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Abstrakt: Současný exponenciální nárůst genomických dat vyžaduje nové pros-
torově úsporné algoritmy pro jejich kompresi a vyhledávání. Moderní přís-
tupy často místo původních dat využívají příslušných množin 𝑘-merů, což jsou
podřetězce pevné délky 𝑘. Popularita metod založených na 𝑘-merech vedla k
vzniku kompaktních textových reprezentací množin 𝑘-merů, jež však stojí na
strukturálních předpokladech, které pro data v praxi nemusí platit. V této
bakalářské práci ukážeme, že na všechny tyto reprezentace lze nahlížet jako na
nadřetězce množin 𝑘-merů a jako takové je zobecníme pomocí uceleného konceptu,
kterému říkáme maskované nadřetězce 𝑘-merů. Navrhneme dva různé hladové
algoritmy na jejich výpočet a implementujeme je v nástroji KmerCamel . Dále
demonstrujeme, že maskované nadřetězce fungují jako stavební kámen pro nový
a jednoduchý index pro množiny 𝑘-merů, který nazýváme FMS-index. Pokud
k maskovaným nadřetězcům přiřadíme navíc odmaskovávací funkci 𝑓, výsledný
koncept 𝑓-maskovaných nadřetězců umožňuje jednoduché provádění množinových
operací s 𝑘-mery. Experimentálně ověříme prostorovou úspornost maskovaných
nadřetězců, stejně tak i naší implementace FMS-indexu. Ukážeme, že masko-
vané nadřetězce jsou lépe komprimovatelné v situacích, kde předchozí přístupy
byly daleko od optima a že FMS-index je prostorově efektivnější než současné
nejlepší přístupy k indexování. Naše výsledky dokládají užitečnost maskovaných
nadřetězců jakožto sjednocujícího teoretického rámce a stejně tak i jejich potenciál
v návrhu datových struktur pro 𝑘-mery.
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Introduction
The advances in DNA sequencing technologies have resulted in an exponential

growth of collections of genomic data reaching a petabyte scale. This increase
brings new computational challenges as it is increasingly more difficult to analyze
the data using traditional approaches [SLF+15]. To tackle this challenge, one of
the heavily used key techniques is to tokenize the data into 𝑘-mers, which are
distinct substrings of length 𝑘, and instead of working with the genomic data
directly, analyze the set of 𝑘-mers appearing in the data.

Methods based on 𝑘-mers have found applications in large-scale genomic
data search [BDR+19; BBGI19; KMD+20; BLP+23], metagenomic classifi-
cation [WS14; BSPK17], rapid diagnostics of infectious diseases [BGW+15;
BCM+20], and transcript abundance estimation [BPMP16; PDL+17], to name at
least a few. Furthermore, 𝑘-mers find their use in the direct study of biological
phenomena [LGB+18; SRM23].

This shift towards 𝑘-mer sets calls for their representations that are simultane-
ously highly storage-efficient and allow for fast and memory-efficient operations
such as membership queries and set operations. This challenge gets increasingly
more difficult by the enormous differences of 𝑘-mer sets in their size, diversity,
and structural characteristics. While the most common value of 𝑘 is 31, the values
used in practice range from less than 10 to more than 100. The sizes of 𝑘-mer sets
vary even more from several tens to hundreds of billions. Furthermore, different
𝑘-mer sets can have very different structure, based on, for instance, whether they
come from single genomes, or are constructed from a collection of genomes at
once.

The original approaches for representing sets of 𝑘-mers based on the information
theory [CB11] provided unsatisfactory guarantees as they modeled the worst-case
situations assuming independence of 𝑘-mers. These worst cases, however, may
not be ever encountered in practice as 𝑘-mers are not independent in data sets
used in biological applications. Not only are 𝑘-mers not independent, the typically
encountered 𝑘-mer sets share the property that the 𝑘-mers are substrings of a few
larger strings, known as the spectrum-like property (SLP) [CHM21].

Building upon this observation, modern techniques leverage the non-indepen-
dence of 𝑘-mer sets [Chi21]. Particularly efficient have been textual representations
of 𝑘-mers [CLJ+14; BBK21; RM21; SKA+23], which represent a 𝑘-mer set by
a set of strings such that each represented 𝑘-mer appears as a substring in one
of the strings. All these representations provide an efficient storage format when
combined with additional data compressors and they can be easily turned into
an efficient data structure for membership queries when combined with a full-
text index [LD09; LD10] or a minimum perfect hash function [ASSP18; HM20;
MKL21].

However, all these representations are limited by relying on the existence
of (𝑘 − 1) long overlaps between 𝑘-mers, which in many applications are not
present, for instance in modern applications combining long-read sequencing data
with sub-sampling techniques. In such cases, all these representations contain a
large number of very short strings and even isolated 𝑘-mers, which results in an
undesirable overhead.

8



In this thesis, we introduce masked superstrings as a representation of 𝑘-mer
sets that is efficient both with and without SLP and does not rely on the existence
of (𝑘 − 1) long overlaps. We show that this representation is simultaneously
memory-efficient, simple to query and supports set operations on the underlying
𝑘-mers. Throughout the work, we demonstrate that masked superstrings provide
a useful and efficient building block for future 𝑘-mer based data structures and
applications.

The thesis is organized as follows. In Chapter 2, we introduce the concept
of masked superstrings combining the ideas of representing 𝑘-mer sets via their
superstring and using a mask to mask out newly introduced ”false positive” 𝑘-mers.
We show that masked superstrings unify and generalize the existing representations,
which also makes them a theoretical framework to study the properties of the
existing representations. In Chapter 3, we show that computing optimal masked
superstrings is in general NP-hard, but we provide two approximation algorithms
to compute them. In Chapter 4, we describe the FMS-index, a simple full-text
index and demonstrate that masked superstrings can be used to simplify the data
structures for indexing 𝑘-mer sets. In Chapter 5, we introduce function-assigned
masked superstrings, a generalization of masked superstrings by additionally
equipping a masked superstring with a function which determines which 𝑘-mers
are ”false positives”. We demonstrate that this framework can be used to perform
set operations and when combined with the FMS-index, it provides an efficient
dynamic full-text index for 𝑘-mer sets. Finally, in Chapter 6, we introduce
KmerCamel , a tool for efficient masked superstring computation, and FMSI,
an implementation of the FMS-index, and we provide a thorough experimental
evaluation of the masked superstring framework.

The thesis is based on the following papers:

Paper I
[SVB23]

Ondřej Sladký, Pavel Veselý, and Karel Břinda. Masked super-
strings as a unified framework for textual 𝑘-mer set representations.
bioRxiv, 2023. Presented at RECOMB-seq, 2023.

Paper II
[SVB24]

Ondřej Sladký, Pavel Veselý, and Karel Břinda. Function-assigned
masked superstrings as a versatile and compact data type for 𝑘-
mer sets. bioRxiv, 2024.

Chapters 2 and 3 are based on Paper I, Chapters 4 and 5 and Appendices B and C
are based on Paper II, and Chapter 6 provides experimental evaluation for both
Paper I and Paper II. Appenix A and parts of Chapters 3 and 4 are not covered
in either of these papers.
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1 Background
1.1 Preliminaries
Alphabet and strings. We consider strings over a constant-size alphabet Σ,
typically the ACGT or binary alphabets. Let Σ∗ be the set of all finite strings over
Σ. For an empty sequence of alphabet letters, we use 𝜖. By |𝑆| we denote the
length of a string 𝑆 and by |𝑆|𝑐 we denote the number of occurrences of the letter
𝑐 in 𝑆. For two strings 𝑆 and 𝑇, let 𝑆 + 𝑇 be their concatenation.

Runs and run-length encoding. A run of a letter 𝑐 in a string 𝑆 is a maximal
substring of 𝑆 consisting only of the letter 𝑐. We denote the number of different
runs of 𝑐 in 𝑆 by runs𝑐(𝑆). The total number of runs is then the sum of the
number of runs of each letter in the alphabet, i.e., runs(𝑆) = ∑𝑐∈Σ runs𝑐(𝑆). In
the case of the binary alphabet, it holds that |runs0 − runs1| ≤ 1 and therefore
the total number of runs in this case can be bounded as runs(𝑆) ≤ 2runs1(𝑆) + 1.
Also observe that in general the total number of runs is bounded by the length of
𝑆.

A run-length encoding of a string 𝑆 is obtained by replacing each run of a
letter 𝑐 by the pair (𝑐, 𝑧), where 𝑧 is the length of the run. The number of bits
required to store the run-length encoding of 𝑆 is then 𝒪(runs(𝑆) log |𝑆|).

𝑘-mers and their sets. We refer to strings of size 𝑘 over the ACGT alphabet
as 𝑘-mers and we typically denote by 𝑄 an individual 𝑘-mer and by 𝐾 a set of
𝑘-mers. Given a 𝑘-mer 𝑄 we call a reverse complement (RC) of 𝑄, denoted by
RC(𝑄), the 𝑘-mer obtained from 𝑄 by applying the following two operations.

1. Reverse the order of the letters.
2. Replace each letter by the letter corresponding to its complementary nuclear

basis, i.e., A get substituted by T and vice versa and C gets substituted by G
and vice versa.

Note that applying the reverse complement operation twice results in the original
𝑘-mer, i.e., RC(RC(𝑄)) = 𝑄. Furthermore, we call the lexicographically smaller
of 𝑄 and RC(𝑄) the canonical 𝑘-mer of 𝑄.

Furthermore, we distinguish the uni-directional model and the bi-directional
model, which are two different equivalence relations on the set of all 𝑘-mers. In
the uni-directional model, a 𝑘-mer is considered equivalent only to itself. In the
bi-directional model we further consider a 𝑘-mer and its reverse complement to be
equivalent. The bi-directional model is more representative of the real world, as we
cannot guarantee whether we have sequenced a 𝑘-mer or its reverse complement
(see Section 1.2). Unless explicitly stated otherwise, our results apply both in the
uni-directional and bi-directional model, but for clarity we provide examples in
the uni-directional model.

A 𝑘-mer set, which we typically denote by 𝐾, is then a subset of all the
equivalence classes of 𝑘-mers in the respective model. If we want to give a readable
representation of a 𝑘-mer set, we represent each equivalence class by an arbitrary
𝑘-mer in it and we typically refer to the equivalence classes as to 𝑘-mers. If
disambiguation is needed, we always use the canonical 𝑘-mer.
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Example. Given a 𝑘-mer 𝑄 = GTTC, to get its reverse complement, we first reverse
the order (which results in CTTG) and then substitute each letter by its complement
to get the reverse complement GAAC, which is also the canonical 𝑘-mer of 𝑄.

Observe that if 𝑘 is even, the reverse complement of a 𝑘-mer could be the same
as the 𝑘-mer itself, for example the 𝑘-mer ACGT is its own reverse complement.
However, if 𝑘 is odd, the reverse complement is always different as it must differ
in the middle letter.

This gives us the maximum sizes of 𝑘-mer sets for a fixed 𝑘. In the uni-
directional model there are always 4𝑘 different 𝑘-mers, while in the bi-directional
model the maximum sizes differ based on the parity of 𝑘. For odd 𝑘, there are 4𝑘

2
non-equivalent 𝑘-mers as each equivalence class contains exactly two 𝑘-mers. For
even 𝑘 there are 4𝑘+4

𝑘
2

2 non-equivalent 𝑘-mers since there are 4𝑘
2 𝑘-mers that are

their own reverse complement.

De Bruijn and overlap graphs. An overlap between to 𝑘-mers 𝑃 and 𝑄,
denoted by ov(𝑃 , 𝑄) is the longest suffix of 𝑃 that is also a prefix of 𝑄. The
overlap length is simply the length of the overlap. Note that neither overlaps
nor overlap length are in general symmetric. As an example, consider 𝑃 = ACGT
and 𝑄 = CGTA, then ov(𝑃 , 𝑄) = CGT and ov(𝑄, 𝑃 ) = A. In the bi-directional
model, we define the overlap as to be the maximal overlap between either 𝑃 or its
reverse complement and 𝑄 or its reverse complement. Note that even though the
overlap in the bi-directional is not uniquely determined as there might be multiple
maximal overlaps, the overlap length is always unique.

A de Bruijn graph of a set of 𝑘-mers 𝐾 is a directed unweighted graph possibly
with self-loops, where vertices are exactly 𝑘-mers from 𝐾 (or more precisely the
equivalence classes from 𝐾) and there is an edge from 𝑘-mer 𝑃 to 𝑘-mer 𝑄 if the
overlap length between 𝑃 and 𝑄 is 𝑘 − 1. If the set of vertices are all the 𝑘-mers of
a fixed length, we call such a de Bruijn graph a complete de Bruijn graph. Note
that this definition of de Bruijn graphs used in computational biology differs from
the combinatorial version, where de Bruijn graphs are always complete. In this
thesis we stick to the definition from computational biology.

An overlap graph of a set 𝐾 is a complete directed graph with weighted edges
and self-loops, where the vertices are 𝐾 and the weight of the edge from 𝑃 to
𝑄 is the overlap length between 𝑃 and 𝑄. Note that de Bruijn graphs are just
subgraphs of overlap graphs where we consider only the edges of weight 𝑘 − 1.

Unlike de Bruijn graphs which can always be stored in linear space with respect
to the number of 𝑘-mers, overlap graphs require quadratic space to store the
weights of all edges. To address this, a variant of the overlap graph was proposed,
which is called the hierarchical overlap graph [CR20] (HOG) which encodes
pairwise overlaps as well, but requires only linear space. Furthermore, HOGs can
be constructed in linear time [PPC+21; Kha21]. HOGs found applications in
peptide vaccines design [SDK23] and a subgraph of the (truncated) HOG, called
the Superstring graph, was studied in the context of genome assembly [CSR16].
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1.2 Biological Context
DNA is a macromolecule consisting of multiple nucleotide units, each of which

includes one of four bases – adenine, cytosine, guanine, or thymine – attached to a
deoxyribose-phosphate backbone. DNA, present in all living organisms, serves as
the molecular blueprint for genetic information and guides the development and
functioning of the organism. The genome of a particular organism encompasses
all its genetic information, typically distributed across multiple DNA molecules
(chromosomes) in eukaryotes and one or multiple DNA molecules (one chromosome
and possibly plasmids) in most prokaryotes. In nature, genome lengths vary from
several thousand base pairs for viruses [HL10] up to more than a hundred billion
base pairs for some plants (P. japonica) [PFL10].

For the purpose of this thesis, we make the following simplifying assumptions.
We model the DNA molecules as strings over the ACGT alphabet, where each letter
encodes a different nucleotide base – adenine, cytosine, guanine, and thymine,
respectively. A DNA molecule consists of two complementary strands with the
nucleotides paired by hydrogen bonds; i.e., the adenines are paired with thymines
and cytosines with guanines. Each DNA strand has a directionality defined by its
sugar-phosphate backbone, with ends designated as 5’ and 3’. The complementary
strand runs antiparallel, meaning its 5’ to 3’ direction is opposite to that of its
counterpart.

Genomes are studied using DNA sequencing, which reads fragments of the DNA
molecules. The sequenced strings contain sequencing errors, therefore, the resulting
strings are not exactly substrings of the original DNA, but substrings with possible
additions, deletions or modifications. State-of-the-art sequencing technologies
can usually read hundreds of base pairs for Illumina sequencing [LLL+12], up
to several thousand base pairs for PacBio [RA15], and up to several million for
Oxford Nanopore [ASD+20] sequencing. The error rate ranges from less than one
percent for Illumina [SDI+16] to about 10% error rate for Nanopore [GMM16]
sequencing. For a review of sequencing technologies, see [GMM16].

Usually, sequencing reads are assembled into genome assemblies [PSTU83;
KM95; RG19]. This task is not simple due to the errors, possible incompleteness
or ambiguity and the fact that the reads come from multiple DNA molecules. In
many cases, collections of genomes, for instance of the same species, are used; we
refer to them as pan-genomes.

To overcome this necessity of reconstructing the genome, approaches based
on sets of 𝑘-mers, which can be computed both from assembled genomes (or
pan-genomes) as well as directly from the reads, were proposed. Using 𝑘-mer sets
help mitigate sequencing errors as we can filter out 𝑘-mers that appear in the reads
only infrequently – those often result from sequencing errors. Furthermore, using
sets of 𝑘-mers is beneficial not only for reads, but even for assembled genomes, as
they are easier to work with.

Methods based on 𝑘-mers have been extremely successful throughout compu-
tational biology. Notable applications of 𝑘-mer-based methods include large-scale
data search [BDR+19; BBGI19; KMD+20; BLP+23] where 𝑘-mer-set-based
methods do not require the reference genomes to be assembled, metagenomic clas-
sification [WS14; BSPK17], infectious disease diagnostics [BGW+15; BCM+20],
and transcript abundance quantification [BPMP16; PDL+17]. Furthermore,
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Canonical k-mers:         {AGC, GCC, AGG, CAG, TCA}

Figure 1.1: An illustration of DNA and sequenced reads. a) An example
of chromosomal DNA depicting the paired bases C with G and A with T. b) Two
possible sequenced reads. Note that although the orientation is inferrable from
the position of the 5’ and 3’ ends, the reads can be from either of the strands
and as the 5’ and 3’ ends are reversed on the second strand, the direction for
each of the strand is different. Note that both the chromosome sizes and the read
lengths are in reality several orders of magnitude larger than on this illustration.
c) 𝑘-mer sets with 𝑘 = 3 for each of the strands and canonical 𝑘-mers which are
the lexicographically smaller 𝑘-mers from the corresponding 𝑘-mers in the two
strands.
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𝑘-mers find their use in the direct study of biological phenomena, such as in
Genome-Wide Association Studies [LGB+18] or the studies of bacterial defense
systems [SRM23].

1.3 𝑘-Mer Set Representations
Properties of 𝑘-mer sets. As follows from information theory, to encode a set
of independent 𝑘-mers 𝐾, we need at least log ( 4𝑘

|𝐾|) bits in the worst case [CB11].
However, in practice 𝑘-mer sets are not independent and therefore the general
information-theoretic lower bounds can be improved.

In fact, as noted in [CHM21], 𝑘-mer sets usually share a so-called spectrum-like
property (SLP) [CHM21], which currently lacks a formal mathematical definition,
but can be informally described as that there are only a few strings containing as
substrings precisely the 𝑘-mers in the set. This also implies that for the majority
of 𝑘-mers in the set, there are other 𝑘-mers such that they overlap by 𝑘 − 1
characters.

However, despite that the SLP holds for many real-world 𝑘-mer sets, there are
datasets which seem to be far from satisfying SLP, for instance sub-sampled sets
used in bacterial pan-genomics [WS14].

Unitigs. To exploit the SLP, multiple space-efficient textual representations
have been introduced. The first of those were unitigs [CLJ+14], which is a set 𝒮
of strings 𝑆𝑖 with the following properties:
(U1) Every 𝑘-mer 𝑄 in the set 𝐾 is a substring of some string 𝑆𝑖 in the set.
(U2) Every 𝑘-long substring of any string 𝑆𝑖 is in 𝐾.
(U3) Every 𝑘-mer 𝑄 occurs as a substring only in one of the strings 𝑆𝑖 and only

once.
(U4) If a 𝑘-mer 𝑄 has in-degree in the de Bruijn graph of 𝐾 higher than 1, it

must be at the beginning of a string and similarly, if a 𝑘-mer has out-degree
higher than 1, it must at the end of a string.

We remark that in some works, unitigs are defined to further have the smallest
cumulative length possible. To distinguish, we call these optimal unitigs. Unitigs
can best be described as a set of paths in the de Bruijn graph obtained by merging
non-branching vertices. Since unitigs do not merge branching vertices which is
guaranteed by the property (U4), it is a topology-preserving compaction of the
de Bruijn graph. Therefore, optimal unitigs are also referred to as compacted de
Bruijn graphs.

Optimal unitigs can be computed efficiently using highly optimized tools,
for example BCALM2 [CLM16], TwoPaCo [MPM17], Cuttlefish 2 [KKDP22],
and GGCAT [CT23]. Since unitigs were originally designed for assembly-like
applications, they are quite efficient for 𝑘-mer sets corresponding to single genomes.
However, when computed on highly branching de Bruijn graphs which are common
for instance in bacterial pan-genomics, the unitigs can be inefficient.

Simplitigs/SPSS. To represent even branching de Bruijn graphs efficiently,
simplitigs/spectrum preserving string sets [Bři16; BBK21; RM21; Rah23] (SPSS)
have recently been introduced. They generalize over unitings by relaxing the
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property (U4), i.e., not requiring the preservation of the de Bruijn graph topology.
In the graph point of view, simplitigs are a set of vertex disjoint paths covering the
whole de Bruijn graph. As the authors note, the property (U4) is not necessary
to store the 𝑘-mer set and also in many downstream applications, which enables
simplitigs to lower the storage requirements over unitigs and as a result speed up
downstream applications [BBK21]. Moreover, unitigs can always be recomputed
from simplitigs.

Simplitigs can be efficiently computed heuristically with ProphAsm [BBK21],
which greedily constructs simplitigs by extending them by one character to both
directions, or UST [RM21], which greedily glues unitigs. Although both these
approaches are heuristic, for practical instances they are nearly optimal [RM21].
Simplitigs can even be computed optimally in linear time using the Eulertigs
algorithm [SA23].

Matchtigs. Matchtigs [SKA+23; Sch23] generalize even further, by additionally
relaxing the property (U3), thus allowing multiple occurrences of a 𝑘-mer as a
substring in the string set. This relaxation can lead to further compression as
it allows to merge more strings together. Matchtigs can be computed optimally
in polynomial time and the authors also provide a heuristic algorithm for their
computation [SKA+23].

To unify notion, since a 𝑘-mer may appear multiple times in matchtigs, we
also refer to them as Repetitive Spectrum Preserving String Sets (rSPSS). We refer
to members of SPSS as simplitigs and members of rSPSS as matchtigs. We use
(r)SPSS to denote any of these representations based on the de Bruijn graph.

Approaches based on simplitigs encoding. Another improvement over SPSS
focuses on encoding similar simplitigs using a larger alphabet, which requires
fewer characters in total. ESS-compress [RCM21] encodes the 𝑘-mer set as a
set of strings over the alphabet ACGT[]+-, where the non-alphabetic characters
allow for efficient encoding of multiple occurrences of the same (𝑘 − 1)-long
patterns in the SPSS. Although this enhances compressibility, achieving about
27% improvement in compressibility over SPSS [RCM21], which is about the same
as matchtigs [SKA+23], as 𝑘-mers are no longer substrings of the strings, it makes
it more difficult to work with the representation directly without decompressing
it first.

1.4 The Shortest Superstring Problem
The Shortest Superstring Problem (SSP) is a heavily studied string problem.

Given a set of strings 𝑆1, 𝑆2, … , 𝑆𝑛, the problem is to find a single string 𝑆 that
contains all the strings 𝑆𝑖 as substrings and is the shortest possible such string.
Such a string is then called the shortest superstring of the given set.

The SSP is known to be NP-hard even for the case of binary alphabet [GJ79]
and despite a long history of research the best possible approximation ratio is
widely open. The best-known approximation guarantee is about 2.466 [EMV23]. In
the other direction, it has only been shown that computing a 1.003-approximation
implies P=NP [KS13].
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One of the widely used approximation algorithms for SSP is the global greedy
algorithm called Greedy in the string algorithms literature. Greedy works as
follows: it starts with the original set of strings and in each step, it merges the two
most overlapping strings, breaking ties arbitrarily. This merging is done in a way
that the result is the shortest string possible containing both the initial strings 𝑢
and 𝑣 in this order. Note that the size of this string is |𝑢| + |𝑣| − |ov(𝑢, 𝑣)|. The
algorithm continues until there is only one string left, which is then a superstring
of the original set. The approximation ratio of Greedy is known to be between
2 and 3.396 [EMV23] and is conjectured to be exactly 2 [TU88].

Other approximation algorithms for SSP are based on a graph reformulation of
the problem. If we consider the overlap graph of the input strings, each superstring
corresponds to a Hamiltonian path in the overlap graph and vice versa. It further
holds that the longer the Hamiltonian path, the shorter the superstring. Therefore,
SSP corresponds to the Maximum asymmetric travelling salesman problem (Max-
ATSP). The algorithms based on the overlap graph, namely TGreedy [BJL+94]
and approaches based on the Max-ATSP reformulation [KPS94; BJJ97] achieve
better upper bounds on approximation ratios than Greedy, 2.698 and 2.466
respectively [EMV23]. Despite better approximation ratios, it is unknown whether
these algorithms bring any real advantage over Greedy.

1.5 Data Structures for Strings
In this section we provide a basic overview of the data structures used in this

thesis.

1.5.1 Aho-Corasick Automaton
The Aho-Corasick (AC) automaton [AC75] is an extension of a trie (prefix

tree) constructed from the input words, in our case from a set of 𝑘-mers. As in a
trie, every state corresponding to a prefix 𝑃 is equipped with a forward function
which for every letter 𝑥 of the alphabet Σ points to the state corresponding to the
prefix 𝑃𝑥 if it exists. Alongside the forward function, every state has also a fail
function 𝑓. For a state 𝑠, 𝑓(𝑠) is the longest proper suffix of the state that is also
a valid state. In the typical AC automaton, each state is also assigned an output
function. However, in our use case the output function is not needed as no 𝑘-mer
is a proper prefix on a different state and hence the AC automaton used here is
always without the output function. The AC automaton can be constructed in
linear time by first constructing the trie and then the failure function layer by
layer. For a more detailed description, we refer to a standard algorithms textbook,
e.g. [CLRS22]. For an illustration of the AC automaton over the ACGT alphabet,
see Figure 1.2.

1.5.2 Suffix Array
Given a string 𝑆, consider all its suffixes and the lexicographical order of these

suffixes. The suffix array [MM90] SA of 𝑆 is then such that SA[𝑖] = 𝑗 if the suffix
𝑆[𝑗 ∶] is the 𝑖-th in the order of all the suffixes. Suffix array can be constructed in
linear time [KA03].
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Figure 1.2: An illustration of the AC automaton for a set of 𝑘-mers. The
AC automaton is constructed from 4-mers ACCA, ACGG, GTAC, and GGTA
in the uni-directional model. Forward edges (solid) are labeled by letters ACGT,
while the failure function 𝑓 is depicted by dashed edges (which are not part of the
trie of the 𝑘-mers). State 0 corresponds to the empty prefix and is the root of the
trie, while, for example, state 2 corresponds to prefix AC and state 9 to prefix
GTA.

Additionally, the lowest common prefix (LCP) array [MM90] can be constructed
alongside the suffix array. The LCP array at a given position 𝑖 contains the length
of the longest common prefix of the 𝑖-th and (𝑖+1)-th suffixes which are consecutive
in the suffix array. LCP array can be built in linear time alongside the creation of
the suffix tree [KA03] or can be computed in linear time directly from the string
and the suffix array [KLA+01].

Suffix and LCP arrays can be together used for fast indexing in constant time.
The only drawback of suffix and LCP arrays is that they require Θ(𝑛 log 𝑛) bits to
store unlike the FM index (see Section 1.5.5) which for constant-sized alphabets
requires only Θ(𝑛) bits to store.

For an illustration of SA and the LCP array, depicting their relationship to
the Burrows-Wheeler transform (Section 1.5.4), see Figure 1.3.

1.5.3 Rank and Query Support
Given a string 𝑆 over the alphabet Σ, except for querying the 𝑖-th character of

𝑆, there are two additional fundamental query operations that are often needed:
the rank and the select operation. The rank operation rank𝑐(𝑖) returns the number
of occurrences of 𝑐 in the first 𝑖 characters of 𝑆. Conversely, the select operation
select𝑐(𝑖) returns the position of the 𝑖-th occurrence of 𝑐 in 𝑆. The rank and
select support can be efficiently implemented in the case of bit vectors and in
order to generalize this to general alphabets, we use the wavelet trees [GGV03].
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Figure 1.3: Example of the relationship between SA and BWT. For a
sample input string CAGGTAG$ its suffix array (SA), longest common prefix array
(LCP), Burrows-Wheeler matrix and Burrows-Wheeler transform (in blue). Note
that the LCP array corresponds tho the length of the longest prefix shared by the
two consecutive rows in the Burrows-Wheeler matrix. The 𝑖-the element of SA is
the index of the first character of the corresponding row of the Burrows-Wheeler
matrix. It is also the position of the $ in the corresponding row from the rear.

Rank and select on bit vectors. Note that in the case of bit vectors, it is
easy to compute rank0(𝑖) from rank1(𝑖) as rank0(𝑖) + rank1(𝑖) = 𝑖. Given a bit
vector, it is possible to determine rank1 of each position in a constant time with
sublinear-space data structure [Jac88; Jac89]. The main idea behind this is to
twice partition the bit vector into blocks of small sizes, store the ranks only for
the beginnings of each block and inside the block store only the relative ranks.
The result can then be computed as the sum of the rank from the beginning of the
current block and the relative rank inside the block. Using a similar approach, it is
also possible to compute the select in constant time with sublinear space [Cla97].

There have also been several practically efficient implementations of rank and
select on bit vectors which typically do not give sublinear additional overhead
but instead a small linear factor overheads which is typically indistinguishable in
practice [GGMN05; NP12].

Wavelet trees. Wavelet trees [GGV03] enable the rank and select data struc-
tures to be applicable to general alphabets. In a wavelet tree, the leaves correspond
to the letters of the alphabet and they do not contain anything else. In each
internal node there is a bit vector of length equal to the number of occurrences of
all the letters in the subtree. At the 𝑖-th position of such a bit vector, there is a 0
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if the 𝑖-th occurrence in 𝑆 among the letters from the considered subtree is from
the subtree corresponding to the left child and 1 if from the right child’s subtree.

On such a structure, we can determine the 𝑖-th character of 𝑆 by traversing
the corresponding path to the leaf, while updating the queried index using rank
queries. Similarly, we can determine the rank by traversing from the root to the
leaf and select by going in this case from the leaf to the root. These operations
have the time complexity linear in the height of the tree, which in the case of
constant-sized alphabets is constant.

Typically, the bit vectors in wavelet trees are compressed, which in the case of
genomic data does not help much, as genomic data are in general not very well
compressible. Furthermore, for the ACGT alphabet without any compression, it is
easy to see that the bit vectors occupy 2 bits per character.

1.5.4 Burrows-Wheeler Transform
Assume we are given a string 𝑆 over an alphabet Σ with a special termination

symbol $ that is considered to be alphabetically smaller than all the symbols in
Σ and we modify 𝑆 by appending $ to it. Consider all the rotations of 𝑆 and
sort them lexicographically. Note that since $ appears exactly once, the order
is unambiguous. If we put all these rotated strings in a matrix, where the rows
correspond to the lexicographical order, we obtain the Burrows-Wheeler matrix.
The last column of this matrix is the Burrows-Wheeler transform (BWT) of
𝑆 [BW94]. Since every character of 𝑆 appears as the last character of one of the
rotations of 𝑆, BWT is a permutation of 𝑆.

BWT of 𝑆 can be computed in linear time from suffix arrays. In order to do
this, first notice that the order of the rotations is the same as of the corresponding
suffixes. Hence if we have computed the suffix array SA, the first character in the 𝑖-
th row of the Burrows-Wheeler matrix is the SA[𝑖]-th character in 𝑆. Thus the 𝑖-th
character of BWT (i.e., the last character in the 𝑖-th row of the Burrows-Wheeler
matrix) is the (SA[𝑖] − 1)-th character of 𝑆 (considered cyclically).

An additional key property of the BWT is reversibility in linear time for
constant-sized alphabets [BW94]. To do so, we need apart from the last column
of the Burrows-Wheeler matrix (which is the BWT itself) also the first column,
which is easy to get based on the frequencies of each letter since it is by definition
lexicographically sorted. The only remaining observation is that the 𝑖-th occurrence
of a given character in the first and last column correspond since they are both
sorted based on their right context. With this, for each letter in the last column
we can get position of the letter in the first column – it is the 𝑗-th occurrence of
the letter where 𝑗 is the rank of the given letter in the last column. This mapping
is referred to as the LF mapping. To revert the BWT, we reconstruct the string
from the end, starting with the $ character. We then start in the first row and
note that the character in the last column is the one preceding the character in the
first column. By the LF mapping, we can get to the occurrence of this character
in the first column and by repeating reconstruct the whole string.

For an example of BWT, compared to the SA and the LCP array, see Figure 1.3.
For an example of the LF mapping and how BWT is reverted, see Figure 1.4.

Although BWT was designed for lossless compression, it can be used in the
core of a very efficient data structure for indexing (see Section 1.5.5).
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Figure 1.4: Example of the LF mapping and the BWT reversal. The first
(F) and last (L) columns of the Burrows-Wheeler matrix, where the last column
is the Burrows-Wheeler transform (BWT). The red solid arrows show the LF
mapping, which maps each character to its position in the first column. The blue
dashed lines connect the letters in the same row, where the character in L is the
one preceding the letter in F in the original text. By starting in the first row (the
row starting with the $), traversing along the blue and red edges, and storing the
encountered letters, we reconstruct the original text from backwards.

1.5.5 FM-Index
It is possible to use the Burrows-Wheeler transform to build a full-text search

over the original sequence using a data structure called FM-index [FM05]. Similarly
to the suffix array (see Section 1.5.2), it can be used for fast indexing. However,
the main advantage of the FM-index is that unlike the suffix array it requires only
linear number of bits to store (for constant sized alphabets).

The core of the FM-index is the Burrows-Wheeler transform of the input
string 𝑆 equipped with the rank function, that is typically referred to as the
occurrence function (Occ) in the terminology of the FM-index. Note that a possible
implementation of this is the wavelet tree. Furthermore, for each character, the
number of characters lexicographically smaller than it which occur in 𝑆 is stored.

In order to search for a pattern 𝑃 in 𝑆, we search for the pattern from back to
front and we realize that each such suffix of 𝑃 corresponds to a prefix of a row
in the Burrows-Wheeler matrix and furthermore, since the rows in the Burrows-
Wheeler matrix are sorted lexicographically, the occurrences of each suffix of 𝑃
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correspond to just a single range of rows in the Burrows-Wheeler matrix. We
only need to specify how to obtain the new range by prepending a letter to the
searched pattern. Note that for each occurrence of the prolonged pattern, the first
letter appears in the last column of the Burrows-Wheeler matrix in the range of
the occurrences of the previous pattern. With this observation, using the rank
and total number of lexicographically smaller characters (which is essentially the
LF mapping), we can update the range in constant time.

This gives us the range in the rows of the Burrows-Wheeler matrix that
correspond to the occurrences of the pattern 𝑃. We can use this to easily check
whether a pattern appears and even how many times. However, if we want to find
the positions of the occurrences in 𝑆, we need an additional data structure, the
sampled suffix array, which stores the suffix array value for some of the rows in
the Burrows-Wheeler matrix. The others can be then computed from those and
using the rank. Note however that this translation to the original coordinates is
the most time-consuming part of the FM-index search.

The FM-index can also be used to store more than a single string. In such
a case, we typically concatenate the strings and store at which positions a new
string starts. Querying whether a pattern appears in any of the strings, we use
the backward search as before, however we need to translate each occurrence into
the original coordinates as it could be that the occurrence spans over two strings
which is not a valid occurrence.

Moreover, additional variants of FM-index have been proposed, most notably
the bidirectional FM-index (the bi-directionality of FM-index is unrelated to the
bi-directionality of 𝑘-mers) which allows for searched pattern to be extended in
both directions [LLT+09].

1.6 Data Structures for 𝑘-Mer Sets
A large body of work focused on data structures for 𝑘-mer sets and their

collections; we refer to [CHM21; MBP+21] for recent surveys. One approach
for individual 𝑘-mer sets is to combine the aforementioned textual 𝑘-mer set
representations based on the de Bruijn graph of the set [CLJ+14; BBK21; RM21;
SKA+23], i.e., (r)SPSS, with efficient string indexes such as the FM index (Sec-
tion 1.5.5) or BWA [LD09; LD10; Li12; Li13] (see also ProPhex [SBPK; Sal17]).
Another approach based on BWT is the BOSS data structure [BOSS12] that was
implemented as an index for a collection of 𝑘-mer sets in VARI [MBN+17], VARI-
merge [MAB19], and Metagraph [KMD+20]. Taking BOSS as an inspiration,
Spectral Burrows-Wheeler Transform (SBWT) [APV23] has been proposed as a
compact representation of the de Bruijn graph, together with various approaches
for its indexing. Themisto [AVMP23] further builds on SBWT and provides an
index for collections of 𝑘-mer sets.

Hashing techniques have also been successful in the design of 𝑘-mer data
structures. In particular, Bifrost [HM20] uses hash tables for indexing colored
de Bruijn graphs, which encode collections of 𝑘-mer sets. Other popular data
structures, such as BBHash [LRCP17], BLight [MKL21], and SSHash [Pib22],
employ minimal perfect hash functions and serve as a base for constructing
indexes such as FDBG [CKB+18], REINDEER [MIG+20], Fulgor [FKS+24], and
pufferfish2 [FKPP23].
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While the aforementioned approaches yield exact data structures, further space
compression may be achieved by employing probabilistic techniques and allowing
for a certain low-probability error, such as false positives. Namely, the counting
quotient filter was used for 𝑘-mers in Squeakr [PBJP18], and this data structure
was extended to an efficient index called dynamic Mantis [AKM+22]. Another
line of work, e.g., [BDR+19; BBGI19; GYC+21; LMCP22], employs variants
of the Bloom filter to further reduce space requirements. Recently, Invertible
Bloom Lookup Tables combined with sub-sampling have been used to estimate
the Jaccard similarity coefficient [SBK22].

Very recently, the Conway-Bromage-Lyndon (CBL) data structure [MCLM24]
builds on the work of Conway and Bromage [CB11] and combines smallest cyclic
rotations of 𝑘-mers with sparse bit-vector encodings, to yield a dynamic and exact
𝑘-mer index supporting set operations, such as union, intersection, and difference.
Finally, we note that set operations can also be carried out using some 𝑘-mer
lists and counters, e.g., [KLR15; KDD17]; however, these methods are unable to
exploit structural properties of 𝑘-mer sets such as the SLP.
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2 Masked Superstrings as a
Representation of 𝑘-Mer Sets

In this chapter, we introduce the concept of masked superstrings for represent-
ing sets of 𝑘-mers and demonstrate that they unify and generalize all previous
textual 𝑘-mer set representations.

Definition 1. Given 𝐾 a set of 𝑘-mers, a pair (𝑆, 𝑀) where 𝑆 is a superstring of
all 𝑘-mers in 𝐾 and 𝑀 is a binary mask of the same length 𝐿 is called a masked
superstring (or MS for short) representing 𝐾 if it satisfies

𝐾 = {𝑆𝑖 … 𝑆𝑖+𝑘−1 ∣ 𝑀𝑖 = 1, 𝑖 ∈ {0, … , 𝐿 − 𝑘}} .

𝑆 alone is called the 𝑘-mer superstring and 𝑀 its mask. By convention, the last
𝑘 − 1 characters of 𝑀 are always set to zero.

We call all the 𝑘-mers that appear as a substring in 𝑆 as the appearing 𝑘-mers.
An appearing 𝑘-mer can have multiple occurrences in 𝑆 and we call an occurrence
on if the bit corresponding to the occurrence, that is the bit at the position of
the first character of the 𝑘-mer, is set to 1. Conversely, an occurrence is off if
there is a 0 at the corresponding place in the mask. The 𝑘-mer set that we aim to
represent are then all the appearing 𝑘-mers with at least one on occurrence. We
call those the represented 𝑘-mers. There are also appearing 𝑘-mers that are not
represented, i.e., they have no on occurrence, we call them the ghost 𝑘-mers and
typically denote them by 𝑋.

To study the properties of masked superstrings, we also introduce the following
definitions, which are analogs to the definitions of represented and ghost 𝑘-mers
for multisets of their occurrences.

Definition 2. For a masked superstring (𝑆, 𝑀) of length ℓ that represents a set
𝐾 of 𝑘-mers, we define the following multisets.

𝕂 = {𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 | 𝑀𝑖 = 1, 𝑖 ∈ {0, ..., ℓ − 𝑘}}

𝕏 = {𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 | 𝑀𝑖 = 0, 𝑖 ∈ {0, ..., ℓ − 𝑘} and 𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 ∉ 𝐾}

𝕐 = {𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 | 𝑀𝑖 = 0, 𝑖 ∈ {0, ..., ℓ − 𝑘} and 𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 ∈ 𝐾}

That is, 𝕂 contains exactly the 𝑘-mers in 𝐾, with the multiplicity of a 𝑘-mer
𝑎 in 𝕂 equal to the number of on occurrences of 𝑎 in 𝑆. Similarly, 𝕏 contains all
ghost 𝑘-mers of (𝑆, 𝑀), each with multiplicity equal to the number of its total
occurrences which are all off. Finally as it is useful to talk about off occurrences
of represented 𝑘-mers, 𝕐 contains the represented 𝑘-mers with at least one off
occurrence in the superstring, with multiplicity equal to the number of its off
occurrences.

Furthermore, as a represented 𝑘-mer can have multiple occurrences but it is
sufficient to have at least one on occurrence, it follows that for a fixed superstring
𝑆 and a 𝑘-mer set 𝐾, there can be multiple masks 𝑀 such that (𝑆, 𝑀) represents
𝐾. We call these masks compatible masks. Observe that if we equip the set of all
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compatible masks with a partial order which is the inclusion on the positions set
to 1, then the partially ordered set of all compatible masks forms a semi-lattice
where meet is the intersection. As a practical consequence of the non-uniqueness
of masks, they can be optimized for specific applications as we demonstrate in
Section 3.2.

In Definition 1, we defined masks to be of the same length as the superstrings
even though the last 𝑘 − 1 bits in the mask are redundant. This has several
practical advantages. The first being that as the 𝑘-th last bit of the mask is set to
1 in typical usage, the masked superstring alone stores all the information about
the 𝑘-mer set, because 𝑘 can be inferred from the number of trailing zeros in the
mask.

As outlined in Fig. 2.1d, there are several ways to store a masked superstring
in a text file. For (r)SPSS, one may just join all the strings by a delimiter, such as
the newline character (see enc0 in Fig. 2.1d); however, this does not always work
for the more general masked superstrings. The most obvious encoding of masked
superstrings is to first write down the superstring (over the ACGT alphabet) and
then append the binary mask (enc1 in Fig. 2.1d). For practical purposes, it is
often convenient to combine them into a single string, that we call mask-cased
superstring, over the ACGTacgt alphabet, where uppercase letters represent 1 in
the mask and lowercase letters correspond to 0 (enc2 in Fig. 2.1d). Finally, while
a superstring is typically not much compressible beyond two bits per character,
masks tend to be quite sparse, having relatively few runs of consecutive 0s (under
SLP). Thus, one may apply the run-length encoding (RLE), which is a sequence of
lengths of maximal runs of consecutive 1s or 0s in the mask (enc3 in Fig. 2.1d).1

Example. Consider the set of 3-mers 𝐾 = {ACG, GGG} of the 𝑘-mers to be repre-
sented and the superstring ACGGGG resulting from their concatenation. There are
three compatible masks – 101100, 101000 and 100100 – since each of the two
𝑘-mers must have at least one on occurrence, and the occurrence of the ghost
𝑘-mer CGG must always be off. With the last mask, the masked-cased encoding
would be AcgGgg. Conversely, when parsing AcgGgg as a masked superstring, we
can deduce from its suffix that 𝑘 = 3 and then decode the set of represented
𝑘-mers {ACG, GGG}.

2.1 Relation to (r)SPSS Representations
There are two different viewpoints in which masked superstrings can be seen

as a generalization of (r)SPSS representations. One entirely based on strings and
another based on graphs of the 𝑘-mer sets.

In the (r)SPSS representations a set of 𝑘-mers is represented as a set of strings
with the two following properties (with some representations requiring additional
properties):

1According to the mask format convention, the last run of consecutive characters has length
𝑘 − 1 and consists of 0s only, and we thus omit its length from encoding enc3. After that, enc3
still implicitly determines the value of 𝑘, since the superstring length ℓ minus the sum of all run
lengths equals 𝑘 − 1. Finally, while enc3 does not explicitly specify whether the first (or any
other) run consists of 1s or 0s, it can be computed from the parity of the number of runs in
enc3 (excluding the final run of 0s): if this number is odd, the first run consists of 1s, otherwise
the first run contains 0s. Hence, the full binary mask can be recomputed from enc3.
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Figure 2.1: The concept of masked superstrings for representing 𝑘-mer
sets. We focus on the uni-directional model for simplicity. a) An example of
a 𝑘-mer set (𝑘 = 3). b) The corresponding de Bruijn (solid edges) and overlap
graphs (solid and dashed edges, respectively). c) Individual representations of
the 𝑘-mer set and the corresponding masked superstring, sorted with respect
to the length. Value ℓ is the superstring length (generalizing the cumulative
length in (r)SPSS), 𝑟 is the number of runs of ones (generalizing the number of
sequences in (r)SPSS), and 𝑜 is the total number of ones in the mask. Note that
the individual strings in c1–c4 could be concatenated in different orders, which
would result in different sets of ghost 𝑘-mers. d) Examples of encodings of masked
superstrings (for all encodings, it is possible to use 2-bit or 3-bit representation
of individual characters). e) The 𝑘-mer multisets 𝕂, 𝕏, and 𝕐 (see Def. 2) for
masked superstrings 1⃝ and 2⃝ from c5.
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• Every 𝑘-mer appears as a substring of at least one string.
• Every substring of length 𝑘 is a represented 𝑘-mer.
Furthermore, note that optimal matchtigs even compute optimal such repre-

sentations with respect to the total length of the strings [SKA+23].
Under this setting, the masked superstring framework can be viewed as relaxing

the second condition to enable even smaller total length while still enabling to
recover the original 𝑘-mer set by introducing masks.

In the graph-based view, all (r)SPSS representations correspond to paths in
the de Bruijn graph of the 𝑘-mer set such that each vertex is covered by at least
one of the paths. Here, masked superstrings can be also seen as a path covering
all the vertices of the graph, but in this case the graph is not the de Bruijn graph,
but the overlap graph of the 𝑘-mer set, where we allow edges between 𝑘-mers of
all overlap lengths, not just 𝑘 − 1.

Most importantly, what truly enables masked superstrings to generalize all
(r)SPSS representations is the fact that every (r)SPSS representation can be
directly viewed as a masked superstring.

Theorem 1. For every (r)SPSS representation ℛ representing a 𝑘-mer set 𝐾,
there exists a masked superstring (𝑆, 𝑀) representing the same set 𝐾 such that
the cumulative length of ℛ is the same as length of 𝑆.

Proof. Let 𝑆1, … , 𝑆𝑟 be the (r)SPSS representation, i.e., a set of strings such that
every 𝑘-mer in 𝐾 is a substring of at least one string in ℛ and vice versa. For each
such string 𝑆𝑖 we take a masked superstring where the superstring is 𝑆𝑖 and the
mask is all ones except for the last 𝑘 − 1 positions and as a masked superstring
(𝑆, 𝑀) corresponding to 𝑆1, … , 𝑆𝑟 we consider the concatenation of all these
masked superstrings. To verify that this represents the same set in the point of
view of masked superstrings, observe that every 𝑘-mer in 𝐾 has at least one on
occurrence and conversely no 𝑘-mer outside of 𝐾 is represented. As the masked
superstring is a concatenation of the strings, its length matches the cumulative
length of the (r)SPSS representation.

Theorem 1 shows that masked superstrings unify (r)SPSS representations
from the theoretical perspective. However, regarding the practicality of such
generalization, a natural objection arises – we have unified the representations,
but at a cost of introducing a completely new concept of a mask which needs
to be stored. Yet, in (r)SPSS representations we have to delimit the sequences
somehow. In practice it is typically done by concatenating the strings and storing
separately at which position each string starts. This, however, can be viewed
as a specific compressed form of a mask. Hence masks were present even in the
(r)SPSS representations in some form, they were just not explicitly recognized as
such.

Furthermore, objectives which were typically used with (r)SPSS representations,
namely the total cumulative length of the strings and the number of strings,
naturally translate to the masked superstrings framework. The cumulative length
corresponds to the length of the superstring, as directly follows from Theorem 1,
and the number of strings to the number of runs of consecutive ones in the mask.
In this regard, masked superstrings not only unify the (r)SPSS representations,
but they also generalize them, since although for any masked superstring we can
find a (r)SPSS representation representing the same set, all those may be longer
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that the masked superstring. Hence as Theorem 1 gives us for any set of strings
a corresponding masked superstring, the converse, i.e., to obtain a set of strings
from a masked superstring with the same properties, is not always possible.

To see an illustration of this correspondence, see Figure 2.1. Furthermore,
to see an overview of the textual representations with their restrictions and
corresponding algorithms, see Table 2.1.
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Representation Restriction on
𝑆 = 𝑠(1) + … + 𝑠(𝑝) Restriction on 𝑀 Restriction

on 𝕂 Optimality Algorithms
(optimal) Heuristics (suboptimal)

𝑘-mer list
∀𝑖 ∶ |𝑠(𝑖)| = 𝑘

and
∀𝑖 ≠ 𝑗 ∶ 𝑠(𝑖) ≠ 𝑠(𝑗)

runs of 0s of len. 𝑘 − 1
and

runs of 1s of len. 1
max
𝑎∈𝐾

𝑓𝕂(𝑎) = 1 (trivial) (trivial) (optimal by definition)

unitigs [CLJ+14]

terminating 𝑠(𝑖)

whenever multiple
𝑘-mer extensions
admitted

runs of 0s of len. 𝑘 − 1 max
𝑎∈𝐾

𝑓𝕂(𝑎) = 1 min |𝑆|
(equiv.: min 𝑝)

optimal
unitigs [CLJ+14; CLM16]
(in theory linear∗)

(none)

simplitigs [BBK21]
(SPSS [RM21]) (none) runs of 0s of len. 𝑘 − 1 max

𝑎∈𝐾
𝑓𝕂(𝑎) = 1 min |𝑆|

(equiv.: min 𝑝)
eulertigs [SA23]
(in theory linear∗)

•ProphAsm [BBK21] (linear†)
•UST [RM21] (in theory linear∗)

matchtigs [SKA+23]
(rSPSS) (none) runs of 0s of len. 𝑘 − 1 (none) min |𝑆| optimal matchtigs [SKA+23]

(polynomial)
•greedy matchtigs [SKA+23] (polyno-
mial)

masked
superstring (none) (none) (none) app-specific

Table 3.1
brute-force search
(exponential)

•BiDir-LocalGreedy (Section 3.1.2)
(linear†)
•BiDir-GlobalGreedy (Section 3.1.3)
(linear†)

The constraints are formulated over the superstring 𝑆 (and its components 𝑠(1), … , 𝑠(𝑝) for (r)SPSS), the 𝑘-mer mask 𝑀, the multiset 𝕂 (see Def. 2) of all represented 𝑘-mers with their
frequencies (by 𝑓𝕂(𝑎) we denote the frequency of 𝑎 in 𝕂), the optimality criteria, the algorithms for computing the optimal representation, and the associated heuristics, including their time
complexities. In bold, we highlight the change of the restrictions from the previous representation.
† Linear: The involved algorithms run in time linear to the total size of 𝑘-mers when represented as text, that is 𝒪(𝑘𝑛).
∗In theory linear: The involved algorithms could in theory be linear, however their implementations involve the use of BCALM2 for computing unitigs, and as such do not have the guarantee of
linearity.

Remark about restrictions on 𝕏 and 𝕐 (see Def. 2): None of these representations restricts the multisets 𝕏 and 𝕐 of 𝑘-mers on off positions of the masked superstring in any way (for
representations with more components, 𝕏 is defined only if those components are concatenated into a superstring). We leave a study of restrictions on 𝕏 and 𝕐 to a future work.

Table 2.1: Overview of textual 𝑘-mer set representations and their constraints.

28



3 On Masked Superstrings
Computation

As masked superstrings are more general than (r)SPSS representations, they
allow for far more optimization objectives than the number of sequences and
cumulative length that were used with (r)SPSS. As an upside, the objective can
be chosen specifically based on the needs of downstream applications and hence
masked superstrings can be tailored specifically to the use-case. To get an idea of
objectives which can be used with masked superstrings, see Table 3.1.

The downside of this generality is that finding optimal masked superstrings
becomes a more complex problem, which is generally NP-hard, for instance if we
consider as an objective the length of the superstring. As a result there is no general
polynomial algorithm that would compute masked superstrings optimally for all
objectives. Therefore, we propose a simplified two step protocol for optimizing
masked superstrings. First, we optimize the superstring with respect to its length
(Section 3.1) and then we optimize the mask with objectives depending on the
original objective (Section 3.2). In Section 3.3, we show that this protocol in fact
yields an approximation algorithm for many objectives.

Minimization ob-
jective Correspondence Complexity class Obtained polynomial ap-

proximability

|𝑆|

• corresponds to the cumula-
tive length of (r)SPSS
• storage size if stored as bit
vectors

NP-complete (Sec-
tion 3.1.1)

𝒪(1) approx. ratio
(Section 3.3; by the two-step
optimization protocol)

runs1(𝑀) • corresponds to the number
of sequences in (r)SPSS

polynomial (Ap-
pendix A) optimal

|𝑆| + 𝑟 ⋅ runs1(𝑀) • storage size if mask stored
using RLE for 𝑟 = log2 |𝑆| unknown

𝒪(𝑟) approx. ratio
(Section 3.3; by the two-step
optimization protocol)

|𝑆| + 𝑟 ⋅ |𝑀|0
• storage size if mask stored
as positions of zeros for 𝑟 =
log2 |𝑆|

unknown
𝒪(𝑟) approx. ratio
(Section 3.3; by the two-step
optimization protocol)

Table 3.1: Overview of objectives for masked superstrings and their
complexity. The objectives are stated in terms of the length of superstring 𝑆
and properties of its mask 𝑀.

3.1 The First Step: Superstring Optimization
In the first step of the protocol for masked superstring computation, we

compute a superstring of the input 𝑘-mer set. Unfortunately, this first step,
finding the shortest common superstring of a set of 𝑘-mers, is NP-hard even for
𝑘-mers as we show in Theorem 2.

As the problem is NP-hard, we turn to approximation algorithms. In fact,
we remark that any reasonable algorithm for computing textual representations
of 𝑘-mer sets are approximation algorithms with ratio at most 𝑘 as representing
𝑘-mers as their concatenation yields a superstring of length at most 𝑘 times the
size of the set, which is also a natural lower bound on the size of the superstring.
We then propose two different algorithms for superstring computation, one being
a generalized version of ProphAsm [BBK21] for computing simplitigs and the
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other being a modification of the Greedy algorithm to the bi-directional model.

3.1.1 NP-Hardness of Finding Minimum Superstrings
Theorem 2. Given a set of 𝑘-mers 𝐾, with 𝑘 > log2 |𝐾|, finding the shortest
superstring for 𝐾 is NP-complete in both the uni-directional and bi-directional
models.

We show this via a reduction from a specific version of the shortest superstring
problem which is known to be NP-complete. Note that this does not immediately
yield the NP-hardness for sets of 𝑘-mers, as in the bi-directional model we consider
a 𝑘-mer and its reverse complement as equivalent.

Proposition 3 (Theorem 3 in [GMS80]). The shortest superstring problem is
NP-hard even if the input strings are over the binary alphabet and have the same
length 𝑘, for any 𝑘 > log2 𝑛, where 𝑛 is the number of input strings.

Proof of Theorem 2. To show NP-hardness, consider an input of SSP under the
conditions of Proposition 3. We transform this input to a set of 𝑘-mers 𝐾 only
over alphabet {A, C} by mapping each 1 to A and each 0 to C, which immediately
yields NP-hardness for the uni-directional model. To see that this also holds for
the bi-directional model, we note that the overlap between any 𝑘-mer in 𝐾 and
any reverse complement of 𝑘-mers in 𝐾 is zero as the reverse complements are
over the alphabet {T, G}. Hence any superstring in the bi-directional model can be
modified to a superstring in the uni-directional model with the same superstring
length by considering reverse complements of maximal segments of T’s and G’s.
Since a 𝑘-mer from 𝐾 could not occur at the boundary of such a segment, this
transformed superstring is still a superstring of 𝐾, now also in the uni-directional
model. This proves the NP-hardness even for the bi-directional model. To see that
the decision version of the problem also lies in NP, we remark that the superstring
itself can serve as a certificate, since containment of each 𝑘-mer can be verified in
polynomial time.

We further remark that even though typically a small, fixed values of 𝑘 are used
in practice, the proof of NP-hardness requires 𝑘 to be arbitrarily large. However,
𝑘 must be at least log4 |𝐾| (and even slightly more in the bi-directional model),
otherwise we would get a contradiction as |𝐾| ≤ 4𝑘 < 4log4 |𝐾| ≤ |𝐾| which is not
possible. Therefore, the provided result is tight up to a constant factor.

3.1.2 Local Greedy Algorithm
We present a novel algorithm which we call BiDir-LocalGreedy for com-

puting a masked superstring of a set of 𝑘-mers. The algorithm is a generalization
of ProphAsm [BBK21] for computing simplitigs. ProphAsm works as follows. It
starts with an arbitrary 𝑘-mer and finds a maximal path in the vertex-centric de
Bruijn graph containing this 𝑘-mer by iteratively extending it to both directions.
The 𝑘-mers covered by this maximal path are then removed from the set and the
process is repeated until the set is empty.
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Local greedy generalizes this approach by finding paths not in the de Bruijn
graph, but in overlap graphs. Instead of requiring each extending 𝑘-mer to have
overlap of 𝑘 − 1 characters, we allow extending by up to 𝑑max characters, i.e. we
require consecutive 𝑘-mers to have overlaps only at least 𝑘−𝑑max. Therefore, local
greedy can be also seen as to work on a subgraph of the overlap graph containing
edges of weight at least 𝑘 − 𝑑max.

In more detail, local greedy proceeds as follows. It starts with 𝐾 being initially
the 𝑘-mer set we aim to represent. Local greedy then picks an arbitrary 𝑘-mer
𝑎 ∈ 𝐾, removes it, and initializes a superstring segment 𝑆𝑃 = 𝑎. It then iteratively
extends 𝑆𝑃 to the left or to the right. A left extension of 𝑆𝑃 by 𝑑 characters is
a 𝑘-mer 𝑏 such that the last 𝑘 − 𝑑 characters of 𝑆𝑃 are equal to the first 𝑘 − 𝑑
characters of 𝑏. Analogously we define a right extension by 𝑑 characters.

In every step of 𝑆𝑃 extension, local greedy picks the extension (either left or
right) with the least value of 𝑑. If 𝑑 ≤ 𝑑max, the extension is added to 𝑆𝑃 and
the 𝑘-mer is removed from 𝐾. Otherwise, we have a maximal path in the overlap
graph using edges with overlap at least 𝑘 − 𝑑max, we append the string segment
to the superstring and repeat the process until we empty the set 𝐾.

Note that this algorithm works also in the bi-directional model, we just check
whether 𝑘-mer or its reverse complement are in 𝐾 and if we extend, we remove
both 𝑘-mer and its complement. Furthermore, even though the algorithm as
described computes only the superstring, it can be modified to produce also
masked superstrings if we put 1 at the starting position of each 𝑘-mer considered
when extending.

In Sections 3.1.4 and 3.1.5, we provide two implementations of local greedy.
First using simple extensive enumeration and 𝑘-mer hashing. Second using the
Aho-Corasick automaton as an underlying data structure. The Aho-Corasick-
automaton-based variant achieves total linear time complexity as compared to
the exponential in 𝑑max complexity of the hashing variant. However, for values of
𝑑max which are small enough, the hashing variant is faster in practice.

3.1.3 Global Greedy Algorithm
We modify the global greedy algorithm for the SSP, typically known in the

literature as Greedy (see Section 1.4) to work in the bi-directional model. We
call the resulting algorithm BiDir-GlobalGreedy. We note that in the uni-
directional model Greedy can be used directly to compute a 𝑘-mer superstring.
It could also be used in the bi-directional model as the computed superstring
is also a superstring in the bi-directional model, however, it does not use the
overlaps between 𝑘-mers and their reverse complements which as a result yields
unnecessarily longer superstring.

Therefore, we modify the global greedy algorithm for the bi-directional model
so that it utilizes the possibility to merge a 𝑘-mer with a reverse complement
(RC) of another 𝑘-mer and to represent either the original 𝑘-mer or its RC but
not necessarily both. We then show that the adjusted algorithm can still be
implemented in linear time.

For each 𝑘-mer present in the 𝑘-mer set, we consider both the 𝑘-mer and its
RC, and we forbid using the two edges between them (forbidding edges between
a 𝑘-mer and its RC allows us to maintain a certain useful invariant as we show
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below). Similarly as in the uni-directional model, our aim is to greedily construct
a Hamiltonian path 𝐻 in the overlap graph. However, in the bi-directional model
we ensure that no 𝑘-mer and its RC both appear in the Hamiltonian path; the aim
is to make the resulting superstring possibly shorter. In other words, we adjust
the Hamiltonian requirement so that the resulting path contains each 𝑘-mer or its
RC but not both1. In fact, our algorithm constructs two “reverse complementary”
paths 𝑃 and 𝑃 ′ such that if 𝑃 contains edge (𝑎, 𝑏), path 𝑃 ′ has edge (𝑏′, 𝑎′),
where 𝑏′ is the RC of 𝑏 and 𝑎′ is the RC of 𝑎. In the following, the edge set 𝐻
will be the union of 𝑃 and 𝑃 ′.

We therefore modify the global greedy algorithm as follows:
• We maintain a set of chosen edges 𝐻 in the overlap graph for the 𝑘-mer set.

The RCs of the 𝑘-mers in the original sequence are also included in the set.
• In each step, we choose a largest-overlap edge from 𝑘-mer 𝑎 to 𝑘-mer 𝑏 such

that 𝑎 has outdegree 0 in 𝐻, 𝑏 has indegree 0 in 𝐻, the edge does not close
a cycle in 𝐻, and 𝑏 is not the RC of 𝑎 (breaking ties arbitrarily). Letting 𝑎′

denote the RC of 𝑎 and 𝑏′ the RC of 𝑏, we add edges (𝑎, 𝑏) and (𝑏′, 𝑎′) to
𝐻.

Alternatively, BiDir-GlobalGreedy can be described by merging strings:
In each step 𝑡, there is a set 𝒮𝑡 of strings to merge (initially, this is the set of 𝑘-mers
and their RCs). In 𝒮𝑡, choose two different strings 𝑎 and 𝑏 such that their overlap
is the longest (when merging 𝑎 to 𝑏 in this order) and 𝑏 is not an RC of 𝑎, breaking
ties arbitrarily. Letting 𝑎′ denote the RC of 𝑎 and 𝑏′ the RC of 𝑏, we merge 𝑎
to 𝑏 and also merge 𝑏′ to 𝑎′. This way, BiDir-GlobalGreedy maintains the
following invariant: In every step 𝑡, it holds that for each string 𝑠 ∈ 𝑆𝑡, the RC of
𝑠 is also present in 𝒮𝑡 (formally, this can be shown by mathematical induction).
This invariant in particular implies that in each step, 𝑏′ has outdegree 0 and 𝑎′

has indegree 0.
While global greedy in the uni-directional model outputs a single Hamiltonian

path, in the bi-directional model we end up with two disjoint paths of the same
length, which correspond to two reverse complementary superstrings; this follows
directly from the aforementioned invariant.

The linear-time implementation of Greedy using the Aho-Corasick automa-
ton [Ukk90] can be extended to handle our modification as we show in Section 3.1.5.
Furthermore, in Section 3.1.4 we describe a simpler hashing-based implementation.

3.1.4 Hash-Table-Based Implementations
We now describe hash-table-based implementations of BiDir-LocalGreedy

and BiDir-GlobalGreedy. The hashing-based variant of global greedy is in
direct correspondence to the Aho-Corrasick automaton-based version, whereas
the hashing-based version of local greedy can be seen more as an exhaustive
enumeration.

From a theoretical point of view, the hashing-based implementations do not
achieve worst-case linear-time complexity, unlike the automaton-based imple-

1While we restrict the output path in the overlap graph in this way, a similar property does
not hold for the resulting superstring 𝑆 obtained by merging 𝑘-mers along the path. Indeed, a
𝑘-mer 𝑎 on the path may appear more times in 𝑆 or the RC of 𝑎 may become a substring of 𝑆
because of merging some other 𝑘-mers that are adjacent in the path.
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mentations. Specifically, for global greedy, linear-time complexity is achieved in
expectation, while the hashing-based implementation of local greedy requires time
exponential in the parameter 𝑑max. Nevertheless, in practice both versions are
more efficient than their automaton-based counterparts (for local greedy, this
holds for small-enough values of 𝑑max).

A major advantage of hashing-based implementations is that the memory
requirements are much lower than of the automaton, since a 𝑘-mer for typical
values of 𝑘 can be represented as an integer. However, this requires a limit on the
value of 𝑘; for example, with 64-bit representations it only works for 𝑘 < 32.

Hashing-based implementation of local greedy. We provide a pseudocode
of BiDir-LocalGreedy in Algorithm 1. We implement searching for a left or
right extension in a rather straightforward way by exhaustively enumerating all
possible length-𝑑 strings and checking whether this gives a valid extension for the
current path. This enumeration takes time 4𝑑, but as we first start with 𝑑 = 1
and keep increasing it by one only if no length-𝑑 extension is found, we do not get
to a large value of 𝑑 in many steps. Nevertheless, searching for an extension can
take time up to 4𝑑max , which is tolerable for a small value of 𝑑max only.

Apart from this exhaustive enumeration of extensions, we only need an efficient
way to check whether a 𝑘-mer 𝑎, formed by an enumerated extension and prefix
or suffix of the constructed superstring segment, is in the input set of 𝑘-mers 𝐾
(more precisely, to work in the bi-directional model, we take the canonical of 𝑎
and check its presence in the set of canonical 𝑘-mers 𝐾). This task can be easily
accomplished in 𝒪(𝑘) expected time using a hash table.

Hashing-based implementation of global greedy. We also provide an
implementation of BiDir-GlobalGreedy which employs 𝑘-mer hashing. Since
global greedy looks for the largest overlap in each step, we iterate over overlap
lengths 𝑑 from 𝑘−1 to 0. For each 𝑑, we create a hash table mapping each existing
prefix of size 𝑑 to a list of 𝑘-mers with this prefix which so far have indegree 0.
Then, for each 𝑘-mer 𝑎 with outdegree 0, we find the first 𝑘-mer with length-𝑑
prefix equal to the length-𝑑 suffix of 𝑎 such that:

1. The corresponding directed edge does not form a cycle, which we check
similarly as in [Ukk90]. In particular, as 𝐻 is a collection of paths during
the computation, for each path 𝑃 in 𝐻 we maintain pointers between the
endpoints of 𝑃 (these are arrays first and last in the pseudocode).

2. The edge does not go to a 𝑘-mer with indegree 1 (although we filter out
nodes of non-zero indegree when creating the hash table, the indegrees
may have changed as we are adding edges between reverse complementary
𝑘-mers). Whenever this happens, we erase this 𝑘-mer from the prefix hash
table.

3. The edge does not go from a string to its reverse complement.
We provide a pseudocode for this hashing-based implementation of BiDir-

GlobalGreedy in Algorithm 2.
We argue that this runs in linear time. For any 𝑑, the construction of the

prefix hash table runs in expected time 𝒪(𝑛) provided that we can compute any
prefix (or suffix) of a 𝑘-mer with bit operations in constant time; namely, our
implementation using 128-bit integers thus requires 𝑘 < 64. Therefore, the only
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Algorithm 1: BiDir-LocalGreedy-Hashing – outputs a masked
superstring for 𝐾. The case 𝑑𝑚𝑎𝑥 = 1 corresponds to Alg. 1 in [BBK21]
(ProphAsm).

input : Length of 𝑘-mers 𝑘 (where 𝑘 ≥ 2), set of canonical 𝑘-mers 𝐾, maximal
extension length 𝑑𝑚𝑎𝑥 (where 𝑑𝑚𝑎𝑥 < 𝑘)

output : A masked superstring for 𝐾
Function BiDir-LocalGreedy(𝐾, 𝑘, 𝑑𝑚𝑎𝑥):

Superstring ← ''; Mask ← '';
while |𝐾| > 0 do

(𝐾, S, M) ← NextSuperstringSegment(𝐾, 𝑘, 𝑑𝑚𝑎𝑥);
Superstring ← Superstring + S; Mask ← Mask + M;

return (Superstring, Mask);

Function NextSuperstringSegment(𝐾, 𝑘, 𝑑𝑚𝑎𝑥): ; // Construct a path by
locally extending it from an arbitrary 𝑘-mer

S ← 𝐾.pop(); M ← '1' ; // Start with an arbitrary 𝑘-mer
𝑑𝐿 ← 1; 𝑑𝑅 ← 1 ; // Depth of left/right extension search
while min{𝑑𝐿, 𝑑𝑅} ≤ 𝑑𝑚𝑎𝑥 do

if 𝑑𝑅 ≤ 𝑑𝐿 then
𝑒𝑥𝑡𝑅 ← FindExtension(S, 𝐾, 𝑑𝑅, 'R');
if 𝑒𝑥𝑡𝑅 then

S ← S + 𝑒𝑥𝑡𝑅; M ← M + ' 0…0⏟
(𝑑𝑅−1)×

1' ; // right extension of

the string and mask
𝐾 ← 𝐾 − {CanonicalKmer(suff𝑘(S))};
𝑑𝑅 ← 1 ; // Reset right extension depth

else
𝑑𝑅 ← 𝑑𝑅 + 1 ; // No right extension found, increase

R-depth
else

𝑒𝑥𝑡𝐿 ← FindExtension(S, 𝐾, 𝑑𝐿, 'L');
if 𝑒𝑥𝑡𝐿 then

S ← 𝑒𝑥𝑡𝐿 + S; M ← '1 0…0⏟
(𝑑𝐿−1)×

' + M ; // left extension of the

string and mask
𝐾 ← 𝐾 − {CanonicalKmer(pref𝑘(S))};
𝑑𝐿 ← 1;

else
𝑑𝐿 ← 𝑑𝐿 + 1 ; // No left extension found, increase L-depth

M ← M + ' 0…0⏟
(𝑘−1)×

' ; // Make M of the same length as S

return (K, S, M);

Function FindExtension(S, 𝐾, 𝑑, LR): ; // Brute-force search for a
length-𝑑 extension; LR specifies whether to extend left or right

foreach 𝑒𝑥𝑡 ∈ {'A', 'C', 'G', 'T'}𝑑 do
switch LR do

case 'L' do 𝑎 = 𝑒𝑥𝑡 + pref𝑘−𝑑(S) ;
case 'R' do 𝑎 = suff𝑘−𝑑(S) + 𝑒𝑥𝑡 ;

if CanonicalKmer(𝑎) ∈ 𝐾 then return 𝑒𝑥𝑡 ; // takes 𝑂(𝑘) expected
time if 𝐾 is represented using a hash table

return '';
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Algorithm 2: BiDir-GlobalGreedy-Hashing – a hashing-based im-
plementation of the global greedy algorithm that computes a superstring
representation of a set of 𝑘-mers 𝐾 in the bi-directional model.

input : Length of 𝑘-mers 𝑘 (where 𝑘 ≥ 2), set of 𝑘-mers 𝐾 (containing a reverse
complement for each 𝑘-mer in 𝐾)

output : A masked superstring for 𝐾
Function BiDir-GlobalGreedy-Hashing(𝐾, 𝑘):

𝐻 ← ∅ ; // edges of the contructed Hamiltonian path
for 𝑖 = 1, … , |𝐾| do

first[𝑖], last[𝑖] ← 𝑖 ; // First/last vertex of path ending/starting at
𝑖, used for determining whether an edge closes a cycle

prefixForbidden[𝑖], suffixForbidden[𝑖] ← False ; // is False iff
indegree/outdegree=0

for 𝑑 = 𝑘 − 1, ..., 0 do // Overlap length from the largest to the
smallest

𝑃 ←map from prefixes of size 𝑑 to all 𝑘-mers with this prefix and
prefixForbidden[𝑖] = False;

for 𝑗 = 1, ..., |𝐾| do // iterate all the 𝑘-mers
if suffixForbidden[𝑗] = False then // the 𝑘-mer has outdegree 0 so

far
𝑠 ← length-𝑑 suffix of 𝑘-mer 𝑗;
𝑖 ← index of the first 𝑘-mer in 𝑃[𝑠];
while prefixForbidden[𝑖] ∨ first[𝑗] = 𝑖 ∨ 𝑖 = RC(𝑗) do // skip 𝑘-mer

𝑖 if edge (𝑗, 𝑖) would form a cycle or is between reverse
complementary 𝑘-mers (RC computes the index of the
reverse complement of a given 𝑘-mer)

if prefixForbidden[𝑖] then
Remove 𝑖 from 𝑃[𝑠]

if 𝑃[𝑠] does not contain more 𝑘-mers then Set 𝑖 ← −1 and
break the while loop;

𝑖 ← next 𝑘-mer in 𝑃[𝑠]
if 𝑖 ≠ −1 then // check if such k-mer exists

Add edges (𝑗, 𝑖) and (RC(𝑖), RC(𝑗)) to 𝐻;
suffixForbidden[𝑗], suffixForbidden[RC(𝑖)] ← True ; // outdegree

of 𝑗 and RC(𝑖) is 1
prefixForbidden[𝑖], prefixForbidden[RC(𝑗)] ← True ; // indegree

of 𝑗 and RC(𝑖) is 1
// Fix first and last pointers;
first[last[𝑖]] ← first[𝑗];
last[first[𝑗]] ← last[𝑖];
first[last[RC(𝑗)]] ← first[RC(𝑖)];
last[first[RC(𝑖)]] ← last[RC(𝑗)];
Remove 𝑖 from 𝑃[𝑠];

𝐻′ ← one of the paths of length |𝐾|/2 in 𝐻 ; // for each 𝑘-mer 𝑎, 𝐻′

contains 𝑎 or RC(𝑎)
S, M ← convert 𝐻′ to the masked superstring (by merging 𝑘-mers along 𝐻′) ;
// M has the same length as S

return (S, M);
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potentially expensive part is finding the first 𝑘-mer in the prefix table that fulfills
the conditions above.

Note, however, that this does not increase the time complexity. For a fixed
𝑑, the second case can happen in total at most 𝑛 times as we can remove each
𝑘-mer only once, and similarly, the first case can happen at most once per 𝑘-
mer [Ukk90]. The same holds for the third case as for each string there is only
one complementary string.

Therefore, the algorithm runs in expected linear time with respect to the total
length of the 𝑘-mers, where the expectation is over the randomness used in the
hash table. (More precisely, for a given 𝑘 such that we can compute any prefix or
suffix of a 𝑘-mer in constant time and store it in a variable, the expected running
time is 𝒪(𝑘 ⋅ 𝑛). Without the assumption on fast prefix/suffix retrieval, the time
complexity would increase to 𝒪(𝑘2𝑛).) We can achieve 𝒪(𝑛𝑘) running time in
the worst case if we use the implementation using the Aho-Corasick automaton
which can also work with 𝑘 ≥ 64, at the cost of a certain overhead of using a
prefix-tree-based data structure as we show in the next subsection.

3.1.5 Aho-Corasick-Based Implementations
We develop worst-case linear-time implementations for both local and global

greedy algorithms using the Aho-Corasick (AC) automaton [AC75] (it is also
deterministic as we avoid using hash functions).

Aho-Corasick-automaton-based implementation of global greedy. We
describe a variant BiDir-GlobalGreedy using Aho-Corasick automaton as
its core structure. A linear-time implementation of Greedy for SSP using the
AC automaton was already designed by Ukkonen [Ukk90], and we extend it to
representing 𝑘-mers in the bi-directional model.

We first describe how to use the automaton to implement global greedy for
𝑘-mer set representation in the uni-directional model; this is essentially the same
implementation as in [Ukk90]. We traverse the automaton in the reverse breadth
first search (BFS) order from the root (i.e., starting in leaves) with the aim to
construct a Hamiltonian path 𝐻 in the overlap graph. During this traversal, for
every state 𝑠 in the automaton, we maintain a list 𝐿(𝑠) of 𝑘-mers which have 𝑠
as a prefix, and another list 𝑃(𝑠) for 𝑘-mers which have 𝑠 as a suffix. For a leaf
𝑠, we have 𝐿(𝑠) = 𝑃(𝑠) = {𝑠}, while for an internal node 𝑠, creating list 𝐿(𝑠)
upon visiting 𝑠 is done by just merging lists 𝐿(𝑠′) over all children 𝑠′ of 𝑠. List
𝑃(𝑠) for an internal node 𝑠 is obtained by merging lists 𝑃(𝑠″) for states 𝑠″ such
that 𝑓(𝑠″) = 𝑠 (i.e., the failure function from 𝑠″ leads to 𝑠); note that such 𝑠″

is visited before 𝑠 in the traversal and thus, we add strings in 𝑃(𝑠″) into 𝑃(𝑠)
when processing 𝑠″, which implies that 𝑃(𝑠) is complete when processing 𝑠. The
order of traversal guarantees that the pairs of 𝑘-mers with the highest overlap are
merged first.

When we visit a state 𝑠, we use lists 𝐿(𝑠) and 𝑃(𝑠) to find a pair (𝑎, 𝑏) of
different 𝑘-mers such that:

• 𝑎 has 𝑠 as its prefix and 𝑏 has 𝑠 as its suffix,
• edge (𝑎, 𝑏) does not close a cycle in 𝐻, and
• 𝑎 has outdegree 0 in 𝐻 and 𝑏 has indegree 0 in 𝐻.
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Namely, for each 𝑎 ∈ 𝐿(𝑠), if 𝑎 has outdegree 0 in 𝐻, we iterate 𝑏 ∈ 𝑃(𝑠)
and check the conditions above (that is, while visiting a state we may add more
edges, at most one for each 𝑎 ∈ 𝐿(𝑠)). Note that the first condition is ensured
by taking 𝑎 ∈ 𝐿(𝑠) and 𝑏 ∈ 𝑃(𝑠). We check the second condition in a similar
way as in the hashing-based implementation. The second condition may not be
satisfied only once for each 𝑘-mer 𝑎 and each of 𝑘 − 1 states that contain it in
𝐿(𝑠); thus, we reject an edge due to the second condition at most 𝒪(𝑘 ⋅ 𝑛) times
in total. For the last condition, we check whether 𝑏 has indegree 0 in 𝐻 and if
not, we remove 𝑏 from 𝑃(𝑠) (recall that we only consider 𝑎 ∈ 𝐿(𝑠) with outdegree
0 in 𝐻). This ensures that the implementation runs in linear time; see [Ukk90] for
details. Finally, having a complete Hamiltonian path 𝐻, we merge 𝑘-mers in the
order given by 𝐻. This concludes the description for the uni-directional model.

In the bi-directional model, we use a similar modification as for the hashing-
based implementation: When we add an edge (𝑎, 𝑏) to 𝐻, we also add (𝑏′, 𝑎′) to 𝐻,
where 𝑎′ and 𝑏′ are reverse complements (RCs) of 𝑎 and 𝑏, respectively. Further, we
forbid using edges that lead between a 𝑘-mer and its RC. This way, we eventually
construct two disjoint paths of the same length, each satisfying the adjusted
Hamiltonian property. These paths correspond to two reverse complementary
superstrings in the bi-directional model.

Aho-Corasick-automaton-based implementation of local greedy. We
provide an implementation of BiDir-LocalGreedy using the AC automaton
where we use the automaton to decrease the time complexity of finding the
left/right extension in the local greedy algorithm. In the version with 𝑘-mer
hashing, this has exponential-time complexity with respect to the current value
of 𝑑𝐿 or 𝑑𝑅, which may be up to 𝑑𝑚𝑎𝑥 in the worst case. (Recall that 𝑑𝑚𝑎𝑥 is a
parameter of local greedy, which specifies that the overlap in any step is at least
𝑘 − 𝑑𝑚𝑎𝑥.)

As in global greedy, for each state 𝑠 of the automaton, we maintain the lists
𝐿(𝑠) and 𝑃(𝑠) of 𝑘-mers which have the string corresponding to 𝑠 as a prefix or a
suffix, respectively. Furthermore, for each prefix and suffix of each 𝑘-mer we store
the state of the automaton corresponding to the prefix/suffix (the corresponding
state may not exist for the suffix, though it always exists for the prefix).

Suppose we are looking for a left extension of length 𝑑 and let 𝑠 be the
length-(𝑘 − 𝑑) prefix of the currently constructed string (denoted 𝑆 in function
NextSuperstringSegment in Algorithm 1). Since 𝑠 is a length-(𝑘 − 𝑑) prefix of
some 𝑘-mer 𝑎, state 𝑠 is in the automaton and we iterate 𝑃(𝑠) to find a 𝑘-mer not
equal to 𝑎 or its RC which has not been used as an extension or a starting 𝑘-mer
yet. To ensure that this runs in linear time, when we find a 𝑘-mer 𝑏 in 𝑃(𝑠) that
has been used already, we remove 𝑏 from 𝑃(𝑠).

We find a right extension analogously, with 𝑠 being the length-(𝑘 − 𝑑) suffix
of the currently constructed string 𝑆. If 𝑠 is not a state of the automaton, there
is no length-𝑑 extension, and otherwise, we iterate list 𝐿(𝑠) similarly as we loop
over 𝑃(𝑠).

We argue that this implementation runs in time 𝒪(𝑘 ⋅ 𝑛) (that is, linear in
the total length of the 𝑘-mers). The automaton and the mapping from prefixes
and suffixes of 𝑘-mers to automaton states can be constructed in linear time.
Using this mapping, searching for a left or right extension of length 𝑑 can be
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implemented in 𝒪(1) time if we do not count removals from lists 𝐿(𝑠) and 𝑃(𝑠).
Since every 𝑘-mer appears in 𝑘 − 1 lists 𝐿(𝑠) and 𝑘 − 1 lists 𝑃(𝑠), there are in
total at most 𝒪(𝑘 ⋅ 𝑛) removals from these lists (each taking 𝒪(1) time). This
concludes the time complexity analysis.

3.2 The Second Step: Mask Optimization
In the second step of masked superstring optimization, the mask is optimized.

That is, given a set of 𝑘-mers 𝐾 and a superstring 𝑆 of 𝐾, we want to find a
compatible mask 𝑀 that is optimal under a mask optimization objective. The
objective for mask optimization can be either informally derived from the objective
for masked superstrings in case the masked superstrings are computed using the
two-step optimization protocol, but we might also want to re-optimize masks for
already computed masked superstrings.

We propose three objectives for mask optimization – minimizing or maximizing
the number of 1s and minimizing the number of runs of 1s in the mask. We
provide linear algorithms for minimizing and maximizing the number of ones. We
prove that minimizing the number of runs of 1s in NP-hard, but we propose an
exact exponential solution based on integer linear programming that is efficient
for bacterial genomes and pan-genomes.

We note that minimizing the number of runs of 1s directly corresponds to
minimizing space under compression of the mask with run-length encoding. In
Section 6.3.2 we examine the performance of the mask objectives when evaluated on
mask compression. Furthermore, in Section 5.3.2 we demonstrate that minimizing
and maximizing 1s can be used for mask recasting used in set operations with
𝑘-mer sets.

3.2.1 Maximizing the Number of 1s
In maximization of the number of 1s in the mask, for a given superstring 𝑆 and

a given set of 𝑘-mers 𝐾, we aim to find a mask 𝑀 such that (𝑆, 𝑀) represents 𝐾
and the number of 1s is maximal among such masks. We remark that such mask
is always unique. Typically, we consider a setting where 𝐾 is given implicitly via
a masked superstring and we only want to optimize the mask.

We provide a very simple two-pass linear-time algorithm for this problem. In
the first pass, we retrieve 𝐾 and in the second pass, we always set 𝑀[𝑖] = 1 if at
the position 𝑖 a 𝑘-mer from 𝐾 starts. The pseudocode is provided in Algorithm 3.

3.2.2 Minimizing the Number of 1s
Similarly as in maximizing the number of 1s, given a masked superstring, we

aim to find a new mask with minimum number of 1s that preserves the represented
set. Note that unlike in the case of maximizing the number of 1s, the masks are
not unique and different algorithms may produce different results.

We provide a single-pass linear-time algorithm for this problem. We iterate
over the masked superstrings and whenever we find a new represented 𝑘-mer, we
put a 1 to the mask, otherwise we put a 0. This way only a single occurrence of a
represented 𝑘-mer is on. The pseudocode is provided in Algorithm 4. Alternatively,
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one might use a similar algorithm as for maximizing the number of 1s and compute
𝐾 in the first pass. This has a potential advantage that it produces the same
result regardless of the original mask.

3.2.3 NP-Hardness of Minimizing the Number of Runs
We show that for a given superstring finding a mask that minimizes the number

of runs of ones is NP-hard via reduction from Set Cover. As an overview, to prove
this we first restate the problem of minimizing number of runs as covering an
edge-centric de Bruijn graph with walks of 𝑘-mers. We then map the elements
of a given Set Cover instance to selected edges from the de Bruijn graph while
modifying the Set Cover instance such that the individual sets correspond to
walks in the graph without changing the optima. In this setting, finding the
minimum number of runs corresponds to finding the minimum number of walks,
which corresponds to finding the minimum number of sets to cover the Set Cover
universe.

More formally, we consider the following problem, called MaskMinNumRuns:
Given a set of 𝑘-mers 𝐾 (for an arbitrary 𝑘 ≥ 2), and their superstring 𝑆, find
a mask for 𝑆 (w.r.t. 𝐾) that has the minimum number of runs of ones. Recall
that a binary string 𝑀 of the same length as 𝑆 is a mask for 𝑆 (w.r.t. 𝐾) if the
following holds:

• every 𝑘-mer 𝑎 ∈ 𝐾 has at least one on occurrence, and
• each 𝑘-mer 𝑎 ∉ 𝐾 has no on occurrences.

We prove that this optimization problem is hard for a carefully constructed
worst-case superstring.

Theorem 4. MaskMinNumRuns is NP-complete in both the uni-directional
and bi-directional models. Furthermore, the problem is NP-hard to 𝑜(log |𝐾|)-
approximate, i.e., it is NP-hard to find a mask with 𝑜(log |𝐾|) times the optimal
number of runs of ones.

Note that 𝑘 must not be bounded; this follows from a similar reason as outlined
in the discussion of superstring NP-hardness (Section 3.1.1). As the problem is
clearly in NP (with mask being a certificate, whose validity can be verified in
polynomial time), it is sufficient to show NP-hardness. Strictly speaking, we prove
the NP-hardness for the decision version of MaskMinNumRuns, which asks to
determine whether there is a mask with at most 𝜆 runs of ones, for a given 𝜆.

The approximation hardness uses the following (tight) result about Set Cover:

Theorem 5 (Corollary 4 in [DS14]). For every fixed 𝜖 > 0, it is NP-hard to
approximate Set Cover to within an (1 − 𝜖) ⋅ ln 𝑁 factor, where 𝑁 is the size of
the instance.

Proof of Theorem 4. First, we restate the MaskMinNumRuns problem using
graph theory. We can take the edge-centric de Bruijn graph of the superstring
and color the edges with two colors – blue if it corresponds to a ghost 𝑘-mer,
i.e., a length-𝑘 substring not in 𝐾, and red if it appears in 𝐾. We can now
observe that the superstring corresponds to a walk 𝑊 in the de Bruijn graph.
We can reformulate our problem as selecting the smallest number of subwalks
of 𝑊 consisting only of red edges such that all red edges are covered by one of
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Algorithm 3: MaskMaxOnes – two-pass algorithm for maximizing
the number of ones in a mask

input : Masked superstring (S, M) implicitly representing a 𝑘-mer set 𝐾, 𝑘 ∈ ℕ
output : A masked superstring for 𝐾 with the the same superstring and maximum

number of ones
Function BiDir-GlobalGreedy-Hashing(S, M, 𝑘):

𝐾 ← ∅ ; // 𝑘-mers already seen
M′ = [0] × |M| ; // new mask
for 𝑖 = 1, … , |S| − 𝑘 do // construct 𝐾

a ← S[𝑖 ∶ 𝑖 + 𝑘 − 1];
if M[𝑖] = 1 then

𝐾 ← 𝐾 ∪ {a};
for 𝑖 = 1, … , |S| − 𝑘 do // construct new mask

a ← S[𝑖 ∶ 𝑖 + 𝑘 − 1];
if a ∈ 𝐾 then // can be done also in the bi-directional model

M′[𝑖] ← 1;
M′[𝑖] ← 1;
return (S, M′);

Algorithm 4: MaskMinOnes – one-pass algorithm for minimizing the
number of ones in a mask

input : Masked superstring (S, M) implicitly representing a 𝑘-mer set 𝐾, 𝑘 ∈ ℕ
output : A masked superstring for 𝐾 with the the same superstring and minimum

number of ones
Function BiDir-GlobalGreedy-Hashing(S, M, 𝑘):

𝐾 ← ∅ ; // 𝑘-mers already seen
M′ = [0] × |M| ; // new mask
for 𝑖 = 1, … , |S| − 𝑘 do

a ← S[𝑖 ∶ 𝑖 + 𝑘 − 1];
if M[𝑖] = 1 then

if a ∉ 𝐾 then // can be done also in the bi-directional model
𝐾 ← 𝐾 ∪ {a};
M′[𝑖] ← 1;

return (S, M′);
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the selected subwalks. Observe that whenever we add a red edge into a selected
subwalk, we can select all succeeding and preceding red edges in 𝑊 until we reach
a blue edge in 𝑊, without having to add another subwalk. Therefore, we can split
𝑊 by blue edges into maximal red subwalks and find the minimum number of
these red subwalks we need to take in order to cover all red edges in the graph.

We now show a reduction from Set Cover. Recall that an instance of Set Cover
consists of universe 𝑈 and a set of 𝑚 subsets 𝐴1, … , 𝐴𝑚 of 𝑈, and the goal is to
select the minimum number of these subsets 𝐴𝑖 that cover 𝑈, i.e., whose union
equals 𝑈.

Given an instance of Set Cover, we choose 𝑛 ≥ |𝑈| + 1 and take a complete
edge-centric de Bruijn graph 𝐺 with 𝑛 vertices corresponding to all strings of
length 𝑘 − 1 = log2 𝑛 over alphabet {A, C} (we use just A and C to prove it even
in the bi-directional model). The 𝑘-mers of our instance (including ghost 𝑘-mers)
will correspond to a subset of the 2𝑛 edges of 𝐺, with each edge representing the
length-𝑘 merge of its two endpoints. Note that 𝐺 always contains a Hamiltonian
cycle which we denote by 𝐻 We color the edges of 𝐻 in dark red. Next, we choose
an edge 𝑒𝐵 ∉ 𝐻 and color it in blue; this will be the only blue edge. We color all
the remaining edges (not in 𝐻 ∪ {𝑒𝐵}) in light red. As 𝐺 contains 2𝑛 edges in
total, out of which we colored 𝑛 in dark red and one in blue, there are 𝑛 − 1 ≥ |𝑈|
light-red edges. We map each element in 𝑈 to a light-red edge and delete the
unmapped light-red edges if any. This way, we get a bijection between light-red
edges and 𝑈. Furthermore, we modify every set 𝐴𝑖 by adding (new elements
corresponding to) all the dark-red edges 𝐻 to obtain new sets denoted 𝐴′

𝑖. We
also add the dark-red edges into 𝑈 to get a modified universe 𝑈 ′. Observe that 𝑈 ′

consists of exactly (elements corresponding to) all of the red edges and that the
solutions for the Set Cover instance (𝑈, {𝐴𝑖}𝑖) are in one-to-one correspondence
to solutions for instance (𝑈 ′, {𝐴′

𝑖}𝑖).
Next, we map each set 𝐴′

𝑖 to a walk 𝑊𝑖 in the graph consisting of red edges
only in a way that we can connect the walks 𝑊𝑖 into one walk in 𝐺 just by using
the blue edge 𝑒𝐵 = (𝑎, 𝑏), where 𝑎 is the tail of 𝑒𝐵 and 𝑏 is its head. For every
set 𝐴′

𝑖 we list all the light-red edges which were mapped to an element in this
set. We construct a walk 𝑊𝑖 in the following manner: We start 𝑊𝑖 at vertex 𝑏
and then follow the Hamiltonian cycle 𝐻 up to the tail of the edge corresponding
to the first element in 𝐴𝑖, and we append this edge to the path. The iteratively
append edges corresponding to other elements of 𝐴𝑖 to 𝑊𝑖, connected by a path
of dark-red edges in 𝐻. Namely, suppose that 𝑊𝑖 ends with the 𝑗-th element
of 𝐴𝑖 and we want to add the (𝑗 + 1)-st. The walk ends at some vertex 𝑣𝑗 and
the next edge starts at possibly different vertex 𝑢𝑗+1. We take the path 𝑃𝑗 from
𝑣𝑗 to 𝑢𝑗+1 in the dark-red Hamiltonian cycle 𝐻. Then we append path 𝑃𝑗 and
the (𝑗 + 1)-st edge (corresponding to the (𝑗 + 1)-st element of 𝐴𝑖) to 𝑊𝑖, thus
extending this walk by one element from the set. At the end, we append the
whole dark-red Hamiltonian cycle 𝐻 to 𝑊𝑖 and then finally, a part of 𝐻 which
ends at vertex 𝑎, which is the tail of the blue edge 𝑒𝐵. This way we obtain a
walk which contains precisely the red edges corresponding to elements in 𝐴′

𝑖 (the
edges in 𝐻 may be contained more than once). Note also that 𝑊𝑖 is polynomially
large with respect to the size of the Set Cover instance as it contains at most
(𝑛 + 1)|𝐴𝑖| + 3𝑛 elements.

We now connect the walks 𝑊𝑖 by the blue edge (in an arbitrary order) and get
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AA…AA

CA…AAAA…AC

CC…CC

……

CAA…AAC

CAA…AAAAAA…AAC

AAA…ACA ACA…AAA

ACC…CCC CCC…CCA

AAA…AAA

CCC…CCC

AAA…ACCCCA…AAA

Figure 3.1: Illustration of the reduction from Set Cover. The elements
from the Set Cover are mapped to the light-red (bold solid) edges. The dark-red
(solid) edges which form a Hamiltonian path are added to all sets and can be used
to transition between individual light-red edges, hence each set corresponds to a
walk in this graph. The blue (dashed) edge is not from the universe and delimits
the subwalk corresponding to individual sets.

a walk 𝑊 such that every maximal red subwalk of 𝑊 is 𝑊𝑖 for some 𝑖. Therefore,
the reduction preserves Set Cover solutions exactly, with the same objective value.
In more detail, every solution for the Set Cover instance corresponds to a solution
for MaskMinNumRuns on the instance from the reduction, and vice versa.
Moreover, the number of selected subsets 𝐴𝑖 equals the number of selected red
subwalks, or equivalently, the number of runs of ones.

Finally, since all the 𝑘-mers of the superstring (including the only ghost 𝑘-mer
corresponding to the blue edge) are over alphabet {A, C} only, there are no reverse
complements, so the reduction works in both the uni-directional and bi-directional
models. This concludes the polynomial-time reduction from Set Cover to the
graph formulation of MaskMinNumRuns, which implies that the NP-hardness
of approximation by Theorem 5.

The main downside of the proof is that the superstring resulting from the
reduction would hardly be computed by any reasonable superstring algorithm,
even on the same set of 𝑘-mers as in the reduction (moreover, a set of 𝑘-mers with
a Hamiltonian cycle in its de Bruijn graph may not occur in practice). Still, the
hardness proof justifies the usage of ILP solvers for MaskMinNumRuns outlined
in the next subsection. We leave it as an open question whether or not for a 𝑘-mer
superstring computed by a particular algorithm, e.g., local or global greedy, it is
possible to solve MaskMinNumRuns in polynomial time.
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3.2.4 ILP-Based Optimization of the Number of Runs
Despite the NP-hardness of minimizing the number of runs of ones in the mask,

we propose an exact algorithm based on integer linear programming (ILP) that is
efficient in practice for genomic data in bacterial pan-genomics. The efficiency
is due to the fact that ILP solvers are well optimized and we further propose a
greedy heuristic that significantly reduces the size of the ILP problem.

We first observe that if a ghost 𝑘-mer starts at a position 𝑖 of the superstring,
then in any mask representing the original set, 𝑀[𝑖] must be 0. Therefore, ghost
𝑘-mers split the superstring into segments where the mask symbol can be arbitrary
(given that every 𝑘-mer in 𝐾 has at least one on occurrence). Clearly, it gives
no benefits to set different mask values for 𝑘-mers in the same segment as we
can otherwise set all the mask values in the segment to 1 without increasing the
number of runs. Therefore, we either set mask symbol for 𝑘-mers in a single
segment all by 1s or all by 0s.

With those observations, we can formulate the problem as an ILP problem.
For each segment [𝑙𝑗, 𝑟𝑗] of the superstring, we introduce a binary variable 𝑥𝑗 that
is 1 if the segment is masked by 1s and 0 otherwise. For every 𝑘-mer 𝑎 ∈ 𝐾, we
add a constraint the sum of 𝑥𝑗’s over all segments [𝑙𝑗, 𝑟𝑗] containing 𝑎 (i.e. 𝑎 has
an occurrence whose first character is in this segment) is at least 1. The objective
of out ILP is to minimize the sum of 𝑥𝑗’s. We therefore obtain the following ILP
problem::

minimize
𝑚

∑
𝑗=1

𝑥𝑗

subject to ∑
𝑗=1,…,𝑚∶ 𝑎∈𝕂𝑗

𝑥𝑗 ≥ 1 ∀ canonical 𝑘-mer 𝑎 ∈ 𝐾

𝑥𝑗 ∈ {0, 1} ∀𝑗 = 1, … , 𝑚

(MinRunILP)

The solution of the original problem can be obtained from the solution of the
ILP problem by setting 𝑀[𝑖] = 𝑥𝑗 for every 𝑖 ∈ [𝑙𝑗, 𝑟𝑗] and 0s to all occurrences
of ghost 𝑘-mers. We further remark that this ILP is similar to the ILP for Set
Cover. This is not a coincidence as we have seen that minimizing the number of
runs yields solutions to Set Cover.

Furthermore, we provide a greedy heuristic to reduce the size of the ILP
problem. It works in a two simple steps.

1. For each 𝑘-mer appearing only once in the superstring, we set 𝑥𝑗 = 1 for
the segment containing this 𝑘-mer.

2. Afterwards, if there is an undecided segment [𝑙𝑗, 𝑟𝑗] such that all 𝑘-mers in
𝐾 that have an occurrence in this segment have already been masked by 1s,
we set 𝑥𝑗 = 0.

We are left with segments that are not yet decided and we resolve them using
the ILP by introduction variables only for these segments. This heuristic can be
ran multiple times, however in practice the first run is usually sufficient to obtain
a small-enough ILP instance.

In case the ILP instance is too large even after the reduction using the heuristic
and we do not require the optimal solution, either the ILP part can be skipped
completely with all remaining variables being assigned with 1s in which case
the algorithm falls between maximizing the number of ones and minimizing
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the number of runs of ones. Alternatively, an approximation algorithm can be
used, e.g., the greedy algorithm for set cover which is known to be a logarithmic
approximation [Joh74].

For a full pseudocode of the solution to minimizing the number of runs of ones
in the mask, see Algorithm 5.

Algorithm 5: MaskMinRuns – ILP-based algorithm for minimizing
the number of runs of ones in a mask

input : Masked superstring (S, M) implicitly representing a 𝑘-mer set 𝐾, 𝑘 ∈ ℕ
output : A masked superstring for 𝐾 with the the same superstring and the minimum

number of runs of ones
Function MaskMinRuns(S, M, 𝑘):

𝐾 ← 𝑑𝑖𝑐𝑡 ; // intervals for represented 𝑘-mers
M′ = [0] × |M| ; // new mask
for 𝑖 = 1, … , |S| − 𝑘 do // construct 𝐾

a ← S[𝑖 ∶ 𝑖 + 𝑘 − 1];
if M[𝑖] = 1 then

𝐾 ← 𝐾 ∪ {a};
I ← 0 ; // current interval
V ← 𝐹𝑎𝑙𝑠𝑒 ; // whether the current interval contains a 𝑘-mer
for 𝑖 = 1, … , |S| − 𝑘 do // construct intervals

a ← S[𝑖 ∶ 𝑖 + 𝑘 − 1];
if a ∈ 𝐾 then // can be done also in the bi-directional model

𝐾[a] ← 𝐾[a] ∪ {I};
V ← 𝑇 𝑟𝑢𝑒;

else
if V = 𝑇 𝑟𝑢𝑒 then

I ← I + 1;
V ← 𝐹𝑎𝑙𝑠𝑒;

for a ∈ 𝐾 do // first step of heuristic reduction
if |𝐾[a]| = 1 then

𝑥𝐾[a][0] ← 1;
for 𝑗 = 0, … , I − 1 do // second step of heuristic reduction

if 𝑖 only has already represented 𝑘-mers then
𝑥𝑗 ← 0;

Solve ILP for remaining 𝑥𝑗’s;
Construct M′ from 𝑥𝑗’s;
return (S, M′);

3.3 Two-Step Protocol Approximation Guaran-
tees

In the previous sections, we have described the two-step optimization protocol
for computing masked superstrings, which solves a reformulated version of the
problem instead of computing masked superstrings directly. In this section we
show that this protocol in fact computes an approximately optimal solution for
many different objectives including those to store masked superstrings in encodings
from Figure 2.1.

Towards this, we put several assumptions on the objective function 𝑔(𝑆, 𝑀).
We assume that 𝑔 can be split into a linear function of the superstring length
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and a non-negative function, that can be bounded by a function of mask length.
Formally, we assume 𝑔(𝑆, 𝑀) = 𝑐|𝑆| + 𝑔𝑚(𝑆, 𝑀), where 𝑐 is a constant and
0 ≤ 𝑔𝑚(𝑆, 𝑀) ≤ |𝑀| ⋅ ̂𝑔𝑚(|𝑀|). In the upper bound, we move the factor of |𝑀|
outside of ̂𝑔𝑚 as this simplifies the math and also most functions naturally grow
with increasing size of the mask. For function satisfying these assumptions, we
provide approximation ratio guarantees for the two-step optimization protocol in
Theorem 6.

Theorem 6. Given an objective function 𝑔(𝑆, 𝑀) = 𝑐|𝑆| + 𝑔𝑚(𝑆, 𝑀), where
0 ≤ 𝑔𝑚(𝑆, 𝑀) ≤ |𝑀| ⋅ ̂𝑔𝑚(|𝑀|), the two-step optimization protocol has an approx-
imation ratio of

𝜎 (1 + ̂𝑔𝑚(|𝑆|)
𝑐

) ,

where 𝜎 is the approximation ratio of the algorithm used to compute a superstring
in the first step.

Proof. Consider an optimal pair (𝑆𝑜𝑝𝑡, 𝑀𝑜𝑝𝑡) and the value of 𝑔(𝑆𝑜𝑝𝑡, 𝑀𝑜𝑝𝑡) =
𝑐|𝑆𝑜𝑝𝑡| + 𝑔𝑚(𝑆𝑜𝑝𝑡, 𝑀𝑜𝑝𝑡), which can be lower-bounded by 𝑐|𝑆𝑜𝑝𝑡| as 𝑔𝑚 is non-
negative. On the other hand, the value of the solution (𝑆, 𝑀) obtained by the two
step optimization protocol can be upper bounded as 𝑐|𝑆| + |𝑀| ̂𝑔𝑚(|𝑀|) which is
in fact 𝑐|𝑆| + |𝑆| ̂𝑔𝑚(|𝑆|) as |𝑆| = |𝑀|. Hence, the approximation ratio is at most

𝑐|𝑆| + |𝑆| ̂𝑔𝑚(|𝑆|)
𝑐|𝑆𝑜𝑝𝑡|

≤ 𝜎𝑐|𝑆| + |𝑆| ̂𝑔𝑚(|𝑆|)
𝑐|𝑆|

≤ 𝜎 (1 + ̂𝑔𝑚(|𝑆|)
𝑐

)

which gives the desired ratio. Clearly, the second step cannot make the result
worse.

We remark that for global greedy in the uni-directional model, 𝜎 is about
3.396 [EMV23]. We do not give a proof for the same or similar ratio for the
bi-directional global greedy, instead we note that the ratio in the bi-directional
model cannot be worse than in the uni-directional case by a factor of more than
2, which is still in 𝒪(1).

We show that this general result applies to all the encodings of masked
superstrings shown in Figure 2.1.

• enc1 or enc2: If we store masked superstrings plainly as bit vectors, it
requires three bits per superstring character, hence 𝑔(𝑆, 𝑀) = 3|𝑆| and the
ratio is 𝜎.

• enc3: If we store the superstring in a vector and masks using its run-length
encoding, the objective function is 𝑔 = 2|𝑆| + runs(𝑀) ⋅ log |𝑆| where the
second term can be upper bounded by |𝑀| log |𝑆|, hence we get the ratio
𝜎(1 + 1

2 log |𝑆|) or at most 𝜎(1 + 1
2 log 𝑘𝑛), where 𝑛 is the number of 𝑘-mers.

• enc4: If we store the superstring in a vector and store the positions of zeros
in the mask, the objective function is 𝑔 = 2|𝑆|+ |𝑀|0 log |𝑆|. We can bound
the second term as in the previous case and obtain the ratio 𝜎(1 + 1

2 log |𝑆|)
or 𝜎(1 + 1

2 log 𝑘𝑛).
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We remark that it is possible to generalize the result for more complex functions
of the masked superstring along the same lines, but for most practically interesting
cases, this formulation is sufficient.

However, for functions that do not depend on the superstring length directly,
this approach gives no approximation guarantees. In fact, as we show in Ap-
pendix A, in the case of finding a masked superstring with a globally minimal
number of runs of ones, the ratio for the two-step method cannot be bounded. As
an upside, in Appendix A, we sketch a polynomial-time algorithm that solves this
objective optimally.

Despite the fact that this covers the majority of practically interesting ob-
jectives, we note that the logarithmic ratio obtained in the two latter cases is
far from ideal. Yet worse, if we do not assume anything about the superstring
algorithm except for its ratio, it can be easily seen that the result for each of the
encodings is asymptotically tight as we can consider an optimal superstring with
a single run of ones, but a computed superstring can have a linear number of runs
(and similarly for the number of zeros). We leave it as an open question to design
a method for simultaneous optimization of the superstring and mask that would
yield a better result.
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4 FMS-Index: Efficient Indexing
of Masked Superstrings

As masked superstrings form a textual representation 𝑘-mer sets, it is natural to
index them using full-text indexes (see, e.g., review in [Nav16]). The most natural
choice is the FM-index [FM05] (for more details see Section 1.5.5), given its heavy
use accross bioinformatics and the availability of high-quality implementations.
However, due to the presence of the mask, applying the FM-index directly does
not work.

We thus introduce FMS-Index, a modified version of the FM-index, which
omits the memory demanding sampled suffix arrays and adds an auxiliary table
for the mask, which as a result simplifies membership queries.

Recall that in the FM-index, when indexing several strings at one, the most
computationally expensive operation in order to answer membership queries is the
location of each of the occurrences in the original strings in order to determine
whether the occurrence is inside a queried string or overlaps a boundary. This
also requires significant memory overheads as we need to store both the sampled
suffix array and the starting position of each segment.

We therefore propose the FMS-index which consists of the following compo-
nents:

A) The BWT of the superstring.
B) The occurrence function.
C) The SA-transformed mask.

FM-index [FM05] FMS-index (Chapter 4)
Underlying rep-
resentations

(r)SPSS [CLJ+14; BBK21; RM21;
SKA+23] Masked superstrings (Section 2)

Required
structures

A) BWT of concatenated strings
B) Occurrence function
C) Starting positions of each string in their
concatenation
D) Sampled suffix array

A) BWT of the superstring
B) Occurrence function
C) SA-transformed mask

Membership
query

1) Compute the occurrence range using
backwards search
2) Locate each occurrence
3) Check if at least one occurrence is not
on the boundary

1) Compute the occurrence range using
backwards search
2) Check if there is at least one on occur-
rence using rank queries

Table 4.1: Comparison of the FMS-index to the FM-index. Regarding the
required structures, note that the BWTs (A) and occurrence functions (B) directly
correspond and that the starting positions (C) can be viewed as a compressed
form of an untransformed mask and hence it corresponds to the transformed
mask (C). The sampled suffix array (D) is not required in the FMS-index. In
the membership query, step (1) is the same in both cases, but for the FMS-index
steps (2) and (3) are replaced by a much simpler step of two rank queries on the
SA-transformed mask.

The BWT and the occurrence function are the same as in the FM-index. The
only new component is the transformed mask, which we define as follows. For the
comparison with the FM-index, see Table 4.1.

Definition 3 (SA-transformed Mask). Let 𝑆 be a superstring and 𝑀 be a mask
with a special $ symbol, which is less than all the alphabet letters, appended to
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each. Then the SA-transformed mask is a binary string 𝑀 ′ of the same length,
such that 𝑀 ′[𝑖] = 𝑥 if and only if 𝑀[𝑗] = 𝑥 where 𝑗 is the starting position of the
𝑖-th lexicographically smallest suffix of 𝑆.

Another way how to view the SA-transformed mask is to consider the Burrows-
Wheeler matrix of the superstring and attach each mask symbol to its correspond-
ing superstring letter. The SA-transformed mask is formed by the mask symbols
in the first column of the matrix. For a better understanding, see Figure 4.1.

Burrows-Wheeler matrix for masked superstring
(CAGGTAG$, 1011100$)

($, $) (C, 1) (A, 0) (G, 1) (G, 1) (T, 1) (A, 0) (G, 0)
(A, 0) (G, 0) ($, $) (C, 1) (A, 0) (G, 1) (G, 1) (T, 1)
(A, 0) (G, 1) (G, 1) (T, 1) (A, 0) (G, 0) ($, $) (C, 1)
(C, 1) (A, 0) (G, 1) (G, 1) (T, 1) (A, 0) (G, 0) ($, $)
(G, 0) ($, $) (C, 1) (A, 0) (G, 1) (G, 1) (T, 1) (A, 0)
(G, 1) (G, 1) (T, 1) (A, 0) (G, 0) ($, $) (C, 1) (A, 0)
(G, 1) (T, 1) (A, 0) (G, 0) ($, $) (C, 1) (A, 0) (G, 1)
(T, 1) (A, 0) (G, 0) ($, $) (C, 1) (A, 0) (G, 1) (G, 1)

Figure 4.1: Illustration of the relation of the SA-transformed mask and
the Burrows-Wheeler matrix The Burrows-Wheeler matrix for an example
superstring with the corresponding mask symbols attached to it. The Burrows-
Wheeler transform are the superstring symbols in the last column, whereas the
SA-transformed mask (Definition 3) are the mask symbols in the first column (in
bold).

4.1 Basic Operations with the FMS-Index
In this section, we describe how to efficiently implement three basic operations:

construction of the index from a masked superstring, exporting the masked
superstring back from the index, and merging two indexes. In Section 4.2, we
show how to answer membership queries with the FMS-index.

Construction. The construction of the FMS-index is relatively straightforward.
The BWT and the occurrence function are computed as in the FM-index. A
possible way this can be done is by first constructing the inverse of the suffix array,
from which the BWT can be computed in linear time. This can also be used to
directly compute the SA-transformed mask. Therefore, there are no additional
overheads needed and the whole construction can be done in linear time.

Masked superstring export. We call the operation of retrieving the original
masked superstring from its indexed representation as its export. Getting the
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superstring itself is simple, as we only reverse the BWT as in the FM-index. To
get the original mask, we realize that the 𝑖-th symbol of the SA-transformed mask
corresponds to the mask symbol which succeeds in the original superstring the
𝑖-th letter of the BWT. Therefore, we reverse the SA-transformed mask by the
same operation as the BWT and then rotate it by one position to the right.

Index merging. To merge the FMS-indexes, we can utilize the same approach
as with the FM-indexes, we simply glue the 𝑖-th SA-transformed mask to the 𝑖-th
letter of the BWT, merge it as if there was only the BWT and then unglue the
mask symbols. The merging of the BWTs can be done as described in [HM14].

Compaction. If the masked superstring contains too many redundant copies
of individual 𝑘-mers, which may happen if we merge multiple indexed masked
superstrings, it may be desirable to compact it, i.e., reoptimize its support su-
perstring to reduce memory requirements. This can be performed in linear time,
using two different approaches: One option is exporting the 𝑓-masked superstring,
counting the number of on and off occurrences of each 𝑘-mer, constructing the
represented 𝑘-mer set, and then compute the masked superstring (Chapter 3).
Alternatively, one may directly compute an 𝑓-masked superstring using the lo-
cal greedy algorithm (Section 3.1.2) executed directly on the FMS-index, see
Appendix C.

4.2 Membership Queries via Simplified FM-In-
dex Search

The process of answering membership queries on indexed masked superstrings
can be split into two steps (see also Table 4.1 for comparison to the FM-index
search). The first step is the same as in the FM-index. We perform the backwards
search for the queried 𝑘-mer and obtain the range of occurrences which correspond
to prefixes of size 𝑘 of consecutive rows in the Burrows-Wheeler matrix.

This directly gives us occurrences of the queried 𝑘-mer and if at least one
of them is on, the queried 𝑘-mer is represented. We can get the number of on
occurrences in this range (which also gives us the number of off occurrences) using
two rank queries on the SA-transformed mask. If we work in the bi-directional
model, we also query the reverse complement of the queried 𝑘-mer and sum the
numbers of on occurrences. If the sum is non-zero, the 𝑘-mer is represented.

The whole query can be answered in 𝒪(𝑘) time since the most expensive
operation is the backwards search. Note that compared to the FM-index, we
do not need to perform the costly operation of locating each occurrence in the
original string coordinates.
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5 Function-Assigned Masked
Superstrings for Set Operations
5.1 Function-Assigned Masked Superstrings

Suppose we are given a masked superstring (𝑀, 𝑆) and our objective is to
determine whether a given 𝑘-mer 𝑄 is among the represented 𝑘-mers. Conceptually,
this process consists of two steps: first, identify the occurrences of 𝑄 in 𝑆 and
retrieve the corresponding mask symbols; then, verify whether at least one 1 is
present. We can formalize this process via a so-called occurrence function.

Definition 4. For a superstring 𝑆, a mask 𝑀, and a 𝑘-mer 𝑄, the occurrence
function 𝜆(𝑆, 𝑀, 𝑄) → {0, 1}∗ is a function returning a finite binary sequence
with the mask symbols of the corresponding occurrences, i.e.,

𝜆(𝑆, 𝑀, 𝑄) ∶= (𝑀𝑖 ∣ 𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 = 𝑄) .

In this notation, verifying 𝑘-mer presence corresponds to evaluating the com-
posite function ‘or ∘ 𝜆’; i.e., 𝑘-mer is present if 𝜆(𝑆, 𝑀, 𝑄) is non-empty and or of
the values is 1. For instance, in Example 2 for the 𝑘-mer 𝑄 = GGG, it holds that
𝜆(𝑆, 𝑀, 𝑄) = (0, 1), as the first occurrence is off and the second on, and the
or of these values is 1; therefore, is GGG is represented. The set of all represented
𝑘-mers for a masked superstring (𝑆, 𝑀) is then

𝐾 = {𝑄 ∈ {A, C, G, T}𝑘 | 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1} ,

where 𝑓 is the or function.
Nevertheless, or is not the only function 𝑓 that is applicable for such a

“demasking” as well; for instance, with xor, we consider a 𝑘-mer present if and
only if there is an odd number of on occurrences of 𝑄 (Figure 5.2).

In fact, 𝑘-mer demasking can be done with any Boolean function; see an
overview in Table 5.1. Furthermore, it is convenient to allow the function to reject
some input sequences as invalid by returning a special value called invalid, which
can also be viewed as restricting mask domain and thus enforcing certain criteria
on mask validity. Finally, we limit ourselves to symmetric functions only, as these
will later provide useful guarantees for indexing.

Definition 5. We call a symmetric function 𝑓 ∶ {0, 1}∗ → {0, 1, invalid} a
𝑘-mer demasking function.

However, not all demasking functions are practically useful, and we will
typically require them to have several natural properties. First, we require the
non-appearing 𝑘-mers to be treated as non-represented, which is ensured by
property (P1) in Definition 6 below. (Naturally, if we want to represent the
complement of a set, we treat the non-appearing 𝑘-mers as represented.) Second,
property (P2) guarantees that for any appearing 𝑘-mer 𝑄 with any number of
occurrences in a given superstring, we can set the mask bits in order to both make
𝑄 represented and not represented. Third, even with (P1) and (P2), there is an
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Function
name Definition

Com-
prehen-
sive

Use cases

or
0 if |𝜆|1 = 0
1 if |𝜆|1 > 0
invalid never

yes

• The default 𝑓-masked super-
string (Section 5.1)
• Generalizes (r)SPSS representa-
tions (Section 5.2.2)
• Union input and output func-
tion (Section 5.2.2)

xor
0 if |𝜆|1 is even
1 if |𝜆|1 is odd
invalid never

yes • Symmetric difference input and
output function (Section 5.2.3)

and

0 if 𝜆 = 𝜖 or |𝜆|0 > 0
1 if 𝜆 ≠ 𝜖 and |𝜆|0 =
0
invalid never

yes
• Allows for on occurrences
of ghost 𝑘-mers or-MS (Ap-
pendix B)

[𝑎,𝑏]-threshold
(1 ≤ 𝑎 ≤ 𝑏)

0 if |𝜆|1 < 𝑎 or |𝜆|1 >
𝑏
1 if 𝑎 ≤ |𝜆|1 ≤ 𝑏
invalid never

iff 𝑎 = 1 • Intersection and set difference
output function (Section 5.2.4)

one-or-
nothing

0 if |𝜆|1 = 0
1 if |𝜆|1 = 1
invalid otherwise

yes

• Union, symmetric difference and
intersection input function (Sec-
tion 5.2.4)
• Set difference left input function
(Section 5.2.5)

two-or-
nothing

0 if |𝜆|1 = 0
1 if |𝜆|1 = 2
invalid otherwise

no • Set difference right input func-
tion (Section 5.2.5)

all-or-nothing

0 if |𝜆|1 = 0
1 if 𝜆 ≠ 𝜖 and |𝜆|0 =
0
invalid otherwise

yes • No need for mask rank in queries
(Appendix B)

Table 5.1: Overview of selected demasking functions 𝑓 for 𝑓-masked
superstrings. The table includes those functions that are use for set operations
or used in other contexts throughout the paper. In the definitions, we abbreviate
𝜆(𝑓, 𝑆, 𝑀) as 𝜆. Note also that even non-comprehensive functions in this table
satisfy properties (P1) and (P4) from Definition 6.

ambiguity in the meaning of 0 and 1 in the mask and thus, in (P3), we require
the 1 to have the meaning of a 𝑘-mer being represented; namely, if it has a single
occurrence masked with 1, it should be treated as represented. Finally, in (P4),
we require the function to be efficiently computable, specifically in 𝒪(1) time from
the frequencies of 0s and 1s in its input. We call demasking functions satisfying
these properties comprehensive.

Definition 6. We say that a demasking function 𝑓 is comprehensive if it satisfies
the following three properties:

(P1) 𝑓(𝜖) = 0.

(P2) For every 𝑛 > 0, there exist 𝑥, 𝑦 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 0 and 𝑓(𝑦) = 1.

(P3) 𝑓((1)) = 1 and 𝑓((0)) = 0.
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(P4) Given |𝑥|0 and |𝑥|1, one can evaluate 𝑓(𝑥) in constant time in the wordRAM
model.

With the notion of demasking functions 𝑓 in hand, we generalize the concept
of masked superstrings to so-called 𝑓-masked superstrings.

Definition 7. Given a demasking function 𝑓, a superstring 𝑆, and a binary mask
𝑀 with |𝑀| = |𝑆|, we call a triplet 𝒮 = (𝑓, 𝑆, 𝑀) a function-assigned masked
superstring or 𝑓-masked superstrings, abbreviated as 𝑓-MS.

Since we allow the output of 𝑓 to be invalid, it may happen that for some 𝑓-
masked superstring (𝑓, 𝑆, 𝑀) and some 𝑘-mer 𝑄, the result of 𝑓 for the occurrences
of 𝑄 turns out to be invalid. We call such 𝑓-masked superstring invalid and will
always ensure validity for all masked superstrings that we will work with.

For a valid 𝑓-masked superstring, the set of represented 𝑘-mers is

𝐾 = {𝑄 ∈ {A, C, G, T}𝑘 | 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1}.

The following observation is a consequence of property (P2) in Definition 6 of
comprehensive demasking functions.

Observation 7. For a comprehensive demasking functions 𝑓, it holds that for
any 𝑘-mer set 𝐾 and any superstring 𝑆 of 𝑘-mers in 𝐾, there exists a mask 𝑀
such that (𝑓, 𝑆, 𝑀) represents exactly 𝐾.

This further means that for any 𝑓-MS (𝑓, 𝑆, 𝑀) and any comprehensive
demasking function 𝑔, it is possible to find a mask 𝑀 ′ such that (𝑔, 𝑆, 𝑀 ′)
represents exactly the same set as (𝑓, 𝑆, 𝑀).
Example. Consider Example 2 with the set of 3-mers 𝐾 = {ACG, GGG}, a superstring
𝑆 = ACGGGG, and a mask 𝑀 = 101100. Then the occurrence function for 𝑄 = GGG
is 𝜆(𝑆, 𝑀, 𝑄) = (1, 1). If we choose the 𝑓 to be or, then 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1 and
thus, GGG is represented. However, if we choose xor instead, GGG is considered as
a ghost 𝑘-mer.

For or, the represented set is {ACG, GGG} and since xor is a comprehensive
function, there always exists a mask 𝑀 ′ such that (xor, 𝑆, 𝑀 ′) represents the
same set as (or, 𝑆, 𝑀). In our case 𝑀 ′ could be 100100. For functions which are
not comprehensive, this is in general impossible. For instance, considering the
(impractical) constant-zero function, the represented set will always be empty.

5.2 Function-Assigned Masked Superstrings as
an Algebraic Framework

In this section, we describe on the conceptual level how to perform set opera-
tions on 𝑘-mer sets by simply concatenating 𝑓-masked superstrings and choosing
suitable demasking functions 𝑓. We deal with practical aspects of efficient imple-
mentation of this concept in Section 5.3.
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5.2.1 Concatenation as an Elementary Low-Level Opera-
tion

We define concatenation on 𝑓-masked superstrings as concatenating the un-
derlying superstrings and masks for all possible input and output functions 𝑓.

Definition 8. Given a function-assigned masked superstring (𝑓1, 𝑆1, 𝑀1) and
(𝑓2, 𝑆2, 𝑀2), we define (𝑓1, 𝑓2, 𝑓𝑜)-concatenation as the operation taking these two
function-assigned masked superstrings and producing the result (𝑓𝑜, 𝑆1 + 𝑆2, 𝑀1 +
𝑀2). We denote this operation by +𝑓1,𝑓2,𝑓𝑜

.

Note that Definition 8 can be easily extended to more than two input 𝑓-masked
superstrings. In the case that all the functions are the same, i.e. 𝑓 = 𝑓1 = 𝑓2 = 𝑓𝑜,
we call it 𝑓-concatenation or just concatenation if 𝑓 is obvious from the context.

Definition 9. We call the set operations that can be performed with 𝑓1 = 𝑓2 = 𝑓𝑜
function-preserving set operations. The operations that cannot be performed with
a single function are called function-transforming set operations.

Furthermore, note that while the set of appearing 𝑘-mers of 𝑆1 + 𝑆2 clearly
contains the union of appearing 𝑘-mers of 𝑆1 and of 𝑆2, additional new occurrences
of 𝑘-mers may appear at the boundary of the two superstrings. These newly
appearing 𝑘-mers may not be appearing in any of the superstrings 𝑆1 and 𝑆2. We
refer to them as boundary 𝑘-mers and to the occurrences of appearing 𝑘-mers of
𝑆1 + 𝑆2 that overlap both input superstrings as boundary occurrences.

In the following sections, we demonstrate how concatenation can be used to
perform set operations. In Sections 5.2.2 and 5.2.3, we demonstrate that union and
symmetric difference are function-preserving set operations and in Sections 5.2.4
and 5.2.5 we show intersection and set difference as function-transforming set
operations. See Figure 5.2 for an example of function-preserving set operations.

𝑘-mer set 1 𝑘-mer set 2 set from concatenation
Example 𝑓-MSes 𝒮1 = AGc 𝒮2 = CgGCg 𝒮1 + 𝒮2 = AGcCgGCg
On occurrences 1 × AG, 1 × GC 1 × GC, 2 × CG 1 × AG, 2 × GC, 2 × CG
Off occurrences none 1 × GG 1 × CC, 1 × GG

𝑓 interpreted as or
represented set 𝐾 {AC, GC} {CG, GC} {AC, CG, GC}
ghost set 𝑋 {} {GG} {CC, GG}

𝑓 interpreted as xor
represented set 𝐾 {AC, GC} {GC} {AC}
ghost set 𝑋 {} {CG, GG} {CC, GC, CG, GG}

Table 5.2: Represented 2-mer sets with or and xor for masked super-
strings and their concatenation. The second and third row depict the on and
off occurrences of 2-mers, respectively, in the uni-directional model for masked
superstrings 𝒮1 = AGc, 𝒮2 = CgGCg and their concatenation. Note that after the
concatenation new off occurrences of boundary 𝑘-mers emerge; in this case, it is
just the blue-colored 2-mer CC. The bottom part depicts the represented sets 𝐾
and ghost sets 𝑋 for these 𝑓-masked superstring when interpreted using or and
xor. Note that 𝐾or = 𝐾1 ∪ 𝐾2 in the case of or and 𝐾xor = 𝐾1Δ𝐾2 for xor.
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5.2.2 Union
We show that concatenating masked superstrings, which are or-masked su-

perstrings in our notation, naturally act as union on the represented sets. Hence,
union is a function-preserving set operation.

Theorem 8. For any two sets of 𝑘-mers 𝐾 and 𝐾′ and any of their or-masked
superstrings (𝑆, 𝑀) and (𝑆′, 𝑀 ′) respectively, the concatenation of the or-masked
superstrings is a valid or-masked superstring representing the set 𝐾 ∪ 𝐾′.

Proof of Theorem 8. Consider a 𝑘-mer appearing in 𝐾. Then it must have at least
one on occurrence in (𝑆, 𝑀) and thus, it will have at least one on occurrence in
the concatenation and will be considered represented. The same line of reasoning
works for 𝑘-mers in 𝐾′. Conversely, consider a 𝑘-mer neither in 𝐾 nor in 𝐾′. It
has no on occurrence in any of the original masked superstrings and hence it
has no on occurrence in the result and is correctly not considered as represented.
This proves that in the result, exactly the 𝑘-mers from 𝐾 ∪ 𝐾′ are represented.

This property allows or-masked superstrings to generalize (r)SPSS representa-
tions, since any set of 𝑘-mers in the (r)SPSS representation can be directly viewed
as an or-masked superstring by concatenating the individual simplitigs/matchtigs.

In fact, we show that or is the only comprehensive demasking function that
acts as union on the represented sets.

Theorem 9. or is the only comprehensive demasking function 𝑓 such that for
any two 𝑘-mer sets 𝐾 and 𝐾′ and any of their valid 𝑓-masked superstrings (𝑆, 𝑀)
and (𝑆′, 𝑀 ′) respectively, the concatenation of the 𝑓-masked superstrings is a valid
𝑓-masked superstring representing the sets 𝐾 ∪ 𝐾′.

Proof of Theorem 9. We prove this via contradiction. Assume there is a function
𝑓 different than or that satisfies the above. Consider the smallest 𝑛 such that there
exists an input 𝑥 of length 𝑛 such that 𝑓(𝑥) is not or of 𝑥. As 𝑓 is comprehensive
and thus 𝑓((1)) = 1, 𝑛 > 1. Since 𝑓 is comprehensive and different than or, there
must be 𝑥 ≠ 0 of length 𝑛 s.t. 𝑓(𝑥) ≠ 1. Fix a 𝑘-mer, for simplicity A𝑘 (although
similar approach works for all 𝑘-mers). We take the first 𝑓-masked superstring
to be the 𝑘-mer with mask being 𝑀0 = 𝑥0 and 𝑀𝑖 = 0 for the remaining 𝑘 − 1
positions. And the second 𝑓-masked superstring to be CA … A where A appears
𝑛 + 𝑘 − 2 times with the mask being: 𝑀0 = 0 and other 𝑀𝑖 = 𝑥𝑖. At least one
of the represented sets contains the 𝑘-mer as 𝑥 ≠ 0 but the resulting 𝑓-masked
superstring is either invalid or does not contain the 𝑘-mer in the represented set
as 𝑓(𝑥) ≠ 1, a contradiction.

We further demonstrate this uniqueness even on the level of matchtigs and
therefore, or-masked superstrings are the only 𝑓-masked superstrings that gener-
alize (r)SPSS representations.

Theorem 10. or is the only comprehensive demasking function 𝑓 such that for any
sequence of 𝑓-masked superstrings, where individual superstrings are matchtigs, the
concatenation of all the 𝑓-masked superstrings represents the union of represented
𝑘-mers.
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Proof of Theorem 10. It is sufficient to find a construction of matchtigs such that
we can construct an arbitrary sequence of ones and zeros at the occurrences of a
given 𝑘-mer and rest follows from the proof of Theorem 9.

We do this with 𝑘-mer CG and matchtigs Cg and Gc. Consider the counterex-
ample sequence of occurring ones and zeros from Theorem 9. For every 1 in
the sequence, we add the matchtig Cg and for each 𝑚 consecutive zeros, we add
𝑚 + 1 times the matchtig Gc since at the boundary of two Gc matchtigs an off
occurrence of 𝑘-mer CG appears. At any other boundaries, the 𝑘-mer does not
appear, therefore the construction is correct. The rest of the proof follows a similar
argument as in Theorem 9.

Note, however, that the same does not hold if we want to represent simplit-
igs/SPSS solely. As an individual simplitig cannot appear more than once with
an on occurrence, any comprehensive function generalizes SPSS representations if
it satisfies that if there is one on occurrence of a 𝑘-mer, it returns 1, and if there
is none, it returns 0.

5.2.3 Symmetric Difference
Next, we observe that xor naturally acts as the symmetric difference set

operation, i.e., concatenating two xor-masked superstring results in a xor-MS
representing the symmetric difference of the original sets. Indeed, recall that using
xor implies that a 𝑘-mer is represented if and only if there is a odd number of
on occurrences of that 𝑘-mer. Observe that the boundary occurrences of 𝑘-mers
do not affect the resulting represented set as those have zeros in the mask. Thus,
if a 𝑘-mer is present in both sets, it has an even number of on occurrences in
total and hence, is not represented in the result. Likewise, if a 𝑘-mer belongs
to exactly one input set, it has an odd number of on occurrences in this input
set and an even number (possibly zero) in the other; thus, it is represented in
the result. As any appearing 𝑘-mer is either boundary or appears in one of the
masked superstrings, the result corresponds to the symmetric difference.

5.2.4 Intersection
After seeing functions for union and symmetric difference operations, it might

seem natural that there should be a function for intersection. This is however
not the case as there is no comprehensive demasking function that acts as the
intersection when concatenating 𝑓-masked superstrings.

In a nutshell, this impossibility is caused by the fact that if there is a 𝑘-mer
𝑄 that occurs exactly once in the input masked superstrings with 1 in the mask,
then after concatenation, it will still occur once with 1 in the mask, so under any
comprehensive 𝑓 the 𝑘-mer would appear as if it was in the intersection.

Theorem 11. There is no comprehensive demasking function 𝑓 with the property
that the result of 𝑓-concatenation of two 𝑓-masked superstrings always represents
the intersection of the originally represented 𝑘-mer sets.

Proof of Theorem 11. Let 𝑓 be any comprehensive demasking function. Consider
masked superstrings A and C, each representing a single 1-mer. Their concatenation
is AC. Since 𝑓((1)) = 1 by the comprehensiveness of 𝑓, the concatenation represents
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both 1-mer A and C. However, the intersection is empty and thus, 𝑓 cannot be
used to compute the intersection from the concatenation.

Note that the proof cannot be generally extended to all demasking function as
there exist non-comprehensive demasking functions acting as the intersection on
the represented sets upon concatenation, for instance the constant zero function.
However, since the constant zero function always represents the empty set, it is of
no use in practice.

We further remark that although we have for convenience used the property
(P3) from the definition of comprehensive functions, the proof in fact relies only
on the property (P2) and holds even if consider not only 1-mers but the same
counterexample can be built for any 𝑘.

We can circumvent the non-existence of a single demasking function acting as
intersection by using possibly non-comprehensive demasking functions that are
different for the result than for the input. We further show that such schemes
have other applications beyond intersection.

To this end, we will need two different types of demasking functions:

• [𝑎,𝑏]-threshold function (where 0 < 𝑎 ≤ 𝑏) is a demasking function that
returns 1 whenever it receives an input of at least 𝑎 ones and at most 𝑏
ones and 0 otherwise. Note that unless 𝑎 = 1, [𝑎,𝑏]-threshold functions are
not comprehensive as they do not satisfy properties (P2) and (P3). The
corresponding 𝑓-masked superstrings are denoted [𝑎,𝑏]-threshold-masked
superstrings.

• The one-or-nothing function is a demasking function that returns 1 if
there is exactly one 1 in the input, 0 if there are no 1s, and invalid if there
is more than a single on occurrence of the 𝑘-mer. Note that this function is
comprehensive.

We now use these functions to perform any symmetric set operation on any
number of input 𝑘-mer sets. Given 𝑁 sets of 𝑘-mers, we compute a one-or-
nothing-masked superstring for each. This is always possible since one-or-
nothing is a comprehensive demasking function and can be done by directly using
the superstrings and masks computed by local or global algorithms (Section 3.1)

We then concatenate the individual one-or-nothing-masked superstring. The
result is not a valid one-or-nothing-masked superstring in general, but it has
the special property that each 𝑘-mer has as many on occurrences as the number
of sets in which it appears. We can therefore change the demasking function of
the resulting 𝑓-masked superstring from one-or-nothing to an [𝑎,𝑏]-threshold
function. This will result in an [𝑎,𝑏]-threshold-masked superstring that is always
valid and the represented set will be exactly the 𝑘-mers that appear in at least 𝑎
sets and at most 𝑏 sets. Important [𝑎,𝑏]-threshold-masked superstrings in this
setting include the following:

• The [𝑁,𝑁]-threshold-masked superstring corresponds to taking the inter-
section of the represented sets.

• The [1,𝑁]-threshold-masked superstring is the or-masked superstring and
corresponds to taking the union.
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• The [1,1]-threshold-masked superstring corresponds to taking those 𝑘-mers
that appear in exactly one of the original sets. In case of 𝑁 = 2, this
corresponds to the symmetric difference.

It is important to emphasize that we can use different [𝑎,𝑏]-threshold functions
to alter the resulting 𝑘-mer set without changing the superstring or the mask. For
instance, we can use the same superstring and mask to consider intersection and
union simply by changing the function from [𝑁,𝑁]-threshold to [1,𝑁]-threshold.

Arbitrary symmetric set operations. The same scheme, with more general
demasking functions, can be used to implement any symmetric set operation op on
any number of sets. Indeed, given 𝑁, we again concatenate their one-or-nothing-
masked superstrings in an arbitrary order. The symmetry of op implies that
there is a set 𝑆𝑁 ⊆ {0, 1, … , 𝑁} such that a 𝑘-mer belongs to the set resulting
from applying op if and only if it is in 𝑎 input sets for some 𝑎 ∈ 𝑆. The sets 𝑆𝑁
for 𝑁 = 1, 2, … can be directly transferred into a demasking function 𝑓op that
models op; however, 𝑓op may not satisfy the property (P4) from Definition 6.

5.2.5 Set Difference
Having seen how to perform symmetric set operations, we deal with asymmetric

ones, focusing on the set difference of 𝑘-mer sets 𝐴 𝐵. Clearly, we cannot use the
same demasking function 𝑓 to represent both 𝐴 and 𝐵 as it would be impossible
to distinguish the sets after concatenation. Hence, we use different functions to
represent 𝐴 and 𝐵, namely,

• represent 𝐴 using a (1, 1)-masked superstring,

• represent 𝐵 using a (2, 2)-masked superstring, and

• interpret the result as a (1, 1)-masked superstring.

This computes the difference correctly as all 𝑘-mers represented in 𝐵 are
treated as ghosts in the result, the 𝑘-mers from 𝐴 but not from 𝐵 still have a
single on occurrence and thus are correctly considered represented, and finally,
the ghost 𝑘-mers in either of the initial sets or the boundary 𝑘-mers have no
influence on the result. The same functions can be used if we subtract more than
a single set. Furthermore, this scheme can be generalized to any set operations on
any number of sets, by representing the 𝑖-th input set with (𝑖, 𝑖)-MS and using
a suitable demasking function for the result of the concatenation (constructed
similarly as 𝑓op for symmetric operation op above).

The downside to this approach is that the (2, 2) function is not comprehensive
and we cannot simply use any superstring of 𝑘-mers in 𝐵, but we need a superstring
such that every 𝑘-mer of 𝐵 appears at least twice, which can for instance be
achieved by doubling the computed superstring of 𝐵.

We remark that this is the best we can do as set difference cannot be achieved
with comprehensive functions solely as a result of Theorem 12.

Theorem 12. There is no demasking function 𝑓𝑜 and no comprehensive demasking
functions 𝑓1 and 𝑓2, such that the result of (𝑓1, 𝑓2, 𝑓𝑜)-concatenation would always
represent the set difference of the originally represented 𝑘-mer sets.
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Proof of Theorem 12. Consider a 𝑘-mer appearing only once in both the super-
strings. Then we can get the same result as if the 𝑘-mer appeared in the first set
(and hence should be treated as represented) as if it appeared in the second set as
either represented or ghost (in which cases it should be treated as ghost in the
first). This however means that no matter the function 𝑓𝑜, it cannot be correctly
representing the difference.

Other applications. Furthermore, there are many more demasking functions
that can be used with 𝑓-masked superstrings, although they may not correspond to
set operations. In Appendix B, we mention the and and all-or-nothing demasking
functions that could be useful for some applications (see also Table 5.1).

5.3 𝑓-Masked Superstrings as a Data Type
After seeing 𝑓-masked superstrings as an algebraic framework in Section 5.2,

here we demonstrate how to turn them into a standalone data type for 𝑘-mer
sets supporting all the key operations. This consists of using the FMS-index
(Chapter 4) as the underlying data structure and using its capabilities to perform
set operations as well as to use membership queries on 𝑓-masked superstrings. One
specific prototype implementation is then described and evaluated in Chapter 6.

5.3.1 Using FMS-Index with 𝑓-Masked Superstrings
We can utilize the FMS-index to work with general 𝑓-masked superstrings

and not only with or-masked superstrings. The only part which changes is how
to determine the presence or absence as now it can be an arbitrary demasking
function 𝑓. However, as in the membership queries, we already count the number
of on and off occurrences of a 𝑘-mer, we can simply determine the presence of a
𝑘-mer by evaluating 𝑓, which for comprehensive functions can be done in constant
time.

5.3.2 𝑓-MS Mask Recasting for 𝑓 Transformation
To change the demasking function 𝑓 to a different one without altering the

represented 𝑘-mer set and the underlying superstring, we may need to recast the
mask.

Although the recasting procedure depends on the specific function 𝑓 used, for
all comprehensive functions mentioned in Table 5.1, this can be done in linear
time. For the and and all-or-nothing functions, recasting can be done via
computing masks for or-masked superstrings with the maximum number of 1s in
the mask (Section 3.2.1), since those are also compatible masks also in the case of
and and all-or-nothing functions. In the same manner, for the or, xor, and
one-or-nothing functions, we can do the recasting by minimizing the number
of ones in the mask (Section 3.2.2). Note that for non-comprehensive functions,
recasting is in general not possible, since there may be no compatible mask for
the new function.
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If we deal with indexed 𝑓-masked superstrings, we can export the 𝑓-MS, then
recast the mask, and index the result.

5.3.3 Performing Set Operations on Indexed 𝑘-Mer Sets
Using an indexed 𝑓-MS, set operations such as union, symmetric difference,

intersection or symmetric difference can be performed directly via their associated
abstract operations in Section 5.2. Indeed, we implement concatenation of masked
superstrings via index merging (see Section 4.1 for details on merging). Prior to
concatenating, we only need to ensure that each input set is represented using a
correct demasking function as required by the operation (Table 5.1), and to recast
the mask if it is not the case.

After the concatenation, depending on our use-case, we recast the mask if
we need a different demasking function than the one resulting from individual
operations. Finally, it may be desirable to compact the 𝑓-masked superstring
in case the resulting 𝑓-masked superstring is unnecessarily large for the set it
represents; more precisely, when many 𝑘-mers appear in the 𝑓-MS multiple times
or there are many ghost 𝑘-mers. This can be done by compaction as described
in Section 4.1 which can be easily generalized for the case of general demasking
functions 𝑓.

Given that we either perform a symmetric set operation or the number of
input sets is constant, all of these steps can be implemented in linear time and
thus, the total time complexity of each set operation is also linear.
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6 Experimental Evaluation
In this chapter, we present experimental results, comparing our approach to

existing state-of-the-art methods. In Section 6.1.1 we introduce KmerCamel ,
a tool for efficient masked superstring computation and optimization and in
Section 6.1.2 we introduce FMSI, a tool for efficient indexing of masked superstrings
and performing set operations on the underlying 𝑘-mer sets. In Section 6.2 we
describe our experimental setup and benchmarking methodology.

In Section 6.3.1 we compare our algorithms to the existing with respect to
the length of the superstring. Then in Section 6.3.2 we compare the proposed
mask optimization algorithms in terms of the resulting mask compressibility. In
Section 6.3.3 we evaluate both the superstrings and masks on compressibility
and in Section 6.3.4 we show that on data sets that do not have the spectrum-
like property, our approach outperforms the existing representations. Finally, in
Section 6.4.1 we compare the performance of FMSI to existing single 𝑘-mer-set
indexes and in Section 6.4.2 we demonstrate the feasibility of performing set
operations on 𝑘-mer sets using 𝑓-masked superstrings.

6.1 Implementation

6.1.1 Efficient Computation with KmerCamel
We implemented the two superstring approximation algorithms in a program

called KmerCamel , which first reads a user-provided FASTA file with genomic
sequences, retrieves the corresponding 𝑘-mer set, computes a masked superstring
using a user-specified algorithm and core data structure, and prints it in the enc2
encoding (mask-cased superstring).

KmerCamel was developed in C++ and is available under the MIT license
from Github (https://github.com/OndrejSladky/kmercamel). Both the local
and global greedy algorithms (Sections 3.1.2 and 3.1.3) were implemented using two
distinct data structures: one based on hash tables and 𝑘-mer hashing (Section 3.1.4)
and the other based on Aho-Corasick automaton of the 𝑘-mer set (Section 3.1.5).
Note, however, that currently only the hash-table-based versions are well optimized.
The automaton-based implementations are currently experimental and their only
advantage is that they can work with arbitrarily large 𝑘’s. However, even the
hashing-based versions support 𝑘’s up to 64 which covers the vast majority of use
cases.

Furthermore, KmerCamel also supports the optimization of the masks. It
provides the possibility to minimize and maximize the number of ones in the
mask (Sections 3.2.2 and 3.2.1) and to minimize the number of runs in the mask
(Section 3.2.4) which uses the GLPK library (https://www.gnu.org/software/
glpk/) to solve the resulting integer linear program.

6.1.2 Efficient Indexing with FMSI
We implemented FMS-index (Chapter 4) for indexing masked superstrings

and their generalization 𝑓-masked superstring and the associated 𝑘-mer set op-
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erations (Section 5.2) in a tool called FMSI (𝑓-Masked Superstring Index). The
tool supports membership queries on indexed 𝑓-masked superstrings and further
provides an implementation of basic building-block operations such as exporting,
merging, and compaction (Sections 5.3.1 and 5.3.2) that are used to perform set
operations.

Index merging is implemented via export, concatenation of the underlying 𝑓-
MSes, and then reindexing. Compaction is implemented using 𝑘-mer counting and
KmerCamel to construct a superstring. All the demasking functions mentioned
in Table 5.1 are supported directly by FMSI, and users can possibly add their
custom ones.

FMSI was developed in C++ and is available from GitHub (https://github.
com/OndrejSladky/fmsi) under the MIT license. The implementation uses
the sdsl-lite library [GBMP14], available at https://github.com/simongog/
sdsl-lite/ to perform efficient rank queries, and it also uses KmerCamel .

6.2 Experimental Setup
Experiments with KmerCamel . We evaluated the masked superstrings
computed by KmerCamel , specifically, we used hash-table based implementa-
tions of both BiDir-LocalGreedy and BiDir-GlobalGreedy . We refer
to these as to local and global greedy respectively. As a model species, we used
S. pneumoniae genome (NC_011900.1, 𝑛 = 1, genome length 2.22 Mbp) and
pan-genome (computed from 616 assemblies from a study of children in Mas-
sachusetts, USA [CFP+15]). To evaluate the behaviour of the representations and
the algorithm itself on a variety of different types of de Bruijn graphs, we also
used varying values of 𝑘 to control the amount of branching, as well as shifting
towards the pan-genome to increase the amount of branching further. To evaluate
the program on larger data sets, we also used the human genome (GRCh38.p14,
genome length 3.1 Gbp). In Section 6.3.4, we evaluated the performance on
sub-sampled 𝑘-mer sets. To assess the generality of our findings, we sought to
redo the analysis using additional bacterial and viral genomes and pan-genomes,
specifically a S. cerevisiae genome (𝑛 = 1, genome length 12.2 Mbp), a SARS-
CoV-2 pan-genome (𝑛 = 590 𝑘), and an E. coli pan-genome (obtained as a union
of 𝑘-mers of E. coli genomes from the 661k collection [BHM+21]). We found
exactly the same patterns as with the S, pneumoniae data sets (all the data and
plots are provided in the supplementary GitHub repository which is available at
https://github.com/OndrejSladky/bc-thesis-supplement).

Experiments with FMSI. We evaluated the performance of FMSI on bac-
terial and viral pan-genomes and on a nematode genome. Evaluation on the
efficiency of the construction and membership queries (Section 6.4.1) was done
using an E. coli pan-genome (obtained as a union of 𝑘-mers of E. coli genomes
from the 661k collection [BHM+21]) and S. pneumoniae pan-genome (computed
from 616 assemblies from a study of children in Massachusetts, USA [CFP+15])
and further verified on a SARS-CoV-2 pan-genome (𝑛 = 14.7 𝑀). We mea-
sured storage space for each index, both the time and memory requirements for
construction and the time and memory requirements for queries with isolated
𝑘-mers. We tested both positive and negative dataset, to obtain negative queries,
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we took a random subset of 105 distinct 𝑘-mers from a part of chromosome 1
of the human genome (genome assembly GRCh38.p14), excluding those in the
queried dataset. We further evaluated memory-efficiency of FMSI on set op-
erations (Section 6.4.2), namely the computation of unions, intersections and
symmetric differences of 𝑘-mer sets. The evaluation was performed on two dif-
ferent roundworm genomes, C. elegans (NC_003279.8, 100M base pairs) and C.
briggsae (NC_013489.2, 108M base pairs) as two genomes which share similarities
due to their relatedness but do not share the majority of the genome. All the
data and plots are provided in the supplementary GitHub repository, available at
https://github.com/OndrejSladky/bc-thesis-supplement.

All the algorithms in all the experiments were run on a single thread on a
server with AMD EPYC 7302 (G GHz) processor and 251 GB RAM.

6.3 Experiments on Masked Superstrings

6.3.1 Superstring Length
We first sought to evaluate whether the proposed greedy algorithms (Sec-

tion 3.1) can provide better superstring than the existing state-of-the-art so-
lutions for computing (r)SPSS representations, namely ProphAsm [BBK21],
eulertigs [SA23], greedy matchtigs, and optimal matchtigs [SKA+23]. The length
of the individual superstrings corresponds to the cumulative length in the case of
(r)SPSS representations.

We evaluated the algorithms on a variety of different data sets. In particular,
on three genomes with increasing genomes lengths (S. pneumoniae, S. cerevisiae
and a human genome) and on three pan-genomes with increasing number of
genomes (S. pneumoniae, E. coli and SARS-CoV-2). Figure 6.1 depicts the results
as the number of characters in the superstring per 𝑘-mer. As some of the tested
algorithms required more computational resources than what we had available, we
stopped the execution of the algorithms after a day of computation in the case of
the human genome and after 10 hours in the case of all other data sets. We also
ceased the execution if the algorithms required more memory than 200GB for the
human genome and 60GB for the rest. We excluded the time to compute unitigs,
which are required by eulertigs and matchtigs, from the maximum allowed time.

We focused on situations in which simplitigs were unable to approach the lower
bound given by the number of 𝑘-mers ([BBK21, Figure 2]). For S. pneumoniae
this corresponds to the range of 𝑘 between 10 and 15 and with larger genomes the
range shifts towards larger 𝑘, in general being around log4 |𝐾|. For smaller values
of 𝑘, the sets contain almost all 𝑘-mers and all the algorithms are able to nearly
attain the non-tight lower bound of 1.0 characters per 𝑘-mer. Similarly for larger
values, in the case of single genomes, the graphs contain a few non-branching paths
and thus can be efficiently represented using all representations. For pan-genomes,
the sizes of all representations also decrease, but not to 1 character per 𝑘-mer due
to the branching at polymorphic sites. We remark that when we shifted towards
larger 𝑘-mer sets, such as those corresponding to the human genome, all eulertigs,
greedy matchtigs and optimal matchtigs did not computationally scale well for
the branching de Bruijn graphs as we were unable to compute them in 200GB of
RAM.
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Figure 6.1: Comparison of algorithms for 𝑘-mer superstrings measured by
superstring (or mask) characters per distinct canonical 𝑘-mer; 1.0 is a (non-tight)
lower bound. The benchmark was performed using a S. pneumoniae genome
(NC_011900.1, 𝑛 = 1, genome length 2.22 Mbp), a S. cerevisiae genome (𝑛 = 1,
genome length 12.2 Mbp), a human genome (GRCh38.p14, genome length 3.1
Gbp), a S. pneumoniae pan-genome (dataset [CFP+15], 𝑛 = 616, total genome
length 1.27 Gbp), an E. coli pan-genome (union of E. coli genomes from the
661k collection [BHM+21]), and a SARS-CoV-2 pan-genome (𝑛 = 590 𝑘), and
evaluated for a range of 𝑘-mer lengths between 9 and 31; for the human genome
we also included 𝑘 = 61. We compared state-of-the-art tools ProphAsm (P),
eulertigs (E), greedy matchtigs (M), and optimal matchtigs (O) as well as our
proposed algorithms local greedy (L, with 𝑑max ∈ {1, … , 5}) and global greedy (G),
both in their hash-table-based implementations. Note that the optimal matchtigs,
greedy matchtigs, and eulertigs are missing for some values of 𝑘 for the human as
the algorithm did not finish in 1 day and 200 GB of memory. Optimal matchtgs
are missing some values of 𝑘 for other datasets as the algorithm did not finish in
10 hours and 60 GB of RAM. We excluded the time for computing unitigs from
the maximum time. Furthermore, for the value 𝑘 = 61 the output of ProphAsm
is missing as it supports only 𝑘-mer sizes up to 32. We remark that local greedy
with 𝑑max = 1 (L1) is equivalent to ProphAsm (P) as indeed confirmed by the
results.
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For the situation, where the lower bound of 1.0 character per 𝑘-mer is not
easily attainable, we identify three levels of performance:

• Level 1: Global greedy. The global greedy algorithm consistently out-
performs all the other algorithms by at least ∼ 15%. On all tested genomes
and pan-genomes it has at most 1.4 character per 𝑘-mer providing a very
good performance even for pan-genomes.

• Level 2: Matchtigs and local greedy. Matchtigs (both greedy and
optimal) and local greedy with large enough value of 𝑑max (which for 𝑘 ≤ 20
is 4 and 5) have a comparable performance, producing representations about
15% longer than those produced by global greedy. For some values of 𝑘,
matchtigs performed better than local greedy, while for other, especially
for values of 𝑘 corresponding to the most branching de Bruijn graphs, local
greedy performed better by a tiny margin. However, once the size of 𝑘
increases to 61, the values of 𝑑max up to 5 are too low and the performance
of local greedy degrades. Note that for many values of 𝑘 we were not able to
compute matchtigs optimally even for smaller data sets in reasonable time
limits. For the values where we were able to compute them, they performed
similarly to greedy matchtigs; in some cases slightly better.

• Level 3: Simplitigs/SPSS. Both simplitigs that were computed heuristi-
cally (ProphAsm and local greedy with 𝑑max = 1), and optimal simplitigs
(eulertigs) produce the longest representations, each requiring up to 2.4
characters per 𝑘-mer.

In summary, the global greedy algorithm computed superstrings of small-
est length among evaluated algorithms, improving upon matchtigs by about
15%. Viewed from a different perspective, global greedy halved the gap between
matchtigs and the non-tight lower bound of 1.0 bits per 𝑘-mer.

Based on these results, to simplify further evaluation, we use only a few
representations. Since all the SPSS representations (ProphAsm, eulertigs and
KmerCamel ’s local with 𝑑max = 1) yield similar results, we use only eulertigs,
since these are the optimal form of these representations. For matchtigs, we
further use only the greedy matchtigs, as the optimal matchtigs could not be
computed for all values of 𝑘 within 10 hours and for the remaining values their
results were comparable. We further use global greedy and local greedy only with
𝑑max = 5.

6.3.2 Mask Compressibility
As superstrings are in general not very well compressible, requiring around

2 bits per character, we consider the compressibility of masks. In particular, we
first evaluate the compressibility of each mask algorithm for different superstring
algorithms used when compressed with different compression algorithms. The
considered masks are

• the default mask, which for the KmerCamel ’s algorithms is the mask
produced, for the (r)SPSS representations, it is the mask associated with
them if we represent them as masked superstrings (see Theorem 1),

• the mask maximizing the number of ones,
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Figure 6.2: Mask compression sizes for different mask algorithms with
different compressors and superstring algorithms by bits of mask after com-
pression per superstring character; the value of 1.0 corresponds to the size of the
mask if stored as a bit vector. The comparison was performed using the 𝑘-mer
superstrings computed previously for the S. pneumoniae pan-genome. Individual
heuristics: D – the default mask from the superstring algorithms, O – the maximal
number of ones, R – the minimal number of runs, and Z – the minimum number
of ones (computed greedily). Evaluated on output superstrings from eulertigs
(E), greedy matchtigs (M), local greedy with 𝑑max = 5 (L), and global greedy (G)
and compressed with different compression algorithms, RRR (RRR), Elias-Fano
(EF), xz -9 (XZ), and bzip2 -9 (BZ2). The compressors supporting random
access (RRR and Elias-Fano) are marked with (+). Note that as the values
are per superstring characters, the values are not comparable between different
superstring algorithms as the superstrings have different lengths. We mark the
best result for each value of 𝑘 and each superstring algorithm with an asterisk.

• a mask minimizing the number of ones (which is done greedily, corresponding
to the lexicographically largest among the minimizing masks),

• and a mask minimizing the number of runs in the mask.
For compression, we used xz (which is based on the Lempel-Ziv algorithm [ZL77]),
bzip2 (a compressor based on BWT), and two compressors supporting random
access: RRR [RRS07] and Elias-Fano [Eli74; Fan71] (which is based on RLE).

In Figure 6.2 we present the results for the S. pneumoniae pan-genome. For
simplicity, we focus only on the results for S. pneumoniae pan-genome, as the
results for other data sets are qualitatively the same (see also the supplementary
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repository1). Figure 6.2 for simplicity also depicts the results only for 𝑘 being 13
and 15. Results for 𝑘 between 11 and 14 are qualitatively similar to 𝑘 = 13 (for
general data sets this corresponds to roughly log4 |𝐾|) as these correspond to the
most branching de Bruijn graphs. For larger values, the results resemble those for
𝑘 = 15 with the compression size steadily decreasing with increasing 𝑘. For the
practically not very interesting cases with very low values of 𝑘 which correspond
to almost all 𝑘-mers being present, all the approaches produce very compressible
masks.

Regarding different compression algorithms, generally best results were ob-
tained with bzip2, which either produced the most compact representation, or in
the rare cases such as local greedy with 𝑘 = 13 in Figure 6.2 only by negligible
margins worse that the other tools. This trend was consistent across all data sets,
even with very large sets, such as the human genome. Therefore, if random access
is not required, we suggest using bzip2. If random access is desired, in most cases
Elias-Fano provided better results. However, for 𝑘 ∼ log4 |𝐾| and the local or
global algorithms, RRR was better as those cases contained many smaller runs
which were difficult to compress using Elias-Fano.

Regarding the mask algorithms, if RRR is used, maximizing the number of ones
in the mask is the best choice regardless of the superstring algorithm, as RRR can
use the higher differences between the number of 1s and 0s for better compression.
For Elias-Fano, the best results were obtained with the masks minimizing the
number of runs, which is also not surprising as Elias-Fano is based on RLE.
For xz and bzip2, the most compressible masks for the (r)SPSS were the default
masks since the compressors can take advantage of runs of zeros being long exactly
𝑘−1 characters. For the global and local greedy, the masks minimizing the number
of runs of ones performed the best, with the masks maximizing the number of
ones being almost as compressible. Note that maximizing the number of ones
can be preferred to minimizing the number of runs as it is computationally less
demanding.

6.3.3 Masked Superstrings Compressibility
We further evaluated the compressibility of both superstrings and their masks

in encoding enc1 from Figure 2.1 when compressed with xz on S. pneumoniae
genome and pan-genome, see Figure 6.3. As masks we used the generally most
compressible masks for each superstring algorithm when compressed with xz. In
particular, we used default masks with eulertigs and matchtigs and we used the
masks with the minimum number of runs for local and global greedy algorithms.
As a result, the global greedy and matchtigs performed the best, both having
between 2 and 3 bits per 𝑘-mer. Their results are comparable, with matchtigs
being slightly better for most values of 𝑘 (9–15), with the highest difference for the
value of 13, and global greedy being slightly better for other values of 𝑘 (16–18).
Local greedy performed worse except for the cases of 𝑘 ≤ 10, where it performed
the best due to the predictable structure of the superstring. We note, however,
that these cases are not very interesting from the practical point of view. Eulertigs
were the worst compressible, in the worst cases requiring more than 4 bits per
𝑘-mer.

1https://github.com/OndrejSladky/bc-thesis-supplement
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Figure 6.3: Comparison on masked superstring compressibility measured
by bits per distinct canonical 𝑘-mer after superstring (𝑆) and mask compres-
sion (‘xz -9’ of enc1 in Fig. 2.1, with the most compressible masks for each
heuristic as in Fig. 6.2). The benchmark was performed using a S. pneumoniae
genome (NC_011900.1, 𝑛 = 1, genome length 2.22 Mbp) and its pan-genome
(dataset [CFP+15], 𝑛 = 616, total genome length 1.27 Gbp), and evaluated for
a range of 𝑘-mer lengths comparing eulertigs (E), greedy matchtigs (M), local
greedy (L, with 𝑑𝑚𝑎𝑥 = 5) and global greedy (G),

6.3.4 Sub-Sampled 𝑘-Mer Sets
In order to verify that masked superstrings work well on variety of different

datasets, we sought to evaluate it on datasets where the current approaches are not
near optima. As an example of such a dataset, we evaluated all the methods on
sub-sampled 𝑘-mer sets, which has lower spectrum-like property than genomes and
pan-genomes. This is due to the fact that removing 𝑘-mers may break the large
strings into several smaller ones. We considered the 𝑘-mer sets of S. pneumoniae
pan-genome for various 𝑘 and considered sub-sampling rates 𝑟 from 10−4 to 1.
In particular, the sub-sampled 𝑘-mer set for a given 𝑘 and sub-sampling rate
𝑟 < 1 was chosen as a uniformly random subset of 𝑟 ⋅ 𝑛 distinct 𝑘-mers of the
pan-genome, where 𝑛 is their total number in the pan-genome. For all values of 𝑘,
the observed pattern is very similar (Figure 6.4).

Due to sub-sampling, the compressibility of the masked superstring worsened
substantially for all algorithms, especially for local heuristics including simplitigs
and matchtigs. Indeed, when the sub-sampling rate is small, namely 𝑟 ≤ 0.1, the
compressibility in Figure 6.4 is around 2𝑘 bits per distinct 𝑘-mer for all of the
local methods that rely on the existence of long paths in the de Bruijn graph.
Intuitively, this means that the average size of (weakly) connected components in
the de Bruijn graph is a small constant. In the limit of decreasing rate, this value
of 2𝑘 bits per 𝑘-mer is attained for all algorithms as in the extreme case there is
only a single 𝑘-mer.

For higher compression rates, the results of local methods gradually get better,
though even for rate 𝑟 = 0.9, the compressibility is substantially worse compared
to the not sub-sampled case (Figure 6.3). The global greedy algorithm is now a
clear winner, being more than two times better than matchtigs in terms of the
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Figure 6.4: Comparison on masked superstring compressibility on sub-
sampled pan-genome by bits per distinct canonical subsampled 𝑘-mer after
superstring and mask compression (‘xz -9’ of enc1 in Fig. 2.1, with the de-
fault masks produced by individual superstring heuristics). The benchmark was
performed using a subsampled S. pneumoniae pan-genome (dataset [CFP+15],
𝑛 = 616, total genome length 1.27 Gbp), with different values of 𝑘 and subsam-
pling rates 𝑟; specifically we sampled a uniformly random subset with an 𝑟-fraction
of all distinct 𝑘-mers of the pan-genome. Comparison of local greedy (L, with
𝑑𝑚𝑎𝑥 = 5) and global greedy (G), to eulertigs (E) and greedy matchtigs (M).

final compressed sizes for most rates and values of 𝑘. Finally, we observe that
local greedy’s performance with 𝑑𝑚𝑎𝑥 = 5 substantially outperforms matchtigs
and improves with increasing 𝑑𝑚𝑎𝑥.This is because both global greedy and local
greedy with 𝑑𝑚𝑎𝑥 > 1 take advantage of overlaps shorter than 𝑘−1, which survive
sub-sampling with higher probability.

Finally, we observe that the results of the (r)SPSS representations are in many
cases exactly the same. This again follows from that the de Bruijn graph has tiny
(weakly) connected components and therefore, there remain only a few choices in
terms of the path selection.

6.4 Experiments with the FMS-Index

6.4.1 Membership Queries
We compared time and memory requirements for processing both positive

and negative queries of FMSI to state-of-the-art programs for indexing individual
𝑘-mer sets, namely,

• BWA2 [LD09], a state-of-the-art aligner based on the FM index; for pro-
cessing queries, we used the fastmap command [Li12], run with parameter
𝑤 = 999999 on the simplitigs computed by ProphAsm [BBK21],

• SBWT3 [APV23], an index based on the spectral Burrows-Wheeler trans-
form; we used the default plain-matrix variant as it achieves the best query
times in [APV23],

• CBL4 [MCLM24], a very recent method based on smallest cyclic rotations
of 𝑘-mers, and

2https://github.com/lh3/bwa, commit 139f68f.
3https://github.com/algbio/SBWT, commit c433b53.
4https://github.com/imartayan/CBL, commit 8e8f28e.
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(b) 𝑘 = 23, subsampled 𝑘-mers at rate 0.1.

Figure 6.5: Query time and memory for S. pneumoniae pangenome. We
plot two points, one for positive queries (+) and one for negative (-), connected
by a line.

• SSHash5 [Pib22; Pib23], an index based on minimal perfect hashing of
𝑘-mers.

We have run FMSI on the masked superstrings computed by KmerCamel ,
specifically, the global and local greedy algorithms (local is run with 𝑑 = 1).

This experiment was done using an E. coli pan-genome [BHM+21] and S.
pneumoniae pan-genome [CFP+15] and further verified on a SARS-CoV-2 pan-
genome (𝑛 = 14.7 𝑀). To verify the behavior across diverse datasets, we also
provide experimental results for subsampled 𝑘-mer sets of these three pan-genomes;
we note that after subsampling the spectrum-like property (SLP) no longer hold.
Specifically, for a given subsampling rate 𝑟 ∈ [0, 1], we selected a uniformly random
subset of 𝑟 ⋅ 𝑁 distinct 𝑘-mers of the original pan-genome, where 𝑁 is the total
number of 𝑘-mers of the pan-genome.

The results on the E. coli pan-genome for 𝑘 = 23 without subsampling and
with subsampling at rate 0.1 are presented in Figure 6.5; for further results,
we refer to the supplementary repository6. Across all of the datasets, values of
𝑘, and subsampling rates, FMSI run on the masked superstring computed by
KmerCamel ’s global greedy required 3-10 times less memory for processing
queries than all of the other methods, attaining around 3-4 bits per 𝑘-mer on
non-subsampled E. coli pan-genome. However, FMSI was among the slowest from
the tested methods for processing queries, performing about the same as SSHash
and requiring about twice much time than SBWT. We believe that this result is
mainly due to the prototype nature of our implementation, and that the query
time of FMSI can still be substantially optimized. SBWT (in the plain-matrix
variant) and CBL are generally the fastest algorithms for processing queries. We
note that SBWT required substantial disk space during index construction (up to

5https://github.com/jermp/sshash, commit 5a13d6.
6https://github.com/OndrejSladky/bc-thesis-supplement
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Figure 6.6: Set operations workflow using 𝑓-masked superstrings: exam-
ple on intersection. The workflow on intersection also contains an illustrative
example on a set of 3-mers as well as time for the operations and experimental
data for running the workflow on C. briggsae and C. elegans genomes with 𝑘 = 23.
The experimental data contains the number of MS characters after each change,
number of represented 𝑘-mers and for each indexed representation the memory
required for querying the underlying set.

tens of GBs for the E. coli pan-genome). We also remark that while the memory
usage per 𝑘-mer grows with decreasing subsampling rate, the query time remains
roughly the same for all algorithms.

6.4.2 Set Operations
We demonstrate the feasibility of using FMSI to perform set operations on

𝑘-mer sets. Our proposed pipeline for set operations, as depicted in Figure 6.6,
consists of five steps: First, we compute a textual representation of the 𝑘-mer
sets interpreted as or-masked superstrings. In our experiments, this was done
using KmerCamel ’s global greedy algorithm. Second, we recast the mask to
the desired demasking function, specifically we keep or for union and change to
one-or-nothing for intersection and to xor for symmetric difference. In the case
of or-MS computed by KmerCamel , mask recasting is actually not needed as
the output already minimizes the number of 1s in the mask. Then we index the
𝑓-masked superstrings using FMSI (this can be done even before mask recasting).
The last two steps are concatenating the two FMS-indexes by index merging and
compacting the resulting FMS-index if needed. Note that once indexed, we can
ask membership queries on the resulting 𝑘-mer sets.

For this experiment, we used genomes of C. elegans and C. briggsae. We
evaluated the superstring length of each computed 𝑓-masked superstring, and
the memory requirements to perform queries on the indexed individual and
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concatenated 𝑓-masked superstrings, both before and after compaction. The
results for intersection of the two roundworm genomes for 𝑘 = 23 are depicted
in Figure 6.6. Overall, at every step, the memory required to query the indexed
𝑓-masked superstring was around 3 bits per superstring character, which in case
of the roundworms was almost the same as the number of 𝑘-mers. This trend
continues even for the merged FMS-index, albeit for the compacted concatenated
result the per-𝑘-mer memory was higher as it was as low as latent memory required
to run FMSI. Note also that the fact that compaction significantly reduces the
masked superstring length highly depends on the particular use case, namely on
the proportion of represented 𝑘-mers in the result. For union and symmetric
difference for the same data, the compaction led to almost negligible length
reduction. For data about symmetric difference and union as well as for other
values of 𝑘, see the supplementary repository7.

7https://github.com/OndrejSladky/bc-thesis-supplement
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Conclusion
We have developed a new concept for text-based representations of sets of

𝑘-mers, which we call the masked superstring of 𝑘-mers. We have shown that
masked superstrings unify the theory and even generalize the existing (r)SPSS rep-
resentations, which provides additional flexibility to optimize masked superstrings
for specific applications.

We have also demonstrated that optimizing masked superstrings is in general an
NP-hard problem, but we have developed efficient local and global approximation
algorithms and implemented them in a tool called KmerCamel . Both algorithms
come in two variants: first, highly optimized based on 𝑘-mer hashing and second,
a prototype implementation of the asymptotically optimal solution using Aho-
Corasick automaton. Moreover, we have studied the optimization of masks,
designed algorithms for it and implemented them in KmerCamel as well.

We have shown that using masked superstrings can lead to simplifications of
data-structures for 𝑘-mer sets; we have developed the FMS-index, a simplified
version of the FM-index based on masked superstrings which eliminates the
necessity of storing the sampled suffix array and to locate original coordinates for
each found occurrence.

Furthermore, we have generalized the framework of masked superstrings to
function-assigned masked superstrings, where we interpret which 𝑘-mers are
represented based on a demasking function 𝑓. We have studied several natural
demasking functions and we have shown that with 𝑓-masked superstrings, we
can perform set operations on 𝑘-mer sets via a simple concatenation of 𝑓-masked
superstrings. This renders 𝑓-masked superstrings as an abstract data type for
𝑘-mer sets. When this approach is combined with the FMS-index, it provides a
full-text 𝑘-mer index with support for set operations, which we implemented in a
prototype called FMSI.

To showcase the practical usefulness of masked superstrings and their gen-
eralization, 𝑓-masked superstrings, we evaluated the proposed algorithms using
viral, bacterial, and eukaryotic genomes and pan-genomes. We demonstrated that
masked superstrings provide better compression characteristics than simplitigs and
can provide an improvement of up to several factors over the (r)SPSS, including
matchtigs, for data that do not satisfy the spectrum-like property. Furthermore,
we have shown that using the FMS-index with masked superstrings can provide
significant memory savings compared to state-of-the-art single set indexes, while
still providing a competitive query time.

This work opens several directions for future research:
• Regarding the optimization of masked superstrings, although we proved that

the problem is NP-hard in case our objective is the length of the superstring,
for other practically interesting objectives, this is not known (Table 3.1).
Even if other objectives turn out to be NP-hard, it would still be desirable
to develop algorithms that simultaneously optimize both the superstring
and the mask unlike in our two-step method where we first optimize the
superstring and then the mask with the superstring already fixed. We believe
that with a suitable objective, this could provide even better results for
compressibility than our two-step method, even in cases where our approach
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was comparable to matchtigs.
• We noted that masked superstrings were able to halve the gap of superstring

length to the non-tight lower bound of 1 character per 𝑘-mer compared to
matchtigs in the case of branching de Bruijn graphs. Although our algorithms
do not compute the optimal solution, we believe that the output of the
global greedy algorithm is already very close to the shortest superstring.
We leave the study of stronger lower bounds and of the limits of textual
representations to a future work.

• We have only considered indexing a single 𝑘-mer set and another significant
direction is to extend the FMS-index for indexing large collections of many
𝑘-mer sets. Furthermore, our index currently supports only isolated queried
𝑘-mers, but additional support for streaming queries is desired. Although
our index supports set operations, efficient support of single additions and
deletions is also left to future work.

• Although to perform symmetric set operations, only a single concatenation
is needed, to perform asymmetric operations, we need to copy some inputs,
which is undesirable. Since this is not possible to resolve with the current 𝑓-
MS framework, perhaps a generalization of masks to more different characters
will be needed to resolve this.

• We remark the current software implementations can be improved. While
we believe that the hashing-based implementations in KmerCamel are
well optimized, the AC-automaton-based have a room for improvement,
especially in the design of memory and time-efficient implementations of the
AC automaton. Regarding FMSI, we believe it can be further optimized,
both in terms of time and memory requirements. Especially, index merging,
mask recasting, and compaction can be optimized significantly.

In conclusion, we see masked superstrings as a unifying and generalizing
concept that enables to better mathematically study and optimize 𝑘-mer set
representations. We further envision our research on 𝑓-masked superstrings as
a first step towards a space- and time-efficient library for analyzing 𝑘-mer sets
which includes all the aforementioned features.
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A A Polynomial-Time Algorithm
for Masked Superstrings with
Globally Minimum Number of
Runs

In Section 3.3 we provide approximation guarantees for objective functions
which depend on the superstring length if the two-step optimization protocol
(Chapter 3) is used. For other functions, there are no general guarantees for this
protocol. In this appendix, we consider such a function, in particular 𝑔(𝑆, 𝑀) =
𝑟𝑢𝑛𝑠1(𝑀) (see also Table 3.1), for which the two-step protocol does not produce
nearly optimal result. Here, we however demonstrate that this objective function
can be optimized in polynomial time.

We show that the ratio of optimal solution and the result of the two-step
optimization cannot be bounded. Let a block 𝐵𝑖 consist of 𝑘-mers 𝐴𝑋𝑖𝐶𝐺,
𝐺𝐶𝑌𝑖𝐴, 𝑇 𝑋𝑖𝐶𝐺, 𝐺𝐶𝑌𝑖𝐴 and 𝑆 being a simplitig transitioning between the first
two 𝑘-mers i.e., 𝑋𝑖𝐶𝐺𝑘𝐶𝑌𝑖. If 𝑋𝑖 and 𝑌𝑖 are chosen in a way that the 𝑘-mers do
not have an overlap larger than 𝐺, then the shortest superstring has two runs of
ones, whereas optimum is 1. If we connect 𝑟 blocks with additional transitions,
the number of runs in the shortest superstring is at least 𝑟, whereas the optimum
remains 1.

The minimization of the number of runs can be however solved optimally in
polynomial time, employing ideas similar as in [SA23; SKA+23] First, we observe
that if we split the solution on zeros, the runs of ones directly correspond to
individual matchtigs. Hence, we are trying to compute matchtigs with the fewest
number of sequences. An alternative view is that we aim to find the fewest walks
that cover the whole de Bruijn graph. To do this, we first contract the strongly
connected components. The result is then a DAG and we can find the minimum
path cover in polynomial time [Dil50; Ful56].

We note that this result also corresponds to finding the minimum number of
matchtigs covering the de Bruijn graph. However, despite having the least number
of sequences, the cumulative length might in theory be quite large and thus, the
resulting masked superstrings might not be suitable for usage. Nevertheless, this
algorithm demonstrates that there are natural objective functions for masked
superstrings which are polynomial-time solvable.
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B Alternative Demasking
Functions

In this section we provide two other demasking functions that can be useful in
some situations.

B.1 The all-or-nothing-Masked Superstrings
Perhaps the simplest approach to representing a set of 𝑘-mers is to mark

all occurrences of represented 𝑘-mers with one, all ghost 𝑘-mers with zero, and
treat all other masks as invalid. This corresponds to a function that returns 1
if it receives a list of ones, 0 if a list of zeros (or an empty list), and 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
otherwise.

This representation has its clear benefits. Most importantly, one can determine
the presence or absence of a 𝑘-mer by looking at the mask at any occurrence of the
𝑘-mer. For example, this makes indexing of all-or-nothing-masked superstrings
easier than indexing general 𝑓-masked superstrings, as we do not need to query
the rank to determine the number of on occurrences. Instead, we can simply
determine the presence or absence of a 𝑘-mer based on any of its occurrences
which is simpler than having to perform two rank queries on the SA-transformed
mask as discussed in Chapter 4.

We could potentially achieve higher compressibility of the mask by realizing
that we can infer the presence or absence of a 𝑘-mer from its first occurrence,
which comes from the fact that a mask for a given set is unique. Thus, we can omit
all symbols in the mask corresponding to any further occurrences of the 𝑘-mer,
making the mask shorter and easier to store, while it be easily reconstructed
afterwards.

We further note that all-or-nothing-masked superstrings can be viewed as
or-masked superstrings that maximize the number of ones in the mask.

B.2 The and-Masked Superstrings
We could easily replace the or function with and. That is, we could consider

a 𝑘-mer present if it is marked as present at all its occurrences, with the small
difference that we consider a 𝑘-mer not represented if it does not appear, i.e. we
consider the and of an empty list returning 0. This ensures that the and function
is comprehensive.

The potential advantage of and-masked superstrings over or-masked super-
strings is that we can mark ghost 𝑘-mers with ones at some occurrences and
therefore obtain masks with more ones in them, which could be beneficial, for
instance for potential additional improvements in compressibility.
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C Local Greedy Directly on the
FMS-Index

In this appendix we describe how is it possible to compute masked super-
strings with the local greedy (Section 3.1.2) executed directly on the FMS-index
(Chapter 4) which can be used for FMS-index compaction. We describe a version
that works with general 𝑓-masked superstrings (Section 5.1) in the uni-directional
model. At its core, this uses a bi-directional variant of the FMS-index based on
the bi-directional FM-index [LLT+09] as the underlying data structure alongside
with the SA-transformed mask. Note that the bi-directionality of the FM-index is
not related to the bi-directional model, but rather that it is possible to extend
the searched pattern to both directions.

Additionally to the bi-directional FM-index and the SA-transformed mask, we
require a 𝑘𝐿𝐶𝑃0−1 [Sal17] data structure that for each position determines whether
the longest common prefix of the two neighboring suffixes is of length at least 𝑘.
The 𝑘𝐿𝐶𝑃0−1 array can be computed trivially from the 𝐿𝐶𝑃 array which can be
computed in 𝒪(|𝑆|) time during the construction of the FM-index [KLA+01].

Recall that the local greedy algorithm (with a parameter 𝑑max) proceeds as
follows. It first chooses an arbitrary 𝑘-mer that has not been represented yet.
Then it tries to extend it to both sides via extensions of length 𝑑 starting with
𝑑 = 1 and going up to 𝑑 = 𝑑max. Regarding the implementation of local greedy,
there are two questions. First, how to maintain the 𝑘-mers that have not been
represented yet and second, how to quickly check whether a 𝑘-mer exists.

We start with the lexicographically smallest 𝑘-mer, which is the one that
appears first in the suffix coordinates, and based on the 𝑘𝐿𝐶𝑃0−1 array, we find
the last occurrence of this 𝑘-mer. From the SA-transformed mask, we determine
whether the 𝑘-mer is represented. If not we continue to the next 𝑘-mer.

Otherwise, we delete the 𝑘-mer 𝑄. This can be done by finding the number 𝑚
of 1s such that for input 𝑥 of size as long as the number of occurrences 𝑄 with 𝑚
1s, 𝑓(𝑥) = 0 and then setting the first 𝑚 symbols in the SA-transformed mask to 1
and other to 0. Then we try to extend it to both directions. Adding the extension
characters to either direction can be done directly using the bi-directional FM-
index and removing the characters in order to keep the string a 𝑘-mer can be
done using the 𝑘𝐿𝐶𝑃0−1 array as we can extend to both directions as long as the
value of the 𝑘𝐿𝐶𝑃0−1 is 1 [Sal17]. We check whether this 𝑘-mer is represented, if
so, delete the 𝑘-mer, extend the string, and continue. If no extension, we proceed
with the next not-yet-represented 𝑘-mer in the SA.

As each position is visited at most once per deletion and once when scanning
for 𝑘-mers, the complexity of the algorithm is 𝒪(|𝑆| + 𝑁4𝑑max) where 𝑁 is the
number of represented 𝑘-mers. This is linear for constant values of 𝑑max.

In the bi-directional model, we would need to locate the reverse complement
of each 𝑘-mer, which would worsen the time complexity by a factor of 𝑘. We leave
it as an open question whether the same time complexity as in the uni-directional
can be obtained in the bi-directional model as well. However, we note that for
practical usage, the uni-directional algorithm is usable also in the bi-directional
model as only the canonical 𝑘-mer from the pair can be stored and queried.
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