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Supervisor: doc. RNDr. Elena Šikudová, Ph.D., Department of Software and
Computer Science Education

Abstract: Cloud classification task is a task where we classify images of clouds into
groups of similar images. Images are similar in terms of texture, shape, colour,
size and other visual aspects. The aim of this work is to create an algorithm that
can cluster images of clouds based on their sky coverage so that a user can request
a specific type of cloud coverage from database of images and use the images for
downstream tasks such as procedural sky generation. We use various models for
feature extraction based on contrastive learning and image reconstruction and
for clustering we use self-supervised learning and distance-based methods. These
methods were used for clustering a subset of our data and evaluated based on
visual consistency of clusters and cluster separation metrics.

Keywords: Unsupervised Classification Cloud image Contrastive learning

iii



Contents

Introduction 3

1 Background 5
1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Clustering of images . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Convolutional autoencoder . . . . . . . . . . . . . . . . . . 5
1.3.2 MoCo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 SPICE clustering . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 High-dimensional data representation . . . . . . . . . . . . 9
1.5.2 Low-dimensional data representation . . . . . . . . . . . . 10
1.5.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Dataset 11
2.1 Prague+Brno dataset . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Holesov dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Experiments 13
3.1 Original SPICE pipeline . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 MoCo with KMeans . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 CAE with SPICE clustering . . . . . . . . . . . . . . . . . . . . . 14
3.4 CAE with KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 CAE on CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Results 17
4.1 MoCo analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 MoCo training . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 PCA on MoCo . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 t-SNE on MoCo . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Nearest neighbours . . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Original SPICE pipeline . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 SPICE Training . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 MoCo+KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 KMeans training . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . 33
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 CAE analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Grayscale images . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 RGB images . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



4.4.3 Representations of images from certain timespan . . . . . . 41
4.4.4 Additional edge data . . . . . . . . . . . . . . . . . . . . . 41
4.4.5 Nearest neighbours . . . . . . . . . . . . . . . . . . . . . . 45
4.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 CAE+SPICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 SPICE Training . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 CAE+KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.1 KMeans training . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.2 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . 53
4.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 CAE+KMeans on CIFAR10 . . . . . . . . . . . . . . . . . . . . . 54
4.7.1 PCA and t-SNE . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.2 KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.3 Nearest neighbours . . . . . . . . . . . . . . . . . . . . . . 58
4.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Implementation 60
5.1 Implementation requirements . . . . . . . . . . . . . . . . . . . . 60
5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Dataset preparation . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 MoCo training . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Feature extraction from MoCo . . . . . . . . . . . . . . . . 62
5.3.4 Training of CAE . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.5 Feature extraction from CAE . . . . . . . . . . . . . . . . 63
5.3.6 Training of SPICE clustering . . . . . . . . . . . . . . . . 63
5.3.7 Training of KMeans . . . . . . . . . . . . . . . . . . . . . . 63
5.3.8 Image scores for SPICE . . . . . . . . . . . . . . . . . . . 63
5.3.9 Clustering of images . . . . . . . . . . . . . . . . . . . . . 64

5.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Conclusion 65

Bibliography 66

List of Figures 68

List of Tables 70

List of Abbreviations 71

A Attachments 72
A.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Trained models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3 Test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2



Introduction
Cloud classification is a very specific classification task when compared to other
image classification tasks such as objects detection from images of objects from
daily life. Instead of having high variance of data to work with, we only have
very specific type of objects which need to be separated into groups based on
their visual characteristic such as texture, colour, size, shape and so on. How-
ever, compared to everyday objects clouds are very homogeneous in this sense.
They all appear in the sky, so usually their background has blue colour with the
exception of situations when the cloud covers the whole sky. Also, other objects
present in the sky, such as the Sun, represent noise which can make the process of
classification even harder. When the Sun shine through clouds, it may change the
colour or the visual perception of shape of the cloud as well as it may change the
colour of the sky which might be considered by the model as a different object.

In recent years, new methods of classification were discovered for the task
of general image classification. For ImageNet-10 dataset [Deng et al., 2009] the
state-of-the-art clustering method was introduced by Niu, Shan, and Wang [2022].
It utilizes contrastive learning as feature extraction technique by training the un-
derlying network contrastive prediction task such as Chen et al. [2020] or He et al.
[2020]. However, these models solve more general task than we do because they
were evaluated on general image datasets such as ImageNet-10 [Deng et al., 2009].
Other works have taken the concepts from these general classification tasks and
applied them to cloud classification task. Lv et al. [2022] used contrastive learning
with ResNet50 [He et al., 2016] backbone and MLP clustering head similarly to
Niu et al. [2022]. We recognize that this work trained MLP in supervised manner
with labelled dataset, however, our dataset contains only unlabelled data. De-
matties et al. [2023] utilized Vision Transformer introduced by Dosovitskiy et al.
[2021] and training was done in self-supervised manner from Caron et al. [2021].

In this work we aim to create an algorithm that can classify clouds ac-
cording to cloud coverage of the sky. By having such algorithm we could label a
database full of sky imagery and then query images containing specific types of
clouds which can later be used for procedural sky generation in computer graph-
ics. We use framework introduced by Niu et al. [2022] for its state-of-the-art
performance on ImageNet-10 [Deng et al., 2009]. Due to the framework having
multiple components that can be modified, we exchange its feature extraction
model MoCo [He et al., 2020] for autoencoder [Hinton and Salakhutdinov, 2006]
with convolutional layers [Lecun et al., 1998] and its clustering head for KMeans
[Macqueen, 1967] to get a comparison how each of the components influences the
classification process.

We delve into the architecture and function of these models more in Chap-
ter 1. Then, we describe the datasets used for training and their preprocessing
in Chapter 2. Chapter 3 presents all the experiments conducted along with the
parameters used for these models. After that, Chapter 4 shows the results of the
classification with Silhouette coefficients Rousseeuw [1987] and visual analysis for
clustering. Also, a separate analysis of image representation from feature extrac-
tion models using visualization techniques such as principal component analysis
(PCA) [Maćkiewicz and Ratajczak, 1993] and t-SNE [van der Maaten and Hin-

3



ton, 2008] is included in this chapter. Chapter 5 describes code implementation
and prerequisites required to run the code.
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1. Background
The aim of this chapter is to introduce the problem of clustering to the reader
and the approaches to tackle this problem. In later sections, concrete models and
approaches used in this work are explained.

1.1 Clustering
Clustering is an unsupervised machine learning technique which separates data
into some groups according to some condition. The number of clusters is either
known in advance or it should be inferred.

In the case of sky imagery it is expected that during clustering similar clouds
end up in the same cluster and different clouds end up in different cluster. Clouds
are similar when their size, texture, colour and (visual) height are similar.

1.2 Clustering of images
When it comes to clustering images, usually, some pre-processing of the data is
done before the clustering because working with raw images is not very convenient
in most situations.

The approach that is used in this work is divided into several steps:

1. Feature extraction

2. Clustering of extracted features

1.3 Feature extraction
Images that we are going to use contain a lot of unimportant information that
does not help with the intended machine learning task. In Figure 1.1 it can
be observed that in the top left corner there is information about the entity
that is responsible for taking of the pictures. In the top right corner there is
some additional information about the weather on the day the picture was taken.
Additionally, the bottom part of the picture contains objects that are not related
to clouds at all (trees, mountains and so on). Therefore, we need to use a method
that would extract only important information about the clouds contained in
the images and not consider the parts of the picture that do not contribute any
information about clouds visible in the sky.

1.3.1 Convolutional autoencoder
The purpose of autoencoder is to learn a ”compression” system that describes
the input data well enough that the original data can be reconstructed from the
compression up to some error ϵ. Formally, let us have encoder E , decoder D and
input data x ∈ Rh×w×c. Let us also have some error function L which computes
the error between the original data and reconstructed data. Then, the error rate
of autoencoder reconstruction should be L(D(E(x)))) < ϵ.
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Figure 1.1: An example of image from sky dataset.

The loss function used in this work for autencoder is standard MSE (mean-
square error) which is defined as

L(x) = 1
h× w × c

h∑︂
i=0

w∑︂
j=0

c∑︂
k=0

(xijk − xijk)2

where x = D(E(x)).

1.3.2 MoCo
MoCo (Momentum Contrast for Unsupervised Visual Representation Learning)
from He et al. [2020] is a contrastive learning technique to learn features in unsu-
pervised manner. During contrastive learning an underlying model is trained in a
dictionary lookup fashion where each input image is associated with an encoded
key. Query encoder and key encoder are two separate models with the same ar-
chitecture. In this work the model is trained in such a way that if two pictures
are just different views (for example different crops) their associated key should
be the same. The underlying model used in this work is ResNet50.

In principle the training of MoCo is described in Figure 1.2. An instance
x ∈ Rm×n from training dataset is taken as query and alongside with a queue of
xkey

0 , xkey
1 , xkey

2 , · · · ∈ Rm×n key instances from the dataset. Then, encoded query
and and key images from momentum encoder are taken and contrastive loss is
computed. The momentum-based key encoder is moving averaged query encoder.

Contrastive loss

Let us have representation space R where each instance of input data has its
representation. The representation can be a result computed by some model
applied to input data. Contrastive loss measure the similarity a samples in this
sample space.
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Figure 1.2: MoCo training diagram from He et al. [2020].

The loss used in this work measures how well a model performs in dictionary
lookup task. The loss is defined in He et al. [2020] as

L(q, kn) = − log
(︄

exp(q · k+/τ)/∑︁K
i=0 exp(q · ki/τ)

)︄
(1.1)

where q is query example and {k0, k1, k2, · · · } is a set of examples that are
keys in the dictionary and k+ is the instance of the positive example for given
query q and τ is temperature hyperparameter Hinton et al. [2015].

Momentum update

As shown in Figure 1.2 encoder for query and encoder for keys are two separate
models of the same type. Parameters for the query encoder θq are updated using
back-propagation. For the key model to evolve more smoothly, its parameters
are not updated using back-propagation but are updated as weighted averaged
of query and key encoders

θk ← mθk + (1−m)θq

where m is momentum parameter coefficient.

Image augmentations

Augmentations used in MoCo training are described by He et al. [2020] as: ran-
dom resized crop, random grayscale, colour jitter and random horizontal flip.

1.4 Clustering
Clustering is a process of dividing input data into some groups such that similar
data points end up in the same group and different data points end up in a
different group.

1.4.1 SPICE clustering
SPICE (Semantic Pseudo-Labeling for Image Clustering) introduced in Niu et al.
[2022] takes previously trained feature extraction model and clusters the data
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based on the representations given by feature extraction model in the feature
space.

The model is trained using EM framework (expectation-maximization). The
EM framework is employed in the following manner:

1. Feature extraction model computes embeddings for original images ei.

2. Clustering head assigns probabilities pi over K classes to the embeddings
of weakly transformed images.

3. Compute probabilities p′
i over K classes and optimize the clustering head

using Equation 1.5.

Let the batch of input data be X ⊂ RN×w×h×c where N is batch size, w ×
h× c are the dimensions and number of channels of input images. Let us denote
clustering head C and feature extraction model F . The clustering head C is a
two layer MLP (multi-layer perceptron) which takes the embedding of some input
data ei = F(xi, θf ), where θf are parameters of the feature model, and assigns
a probability distribution p to weakly transformed input images among classes
{pi}K−1

i=0 where K is the number of classes and pi = C(ei, θc) with clustering head
parameters θc. Let P ∈ RN×K be a matrix containing class probabilities for each
data point in the batch.

However, ground truth labels are needed in order to train MLP. To tackle this
problem, Niu et al. [2022] propose that pseudo-label is assigned to each data point
from the batch (concretely to its feature embedding). Niu et al. [2022] denote
most confident samples for class k as

Fk =
{︃

fi|i ∈ argtopk
(︃

P:,k,
N

K

)︃}︃
. (1.2)

Then, cluster center for class k is

γk = K

N

∑︂
f∈Fk

f. (1.3)

Then, N
K

nearest samples to γk,∀k = 1, 2, · · · , K according to cosine similarity
are found and denoted by χk and their pseudo-labels are set to ys

i = k where
ys

i is a label corresponding to data point xi ∈ χk. Therefore, batch containing
pseudo-labelled images is defined by Niu et al. [2022] as

χs =
{︂
(xi, ys

i )|∀xi ∈ χk, k = 1, 2, · · · , K
}︂

(1.4)
Next, according to labelled dataset χs the clustering head is optimized in the

maximization step. This is done by minimizing the following loss from Niu et al.
[2022]

L = 1
N

N∑︂
i=1
Lce(ys

i , softmax(C(F(β(xi); θs
F); θc))). (1.5)

where Lce is cross-entropy loss and β is strong augmentation.
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Image augmentations

For this work the image augmentations from Niu et al. [2022] were used. For
weak transformation random crop and random horizontal flip were used. For
strong augmentation random horizontal flip, random crop and 4 random aug-
mentations from the following: identity, auto contrast, equalize, rotate, solarize,
color, contrast, brightness, sharpness, shear x, shear y, translate x, translate y
and posterize.

1.4.2 KMeans
For comparison with the previously mentioned SPICE clustering this work also
uses KMeans algorithm [Macqueen, 1967] in order to cluster images based on
their representations from previously trained feature extraction model. KMeans
firstly selects K cluster centers from the dataset and then iteratively assigns all
data to a nearest cluster and updates the cluster centers until convergence or
until a maximum number of iterations is reached.

1.5 t-SNE
t-SNE was introduced by van der Maaten and Hinton [2008] as a method of vi-
sualization of high-dimensional data into low-dimensional space while preserving
local structure of data.

Let the input dataset be X ∈ Rn×d where n is the number of data points and
d is the dimension of the high-dimensional feature space.

1.5.1 High-dimensional data representation
First, t-SNE converts Euclidean distances between data points into conditional
probabilities which represent similarities between data points. Points that are
close to each other are assigned high probability, whereas points that are far away
from each other will have lower probability according to Gaussian probability
density centered around each data point. Conditional probability that xi picks
xj as its neighbour is given by van der Maaten and Hinton [2008] as

pj|i = exp(−||xi − xj||2/2σ2
i )∑︁

k ̸=i exp(−||xi − xk||2/2σ2
i ) (1.6)

where σi is the variance of the Gaussian centered around xi. Since this method
models pairwise similarities pi|i = 0. From this the joint probability distribution
was redefined by van der Maaten and Hinton [2008] as

pij = pj|i + pi|j

2n
(1.7)

in order to battle outliers with high distance.
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1.5.2 Low-dimensional data representation
For the low-dimensional mapping points Y ∈ Rn×l where l is the dimension of
low dimensional space we are mapping to (usually 2 or 3 dimensions). For low-
dimensional mapping, another probability distribution Q is considered and the
joint probabilities can be computed as described by van der Maaten and Hinton
[2008] as

qij = (1 + ||yi − yj||2)−1∑︁
k ̸=l(1 + ||yk − yl||2)−1 (1.8)

where Student t-distribution with one degree of freedom is used. For measuring
how much joint probabilities P and Q differ, authors use Kullbeck-Leibler diver-
gence. The divergence is then minimized using gradient descent on cost function
from van der Maaten and Hinton [2008]

C =
∑︂

i

KL(P ||Q) =
∑︂

i

∑︂
j

pij log
(︄

pij

qij

)︄
. (1.9)

The points Y in the low-dimensional space are initialized randomly from an
isotropic Gaussian with small variance that is centered around the origin.

1.5.3 Variance
In order for the distribution on high-dimensional data to be computed, variance
of the Gaussian is needed for each data point. The algorithm performs binary
search over values of σi for each xi so that it produces Pi with fixed perplexity
specified by the user. Pi is conditional probability distribution over all data points
given data point xi. Perplexity is defined as

Perp(Pi) = 2H(Pi) (1.10)

where H(Pi) is Shanon entropy defined as

H(Pi) = −
∑︂

j

pj|i log(pj|i). (1.11)
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2. Dataset
Dataset used in this work consists of web camera shots from CHMI (Czech Hy-
drometeorological Institute). The dataset contains pictures from 98 locations
around Czech republic. Images were collected from the middle of March 2021 un-
til the time of writing this work. The images in their original form have resolution
1600 × 1200 pixels and are RGB. In this work, some preprocessing was done in
order to ease the hardware requirements for model training and also some models
require certain type of preprocessing being done to the input. Only a small por-
tion of images was used for training because of computational requirements and
also certain locations had better view of the sky than others. Also, some filters
had to be used in order to filter out images that were not suitable for training.
In the next sections there are described the subsets of data used as training data
and preprocessing done on each dataset.

Each of these datasets could have gone through additional preprocessing be-
fore entering model in experiments, however, preprocessing described in the next
sections are common for all experiments and model-specific preprocessing is de-
scribed for each experiment separately.

2.1 Prague+Brno dataset
First dataset that was used in this work is a combined dataset from Prague and
Brno in order to get more training data rather than using only one location.
Figure 2.1a and 2.1b show some example images from the dataset. It can be
observed that in the pictures there are some objects that are not part of the sky,
such as trees or houses. Also, there are watermarks and weather information
present in every image. The method to get rid of this kind of noise is simply
masking these areas with black pixels while preserving as much of the sky view
as possible. Next, images are cropped to 1200×1200 pixels so they are square and
from there are downscaled to 256×256 pixels for easier computational processing.
An example of images after preprocessing are in Figure 2.1d and 2.1e show the
final images after preprocessing. In this work, this dataset is going to be referred
to as Prague+Brno dataset.

2.2 Holesov dataset
This location was chosen in particular because out of all locations in the whole
dataset this one had the lowest horizon meaning that most of the picture consisted
of the sky view. Example can be found in Figure 2.1c. Therefore, to minimize
the noise in this dataset, the pictures were cropped in the middle section to get
as big square image as possible while cropping out all the watermarks, land and
weather information from the pictures. The resulting square image after cropping
had resolution of 1000× 1000 pixels and then was downscaled to 256× 256 pixels
as in Figure 2.1f. In this work, this dataset is going to be refered to as Holesov
dataset.
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(a) Brno (b) Prague (c) Holesov

(d) Brno (e) Prague (f) Holesov

Figure 2.1: Example pictures before (top) and after (bottom) preprocessing.
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3. Experiments
This chapter goes through all the main experiments conducted in this work. It
includes experiments done using the framework proposed in Niu et al. [2022],
variations of this framework with alternative models and clustering algorithms
and models that do not use anything from the aforementioned article.

3.1 Original SPICE pipeline
As the first experiment the pipeline from Niu et al. [2022] was used. Only feature
extraction model and clustering head from the paper were employed for this
experiment. The pipeline was trained separately on Prague+Brno and Holesov
datasets.

Preprocessing

Before the training loop begins, the mean and standard deviation are computed
for each colour band in each of the datasets. During training, the images are
normalized to have mean equal to 0 and standard deviation equal to 1.

Hyperparameters

Image mean and standard deviation were calculated for each dataset separately
and then used for the specific experiment. The training setup was the same as
described in He et al. [2020] and the training parameters are included in Table
3.1. The hyperparameters for clustering head were used as the one for ImageNet-
10 [Deng et al., 2009] described in the SPICE repository with changes listed in
Table 3.2. These hyperparameters were used for both preprocessed datasets. The
choice of k is 4, 7, 10 because we want to separate images into classes based on the
cloud coverage and visually we could not identify more than 10 different classes
in the data.

Parameter Value
Number of clusters 10

Size after crop 256× 256
Batch size 256

Learning rate 0.03
Weight decay 0.0001
Temperature 0.07
Queue size 65535

Table 3.1: Training parameters for
MoCo.

Parameter Value
Number of epochs 30

Crop size 256× 256
Batch size 5000

Learning rate 0.005
Weight decay 0

Number of clusters 4,7,10

Table 3.2: Training parameters for
SPICE.
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3.2 MoCo with KMeans
For this experiment training of MoCo feature model is done in the same manner
as in the original SPICE pipeline. Instead of using MLP as clustering head the
KMeans algorithm is used to cluster the image embeddings. This is to compare
the performance of SPICE clustering and other clustering methods. The number
of classes set for KMeans is 4, 7, 10. For training of the feature model the same
two datasets were used as in the first experiment.

3.3 CAE with SPICE clustering

Input (256x256xC)

conv1 3x3,64 (128x128x64)

conv2 3x3,64 (128x128x64)

conv3 3x3,128 (64x64x128)

conv4 3x3,128 (64x64x128)

conv5 3x3,128 (32x32x128)

conv6 3x3,128 (32x32x128)

FC-128

Figure 3.1: CAE encoder part.

This experiment tries to evaluate the performance of SPICE clustering head
with a different feature extraction approach. The architecture of the CAE encoder
is explained in Figure 3.1. It consists of 6 convolutional layers in encoder where
every other layer, beginning with the second one, halves the resolution of the input
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Input (128)

FC-32*32*128

conv transpose1 3x3,128 (64x64x128)

conv2 3x3,128 (64x64x128)

conv transpose3 3x3,64 (128x128x64)

conv4 3x3,64 (128x128x64)

conv transpose5 3x3,64 (256x256x64)

conv transpose6 3x3,C (256x256xC)

Figure 3.2: CAE decoder part.
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image. In addition, the third layer also doubles the number of channels from 64
to 128. The first layer projects the number of channels into 64-dimensional space.
Also, skip connections are used to skip between 1st and 2nd layer, 2nd layer and
3rd layer and so on. Prior to entering the model, the images are normalized to
[0, 1] range. Before entering into each layer but the first one, activation function
LeakyReLU is applied. The decoder has the same architecture as encoder part
and it is explained in Figure 3.2.

The encoder and decoder are trained at the same time. After the training
is done, the decoder is not used anymore and only encoder is used to construct
embeddings. The sizes of bottleneck used varied from 16 to 256.

The model is firstly trained on RGB images from both datasets. No colour
modifications have been done to the dataset so it can be observed how colour
data helps the model to learn meaningful representations. Then, the model is
trained on grayscale images. Lastly, the model is trained on RGB images with
additional edge data.

3.4 CAE with KMeans
This approach was chosen as a complete alternative which does not use any
technology described in Niu et al. [2022]. The autoencoder was trained the same
way as in the previous experiment and k = 4, 7, 10 for KMeans.

3.5 CAE on CIFAR10
To check if the proposed autoencoder architecture and training loop are capable
of learning representations of general data the autoencoder is trained on CIFAR10
dataset Krizhevsky et al. [2009] as reconstruction task. Then, PCA is performed
on the resulting representations to see if any clusters were formed.

The hyperparameters for training the clustering head were the same as in the
first experiment.
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4. Results
The results shown from all experiments have various forms to analyse how the
models perform and why they achieve such results. The results include image
reconstructions from CAE, PCA and t-SNE visualizations of embeddings to get
an idea of how the model perceives the data. Clusters were also evaluated using
Silhouette coefficient from Rousseeuw [1987], ARI (Adjusted Rand Index) from
Hubert and Arabie [1985] and manual visual inspection.

4.1 MoCo analysis
This section dives into image representations created by MoCo with embedding
visualization using PCA and various clustering algorithms to find out if MoCo
image embeddings capture features of the clouds that would be more suitable for
clustering task.

4.1.1 MoCo training
MoCo was trained on both datasets separately and until the training loss con-
verged. The training parameters were used as described in Chapter 3. The losses
and accuracies were plotted on single run.

Prague+Brno

MoCo was trained for 75 epochs until convergence of the loss function plotted
in Figure 4.1a. Moreover, the top 1 and top 5 accuracies were calculated, where
in top 5 accuracy the model was very close to 100 % and in top 1 accuracy the
model got around above 90 % accuracy. Accuracies were computed such that
when query produced by query encoder has the smallest angle with its positive
key produced by key encoder compared to the rest of keys that are present in
the queue, then it is considered as correct assignment. The plotted graphs can
be found in Figure 4.1b.

(a) Loss. (b) Accuracy.

Figure 4.1: Training performance of MoCo on Prague+Brno dataset.
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(a) Loss. (b) Accuracy.

Figure 4.2: Training performance of MoCo on Holesov dataset.

(a) Loss. (b) Accuracy.

Figure 4.3: Training performance of MoCo on Holesov dataset with τ = 0.7.

Holesov

Similar training performance was observed in the case of Holesov dataset. In this
case the model had less data because only one location was used and also night
images were filtered out. The model ran for 160 epochs for the loss function to
converge as can be seen in Figure 4.2a. Similarly to Prague+Brno dataset, the
training top 1 accuracy was a bit above 90% and top 5 accuracy reached very
close to 100% as can be observed in Figure 4.2b.

The images for the original SPICE were kept in RGB and mean and variance
for each colour band was computed for each dataset to be used as normalization
during training.

Temperature parameter

According to Hinton et al. [2015] temperature parameter τ used in MoCo training
in softmax in Figure 1.1 produces softer probability distribution when higher
values of τ are used. Therefore, in effort to separate different types of clouds in
the representation space temperature was set to τ = 0.7 instead of the original τ =
0.07. This resulted in model converging too quickly without learning meaningful
representation. The loss function did not lower as much as for the case for lower τ
which can be observed in Figure 4.3a. Accuracies were also much lower, where top
1 accuracy reached only 35% and top 5 accuracy reached almost 60% in Figure
4.3b.
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Figure 4.4: PCA on Holesov dataset for MoCo.

4.1.2 PCA on MoCo
This subsection contains PCA visualizations of the embeddings of the last layer
before fully connected layer of ResNet50. The visualizations also contain image
examples to further explain the feature space and colours separate points from
different locations. Some figures were also projected with smaller subsets of data
for better clarity of graphs.

Holesov

PCA on the whole training dataset for Holesov reveals that 2 or 3 clusters can
be found in the feature representation. Figure 4.4 shows that similar images are
indeed closer to each other in representation space. Another thing to note from
the visualization is that even images that have different clouds in them appear
closer in the visualization, most like due to their colour similarity. Lastly, brighter
images appear higher along y-axis and dimmer images appear lower along y-axis.

Prague+Brno

For Prague+Brno dataset it can be observed from Figure 4.5 that only one smaller
cluster and one big clusters were formed for both locations. Analysis of the smaller
cluster reveals that the smaller cluster for both locations contains night images
and the bigger cluster contains daytime images. The visualization also reveals
that the model also learned to distinguish between the locations because for
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Figure 4.5: PCA on Prague+Brno dataset for MoCo.

example the visualized daytime image of clear blue sky appeared in a completely
different place after PCA projection for Prague and for Brno. Similarly as for
Holesov dataset it can be observed that images containing different clouds are
closer to each other when their overall colour is also similar, therefore image
containing lots of smaller gray clouds is close to an image containing a big gray
cloud.

4.1.3 t-SNE on MoCo
This subsection contains t-SNE visualizations of the feature space computed from
the last layer before fully connected layer in ResNet50 just like in the case of
PCA. Visualizations also contain example images and colours of points distinguish
between locations in the same graph.

Holesov

In the case of Holesov dataset no visible clusters were formed in the case of t-SNE
in Figure 4.6. Some smaller pseudo-clusters were formed on the outside of the big
cluster but those are likely outliers like darker images. Images that contain sky
fully covered in clouds appear close to each other on the bottom right part of the
visualization. On the other hand, images containing blue sky with partial cloud
coverage appeared further away from each other compared to PCA in Figure 4.4
where they appeared closer to each other. Similarly, images containing sky fully

20



Figure 4.6: t-SNE on Holesov dataset for MoCo.

covered in clouds appear close to each other in PCA.

Prague+Brno

The case for Prague+Brno is more interesting as some clusters were formed in
Figure 4.7. However, the model almost perfectly separated each location into two
clusters. The clusters for Prague are separated by a big cluster of mostly images
from Brno and there is an additional cluster next to the smaller Prague cluster.
Moreover, the two clusters for each location contain daytime and night images
respectively.

4.1.4 Nearest neighbours
For this test 5 distinct example images were taken and top 100 images according
to cosine similarity were found for each query image. Example images are clear
blue sky, one big fluffy cloud in the sky, one big gray rainy cloud covering whole
sky, sunset image, blue sky with small fluffy clouds. The top 100 images were
visually evaluated by their relevance to query.

Holesov

Blue sky with small fluffy clouds: 3 of the 100 nearest neighbours were
irrelevant to the query. Sunsent image: Only 10 of 100 images was found
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Yellow is Prague and green is Brno.

Figure 4.7: t-SNE on Prague+Brno dataset for MoCo.

irrelevant containing clear blue sky. One big fluffy cloud in blue sky: 9 out
of 100 images were found irrelevant. Most of the irrelevant images showed a big
fluffly cloud covering the whole sky and some of them showed a big fluffy rainy
cloud covering the whole sky. One big gray rainy cloud covering whole sky:
All of the images were relevant. Clear blue sky: All of the 100 closest images
were relevant. Examples of query and its 5 closest neighbours can be found in
Figure 4.8 and outlier histograms are found in Figure 4.9.

Prague+Brno

Blue sky with small fluffy clouds: 3 out of 100 were irrelevant. Sunsent
image: All of the images were relevant. One big fluffy cloud in blue sky:
39 out of 100 images were found irrelevant, most of which were big gray clouds
covering the whole sky. One big gray rainy cloud covering whole sky: All
of the images were relevant. Clear blue sky: All of the images were relevant.
Examples of query images and its 5 nearest neighbours are in Figure 4.10 and
histogram of outliers is in Figure 4.11. One thing to note is that MoCo was
consistent on this dataset with searching closest neighbours by having images
from the same location close to each other, therefore all the results for nearest
neighbours were from the same location.

4.1.5 Discussion
MoCo feature extraction model shows promising results when it comes to group-
ing similar images into representation space. Searching for nearest neighbours
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The leftmost image in each row is query image and 5 images to the right are the
nearest neighbours, leftmost being the closest. Queries are in the following
order: sunset, blue sky with fluffy clouds, clear sky, one gray cloud, one big

fluffy cloud.

Figure 4.8: Queries and their 5 nearest neighbours for MoCo on Holesov dataset.
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(a) Blue sky with small fluffy clouds.

(b) One big fluffy cloud.

(c) Sunset.

Figure 4.9: Outlier histograms for MoCo on Holesov dataset.
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The leftmost image in each row is query image and 5 images to the right are the
nearest neighbours, leftmost being the closest. Queries are in the following
order: sunset, blue sky with fluffy clouds, clear sky, one gray cloud, one big

fluffy cloud.

Figure 4.10: Queries and their 5 nearest neighbours for MoCo on Prague+Brno
dataset.
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(a) Blue sky with small fluffy clouds.

(b) One big fluffy cloud.

Figure 4.11: Outlier histograms for MoCo on Prague+Brno dataset.
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(a) k = 4 (b) k = 7

(c) k = 10

Figure 4.12: Training loss for MoCo+SPICE on Holesov dataset.

showed consistent results with the cloud coverage on top 100 nearest neighbours
with only minimal number of irrelevant images found. PCA and t-SNE also show
this by putting similar images close to each other in the visualizations. However,
we recognize that the visualizations did not show the formation of visible clusters
which might cause problems with clustering these features.

4.2 Original SPICE pipeline
The original SPICE pipeline was trained as described in Niu et al. [2022]. Feature
extraction model MoCo was trained first on both datasets separately and its
training performance were described in previous section. After the models for
both datasets were trained, clustering heads for both feature extraction models
were trained on top of frozen feature extraction models. Lastly, the clustering
heads were used to infer classes for the whole training dataset and the resulting
clusters were analyzed visually and using Silhouette score.

4.2.1 SPICE Training
After MoCo was trained, its parameters were frozen and the last fully-connected
layer was removed. Therefore, the output of the last convolutional layer of size
2048 was taken as feature representation. This servers as an input to 2-layer
MLP which serves as clustering head for clustering the image representations.
The training losses were plotted on single run.

Training of SPICE for Holesov was stable and the loss usually converged after
5 iterations which can be observed in Figure 4.12.

In case of Prague+Brno dataset training of SPICE was a lot more unstable
where for k = 4 the loss did not converge at all and for the rest the loss jumped
between values. Training performance can be found in Figure 4.13.
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(a) k = 4 (b) k = 7

(c) k = 10

Figure 4.13: Training loss for MoCo+SPICE on Prague+Brno dataset.

4.2.2 Clustering evaluation
After SPICE training the feature extraction model and SPICE clustering head
were used to infer cluster labels for each image from the training dataset. For
both MoCo and SPICE the model from last training epochs were taken. For each
sample the predicted most probable class was taken as a result of the clustering.

Silhouette score

Clustering head for Holesov dataset was trained with the same hyperparameters
but with different number of classes to classify to. Then, the resulting clusterings
were taken and their Silhouette score was computed in Table 4.1. The score shows
very poor clustering performance where the score does not exceed 0.25 indicating
that the clusters were poorly separated.

k Silhouette coefficient
4 0.0414
7 0.045
10 0.05

Table 4.1: Silhouette score for
SPICE on Holesov dataset.

k Silhouette coefficient
4 0.016
7 0.009
10 0.052

Table 4.2: Silhouette score for
SPICE on Prague+Brno dataset.

In case of Prague+Brno dataset similar performance was observed. Surpris-
ingly, even though t-SNE showed at least 4 clusters, the Silhouette score for 4
clusters was only 0.016 indicating worse clustering performance than the same
model trained on Holesov dataset. Computed scores are included in Table 4.2.
Again, the higher k, the higher Silhouette coefficient, however, even for k = 10
the coefficient is very low.
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(a) k = 4 (b) k = 7

(c) k = 10

Figure 4.14: Sunny image distributions for MoCo+SPICE on Holesov dataset.

Visual inspection

Furthermore visual inspection revealed that for each k in models trained for
Holesov dataset there was at least one cluster containing mostly images with sky
fully covered in one gray cloud. Also, some clusters showed to prefer images con-
taining the Sun and some preferred images without the Sun. Therefore, simple
Sun detector was implemented by thresholding pixels to only the ones with val-
ues (255, 255, 255) and using Hough Circle Detector Duda and Hart [1972] from
OpenCV to detect if the high brightness pixels for a circle. If they do, the image
is flagged as sunny. For k = 4 one cluster seemed to favor sunny images the
most with 30% of images flagged as sunny. For k = 7 two clusters favored sunny
images with one of them containing 40% and the second one containing 30% of
sunny images. In case of k = 10 one of the clusters contained 45% and one with
35% of sunny images. Sunny image distributions can be found in Figure 4.14.

Visually most interpretable clusters were found with k = 7. Clusters 0 and
6 contained mostly images of white fluffy clouds in blue sky. Cluster 1 tends
to prefer clouds with smoother texture. In clusters 2 and 5 mostly big gray
rainy clouds were found. Cluster 3 preferred images from morning and evening
containing the Sun and mostly clear sky, although many outliers were also present.
Cluster 4 contained mostly images with clear or almost clear blue sky. Examples
of these images obtained by random sampling each cluster can be found in Figure
4.15.

In the case of Prague+Brno dataset, clusters with similar characteristics as
for Holesov dataset were observed. However, all clusters contained outliers in the
form of completely dark image from night. This suggests that the model did not
learn find the cluster containing dark images and did not separate the from the
others, which will be discussed further in later section.
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Figure 4.15: Examples of clustering results for MoCo+SPICE on Holesov for
k = 7. Each class has 5 examples on rows, the clusters are ordered from 0 to 6
in top-down order.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.16: Clustering of MoCo+SPICE on Holesov visualized using tSNE.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.17: Clustering of MoCo+SPICE on Prague+Brno visualized using tSNE.

PCA and t-SNE

The clustering of the embedding space is visualized in Figures 4.16 and 4.17 for
t-SNE and in Figures 4.18 and 4.19 for PCA. Figure 4.16a shows that the two
visual clusters formed in t-SNE were split into two sub-clusters by SPICE. For
higher number of clusters SPICE splits the clusters even more.

Figure 4.17 shows that for Prague+Brno dataset SPICE did not separate the
locations even though they formed clusters in tSNE.

Figure 4.18a shows that the the embedding space was symmetrically separated
but for higher cluster numbers the clustering stops being so symmetric.

4.2.3 Discussion
Clustering using SPICE algorithm had very low Silhouette coefficient meaning
that the clusters were poorly separated. PCA and t-SNE show that the clusters
were overlapping and were not clearly separated. However, higher number of
clusters had the tendency to have higher values of the coefficient which could
mean that in order to achieve better clustering the number of clusters should be
significantly higher. This might lead to better precision of the model, where we
would have more clusters capturing the same amount of cloud coverage, however,
fewer outliers would be present in those clusters. On the other hand, looking at
t-SNE of both datasets we can see that for each number of clusters there were
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.18: Clustering of MoCo+SPICE on Holesov visualized using PCA.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.19: Clustering of MoCo+SPICE on Prague+Brno visualized using PCA.
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the same sections of the representation space that ended up in the same cluster
implying that there must be some inner separation of the visual clusters formed
in t-SNE.

4.3 MoCo+KMeans
For this experiment, pre-trained feature models from previous experiment were
used and KMeans was fit as clustering algorithm on features extracted from input
images.

4.3.1 KMeans training
KMeans was trained with k-means++ cluster initialization setting. Tables 4.3
and 4.4 shows number of epochs the model was trained for and intertia on single
run. Inertia is computed by measuring the distance between each data point
and its corresponding cluster center, squaring this distance and summing these
distances across all clusters.

Result
k 4 7 10

Inertia 75048 69106 65400
Epochs 45 46 47

Table 4.3: Training results for
KMeans with MoCo on Holesov
dataset.

Result
k 4 7 10

Inertia 307341 288324 276738
Epochs 24 35 116

Table 4.4: Training results for KMeans
with MoCo on Prague+Brno dataset.

4.3.2 Clustering evaluation
Clustering result was evaluated in similar manner to previous experiment and the
results of KMeans were compared to SPICE clustering results.

Silhouette score

KMeans trained on the same features from MoCo pre-trained in the previous
experiment was run for different values of k to see how the algorithm clusters the
representation space. KMeans achieved better Silhouette score than SPICE for
clustering for both datasets which can be observed in Tables 4.5 and 4.6.

Visual inspection

For Holesov dataset and k = 7 had the most interesting results. Clusters 0 and
3 contained images of big gray rainy cloud covering the whole sky. Custer 1
contained many images of clear blue sky. Clusters 2 and 4 contained images with
blue sky and fluffy clouds. Cluster 5 preferred clouds with softer texture and
cluster 6 contained mostly images from early morning or late evening where the
sky contained orange and yellow colours from the Sun. Examples of these clusters
can be found in Figure 4.20.
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k Silhouette coefficient
4 0.056
7 0.075
10 0.083

Table 4.5: Silhouette score for
KMeans with MoCo on Holesov
dataset.

k Silhouette coefficient
4 0.065
7 0.067
10 0.065

Table 4.6: Silhouette score
for KMeans with MoCo on
Prague+Brno dataset.

Figure 4.20: Examples of clustering results for MoCo+KMeans on Holesov for
k = 7. Each class has 5 examples on rows, the clusters are ordered from 0 to 6
in top-down order.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.21: MoCo+KMeans clustering of embedding space of Holesov visualized
using tSNE.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.22: MoCo+KMeans clustering of embedding space of Prague+Brno vi-
sualized using tSNE.

PCA and t-SNE

Surprisingly and similarly to SPICE clustering KMeans did not distinguish be-
tween different locations for Prague and Brno whose clusters are visible in t-SNE
in Figure 4.22. On the other hand, for k = 4 it can be observed from Figure 4.24
that the two outlier-like clusters were separated for all k but the data points in
the main cluster were merged in many clusters.

4.3.3 Discussion
KMeans clustering achieved a bit better Silhouette score compared to SPICE
clustering. Similarly to SPICE, increasing the number of clusters lead to higher
score at least for Holesov dataset. Visual inspection identified clusters that had
visual interpretation on the amount of cloud coverage, however, many outliers
were also present in the identified clusters. PCA and t-SNE reveal similar cluster
distribution as in the case of SPICE clustering. Also, for each number of clusters
the clusters visualized divided the representation space in a similar manner as
did SPICE clustering.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.23: MoCo+KMeans clustering of embedding space of Holesov visualized
using PCA.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.24: MoCo+KMeans clustering of embedding space of Prague+Brno vi-
sualized using PCA.
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(a) 16 (b) 64

(c) 128 (d) 256
Purple is Brno, yellow is Prague.

Figure 4.25: Comparison of bottlenecks for CAE on Prague+Brno.

4.4 CAE analysis
This section focuses on CAE and its properties when it comes to image recon-
struction and clustering. The image representations were visualized using PCA
along with sample images and their nearest neighbours to better understand what
the model focuses on when embedding an image.

4.4.1 Grayscale images
CAE has shown to focus on the mask as it is unique for each location in and
also it takes a big portion of the picture in Prague+Brno dataset. Therefore, the
training loss was modified to only consider pixels that are outside of the mask
for Prague+Brno dataset. However, this change did not help the autoencoder to
distinguish between the clouds in the sky. Figure 4.25 shows PCA on bottleneck
of sizes 16, 64, 128 and 256. It can be observed that Prague and Brno merged
together in the PCA but but still no obvious clusters were formed. In visualization
in Figure 4.25b and 4.25c the shape formed by data points is the same but just
rotated.

On the dataset from Holesov the result is a lot more consistent across bot-
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(a) 32 (b) 64

(c) 128 (d) 256

Figure 4.26: Comparison of bottlenecks for autoencoder on Holesov.
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(a) 32 (b) 64

(c) 128 (d) 256

(e) Original

Figure 4.27: Comparison of the final reconstructions for autoencoder on Holesov
dataset.
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Figure 4.28: PCA of BW Holesov filtered dataset on autoencoder.

tlenecks. The shape the data points form is very similar for all bottleneck sizes
disregarding rotation. Figure 4.26 shows comparison of these visualizations. It
can be observed that most points are concentrated into one cluster but there is
also a significant number of outliers which are far away from the cluster. One
thing that images laying outside of the cluster had in common was that they
all contained visually high contrast images typically ones from evening when the
sky is still visible but the sun is about to set. Therefore, the mean brightness of
these images was calculated and they were filtered out in preprocessing step and
the autoencoder was retrained on the new filtered dataset. Resulting PCA shows
only one big cluster of daytime images, other than that no visible clusters were
formed in Figure 4.28. The final image reconstructions can be found in Figure
4.27.

4.4.2 RGB images
RGB images are supposed to supply the model with additional information about
the clouds located in the pictures by providing colour data instead of just pro-
viding the brightness levels for each pixel. However, even this change did not
help the model to learn additional information that would help the model to dis-
tinguish the clouds in the sky. Figure 4.29 shows PCA on the training dataset.
Again, it can be observed that darker pictures (indicated in yellow) form a huge
outlier-like cluster and all daytime images (purple colour) form one big cluster.

Daytime image cluster can be inspected more by applying stricter filter to

40



Yellow points are images with average brightness under a threshold, the rest is
purple.

Figure 4.29: PCA of RGB Holesov dataset on autoencoder.

the dataset based on image brightness. Therefore, images from between 08:00:00
and 22:00:00 were kept only if their average grayscale brightness was at least 130.
The model was later re-trained on this filtered data and the resulting PCA can be
found in Figure 4.30 only for bottleneck of size 128 in both cases. The additional
filtering and re-training did not help the model to form any visible clusters and
all the images still form the same one big cluster.

4.4.3 Representations of images from certain timespan
The cloud coverage in one day may vary as well as it may vary throughout
multiple days. To understand the image embeddings more, PCA was done only
on 5 consequent days and the images projected in PCA were inspected in Figure
4.31. From the visualization it can be observed that similar images appear close
to each other. Therefore, the autoencoder learns a representation that is good
for image reconstruction but is not suitable for clustering of the images. Images
that are similar in colour end up close to each other in the latent space which
does not necessarily mean that there is the same type of cloud in the picture.

4.4.4 Additional edge data
To battle the effect that was discussed in the previous subsection the autoencoder
is once again trained on the filtered Holesov dataset but this time a new channel
containing edge data is added to the input of the model. Therefore, the size
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Figure 4.30: PCA on filtered RGB Holesov dataset.

of the input is (N, 4, 256, 256) where N is the batch size and there are 3 RGB
channels and one edge channel. The edge channel consists of output of applying
Sobel edge detector to the image as discussed in Kanopoulos et al. [1988]. The
resulting magnitudes can either be filtered by a threshold, where small magnitudes
are completely forgotten and magnitudes bigger than the threshold are amplified,
or they can be all normalized and considered as an alternative image to the input
image. In this work, the magnitudes were normalized into interval [0, 1] and used
as an additional input channel of an image.

CAE with bottleneck 128 was then trained for 50 iterations with training per-
formance over single run plotted in Figure 4.33 and the resulting reconstructions
of the input image and its edges can be found in Figure 4.32. The image recon-
struction lost some detail but the clouds are still quite visible in the image. Edge
reconstruction has lower sharpness than original but still the cloud shapes were
recognized by the model.

PCA in Figure 4.34 was computed on the whole dataset but the projections
were made only on images from the first 5 days. The visualization reveals that
some similar looking clouds were in fact close together in the projection.
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Figure 4.31: PCA of CAE on 5 consecutive days from RGB filtered Holesov
dataset.
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(a) Original image (b) Original edge detections

(c) Reconstructed image (d) Reconstructed edge detections

Figure 4.32: Image reconstruction of autoencoder on RGB Holesov dataset.

Figure 4.33: CAE training loss on RGB Holesov with edge data.
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Figure 4.34: PCA of autoencoder embeddings of the first 5 days.

4.4.5 Nearest neighbours
Holesov

Blue sky with small fluffy clouds: 5 out of 100 were irrelevant. Sunsent
image: 16 out of 100 images contained small soft clouds. One big fluffy cloud
in blue sky: 16 out of 100 images were irrelevant, they were mostly images
containing one big gray rainy cloud and no fluffy clouds. One big gray rainy
cloud covering whole sky: All of the images were relevant. Clear blue sky:
All images were relevant. Examples of query and its 5 closest neighbours can be
found in Figure 4.35 and outiler histograms can be found in Figure 4.36.

Prauge+Brno

Blue sky with small fluffy clouds: 22 out of 100 were irrelevant most of which
contained images with softer clouds in a blue sky. Sunsent image: 21 out of
100 were irrelevant. Interestingly, the visual colour distribution of the images was
similar for all 100 images. One big fluffy cloud in blue sky: 31 out of 100
images were irrelevant, mostly containing soft clouds covering the whole sky. One
big gray rainy cloud covering whole sky: All of the images were relevant.
Clear blue sky: All of the images were relevant. Examples can be found in
Figure 4.37 and outlier histograms can be found in Figure 4.38. Similarly as
for MoCo, CAE was consistent with searching closest neighbours for a particular
location where all the results were from the same location.
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The leftmost image in each row is query image and 5 images to the right are the
nearest neighbours, leftmost being the closest. Queries are in the following
order: sunset, blue sky with fluffy clouds, clear sky, one gray cloud, one big

fluffy cloud.

Figure 4.35: Queries and their 5 nearest neighbours for CAE on Holesov dataset.
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(a) Blue sky with small fluffy clouds.

(b) One big fluffy cloud.

(c) Sunset.

Figure 4.36: Outlier histograms for CAE on Holesov dataset.
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The leftmost image in each row is query image and 5 images to the right are the
nearest neighbours, leftmost being the closest. Queries are in the following
order: sunset, blue sky with fluffy clouds, clear sky, one gray cloud, one big

fluffy cloud.

Figure 4.37: Queries and their 5 nearest neighbours for CAE on Prague+Brno
dataset.
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(a) Blue sky with small fluffy clouds.

(b) One big fluffy cloud.

(c) Sunset.

Figure 4.38: Outlier histograms for CAE on Prague+Brno dataset.
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4.4.6 Discussion
CAE has shown to pay close attention to brightness of images and in case of RGB
images also to their colour distribution. These different factors were projected
into PCA as one cluster containing mainly daytime images and outliers outside
of this big cluster containing evening or nighttime images.

Decreasing the bottleneck from 256 down to 16 has shown do not impact the
distribution of data in the representation space as the shape of PCA projection
is similar across all bottlenecks. Increasing the size of bottleneck has proven to
result in higher quality reconstructions, however, achieving high quality of image
reconstruction is not our goal.

Using RGB images has proven to be better choice instead of grayscale im-
ages because the model got more data to work with. Also adding edge data as
another channel helped the model to find similar images. Therefore, in the next
experiments, CAE is trained on RGB datasets with edge data.

The model did not perform as well as MoCo for nearest neighbours, for top
100 nearest neighbours many images were flagged as irrelevant and in some cases
the model has completely mistaken images that were foundationally different.

4.5 CAE+SPICE
In the following experiments, the CAE was frozen as feature extraction model
and SPICE clustering was trained on top of these frozen features. The training
parameters for SPICE were used the same as for previous experiments where
SPICE clustering was used.

4.5.1 SPICE Training
In the case of training SPICE on top of CAE features the training was very
unstable and in case of k = 7 the training loss diverged. Training performance
over single run can be found in Figure 4.39. In case for Prague+Brno dataset the
loss diverged in all cases and therefore was not evaluated.

4.5.2 Clustering evaluation
Silhouette score

Silhouette score for this setup ended up still very low, with the highest score
being 0.235 for k = 4 in Holesov dataset. With higher numbers of clusters the
score lowers slightly. Overall, the values are higher than in previous experiments,
however, they are not directly comaprable as different feature model was used for
feature extraction. The results are in Table 4.7 only for Holesov dataset.

Visual inspection

From visual inspection of this setup for all k parameters there was no obvious
systematic clustering of the images. Each of the clusters appeared to contain
images of various nature ranging from clear blue sky to fully covered sky by
clouds for both datasets.
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(a) k = 4 (b) k = 7

(c) k = 10

Figure 4.39: Training loss for SPICE with pretrained CAE on Holesov dataset.

k Silhouette coefficient
4 0.235
7 0.22
10 0.221

Table 4.7: Silhouette score for CAE+SPICE on Holesov dataset.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.40: CAE+SPICE clustering of embedding space of Holesov visualized
using tSNE.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.41: CAE+SPICE clustering of embedding space of Holesov visualized
using PCA.

PCA and tSNE

Both PCA in Figure 4.41 and t-SNE in Figure 4.40 show that SPICE clustered
most of the images into one cluster and only a small amount of images into the
rest of classes, therefore the clusters contain disproportional amount of images.

4.5.3 Discussion
SPICE training was difficult in this experiment setup. The training process was
very unstable and in case of Prague+Brno dataset the loss did not converge at
all. The reason for this is that SPICE uses data augmentation during its training
process and it relies on the fact that the feature extraction model is invariant to
this kind of data augmentation. MoCo was trained in this sense to be invariant
towards data augmentation, however, this is not the case for CAE making it hard
for the model to converge.

Silhouette score for Holesov dataset was quite high, however, this is due to
most of the images being assigned to one cluster. For higher number of clusters
most of the images ended up in 4 of the clusters, therefore PCA and t-SNE
visualizations look very similar for all of the number of clusters and because of
this reason they only contain 4 colours.
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From visual inspection it was also obvious that most of the images appeared
in one cluster and therefore the clusters contained a lot of variance in images.

4.6 CAE+KMeans

4.6.1 KMeans training
KMeans clustering was applied to features extracted from CAE which was pre-
trained in the previous experiments. KMeans model had very high inertia after
training, however, the reason for this is that there are many outliers outside of
the main cluster whose distances are very high. Each of the models was trained
under 300 iterations which is the maximum number of iterations set.

Result
k 4 7 10

Inertia 14492326 11831869 10708672
Epochs 24 26 60

Table 4.8: Training results for KMeans with CAE on Holesov dataset.

4.6.2 Clustering evaluation
Silhouette score

Silhouette score in this setup was overall a little bit lower than the score for
SPICE clustering, however, from the results of visual inspection in the next sec-
tion and from PCA and tSNE visualizations the clustering is more interpretable
with KMeans model than it is with SPICE clustering. However, the scores are
still very low with values not even reaching 0.25. Similarly as for the previous
experiment the scores are higher than for MoCo clustering experiments but the
results are not directly comparable because different feature extraction model was
used.

Visual inspection

In this setup CAE seemed to focus more on the brightness of an image and its
colour composition rather than the objects contained in the images. This was
especially visible for k = 7 where clusters 0, 4 and 5 contained daytime images,
cluster 1 contained evening or morning images, cluster 2 contained images with

Result
k 4 7 10

Inertia 116766416 82800200 69142840
Epochs 12 72 15

Table 4.9: Training results for KMeans with CAE on Prague+Brno dataset.

53



k Silhouette coefficient
4 0.219
7 0.172
10 0.174

Table 4.10: Silhouette score for
CAE+KMeans on Holesov dataset.

k Silhouette coefficient
4 0.448
7 0.283
10 0.278

Table 4.11: Silhouette score for
CAE+KMeans on Prague+Brno
dataset.

gray rainy cloud and 6 contained similar images but from evenings and mornings.
Cluster 3 contained mostly late evening images. Examples can be found in Figure
4.42.

PCA and t-SNE

From PCA in Figures 4.45 and 4.46 and t-SNE in Figures 4.43 and 4.44 better
partitioning of representation space can be observed by the clustering algorithm.
The outliers outside of the main cluster usually ended up in a separate cluster
which resulted in one or multiple clusters containing mostly evening or morning
images. The rest of the clusters split the main visual cluster into multiple clusters.

4.6.3 Discussion
Clustering with KMeans achieved significantly better results than clustering with
SPICE. Silhouette score was significantly higher for Prague+Brno, especially for
k = 4, and the score for Holesov was similar to SPICE score.

From visual inspection it was obvious that the model focuses more on bright-
ness and colour distributions of the images instead of focusing on the objects in
the images. Clusters were formed mostly according to brightness of the images
where daytime and nighttime images got separated into separate clusters.

This fact is more obvious from t-SNE of Prague+Brno where the night clusters
ended up in one or more clusters separate from all of the others.

4.7 CAE+KMeans on CIFAR10
In order to get some reference output on more diverse data AE was trained
on CIFAR10 dataset Krizhevsky, Nair, and Hinton [2009] and clustered using
KMeans. This way it can be compared how the model behaves on more diverse
data and on the cloud dataset.

4.7.1 PCA and t-SNE
Figure 4.47 shows representation space of CAE on CIFAR10 dataset. No visible
clusters were formed in the visualization and additionally it can be observed in
Figure 4.47a that the ground truth is scattered all over the visualization and
therefore similar images are not necessarily close to each other in the representa-
tion space. Similar observations apply for t-SNE in Figure 4.48.
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Figure 4.42: Examples of clustering results for CAE+KMeans on Holesov for
k = 7. Each class has 5 examples on rows, the clusters are ordered from 0 to 6
in top-down order.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.43: CAE+KMeans clustering of embedding space of Holesov visualized
using tSNE.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.44: CAE+KMeans clustering of embedding space of Prague+Brno vi-
sualized using tSNE.

(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.45: CAE+KMeans clustering of embedding space of Holesov visualized
using PCA.
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(a) k = 4 (b) k = 7 (c) k = 10

Figure 4.46: CAE+KMeans clustering of embedding space of Prague+Brno vi-
sualized using PCA.

(a) Ground truth. (b) Predictions.

Figure 4.47: PCA of CAE on CIFAR10

(a) Ground truth. (b) Predictions.

Figure 4.48: t-SNE of CAE on CIFAR10
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Figure 4.49: Sample images and their 5 nearest neighbours in feature space for
CIFAR10 autoencoder. Leftmost image is original and the 5 images on the right
are its nearest neighbours.

4.7.2 KMeans
KMeans run for 227 iterations until it converged, unsurprisingly after seeing the
results from PCA, the resulting clusters were very inhomogeneous and the clus-
tering appeared almost random. CIFAR10 is a labeled dataset, therefore metrics
can be calculated for clustering evaluation.

ARI (Adjusted Rand Index)

Chosen metric for this case was ARI which is a metric that evaluates the agree-
ment between two clustering results. It considers all pairs of samples and counts
the pairs that are assigned to the same or different cluster. ARI has range [−1, 1]
where

• -1 is worse than random,

• 0 is agreement that is not better than random,

• 1 is a perfect agreement between clusters.

In this case, ARI of KMeans on frozen feature model was 0.043 meaning that
the clustering was practically random.

4.7.3 Nearest neighbours
Figure 4.49 shows some sample images and their nearest neighbours according to
their cosine similarity. For example, images of horses (first row), poodles (second
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row) and ships (third row) were put very close to each other in the latent space
whereas pictures of deers (second to last row) and cars (last row) were close
to pictures not containing those objects. This is likely due to pictures having
similar colour distributions, for example poodles are white and take up almost
whole image, whereas horses are darker colour with green background.

4.7.4 Discussion
CAE+KMeans on CIFAR10 has shown poor performance for clustering task.
CAE could find some similar object using nearest neighbours but the representa-
tions were not suitable enough for clustering task because ARI was very close to
0 implying the clustering was no better than random clustering.
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5. Implementation
This chapter describes the technical requirements needed for running the code
used in this work and a short manual describing the code architecture.

5.1 Implementation requirements
Implementation was done using Python 3.9. for its popularity in machine learn-
ing. The libraries used in this work are the following:

• Numpy 1.23.5. For mathematical operations.

• OpenCV 4.9.0.80 For implemented CV algorithms.

• Pillow 9.4.0 Image operations.

• Pytorch 2.0.0 Main machine learning framework.

• Pytorch-CUDA 11.8 Cuda support for PyTorch.

• Scikit-learn 1.2.2 Implemented machine learning algorithms.

• Seaborn 0.12.2 Data visualization.

• Torchvision 0.15.0 Image manipulation within PyTorch.

On hardware side the code need to run on a machine with CUDA support
and at least 20GB of VRAM but optimally at least 50GB of VRAM.

5.2 Architecture
The root of the project contains several folders and files. There is README.md
file which describes how to run the script in more detail. Then, folder SPICE/
contains repository from https://github.com/niuchuangnn/SPICE/tree/main
(accessed on 2023-03-01) with SPICE framework implementation [Niu et al.,
2022]. Scripts were modified in order to adjust to new dataset with clouds and
to be able to cluster features from CAE. Furthermore, SPICE/configs contains
configuration files for scripts, SPICE/moco contains models and datasets for
MoCo, SPICE/spice contains models and datasets for SPICE clustering and
SPICE/tools contains scripts for running original SPICE framework.

Folder autoencoders/ contains CAE and dataset implementation and scripts
for training and testing CAE.

Folder visualization/ contains scripts for generating plots and PCA and
t-SNE visualizations.

5.3 Scripts
In this section main scripts required for training and their parameters are de-
scribed.

60

https://github.com/niuchuangnn/SPICE/tree/main


5.3.1 Dataset preparation
Dataset is prepared using cloud converter.py. Parameters for this script are:

• --original-path Path to root of dataset of images in their original form.
File structure is root of dataset/location/date of images/img.jpg.

• --save-path Path where to save preprocessed images.

• --filter-dark Whether to filter out images whose brightness to lower than
threshold.

• --threshold Brightness threshold.

• --mask Mask out images using supplied mask. Only available for Prague
and Brno.

5.3.2 MoCo training
For MoCo training we use SPICE/tools/train moco.py. It takes the following
arguments:

• --data type Type of dataset used. In this case we use ”clouds”.

• --data Path to root folder of the dataset.

• --all 0 if only train data is used, 1 if all data is used.

• --img size Size of image after random crop.

• --save folder Path to folder to save the model.

• --save freq Frequency of saving the model.

• --arch The backbone architecture to be used. In our case it is ”resnet50”

• --workers Number of worker processes for loading data.

• --epochs Number of epochs to train for.

• --start-epoch Number of epoch to start training from when resuming.

• --batch-size Size of batch.

• --lr Learning rate.

• --schedule Learning rate scheduler to drop learning rate by 10x.

• --momentum Momentum for momentum update.

• --wd Weight decay.

• --print-freq Frequency of printing of training performance.

• --resume Path to the latest checkpoint.
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• --world-size Number of nodes for distributed training.

• --rank Node rank for distributed training.

• --dist-url URL for distributed training.

• --dist-backend Backend for distributed training.

• --seed Random seed for training initialization.

• --gpu ID of GPU to be used.

• --multiprocessing-distributed Turns of distributed multiprocessing.

• --moco-dim Dimension of MoCo training space.

• --moco-k Size of queue for negative keys.

• --moco-m Momentum used in momentum update of key encoder.

• --moco-t Softmax temperature.

• --mlp Use MLP head on top of backbone instead of one fully connected
layer.

• --aug-plus Use additional data augmentations.

• --cos Use cosine learning rate scheduler.

5.3.3 Feature extraction from MoCo
For feature extraction we use SPICE/tools/pre compute embedding.py.
Only parameter for this script is --config-file where a configuration file from
SPICE/configs/clouds is supplied. More information about configuration file
can be found in README.md.

5.3.4 Training of CAE
For CAE training we use autoencoders/train autoencoder.py. Parameters
that need to be supplied to this script are:

• --channels Number of input channels for CAE.

• --base-channels Base number of channels after expansion.

• --latent-dim Size of bottleneck.

• --batch-size Batch size.

• --epochs Number of epochs to train for.

• --result Path to store result.

• --dataset Path to root folder of dataset.
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• --edge Add edge detection as another input channel.

• --mask Use mask on the input images to mask out unnecessary parts of
image.

5.3.5 Feature extraction from CAE
For feature extraction from CAE we use autoencoders/embedding.py. Pa-
rameters for this script are the following:

• --channels Number of input channels for autoencoder.

• --latent-dimension Size of bottleneck.

• --dataset Path to root folder of dataset.

• --model Path to saved model.

• --result Path to save the result.

• --batch-size Batch size.

• --edge Include edge detection data as another input channel.

• --mask Use mask for input images. Only Prague and Brno are supported.

5.3.6 Training of SPICE clustering
To train SPICE we use script SPICE/tools/train self v2.py. Parameter
--config-file takes the path to a configuration file located in
SPICE/configs/clouds that are prepared for each dataset and feature extrac-
tion model. For description of configuration file read README.md in the
attached code.

5.3.7 Training of KMeans
Training of KMeans is performed using script kmeans cluster.py. Parameters
for this script are:

• --embeddings Path to exported embeddings from feature extraction model.

• --result Path to save trained model and predictions.

• --k Number of clusters.

5.3.8 Image scores for SPICE
To extract embeddings for MoCo we use SPICE/tools/local consistency.py.
First parameter for this script is --config-file which is configuration file from
SPICE/configs/clouds and was prepared for each dataset. For more infor-
mation about configuration file refer to README.md. Second parameter is
--embedding which is path to file containing pre-computed image features from
feature extraction model.
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5.3.9 Clustering of images
Final clustering is performed using classificator.py. It takes the following ar-
guments:

• --scores-path Path to file containing class probabilities for each clustered
sample.

• --predictions-path Path to file containing class predictions for each clus-
tered sample.

• --data-path Path to dataset that is being clustered.

• --save-path Path for clustered images to be saved.

• --save-images Turns on saving images into folders in --save-path based
on their clusters.

• --max-images Maximum number of images per cluster.

5.4 Workflow
The high-level overview of the workflow from training to clustering is the follow-
ing:

1. Train feature extraction model (CAE/MoCo).

2. Extract features from the feature extraction model into a file using corre-
sponding script.

3. Train clustering head on top of these features (SPICE/KMeans).

4. (Only for SPICE) Save scores of images.

5. Save clustered images into folders corresponding to their clusters.
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Conclusion
In this work, we classified images of clouds using original SPICE framework and
then swapped its components to see their impact on the result of classification.

For feature extraction model we used MoCo and CAE, where MoCo showed
more promising results in the extracted representations. Similar images were
close in the representation space and also the clusters formed after classification
similar parts of embedding space to be in the same cluster regardless of method
used. CAE tends to focus more on other image factors such as their brightness
and colour distribution. However, PCA and t-SNE of representations extracted
by both CAE and MoCo did not show any clusters forming besides clusters sep-
arating different image locations or the time of day they were taken.

For clustering we used SPICE clustering and KMeans. Silhouette coefficient
revealed better clustering performance of KMeans on features extracted by both
MoCo and CAE regardless of dataset. Visually, the setup MoCo+SPICE had
the most interpretable clusters out of all setups. However, these clusters also
contained a lot of outliers where the model would mistake clouds for a sky of
certain colour.

Therefore, the system could be used as querying system, where MoCo would
be used as feature extraction model and user would manually search for a query
image and the system would return a specified number of similar images as results.
In order to achieve the original goal a better feature extraction method needs to
be used because the methods used in this work did not fully extract all the
characteristics needed in order to perform classification task.

Future works

While we experimented with various feature extraction and clustering methods
in this work some things remain unexplored:

1. Different number of clusters: The experiments in this work only used
4, 7 and 10 number of clusters, however, higher number of clusters showed
higher Silhouette coefficient in our experiments. Therefore, higher number
of clusters could yield more clusters containing the same type of images but
with fewer outliers.

2. Different feature extraction method: Different feature extraction could
result in better representation of images in the feature space which would
be more suitable for clustering. Good results on clouds specifically were
achieved by Caron et al. [2021] by using ViT for feature extraction.

3. Transfer learning: Authors of Dematties et al. [2023] achieved good re-
sults with very similar setup to our but using a labelled dataset. Therefore,
the model could be pre-trained on the labelled dataset and then the trained
model could be used on our dataset for inference.

4. Utilizing pre-trained models: Pre-trained models such as ResNet50 pre-
trained on ImageNet could be used for feature extraction, therefore frozen
features from ResNet would be clustered.
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A. Attachments

A.1 Code
The code used for this work. It also includes a copy of SPICE repository with
modified scripts and CAE implementation.

A.2 Trained models
Trained models for each of the main experiments are included.

A.3 Test images
A small subset of data which can be used for clustering.
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