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Introduction
Proofs of exponentiation

Recently, in the works by Pietrzak [1] and Wesolowski [2], the new constructions
of proofs of exponentiation were presented. PoEs have a lot of practical applications.
In particular, they can be used to construct Verifiable Delay Functions, shortly
VDFs. VDFs, in the last several years, have become widely used for the blockchain
networks. We talk more about it in Section 1.3.

In the setting of proof of exponentiation, there are two communicating parties
- verifier and prover. Prover claims that, for two group elements x, y ∈ G and an
exponent e, it holds that xe = y. Prover wants to prove it to verifier. If what
claims prover is true, verifier wants to accept such statement with probability
1 (completeness). Otherwise, when communicating with a dishonest prover,
verifier accepts with some small probability (soundness error). The proof of
exponentiation is then a protocol, i.e., an algorithm for verifier and prover that
allows to verify the statement xe = y (PoE-statement) efficiently, completely and
securely (i.e., with small soundness error).

Of course, verifier could just compute x to the power of e and check, whether
xe = y. But in most of the applications of PoEs, the exponents of bit-length 225

are used, and the used groups G are usually large, too.

Batch proofs of exponentiation
Now imagine that we need to verify several PoE-statements. When there is

only a couple of them, we can just execute PoE for every statement separately.
But in most applications, there are thousands to millions PoE-statements that
need to be verified at once, and the repeating of classical PoE becomes very slow.
To resolve this problem, batch proofs of exponentiation are used. Batch proof
of exponentiaion is, again, a protocol for verifier and prover, and this protocol
should be also efficient, complete and secure. Batch proofs of exponentiation (also
denoted as batching approaches or batching protocols) are the main subject of
this thesis.

Goal of this thesis
The goal of this thesis is to dive into the existing constructions of proofs of

exponentiation and batch proofs of exponentiation, such as Wesolowski’s PoE [2]
and the batching PoEs - the Random Subsets and Random Exponents Protocols
presented by Rotem [3]. We aim to compare the verification costs of the Random
Subsets Protocol, the Random Exponents Protocol and the repeated compilation
of Wesolowski’s PoE in theory. We also managed to come up with two new
batch PoE constructions, inspired by Rotem’s protocols [3] and the approaches
by Bellare, Garay and Rabin [4]. We evaluate the verification costs for these two
new protocols, both in theory and in practice, and proceed by comparing them
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with the existing Random Subsets and Random Exponents protocols. To do that,
we implement these batch PoEs (both Rotem’s and ours) in C++.

This thesis is based on our paper with Hoffman and Hubáček [5]. We do not
present the proofs of security in this work as they were written by the coauthors.
However, we have a more realistic implementation of the protocols in C++. The
preliminaries in our work are more self-contained compared to [5] to be accessible
also to non-experts.



1 Preliminaries
In this chapter, we describe several theoretical notions that are then used to

present our results. We start with defining proofs of exponentiation and proceed
with the core definition of this thesis - batch proofs of exponentiation. We also
mention already existing batch proofs of exponentiation and define the comparison
metrics, i.e., the metrics parameters that we use to compare the existing and our
batching approaches.
The definitions and figures in this thesis are taken from our article [5].

Notation. [m] := {1, 2, ..., m} is the set of all positive integers smaller than
or equal to m.

1.1 Proofs of exponentiation

1.1.1 Definition
In the setting of a proof of exponentiation (PoE) we have two communicating

parties - a verifier and a prover. The prover wants to show the verifier that, for the
given pair of group elements (x, y) ∈ G (where G is a group of a hidden order)
and a fixed exponent e ∈ N, it holds that xe = y. This process (an interactive
proof) is then called the proof of exponentiation. Of course, verifier could just
compute xe and check whether the computed number corresponds to y. But this
solution is extremely slow, as in the majority of PoE applications the exponents
of bit-length around 225 are used. It means that, even by using the repeated
squaring to efficiently calculate xe in log(e) steps, one should perform 225 group
operations on the group elements of bit-length roughly equal to 2048. This is the
reason for using some randomized techniques. Such techniques were presented in
the recent researches by Pietrzak [1] and Wesolowski [2].

Let us informally describe an interactive proof. For two communicating parties
V and P (a verifier and a prover), a language L and some statement s, V accepts
with probability 1, if the statement s is from L (completeness). Otherwise, if the
statement s is not from L, V accepts with some small probability, which is then
called soundness error.

Definition 1. Interactive proof. For a function ε : N→ [0, 1], an interactive
proof for a language L is a pair of interacting algorithms (P ,V), where V is a
probabilistic polynomial time algorithm, which satisfies the following properties:

• Completeness: For every x ∈ L, if V interacts with P on the common
input x, then V accepts with probability 1.

• Soundness: For every x ̸∈ L and every (computationally unbounded)
cheating prover strategy ˜︁P, the verifier V accepts when interacting with ˜︁P
with probability less than ε(|x|), where ε is called the soundness error.

As mentioned before, in the setting of proof of exponentiation, P wants to
convince V that xe = y for group elements x, y ∈ G and a given exponent e ∈ N.
Proof of exponentiation is then an interactive proof for the language of such
statements.
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Definition 2. Proof of exponentiation (PoE) is an interactive proof for the
language

L = {(x, y, e) ∈ G2 × N, xe = y}
Note that xe can be calculated in log(e) sequential steps by repeated squaring.

It means that an efficient PoE should be much faster. In our work, we will use
Wesolowski’s construction of PoE [2]. As mentioned earlier, it uses randomized
technique, and therefore provides fast verification.

1.1.2 Wesolowski’s proof of exponentiation
Let us discuss an example of a proof of exponentiation - Wesolowski’s PoE.

For a statement x2t ?= y the task is to design an efficient complete and sound
protocol, which allows the verification of this statement.
In the setting of Wesolowski’s PoE, there are 3 steps:

1. A verifier V samples a prime l from some set of primes uniformly at random.

2. The prover P then computes π = x⌊2t/l⌋ and sends it to V .

3. V calculates r = 2t mod l and accepts, if πlxr = y.
The set of primes from the first step is Primes(2k) - the set containing the first 22k

primes, where k is a parameter for this protocol. Now, for the described protocol
to be PoE, it should be complete and sound. The completeness is straightforward;
if P is honest, then

πl = x⌊2t/l⌋·l = x
2t−r

l
·l = x2t−r,

πlxr = x2t−r · xr = x2t = y.

The soundness of the protocol depends on the parameter k (it means that k is the
security parameter) and is described in the paper by Wesolowski [2].

In Figure 1.1 we show how a prover P and a verfieier V act in Wesolowski’s
PoE.

We base our implementation of different batching approaches that are described
further on an implementation of Wesolowski’s PoE by Attias, Vigneri and Dimitrov
of the Network team of the IOTA Foundation [6].

1.2 Batch proofs of exponentiation

1.2.1 Definition
In our work, we focus on the batch proofs of exponentiation (alternative

names are batching approaches, batching protocols) - the effective interactive
proofs for verifying several PoE instances at once. Frequently, in the higher-level
protocols, PoEs instances are generated repeatedly. The natural solution for
reducing communication and time complexities is to securely combine, i.e., batch
these instances (usually by multiplication) into much smaller amount. Batching
protocols can be viewed as the technique that is used on top of the existing PoEs,
where PoE serves as the black box. In our case, this “black box” is Wesolowski’s
PoE.



Parameters: G, t, k

1. t is the logarithm of the exponent from PoE statement e = 2t

2. k is the security parameter

3. Primes(2k) is a set containing the first 22k primes

4. group G

5. common exponent e

Statement: y = xe in G
Protocol:

1. V samples a prime l uniformly at random from Primes(2k) and sends
it to P .

2. P computes π = x⌊2t/l⌋ and sends it to V

3. V computes r = 2t mod l, and accepts if x, y, π ∈ G and πlxr = y

Figure 1.1 Wesolowski’s PoE [2].

Definition 3. Batch proof of exponentiation (Batch PoE). A batch proof
of exponentiation for m statements in a group G is an interactive proof for the
language

L = {{(xi, yi, e)}i∈[m] ∈ {G2 × N}m | xe
i = yi for all i ∈ [m]}.

1.2.2 Existing approaches
In his paper, Rotem [3] suggested two general batching techniques: Random

Subsets Protocol and Random Exponents Protocol. In fact, Rotem’s protocols are
based on the approaches of Bellare, Garay and Rabin [4] that are also the main
foundation for our results.

Random Subsets Protocol

In the setting of the Random Subsets Protocol, we have a group G and m
PoE-statements (the statements of form xe

i = yi for i ∈ [m], xi, yi ∈ G). We also
have a parameter ρ, which is the number of repetitions of the following steps:

1. V samples the random subset S of a set [m] and sends S to P ,

2. both V and P , based on the generated set S, choose the subset of the input
statements; if i ∈ S, then P and V take the i-th statement, otherwise they
don’t,

3. V and P then separately calculate the product of the chosen statements, it
results in one batch statement,



Parameters: G, e, m, ρ
Statements: {yi = xe

i}i∈[m] in G
Protocol:

1. V samples a matrix B ← {0, 1}ρ×m uniformly at random and sends it
to P .

2. V and P construct new statements {y′
i = (x′

i)e}i∈[ρ], where

y′
i =

∏︂
j∈[m]

y
Bi,j

j and x′
i =

∏︂
j∈[m]

x
Bi,j

j .

3. V and P run ρ many PoE on {y′
i = (x′

i)e}i∈[ρ] in parallel.

Figure 1.2 Random Subsets Protocol [3].

4. any PoE protocol is then run on this final statement.

In the Random Subsets protocol, these steps are executed in parallel. The precise
description of the Random Subsets protocol is presented in Figure 1.2.

Random Exponents Protocol

Another batch PoE, presented by Rotem, is the Random Exponents Protocol.
For every of the m given PoE statements, V generates a random exponent and
sends these m exponents to P . Both V and P separately raise the PoE statements
to these random powers and calculate the product of such statements. Then
any PoE protocol is executed to verify this one combined statement. The exact
description of the Protocol is presented in Figure 1.3.

For this protocol to be sound, the low order assumption must hold:

Definition 4. Low order assumption. Let GGen(1λ) be a randomized algorithm
that outputs the description of a group G of unknown order. We say that the low
order assumption holds for GGen if, for any probabilistic polynomial-time algorithm
A, the probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ).

2. A outputs a pair (d, α) ∈ [2λ]×G.

3. A wins if and only if α ̸= 1 and αd = 1.

The low order assumption means that it is computationally hard to find the
elements of low (i.e., ≤ 2λ) order in some groups of hidden order. There is still
not much known about the usability of this assumption in practice. In [7] the
assumption is analyzed for RSA groups. In class groups, it is broken for Mersenne
primes and other special types of primes [8].



Parameters: G, e, m, ℓ
Statements: {yi = xe

i}i∈[m] in G
Protocol:

1. V samples a vector r ← [2ℓ]m uniformly at random and sends it to P .

2. V and P both construct one new statement ỹ = (x̃)e, where

ỹ =
∏︂

i∈[m]
(yi)ri and x̃ =

∏︂
i∈[m]

(xi)ri .

3. V and P run PoE on statement ỹ = (x̃)e.

Figure 1.3 Random Exponents Protocol [3].

1.2.3 Comparison metrics
Metrics

The main metrics that we use to evaluate batch PoEs are expected number
of group multiplications in verification, number of produced proofs and soundness
error (enumerated in the order of practical importance). Another important factor
is the communication complexity, i.e., how much data is sent in communication
between a verifier and a prover, but we do not focus on it in this thesis.

The expected number of group multiplications in verification. The
effectiveness of PoE (or batch PoE) can be measured by the verification cost,
because it is the main parameter when it comes to the practical use cases of PoEs.
All PoEs and batching protocols that we mention in this thesis use just three types
of operations: choosing a random element, exponentiation of the group element
and multiplication of two group elements. We focus on the expected number of
group multiplications on the verifier’s side of the protocol, because:

1. choosing a random element is usually a light-weighted operation compared
to group multiplication, and,

2. exponentiation of the group element can be expressed in the number of
group multiplications.

When raising the instances to uniformly random l-bit exponents, one has to
perform 1.5l multiplications in expectation per each exponentiation: for every bit
of the exponent, the squaring should be performed and, additionally, if this bit
equals 1, then there is one more multiplication needed. Since the exponents are
random, every bit of the exponent is equal to 1 with probability 0.5, therefore the
expected number of multiplications per every bit of the exponent is 1+1 ·0.5 = 1.5,
which results in 1.5l number of multiplications in expectation when raising to the
exponent of bit-length l. Since all PoEs and batch PoEs that are described in this
thesis, use some kind of randomization, it makes sense to consider the expected
number of multiplications.

Number of produced proofs. Another important metric for evaluation of
the batching protocol is the number of produced PoE proofs. Proofs are produced



by the prover, and the prover is usually the one who does the most computations
in any PoE, so producing proofs is both computationally expensive and space
inefficient, as the proofs are large.

Soundness. Soundness is included in the definition of PoE, and, therefore, a
batch PoE. It shows, how hard it is to trick a verifier into accepting the wrong PoE
statement(s). Soundness error is the probability of verifier accepting the wrong
statement. This probability should be small for the batch PoE (or just PoE) to
be secure and usable. But soundness error is not usually a constant number; it is
a function of one (or, sometimes, several) parameters - these are then called the
security parameters. In this thesis, when the symbol λ is used, it represents some
security parameter. When comparing two batch PoEs, it is important to compare
them with the same security level (i.e., with the same order of soundness error),
because the number of multiplications (and therefore the verification cost) can
be dependent on the security parameter. This is the case for all PoEs and batch
PoEs, described in this thesis. For example, the soundness of the Random Subsets
Protocol depends on the number of chosen subsets, and, as a consequence, on the
number of multiplications on the verifier’s side. If the soundness of one batch PoE
is 2−λ and of another batch PoE it is just λ−1, then the setting of λ = λ0 for the
second protocol implies that the security parameter for the first protocol should
be λ = log(λ0). We explore the soundness of the Random Subsets Protocol and
the Random Exponents protocol further in this chapter.

The evaluation of Wesolowski’s PoE

Based on the defined metrics, we now evaluate Wesolowski’s PoE.
Soundness. Wesolowski’s PoE is sound [2] and its soundness depends on the

security parameter k. We choose k to be 128 as suggested in the paper [2].
The expected number of group multiplications in verification. In

Wesolowski’s PoE setting, V verifies a statement πlxr ?= y, where π = x⌊ 2t

l
⌋ and

r = 2t mod l. l is chosen uniformly at random from the set of the first 22k primes
denoted as Primes(2k).
The last of the first 22k primes has more than 2k bits. The number of bits can
be estimated by solving the equation n

ln(n) = 22k (prime number theorem), and
the bit length of the 22k-th prime number is then approximately ⌈log2(n)⌉. For
k = 128 it is approximately 183, but since we choose the prime number randomly
from the set Primes(2k), it could have less bits. For simplicity we say that the
expected bit length of the chosen prime number l is k, i.e., 128.
Then r also has k bits in expectation. We have already showed that the expected
number of multiplications when raising a group element to the power of bit length
len is 1.5 · len. It implies that the number of group multiplications to compute
πlxr is:

1.5 · log2(l) + 1.5 · log2(r) + 1 = 1.5k + 1.5k + 1 = 3k + 1,
where +1 is for multiplying πl and xr.

1.2.4 Evaluation of the existing approaches
We choose the soundness error of the batching protocols (excluding the sound-

ness error of the PoE protocol, in our case Wesolowski’s PoE) to be roughly 2−128,



that is 128 bits.

Random Subsets Protocol - analysis and practical parameters

Let us recall the Random Subsets Protocol. We start with m statements. In
the first step of the protocol, V chooses ρ subsets of the set [m] and sends it to P .
For each of the ρ subsets, both P and V compute the new combined statement
- they calculate the product of the original statements, which indices are in the
current subset. By doing this, V and P obtain ρ combined statements and then
they run ρ PoEs in parallel. V accepts, if all PoEs succeed.
The detailed description is in Figure 1.2. Based on the defined metrics, we now
evaluate the Random Subsets Protocol.

The expected number of group multiplications in verification. The
only step where the group multiplication is performed is the calculation of the
combined statement for x and y for each of the ρ subsets. The expected number of
group multiplications on the verifier’s side is 2 · ρ (because there are two combined
statements for every subset - one for x and one for y) times the expected number
of elements in the randomly chosen subset of [m]. For every element of the [m], it
is chosen with the probability 1

2 , therefore the expected number of elements in
the random subset of [m] is 1

2 ·m.
Finally, the expected number of group multiplication for the verifier in the

Random Subsets Protocol is 2 · ρ · 1
2 ·m = ρ ·m.

Number of produced proofs. Due to the parallel run of ρ PoEs in the last
step of the Random Subsets Protocol, the protocol produces ρ proofs.

Soundness. In [3], the soundness of the Random Subsets Protocol is proved
to be

δ(λ) = δP oE(λ) + 2−ρ,
where δP oE(λ) is the soundness of the used PoE. For the Random Subsets protocol
to reach the desired security level of 128 bits (i.e., the soundness error of 2−128),
we set ρ = λ = 128.

Summary. We denote multprotocol as the expected number of group multipli-
cations in verification for the protocol, λ is the corresponding security parameter,
ρ is the number of repetitions, δprotocol is the soundness error and proofsprotocol is
the number of produced PoE-proofs. Then, for the Random Subsets Protocol
(RS) we get:

ρ = λ = 128,
δRS(λ) = δP oE(λ) + 2−ρ = δP oE(λ) + 2−λ,

multRS(λ) = ρm = λm,
proofsRS(λ) = ρ = λ.

Random Exponents Protocol - analysis and practical parameters

In the Random Exponents Protocol, V generates m random exponents
r1, ..., rm ∈ [2l] and sends them to P . In the second step, both V and P compute
the new instances by exponentiation of the original statements to the corresponding
exponent:



xe
i

?= y → (xe
i )ri

?= yri .

After that, V and P calculate the product of the new instances. In the last
step, PoE is run to check this generated statement. The detailed description is
in Figure 1.3.

Expected number of group multiplications in verification. In the
Random Exponents Protocol, the group multiplications are performed in the
exponentiation of the input statements to the powers r1, r2, ..., rm ∈ [2l] and
during the calculation of the product of the powered instances. We have already
explained that the expected number of multiplications when raising a group
element to the l-bit exponent is 1.5l. Then the exponentiation step in the Random
Exponents Protocol takes 1.5l·2·m group multiplications (because we exponentiate
both x and y). The product calculation takes m · 2 multiplications. Therefore,
the expected number of the group multiplications in verification is:

1.5l · 2 ·m + m · 2 = (3l + 2) ·m.

Number of produced proofs. In the Random Exponents Protocol, PoE is
executed only once during the final step, so only 1 PoE-proof is constructed.

Soundness. Let δP oE(λ) denote the soundness error of the used PoE, where λ
is the security parameter. Assuming that the low order assumption for the group
G generated by GGen(λ) holds with soundness error µ, the soundness error of the
Random Exponents Protocol can be expressed as follows:

δRE(λ) ≤ δP oE(λ) + µ + 1
2l .

In his paper, Rotem [3] shows a slightly different soundness error estimation, but
it was reevaluated in our paper in Lemma 2 [5].
The Random Exponents Protocol uses the low order assumption, i.e., that it is
computationally hard to find the group elements of order ≤ 2λ, where λ is the
same security parameter used in the soundness error estimation. The desired
security level is 128 bits, therefore we set l to be 128.

Summary. The parameters for the Random Exponents Protocol are the
security parameter λ and the bit length of the generated random exponents l. As
discussed, we set l to be 128. Using the notation defined earlier we get:

l = λ,
δRE(λ) ≤ δP oE(λ) + 2−l = δP oE(λ) + 2−λ,
multRE(λ) = (3l + 2) ·m = (3λ + 2) ·m,

proofsRE = 1.

1.3 Applications
PoEs are closely connected to the verfiable delay functions (VDFs). In fact,

PoEs can be used to construct VDFs. The idea behind VDF is as follows: for
some fixed number t, we want to construct an efficiently verifiable and secure
function f , such that evaluating f(x) for every x takes t sequential steps. While
PoE is interactive, VDF is not, and it complicates the construction of VDFs from
PoEs. This issue can be resolved by using Fiat-Shamir heuristic [9].



There are several applications of VDF, such as randomness beacons, proof of
replication, resource efficient blockchains and some more [10]. For example, in
Chia Network blockchain [11], 32 VDF proofs are generated in expectation every
10 minutes. It means that every 10 minutes, some user (or group of users) is
chosen to calculate 32 PoE-statements. Then, every user in the blockchain network
should verify these calculated statements. The problem appears when on-boarding
new users: they should verify all historical blocks, and there are many of them -
now, in Chia Network there is already around 4.8 million PoE-statements. In such
blockchain setup, batch PoE can be used for the efficient on-boarding - miners
could compute a single batch PoE for all intermediate PoE statements, which
would significantly reduce the storage overhead and user’s initial computation.
And while it is not relevant for Chia blockchain, as the groups in which PoE-
statements are evaluated constantly change, batching can be applied in another
similar setup with fixed group.



2 Our Protocols
In this chapter, we present our batch PoEs - the Hybrid protocol and the

Bucket protocol. We also state the theorems describing the soundness of the
suggested approaches. We do not provide the proof of the soundness theorems as
a part of this thesis, however, it can be found in our paper [5].

2.1 Hybrid protocol

2.1.1 Description
The hybrid protocol uses both random subsets and random exponents tech-

niques. In the first step, V generates ρ random subsets and ρ random exponents.
V sends this information to P . Then, in the second step, ρ batching instances are
calculated by the prover P and the verifier V the same way as in the Random
Subsets Protocol. The difference is in the third step: instead of the parallel running
of ρ PoEs, we combine these ρ instances together by using the Random Exponents
approach, i.e., we raise every one of these ρ instances to the corresponding random
exponent, generated by V during the first step, and then multiply all ρ statements
together to form one batched instance. This instance is then verified by using any
PoE protocol. The exact description of the protocol is presented in Figure 2.1.

2.1.2 Metrics evaluation
Expected number of group multiplications in verification. Group

multiplications in the Hybrid Protocol are performed during the “random subsets”
phase (where for every one of the chosen ρ random subsets we calculate the
product of the statements, whose indices are in the given subset) and during
the “random exponents” phase (where every statement, obtained by the product
calculation in the “random subsets” phase, is raised to the corresponding random
exponent).
The expected number of multiplications in verification in the “random subsets”
phase is as follows:

ρ · m
2 · 2 = ρm,

where ρ is for the number of random subsets, m
2 stands for the expected number

of elements in each such subset and 2 is for calculating the products for x and y.
The expected number of multiplications in verification in the “random exponents”
phase is the same formula as in the Random Exponents Protocol and can be
expressed as:

(3l + 2)ρ,

where l is the bit-length of the generated random exponents and ρ is the number
of instances to batch.

The complete number of group multiplications during verification in the Hybrid
Protocol is ρm + (3l + 2)ρ = (3l + 2 + m)ρ.
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Parameters:

• group G, common exponent e, number of statements m

• number of repetitions of subset multiplications ρ

• size of random coins ℓ

Statements: {yi = xe
i}i∈[m] in G

Protocol:

1. V samples a matrix B ← {0, 1}ρ×m and a vector r ← [2ℓ]ρ uniformly at
random and sends both to P .

2. V and P both construct new statements {y′
i = (x′

i)e}i∈[ρ], where

y′
i =

∏︂
j∈[m]

y
Bi,j

j and x′
i =

∏︂
j∈[m]

x
Bi,j

j .

3. V and P both construct one new statement ỹ = (x̃)e, where

ỹ =
∏︂

i∈[ρ]
(y′

i)ri and x̃ =
∏︂

i∈[ρ]
(x′

i)ri .

4. V and P run PoE on statement ỹ = (x̃)e.

Figure 2.1 Our hybrid batch proof of exponentiation.

Number of produced proofs. The PoE is run only in the final step of the
Hybrid Protocol, therefore it produces 1 PoE proof.

Soundness. The Hybrid protocol uses the Random Exponents protocol that
is based on the low order assumption. Therefore, the soundness of the Hybrid
protocol is also based on the low order assumption. The exact soundness of the
Hybrid Protocol is proved in our paper [5] and is expressed by the Theorem 1.
Theorem 1. Let PoE be a proof of exponentiation with soundness error δP oE(λ)
and let G be a group output by GGen(λ). Assuming the low order assumption for
GGen with soundness error µ, the hybrid batching protocol presented in Figure 2.1
has soundness error at most δP oE(λ) + µ + 2−ρ + 2−ℓ

To reach the desired security level of 128 bits and using the fact that the
security parameter in our setting of Wesolowski’s PoE is λ = 128, we set

ρ = ℓ = λ = 128.
The soundness of the Hybrid Protocol is then as follows:

δHP (λ) ≤ δP oE(λ) + µ + 2 · 2−λ.
Summary. The Hybrid Protocol has 3 parameters: the security parameter

λ, which in our setting is 128, the number of generated subsets (also is set to
λ = 128) and the bit length of the random exponents (again, equals to λ = 128).
Therefore, the metrics evaluation can be expressed as:



multHP = (3l + m + 2)ρ = (3λ + m + 2)λ,

proofsHP = 1,

δHP (λ) ≤ δP oE(λ) + µ + 2 · 2−λ,

where multHP denotes the expected number of multiplications in verification,
proofsHP means the number of produced PoE-proofs, δHP (λ) stands for the
soundness error of the Hybrid Protocol, µ is the soundness error of low order
assumption in the group G, δP oE(λ) is the soundness error of the used PoE.

2.2 Bucket protocol

2.2.1 Description
The Bucket protocol is an adaptation of the bucket test of Bellare, Garay, and

Rabin [4] to the setting of batch proofs of exponentiation. The main idea of the
Bucket protocol is to repeat the following steps ρ times:

1. divide the input instances into K = 2k buckets,

2. in every bucket, calculate the product of the instances, which results in the
total of K instances,

3. obtain 1 instance from these K instances by using the Random Exponents
technique, i.e., raise every instance to some random power and then calculate
the product of these instances, without producing the PoE-proof.

With this steps, we get ρ instances, for which we then run the Random Exponent
protocol (meaning with PoE proof). The detailed description of the bucket protocol
is in Figure 2.2.

2.2.2 Metrics evaluation
Expected number of group multiplications in verification. In the bucket

protocol, we repeat the described 3 steps ρ times. In the first step, we divide
m instances between K = 2k buckets using the randomization. The expected
number of instances in the bucket is then m · 1

2k , as the probability of an instance
ending up in the particular bucket is 1

2k .
During the second step, we calculate the product of instances in each bucket.

It results in 2k · m
2k · 2 = 2m group multiplications (number of buckets times the

expected number of instances in the bucket times 2 - for x and y).
During the third step, we use the Random Exponents technique with the

exponents of size k (from K = 2k) on the 2k instances. In the Random Exponents
technique, the expected number of group multiplications in verification is (3l+2)m,
where m is the number of instances to batch and l is the bit-length of random
exponents. In our case, for using the Random Exponents technique, we “pay”
(3k + 2) · 2k group multiplications in expectation.

Overall, the repetition of these 3 steps ρ times results in the expected number
of group multiplications in verification being:



Parameters:

• group G, common exponent e, number of statements m

• number of buckets K = 2k, where k ≤ λ

• number of repetitions of bucketings ρ = ⌈λ/(k − 2)⌉

• size of random coins ℓ

Statements: {yi = xe
i}i∈[m] in G

Protocol:

1. V samples two matrices B ← [K]ρ×m and R ← [K]ρ×K and a vector
r ← [2ℓ]ρ uniformly at random and sends both to P .

2. V and P both construct new statements
{︂
y′

i,b = (x′
i,b)e

}︂
i∈[ρ],b∈[K]

, where

y′
i,b =

∏︂
j∈[m],Bi,j=b

yj and x′
i,b =

∏︂
j∈[m],Bi,j=b

xj.

3. V and P both construct new statements {y′′
i = (x′′

i )e}i∈[ρ], where

y′′
i =

∏︂
b∈[K]

(y′
i,b)Ri,b and x′′

i =
∏︂

b∈[K]
(x′

i,b)Ri,b .

4. V and P both construct one new statement ỹ = (x̃)e, where

ỹ =
∏︂

i∈[ρ]
(y′′

i )ri and x̃ =
∏︂

i∈[ρ]
(x′′

i )ri .

5. V and P run PoE on statement ỹ = (x̃)e.

Figure 2.2 Our Bucket batch proof of exponentiation based on the bucket test from
Bellare et al. [4].

ρ · (2m + (3k + 2)2k).

Finally, on the obtained ρ statements we again use the Random Exponents
protocol (it means, we not only calculate the product of the instances raised to the
random exponents, but we also call the used PoE for verification, and it results in
producing PoE-proof) with the bit-length of exponents equal to l and the expected
multiplication costs on the verifier’s side is then:

(3l + 2)ρ.

Overall, the expected number of group multiplication in verification for the
Bucket Protocol is:

ρ · (2m + (3k + 2)2k + (3l + 2)) = ⌈ λ
k−2⌉(2m + (3k + 2)2k + (3λ + 2)),



because we use l = λ = 128 and we set ρ to be ⌈ λ
k−2⌉ [5].

Soundness. The soundness of the Bucket Protocol is proved in our paper [5]
and is stated as follows:

Theorem 2. Let PoE be a proof of exponentiation with soundness error δP oE(λ)
and let G be a group output by GGen(λ). Assuming the low order assumption for
GGen with soundness error µ ≤ 2−k − 2−λ, the bucket batching protocol presented
in Figure 2.2 has soundness error at most δP oE(λ) + µ + 2−λ+1 + 2−ℓ

Using l = λ, we get:

δBP (λ) ≤ δP oE(λ) + µ + 2−λ+1 + 2−λ.

Number of produced proofs. PoE-proof is produced only in the final phase
of the protocol, i.e., while using the Random Exponents Protocol for batching of
ρ instances, therefore:

proofsBP = 1.

Summary. With l = λ = 128 and ρ = ⌈ λ
k−2⌉, the Bucket Protocol can be

evaluated using the defined metrics as follows:

multBP = ⌈ λ
k−2⌉(2m + (3k + 2)2k + (3λ + 2)),

proofsBP = 1,

δBP (λ) ≤ δP oE(λ) + µ + 2−λ+1 + 2−λ.

Note that k can be chosen optimally with respect to the number of statements
m, e. g., by iterating through various options for k and minimizing multBP .



3 Protocols Comparison
In this chapter, we first look into the theoretical comparison of the existing

batching approaches, described in Chapter 1 (Random Subsets Protocol, Random
Exponents Protocol) and our approaches, described in Chapter 2 (Hybrid Protocol,
Bucket Protocol), based on the defined comparison metrics and suggested values of
the protocol parameters. After that, we present our experiments implementation
and show the comparison results in practice. We then discuss the results and
possible influences.

3.1 Theoretical comparison
Based on the calculations, presented in “Summary” sections in Chapter 1 and

Chapter 2, we fill in Table 3.1 (presented in our paper [5]), where “No Batching”
states for the repeated run of the used PoE protocol, resulting in the number of
PoE-proofs equal to number of instances m.

In the “No Batching” setting with using Wesolowski’s PoE, the number of mul-
tiplications is the number of instances m times the verification cost of Wesolowski’s
PoE, i.e., (3l + 1). Therefore, the total number of multiplications in verification
for the repeated Wesolowski’s PoE is (3l + 1)m, which is similar to the Random
Exponents Protocol when setting l = λ (and even seems to be faster). However,
when using a non-interactive variant of Wesolowski’s PoE, it is necessary to set
l = 2λ due to an attack by Boneh, Bünz, and Fish [12]. Therefore, the Random
Exponents Protocol will likely speed up the batch verification by a factor of two
in practice1. Moreover, as described above, the repeated Wesolowski’s PoE results
in m PoE-proofs, which is very space consuming when performing batching, for
example, on 106 instances.

From Table 3.1, we can see that the Random Subsets Protocol performs less
group multiplications compared to the Random Exponents Protocol, however it
results in λ PoE-proofs (compared to the single proof for the Random Exponents
Protocol) and requires parallelism.

The Hybrid Protocol offers roughly the same number of expected group
multiplications as the Random Subsets Protocol up to an additive overhead
independent on the number of instances m, while producing only 1 PoE-proof.

The Bucket Protocol multiplication cost depends on the number of buckets
and also consists of the additive overhead and the part dependent on the number
of instances m.

This comparison can be better understood by the theoretical evaluation of the
multiplication costs depending on the number of instances and a parameter k for
the Bucket protocol. It can be done by calculating the values of described functions
multRS, multRE, multHP , multBP for different number of input statements and
optimal values for k. We present the results of such comparison (source code
[14]) in Figure 3.2 and Figure 3.1. We can see that already for m = 103 both

1There also might be additional gains because, when verifying the Wesolowski’s proof, the
verifier needs to additionally perform some computation, which induces potential non-trivial
overhead. The additional overhead might be at least half of the verification time, as reported by
Attias et al. [13] (see Table 1 in [13])
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Figure 3.1 The relative number of mul-
tiplications on 102 to 1014 instances com-
pared to the Random Exponents Proto-
col [3] for λ = 128 and the optimal value
of the parameter k in the Bucket Protocol.
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Figure 3.2 The absolute number of mul-
tiplications on 102 to 1014 instances for
λ = 128 and the optimal value of the pa-
rameter k in the Bucket Protocol.

Protocol # multiplications # proofs
No batching - m
Random Subsets λm λ
Random Exponents (3λ + 2)m 1
Hybrid λ(m + 3λ + 2) 1
Bucket

⌈︂
λ

k−2

⌉︂ (︂
2m + (3k + 2)2k + (3λ + 2)

)︂
1

Table 3.1 The complexity of various batch PoEs for m instances with security
parameter λ, and 2k buckets in the Bucket Protocol.

Hybrid and Bucket protocols outperform the Random Exponents Protocol (Hybrid
protocol is roughly 2 times faster, Bucket roughly 3 times). At around 105 to 106

instances the Hybrid protocol becomes 3 times faster than the Random Exponents
Protocol, as also expected from Table 3.1. Starting from 107 instances, the Bucket
Protocol shows the decrease of the expected group multiplications by an order of
magnitude (compared to the Random Exponents Protocol). Thanks to the optimal
choice of the parameter k in the Bucket Protocol, the difference of performances
of the Bucket and the Random Exponents protocol continues to increase.

3.2 Experiments
As a part of this thesis, we implemented the Random Exponents Protocol, the

Hybrid Protocol, the Bucket Protocol and the sequential version of the Random
Subsets Protocol in C++ [14]. This implementation is based on the IOTA Network
Team implementation [6] of Wesolowski’s PoE. To run the experiments, we select
the number of batching instances m and then:

1. randomly choose an RSA group with 2048-bits modulus N = pq (p and q
are 1024-bits primes),
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Figure 3.3 Experiments result: the rel-
ative times on 102 to 1014 instances com-
pared to the Random Exponents Proto-
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Figure 3.4 Experiments result: the
times in seconds on 102 to 1014 instances
for λ = 128 and the optimal value of the
parameter k in the Bucket Protocol.

# instances Random Exponents Hybrid Bucket
100 0.027 0.045 0.038
1000 0.237 0.191 0.119
10000 2.30 1.62 0.661
100000 22.5 15.7 4.70
1000000 224 154 38.4

Table 3.2 The experimental evaluation of time (in seconds) of various batch PoEs for
m instances with security parameter λ, and 2k buckets in the Bucket Protocol.

2. sample m PoE-statements of form x2T

i
?= yi, where T = 225,

xi, yi ∈ G, i ∈ [m],

3. set the security parameter λ = 128,

4. choose the optimal value of the parameter k for the Bucket Protocol,

5. run the comparison: for the sampled PoE-statements, we sequentially run
the mentioned protocols (except for the Random Subsets Protocol) and
measure the time spent by performing multiplication and exponentiation on
the verifier’s side.

For every value of m, we run the described experiment several times to eliminate
the abnormal situations and then calculate the mean value of the received results
for each protocol. The number of instances m that we perform the experiments
for are 102, 103, 104, 105, 106. We run the experiments on a machine with a 12 core
3.70GHz Apple M2 Max processor with 32 GB of RAM.

Note that we do not perform the experiments for the Random Subsets Protocol,
since it produces m PoE-proofs and, in our implementation, the protocol is not
parallelized. We also measure only the multiplications costs on the verifier’s side
for each protocol (including the verification part in Wesolowski’s PoE) due to the
following reasons:



1. In the theoretical analysis of the protocols, we focus on the expected number
of multiplications, and we want to test it in practice.

2. Other steps, for example the sampling of the random subsets, are
implementation-dependent. However, they might slow down the Hybrid and
the Bucket protocols in practice.

The results of the experiments are presented in Figure 3.4 and Figure 3.3, the
exact running times can be found in Table 3.2.

When comparing Figure 3.3 and Figure 3.1, we see that the Bucket Protocol
behaves as expected with a small overhead, which becomes less and less visible as
the number of instances increase.

The Hybrid Protocol turns out slower than expected (in Figure 3.3 it approaches
approximately 0.7× the time of Random Exponents, while in Figure 3.1 it is
approximately 0.38× the time of Random Exponents). Since we only measured
the time connected to the group multiplications and exponentiations, it is an
unexpected result. We believe the reason for such behaviour is the randomized
memory access when calculating the product of the instances in the generated
random subset. Let us explain it in more details. On every of the ρ iterations in
the Hybrid Protocol, we choose a random subset of [m]. This subset consists of
the indices of the statements. When calculating the product of the statements,
corresponding to this subset, we need to go through the generated indices and
multiply the correspondingly chosen instances. Each such accessing of the instance
with the index i (where i is the randomly chosen index, because it is the element of
the random subset) results in the random memory access xi, yi of the vectors/arrays
of big memory size.

Note that both the Random Exponents Protocol and the Bucket Protocol do
not have such overhead in our evaluations, as in the Random Exponents case,
all the memory access to the arrays/vectors of x’s and y’s are sequential, and in
the Bucket case, the random memory access is performed while distributing the
instances between the buckets, but it is not included in our measurements, since
we measure only the cost of multiplications and exponentiations.



Conclusion
Our contributions

In this work, we presented two new batching approaches for PoEs - the
Hybrid Protocol and the Bucket Protocol. These approaches are inspired by the
protocols of Rotem [3] and the techniques of Bellare, Garay and Rabin [4]. We
calculated the expected number of group multiplications in verification, which
roughly corresponds to the verification costs, for both our approaches and the
protocols by Rotem - the Random Subsets Protocol and the Random Exponents
Protocol [3]. Based on this estimation of verification costs, we found out that
both the Hybrid and the Bucket protocols outperform the Random Subsets and
the Random Exponents protocols. We also implemented the Hybrid, Bucket
and the Random Exponents protocols in C++ and measured the time of group
multiplications and exponentiations performed by these protocols.

Based on our theoretical evaluation, the Hybrid Protocol outperforms the
Random Exponents protocol roughly by the order of 3, starting from 104 batching
instances. However, the practical measurement from our implementation shows
that the Hybrid Protocol is only 1.4 times faster (here we mean the measured time
of the group multiplications and exponentiations) than the Random Exponents
Protocol. We believe that the reason for such behaviour is the randomized
memory access caused by the usage of the Random Subsets technique in the
Hybrid Protocol, while in the Random Exponents Protocol most of the memory
accesses are sequential.

The Bucket Protocol outperforms the Random Exponents Protocol by an order
of magnitude both in theory and in practice. For the large numbers of instances
(batch PoEs are motivated by practical applications with millions of instances), the
gap between the performance of the Bucket Protocol and the Random Exponents
Protocol increases due to the optimal choice of the parameter k in the Bucket
Protocol.

We note that, while we were measuring only the expected number of group
multiplications for each protocol, there are some non-trivial overheads that were
not measured by such method. In particular, the generation of the random subsets
in the Hybrid Protocol, the distribution of the instances between the buckets in
the Bucket protocol and the generation of the random exponents for all three
approaches. However, the optimal implementation of the protocols could minimize
some of these overheads. The practically optimal implementation of the discussed
protocols still remains an open question.

Various open problems are left for further research, such as:

1. Aiming at more efficient batching protocols. Is it possible to construct a
batch PoE with strictly linear or sublinear verification?

2. The batching protocols for the PoE-statements with different exponents.
All the discussed protocols relay on the fact that we can multiply the
PoE-statements together and still obtain a PoE-statement with the same
exponent. However this is not the case for the PoE-statements with different
exponents. In [15], the batch PoE for instances with varying exponents was
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presented, but it relies on Pietrzak’s PoE, and therefore can not be used
with different PoE (for example, Wesolowski’s PoE).
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