

ρ2x
As sub-typing is a partial ordering, equality holds if both types are sub-

types of each other.

Sub-typing and equality

ρ1 <: ρ2
ρ2 <: ρ1
ρ1 = ρ2

3.5 Collections
In Kelp the expression [1 1 1 1] can be either a list of integers, a compile-
time known list of four integers, or a tuple of four integers. As such it is
generally unknown if such expression synthesizes one of the types that it
will later be checked against. To address this, we introduce the notion of
a Collection. Collection is a union of the List, C-List and tuple depen-
dent spaces. Collection constraints allow us to handle collection-related lan-
guages constructs that are not syntax-driven.

We introduce a new pair of judgments Γ,Ε ⊢c t ⇒ (Collection ρ n)
and Γ,Ε ⊢c t ⇐ (Collection ρ n). It allows us to perform judgments about
collections without the possibility of collections leaking to the final program.

If t can synthesize (Collection ρ n) then t can be checked to be of any of
the subsequent concrete types.

Γ,Ε ⊢c t ⇒ (Collection ρ n)
Γ,Ε ⊢ t ⇐ (List ρ) Γ,Ε ⊢ t ⇐ (C-List ρ n) Γ,Ε ⊢ t ⇐ ρn

We define a sub-typing hierarchy of collection types as follows:

∀i ∈ N : (List ρ) :> (C-List ρ i)
∀i ∈ N : (C-List ρ i) :> (Collection ρ i)

(ρn) = (ρ, ρ, . . . ρ) :> (Collection ρ n)

In type-checking we might encounter a situation in which we either syn-
thesize the type of the first element or synthesize the type of the second
element. However we cannot at this time provide the concrete type for this
expression, as that may depend on further context.

We introduce two new rules, which we either synthesize the head or the
tail of the expression. These formalize an algorithm for type-checking pro-
grams working with collections where only partial sections of the type are
known.

Head tail collection type synthesis

Γ,Ε ⊢ (cons t1 t2)
Γ,Ε ⊢ t1 ⇒ ρ1

Γ,Ε ⊢c t2 ⇐ (Collection ρ1 n)
Γ ⊢c (cons t1 t2) ⇒ (Collection ρ1 n + 1)

Tail head collection type synthesis

Γ,Ε ⊢ (cons t1 t2)
Γ,Ε ⊢c t2 ⇒ (Collection ρ1 n)
Γ,Ε ⊢c t1 ⇐ ρ1

Γ ⊢c t ⇒ (Collection ρ1 n + 1)

It is important to show that if both of the rules are applicable, the re-
sulting types are the same.

Lemma 1. If the head tail (HT) synthesis produces a type, and the tail head
(TH) synthesis produces a type, the produced types are equal.

Proof. Let us define that the synthesized types are HT ⇒ ρHT and TH ⇒
ρTH. WLOG let us say that ρHT <: ρTH while ρTH ̸<: ρHT. If neither ρHT <: ρTH
or ρHT :> ρTH are true, then the check rule must have failed, and because of
that, there exists a sub-typing relation between ρTH and ρHT.

If ρHT <: ρTH, then one of the synthesized types is ρTH, as neither TH or
HT syntheses can produce a new type. That means that there is a term of
type ρTH that cannot be checked to be ρHT. That means that the HT must
have failed. And we a have a contradiction.

If an expression is a tuple, we can either synthesize a collection or only
a tuple, depending on whether the types of tuple elements have a common
super-type. This is exactly the aforementioned head tail/tail head synthesis.

Collection specialization
Γ,Ε ⊢ ti ⇒ ρi

n ∀ρ ∈ ρi
n ∃ρ0 : ρ <: ρ0

Γ,Ε ⊢c [ti
n
] ⇒ (Collection ρ0 n)

Tuple specialization
Γ,Ε ⊢ ti ⇒ ρi

n ∀ρ ∈ ρi
n ̸ ∃ρ0 : ρ <: ρ0

Γ,Ε ⊢ [ti
n
] ⇒ (ρi

n)

3.6 Constraints
Now that collections have shown how our system can deal with not-syntax-
driven language constructs, it is useful to provide a generalization of such
extended type-checking. We introduce constraints as the generalization of
collections, types that cannot be created but which can be checked in the
special ⊢c judgments.

Constraints are similar to dependent types. Unlike dependent types,
constraints cannot be constructed. They lack the ρ2 : ρ1 → U function.
Rather they represent the union of such spaces. As such they are not spaces
themselves. As they are not a part of the type system in the general sense,
and at the end of type-checking, no program contains any constraints, we
introduce a new kind of judgment ⊢c, which behaves similar to the regular
judgment but allows for constraints to be a part of the judgments.

Let us define C as the mapping between strings K, aliases for type con-
structors, and in language constructs f . This allows us to introduce aliases
for complex expressions. We include the strings K in the definition of terms.

Now we can formalize the aforementioned Collection as the union of
the three concrete types inside C. boobs >:3

f (ρ,n) := {(List ρ), (C-List ρ n), ρn}
C := C ∪ Collection ↣ f

We can construct constraints by first creating a constructing function
f . Then the type is constructed as the application of f on the parameters
t1, t2,

Constraint construction

K ↣ f ∈ C
Γ,Ε ⊢c t ⇒ (K t1 t2 . . .) ρ ∈ (f t1 t2 . . .)

⊢ t ⇐ ρ

If the term t synthesizes the constraint Cρ1,ρ2
, then it checks to be of both

ρ1 and ρ2.

Constraint instantiation
Γ,Ε ⊢c t ⇒ Cρ1,ρ2

Γ,Ε ⊢ t ⇐ ρ1 Γ,Ε ⊢ t ⇐ ρ2

Implicitly we assume, that every judgment from the normal checking
is available in the constraint checking. In logic theory we would say that
the constraint judgment theory is a conservative extension of the aforemen-
tioned type theory.

Synthesis extension
Γ,Ε ⊢ t ⇒ ρ
Γ,Ε ⊢c t ⇒ ρ Check extension

Γ,Ε ⊢ t ⇐ ρ
Γ,Ε ⊢c t ⇐ ρ

Remark 1. No well typed program contains constraints at the end of type-
checking. All constraints are either discarded or checked into proper types.

Let us assume that no syntax can name the constraint, that is, terms of
such constraint are possible, but the constraint itself cannot be put in a place
of a type in the program. Assume also that each program is only contained
in a body of a function with declared return type.

• This implies that every function can only accept proper types as its ar-
guments, and only return a proper type.

• This implies that every statement that is of a constraint type is inside
a body, and never crosses into another function, as at that point it is
replaced by the required constraint specialization into a proper type.

• And finally, each statement either appears in a function call – then it
is constraint specialized, in a return statement – then it is constraint
specialized by the return type of the containing function, or it appears
in a body and it is ignored, and as such can be ignored during compi-
lation, and only its side effects can be considered.

Chapter 4: Kelp
In which we introduce the language

The Kelp language is based on the traditional Lisp syntax. Unlike most
traditional Lisps it is statically typed in nature and does not feature a macro
system. Instead it is planned to include a compile-time reflection system
symbiotic with the κ-calculus type system.

Kelp variables are lexically scoped and immutable. Any mutable state or
side-effect can only be achieved through the effect system. Code is organized
into records which also act like namespaces, and each file implicitly creates
such record. As such declarations are provided not as a special form, rather
as a field value.

The only distinction of compile-time and runtime expressions is the pres-
ence of effects. As such, the runtime provides two top level handlers, the
compile-time handler (for compile-time side-effects like warnings and er-
rors) and a runtime handler. The compile-time handler is used every time
an expression is tried to be compile-time evaluated. If the effect is not han-
dled even by the top-level handler, the interpreter backs out, as such ex-
pression requires runtime evaluation. The runtime handler only wraps the
main function.

The following example (figure 4.1) introduces Kelp. It shows a basic pro-
gram that prints the addition of two numbers.

;; package namespace import
:core (import "core")

;; function declaration and definition
:add (lambda

[a :: Integer ;; argument type declaration
b :: Integer]
:-> Integer ;; return type declaration
:! [] ;; effect declaration
(+ a b)) ;; last statement is the return value

:main (lambda []
;; namespaced symbols are accessed with :
:! [core:io:Stdout-Write]
(core:io:print (integer->string (add 1 2))))

Figure 4.1: Example Kelp code.

The form [a b c] is a shorthand for (list a b c) and is used in-
stead of the usual Lisp `(a ,b c).

4.1 Calculating the Fibonacci numbers
The following program (See figure 4.2) calculates the 10th Fibonacci num-
ber. This algorithm is a naïve O(n2) implementation, however it does cur-
rently produce the correct result when run through the Kelp interpreter.

:core (import "core")

:fibonacci
(lambda [n :: Integer]
:-> Integer
(if (= n 0)

0
(if (= n 1)

1
(+ (fibonacci (- n 1))

(fibonacci (- n 2))))))

:main
(lambda []
:! [core:io:Stdout-Write]
(let [n :: Integer 10]

(core:io:print "The ")
(core:io:print (integer->string n))
(core:io:print " fibonacci number is ")
(core:io:print (integer->string (fibonacci n)))))

Figure 4.2: Kelp code calculating the 10th Fibonacci number.

4.2 FizzBuzz
A more complex example is the implementation of the FizzBuzz children’s
game. In the program, we count from 1 to n and every time the number is
divisible by 3 we yell Fizz, and when it is divisible by five we yell Buzz. If
the number is divisible both by 3 and 5, we yell FizzBuzz, otherwise we
just print the number.

The following example (See figure 4.3) is more complex than the previ-
ous one, as we have to implement our own map function. The function is
not generalized. The generalization is left for future work. match is a pat-
tern matching built-in that uses the structure of the provided expression to
choose a path.

:core (import "core")

:map
(lambda [f :: (-> [Integer] [] :! [core:io:Stdout-Write])

lst :: (List Integer)]
:! [core:io:Stdout-Write]
:-> []
(match lst

[] []
[head :: Integer . tail :: (List Integer)]
(begin

(f head)
(map f tail))))

:fizzbuzz
(lambda [n :: Integer]
:-> []
:! [core:io:Stdout-Write]
(if (= (remainder n 15) 0)

(core:io:print "FizzBuzz")
(if (= (remainder n 3) 0)

(core:io:print "Fizz")
(if (= (remainder n 5) 0)

(core:io:print "Buzz")
(core:io:print (integer->string n)))))

(core:io:print "\n"))

:main
(lambda []
:! [core:io:Stdout-Write]
:-> []
(map fizzbuzz (range 1 100)))

Figure 4.3: Kelp FizzBuzz.

4.3 Handler
Until now we have only seen the invocations of the top-level runtime han-
dler. We can also define our own handlers. In this example (See figure 4.4.)
we override the print function. We redirect the standard output into the
standard error output.

:core (import "core")

:main
(lambda []
:! []
:-> [core:io:Stderr-Write]

(with [core:io:Stdout-Write
(lambda [r s] ;; r is the resumption, s is the argument
(core:io:print-err s) ;; print the into stderr
(r))] ;; resume the operation

(core:io:print "Error")))

Figure 4.4: Kelp handler.

4.4 Variables
As an optimization technique, some functional languages allow a for tem-
porarily mutable state (Clojure’s transient data structures for example.[20,
21]). In Kelp we allow interior mutability with effects. This theoretically
still is a pure operation, and can be modeled using monads (see section 2.5).
But for the compiler this can be lowered as a simple read/write operation
on memory. If other properties are desired, such as thread synchronization,
they can be achieved easily without changing the syntax.

:core (import "core")

:main
(lambda []
:! []
:-> [core:io:Stdout-Write]
;; with-var is syntactic sugar over with
(with-var [counter 0]

;; Modify the value by applying the function
;; on the old value
(swap! counter (+ 1))
;; Set the value of counter to the @counter + 1
;; @x retrieves the value of a variable
(set! counter (+ 1 @counter))
;; Prints 2
(core:io:print (integer->string @counter))))

Figure 4.5: Kelp Variables.

4.5 Architectural specifics
The current interpreter uses heap-allocated reference-counted stack frames.
As the control flow is non-linear, the runtime cannot free stack frames on re-
turn. As such the reference-counting approach was chosen as it is perhaps
slow, yet it is correct and easy to implement. It is planned to use a more
sophisticated algorithm for expressions containing effects such as the pro-
posed Type directed compilation of row-typed algebraic effects by Daan Lei-
jen[6].

4.6 Current limitations
The current Kelp implementation is limited. It does not provide a way to
create and instantiate generic functions, the code can return a new function
at compile-time that is parameterized by the types, however it is not done
implicitly and requires two invocations.

The type system is the aforementioned dependent type system with ef-
fects, but the algorithm of type-checking currently differs. In the imple-
mentation the system is ad-hoc and does require type annotations for each
variable. This is to be solved in future upgrades by moving to the proposed
type-checking algorithm.

It is possible to lower Kelp code to native machine code, but currently
the code is first semantically analyzed, which includes interpreting compile-
time expressions, and later run through the same tree-walking interpreter
at runtime. The stages are separate and the latter can easily be lowered
into a better representation.

Chapter 5: Conclusions
In which we conclude our findings

We have combined a dependent type system with effects. To achieve this,
we have used a bidirectional type system. We have modified the type system
to allow for dependent types and effects. We have defined the combination
of the two.

The bidirectional type-system allowed us to extend the type-checking
algorithm with new inference rules for list type synthesis and checking. We
have proven that these rules about inference reach the same inferred type,
if both inferences succeed.

We introduced a brand new type of judgment which we symbolized as
⊢c. This judgment extends the type-checking and inference algorithm with
new kind of pseudo-types we named constraints. These constraints allow us
to reason about non syntax-driven language constructs, such as tuples and
lists. We have shown that such constructs never escape into the final pro-
gram, and that we can type-check more programs without the requirement
of type annotations.

We have shown a prototype language named Kelp which implements
these systems. We have shown examples of how this language would use
these systems to aid general programming.

5.1 Future work
The next problems in this domain are:

• How would the system look, if we extended using Quantitative Type
Theory[22]?

• Currently the system no notion of non-termination when type-checking.
Could the system be extended to be both mathematically sound and
strongly normalizing?

• Can such system be effectively compiled to platforms with no support
for multi-prompt delimited continuation using translation to tail calls?

Bibliography
1. PIERCE, Benjamin Crawford; TURNER, David N. Local type inference.

ACM Trans. Program. Lang. Syst. 2000, vol. 22, no. 1, pp. 1–44. ISSN
0164-0925. Available from DOI: 10.1145/345099.345100.

2. PETŘÍČEK, Tomáš. What we talk about when we talk about monads.
The Art, Science, and Engineering of Programming. 2018.

3. JONES, Mark P.; DUPONCHEEL, Luc. Composing monads. 1993. Research
Report YALEU/DCS/RR-1004. Yale University. Available also from:
http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf.

4. LIANG, Sheng; HUDAK, Paul; JONES, Mark. Monad transformers and
modular interpreters. In: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. San
Francisco, California, USA: Association for Computing Machinery, 1995,
pp. 333–343. POPL ’95. ISBN 0897916921. Available from DOI: 10.1145/
199448.199528.

5. HICKEY, Rich. Simple Made Easy. In: Strange Loop Conference, 2011.
Available also from: https : / / www . youtube . com / watch ? v =
SxdOUGdseq4.

6. LEIJEN, Daan. Type directed compilation of row-typed algebraic effects.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. Paris, France: Association for Computing
Machinery, 2017, pp. 486–499. POPL ’17. ISBN 9781450346603. Avail-
able from DOI: 10.1145/3009837.3009872.

7. CHURCH, Alonzo. An Unsolvable Problem of Elementary Number The-
ory. American Journal of Mathematics. 1936, vol. 58, p. 345. Available
also from: https://api.semanticscholar.org/CorpusID:
14181275.

8. TURING, Alan Mathison. Computability and λ-definability. Journal of
Symbolic Logic. 1937, vol. 2, no. 4, pp. 153–163. Available from DOI:
10.2307/2268280.

9. HINDLEY, Roger. The Principal Type-Scheme of an Object in Combi-
natory Logic. Transactions of the American Mathematical Society [on-
line]. 1969, vol. 146, pp. 29–60 [visited on 2024-04-19]. ISSN 00029947.
Available from: http://www.jstor.org/stable/1995158.

10. MILNER, Robin. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences. 1978, vol. 17, no. 3, pp. 348–375.
ISSN 0022-0000. Available from DOI: https://doi.org/10.1016/
0022-0000(78)90014-4.

https://doi.org/10.1145/345099.345100
http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://www.youtube.com/watch?v=SxdOUGdseq4
https://www.youtube.com/watch?v=SxdOUGdseq4
https://doi.org/10.1145/3009837.3009872
https://api.semanticscholar.org/CorpusID:14181275
https://api.semanticscholar.org/CorpusID:14181275
https://doi.org/10.2307/2268280
http://www.jstor.org/stable/1995158
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4

11. LUCASSEN, John M.; GIFFORD, David K. Polymorphic effect systems. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. San Diego, California, USA: As-
sociation for Computing Machinery, 1988, pp. 47–57. POPL ’88. ISBN
0897912527. Available from DOI: 10.1145/73560.73564.

12. MOGGI, Eugenio. Notions of computation and monads. Information and
Computation. 1991, vol. 93, no. 1, pp. 55–92. ISSN 0890-5401. Available
from DOI: https://doi.org/10.1016/0890-5401(91)90052-4.
Selections from 1989 IEEE Symposium on Logic in Computer Science.

13. LEIJEN, Daan. Koka: Programming with Row Polymorphic Effect Types.
Electronic Proceedings in Theoretical Computer Science. 2014, vol. 153,
pp. 100–126. ISSN 2075-2180. Available from DOI: 10.4204/eptcs.
153.8.

14. PLOTKIN, Gordon; PRETNAR, Matija. Handlers of Algebraic Effects. In:
CASTAGNA, Giuseppe (ed.). Programming Languages and Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 80–94. ISBN 978-3-
642-00590-9.

15. BRACHTHÄUSER, Jonathan Immanuel; SCHUSTER, Philipp; OSTERMANN,
Klaus. Effect handlers for the masses. Proc. ACM Program. Lang. 2018,
vol. 2, no. OOPSLA. Available from DOI: 10.1145/3276481.

16. FELLEISEN, Mattias. The theory and practice of first-class prompts. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. San Diego, California, USA: Asso-
ciation for Computing Machinery, 1988, pp. 180–190. POPL ’88. ISBN
0897912527. Available from DOI: 10.1145/73560.73576.

17. CHRISTIANSEN, David Raymond. Bidirectional Typing Rules: A Tuto-
rial. 2013. Available also from: https://davidchristiansen.dk/
tutorials/bidirectional.pdf.

18. DE BRUIJN, Nicolaas Govert. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem. Indagationes Mathematicae (Proceed-
ings). 1972, vol. 75, no. 5, pp. 381–392. ISSN 1385-7258. Available from
DOI: https://doi.org/10.1016/1385-7258(72)90034-0.

19. PFENNING, Frank. Lecture Notes on Bidirectional Type Checking. 2004.
Available also from: https://www.cs.cmu.edu/~fp/courses/
15312-f04/handouts/15-bidirectional.pdf.

20. HICKEY, Rich. A history of Clojure. Proc. ACM Program. Lang. 2020,
vol. 4, no. HOPL. Available from DOI: 10.1145/3386321.

21. BAGWELL, Philip Sidney; ROMPF, Tiark. RRB-Trees: Efficient Immutable
Vectors. In: 2011. Available also from: https://api.semanticscholar.
org/CorpusID:15763144.

22. ATKEY, Robert. The Syntax and Semantics of Quantitative Type The-
ory. In: LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, July 9–12, 2018, Oxford, United Kingdom. 2018.
Available from DOI: 10.1145/3209108.3209189.

https://doi.org/10.1145/73560.73564
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.1145/3276481
https://doi.org/10.1145/73560.73576
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
https://doi.org/10.1145/3386321
https://api.semanticscholar.org/CorpusID:15763144
https://api.semanticscholar.org/CorpusID:15763144
https://doi.org/10.1145/3209108.3209189

	Introduction
	Dependent types
	Effect handlers
	Outline

	Background
	λ-calculus
	Simply-typed λ-calculus
	Dependent type theory
	Bidirectional type-checking
	Effect systems

	κ-calculus
	Terms
	Effects
	Types
	Typing rules
	Dependent types
	Sub-typing

	Collections
	Constraints

	Kelp
	Calculating the Fibonacci numbers
	FizzBuzz
	Handler
	Variables
	Architectural specifics
	Current limitations

	Conclusions
	Future work

	Bibliography

