
BACHELOR THESIS

Jan Provaznı́k

Textual Ciphers as a Tool for Better
Understanding the Transformers

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: Mgr. Jindřich Libovický, Ph.D.

Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the

cited sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date 2024–05–09 Jan Provaznı́k

i

I would like to thank my supervisor Mgr. Jindřich Libovický, Ph.D., for his

guidance throughout my work on this thesis. I would also like to thank my family

and friends for their support and encouragement.

ii

Title: Textual Ciphers as a Tool for Better Understanding the Transformers

Author: Jan Provaznı́k

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. Jindřich Libovický, Ph.D., Institute of Formal and Applied Linguistics

Abstract: The Transformer architecture is very popular, so it is potentially impactful to

interpret what influences its performance. We test the hypothesis that the model relies

on the linguistic properties of a text when working with it. We remove interference with

cultural aspects of meaning by using a character-level task with the ByT5 Transformer

model. We fine-tune ByT5-small to decipher sentences encrypted with text ciphers

(Vigenère, Enigma). We annotate a sentence dataset with linguistic properties using

published NLP tools. On this dataset, we study the relationships between the linguistic

properties and the fine-tuned ByT5 decipherment error rate. We analyze correlations,

train ML models to predict error rates in sentences from the properties, and interpret

feature importance with SHAP. We find small significant correlations but fail to predict

error rates from the properties. We conclude the properties we identified do not give

much insight into the performance of the Transformer.

Keywords: Transformer NLP interpretability deep learning ciphers

Název práce: Textové šifry jako nástroj pro lepšı́ pochopenı́ modelů Transformer

Autor: Jan Provaznı́k

Ústav: Ústav formálnı́ a aplikované lingvistiky

Vedoucı́: Mgr. Jindřich Libovický, Ph.D., Ústav formálnı́ a aplikované lingvistiky

Abstrakt: Architektura Transformer je velmi populárnı́, takže může být potenciálně

významné interpretovat, co ovlivňuje jejı́ výkon. Testujeme hypotézu, že model se

při práci s textem spoléhá na jeho lingvistické vlastnosti. Abychom eliminovali vliv

kultury na význam, použı́váme úlohu pracujı́cı́ na úrovni znaků s Transformer modelem

ByT5. Dotrénujeme ByT5-small na dešifrovánı́ vět zašifrovaných pomocı́ textových šifer

(Vigenère, Enigma). Anotujeme evaluačnı́ dataset vět pomocı́ publikovaných nástrojů pro

NLP. Na evaluačnı́m datasetu zkoumáme vztahy mezi lingvistickými vlastnostmi a četnostı́

chyb dotrénovaného ByT5 při dešifrovánı́ vět. Analyzujeme korelace, trénujeme ML

modely na predikci četnosti chyb věty z jijı́ch lingvistických vlastnostı́ a interpretujeme

důležitost vlastnostı́ pomocı́ SHAP. Nacházı́me malé signifikantnı́ korelace, ale predikce

četnosti chyb z vlastnostı́ selhává. Dospı́váme k závěru, že identifikované vlastnosti

neposkytujı́ vhled do výkonu Transformerů.

Klı́čová slova: Transformer NLP interpretovatelnost deep learning šifry

iii

Contents

Introduction 3

1 Sequence modeling with Transformers 5
1.1 Language modeling . 5

1.2 Transformer . 6

1.2.1 Training . 9

1.3 ByT5 . 11

1.4 Seq2Seq decipherment . 12

1.4.1 Substitution ciphers . 12

1.4.2 Related work on decipherment modeling 13

2 Interpreting machine learning 14
2.1 Interpretability . 14

2.1.1 Feature attribution . 15

2.1.2 SHAP . 15

2.1.3 Interpretability of Transformers 16

2.2 Research question . 17

2.2.1 Analysis . 17

3 Experiments 19
3.1 Overview . 19

3.2 Data . 19

3.2.1 Preprocessing . 20

3.2.2 Linguistic properties . 20

3.3 Training . 23

3.3.1 Decipherment tasks . 23

3.3.2 Training runs . 23

3.4 Analysis . 24

3.4.1 Error prediction . 24

3.4.2 SHAP feature importance 25

1

4 Results and discussion 26
4.1 Training . 26

4.2 Correlations . 28

4.3 Performance prediction . 31

4.4 SHAP . 32

4.5 Discussion . 33

Conclusion 34

Bibliography 35

A Reproducing experiments and all results 40
A.1 Reproducing experiments . 40

A.2 All figures and tables . 41

2

Introduction

Recent advances in NLP (Natural Language Processing) have been driven by

deep neural networks (DNNs) and in particular by the Transformer architec-

ture [Vas+17]. Trained Transformer models are commonly referred to as LLMs

(Large Language Models), ‘large’ because they have billions of parameters, and

‘language’ because they operate on sequences of text. Billions of numbers are

hard, if not impossible to understand for humans, which is in tension with our

need to understand them for regulation, debugging, and trust as they are deployed

to all areas of life.

Years after LLM releases and their rise in popularity, there still is not a sufficient

understanding or even a standard methodology for investigating why LLMs are

so good and where they fail. One approach is mechanistic interpretability, which

finds explanations by looking at the inner workings of the model and trying to

make sense of the billions of numbers, decomposing them into algorithms or

circuits with a clear purpose. Another approach is behavioral or data-driven

interpretability, which finds explanations by looking at the model’s behaviors,

accepting that they are black boxes with inscrutable insides.

In this thesis, we choose the behavioral approach to interpret the Transformer

model. Through this lens, we want to understand the relationship between the

Transformer’s performance and the linguistic properties of the input text.

We remove interference with cultural aspects of meaning by using a character-

level task with the ByT5-small model [Xue+22]. The task is deciphering sentences

encrypted with substitution ciphers: Vigenère and Enigma. The decipherment

task allows us to focus on quantifiable linguistic properties of the sentences,

sidestepping hard-to-quantify semantics. It is easy to implement training as

a variant of translation; evaluation consists of comparing the Transformer’s

output to the correct decryption on a character level. With publicly available NLP

pipelines and simple algorithms, we measure various linguistic properties with

which we annotate sentences in evaluation datasets in 3 languages. We fine-tune

ByT5 on the decipherment task in English, Czech, and German.

We study the relationship between Transformer performance and automati-
cally annotated linguistic properties (AALP) at different points in training. We ana-

3

lyze correlations, predict error rates from property values with simple ML models

(Linear Regression, MLP, Random Forest, XGBoost), and assess how important

each property is for error rate predictions with SHAP. SHAP is a game theory-

based method for interpreting the predictions of ML models by attributing how

input features contribute to them.

We find that the performance of the Transformers fine-tuned on the deci-

pherment task cannot be consistently well explained by the AALP values. This

result suggests that the properties we identified are not fundamental to the

Transformer’s good performance on various tasks.

In the first chapter, we present the background for the studied models, why

are they interesting, and how to formulate decipherment as a task for them. In

the second chapter, we discuss the notion of interpretability, approaches to it and

outline the goal for our experiments. In the third chapter, we ascertain the studied

linguistic properties and describe the detailed specifications for our experiments.

In the fourth chapter, we present the results of the experiments and discuss how

they relate to our goal.

Acknowledgments
We used GitHub Copilot

1
and GPT-4

2
[Ope23] when writing and debugging code

for experiments and visualizations. We used Grammarly
3
, GPT-4, and Github

Copilot to typeset the text, format and solicit feedback.

1https://github.com/features/copilot
2https://openai.com/gpt-4
3https://app.grammarly.com/

4

https://github.com/features/copilot
https://openai.com/gpt-4
https://app.grammarly.com/

Chapter 1

Sequence modeling with
Transformers

This chapter discusses progress in language modeling and introduces the Trans-

former model architecture and its context. Next, it goes into the specifics of

the ByT5 model; the ciphers we use in our experiments and related work on

decipherment with deep neural networks (DNNs).

1.1 Language modeling
Language modeling is a task in Natural Language Processing (NLP). We have a

sequence of words or characters and want to estimate the joint probability of it

occurring in a language. A common formulation is predicting what next word

should come in a sequence. Performing language modeling well requires a model

to capture the context and dependencies within the sequence. Before the era of

end-to-end DNNs, simple language modeling was a component of systems for

generative tasks: automatic speech recognition, and machine translation.

Many other NLP tasks can be stated in a sequence modeling frame. For

example: translation is a sequence of text in the source language followed by text

in the destination language; summarization is a sequence of text followed by a

sequence of its summary; classification can be expressed as the sequence we want

to classify followed by a classifying symbol. Due to the simplicity of training

and the availability of vast amounts of data, language models are often used as

a starting point for creating specialized models for NLP tasks. Language model

training as a base for other tasks gained popularity with BERT [Dev+18] reaching

state-of-the-art results in classification and question answering. The success of

ChatGPT and similar products further shows the effectiveness of this approach.
1

1
GPT-4 [Ope23] rewrote this sentence to sound natural.

5

1.2 Transformer
The seminal paper “Attention is All You Need” by Vaswani et al. [Vas+17] intro-

duced the Transformer architecture. It has been a dominant machine learning

architecture for NLP tasks since 2017, first in machine translation, later in language

modeling and other tasks. The Transformer is based on the idea of self-attention,

relating multiple positions in a sequence to compute its representation. The

architecture utilizes various techniques accumulated in the field of deep learning,

leading to its good performance and success.

The original Transformer consists of an encoder and a decoder, each having

multiple layers. Subsequent developments have shown that it is viable to use

just the decoder for generative tasks; examples include the GPT family of mod-

els [Rad+19]. Encoder-only models are also used, mainly for classification, for

example, BERT [Dev+18].

Next, we describe the purpose of each part of the architecture, and Figure 1.1

illustrates how they are connected.

Tokenization

Usually, the Transformer operates on sequences of tokens obtained by subword tok-
enization of the input text. The motivation for subwords is that a natural language

corpus empirically has a long-tailed Zipfian distribution of word frequencies.

Infrequent words being one token leads to too many tokens, and segmenting

every character has not taken off due to inefficiency. As a compromise, with

subword tokenization common words and word parts in tokenizer training data

result in one token. Rare words are segmented into smaller subwords. Segments of

rare words are still seen enough during Transformer training so the model learns

to use them. Common algorithms for segmenting to subwords are SentencePiece

used by T5 [Raf+19], Byte-Pair Encoding (BPE) used by the GPTs [Rad+19], and

WordPiece used by BERT [Dev+18]. A substantial deviation in our experiments

compared to state-of-the-art models is that we do not use subword tokenization.

Embedding layer and positional encoding

First, each token is converted to a vector of dimension dmodel in an Embedding

layer. It is implemented as a lookup table that for each possible token has a vector

associated with it. The model learns Embedding vectors.

The Attention sublayer interacts with all tokens of the sequence but has

otherwise no notion of their order. The positional encoding adds vectors of

dimension dmodel to each embedding vector to represent information about the

position of the token in the sequence. The original paper [Vas+17] uses a

6

Input

Embedding

Output

Embedding

Add & Norm

Multi-Head

Attention

Add & Norm

Multi-Head

Attention

Add & Norm

Masked

Multi-Head

Attention

Add & Norm

Feed

Forward

Add & Norm

Feed

Forward

Linear

Softmax

Inputs Outputs

(shifted right)

Output

Probabilities

N×

N×

Positional

Encoding

Positional

Encoding

Figure 1.1 Transformer architecture by Vaswani et al. [Vas+17]

7

sinusoidal function of the position of the token in the sequence. Learned positional

embeddings are also used [Dev+18] or token position is handled later in the

Attention sublayer [Raf+19].

Attention sublayers

Prior approaches to sequence modeling such as Recurrent Neural Networks

(RNNs) had issues with long-range dependencies in sequences. The Transformer

addresses this issue with the attention mechanism.

Attention is used in 3 places in the Transformer architecture: self-attention

sublayers in the encoder, self-attention sublayers with masking in the decoder,

and encoder-decoder attention sublayers. There are H attention heads in each

sublayer (usually tens of them) with independent weights.

Definition 1. Scaled dot-product attention

Attention(Q, K, V) = softmax
(︄

QKT

√
dk

)︄
V,

headi = Attention(QW Q
i , KW K

i , V W V
i),

MultiHead(Q, K, V) = Concat(head1, . . . , headH)W O.

Transformer uses the multiheaded scaled dot-product attention. The model

learns the values of matrices W Q
i ∈ Rd

model
×dk

, W K
i ∈ Rd

model
×dk

, W V
i ∈ Rd

model
×dv

,

W O ∈ RH·dv×d
model

during training.

Intuitively the attention mechanism facilitates communication between each

pair of tokens and in later layers between richer composite representations.

Feed forward sublayers

It is a Multi-Layer Perceptron (MLP) with one hidden layer of dimension dff

(usually 4 · dmodel). Various activation functions can be used in the feed-forward

sublayer, the original paper uses the simplest ReLU(x) = max(0, x). Recent

models use more complicated functions: GELU, Swish, SwiGLU, GeGLU [Sha20].

FFN(X) = activation(XW1 + b1)W2 + b2

The model learns the weights W1 ∈ Rd
model

×d
ff
, W2 ∈ Rd

ff
×d

model
and biases b1 ∈ Rd

ff
,

b2 ∈ Rd
model

of each feed-forward sublayer during training.

Layer normalization

Layer normalization is a layer proposed by Ba, Kiros, and Hinton [BKH16] for

deep learning models. Given a vector X , the output is normalized to have zero

8

mean and unit variance. It was empirically shown to improve training time and

performance. Layer normalization in the Transformer is applied either before or

after each sublayer, depending on the specific variant.

Residual connections and droput

A residual connection [He+15] skips a (sub) layer and adds the input of a (sub) layer

to the output of another, creating a “shortcut”. For a given vector X and a sublayer,

the output Y is computed as:

Y = X + sublayer(X)

This way the gradient can flow through a layer even if its internal weights are

zero. Residual connections are used in the Transformer to help with the vanishing

gradient problem. Deep learning models without it can get stuck in training with

weights not being updated as the gradient is too small in the early layers.

After each sublayer dropout is applied either after the layer normalization

or before it. Dropout is a regularization technique that with probability p sets

activations in a layer to zero. It is commonly used in deep learning to improve

generalization [Sri+14].

Output

After the encoder and decoder, their output is passed through a dense layer and

softmax to get the probability distribution of the token we are inferencing. When

using the Transformer, we can greedily select the token and feed it back to the

model. This is called greedy decoding. Alternatively, we can sample from the

distribution of probabilities of the next token, optionally we can influence the

distribution that is sampled from with a temperature parameter. Or with beam
search we keep track of the k most probable sets (usually sequences) of multiple

inferred tokens and select the best one at the end. Beam search has the potential

for better results but a higher computational cost.

1.2.1 Training
The goal of training is to minimize the loss function. The loss function for the

Transformer is the cross-entropy between the predicted token distribution for

each position and the actual token.

9

Definition 2 (Cross-Entropy Loss). Given a set of predicted probabilities Ŷ and a
corresponding set of target classes Y over a sequence of length T with M possible
classes.

CrossEntropyLoss(Y, Ŷ) = − 1
T

T∑︂
t=1

M∑︂
c=1

yt,c log(ŷt,c)

where:

• yt,c is a binary indicator (0 or 1) denoting whether class label c is the correct
classification for the token at position t.

• ŷt,c represents the predicted probability that the token at position t belongs to
class c.

Loss minimization is performed using the backpropagation algorithm and an

optimizer (e.g. Adam [KB15]) which computes how to adjust the weights of the

model so we hopefully converge to a good solution after a lot of steps.

Language modeling Transformers which are suitable for use on multiple tasks

such as T5 [Raf+19] or GPT-4 [Ope23], are trained on at least terabytes of text for

ever-increasing amounts of GPU/TPU hours. Kaplan et al. [Kap+20] described that

if we want a better performance increasing any of the following helps; model size,

training data size, and used compute (training FLOPs). The paper also outlines

optimal ratios for these variables. It is possible to train the Transformer on a

single machine or a distributed system with many machines and GPUs/TPUs.

Pre-training

The first step of training a modern language model is pre-training, which means

training the model on a large, not particularly clean dataset (such as a large

portion of the internet), with a lot of computing resources (GPUs/TPUs). A task

obtained from plaintext is used, for example, demasking, deshuffling, or predicting

the next token in a sequence. The cost of pre-training is very prohibitive so then

the pre-trained artifact is used for many downstream tasks.

Fine-tuning

After a model is pre-trained on a large dataset, we can fine-tune (further train) it

on a smaller, clean dataset to achieve better results on a specific task. For example,

to fine-tune a general model for translation, we can use the following supervised

pattern:

Input: "translate from English to German: <English text>"
Output: "<German translation>"

Or simply put source text in the input and target text in the output.

10

1.3 ByT5
We base our work on the pre-trained ByT5-small, a 300M parameter Encoder-

Decoder Transformer model presented by Xue et al. [Xue+22]. ByT5 was pre-

trained with the span corruption task on the mC4 dataset introduced by Raffel

et al. [Raf+19]. ByT5 architecture mirrors the original Transformer, with a few

modifications: layer normalization is placed before each sublayer instead of after,

its bias is removed, and an alternative relative positional representation is used,

adding a scalar to the logits used for computing attention weights. Usually,

Encoder-Decoder models use the same number of layers in the encoder as in the

decoder, but ByT5 has more layers in the encoder, in a 3:1 ratio.

The distinctive feature of ByT5 is using bytes as tokens interpreted as UTF-8.

Common token count in Transformer language models is in the order of 105
–106

such as in GPT-2 [Rad+19], mT5 [Xue+21], and BERT [Dev+18]. Using bytes leads

to 256 tokens + special tokens, and a big reduction of parameters needed to handle

distinct tokens. It also gives less advantage to English representation, which due

to its usual overrepresentation in training data has subword tokens covering

common words, whereas other languages have to use more tokens to represent

the same words. Still, languages with non-Latin scripts are at a disadvantage, as

they have to use more bytes to represent a character in UTF-8.

When ByT5 was trained in 2021, its large variants reached (at that time)

state-of-the-art results on multilingual NLP benchmarks, at the cost of slower

processing compared to subword tokenized models, but with more robustness

to noise in input. Since then it has been made obsolete for most tasks by larger

models (e.g. GPT-4 [Ope23], Mistral-7B[Jia+23]). Large byte-level models with

significant improvements in capability have not been released, but there is interest

in exploring alternative tokenization and encoding. For example Limisiewicz

et al. [Lim+24], while building on ByT5 architecture, outperformed ByT5 on

multilingual tasks by using a custom encoding informed by morphemes, which

also improved efficiency and diminished language modeling gap across languages.

mC4

The mC4 dataset presented by Xue et al. [Xue+21] is a cleaned multilingual

text dataset covering 101 languages. mC4 was created by scraping the web and

then filtering out low-quality content and content in languages that are not well

represented. The total size is 6.6 × 109
pages totaling 6.3 × 1012

tokens.
2

2
Subword tokens from [Xue+21], which can be estimated as 1–4 characters per token.

11

ByT5 training

ByT5 uses Span corruption as the pre-training task. A sequence of tokens from

the training set is taken, and spans of n tokens (the mean is 20) are masked

to sentinel tokens; weights of the network are adjusted to predict what tokens

were in the masked spans. We can download the pre-trained model from the

HuggingFace model Hub
3

and fine-tune it in a supervised way on specific tasks

with the transformers Python package.

1.4 Seq2Seq decipherment
Deciphering substitution ciphers can be formulated as a sequence-to-sequence

task. We can look at it as a translation where the source language is the ciphertext

and the target language is the plaintext. Ciphers lack cultural confounders, that

are present in other tasks such as translation, which makes ciphers a good toy

task.

1.4.1 Substitution ciphers
Substitution ciphers are a simple and insecure method of encryption where we

take the units of plaintext (letters) and according to a key and a cipher algorithm

replace them with other units. They can often be broken by frequency analysis

and brute force.

We use the following two ciphers for our experiments.

Vigenère cipher

The Vigenère polyalphabetic cipher uses a keyword K = k1k2 . . . kn to shift each

letter in a sentence S = s1s2 . . . sm. The rolling variant repeats the keyword to

obtain a string of the same length as the plaintext Kext =
m⏟ ⏞⏞ ⏟

k1k2 . . . knk1k2 To

get the ciphertext we shift each letter by the corresponding letter in Kext. The

ciphertext R = r1r2 . . . rm is composed from ri = si + ki mod 26.

Enigma

The Enigma was a cipher machine used by the German army during WW2, its

strength was based on the key shifting throughout the text and many possible

settings. It is easily breakable with modern cryptanalysis. The original Enigma has

3 rotors altering the substitution, that rotate after each keypress and a plugboard

3https://huggingface.co/google/byt5-small

12

https://huggingface.co/google/byt5-small

with additional letter swaps. When a key on the keyboard is pressed, current

flows through the plugboard and rotors to the lampboard where the output letter

lights up.
4

Interpunction and spaces are represented as ‘X’. We use a simplified

version without the plugboard.

1.4.2 Related work on decipherment modeling
NLP was interested in decipherment modeling even before the deep learning and

Transformer era [NSN13]. It is often used as a toy problem for testing techniques

and models. Deciphering real historical ciphers is also studied.

Greydanus [Gre17] trained RNNs to decipher Vigenère, Autokey, and Enigma

with a prepended key. They trained models to generalize to decipher keys unseen

in training. It demonstrates that decipherment modeling is a viable task for neural

networks. Kambhatla, Bigvand, and Sarkar [KBS18] used an RNN language model

to score candidate plaintexts for substitution ciphers and decreased beam search

size compared to prior n-gram approaches. Aldarrab and May [AM21] explored

the decipherment of substitution ciphers using a 40M parameter Transformer

model trained from scratch with a representation of frequency analysis of the

text. With beam search, they achieved a good performance.

4
Enigma visualization: https://observablehq.com/@tmcw/enigma-machine.

13

https://observablehq.com/@tmcw/enigma-machine

Chapter 2

Interpreting machine learning

In this chapter, we describe the concept of interpretability, approaches to it, and

related work on Transformers. With this context, we formulate and analyze our

research question for this thesis.

2.1 Interpretability
Machine learning methods and especially neural networks are often viewed

as black boxes, which work well in many tasks but the explanations for why

are lacking. This poses a challenge as these models are increasingly used in

high-stakes applications with concerns of deception, fairness and bias. There

are various competing definitions of interpretability in the overlapping fields of

interpretable and explainable AI (XAI), AI ethics, AI alignment, and AI safety.

They revolve around the notion of humans understanding the causes of the

decisions of the models or the ability to predict the model’s outputs and behavior.

This is a desirable property as advanced ML systems are deployed to all areas of

life. For the context of this work, we use the term mostly as ‘finding explanations

for behavior and capability of models’. This is similar to the definition by Biran

and Cotton [BC17].

There is a varying degree of interpretability in different ML models. Decision

trees are comparatively interpretable due to explicitly representing the decision

boundaries. On the other hand, deep neural networks are opaque due to their vast

number of parameters and complex interactions. DNNs reached high popularity,

so our understanding has to catch up even though it is a hard problem.

There are multiple categorizations of interpretability approaches in the lit-

erature and many methods operate on their boundaries. Firstly, extracting

explanations can be directed at specific instances of the model’s predictions

such as asking “Why did the model recommend giving this person a loan”?, this

14

is called a local explanation. Or we can ask about the model’s behavior in general,

such as “What features are important for the model’s predictions”? this is called

a global explanation.

Secondly, a possible distinction is between post hoc and developmental in-

terpretability. In post hoc interpretability, we try to find explanations for the

model’s behavior after it has been trained. In developmental interpretability, we

design or influence models to have architectural properties that make them more

interpretable or extract explanations from models during prediction.

Thirdly, a distinction is between data-driven and mechanistic interpretability.

Data-driven interpretability methods find explanations by looking at the model’s

behavior while accepting that it is a black box. Mechanistic interpretability finds

explanations by looking at the inner workings of models and decomposing them

into more understandable components.

2.1.1 Feature attribution
One way to interpret a model is to analyze how it uses its input features for

predictions. This is called feature attribution. It is an instance of a post hoc

method, it can be both local and global. In some ML models, we can attribute

straightforwardly, for example in Linear Regression, looking at weights and

expected intervals of inputs is enough. For other ML models such as neural

networks, we need to use more sophisticated methods.

2.1.2 SHAP
Shapley Additive exPlanations presented by Lundberg and Lee [LL17] are a feature

importance framework for a prediction of any model. They were adopted within

ML including NLP as reviewed by Mosca et al. [Mos+22] due to their rigorous

theoretical grounding. Molnar [Mol22] explains the concept of Shapley Values

from cooperative game theory.
1

A prediction can be explained by assuming that each feature value

of the instance is a “player” in a game where the prediction is the

payout. Shapley values — a method from coalitional game theory —

tell us how to fairly distribute the “payout” among the features.

Computing Shapley values directly is computationally expensive, it requires

considering all possible combinations of features. With SHAP, we efficiently

compute Shapley values for features in each example and then visualize and

aggregate them to get an idea about the global feature importance.

1https://christophm.github.io/interpretable-ml-book/shapley.html

15

https://christophm.github.io/interpretable-ml-book/shapley.html

The shap Python package
2

implements efficient Shapley value estimation

or computation for various models, including neural networks and tree-based

models. In sequence modeling, SHAP can also attribute which tokens in the input

are important for the next token prediction.

2.1.3 Interpretability of Transformers
After introducing the notion of interpretability we can look into what it means

to interpret a Transformer model and review related work. Transformer inter-

pretability is currently a hot area of research as products hinge on them, they

are used in higher-stakes applications and it is generally useful to know what a

model has learned for debugging it. Additionally, we can ask how Transformer

models tend to work in general and look for explanations transferrable to other

models.

Transformer mechanistic interpretability focuses on what higher-level algo-

rithms happen during the model inference. Nanda et al. [Nan+23] explained

how small Transformers learn modular addition: first by memorizing training

data and later explicitly representing the algorithm for it in its weights and

forgetting memorization. They also reverse-engineered the algorithm used by

the Transformer, showing it solves the task with a different algorithm than

humans. Friedrich et al. [Fri+22] investigated modifying the Transformer to

provide interactive explanations. Bricken et al. [Bri+23] proposed a technique for

an automatic breakdown of a network to components that are easier to understand.

One of the large-scale goals of the field is automating trustworthy interpretabil-

ity. Bills et al. [Bil+23] used the GPT-4 model [Ope23] to find explanations for all

307200 MLP neurons in the GPT-2 XL model [Rad+19]. They showed activations

of a GPT-2 neuron on a text to GPT-4, which summarized what the activation

pattern plausibly does, and then simulated the summary description activation

pattern and compared how well the patterns match.

A component that is often analyzed in Transformer interpretability is the

attention mechanism. Voita et al. [Voi+19] analyzed the attention heads in the

Transformer model and found that they can be categorized into different types

of behavior and some are redundant. Mareček and Rosa [MR19] investigated

whether attention represents syntax and found evidence for it by extracting

constituency trees from the attention activations.

In this work, we also use linguistic insights. We want to know if Transformer

models rely on concepts similar to those that human linguists identified and if

they do, which ones are important.

2https://shap.readthedocs.io/

16

https://shap.readthedocs.io/

2.2 Research question
To what extent do linguistic properties of input text explain the performance of a
Transformer model working with that text?

2.2.1 Analysis
Let us operationalize the question to make it tractable with experiments and

analyze pitfalls. When evaluating and interpreting models on NLP tasks such

as translation, the space of possible properties and influences that explain the

behavior is very large and their interactions are complex.

Task selection on which we study the behavior might also confound the

evaluation with cultural and semantic biases that are hard to identify and obscure

multilingual generalizability. To limit semantic and cultural connotations, we use

a character-level task with a clear metric of what is correct. For that, we need a

model operating on characters or bytes. As a byproduct, we get equalized tok-

enization across languages with Latin script, making the task easily multilingual.

On the other hand, we sacrifice the utility of evaluating Transformers on realistic

tasks.

Explanation by prediction

We formulate interpretability as a prediction problem. We have a black box model

M that takes structured input X and produces structured output Y . If we wanted

to predict the output of the model it would require solving the original problem

that M is trained on. As a simplification, we can train a model N to predict a

metric m on the output of M . We extract properties from the input X and use

them as features for N to predict m.

N(properties(X)) ≈ m(M(X))

If N reaches good performance in predicting m on M , we say that the properties
function interprets the model M . Using SHAP on N further clarifies which

properties are important.

M in our case is fine-tuned Transformer, Ns are simple ML models and

properties are linguistic properties.

Assumptions

We make several assumptions to make the original question tractable in our

experiments, and still say something useful.

17

• Prediction of performance is a reasonable proxy for assessing the impor-

tance of linguistic properties for the Transformer.

• Simple ML models (Linear Regression, MLP, RandomForest, XGBoost)

suffice for regressing Transformer performance if linguistic properties

provide enough signal.

• Character-level decipherment tasks help reduce reliance on semantics and

cultural considerations. The task provides a clear metric of performance.

• Linguistic representations in ByT5 and subword-tokenized models are

similar.

• The reliance on linguistic properties does not change discontinuously when

scaling different Transformer models. We use a much smaller model than

state-of-the-art.

• Fine-tuning on the decipherment task does not break the pre-trained lin-

guistic representations which are those that are interesting.

After considering the simplifying assumptions we formulate the refined and

actionable research question:

Can we find a post hoc data-driven global explanation for the performance of
ByT5-small on the decipherment task with linguistic properties by predicting the

performance with simple ML models?

18

Chapter 3

Experiments

In this chapter, we describe in detail our experiment pipeline for studying the

relationship between the performance of the Transformer model and the linguistic

properties of the input text.

3.1 Overview
Our experiment execution has 3 phases.

• Create an evaluation dataset with automatically annotated linguistic proper-
ties (AALP).

• Fine-tune ByT5 models on the decipherment task.

• Analyze the relationship between fine-tuned ByT5 performance and the

AALP.

Figure 3.1 shows the whole pipeline of the experiments.

3.2 Data
We work with training and evaluation data in English, German, and Czech.

We download the data in the form of sentences from StatMT-Newscrawl
1

dataset [Koc+22]. We take the training set from the data labeled 2012 and the

evaluation set from 2013 for each language.

1https://data.statmt.org/news-crawl/

19

https://data.statmt.org/news-crawl/

NewsCrawl
sentences en/de/cs

ByT5-small

UDPipe & NameTag 2spaCy

Noise and ciphers

Preprocessing

Vigenère

Enigma

Predicting
pefrormance with ML SHAP

Annotating linguistic
properties

External
NLP tools

Evaluation dataset

Create dataset

Finetuned
decipherment

models

Train

Correlations

Interpret

Figure 3.1 3 stages of experiment pipeline.

3.2.1 Preprocessing
To avoid too short or too truncated sentences, we filter the Newscrawl sentences

to those that have 150–220 characters. We remove diacritics and punctuation

marks from the sentences and lowercase them. We truncate each sentence (only

letters now) to 200 characters, both in training and evaluation datasets.

The Newscrawl dataset in the languages we choose, is not sufficiently clean.

In the evaluation dataset, outliers could break our analysis, therefore we fil-

ter out sentences in other languages with the FastText language identification

model [Jou+16a; Jou+16b],
2

and remove sentences that contain too many numbers

or special characters (which suggest they are not natural language but some

tabular data e.g. sports match results) with static filters. We end up with 105

sentences (approx. 1.9M tokens) in the training set and 105
sentences in the

evaluation set for each language.

3.2.2 Linguistic properties
To test the relationships between the performance of the Transformer and the

linguistic properties of inputted sentences we have to first identify interesting

2
Available in the fastText Python package.

20

https://fasttext.cc/

properties. They should be easily computable with simple algorithms or available

tools, so we can automatically annotate an evaluation dataset with nontrivial size.

First, we define a generic measure of how unusual a sentence is, with regards

to a trait that is somehow distributed in a language. Possibilities for this mea-

sure include Cross-Entropy or KL-divergence DKL, we use the Jensen-Shannon
Divergence (JSD) because it has the nice property of being symmetric.

Definition 3 (Jensen-Shannon Divergence).

JSD(P ∥ Q) = 1
2DKL

(︃
P ∥ 1

2(P + Q)
)︃

+ 1
2DKL

(︃
Q ∥ 1

2(P + Q)
)︃

where the Kullback-Leibler Divergence DKL(P ∥ Q) is defined as:

DKL(P ∥ Q) =
∑︂
x∈X

P (x) log
(︄

P (x)
Q(x)

)︄

We identify 12 linguistic, neural language modeling-related and surface-level

text properties to annotate and study.

JSD of character distributions

We want to measure how anomalous the sentence is in terms of character distri-

bution. For the evaluation set X and sentences S ∈ X , we compute the unigram
character distribution PX of the whole set and PS for each sentence. We annotate

each sentence S with JSD(PX ∥ PS). We also compute the character bigram
distribution in the evaluation set QX and sentences QS and analogously annotate

each sentence S with JSD(QX ∥ QS). If the Transformer performance correlates

with character distributions, it would suggest that for the decipherment task, it

does something akin to frequency analysis.

Number of named entities

We count the number of named entities for each sentence in the evaluation set. A

named entity is an object in the real world that is denoted with a proper name,

i.e. a person, location, organization, etc. This property could show us if the

Transformer anchors on words that substantially constrain the meaning of the

rest of the sentence. To automatically extract entities we use for English: the

spaCy small NLP pipeline model 3.7.1
3
; for German: the spaCy medium NLP

pipeline model 3.7.0
4
; for Czech: the NameTag 2 model presented by Straková,

Straka, and Hajič [SSH19] which is available as an API.
5

3
en core web sm-3.7.1 model release

4
de core news md-3.7.0 model release

5https://ufal.mff.cuni.cz/nametag/2

21

https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.1
https://github.com/explosion/spacy-models/releases/tag/de_core_news_md-3.7.0
https://ufal.mff.cuni.cz/nametag/2

Depth of the dependency tree

Publicly released NLP pipelines can parse sentences into syntactic dependency

trees. We annotated sentences with their depth computed by traversing them

from the root. We use the same spaCy pipeline for English and German as before,

and for Czech the UDpipe model UT2.5 released by Straka and Straková [SS17]

via the spacy udpipe Python package. The depth is a proxy for the structural

complexity of a sentence.

JSD of part of speech tags

JSD of part of speech (PoS) tags measures how typical or anomalous is the sentence

structure. We use NLP models from spaCy and UDPipe to classify PoS tags

for each word in evaluation set sentences, normalize their counts to a relative

frequency distribution, and compute each sentence’s PoS JSD from the relative

frequency distribution of the whole evaluation set.

We also compute and annotate the JSD of PoS tag bigrams.

GPT-2 tokenizer tokens per character

We compute the average number of tokens per character in the sentence when

tokenized by the GPT-2 BPE tokenizer [Rad+19]. BPE was conceived of as a

compression algorithm so the density of tokens is a proxy for how common are

the words used in a sentence.

GPT-2 perplexity

We measure the perplexity of the evaluation sentences consisting of tokens

w1 . . . wN with the GPT-2 [Rad+19] model p.

Perplexity(w1 . . . wN) = exp

(︄
− 1

N

N∑︂
i=1

log p(wi|w1,...,wi−1)
)︄

We can interpret perplexity as how surprised a language model is when it sees

the sentence; surprised, in terms of what it learned during training, and how hard

it is to understand the sentence.

Frequency of specific characters

JSD of character distribution might not be fine-grained enough so we add more

very simple properties for interesting characters.

• Space is obviously interesting.

22

• The letter ‘e’ is the most common letter in English and German and 2nd in

Czech.

• The letters ‘j’, ‘q’, ‘x’, and ‘z’ are the least common letters in English, and also

rare in German and Czech, we sum them as one property for rare letters.

Number of characters in the sentence

The Text Length property tests if the Transformers understand they should

generate the same number of tokens in the decipherment task.

3.3 Training

3.3.1 Decipherment tasks
We fine-tune ByT5-small in a translation setting. The input is an encrypted

sentence and the output is the corresponding plaintext sentence.

Vigenère task

To get a training pair we generate a random 3-letter key and encrypt the sentence

with the rolling key Vigenère cipher described in Section 1.4.1. We add noise

to the task by randomly replacing 15% of the characters in the plaintext with

another character. For the Transformer to successfully decipher the plaintext it

has to somehow internally guess the key.

Constant Enigma task

We use the py-enigma6
Python package implementation of the Enigma algorithm

outlined in Section 1.4.1. We use a constant key (initial setting of the rotors)

for encrypting each sentence. It would suffice for the Transformer to learn the

mapping for each position, i.e. how much to shift each distinct letter. To force the

Transformer to do something smarter, we add noise as before.

3.3.2 Training runs
We fine-tune for 40 epochs on 80000 sentences in pairs (encrypted, plaintext) with

10000 pairs as a development set. We train the final models on PyTorch v2.07

backend using the HuggingFace Transformers v4.38 Trainer
8

with mostly

6https://pypi.org/project/py-enigma/
7https://pytorch.org/get-started/pytorch-2.0/
8https://huggingface.co/docs/transformers/main_classes/trainer

23

https://pypi.org/project/py-enigma/
https://pytorch.org/get-started/pytorch-2.0/
https://huggingface.co/docs/transformers/main_classes/trainer

Seq2SeqTrainer’s default settings with AdamW optimizer. We set the initial

learning rate to 2×10−3
and set a linear scheduler warmup for 20% of the training.

We set the batch size and gradient accumulation to arrive at an effective batch

size per device of 192, i.e. 192 sentences with cipher and plaintext. We save a

checkpoint after every 5 epochs, so we obtain 8 checkpoints. We train on the AIC

(Artificial Intelligence Cluster),
9

each Transformer with 4xNVIDIA 2080 GPUs.

Each training run takes about 30 hours. We do this for each task and language to

get 48 checkpoints from 6 runs: Vig EN, Vig DE, Vig CZ, Enigma EN, Enigma DE,

Enigma CZ.

3.4 Analysis
We evaluate each checkpoint by inferencing the translation from ciphertext to

plaintext for the evaluation dataset containing 100000 examples, for this, we

employ 1xNVIDIA 2080 GPU (on AIC). We use greedy inference, picking the most

probable token at each step of plaintext generation. For each checkpoint, we

obtain candidate decipherment for each sentence in the evaluation set.

Definition 4 (Character Error Rate). For a reference sequence and candidate
sequence.

CER = S+D+I
N

where S, D, and I are the minimum number of substitutions, deletions, and insertions
respectively to obtain the reference from the candidate sequence (also known as the
Levensthein distance). N is the length in characters of the reference sentence.

The Character Error Rate (CER) comes from speech recognition evaluation, it

is also useful for us because our Transformer models operate on variable length

inputs and the task is character level.

From the generated decipherments and the original text, we compute the CER

for each sentence in the evaluation set. We analyze the correlations between the

fine-tuned Transformer’s performance and the linguistic properties of the input

and how they evolve during training.

3.4.1 Error prediction
We train MLP, Random Forest, XGBoost, and Ridge regression models, to predict

the CER from linguistic properties as features. We use the scikit-learn and

XDGBoost packages with model implementations, and train on 90000 examples

9https://aic.ufal.mff.cuni.cz/

24

https://aic.ufal.mff.cuni.cz/

from the evaluation set. We obtain 4 regression models for each fine-tuned

checkpoint. We compute the MAE (Mean Absolute Error) and R2
of the predictive

models on a test set containing 10000 examples. We compare the predictive

models to a baseline model that always predicts the mean CER of the train set.

3.4.2 SHAP feature importance
We assess the feature importance in the XDGBoost models by computing Shapley

values for each example in the test set containing 10000 and plotting them in

a summary plot, which visualizes feature contributions to the prediction. We

use TreeSHAP [LEL18] implemented by the shap Python package to compute

Shapley values efficiently.

25

Chapter 4

Results and discussion

In this chapter, we present the results of the experiment pipeline described

in Chapter 3. Then we discuss how the results answer our research question

(Section 2.2) and relate to the interpretability of Transformers.

4.1 Training
During the training of the Vigenère models the loss decreased as did the CER and

ByT5 learned the decipherment task for all 3 languages. As shown in Figure 4.1a

there was a marked dip in the loss corresponding to a rapid decrease in CER. We

suppose that is the moment when the model cracked how to generally decipher

the Vigenère cipher, it happened 5 epochs later in Vig CS than in Vig EN and

Vig DE. The models still committed errors at later epochs, due to the noise in

input some parts of the sentences were not decipherable only from context.

The Enigma models for all languages did not converge on learning the task

well, there was no corresponding loss dip in Figure 4.1b and the CER slowly

decreased but remained high after 40 epochs and improvement halted, especially

in English. The Enigma models learned to output words and sentences in the

correct language, but they often did not correspond to the input. Enigma was

surprisingly harder to learn for the Transformer even though the mapping with a

constant setting is from a human standpoint more predictable.

The poor performance in Enigma models does not wholly prevent us from

investigating whether the Automatically annotated linguistic properties (AALP)
can explain the variance in the model’s performance.

26

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

en
cs
de

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

ac
te

r E
rro

r R
at

e

Vigenère Loss and checkpoint CER density

(a) Training loss and evaluation CER in Vig EN, Vig DE, Vig CS checkpoints

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

en
cs
de

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

ac
te

r E
rro

r R
at

e

Enigma Loss and checkpoint CER density

(b) Training loss and evaluation CER in Enigma EN, Enigma DE, Enigma CS checkpoints

Figure 4.1 Training loss and checkpoint evaluation.

27

4.2 Correlations
We computed the Pearson correlation coefficient between AALP and the CER for

each checkpoint.

To ensure the correlations were real, we tested hypotheses that the correlations

were zero with the Bonferroni correction for multiple testing, with a significance

level of 0.01. There are in total 12 properties and we tested the significance in 6

models each with 8 checkpoints, totalling 576 tests. So the corrected significance

level is 0.01/576 ≈ 1.7 · 10−5
. At this level, we rejected most hypotheses that the

correlations are zero for most of the properties.

Figure 4.2 shows that strong correlations disappeared as the training pro-

gressed. There, we visualize non-significant correlations with hollow points

and significant correlations with filled points which are most of them. Vigenère

models had generally smaller correlations than Engima models whose CER at early

checkpoints strongly correlated with Text Length. Vig EN retained correlation

with GPT-2 metrics while CER generally decreased, which is not the case for

Vig DE and Vig CS. Correlation evolution figures for Transformers fine-tuned

on Czech and German are in the Appendix A.2.

We visualize the correlations also in a matrix for Enigma EN in Figure 4.3.

There are some medium-sized correlations between the features. The correlation

matrices for other ciphers and languages are in the Appendix A.2.

Correlations were mostly small and the medium to large ones occurred before

the ByT5 learned the decipherment tasks. There is not a clear pattern in the

correlation evolutions that holds across languages and ciphers.

28

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Vig_EN
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Enigma_EN
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

Figure 4.2 Evolution of correlation magnitude of CER with AALP; Vig EN and
Enigma EN

29

Ep 5
 C

ER

Ep 1
5 C

ER

Ep 3
0 C

ER

Ep 4
0 C

ER

Cha
rB

grm
JS

D

Tr
ee

Dep
th

GPT2P
px

GPT2T
ok

Nam
ed

Ent

PoS
Bgrm

JS
D

PoS
JS

D

Cha
rJS

D

Spa
ce

Pct
EPct

Rare
Pct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.75 0.14 0.09 0.63 -0.22 0.17 0.06 -0.00 0.37 0.23 0.31 -0.08 -0.08 0.03 -0.92

0.75 1.00 0.12 0.10 0.52 -0.18 0.13 0.06 -0.00 0.31 0.18 0.25 -0.07 -0.05 0.03 -0.76

0.14 0.12 1.00 0.42 0.11 -0.04 0.15 -0.02 0.06 0.08 0.05 0.02 -0.22 -0.09 0.06 -0.07

0.09 0.10 0.42 1.00 0.10 -0.04 0.15 -0.01 0.07 0.07 0.04 0.01 -0.23 -0.10 0.07 -0.03

0.63 0.52 0.11 0.10 1.00 -0.21 0.14 0.18 0.06 0.39 0.32 0.57 -0.02 -0.09 0.14 -0.63

-0.22 -0.18 -0.04 -0.04 -0.21 1.00 -0.11 -0.00 -0.05 -0.19 -0.08 -0.10 0.09 -0.03 -0.02 0.23

0.17 0.13 0.15 0.15 0.14 -0.11 1.00 0.08 0.29 0.08 0.05 0.03 -0.29 -0.07 0.08 -0.10

0.06 0.06 -0.02 -0.01 0.18 -0.00 0.08 1.00 0.49 -0.07 -0.07 0.10 0.49 -0.17 0.12 -0.08

-0.00 -0.00 0.06 0.07 0.06 -0.05 0.29 0.49 1.00 -0.03 -0.08 0.01 -0.03 -0.12 0.14 0.04

0.37 0.31 0.08 0.07 0.39 -0.19 0.08 -0.07 -0.03 1.00 0.58 0.23 -0.14 0.03 0.01 -0.36

0.23 0.18 0.05 0.04 0.32 -0.08 0.05 -0.07 -0.08 0.58 1.00 0.21 -0.14 0.02 0.02 -0.22

0.31 0.25 0.02 0.01 0.57 -0.10 0.03 0.10 0.01 0.23 0.21 1.00 0.06 -0.01 0.12 -0.33

-0.08 -0.07 -0.22 -0.23 -0.02 0.09 -0.29 0.49 -0.03 -0.14 -0.14 0.06 1.00 -0.05 -0.05 -0.02

-0.08 -0.05 -0.09 -0.10 -0.09 -0.03 -0.07 -0.17 -0.12 0.03 0.02 -0.01 -0.05 1.00 0.02 0.00

0.03 0.03 0.06 0.07 0.14 -0.02 0.08 0.12 0.14 0.01 0.02 0.12 -0.05 0.02 1.00 -0.01

-0.92 -0.76 -0.07 -0.03 -0.63 0.23 -0.10 -0.08 0.04 -0.36 -0.22 -0.33 -0.02 0.00 -0.01 1.00

EN_Enigma Correlation of Properties and Evaluation CER

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.3 Correlation matrix of the AALP and the CER for Enigma EN.

30

Model MAE R²

Mean 0.044 -0.000

Ridge 0.041 0.155

XGBoost 0.041 0.138

RForest 0.041 0.140

MLP 0.041 0.131

(a) Epoch 5

Model MAE R²

Mean 0.071 -0.000

Ridge 0.067 0.126

XGBoost 0.068 0.099

RForest 0.068 0.107

MLP 0.067 0.122

(b) Epoch 15

Model MAE R²

Mean 0.038 -0.000

Ridge 0.035 0.137

XGBoost 0.036 0.115

RForest 0.036 0.119

MLP 0.036 0.126

(c) Epoch 40

Table 4.1 Predicting the CER from the AALP in Vig EN checkpoints.

Model MAE R²

Mean 0.062 -0.000

Ridge 0.022 0.860

XGBoost 0.019 0.887

RForest 0.019 0.887

MLP 0.021 0.871

(a) Epoch 5

Model MAE R²

Mean 0.062 -0.000

Ridge 0.033 0.599

XGBoost 0.033 0.584

RForest 0.034 0.584

MLP 0.034 0.586

(b) Epoch 15

Model MAE R²

Mean 0.025 -0.000

Ridge 0.024 0.082

XGBoost 0.024 0.060

RForest 0.024 0.065

MLP 0.025 -0.022

(c) Epoch 40

Table 4.2 Predicting the CER from the AALP in Enigma EN checkpoints.

4.3 Performance prediction
Even though the correlations are small, they could jointly point to a structure

in the data that can be used to predict fine-tuned ByT5’s performance and thus

explain it in the sense of Section 2.2.1.

We trained Linear Regression (Ridge), MLP, Random Forest, and XGBoost

models to predict the CER at a checkpoint from the AALP. We show their

performance predicting CER from AALP on the test set in Table 4.1 and Table 4.2

for Vig EN and Enigma EN. We compare them in terms of Mean Absolute Error

(MAE) and R2
and show a baseline ‘Mean’ model which always predicts the mean

of training data. The interpretation is that we want low MAE and high R2
(close

to 1). Full results for all languages and ciphers are in the Appendix A.2.

For models of Vigenère Transformer performance, the R2
was close to zero,

which means that the models could not capture the causes for variance in the

CER. For early epochs of the Enigma Transformers, the performance models were

able to predict the CER well. Using these models provided improvement in the

Mean Absolute Error (MAE) over the baseline prediction of the mean CER.

In later epochs, the models were not able to predict the CER well, which

mirrors the decrease in correlations apparent in Figure 4.2. We see the decrease in

the ability to predict from a decrease in the R2
of the models as training progresses

and MAE close to the baseline ‘Mean’ prediction.

31

0.10 0.05 0.00 0.05 0.10
SHAP value (impact on model output)

Dep. Tree Depth

Rare Letter %

Named Entities

PoS JSD

Char JSD

E %

PoS Bigram JSD

GPT-2 Perplexity

GPT-2 Tokenizer

Char Bigram JSD

Spaces %

Text Length

Enigma_EN Epoch 15, XGBoost

Low

High

Fe
at

ur
e

va
lu

e
Figure 4.4 SHAP values for the XGBoost model predicting the CER for the Enigma EN
epoch 15.

Generally, RandomForest and XGBoost models were better than Linear Re-

gression and MLP models, which sometimes even underperformed the ‘Mean’

model.

4.4 SHAP
We interpreted the XGBoost regressor with SHAP for each checkpoint. Due to

the low R2
of predictive models for Vigenère checkpoints, this did not give us

any insights. The mean absolute contribution for each feature was close to 0.

For Enigma models, it confirmed the relationship from correlations: the Text

Length is important in the early epochs. In later epochs, the variance in CER was

again not well explained by predicting from the properties, therefore SHAP did

not help us extract more insight and mean absolute feature contributions were

close to 0. Figure 4.4 illustrates that for the Enigma EN at epoch 15 Text Length

had a clear impact on CER prediction, higher Text Length led to lower error rate,

32

but the mean absolute impact of other properties was close to zero. We do not

include figures for other languages and ciphers. For early Enigma epochs, they

are similar, and for others, they only show a lot of points hugging 0 impact.

4.5 Discussion
The model can learn the Vigenère cipher for all tested languages quite well. Czech

and German are harder to fine-tune for, than English, which confirms existing

research that pre-training on disproportionately English internet text provides

an advantage and removing diacritics hurts performance in languages that use

them. There is a moment in the Vigenère task training where the model groks

how to decipher and the CER drops rapidly. This is not the case for the Enigma

task, this is a bit surprising given that our Enigma has only 1 cipher setting and

Vigenère has 263
, but we did not pursue this lead further.

The correlation coefficients of properties to the CER would be considered

small in behavioral sciences (Cohen [Coh88] denotes small as less than 0.3, and

medium as less than 0.5). Lack of consistency across languages and ciphers first

alerts us that the result is negative in terms of linguistic properties explaining the

model’s performance.

We see consistently, that the AALPs do not help explain the model’s per-

formance using prediction as training progresses (except the uninteresting Text

Length in early Enigma checkpoints). In other words, the performance of the

models seems to be robust to variance in the properties we measured. We suppose

most of the variance appears from the noise we added to the task as described in

Section 3.3.1.

The most useful insight that can be extracted from our results is that in tasks

that depend on a specific length of outputs, it is a good idea to debug it; it took

Enigma models many epochs to learn this dependency. The overall results provide

evidence against our hypothesis that the performance of Transformers can be

explained by easily measurable linguistic properties of the text they work with.

We also have to question the assumption from Section 2.2.1 that the performance

prediction methodology makes sense.

The experiments with decipherment provide evidence that data-driven ap-

proaches have a limited capacity to find good explanations. However, it is not

conclusive, we might have just failed to identify impactful properties of text and

or used an overly convoluted task. It would be easy to adapt this pipeline to

other models, languages or ciphers but it does not seem like a productive area of

research. The recent shift of interest to mechanistic methods may prove more

useful.

33

Conclusion

We have aimed to understand the relationship between the performance of

Transformers and the linguistic properties of their inputs. We have implemented

a character-level decipherment task with Vigenère and Enigma ciphers. We

fine-tuned the ByT5-small models on the task with English, German and Czech

sentences. On data obtained from evaluating this task, we have created an

analysis pipeline that annotates linguistic properties of input sentences with

spaCy pipelines, and other tools (UDPipe, NameTag 2) and then correlate them

with the models’ performance at 8 checkpoints.

We have analyzed how these correlations evolve during training, they are

small but significant. We have predicted the decipherment error rates from the

properties via ML models and assessed feature importance in their predictions

using SHAP. We have found that the performance of the Transformers on the

decipherment task cannot be predicted well by the automatically annotated

linguistic properties, therefore neither the SHAP analysis is informative.

A key limitation of the results is that since ByT5 [Xue+22] no better byte

or character-level models have been released. It is unclear if our linguistic

conclusions hold for subword-tokenized models and they have architectural issues

with the character-level decipherment task. The analysis relies on a lot of steps

that could introduce noise. The results shed limited light on the interpretability of

Transformers in general, although they provide evidence against the importance

of linguistic properties for Transformer performance.

Other tasks, properties and models can use the data-driven methodology

we described: measuring properties of textual inputs, finding correlations on

outputs or task performance, then making predictive models, and interpreting

those. However, our results are discouraging. Mechanistic approaches seem more

promising for the general quest to understand Transformers.

Future work can validate the result on other large byte-level models if they

emerge or with more resources (more data, bigger ByT5 variants). A more

systematic evaluation of the potential and limitations of the analysis pipeline

would be desirable before applying it to other tasks and models.

34

Bibliography

[AM21] Nada Aldarrab and Jonathan May. “Can Sequence-to-Sequence Mod-

els Crack Substitution Ciphers?” In: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021. Ed. by Chengqing Zong et al. Association for Computational

Linguistics, 2021, pp. 7226–7235. doi: 10.18653/V1/2021.ACL-
LONG.561. url: https://doi.org/10.18653/v1/2021.acl-
long.561.

[BC17] Or Biran and Courtenay V. Cotton. “Explanation and Justification

in Machine Learning : A Survey Or”. In: 2017. url: https://api.
semanticscholar.org/CorpusID:3911355.

[Bil+23] Steven Bills et al. “Language Models Can Explain Neurons in Lan-

guage Models”. In: (2023). url: https://openaipublic.blob.
core.windows.net/neuron-explainer/paper/index.html.

[BKH16] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer

Normalization”. In: CoRR abs/1607.06450 (2016). arXiv: 1607.06450.

url: http://arxiv.org/abs/1607.06450.

[Bri+23] Trenton Bricken et al. “Towards Monosemanticity: Decomposing

Language Models With Dictionary Learning”. In: Transformer Circuits
Thread (2023). url: https://transformer-circuits.pub/2023/
monosemantic-features/index.html.

[Coh88] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences.
2nd ed. Routledge, 1988. isbn: 9780805802832. doi: 10 . 4324 /
9780203771587.

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding”. In: CoRR abs/1810.04805

(2018). arXiv: 1810.04805. url: http://arxiv.org/abs/1810.
04805.

35

https://doi.org/10.18653/V1/2021.ACL-LONG.561
https://doi.org/10.18653/V1/2021.ACL-LONG.561
https://doi.org/10.18653/v1/2021.acl-long.561
https://doi.org/10.18653/v1/2021.acl-long.561
https://api.semanticscholar.org/CorpusID:3911355
https://api.semanticscholar.org/CorpusID:3911355
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://doi.org/10.4324/9780203771587
https://doi.org/10.4324/9780203771587
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

[Fri+22] Felix Friedrich et al. “Interactively Providing Explanations for Trans-

former Language Models”. In: HHAI 2022: Augmenting Human In-
tellect - Proceedings of the First International Conference on Hybrid
Human-Artificial Intelligence, Amsterdam, The Netherlands, 13-17 June
2022. Ed. by Stefan Schlobach, Marı́a Pérez-Ortiz, and Myrthe Tielman.

Vol. 354. Frontiers in Artificial Intelligence and Applications. IOS

Press, 2022, pp. 285–287. doi: 10.3233/FAIA220218. url: https:
//doi.org/10.3233/FAIA220218.

[Gre17] Sam Greydanus. “Learning the Enigma with Recurrent Neural Net-

works”. In: CoRR abs/1708.07576 (2017). arXiv: 1708.07576. url:

http://arxiv.org/abs/1708.07576.

[He+15] Kaiming He et al. “Deep Residual Learning for Image Recognition”.

In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385. url: http://
arxiv.org/abs/1512.03385.

[Jia+23] Albert Q. Jiang et al. “Mistral 7B”. In: CoRR abs/2310.06825 (2023).

doi: 10 . 48550 / ARXIV . 2310 . 06825. arXiv: 2310 . 06825. url:

https://doi.org/10.48550/arXiv.2310.06825.

[Jou+16a] Armand Joulin et al. “Bag of Tricks for Efficient Text Classification”.

In: CoRR abs/1607.01759 (2016). arXiv: 1607.01759. url: http://
arxiv.org/abs/1607.01759.

[Jou+16b] Armand Joulin et al. “FastText.zip: Compressing text classification

models”. In: CoRR abs/1612.03651 (2016). arXiv: 1612.03651. url:

http://arxiv.org/abs/1612.03651.

[Kap+20] Jared Kaplan et al. “Scaling Laws for Neural Language Models”. In:

CoRR abs/2001.08361 (2020). arXiv: 2001.08361. url: https://
arxiv.org/abs/2001.08361.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic

Optimization”. In: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url:

http://arxiv.org/abs/1412.6980.

[KBS18] Nishant Kambhatla, Anahita Mansouri Bigvand, and Anoop Sarkar.

“Decipherment of Substitution Ciphers with Neural Language Mod-

els”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, October 31 - November
4, 2018. Ed. by Ellen Riloff et al. Association for Computational

Linguistics, 2018, pp. 869–874. doi: 10.18653/V1/D18-1102. url:

https://doi.org/10.18653/v1/d18-1102.

36

https://doi.org/10.3233/FAIA220218
https://doi.org/10.3233/FAIA220218
https://doi.org/10.3233/FAIA220218
https://arxiv.org/abs/1708.07576
http://arxiv.org/abs/1708.07576
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/V1/D18-1102
https://doi.org/10.18653/v1/d18-1102

[Koc+22] Tom Kocmi et al. “Findings of the 2022 Conference on Machine Trans-

lation (WMT22)”. In: Proceedings of the Seventh Conference onMachine
Translation (WMT). Ed. by Philipp Koehn et al. Abu Dhabi, United

Arab Emirates (Hybrid): Association for Computational Linguistics,

Dec. 2022, pp. 1–45. url: https://aclanthology.org/2022.wmt-
1.1.

[LEL18] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. “Consistent

Individualized Feature Attribution for Tree Ensembles”. In: CoRR
abs/1802.03888 (2018). arXiv: 1802.03888. url: http://arxiv.
org/abs/1802.03888.

[Lim+24] Tomasz Limisiewicz et al. “MYTE: Morphology-Driven Byte Encod-

ing for Better and Fairer Multilingual Language Modeling”. In: CoRR
abs/2403.10691 (2024). doi: 10.48550/ARXIV.2403.10691. arXiv:

2403.10691. url: https://doi.org/10.48550/arXiv.2403.
10691.

[LL17] Scott M. Lundberg and Su-In Lee. “A Unified Approach to Interpreting

Model Predictions”. In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon

et al. 2017, pp. 4765–4774. url: https://proceedings.neurips.
cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-
Abstract.html.

[Mol22] Christoph Molnar. Interpretable Machine Learning. A Guide for Mak-
ing Black Box Models Explainable. 2nd ed. 2022. isbn: 9798411463330.

url: https://christophm.github.io/interpretable- ml-
book.

[Mos+22] Edoardo Mosca et al. “SHAP-Based Explanation Methods: A Review

for NLP Interpretability”. In: Proceedings of the 29th International
Conference on Computational Linguistics, COLING 2022, Gyeongju,
Republic of Korea, October 12-17, 2022. Ed. by Nicoletta Calzolari

et al. International Committee on Computational Linguistics, 2022,

pp. 4593–4603. url: https://aclanthology.org/2022.coling-
1.406.

[MR19] David Mareček and Rudolf Rosa. “From Balustrades to Pierre Vinken:

Looking for Syntax in Transformer Self-Attentions”. In: Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, BlackboxNLP at ACL 2019, Florence, Italy,
August 1, 2019. Ed. by Tal Linzen et al. Association for Computational

37

https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1802.03888
https://doi.org/10.48550/ARXIV.2403.10691
https://arxiv.org/abs/2403.10691
https://doi.org/10.48550/arXiv.2403.10691
https://doi.org/10.48550/arXiv.2403.10691
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406

Linguistics, 2019, pp. 263–275. doi: 10.18653/V1/W19-4827. url:

https://doi.org/10.18653/v1/W19-4827.

[Nan+23] Neel Nanda et al. “Progress measures for grokking via mechanis-

tic interpretability”. In: The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.

OpenReview.net, 2023. url: https://openreview.net/pdf?id=
9XFSbDPmdW.

[NSN13] Malte Nuhn, Julian Schamper, and Hermann Ney. “Beam Search

for Solving Substitution Ciphers”. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, ACL 2013, 4-9
August 2013, Sofia, Bulgaria, Volume 1: Long Papers. The Association

for Computer Linguistics, 2013, pp. 1568–1576. url: https : / /
aclanthology.org/P13-1154/.

[Ope23] OpenAI. “GPT-4 Technical Report”. In: CoRR abs/2303.08774 (2023).

doi: 10 . 48550 / ARXIV . 2303 . 08774. arXiv: 2303 . 08774. url:

https://doi.org/10.48550/arXiv.2303.08774.

[Rad+19] Alec Radford et al. “Language Models are Unsupervised Multitask

Learners”. In: 2019. url: https://api.semanticscholar.org/
CorpusID:160025533.

[Raf+19] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer”. In: CoRR abs/1910.10683 (2019).

arXiv: 1910.10683. url: http://arxiv.org/abs/1910.10683.

[Sha20] Noam Shazeer. “GLU Variants Improve Transformer”. In: CoRR
abs/2002.05202 (2020). arXiv: 2002.05202. url: https://arxiv.
org/abs/2002.05202.

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent neu-

ral networks from overfitting”. In: J. Mach. Learn. Res. 15.1 (2014),

pp. 1929–1958. doi: 10.5555/2627435.2670313. url: https://
dl.acm.org/doi/10.5555/2627435.2670313.

[SS17] Milan Straka and Jana Straková. “Tokenizing, POS Tagging, Lemma-

tizing and Parsing UD 2.0 with UDPipe”. In: Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies, Vancouver, Canada, August 3-4, 2017. Ed. by Jan Hajic

and Dan Zeman. Association for Computational Linguistics, 2017,

pp. 88–99. doi: 10.18653/V1/K17-3009. url: https://doi.org/
10.18653/v1/K17-3009.

38

https://doi.org/10.18653/V1/W19-4827
https://doi.org/10.18653/v1/W19-4827
https://openreview.net/pdf?id=9XFSbDPmdW
https://openreview.net/pdf?id=9XFSbDPmdW
https://aclanthology.org/P13-1154/
https://aclanthology.org/P13-1154/
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://doi.org/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.18653/V1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009

[SSH19] Jana Straková, Milan Straka, and Jan Hajič. “Neural Architectures

for Nested NER through Linearization”. In: Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Ed. by

Anna Korhonen, David R. Traum, and Lluı́s Màrquez. Association

for Computational Linguistics, 2019, pp. 5326–5331. doi: 10.18653/
V1/P19-1527. url: https://doi.org/10.18653/v1/p19-1527.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR
abs/1706.03762 (2017). arXiv: 1706.03762. url: http://arxiv.
org/abs/1706.03762.

[Voi+19] Elena Voita et al. “Analyzing Multi-Head Self-Attention: Specialized

Heads Do the Heavy Lifting, the Rest Can Be Pruned”. In: Proceedings
of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers. Ed. by Anna Korhonen, David R. Traum, and Lluı́s Màrquez.

Association for Computational Linguistics, 2019, pp. 5797–5808. doi:

10.18653/V1/P19-1580. url: https://doi.org/10.18653/v1/
p19-1580.

[Xue+21] Linting Xue et al. “mT5: A Massively Multilingual Pre-trained Text-to-

Text Transformer”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-11,
2021. Ed. by Kristina Toutanova et al. Association for Computational

Linguistics, 2021, pp. 483–498. doi: 10.18653/V1/2021.NAACL-
MAIN.41. url: https://doi.org/10.18653/v1/2021.naacl-
main.41.

[Xue+22] Linting Xue et al. “ByT5: Towards a Token-Free Future with Pre-

trained Byte-to-Byte Models”. In: Trans. Assoc. Comput. Linguistics 10

(2022), pp. 291–306. doi: 10.1162/TACL_A_00461. url: https:
//doi.org/10.1162/tacl%5C_a%5C_00461.

39

https://doi.org/10.18653/V1/P19-1527
https://doi.org/10.18653/V1/P19-1527
https://doi.org/10.18653/v1/p19-1527
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/V1/P19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/V1/2021.NAACL-MAIN.41
https://doi.org/10.18653/V1/2021.NAACL-MAIN.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1162/TACL_A_00461
https://doi.org/10.1162/tacl%5C_a%5C_00461
https://doi.org/10.1162/tacl%5C_a%5C_00461

Appendix A

Reproducing experiments and all
results

A.1 Reproducing experiments
The attached scripts

1
contain code for training, annotating properties, analysis

and visualizations.

To run the code install the dependencies from requirements.txt, notable

packages are transformers, torch, spacy, shap, pandas, matplotib.

• The src/ directory contains code used across multiple training runs and

annotations.

• The reproducible/ directory contains Jupyter notebooks for training the

Transformers models on decipherment tasks. Models we analyzed were

trained with scripts 21–26.

• The data/ directory contains notebooks for creating evaluation datasets.

Measure each property, inference evaluation decipherments with check-

points and merge resulting .csv files.

• The analysis/ directory contains notebooks for predictive and SHAP

analysis and visualizations.

We ran the notebooks on the AIC
2

cluster with GPUs managed with Slurm
3

via run notebook.sh, run notebook4gpu.sh or run cpunotebook.sh scripts.

Any cluster with Slurm should work very similarly and using notebooks locally

with access to GPUs is even easier.

1
Available from https://github.com/JanProvaznik/enigma-transformed

2https://aic.ufal.mff.cuni.cz/
3https://slurm.schedmd.com/

40

https://github.com/JanProvaznik/enigma-transformed
https://aic.ufal.mff.cuni.cz/
https://slurm.schedmd.com/

A.2 All figures and tables
Correlation evolution

Evolution of character error rate (CER) correlations with automatically annotated

linguistic properties (AALP) corresponding to Section 4.2 Figure A.1 for German

models and Figure A.2 for Czech.

Correlation matrices

Correlation matrices of the AALP and the CER corresponding to Section 4.2.

Figure A.3 for English models, Figure A.4 for German models and Figure A.5 for

Czech models.

Predictive models evaluation

Evaluation of predictive models in terms of mean absolute error (MAE) and R2

corresponding to Section 4.3. Table A.1 for English models, Table A.2 for German

models and Table A.3 for Czech models.

41

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Vig_DE
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Enigma_DE
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

Figure A.1 Evolution of correlation magnitude of CER with AALP, Vig DE and
Enigma DE.

42

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Vig_CS
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

5 10 15 20 25 30 35 40
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n
wi

th
 E

va
lu

at
io

n
CE

R

Property Correlation with CER Over Training Epochs in Enigma_CS
Char Bigram JSD
Dep. Tree Depth
GPT-2 Perplexity
GPT-2 Tokenizer
Named Entities
PoS Bigram JSD

PoS JSD
Char JSD
Spaces %
E %
Rare Letter %
Text Length

Figure A.2 Evolution of correlation magnitude of CER with AALP, Vig CS and
Enigma CS.

43

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.14 0.09 0.09 0.24 -0.11 0.16 -0.02 0.06 0.17 0.09 0.09 -0.23 -0.05 0.05 -0.30

0.14 1.00 0.54 0.52 0.18 -0.04 0.20 0.18 0.12 0.07 0.06 0.05 -0.11 -0.14 0.11 -0.05

0.09 0.54 1.00 0.85 0.13 -0.03 0.21 0.24 0.14 0.04 0.04 0.04 -0.08 -0.08 0.09 -0.02

0.09 0.52 0.85 1.00 0.13 -0.03 0.21 0.25 0.14 0.03 0.04 0.04 -0.07 -0.08 0.09 -0.02

0.24 0.18 0.13 0.13 1.00 -0.21 0.14 0.18 0.06 0.39 0.32 0.57 -0.02 -0.09 0.14 -0.63

-0.11 -0.04 -0.03 -0.03 -0.21 1.00 -0.11 -0.00 -0.05 -0.19 -0.08 -0.10 0.09 -0.03 -0.02 0.23

0.16 0.20 0.21 0.21 0.14 -0.11 1.00 0.08 0.29 0.08 0.05 0.03 -0.29 -0.07 0.08 -0.10

-0.02 0.18 0.24 0.25 0.18 -0.00 0.08 1.00 0.49 -0.07 -0.07 0.10 0.49 -0.17 0.12 -0.08

0.06 0.12 0.14 0.14 0.06 -0.05 0.29 0.49 1.00 -0.03 -0.08 0.01 -0.03 -0.12 0.14 0.04

0.17 0.07 0.04 0.03 0.39 -0.19 0.08 -0.07 -0.03 1.00 0.58 0.23 -0.14 0.03 0.01 -0.36

0.09 0.06 0.04 0.04 0.32 -0.08 0.05 -0.07 -0.08 0.58 1.00 0.21 -0.14 0.02 0.02 -0.22

0.09 0.05 0.04 0.04 0.57 -0.10 0.03 0.10 0.01 0.23 0.21 1.00 0.06 -0.01 0.12 -0.33

-0.23 -0.11 -0.08 -0.07 -0.02 0.09 -0.29 0.49 -0.03 -0.14 -0.14 0.06 1.00 -0.05 -0.05 -0.02

-0.05 -0.14 -0.08 -0.08 -0.09 -0.03 -0.07 -0.17 -0.12 0.03 0.02 -0.01 -0.05 1.00 0.02 0.00

0.05 0.11 0.09 0.09 0.14 -0.02 0.08 0.12 0.14 0.01 0.02 0.12 -0.05 0.02 1.00 -0.01

-0.30 -0.05 -0.02 -0.02 -0.63 0.23 -0.10 -0.08 0.04 -0.36 -0.22 -0.33 -0.02 0.00 -0.01 1.00

EN_Vig Correlation of Properties and Evaluation CER

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.75 0.14 0.09 0.63 -0.22 0.17 0.06 -0.00 0.37 0.23 0.31 -0.08 -0.08 0.03 -0.92

0.75 1.00 0.12 0.10 0.52 -0.18 0.13 0.06 -0.00 0.31 0.18 0.25 -0.07 -0.05 0.03 -0.76

0.14 0.12 1.00 0.42 0.11 -0.04 0.15 -0.02 0.06 0.08 0.05 0.02 -0.22 -0.09 0.06 -0.07

0.09 0.10 0.42 1.00 0.10 -0.04 0.15 -0.01 0.07 0.07 0.04 0.01 -0.23 -0.10 0.07 -0.03

0.63 0.52 0.11 0.10 1.00 -0.21 0.14 0.18 0.06 0.39 0.32 0.57 -0.02 -0.09 0.14 -0.63

-0.22 -0.18 -0.04 -0.04 -0.21 1.00 -0.11 -0.00 -0.05 -0.19 -0.08 -0.10 0.09 -0.03 -0.02 0.23

0.17 0.13 0.15 0.15 0.14 -0.11 1.00 0.08 0.29 0.08 0.05 0.03 -0.29 -0.07 0.08 -0.10

0.06 0.06 -0.02 -0.01 0.18 -0.00 0.08 1.00 0.49 -0.07 -0.07 0.10 0.49 -0.17 0.12 -0.08

-0.00 -0.00 0.06 0.07 0.06 -0.05 0.29 0.49 1.00 -0.03 -0.08 0.01 -0.03 -0.12 0.14 0.04

0.37 0.31 0.08 0.07 0.39 -0.19 0.08 -0.07 -0.03 1.00 0.58 0.23 -0.14 0.03 0.01 -0.36

0.23 0.18 0.05 0.04 0.32 -0.08 0.05 -0.07 -0.08 0.58 1.00 0.21 -0.14 0.02 0.02 -0.22

0.31 0.25 0.02 0.01 0.57 -0.10 0.03 0.10 0.01 0.23 0.21 1.00 0.06 -0.01 0.12 -0.33

-0.08 -0.07 -0.22 -0.23 -0.02 0.09 -0.29 0.49 -0.03 -0.14 -0.14 0.06 1.00 -0.05 -0.05 -0.02

-0.08 -0.05 -0.09 -0.10 -0.09 -0.03 -0.07 -0.17 -0.12 0.03 0.02 -0.01 -0.05 1.00 0.02 0.00

0.03 0.03 0.06 0.07 0.14 -0.02 0.08 0.12 0.14 0.01 0.02 0.12 -0.05 0.02 1.00 -0.01

-0.92 -0.76 -0.07 -0.03 -0.63 0.23 -0.10 -0.08 0.04 -0.36 -0.22 -0.33 -0.02 0.00 -0.01 1.00

EN_Enigma Correlation of Properties and Evaluation CER

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.3 Correlation matrix of the AALP and the CER in Vig EN and Enigma EN.

44

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.11 0.05 0.05 0.26 -0.08 0.12 -0.01 0.03 0.19 0.13 0.10 -0.20 -0.02 0.03 -0.30

0.11 1.00 0.56 0.55 0.22 -0.07 0.27 -0.03 0.25 0.13 0.12 0.07 -0.09 -0.24 0.06 -0.00

0.05 0.56 1.00 0.86 0.13 -0.05 0.27 -0.05 0.26 0.09 0.09 0.04 -0.04 -0.12 0.02 0.07

0.05 0.55 0.86 1.00 0.12 -0.04 0.27 -0.04 0.26 0.09 0.09 0.04 -0.03 -0.12 0.02 0.07

0.26 0.22 0.13 0.12 1.00 -0.17 0.27 -0.02 0.20 0.39 0.36 0.55 -0.09 -0.19 0.10 -0.63

-0.08 -0.07 -0.05 -0.04 -0.17 1.00 -0.10 -0.02 -0.07 -0.10 -0.09 -0.07 0.09 0.03 -0.01 0.15

0.12 0.27 0.27 0.27 0.27 -0.10 1.00 -0.47 0.43 0.15 0.18 0.10 -0.08 -0.19 -0.03 -0.14

-0.01 -0.03 -0.05 -0.04 -0.02 -0.02 -0.47 1.00 -0.15 0.00 -0.05 -0.04 0.09 0.06 0.20 -0.02

0.03 0.25 0.26 0.26 0.20 -0.07 0.43 -0.15 1.00 0.14 0.12 0.06 -0.04 -0.25 -0.01 0.06

0.19 0.13 0.09 0.09 0.39 -0.10 0.15 0.00 0.14 1.00 0.59 0.21 -0.19 -0.11 0.03 -0.34

0.13 0.12 0.09 0.09 0.36 -0.09 0.18 -0.05 0.12 0.59 1.00 0.20 -0.17 -0.08 0.02 -0.23

0.10 0.07 0.04 0.04 0.55 -0.07 0.10 -0.04 0.06 0.21 0.20 1.00 0.03 -0.02 0.00 -0.33

-0.20 -0.09 -0.04 -0.03 -0.09 0.09 -0.08 0.09 -0.04 -0.19 -0.17 0.03 1.00 -0.13 0.04 -0.03

-0.02 -0.24 -0.12 -0.12 -0.19 0.03 -0.19 0.06 -0.25 -0.11 -0.08 -0.02 -0.13 1.00 -0.04 0.04

0.03 0.06 0.02 0.02 0.10 -0.01 -0.03 0.20 -0.01 0.03 0.02 0.00 0.04 -0.04 1.00 -0.03

-0.30 -0.00 0.07 0.07 -0.63 0.15 -0.14 -0.02 0.06 -0.34 -0.23 -0.33 -0.03 0.04 -0.03 1.00

DE_Vig Correlation of Properties and Evaluation CER

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.10 0.04 -0.00 0.30 -0.10 0.07 0.03 -0.03 0.19 0.12 0.12 -0.12 -0.02 0.04 -0.42

0.10 1.00 0.25 0.22 0.07 -0.04 0.09 0.00 0.09 0.08 0.05 -0.00 -0.11 -0.09 0.03 0.04

0.04 0.25 1.00 0.52 0.03 -0.04 0.10 -0.00 0.12 0.05 0.03 -0.03 -0.12 -0.11 0.04 0.11

-0.00 0.22 0.52 1.00 -0.01 -0.02 0.10 -0.01 0.13 0.02 0.02 -0.05 -0.11 -0.10 0.03 0.18

0.30 0.07 0.03 -0.01 1.00 -0.17 0.27 -0.02 0.20 0.39 0.36 0.55 -0.09 -0.19 0.10 -0.63

-0.10 -0.04 -0.04 -0.02 -0.17 1.00 -0.10 -0.02 -0.07 -0.10 -0.09 -0.07 0.09 0.03 -0.01 0.15

0.07 0.09 0.10 0.10 0.27 -0.10 1.00 -0.47 0.43 0.15 0.18 0.10 -0.08 -0.19 -0.03 -0.14

0.03 0.00 -0.00 -0.01 -0.02 -0.02 -0.47 1.00 -0.15 0.00 -0.05 -0.04 0.09 0.06 0.20 -0.02

-0.03 0.09 0.12 0.13 0.20 -0.07 0.43 -0.15 1.00 0.14 0.12 0.06 -0.04 -0.25 -0.01 0.06

0.19 0.08 0.05 0.02 0.39 -0.10 0.15 0.00 0.14 1.00 0.59 0.21 -0.19 -0.11 0.03 -0.34

0.12 0.05 0.03 0.02 0.36 -0.09 0.18 -0.05 0.12 0.59 1.00 0.20 -0.17 -0.08 0.02 -0.23

0.12 -0.00 -0.03 -0.05 0.55 -0.07 0.10 -0.04 0.06 0.21 0.20 1.00 0.03 -0.02 0.00 -0.33

-0.12 -0.11 -0.12 -0.11 -0.09 0.09 -0.08 0.09 -0.04 -0.19 -0.17 0.03 1.00 -0.13 0.04 -0.03

-0.02 -0.09 -0.11 -0.10 -0.19 0.03 -0.19 0.06 -0.25 -0.11 -0.08 -0.02 -0.13 1.00 -0.04 0.04

0.04 0.03 0.04 0.03 0.10 -0.01 -0.03 0.20 -0.01 0.03 0.02 0.00 0.04 -0.04 1.00 -0.03

-0.42 0.04 0.11 0.18 -0.63 0.15 -0.14 -0.02 0.06 -0.34 -0.23 -0.33 -0.03 0.04 -0.03 1.00

DE_Enigma Correlation of Properties and Evaluation CER

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.4 Correlation matrix of the AALP and the CER in Vig DE and Enigma DE.

45

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.26 0.07 0.07 0.27 -0.11 0.04 0.01 0.08 0.12 0.12 0.09 -0.25 -0.07 -0.04 -0.33

0.26 1.00 0.15 0.14 0.12 -0.07 0.02 -0.02 0.11 0.01 0.09 0.02 -0.31 -0.13 -0.07 -0.04

0.07 0.15 1.00 0.83 0.11 -0.02 0.05 -0.05 0.15 0.03 0.06 0.06 -0.03 -0.05 -0.04 0.04

0.07 0.14 0.83 1.00 0.10 -0.02 0.05 -0.04 0.14 0.03 0.05 0.05 -0.01 -0.05 -0.04 0.04

0.27 0.12 0.11 0.10 1.00 -0.18 -0.01 -0.03 0.17 0.37 0.35 0.57 -0.05 -0.06 -0.04 -0.64

-0.11 -0.07 -0.02 -0.02 -0.18 1.00 -0.03 0.04 -0.15 -0.10 -0.10 -0.08 0.14 0.01 0.09 0.19

0.04 0.02 0.05 0.05 -0.01 -0.03 1.00 -0.66 0.06 -0.01 -0.08 -0.06 -0.03 0.09 -0.20 -0.13

0.01 -0.02 -0.05 -0.04 -0.03 0.04 -0.66 1.00 -0.16 -0.02 -0.03 -0.04 0.14 -0.08 0.32 -0.01

0.08 0.11 0.15 0.14 0.17 -0.15 0.06 -0.16 1.00 0.13 0.18 0.08 -0.09 -0.06 -0.20 0.01

0.12 0.01 0.03 0.03 0.37 -0.10 -0.01 -0.02 0.13 1.00 0.51 0.23 0.04 0.06 0.05 -0.36

0.12 0.09 0.06 0.05 0.35 -0.10 -0.08 -0.03 0.18 0.51 1.00 0.22 -0.17 -0.06 -0.08 -0.21

0.09 0.02 0.06 0.05 0.57 -0.08 -0.06 -0.04 0.08 0.23 0.22 1.00 0.04 0.01 -0.03 -0.30

-0.25 -0.31 -0.03 -0.01 -0.05 0.14 -0.03 0.14 -0.09 0.04 -0.17 0.04 1.00 0.07 0.19 -0.04

-0.07 -0.13 -0.05 -0.05 -0.06 0.01 0.09 -0.08 -0.06 0.06 -0.06 0.01 0.07 1.00 0.12 0.00

-0.04 -0.07 -0.04 -0.04 -0.04 0.09 -0.20 0.32 -0.20 0.05 -0.08 -0.03 0.19 0.12 1.00 0.01

-0.33 -0.04 0.04 0.04 -0.64 0.19 -0.13 -0.01 0.01 -0.36 -0.21 -0.30 -0.04 0.00 0.01 1.00

CS_Vig Correlation of Properties and Evaluation CER

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrm
JS

D

TreeDepth

GPT2Ppx

GPT2To
k

NamedEnt

PoSBgrm
JS

D

PoSJS
D

CharJS
D

Space
Pct

EPct

RarePct

Te
xtL

en

Ep 5 CER

Ep 15 CER

Ep 30 CER

Ep 40 CER

CharBgrmJSD

TreeDepth

GPT2Ppx

GPT2Tok

NamedEnt

PoSBgrmJSD

PoSJSD

CharJSD

SpacePct

EPct

RarePct

TextLen

1.00 0.14 -0.04 -0.12 0.63 -0.18 0.11 0.03 0.04 0.35 0.22 0.29 -0.01 -0.08 -0.01 -0.91

0.14 1.00 0.18 0.13 0.14 -0.04 0.01 0.03 0.04 0.05 0.05 0.05 -0.10 -0.09 -0.01 -0.14

-0.04 0.18 1.00 0.48 0.03 -0.01 -0.00 0.00 0.06 -0.02 0.02 -0.01 -0.14 -0.09 -0.02 0.04

-0.12 0.13 0.48 1.00 -0.04 0.01 -0.01 -0.00 0.06 -0.06 -0.01 -0.04 -0.13 -0.08 -0.02 0.15

0.63 0.14 0.03 -0.04 1.00 -0.18 -0.01 -0.03 0.17 0.37 0.35 0.57 -0.05 -0.06 -0.04 -0.64

-0.18 -0.04 -0.01 0.01 -0.18 1.00 -0.03 0.04 -0.15 -0.10 -0.10 -0.08 0.14 0.01 0.09 0.19

0.11 0.01 -0.00 -0.01 -0.01 -0.03 1.00 -0.66 0.06 -0.01 -0.08 -0.06 -0.03 0.09 -0.20 -0.13

0.03 0.03 0.00 -0.00 -0.03 0.04 -0.66 1.00 -0.16 -0.02 -0.03 -0.04 0.14 -0.08 0.32 -0.01

0.04 0.04 0.06 0.06 0.17 -0.15 0.06 -0.16 1.00 0.13 0.18 0.08 -0.09 -0.06 -0.20 0.01

0.35 0.05 -0.02 -0.06 0.37 -0.10 -0.01 -0.02 0.13 1.00 0.51 0.23 0.04 0.06 0.05 -0.36

0.22 0.05 0.02 -0.01 0.35 -0.10 -0.08 -0.03 0.18 0.51 1.00 0.22 -0.17 -0.06 -0.08 -0.21

0.29 0.05 -0.01 -0.04 0.57 -0.08 -0.06 -0.04 0.08 0.23 0.22 1.00 0.04 0.01 -0.03 -0.30

-0.01 -0.10 -0.14 -0.13 -0.05 0.14 -0.03 0.14 -0.09 0.04 -0.17 0.04 1.00 0.07 0.19 -0.04

-0.08 -0.09 -0.09 -0.08 -0.06 0.01 0.09 -0.08 -0.06 0.06 -0.06 0.01 0.07 1.00 0.12 0.00

-0.01 -0.01 -0.02 -0.02 -0.04 0.09 -0.20 0.32 -0.20 0.05 -0.08 -0.03 0.19 0.12 1.00 0.01

-0.91 -0.14 0.04 0.15 -0.64 0.19 -0.13 -0.01 0.01 -0.36 -0.21 -0.30 -0.04 0.00 0.01 1.00

CS_Enigma Correlation of Properties and Evaluation CER

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.5 Correlation matrix of the AALP and the CER in Vig CS and Enigma CS.

46

Vigenère

Model MAE R²

Mean 0.044 -0.000

Ridge 0.041 0.155

XGBoost 0.041 0.138

RForest 0.041 0.140

MLP 0.041 0.131

(a) Epoch 5

Model MAE R²

Mean 0.037 -0.000

Ridge 0.034 0.165

XGBoost 0.034 0.143

RForest 0.034 0.142

MLP 0.034 0.121

(b) Epoch 10

Model MAE R²

Mean 0.071 -0.000

Ridge 0.067 0.126

XGBoost 0.068 0.099

RForest 0.068 0.107

MLP 0.067 0.122

(c) Epoch 15

Model MAE R²

Mean 0.046 -0.000

Ridge 0.043 0.124

XGBoost 0.044 0.107

RForest 0.044 0.107

MLP 0.043 0.122

(d) Epoch 20

Model MAE R²

Mean 0.039 -0.000

Ridge 0.036 0.140

XGBoost 0.037 0.122

RForest 0.037 0.121

MLP 0.036 0.127

(e) Epoch 30

Model MAE R²

Mean 0.038 -0.000

Ridge 0.035 0.137

XGBoost 0.036 0.115

RForest 0.036 0.119

MLP 0.036 0.126

(f) Epoch 40

Enigma

Model MAE R²

Mean 0.062 -0.000

Ridge 0.022 0.860

XGBoost 0.019 0.887

RForest 0.019 0.887

MLP 0.021 0.871

(g) Epoch 5

Model MAE R²

Mean 0.063 -0.000

Ridge 0.022 0.859

XGBoost 0.020 0.885

RForest 0.020 0.883

MLP 0.020 0.880

(h) Epoch 10

Model MAE R²

Mean 0.062 -0.000

Ridge 0.033 0.599

XGBoost 0.033 0.584

RForest 0.034 0.584

MLP 0.034 0.586

(i) Epoch 15

Model MAE R²

Mean 0.028 -0.000

Ridge 0.027 0.075

XGBoost 0.027 0.089

RForest 0.027 0.092

MLP 0.027 0.066

(j) Epoch 20

Model MAE R²

Mean 0.025 -0.000

Ridge 0.024 0.072

XGBoost 0.024 0.040

RForest 0.024 0.048

MLP 0.025 -0.001

(k) Epoch 30

Model MAE R²

Mean 0.025 -0.000

Ridge 0.024 0.082

XGBoost 0.024 0.060

RForest 0.024 0.065

MLP 0.025 -0.022

(l) Epoch 40

Table A.1 Predicting CER from AALP with ML models, English

47

Vigenère

Model MAE R²

Mean 0.049 -0.000

Ridge 0.045 0.155

XGBoost 0.046 0.127

RForest 0.046 0.132

MLP 0.046 0.090

(a) Epoch 5

Model MAE R²

Mean 0.039 -0.000

Ridge 0.035 0.184

XGBoost 0.035 0.163

RForest 0.035 0.159

MLP 0.036 0.149

(b) Epoch 10

Model MAE R²

Mean 0.067 -0.000

Ridge 0.062 0.165

XGBoost 0.062 0.163

RForest 0.062 0.166

MLP 0.062 0.166

(c) Epoch 15

Model MAE R²

Mean 0.044 -0.000

Ridge 0.041 0.121

XGBoost 0.041 0.129

RForest 0.041 0.132

MLP 0.041 0.143

(d) Epoch 20

Model MAE R²

Mean 0.039 -0.000

Ridge 0.036 0.122

XGBoost 0.036 0.136

RForest 0.036 0.137

MLP 0.036 0.142

(e) Epoch 30

Model MAE R²

Mean 0.038 -0.000

Ridge 0.035 0.130

XGBoost 0.035 0.137

RForest 0.035 0.139

MLP 0.035 0.152

(f) Epoch 40

Enigma

Model MAE R²

Mean 0.040 -0.000

Ridge 0.035 0.203

XGBoost 0.033 0.266

RForest 0.033 0.265

MLP 0.034 0.202

(g) Epoch 5

Model MAE R²

Mean 0.047 -0.000

Ridge 0.041 0.196

XGBoost 0.041 0.186

RForest 0.041 0.195

MLP 0.042 0.173

(h) Epoch 10

Model MAE R²

Mean 0.030 -0.000

Ridge 0.029 0.046

XGBoost 0.029 0.042

RForest 0.029 0.037

MLP 0.029 0.014

(i) Epoch 15

Model MAE R²

Mean 0.031 -0.000

Ridge 0.030 0.058

XGBoost 0.030 0.075

RForest 0.030 0.077

MLP 0.031 0.011

(j) Epoch 20

Model MAE R²

Mean 0.034 -0.000

Ridge 0.033 0.060

XGBoost 0.033 0.066

RForest 0.033 0.069

MLP 0.036 -0.127

(k) Epoch 30

Model MAE R²

Mean 0.037 -0.000

Ridge 0.035 0.075

XGBoost 0.035 0.067

RForest 0.036 0.067

MLP 0.036 0.039

(l) Epoch 40

Table A.2 Predicting CER from AALP with ML models, German

48

Vigenère

Model MAE R²

Mean 0.046 -0.001

Ridge 0.041 0.199

XGBoost 0.042 0.181

RForest 0.042 0.185

MLP 0.042 0.185

(a) Epoch 5

Model MAE R²

Mean 0.029 -0.000

Ridge 0.026 0.142

XGBoost 0.027 0.123

RForest 0.027 0.123

MLP 0.031 -0.102

(b) Epoch 10

Model MAE R²

Mean 0.036 -0.000

Ridge 0.034 0.127

XGBoost 0.034 0.104

RForest 0.034 0.103

MLP 0.036 0.033

(c) Epoch 15

Model MAE R²

Mean 0.092 -0.000

Ridge 0.089 0.075

XGBoost 0.090 0.058

RForest 0.090 0.065

MLP 0.089 0.075

(d) Epoch 20

Model MAE R²

Mean 0.052 -0.000

Ridge 0.050 0.057

XGBoost 0.050 0.051

RForest 0.051 0.048

MLP 0.050 0.062

(e) Epoch 30

Model MAE R²

Mean 0.048 -0.000

Ridge 0.047 0.052

XGBoost 0.047 0.052

RForest 0.047 0.048

MLP 0.047 0.067

(f) Epoch 40

Enigma

Model MAE R²

Mean 0.064 -0.000

Ridge 0.024 0.839

XGBoost 0.022 0.868

RForest 0.022 0.867

MLP 0.024 0.846

(g) Epoch 5

Model MAE R²

Mean 0.071 -0.000

Ridge 0.065 0.173

XGBoost 0.066 0.141

RForest 0.066 0.157

MLP 0.066 0.150

(h) Epoch 10

Model MAE R²

Mean 0.033 -0.000

Ridge 0.032 0.041

XGBoost 0.031 0.072

RForest 0.031 0.078

MLP 0.031 0.057

(i) Epoch 15

Model MAE R²

Mean 0.029 -0.000

Ridge 0.028 0.035

XGBoost 0.028 0.038

RForest 0.028 0.051

MLP 0.029 -0.021

(j) Epoch 20

Model MAE R²

Mean 0.031 -0.000

Ridge 0.030 0.036

XGBoost 0.030 0.058

RForest 0.030 0.061

MLP 0.030 0.012

(k) Epoch 30

Model MAE R²

Mean 0.032 -0.000

Ridge 0.031 0.048

XGBoost 0.031 0.037

RForest 0.031 0.044

MLP 0.032 0.016

(l) Epoch 40

Table A.3 Predicting CER from AALP with ML models, Czech

49

	Introduction
	Sequence modeling with Transformers
	Language modeling
	Transformer
	Training

	ByT5
	Seq2Seq decipherment
	Substitution ciphers
	Related work on decipherment modeling

	Interpreting machine learning
	Interpretability
	Feature attribution
	SHAP
	Interpretability of Transformers

	Research question
	Analysis

	Experiments
	Overview
	Data
	Preprocessing
	Linguistic properties

	Training
	Decipherment tasks
	Training runs

	Analysis
	Error prediction
	SHAP feature importance

	Results and discussion
	Training
	Correlations
	Performance prediction
	SHAP
	Discussion

	Conclusion
	Bibliography
	Reproducing experiments and all results
	Reproducing experiments
	All figures and tables

