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Introduction
In this thesis, we will explore two distinct worlds: the world of large language

models (LLMs) and the world of data exploration. At a first glance, these worlds
may seem separate, but with the increasing capabilities of LLMs, the worlds
begin to interact. Specifically, we will investigate how an exploration of a dataset,
understood as a broadly conceived space of all available options, can be more
readily accomplished by a user with the help given by an LLM.

LLMs are at the forefront of natural language processing (NLP), representing
a significant technological advancement in artificial intelligence. These models
are built using deep learning algorithms, particularly variants of transformer
architectures, which allow them to process and generate text in ways that are
contextually and semantically rich. By training on extensive datasets containing
diverse text sources—such as books, websites, and academic papers—LLMs learn
the intricate patterns of language, enabling them to perform tasks like text
summarization, question answering, completion, and more.

LLMs nowadays are increasingly becoming part of a wide range of user ap-
plications to streamline user work or enhance the application environment. The
currently most widespread family of conversational models, OpenAI’s ChatGPT,
demonstrates that their use significantly extends beyond the realm of meaningless
conversations, and their generative capabilities are often better in limited domains
compared to humans. [1, 2, 3]. However, it is not always straightforward and
clear how to communicate with such a model, especially how to achieve a specific
format of response or how to deliver the necessary context for understanding the
user’s assignment.

The answer to the mentioned problem is an LLM prompting, which can
influence the final form and quality of an LLM response. Therefore, an LLM
prompt can be understood as an extension to the bare user assignment, which
might add rules how the response should look like, help to interpret next user
inputs, or describe the context in which the agent is situated.

Although current LLMs are capable of generating relatively complex ex-
ploratory scripts, whether it be SQL queries or a short program in Python
or R, it is very often difficult for users, especially in more complicated cases, to
decide whether the script is valid considering original user query. Therefore, an
iterative data exploration method could be proposed, emphasizing the way the
data set is traversed and how information from the data set is obtained.

When using this method, the user builds the final script or query sequentially
through repeated selections from all possible atomic operations that can be
performed at the given point. Not only is the user acquainted with all available
steps through this approach, but it is also assumed that the user is better able to
decide whether the atomic operation they perform on the data set is appropriate.
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Having such iterative exploration tool, especially in conjunction with LLM
prompting, can be very useful for exploring data sets that may be either factually
complicated in terms of size or semantics of the data or that require knowledge of
a query language (such as SQL for relational databases) through which data can
be explored.

This work aims to combine the aforementioned two directions into a single
solution, which will serve as a proposal for a tool for easier work with data sets.
The thesis will be divided into two parts, implementation and experimental.

In the implementation part, we will build a web application in the C# pro-
gramming language operating over a virtual representation of tabular data. The
application will use an LLM ChatGPT agent that will suggest the best next step
to obtain a fitting result of the user’s initial query. The goal of this part is to
build a functional prototype of an iterative data exploration tool, serving as a
representative of the entire class of such tools. The implementation will place an
emphasis on generality of the solution, allowing the same code-base to be used in
another projects.

In the experimental part, we will focus on the challenges of the LLM prompting
and, based on the experiences gained from implementation of the iterative data
exploration tool, we will further test selected approaches on how to design LLM
prompting and how to maximize the agent’s success in finding the correct next
step, where the prompting will be tested on different cases and combined with
proposed procedures.

8



1 Background
In this chapter, we introduce sources that served as the main motivation

for creating an interface with a custom assistant for iterative data exploration.
We will highlight the key elements we consider important in the creation of our own
implementation of such an assistant and demonstrate in which parts of the project
it is appropriate to use an LLM assistant to increase the success of finding the final
query.

1.1 The Gamma
The Gamma [4] is a data exploration environment specifically designed to make

the power of programmatic data analysis accessible to non-programmers, particu-
larly targeting users such as data journalists. It achieves this through the iterative
prompting approach, where users construct simple, transparent, scripts by se-
lecting from a range of code completions rather than writing their own code
from scratch.

Figure 1.1 An example of The Gamma offering all possible next moves after writing
”.” character.

This design significantly lowers the barrier to entry for data exploration, allow-
ing users to effortlessly navigate and analyze data from various sources, without
requiring prior programming knowledge. By transforming the complex process
of data exploration into a series of simple, guided selections, The Gamma not only
simplifies data analysis but also encourages a deeper engagement with data. Its em-
phasis on simplicity and reproducibility aligns with the broader goal of informed
decision-making in data journalism and beyond. As such, The Gamma represents
a critical advancement in making sophisticated data analysis tools more accessible,
fostering a more data-literate society where users can easily leverage open data
to uncover insights, tell compelling stories, and support factual claims.
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Although this approach technically facilitates data exploration and potentially
aids in decision-making about which option to choose, it still cannot help the user
if, at a given step, it is impossible to confidently determine which choice is correct.
This may not only be due to a lack of knowledge of the defined operations but
also the nature of the source data. Since LLMs are capable of efficiently analyzing
large volumes of text and making micro-decisions over that text [5], they seem
like a suitable candidate for integration into such a system.

1.1.1 Downsides
The method of displaying all available options from a given state requires

an internal definition of all possible operations generally applicable in the given
context, regardless of the current position. However, for some query languages,
such as SQL, it may be difficult to define all existing operations in the given lan-
guage and, above all, transform them into a reasonable sequential form containing
atomic elements. It is therefore quite understandable that such a system contains
only a limited set of operations for which the data exploration is supported.

However, even if the system contains only a limited set of defined operations,
there are scenarios where generating all the next options will be challenging. In
some cases, it is desirable for the menu to be created dynamically, based on the
current data. This data can be not only potentially unlimited in size but also
time-consuming to obtain.

If we disregard the problem with the time-consuming nature of processing all
the next options, its total size is a problem that remains present even in the case
of using LLM, as their contextual window, in which communication between the
user and the agent is done, is limited.

1.1.2 Inspirations
In our own project, we primarily want to adopt the iterative, dot separated,

approach (dot approach in short) in constructing the final user query, which offers
all subsequent available options at each step and, upon applying a given step,
displays the current state of the queried data source. Especially the first mentioned
feature is key for engaging an LLM agent, as it clearly defines the available selection
of all options from which the LLM agent can be asked to pick the most suitable
option regarding the inital user query.
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1.2 A prompt Pattern Catalogue
For a successful integration of LLM prompted hints into a data exploration tool

with the aim of helping the user, it is crucial to carefully select how to construct the
prompt and ensure the highest success rate in processing the assistant’s response.
In the work A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT [6], a rich catalogue of generically structured approaches to prompting
with LLMs was proposed. Some of the approaches are also relevant to our work
and will therefore be adopted in our solution. Namely, these approaches include:

1. Persona Pattern: The assistant will be introduced in its role as an
assistant, helping to select the best possible choice from the given selection
with respect to the user’s intent and previous choices. From this prompt
pattern, we expect that the assistant will be better placed in the context of
the application and will not generate machine-unprocessable and undesirable
responses, such as suggestions of random source codes solving the user’s query.
The following example illustrates, how an assistant could be introduced to
a situation of helping user navigate through Eurostat database.

You are an assistant that is helping a user to navigate
through the set of tables from the Eurostat database. You
will be given a query and all available subsections. You
should help the user to navigate to the correct subsection.

2. The Template Pattern: Since the user will not interact with the LLM
directly, but only indirectly through the proposed best response from the
given option set, it is important to ensure that the LLM produces formatted
output according to predetermined rules, based on which the generated
output can be processed and evaluated. The example below illustrates how
to give LLM a specification of a template that will be used to communicate
together.

You will be given a list of all available options, each associ-
ated with unique index. Answer only with the number of the
subsection you think is the best fitting. If you don’t know
the answer, return -1.”

The other introduced patterns seem to be no less interesting for the purpose
of obtaining guidance in selecting the right option from the list of all possible
operations over the data set, yet they mostly require a human recipient, who is
capable of understanding more complex and indirect structures of guidance. An
example of such an approach could be the Flipped Interaction Pattern defined as
follows:

I would like you to ask me questions to achieve X.
You should ask questions until this condition is met or to achieve this
goal (alternatively, forever).
(Optional) ask me the questions one at a time, two at a time, etc..

Table 1.1 Definition of Flipped Interaction Pattern [6, page 6]
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Which could look in the context of data exploration as follows:

context User wants to find the average age of customers in a certain
database table...

User: Ask me questions so that you can find what is the average
age of all customers in our database system.

Assistant: What is the name of the database table?
User: ...
Assistant: What are the column names in the table?
User: ...
Assistant: Other related questions...
User: ...

Assistant:

The query you are looking for might look like:

SELECT AVG(age) AS average_age
FROM customers;

Table 1.2 An example use of Flipped Interaction Pattern for data exploration.

It is clear from this example that this approach is almost impossible to automate
in the background of a data exploration tool, as it requires direct user responses
and at the same time produces the final answer in any format with any additional
comments.

1.3 Iterative Prompting Assistant
Consider the following prompt for this subsection:

I am looking for a table with an overview of the year-on-year inflation
rate development for the Federal Republic of Germany.

We are a user who wants to find the correct table in the Eurostat database [7].
This database has systematically structured content, where values are stored in
tables that are thematically classified into structures reaching a maximum depth
of more than 10 subcategories.

Eurostat
- Detailed datasets

...
- Selected datasets

...
- Economy and finance

- Government statistics
...

...
...

...
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As a user seeing this database for the first time and having no experience
with how the database is structured, any help with finding our table would
be appreciated. The only option the user has is to instinctively enter various
categories. The user either is lucky enough and finds the desired table or reaches
a point where the user is sure that the path is wrong and tries another category.
If the user is familiar with the subcategory names and understands their meaning,
the user has a relatively high chance of successfully finding the desired table.
However, if the user knows almost or absolutely nothing about the topic, then
any help from an LLM assistant can be a valuable contribution. Let’s therefore
define, how to represent such situation.

Any such environment that can be iteratively navigated can be understood as
a decision tree, where a vertex represents the current state and an edge represents
the operation of transitioning to the next state. Typically, there will be as many
edges as there are operations the user can perform at the vertex (state). If we had
to represent more complex operations, than just the operation open subcategory
with one argument name of the subcategory for example, we would break down
such an operation into atomic units so that the above-mentioned formalism can
again be applied.

Open subcategory End

General and regional statistics

...

Economy and finance

...

Industry, trade and services ...

Open subcategory End

Short-term business statistics ...

Figure 1.2 Tree representation of the iterative approach in data selection environment.

In Figure 1.2, we represent a situation in which we are in the initial empty state
while having two options, open new subcategory or end the generation. We can
also see that the open subcategory is effectively split into two atomic operations,
first being the chose an operation (grey) and second being the fill the category
name (green).
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If we were to model such an environment for communication with an LLM
agent, whose task would be to select the correct option, we must provide the
assistant with the following input information:

1. User query,

2. path from the root to the current vertex,

3. edges leading from the current vertex.

The description of the current situation is thus expanded by the original user
query and the already visited vertices, representing the path through the graph
to the current position. These metadata must be attached to all prompts. Not
only can it be assumed that it would be difficult for the LLM to search in a long
history of prompts which operations have already been performed and to orient
itself correctly, but such a history could, in more complex examples, exceed the
maximum volume of context insertable into the LLM to get a response. Each
single prompt is therefore a standalone unit with which the LLM agent should be
able to choose the next step, without having access to the previous prompts.

The prompt describing the tree illustration from Figure 1.2 could thus look as
follows:

User query: I am looking for a table with producer prices in industry for
the Federal Republic of Germany

Path done: ’Open subcategory’ . ’Industry, trade and services’ . ’Open
subcategory’

Next moves:
> Short-term business statistics
> Business structure and dynamics
> Globalisation in business statistics
> Tourism
> Statistics on the production of manufactured goods

Table 1.3 Prompt representation of the Image 1.2.

This is also the prompt design we implement in our Iterative Prompt Assistant
solution in the following chapter.
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2 Iterative Prompting Assistant -
C# Implementation

In this chapter, we introduce an implementation (A.1) for the iterative prompt
assistant. As a demonstration scenario, we simulate a basic query language on
tabular data. We chose this scenario because it illustrates well the use of an LLM
assistant for obtaining next-step hints. It also reveals the pitfalls associated with
mapping the LLM assistant’s textual response to calls of specific procedures in
the program code.

In the program, all available operations are statically defined, including their
description, list of arguments, and their functions applicable to the data set. At
each step of creating the final query by the user, the LLM agent is prompted in
the background with a list of currently available options, along with the already
performed history of operations, for advice on which of the following options
is the best to perform. This scenario is relatively straightforward as long as it
involves choosing one of the listed options. However, some operations also require
an argument that cannot be selected from a pre-generated list, typically one word
(e.g., filtering a data set by given value), and ensuring an acceptable response
from the LLM for such operations is more complex.

Later in this chapter, we show in detail the approach chosen for communication
with the LLM and introduce the pitfalls this approach brings.

We chose C# as the programming language for the web application due to
the higher level of proficiency and familiarity with the language. This familiarity
allowed for a smoother and more efficient development process, enabling us to
focus on implementing features rather than learning a new language.

ASP.NET was selected as the development framework because it offers seamless
integration with C#. Its compatibility with C# was crucial for the project, as it
allowed for direct calls to C# functions from the web, aligning perfectly with the
application’s requirements.

2.1 Description
The user interacts with the application via a web interface, which is written

in HTML and controlled using JavaScript. In this environment, the user has the
option to upload their file containing tabular data in the CSV format (along with
specifying the delimiter of the file), enter their descriptive sentence about desired
transformations of the data, iteratively create the final sequence of operations,
and in the real-time view the (partially) transformed data. Operations are entered
using a dot approach, meaning that each argument is expected to be separated
by a dot and each dot is triggering the LLM suggester, which advises the user
on the next step. In the background of this web application, the current input is
divided into individual operations and the operations from the previous iterations
are executed. Together with the currently available and numbered options, a new
prompt is generated from the last remaining operation. It is also accompanied
by a request for selecting the best option in regard to the user’s intent. Upon
receiving a response, system tries to process it (assigning it to the correct operation
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from the list) and, if successful, adds the operation to the collection of already
entered operations. Thanks to that, the web application can serve a preview of
the current transformed data at any time. At every step, the user is shown an
offer of all available operations, along with the option highlighted as the most
fitting by the LLM agent. This way, the user is able to conduct assisted iterative
data exploration.

2.2 Architecture
When designing the architecture of the program, great emphasis was placed

on the functional separation of the individual units of the program and on the
possible implementation substitutability of the units participating in the creation
of the final transformations.

2.2.1 WhisperService
The provider of the entire service is the WhisperService class. It is designed

to be an application component with simple user API, allowing to easily insert
the whispering service into an already running system. The main purpose if this
class is to be an intermediary for queries captured from the running application
(WebAPI controller [2.2.2] in our case). It internally stores a collection of all
statically predefined operations and a collection of already processed operations
to be able to provide a view into the current state of the data. When requested,
it creates a view of the current data set after applying all captured operations.
When a new user input is given, it divides the input into single operations and
passes them to the query agent (2.2.3).

2.2.2 Controller
The application controller, which is tasked with receiving queries posed from

the web interface, performs basic input data control, and calls the appropriate
methods of the WhisperService class (2.2.1). For the purposes ouf our demo, the
controller, together with the front HTML page, serves as a mediator between the
real user calls and the WhisperService, even though the WhisperService would be
inserted into an already existing project code base of the production environment
otherwise.

The controller contains the following endpoints with their mentioned functions:

• POST: api/whisper/upload-csv (Uploading tabular data),

• POST: api/whisper/upload-user-input (Uploading user query),

• POST: api/whisper/process (Processing input, returning recommendation),

• GET: api/whisper/get-current (Getting the current view of the data).

Together with forwarding requests to the service class, it also handles simple
validity checks of the input files and of the user query.
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2.2.3 IQueryAgent
QueryAgent is the core part of the program. It is responsible for creating

prompts with respect to the current situation and user input. It internally holds
a reference to the current copy of the transformed data in order to be able to
offer all the next available steps. When invoked, it sequentially goes through the
individual operation names from the input and, until there are some left, it creates
a ”history” of already performed operations. This history is used to generate,
accordingly to the current state, a new prompt asking for the best next move. It is
also where response format validity checks are implemented and error handling is
managed. While it is the core for creating the LLM prompts, the communication
with a certain LLM is separated into the Communication Agent (2.2.4), ensuring
that different LLMs can be used without the rest of the program being changed.

Program 1 IQueryAgent interface definition, together with the final QueryView-
Model.
public interface IQueryAgent
{

public void AddUserQuery(string userQuery = null);
public void StartNewQueryAttempt();
public QueryViewModel PerformQuerying(IList <string > queryItems ,

IList <Field > fields);
}

public class QueryViewModel
{

public int BotSuggestionIndex {...}
public string BotSuggestion {...}
public IEnumerable <ITransformation > Transformations {...}
public IEnumerable <string > NextMoves {...};
public void AddTransformation(ITransformation transf) {...}
public string AddBotSuggestion(string suggestion ,

bool userInputExpected = false) {...}
}

2.2.4 ICommunicationAgent
The final link for communication with the LLM agent, enabling to connect

our solution to any reasonable LLM. In our implementation, OpenAI API [8] was
used to access OpenAI LLMs.

Two types of messages are used for communication with the LLM agent:

1. System message: This is the part of the prompt that is present in every
user message in the conversation. It is therefore primarily suitable for
familiarization with the context and understanding of the role. In our case,
it is used for the Persona pattern mentioned in section 1.2.
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2. User message: This is already the part of the prompt carrying the main
information of the entire message. It does not adhere to any text formatting,
since it is possible to communicate in any text format with LLMs. In our
case, the Template pattern from section 1.2 is used for this type of messages.

Program 2 Definition of ICommunication interface.

public interface ICommunicationAgent
{

public bool Verbose { get; }
public CommunicationAgentMode Mode { get; }

public void FlushCurrentChat();
public void AddUserQuery(string userQuery = null);

public string InsertSystemMessage(string message);
public string InsertUserMessage(string message);
public string ErrorMessage(string message);

public string GetResponse(string querySoFar = null,
string nextMove = null, int nextMoveIndex = -1,
bool isUserInputExpected = false);

public void ShowConversationHistory();

public IEnumerable <string > CreateNextQuestion(
string question ,
IEnumerable <string > possibleChoices = null);

...
}

Program 3 Definition of ITransformation interface.

public interface ITransformation
{

public TransformationType Type { get; }
public bool HasArguments { get; }
public bool HasFollowingHumanArguments { get; }
public int TotalStepsNeeded { get; }

public List<Field > PerformTransformation(List<Field > input);
public List<EmptyField > Preprocess(List<EmptyField > list);
public IEnumerable <string > GetNextMoves(

IEnumerable <EmptyField > fields);
...

}
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2.2.5 Interfaces and Datatypes
Since one of the goals of the work is to create a tool that can simulate work

with any data set, a custom structure, compatible with any defined transformation,
was created to represent the data set.

As a result, IQueryAgent (Program 1) works with the ITransformation (Pro-
gram 3) interface and the implementation is identical (and only one) for any
transformation that is available in the program.

The data fields are represented by the DataSet class, which contains a list
of Fields (Program 4), each holding Header and a list of Cells. The Header
is a representative of the column, storing FieldDataType used in its column.
Secondly, it stores the position of the column in the DataSet and its name. The
Cell is a representative of a single value stored in the column, storing content and
its position in the column.

For practical reasons, there is also an EmptyField class defined (Program 4),
which serves as a type representative of a field and carries only the name and type
of values contained in the given field. This is required since the type-information
can affect the selection of available subsequent operations in the user selection,
and it is therefore necessary to maintain (and possibly change) the type of fields
even during the iterative construction of the user query without actually touching
the data. This is used in the Preprocess method (Program 3) to change the data
fields accordingly to the current state of the query.

Finally the QueryViewModel is the response of the PerformQuerying method
(Program 1) that holds all relevant information for creating a collection of next
moves with the LLM agent suggestion whispered, potentially used in the user
application.
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Program 4 Definitions of classes representing dataset.

public enum FieldDataType
{

Bool,
String ,
Number ,
Date

};

public class Header
{

public FieldDataType Type { get; set; }
public string Name { get; set; }
public int Index { get; set; } = 0;

}

public class Cell : IComparable <Cell>
{

public string Content { get; set; }
public int Index { get; set; }

public int CompareTo(Cell? other) {...}
public int CompareToTypeDependent(FieldDataType type,

Cell? other) {...}
}

public class EmptyField
{

public Header Header { get; set; }
}

public class Field : EmptyField
{

public List<Cell> Data { get; set; } = new();
}

public class DataSet
{

public List<Field > Fields { get; set; } = new();
}

2.3 Communication with an LLM
In this section, we describe the format of conversation that is conducted

between the program and the LLM agent for the purpose of obtaining guidance for
the next step. During the design of the LLM prompts, it was discovered that the
way we communicate with the agent radically affects the validity and correctness
of the answers and we therefore devote a whole chapter 3 to this topic. Here, we
only describe the approach that was the motivation for chapter 3 and is part of
the program implementation.
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The form of the prompt used in the application is described in the following
example (the dataset contains journeys and consumption of traction energy by
railway carriers in Germany):

"User initial input is: Group data by carrier 'CDC'
and show count of distinct values in each column.

The query built so far: GroupBy.Carrier

---> Choose one of the following Aggregations
you want to apply to the grouped dataset:
> [0] Sum
> [1] Avg
> [2] Concat
> [3] CountDistinct
> [4] CountAll

Answer the appropriate number!"

The example shown above is taken from a test run of the application. It shows
the full body of a prompt that the LLM agent recieves when asked to choose the
next best step. The form can generally be described as follows:

1. With each subsequent step of an iterative built of the final query, the LLM
agent is informed about the original user request,

2. the previously selected operations are listed to the agent too,

3. then, an enumerated collection of further options is presented, and

4. finally, the agent is reminded to respond only with a number from the
collection.

During the first usage, we discovered that the absence of the original user
request in the option offer (item 1) may cause the agent to consider the query as
finished, although especially in queries combining multiple operations at once, a
query was finished for only a part of the request. Therefore, the user request is
added to each prompt.

For similar reasons, with each prompt, the agent is reminded of the already
created query (item 2) even though the agent has these data available in the chat
history, which is being formed by every added prompt. However, it can be assumed
that the agent places greater emphasis on the most recently added messages and
especially with longer queries may neglect already performed operations.
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When designing the communication with an agent, we assumed that with each
prompt, the agent would only be presented with a list of names of individual
operations and the agent would respond only with the name of the selected
operation. However, when applying this approach, the agent’s response often
contained not only the name of the operation but also a lot of confusing text was
added:

"From the list above, I would choose 'CountDistinct'"

Instead of simply responding by:

"CountDistinct"

For that reason, the LLM agent parameters (such as top-p or temperature)
were set to the maximum extent possible so that the response would be as
straightforward as possible and contain a minimum of ancillary text.

Unfortunately that did not stop the LLM in producing ancillary text either
and therefore all options are uniquely numbered (item 3) and it is expected from
the agent to respond only with the corresponding number.

That being said, if the following option is considered correct:

[3] CountDistinct

The LLM is expected to answer with:

"3"

However, since this approach was still susceptible to responses of a similar
character;

"Let's start with GroupBy carrier 'CDC'
and show count of distinct values.
So the next transformation would be [3] GroupBy."

an imperative sentence was added to the end of the prompt (item 4) specifying
what type of response we currently expect from the agent.

This design of prompts proved to be functional in the application’s use and
the agent started responding in a valid format in the most of the cases. It thus
appears that the more restrictions about the input the agent receives, the less
prone it is to deviate from the given format.

2.4 Case study
In this section, we demonstrate the final form of the web application with

several screenshots.
After uploading a dataset in the CSV format and specifying the delimiter

used in the file, the user can enter their request. The request is formulated using
a simple sentence, which is ended with a period. The presence of the period
simultaneously triggers the first prompt to the LLM agent, followed by displaying
available options. The preferred option by the LLM agent is always placed at the
first position and is orange-highlighted. The rest of the options remains in the
original order.
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If the construction of the query is at the beginning or if the construction of
one of the transformations has just been completed, the user is offered a list of all
next available transformations. On the other hand, if a specific transformation
has already been specified but is not yet fully constructed, all possible following
arguments are displayed in the offer.

Some transformations have fixed additional arguments (such as OrderBy.
<header-name>. <ascending/descending>) for which the agent is always given a
complete numbered list of available options, but some transformations (in case of
FilterBy. <header-name>. <equality>. <any-value>) allow entering any textual
argument. In such cases, the LLM agent is prompted using a different imperative
sentence at the end of the prompt (item 4) with a helping instruction to enter the
textual argument that is most likely considered correct.

Iterative prompt assistant
Input Fields: Browse… 210000101011_DE00758760326VIRT0000000000000236_20230101_20230131_202336737_tEns.csv

Delimiter: ;

User query: Group by dopravce and sum all values in the columns.

Query
builder:

Home Source code

GroupBy.

tEns

Aggregationsmerkmal

BelegNummer

Zeitpunkt_Start_ME(S)Z

Zeitpunkt_Ende_ME(S)Z

Entnahme_Wirkleistung_kWh

Rückspeisung_Wirkleistung_kWh

© 2023 - Mikoláš Fromm | MFF UK

Figure 2.1 Dynamically created dropdown menu with highlighted choice from LLM
agent.

In the example 2.1, we can see that in the case of arguments requiring the
selection of a specific column name, the offer is dynamically generated according
to the current structure of the dataset.

When the user successfully creates at least one complete transformation, the
current form of the dataset is displayed in the preview. The user may continue
building their desired query or decide to finish building the query at the current
state. If they decide to continue, each subsequent transformation will then be
applied to the current data from the preview, thus the application implicitly
supports layering of a larger number of operations in sequence.

In the example 2.2 below, we can see the final form of one completed transfor-
mation and a preview of the current state of the dataset.
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Iterative prompt assistant
Input Fields: Browse… 210000101011_DE00758760326VIRT0000000000000236_20230101_20230131_202336737_tEns.csv

Delimiter: ;

User query: Group by dopravce and sum all values in the columns.

Query
builder:

Home Source code

GroupBy.Dopravce.Sum.

© 2023 - Mikoláš Fromm | MFF UK

Figure 2.2 Preview panel with transformed dataset.

Finally, an example from testing the application shows that even if the agent
is given a very detailed description of the format that is expected to be used in
his answers, the validity of his responses is not guaranteed.

Input prompt:

User initial input is: Show only rows with dates later than 10/01/2023
and then filter by carrier = CDC.

The query built so far: FilterBy.StartDate.GreaterThan.
10/01/2023.FilterBy.Carrier.Equals

Write down the right side of the relation.

Agent’s response:

I'm sorry, I made a mistake earlier.
The last transformation you chose was FilterBy on the field "Carrier".
Therefore, you should choose a value for the "Carrier" field,
not the "GreaterThan" relation.

Here are the possible values for the "Carrier" field:

> [0] CEZ
> [1] EON
> [2] PRE

Please choose one of these values.
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In this case above, the agent was prompted to fill in the right side of the Equals
relation, thus any response was understood as a valid argument (while expecting
that ”CDC” would be the correct answer), yet it is obvious that the response is
far from the expected and therefore incorrect. The agent not only adds apology
messages that his procedure was wrong, but also defines new options that may be
in the correct format, yet completely unrelated to the dataset.

In the following Chapter 3, we will therefore verify whether it is possible to
at least partially prevent problems with incorrect responses and how frequent is
the error of these conversational bots in a similar application environment.
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3 Constructing better prompts
In this chapter, we focus on the issue of constructing an appropriate prompt.

Creating the Iterative Prompt Assistant from chapter 2 has proven that choosing
the right strategy for designing the final form of prompt communication is com-
plicated. Therefore, in this section, we experimentally verify several hypotheses
related to the creation of LLM prompts, which can help in designing other systems
that depend on prompting with LLM.

3.1 Motivation
The main motivation for experimenting with the form of LLM prompting is

to maximize the success of the final prompt form. However, it is very difficult
to define what ”success” of a prompt means in a general case, so we focus on
the application environment from chapter 2. Similar to this application, we
iteratively build the final query using LLM prompting, but unlike the application
described above, the LLM interacts only with a testing framework that assesses
the correctness of the next proposed step.

The goal of the LLM agent is to guide a pseudo-user through a tree represented
option space based on a request given in a natural language and help to choose the
next appropriate step to achieve the goal, which is to find a correct path to the
requested object in the underlying data structure. This form of the assignment was
particularly designed to suit our testing needs to determine all correct solutions in
advance and decide whether the LLM agent’s proposal is correct or not afterwards.

We also evaluate whether the success is influenced by the language (e.g. English
or German) in which the query or data structure is described and whether the
proposed improvements are invariant to the change of the LLM.

3.2 Framework description
The framework represents a methodology for conducting automated tests in

the context of the iterative prompting methods. It is specifically designed to
evaluate how different prompting strategies influence the performance of LLMs,
OpenAI’s GPTs exactly, in navigating structured data sources like databases
or file systems. The system incorporates a setup that enables a simulation of
real-world data querying tasks across multiple data domains and languages, testing
the adaptability and efficiency of LLM prompts in guiding users to their desired
information.
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3.2.1 Key Components and Methodology
The framework is structured into several core components, each responsible

for a distinct aspect of the testing environment:

3.2.1.1 Data Source Simulation

The Data Source component simulates three types of structured data sources: A
copy of a content structure of the Eurostat database [7] (obtained on 01/02/2024),
a snapshot of a file system containing personal user data (such as photos, videos,
documents etc.) and a snapshot of a linux server file system.

Each data source is represented as a navigable tree structure with nodes and
leaves, where nodes represent directories or categories, and leaves represent files
or final data entries.

The Eurostat [7] offers its content table in three languages: English, French
and German. The personal file system has its directory and file names in Czech
and the linux server file system is in English.

3.2.1.2 Prompt Engineering

The Prompt Engineering component implements a prompt engineering system
capable of generating prompting strategies to interact with the LLM. These
strategies vary from simple STEP-BY-STEP navigation prompts to more specific
LOOK-AHEAD-X prompts that provide an overview of potential navigation
paths. Alternative prompting method such as KEYWORD GENERATION AND
MATCH, where the LLM is tasked with identifying relevant subsections based on
generated keywords, is also implemented.

3.2.1.3 Test Definition and Execution

The framework also includes testing mechanism to systematically execute
predefined navigation tasks within each simulated data source, using a list of
correct navigation paths as benchmarks. The performance of each prompting
strategy is evaluated based on metrics such as the number of steps taken, the
presence of incorrect moves, and the overall success in reaching the correct
destination. Extended testing configurations allow for penalization based on error
locations.

3.2.1.4 Evaluation and Visualization

Lastly the framework includes tools for statistical analysis and visualization of
test results, allowing to easily interpret the obtained results and generate plots
ilustrating the test results.
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3.3 Hypotheses
To experiment with increasing the ”success” of LLM prompt responses, we set

the following hypotheses, which we verify in this chapter:

3.3.1 Expanding Context Increases Success
H1: The success of selecting the correct answer can be increased by en-
larging the contextual information in the LLM prompt. When designing
the form of LLM prompts, it has been shown to be effective in small test examples
to offer the LLM agent not only all currently available next steps but also to
include more information about the given step (for example, all subsequent steps
related to the given step). We therefore want to verify whether the ”look-ahead-X”
method, which attaches all further subsequent available steps up to a distance of
(X − 1) from the currently named step, increases the success of the LLM agent.

3.3.2 Reason for Higher Success
H2: The increase in success for hypothesis H1 is not just a result of
a more accurate answer when deciding at the end of the search path.
Consider now, for example, the look-ahead-3 method and a test example that
contains only 3 steps to find the right target. Then the initial prompt that the
LLM agent receives as the first one will already contain the textual naming of the
goal. It can therefore be assumed that in each such case, where the distance of the
look-ahead-X is the same or shorter than the number of remaining steps to reach
the goal, the measured success will be artificially higher. Therefore, we introduce
a penalty score, which will place more emphasis on the agent’s first steps rather
than on later steps.

We are interested whether there is a significant difference between the score of
the penalized and non-penalized agent, that is, alternatively whether the potential
increase in success with look-ahead is caused only by an artificially more accurate
answer in the last steps of the decision-making process, or whether this approach
generally helps to find the right step when searching for a target.

3.3.3 Model Invariance
H3: Methods increasing success are invariant to the LLM used. For the
trends measured when testing hypothesis H1, we would like to verify that it is a
general trend that can also be applied to another LLM and is not just a specific
feature of one particular tested model. Therefore, we will perform all series of
tests on two LLMs simultaneously (GPT-3.5 and GPT-4) and verify that the
trend in success relative to the size of the context is the same for both models.
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3.3.4 Language Invariance
H4: The success of selecting the correct answer is not dependent on
the specific language of the query or dataset. Since the testing framework
will primarily contain English data sets and user queries in English, we first want to
verify whether we would achieve the same results when testing in another language.
For these purposes, we will use the Eurostat database [7], which offers its ”list
of content” in three languages (other languages are only machine-translated);
English, French, and German. Tests will be conducted over all combinations of
data sets in English and German and user queries in English and German. Thus,
a total of 4 sets of tests will be conducted, which will subsequently be compared.

3.4 Methodology
In this section, we introduce the methodology used for testing the hypotheses

mentioned in the previous section 3.3. Specifically, we will present how we simulate
data sets (3.4.1), how we generate test prompts (3.4.2), how we test the LLM
(3.4.3), and finally how we evaluate the results (3.4.4).

3.4.1 Data Simulation
Each data set is represented by a tree structure, containing nodes that hold a

list of their successors, a reference to their parent, and a textual representation of
the content that the node virtually holds. In the context of the Eurostat database
[7], the textual representation includes names of subcategories or names of final
table files, while in the context of a filesystem, it involves names of directories or
final files. During testing, we require from a node to be able to return a list of all
its successors and allow access (by index) to a selected successor.

For all data sets, we only create a copy of their structure, ignoring the data
contained within the structures (such as the contents of files in a Linux filesystem)
during the simulation. The precise implementation of data extraction and the
creation of representative trees can be found in the attached program A.2, in the
section Node and Leaf Definitions.

3.4.2 Prompt Engineering
During testing, we access the LLM via the OpenAI web API [8], which

allows creation of a chat-like conversation between an ”assistant” and a ”user”.
Additionally, it permits the inclusion of messages with the role of a ”system
message”, which are primarily intended to be descriptive and directive to better
acquaint the agent with the situation.

For testing purposes, we have created the OpenAIWrapper class that encapsu-
lates these API calls and defines two primary methods:

def get_response_to_prompt(self, prompt : str) -> str:
...

def get_additional_response(self, prompt : str) -> str:
...
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As the construction of the assistant’s prompts in Chapter 2 revealed, the
maximum limit of the total number of tokens used in the conversation acts as
a limiting factor that did not allow some assisted selections to be completed.
Therefore, the class includes two methods for obtaining a response from the LLM,
where the primary method get_response_to_prompt automatically deletes the
previous conversation and replaces it with a new one, while the secondary method
get_additional_response retains the existing conversation and only adds another
user prompt.

The decision to delete the previous conversation with each subsequent prompt
indeed solves the problem with limited context for most tests but, conversely,
now requires to include an information about the operations already performed in
every prompt. Without such information, a deterioration in the agent’s success in
choosing the best next step can be expected.

3.4.2.1 Prompt Generation

The creation of textual prompts is managed by the AssistantWorker class,
which, for the original user query, the path already taken through the nodes,
the current node, and a specific mode, creates a textual prompt containing a
numbered selection of all the next available options.

def create_llm_query(self, initial_query : str,
path_done : List['Node'], current_node : Node,
mode : int) -> str:
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Each prompt always includes a reminder of what the user’s original query was
and which steps have already been taken. Subsequently, depending on the specific
mode, the remaining content is determined:

Mode Description

STEP BY STEP The prompt contains only the numbered names of
all subsequent actions, each action on a new line.
Intended to be a baseline-score solution.

LOOK AHEAD X The prompt contains the numbered names of all sub-
sequent actions, which are recursively supplemented
(up to depth X − 1 relative to the current node) with
the names of all future actions available from that
node. Each supplementary action is placed on a new
line, but yet without numbering.

LOOK AHEAD X
(INLINE)

Similar to the mode above, except all future actions
are inserted on the same line in brackets (...) after the
name of the given node. This approach is expected to
only reduce the number of tokens in the prompt and
test whether such a change in the format (effectively
making impossible for human to read the content)
affects the score.

KEYWORD GEN.
AND MATCH

An experimental mode, which asks the LLM agent
to generate N keywords that are, according to the
LLM agent, relevant for searching within the given
structure. This generation is executed prior to the
iterative process. Subsequently, the tree holding all
nodes is filtered so that only nodes with a similar
textual name remain. We expect that if the filtering
is not too aggresive and the right choices remain, it
has a potential to reduce the token usage dramatically.

Table 3.1 Selection of all modes over which tests were conducted.

In addition to the above, the LLM agent is introduced to the specific situation,
briefly explained the context and given a short example, at the beginning of each
conversation through a system message (explained in section 3.4.2).

3.4.3 Testing
For testing the correctness of the response obtained from the LLM agent based

on the generated prompt (section 3.4.2.1), we need to know (at least one) correct
next step from the given node. For this purpose, we define the CorrectPath class,
internally holding the sequence of indexes of responses that are considered correct.
Since some data sets may have more than one correct answer, the CorrectPath
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class accounts for multiple correct sequences. With these sequences, it can later
determine whether the next proposed step is correct or if it has reached the end
of the path, thus finding the goal.

def is_next_move_correct(self, move_index : int) -> bool:
def is_at_the_end(self) -> bool:

Since the correctness of the answer is checked purely at the level of numerical
indexes, the indexes of correct responses must be selected from the identical set
over which the tests are conducted. For this reason, representations of all test data
sets (Eurostat, personal filesystem, and Linux server filesystem) were processed
and integrated into the testing framework to prevent changes in the data over
time (available in the attachment A.2).

Together with all correct responses, it is necessary to pass a specific user
query that the LLM agent is supposed to assist with in searching the given data
structure. This is passed as a natural text and represents a typical user query
that might be posed over the given data structure.

create_test_sequence(
source=eurostat_en,
query="What was the GDP growth for Czech Republic in 2019?",
correct_seqs=["0 1 0 0 0 0", "0 1 0 0 0 1"])

With the correct responses established and the user request given, it only
remains to introduce the LLM agent his role and describe the basic rules to follow
when generating prompts:

system_message = """You are an assistant that is helping a user
to navigate through the Eurostat database.
You are given a query and all available subsections.
You should help the user to navigate to the correct subsection.
Answer only with the number of the subsection.
If you don't know the answer, return -1."""

Then it is possible to test the correctness of the LLM agent’s responses over
the given scenario. Test run is defined as follows:

def __run(self, root : Node, query : str,
worker : AssistantWorker, openai : OpenAIWrapper,
correct_path : CorrectPath, mode : int) -> TestResult:

In the ”Handle invalid response” part, additional messages (described in section
3.4.2) are created, and based on the nature of the error, an attempt is made
to obtain the correct response. If the error is only in the wrong choice of the
next step, the LLM agent is notified about it accordingly. In other cases, the
error is understood as the wrong answer format, the LLM agent is alerted that it
responded in the wrong format and is reminded of the correct format. In both
cases, it is then asked to respond to the question again.
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Algorithm 1 Execution of one test run.
function RunTest(root, query, worker, openai, correctPath, mode)

currentNode← root
pathDone← [ ]
keywords← [ ]
indexTranslationDict← {}
result← new TestResult()
if mode = KEY WORD_GEN_AND_MATCH then

keywords← get keywords from LLM response
end if
while True do

if mode = KEY WORD_GEN_AND_MATCH then
Adjust currentNode and indexTranslation based on keywords

end if
if no children for currentNode and not at end of correctPath then

Mark wrong move and assisted answer
Move to correct step using correctPath

else
Generate and send prompt to LLM
Process LLM response
if response is valid then

Make move to next child node
else

Handle invalid response
end if

end if
if at end of correctPath then

Mark success and break loop
else

Add currentNode to pathDone
end if

end while
Set tokens used for result
return result

end function

Although we initially wanted to limit the number of corrective attempts to
the total number of all possible next steps (effectively allowing the LLM agent to
simply enumerate all possibilities), this approach was too costly in some cases in
terms of the volume of tokens transferred and therefore the maximum number of
corrective attempts was empirically limited.

The output of one run is an instance of the TestResult class, which holds the
total number of steps, the total number of incorrect steps and the total number
of assisted responses (in case the LLM agent exceeded the number of corrective
attempts). This result is later evaluated in section 3.4.4.
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This class is further extended by the TestResultExtended class, which aggregates
errors into individual steps, allowing for more complex analysis and penalization
of specific parts of the run (used in hypothesis H2).

3.4.4 Evaluation
For evaluating the effectiveness of a specific prompting method, we use the

following simple metric:

scorebasic = 1− W

S
(3.1)

scorebasic ∈< 0, 1 > (3.2)

where:

• W is the total number of wrong moves taken, and

• S is the total number of all moves taken.

Therefore, if the LLM agent always responded correctly on the first attempt,
its obtained scorebasic = 1. Conversely, if it always responded incorrectly (and
exceeded the maximum number of corrective attempts every time), its scorebasic =
0.

For each data structure, we created at least 10 static testing scenarios (user
queries) along with all the correct responses, on which all selected approaches will
be tested. These scenarios contain various lengths of paths to the goal and are
meant to serve as a representative sample of user queries that could be posed over
the given data structure. For the Eurostat database [7], this includes scenarios
such as:

1. What was the GDP growth rate for the Czech Republic in 2019?

2. How many people lived in Germany in 2020?

3. What was the unemployment rate in Austria in 2015?

4. What percentage of the population in Europe had access to clean water and
sanitation facilities in 2010?
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For the purposes of testing hypothesis H2, we define an extended testing
metric that categorizes errors into individual steps and allows using a penalization
coefficient to place greater emphasis on selected steps. (A single step in the context
of our testing is considered to be a conversation from issuing a new prompt to the
LLM agent to obtaining the correct response or exhausting all possible corrective
attempts).

scoreextended = 1−
∑︁n

i=1 wi · pi∑︁n
i=1 si · pi

(3.3)

scoreextended ∈< 0, 1 > (3.4)

where:

• n is the total number of segments in the test,

• si is the number of steps taken in the i-th segment,

• wi is the number of wrong moves in the i-th segment,

• pi is the penalization coefficient applied to the i-th segment,

• the sum ∑︁n
i=1 si · pi represents the total weighted steps taken across all

segments, considering the penalization coefficients,

• the sum ∑︁n
i=1 wi · pi represents the total weighted wrong moves across all

segments, considering the penalization coefficients.

Thus, for a sequence of N steps of one test, we want to assign penalization
coefficients p0, p1, ..., pN such that greater emphasis is placed on the first third of
steps and conversely, less emphasis is placed on the third third. Therefore, we
define the following assignment of coefficients for hypothesis H2:

pi =

⎧⎪⎪⎨⎪⎪⎩
2 if 1 ≤ i < N

3
1 if N

3 ≤ i < 2N
3

0.5 if 2N
3 ≤ i ≤ N

(3.5)

where:

• N is the total number of steps,

• i is the index of the current step (1 ≤ i ≤ N).

Since our testing interest lies only in the relationship between the chosen
prompting method and its overall general success rather than the success at
individual empirically created scenarios, we will understand the success S of the
chosen method tested on M scenarios as follows:

S =
∑︁M

i=1 si

M
(3.6)

where:

• si is the score result of the i-th scenario.

We are now prepared to commence testing the aforementioned hypotheses
(3.3).
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3.5 Results

3.5.1 Expanding Context Increases Success
We start with testing the hypothesis H1. During the development of the

Iterative Prompt Assistant (Chapter 2), it proved to be beneficial in several test
cases to allow the LLM agent the capability to ”see ahead” by recursively including
not just all currently following options into the prompt, but also all subsequent
successors of a given step, up to a depth of X − 1 for the LOOK AHEAD X test.
The prompt, however, is still constructed to be human-readable, hence placing
each option on a separate line and denoting each level of depth with an additional
TAB character.
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Figure 3.1 The impact of context size on the final score. Prompt content being
separated by tabs, remaining human-friendly.

K-G&M LA-1 LA-2 LA-3
Eurostat 0.403 0.501 0.522 0.504
Filesystem 0.275 0.306 0.423 0.541
Mean 0.339 0.404 0.473 0.522

Table 3.2 Scores obtained with each prompting method, showing an increasing trend
for bigger context.
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The results demonstrate that providing information about future steps posi-
tively influences the overall success of the LLM agent’s responses at every level.
However, as will be shown later in the results 3.5.2, the maximum size of conversa-
tion with the LLM agent remains a limiting factor, preventing us from conducting
tests with a LOOK AHEAD longer than 3 levels ahead.

3.5.2 Better but bigger
Since we encountered the maximum conversation size with the LLM in the

tests used in section 3.5.1 and could no longer perform further tests, we attempt
to save prompt size by compressing all LOOK AHEAD options into a single
line, enclosed in parentheses ( ). Our primary interest then is whether the trend
observed in section 3.5.1 is still present, that is, increasing context size positively
influences the obtained score. Secondarily, we show how the total prompt size
(measured in the number of tokens) grows relatively to the depth of the LOOK
AHEAD X prompt and whether the method of compression into a single line has
a significant effect on the total prompt size.
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Figure 3.2 The impact of context size on the final score. Prompt content being
compressed into one line, human-unfriendly.
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K-G&M LA-1 LA-2 LA-3
Eurostat 0.403 0.501 0.522 0.504
Eurostat-inline 0.403 0.501 0.548 0.560
Filesystem 0.275 0.306 0.423 0.541
Filesystem-inline 0.275 0.306 0.481 0.525
Mean 0.339 0.404 0.473 0.522
Mean-inline 0.339 0.404 0.515 0.542

Table 3.3 Comparison of results from standard LOOK AHEAD and compressed
LOOK AHEAD

key
word

-ge
n

loo
k-a

he
ad

-1

loo
k-a

he
ad

-2

loo
k-a

he
ad

-3

Prompting method

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r

of
to

ke
ns

Prompt format:
Inline
Natural

Figure 3.3 The impact of different prompting methods on the number of tokens used.

We can see from Table 3.3 that compressing prompts does not worsen the
overall success of the LLM agent in selecting the correct answer, even on the
contrary, with methods using LOOK AHEAD X ≥ 2 it achieves even better
results on average. The results from Figure 3.2 thus show a similar trend as seen
in Figure 3.1.

However, if we are concerned with the total conversation size (measured in
the number of tokens) in relation to the test method and prompt compression, we
see in Figure 3.3 that the size of the prompt grows exponentially in both cases
and although inline compression helps especially with bulkier prompts to reduce
the overall size, we still soon hit the maximum conversation size available with
the LLM.
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3.5.3 Reason for Higher Success
From the results 3.1 and 3.2, or 3.3 respectively, we assume that increasing

the context of the prompt has a positive effect on the overall success of the next
step selection by the LLM agent. However, hypothesis H2 extends the results 3.3
and examines whether the positive effect of increasing the context of individual
prompts is not merely due to the fact that the prompts in the LOOK AHEAD
X method contain the textual representation of the targeted goal X − 1 steps
earlier (compared to the STEP BY STEP) and thus, for potentially more complex
scenarios that contain a significantly longer path to goal than the value X, this
method of prompting will have no positive effect.

key
word

-ge
n

loo
k-a

he
ad

-1

loo
k-a

he
ad

-2

loo
k-a

he
ad

-3

Prompting method

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Dataset:
Eurostat unpenalized
Eurostat penalized
Filesystem unpenalized
Filesystem penalized

Figure 3.4 Overview of score changes when penalizing earlier mistakes and ignoring
the ones at the end.

K-G&M LA-1 LA-2 LA-3
Eurostat Unpenalized 0.403 0.501 0.522 0.504
Eurostat Penalized 0.416 0.469 0.547 0.536
Eurostat Difference -0.014 0.033 -0.025 -0.033
Filesystem Unpenalized 0.275 0.306 0.423 0.541
Filesystem Penalized 0.250 0.285 0.405 0.539
Filesystem Difference 0.025 0.021 0.018 0.001

Table 3.4 Comparison of unpenalized and penalized scores, showing their differences.
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The results from Figure 3.4 suggest that even when penalizing the score
(described in Section 3.4.4), there is still a visible trend of positive influence from
increasing the context on the success of choosing the correct next step by the LLM
agent. We therefore expect that the same trend would be present in scenarios
with longer step sequences and the LOOK AHEAD X is generally applicable.

3.5.4 Model Invariance
Additionally, we want to test hypothesis H3, namely whether the observed

trends are applicable across different LLMs and are not just a specific characteristic
of one selected model.
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Figure 3.5 Comparison of the two LLMs, with GPT-4 being an evolution of GPT-3
while exhibiting the same score trends.

K-G&M LA-1 LA-2 LA-3 LAI-2 LAI-3
GPT-3.5 0.325 0.432 0.496 0.568 0.502 0.519
GPT-4 0.662 0.831 0.903 0.920 0.795 0.788
GPT-3.5 inter-diff 0.107 0.064 0.072 -0.066 0.017
GPT-4 inter-diff 0.168 0.073 0.017 -0.126 -0.007

Table 3.5 Comparison of scores for GPT-3.5 and GPT-4 model snapshots from
01/2023
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From the results in Figure 3.5, we can observe a very similar trend in score
development for both tested models. The GPT-4 model, however, at the LOOK
AHEAD 3 method, already achieved a very high score, hence it may not exhibit
as steep trend in score development as the weaker GPT-3 model, for which the
increase in context visibly helps across all LOOK AHEAD X values. Therefore,
based on Figure 3.5, we assume that the trend is common to more LLMs, not just
a specific model.

3.5.5 Language Invariance
Lastly, we want to test the hypothesis H4, which concerns whether all outcomes

obtained from the tests are invariant to the language used, or if the data structure’s
language or query language affects overall success. Therefore, on the Eurostat
dataset [7], which includes human translations into German, we conducted the
following four tests with configurations:

Dataset language Query language

English English

English German

German English

German German

Table 3.6 Language configurations for testing language invariance.
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Figure 3.6 Mean score of all language pairs on different prompting methods.

The results from Figure 3.6 show that the language pairs achieved different
outcomes, leading us to assume that the results are not invariant to the language
of the dataset or user query. However, the most markable drop in the achived
score visible in keyword-gen method was expected, since the LLM was asked to
generate N related keywords in different language than the dataset was described
in. That led to having keywords generated in the prompt lanuguage, while having
different language of the dataset.

Because the tree of all choices is later filtered to only hold nodes that have a
similar name as one of the keywords generated from the LLM agent, it is obvious,
because of the language mismatch, that the most of the nodes would be falsely
filtered out. To further support this assumption, we will test the hypothesis
H4 using the Kruskal-Wallis test with a significance level 0.05, testing the null
hypothesis whether the medians of the language pairs grouped by prompting
method are identical.
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Language Pair Values
en-en 0.3974, 0.4932, 0.5290, 0.5123, 0.5746, 0.5726
de-de 0.4039, 0.4413, 0.5158, 0.4492, 0.5675, 0.5336
de-en 0.1516, 0.3301, 0.4874, 0.4625, 0.5170, 0.4973
en-de 0.0613, 0.4388, 0.5004, 0.4422, 0.5345, 0.4980

Test Set H-statistic p-value
Keyword-gen 33.137561 0.000000
Look-ahead-1 31.549756 0.000001
Look-ahead-2 13.347805 0.003942
Look-ahead-3 17.029756 0.000697
Look-ahead-inline-2 27.695122 0.000004
Look-ahead-inline-3 29.326829 0.000002

Table 3.7 Final scores of each pair and their Kruskal-Wallis H-test for differences
between each configuration.

The results of the Kruskal-Wallis tests from table 3.7, with all p-values < 0.05,
let us reject the null hypothesis, thus proving that the language of the query or
the dataset has a significant effect on the final score.

We may also extend the testing to only examine matching language pairs
(en-en and de-de) to see if this configuration, which is closer to the real-world
scenario, still does not prove to be language invariant.

Test Set H-statistic p-value
Keyword-gen 0.822857 0.364346
Look-ahead-1 13.720000 0.000212
Look-ahead-2 1.651429 0.198765
Look-ahead-3 11.062857 0.000881
Look-ahead-inline-2 0.365714 0.545350
Look-ahead-inline-3 10.080000 0.001499

Table 3.8 Kruskal-Wallis H-test for differences between configurations with matching
language pairs.

The results of the Kruskal-Wallis tests from table 3.8 show that in some test
scenarios, the results are already similar enough, yet some remain too different,
to state that the obtained scores are language invariant. Therefore we remain
rejecting the null hypothesis in both cases, thus proving that the language of the
query or dataset has an impact on the final score.
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3.6 Threats to validity
Finally, we discuss the potential weaknesses of the selected testing methods.

Primarily, it should be noted that the testing of effectiveness described in section
3.4.4 becomes inaccurate once the prompted LLM achieves very good results
with basic methods (STEP BY STEP). At such a point, it would no longer be
possible to compare these results with better methods (LOOK AHEAD X), as all
results would reach the upper limit of the success scale. In such cases, it would
be appropriate to use a metric that is not upper-bounded. For this reason, the
stored testing results include not only the final scores in the range < 0, 1 > but
also the total number of correct and incorrect answers.

Secondarily, it is important to note that the final success of an LLM agent
also depends on the difficulty of the proposed test questions (user queries). When
creating test scenarios, we proposed diverse yet typical queries for the given
structure. If inappropriately (or unsuitable) user queries were proposed, we might
obtain overly good or bad results from the LLM agent, which would not allow
for meaningful comparisons. In such cases, it would be beneficial to increase the
number of test scenarios and design them at various levels of difficulty.

Due to technical reasons, we also limited the maximum number of correction
attempts by the LLM agent when the response was incorrect or poorly formatted.
It can therefore be assumed that in some situations, the LLM agent might have
achieved a lower score, even though such cases were not frequent during the
testing.

Lastly, we believe it would be interesting to conduct testing of hypothesis H3
on models other than just those from the ChatGPT family. However, motivated
by chapter 2, our tests were conducted solely on this family of LLMs.
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4 Conclusion
In this work, we have built upon the project The Gamma and attempted to

enrich the iterative approach to exploring and working with datasets by integrating
an assistant that helps the user select the next appropriate action in relation to
the given user query. Along with the application itself, which allows for iterative
work with tabular data using behind the scenes querying of an LLM agent for the
next best step, we designed an architecture that permits individual modification
or replacement of program components without disrupting the integrity of the
entire solution. Thus, it enables to easily change the form of prompts sent to
the LLM agent, as well as change the target LLM agent to which prompts are
sent. Besides demonstrations of the program itself, we showed that the form of
the prompt is crucial in ensuring the quality of responses and that it is not easy
to guarantee this quality.

Therefore, in the second part of the work, we experimented with selected
prompting methods, inspired by experiences gained while creating the iterative
assistant. We established a testing framework that simulates iteratively accessible
source data, mimics a pseudo-user posing relevant questions and aggregates the
LLM agent’s responses into a final score. We verified that it always helps to provide
the LLM agent with more information in the prompt, allowing the agent to see
around the corner. Yet, we demonstrated that this is not a straightforward decision,
as the overall increase in conversation size with the LLM is disproportionately
larger than the gain in response success of the LLM agent, despite efforts to reduce
the overall volume of the conversation.

Moreover, we verified that the trends seen in comparative testing of selected
prompting methods are invariant to the model used. On the other hand, the
language in which the query is posed or the dataset described has an impact on the
final score. Even though we were primarily interested in (growing) trends between
prompting variants, we also assume that the general success of the LLM agent in
selecting the appropriate next step may correlate with the LLM’s knowledge of
the query language or dataset.

This work can be extended in two directions. Firstly, it is possible to expand the
Iterative Prompt Assistant application by adding more transformation operations
or expanding the user interface and adding visualizations to the data previews for
better overview and easier orientation over the results. Secondly, it is possible to
continue testing with the proposed framework, especially in testing other (and new)
ways of prompting with the LLM agent with the goal of finding more successful
yet more efficient methods guaranteeing on average a better result than the basic
STEP BY STEP solution or the advanced LOOK AHEAD X.
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