
BACHELOR THESIS

Tymofii Reizin

Fast Algorithms for Attention
Mechanism

Department of Applied Mathematics

Supervisor of the bachelor thesis: doc. Mgr. Petr Kolman, Ph.D.
Advisor of the bachelor thesis: Timothy Chu, Ph.D.

Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I want to thank my supervisor doc. Mgr. Petr Kolman, Ph.D. and my advisor
Timothy Chu, Ph.D. for their help. I also want to thank Timothy Chu, Ph.D. for
giving me interest in this topic and suggesting directions.

Title: Fast Algorithms for Attention Mechanism

Author: Tymofii Reizin

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Petr Kolman, Ph.D., Department of Applied Mathematics

Advisor: Timothy Chu, Ph.D., Google

Abstract: In this thesis we explore transformers, which are neural networks that
excel in tasks such as natural language processing, computer vision and audio
processing. Examples of transformer-based models include ChatGPT, BERT,
GPT-4, Gemini, Claude3, and more. We explain the basic building blocks and
structure of such neural networks. Our main focus is on the attention mechanism
that is used in transformers for understanding the context of individual words.
We explore a hardness result stating that it is impossible to approximate standard
attention in sub-quadratic time with respect to the length of input, assuming a
famous conjecture in fine-grained complexity (SETH). We then explore alternative
models for attention that can be compute in linear time. Finally we conduct
experiments, comparing accuracy of various attention implementations.

Keywords: Machine learning, Large language models, Transformers, Linear algebra,
Polynomials

Contents

Introduction 6

1 General Structure of Transformers 8
1.1 Components of transformer . 8

1.1.1 Input Tokenization . 8
1.1.2 Token embedding . 9
1.1.3 Positional embedding . 10
1.1.4 Attention . 10
1.1.5 Multi-head attention . 13
1.1.6 Feed-forward layer . 14
1.1.7 Layer normalization . 15
1.1.8 Unembedding . 15
1.1.9 Residual connections . 16

1.2 Types of Transformers . 16
1.2.1 Encoder-only transformer 16
1.2.2 Decoder-only transformer 17
1.2.3 Encoder-decoder transformer 18

2 Limits of Softmax Attention 21
2.1 Prerequisite statements . 21
2.2 Hardness Result . 23

3 Linearized Attention 28
3.1 Generalized formula for attention 28
3.2 Linearized attention . 28
3.3 Masked attention . 30

4 Polynomial Attention 31
4.1 Exploring polynomial kernel . 31
4.2 Approximating polynomial attention 32
4.3 More general polynomials . 34

5 Experiments 36
5.1 Single term polynomials of even degree 37
5.2 Squares of general polynomials 38
5.3 Learning squares of general polynomials 40
5.4 Comparing best from different groups 41

Conclusion 44

Bibliography 45

5

Introduction
Transformers are neural networks that excel in natural language processing,

computer vision, audio processing. Since they were introduced in 2017 in a paper
titled ‘Attention Is All You Need’ [Vas+17] they have been gaining more and
more popularity. Nearly everyone nowadays knows about ChatGPT which is a
transformer neural network.

Transformers are usually trained by certain implementations of gradient descent.
Thus, during training the model first performs a, so called, forward pass to compute
its prediction based on given input. Then its prediction is compared against a
‘correct’ answer and a loss values is calculated. Then a, so called, backward pass
is performed, computing gradients of functions that were used in the computation
to descent in the direction of minima. During prediction stage only the forward
pass is performed. In this thesis we will only focus on the forward pass. There
is no consensus what run time is more important, during training or during
prediction. There are arguments for both sides. Nonetheless, it is important to try
to improve both of them, since they may be useful for different things. We think
that prediction run time is more important, since usually the model is trained
once, and then used repeatedly. For example Chat-GPT has been trained once
and is now being used hundreds of millions times per day.

The core operations behind transformers is so called attention. It is the
mechanism that allows transformers to understand context, that is for individual
words to ‘attend’ to words around them to infer their meaning. The most popular
and widely-used mechanism for computing attention, softmax, has a crucial
drawback. It has been show by Alman and Song [AS23] that in general it is
impossible to compute softmax attention in subquadratic time (with respect to
length of the sequence of words), assuming a certain hypothesis from complexity
theory holds (The Strong Exponential Time Hypothesis). Thus, people have been
looking for other ways to implement attention to achieve more efficient run times.

Researchers have been looking into using various functions for attention that
can be decomposed in a specific way that allows for the computation to be
performed in linear time with respect to the number of words. Some such
functions include certain types of polynomials.

In the first chapter we will explore building blocks and general structure of
transformer models. In the second chapter we will look into the result about
hardness of attention computation. In the third chapter we will build a framework
for more general attention functions. In the fourth chapter we will explore various
kinds of polynomial functions that may be used for attention. In the fifth chapter
we will implement a transformer model and compare accuracy of different variants
of attention.

Notation
Unlike in math, in artificial intelligence and machine learning standard notation

is using row vectors. We will thus conform to this notation.
When functions are used row-wise or entry-wise it is usually noted; if it is not,

then the reader may assume the function is used entry-wise. For example, division

6

of a matrix by a number is just division of each its entry by the same number.
We may use either Mi or M [i, :] for the i-th row of matrix M .
By [n] for a positive integer n, we denote the set {1, 2, . . . , n}.
We define [expression] as 0 if expression is false and 1 otherwise. For example

[1 ≤ 2] = 1 and [5 = 8] = 0.

7

1 General Structure of
Transformers

Transformers are deep feed-forward neural networks. They have been first
introduced in 2017 by Vaswani et al in [Vas+17] in a paper titled ‘Attention Is
All You Need’. The paper’s title hints at the core technique transformers use
as means of communication between tokens. In this section we will explore the
general architecture of transformers.

Transformers have been shown to excel in many fields of artificial intelligence,
such as natural language translation, music generation, language modeling, text-
to-speech, spam filtering. Perhaps most well-known transformer model, especially
by general public, is ChatGPT, that in last years has become very popular. This
model, created by OpenAI, acts as a chat-bot that provides answers to user’s
prompts.

A transformer model would take some input data and produce some output
data. For example, a model tasked with answering questions could take ‘What is
2 + 2?’ as input and produce ‘2 + 2 is equal to 4.’ as output.

Generally, all transformers can be divided into 3 groups: Encoder-only, Decode-
only and Encoder-Decoder transformers. We will first describe the building parts
of the architecture common to all 3 of these groups, and then proceed to explain
the differences in structure. In this section we will describe the structure of
transformers, following Phuong and Hutter [PH22].

1.1 Components of transformer

1.1.1 Input Tokenization
The input to the transformer has to be represented in some machine-friendly

way, that is, with numbers. Each model has some bijective mapping from all tokens,
e.g. words or characters, that can appear in the input to positive consecutive
integers, called token IDs. Each input would then be converted to a list of token
IDs, and after the model produces a result, this sequence will be converted to an
output, since each token ID corresponds to a unique token. We will denotes the
alphabet of all the tokens by A and the set of respective token IDs by T , and the
bijective mapping between them by t : A → T .

Some examples of ways to perform tokenization for the natural language tasks
are:

1. Character-level tokenization. Here the alphabet A is the set of all characters
that can appear in the input. For example, it can be the set of all English
characters, digits and punctuation signs. This method produces very long
token sequences, which is undesirable, since it both impacts computation
speed and ability of model to take into account longer ‘history’ of text to
predict next token.

2. Word-level tokenization. Here the alphabet A is the set of all words that
can appear in the input, that is sequences of characters separated by spaces.

8

This method would produce much shorter sequence than character-level
tokenization but it would require a very big alphabet and wouldn’t be
able to deal with new words after end of training, both of which are also
undesirable.

3. Subword tokenization. This is the method used in practice nowadays. The
alphabet consists of some short common words, such as ‘and’, ‘me’, ‘are’,
and word segments that occur often in words, such as ‘ing’, ‘ism’, ‘less’. All
the characters are also included to ensure that it is possible to express all
words. This method balances between the first two, having average sequence
length and average alphabet size.

The alphabet A is then extended by some special tokens. It could be a mask
token that is used to mask some of the words in the sequence and then ask the
model to predict masked words. Another example are beginning and end of
sequence tokens that are used for representing beginning and end of the sequence
respectively. They can be useful, for example, in GPT-like models whose purpose
is to answer prompts, and then end of sequence token would indicate that the
model should stop generating and output the answer.

The set T is usually taken to be {1, 2, . . . , |A|}. A piece of text then would be
represented as a list of integers from T , with first and last usually corresponding
to beginning and end of sequence tokens, respectively.

1.1.2 Token embedding
After converting tokens to token IDs we once more convert them to a ‘better’

representation. We represent each token as a row vector in Rde where de is the
embedding dimension. This representation is not fixed but the model changes and
improves it during training.

Intuitively, we want to represent each token with a vector such that closely
related words are represented by similar vectors, and regions in the space cor-
respond to some concepts from the language. For example the word ‘big’ could
be represented by the vector [1, 5], the word ‘huge’ by the vector [2, 9], the word
‘small’ by the vector [−2, −5], and the word ‘yellow’ by a vector [−4, 7]. We can
feel the word ‘huge’ being further in the direction of ‘bigness’ than ‘big’, word
‘small’ being opposite to ‘big’, and ‘yellow’ being relatively independent of those.

Let’s denote the embedding of a word by the function e. Another example
of such intuition, described in [Mik+13], is that e(‘king’) − e(‘queen’) could be
approximately equal to e(‘boy’) − e(‘girl’). Which would mean that ‘king’ is
different from ‘queen’ in a similar way to ‘boy’ being different from a ‘girl. Since
our embedding has multiple dimensions, each of them can represent some different
features. For example, let m = e(‘cars’) − e(‘car’). Then, intuitively, adding m to
a word should move it from singular to the plural form. For example, we would
have e(‘person’) + m = e(‘people’).

Of course, this intuitive understanding may have no relation to what actually
happens in a trained model. In general in machine learning it is very hard to predict
how the model would represent the data. Nevertheless, intuitive understanding
is very helpful since it provides motivation for the design decisions, and makes

9

it easier to think about the algorithm. In this case, though, there is research
confirming this intuition [Mik+13] is indeed close to truth.

The embedding can be represented by a matrix We ∈ R|T |×de . Then the token
with id i is embedded as We[i, :] - the i-th row of the matrix We. This matrix is a
learnable parameter which means that the model learns it during training.

1.1.3 Positional embedding
As we will see later, attention, the only mechanism that makes possible inter-

action between different tokens, doesn’t distinguish tokens at different positions
in the input sequence. This means the model, for example, would have no way to
tell apart ‘A dog attacked a cat’ from ‘A cat attacked a dog’. This means that we
need to somehow encode the position of token into its representation.

This will be accomplished by a positional embedding. Each position in the
input sequence of tokens will be associated with a row vector from Rde . We will
represent it with a matrix Wp ∈ Rlmax×de where lmax is the maximum allowed
length of the input sequence. The positional embedding of position i will then be
equal to Wp[i, :] - the i-th row of matrix Wp.

For a token xi in the input sequence [x1, x2, . . . , xn], its full embedding is then
equal to sum of its embedding and embedding of its position. We will denote it
by F (xi) = We[xi, ;] + Wp[i, :]. Intuitively, adding the position embedding moves
the vector representation in the direction of ‘being i-th token in the sequence’.

The matrix Wp isn’t always a learnable parameter. In fact, a lot of models
use a fixed positional encoding. The original transformer uses

Wp[t, 2i − 1] = sin t

l
2i
de
max

Wp[t, 2i] = cos t

l
2i
de
max

for 0 < i ≤ de

2 . The original paper mentions that they chose this encoding
because they hypothesized it would allow the model to easily learn to infer relative
positions since for any fixed k, Wp[t + k, :] can be represented as a linear function
of Wp[t]. They also mention that they have experimented with using learned
positional embeddings, and that both methods produced nearly identical results.

The advantage of the model using fixed positional encoding instead of a learn-
able encoding is the ability to extrapolate to sequences of length not encountered
during training.

1.1.4 Attention
We’ve now reached the core part of the transformers. Transformers use atten-

tion to exchange information between different tokens in the sequence. Moreover,
in transformers, attention is the only part where different tokens interact, thus,
it is important for it to capture as much as possible. The same word can have
very different meanings in different contexts, and the purpose of attention is to
capture that. For example in the sentence ‘The dog didn’t cross the river because
it was too tired’, does ‘it’ refer to the ‘dog’ or to the ‘river’?

10

Let x be the embedding of a token we want to predict (that is our model needs
to output a value for this token). And let [c1, c2, . . . , cn] be the embeddings of
tokens in the context. Context, similarly to usual meaning of this word, is just
the set of tokens influencing meaning of the token we want to predict.

We assign to a token x a query vector q ∈ Rdattn , where dattn is the dimension
of the attention space. The meaning of this query vector is, intuitively, like a call
to other tokens in the context, saying ‘I am a token that wants to learn these
pieces of extra information about me’. For example, the token corresponding to
the word ‘eye’ may want to learn its color.

Each token ci in the context would be assigned two vectors. First is the key
vector ki ∈ Rdattn . The purpose of these values is to respond to query vectors,
with key vector being more similar to the query vector meaning it should influence
the value of the prediction more. We formalize this notion of similarity with the
dot product. The degree to which a context token ci is important to the token x
is determined by qk⊺, we call this value score. Intuitively the score corresponds to
similarity fot the following reasons:

• If two vectors u and v point in a very similar direction, that is, the angle
between them is small, the cosine is positive, and thus, their score is very
close to the product of their norms |u||v| - a big number.

• If two vectors u and v are almost orthogonal, that is, the angle between
them is close to 90 degrees, the cosine is almost 0, and thus, their score is
be very close 0.

• If two vectors u and v point in nearly opposite direction, that is, the angle
between them is big and obtuse, the cosine is negative, and thus, their score
is very close to the negative product of their norms −|u||v| - a large (in
magnitude) negative number.

The second vector assigned to the token ci is the value vector vi ∈ Rdvalue ,
where dvalue is the dimension of value space. It would seem that it just should
be equal to the dimension of the token embedding but having these dimension
different would prove useful later when we will work with multi-head attention.
Intuitive meaning of this is ‘how should ci influence x’. For example, as we’ve seen
earlier, the word ‘big’ may have a value vector that moves words in direction of
‘bigness’.

The scores are used to derive a distribution over the context tokens. We want
to assign to each token ci from the context a part of the influence on x that belongs
to ci. We want all the parts to be non-negative and sum up to 1. A common
choice, and the approach described in the original transformer paper[Vas+17], is
the softmax function.

Let z ∈ Rn be a row vector. We, for each i ∈ n define

softmax(z)i = exp(zi)∑︁n
j=1 exp(zj)

.

The exponential function of a real number is always positive, thus, there can never
occur division by 0. The exponential function is also strictly increasing on R, and

11

thus doesn’t change the order of the scores. We can also write down the softmax
function in matrix form. We have

softmax(M) = D−1 exp(M),
where D = diag(exp(M)1⊺),

(1.1)

where exp is applied element-wise and diag means a diagonal matrix obtained by
placing the i-th entry of the input vector as the i-th element on the diagonal. To
see why this is equivalent, we can first notice that inverse of a diagonal matrix is
obtained just by writing for each element on the diagonal its reciprocal. Matrix
D is obtained from a vector that contains the sum of the row i of exp(M) as its
i-th coordinate. Then multiplying D−1 by exp(M) is just dividing each row by
the element on diagonal in the corresponding row of D−1. Thus, it’s just dividing
each element of the row by sum of the row which exactly matches the definition.

Usually we don’t just apply the softmax function but first divide all the scores
by the square root of the attention dimension. This is done because if we assume
that components of q and k are independent random variable, with mean 0 and
variance 1, then after the dot product, the mean of qk⊺ stays 0 but the variance
increase to dattn. Thus, via dividing by

√
dattn, we bring the variance back to 1. If

this is not done the dot product grows very large, decreasing numerical stability,
as mentioned in [Vas+17].

We then sum up the value vectors using the numbers from the distribution
obtained from softmax as coefficients. That is, the representation of a token is set
to be ∑︁n

i=1 softmax
(︂

qk⊺
i√

dattn

)︂
vi.

Finally, in reality, this is implemented via matrix multiplications, to make use
of parallel computation, in which modern GPUs excel. We compute attention
for all tokens in parallel. Let X ∈ Rlx×dx be the matrix of tokens we want to
predict, each row representing a single token. Let Z ∈ Rlz×dz be the matrix of
context tokens, each row, again, representing a single token. The dimensions of
the embedding space are denoted by two different values dx and dz since we may
have different embeddings for tokens we want to predict and context tokens.

The transformations to obtain query, key and value vectors are linear predictor
functions. They are represented by matrices Wq ∈ Rdx×dattn , Wk ∈ Rdz×dattn ,
Wv ∈ Rdz×dvalue and biases bq ∈ Rdattn , bk ∈ Rdattn , bv ∈ Rdvalue . All of these are
learnable parameters. We then obtain:

• The query matrix Q = XWq + 1⊺bq. We have Q ∈ Rlx×dattn . Each row
represents the query vector corresponding to a single token from the original
matrix X.

• The key matrix K = ZWk + 1⊺bk. We have K ∈ Rlz×dattn . Each row
represents the key vector corresponding to a single token from the original
context matrix Z.

• The value matrix V = ZWv + 1⊺bv. We have V ∈ Rlz×dvalue . Each row
represents the value vector corresponding to a single token from the original
context matrix Z.

We then obtain a score matrix S = QK⊺. We have S ∈ Rlx×lz . Finally the updated
representations of the vectors from X are computed as Ṽ = softmax

(︂
S√

dattn

)︂
V ,

where the softmax is applied row-wise. We have Ṽ ∈ Rlx×dvalue .

12

The reader may have noticed that by doing attention for a lot of tokens at once
we can only use the same context tokens for all of them. This may be undesirable
in some use cases. Thus, we introduce an extra step in the middle of computation
called masking. We may mask some of the entries of the score matrix by setting
them to negative infinity. This way their influences on the predicted value is zero.
In particular, if we want the j-th context token to not influence the i-th token,
we will set Si,j to negative infinity, before applying the softmax function. Thus,
the mask can be represented as a 0/1 matrix of the same dimension as S where 0
represents that we need to mask the corresponding entry in S.

Most common usages of attention can be divided into 3 groups. We will see
how all of them fit in a transformer later. First, we have self-attention. In this
case, the context is actually the sequence itself, in other words, we have X = Z.
This can be further split into two groups:

1. Bidirectional or unmasked self-attention. Here, we don’t apply any mask,
every token attends to all tokens in the sequence. The name ‘bidirectional’
comes from tokens taking context from both tokens before and after it in
the sequence.

2. Unidirectional or masked self-attention. Here we mask from a token all
tokens that come after it. This means that we use a mask matrix M such
that Mi,j = [j ≤ i], that is, an upper-unitriangular matrix.

The third group is cross-attention. Here, the context sequence is different from
the primary token sequence, and each token from the primary sequence attends
to all tokens from the context. One example of a use-case of this are sequence
to sequence task, for example, translation from one language to another. Then
the context is the text in the initial language while the primary sequence is the
translated text.

1.1.5 Multi-head attention
What we have seen in the previous section was a single attention head. Trans-

formers usually use multiple attention heads. If it useful because each head can
learn to attend over different properties of words, and thus, the model is able to
grasp more context. To achieve that, each attention head has a separate set of
learnable parameters. Additionally, the operations on all heads are implemented
to perform in parallel, to speed up the computation.

Let h be the number of heads. We will apply the attention procedure described
in the previous section h times. We will have dvalue equal for all heads, that
is, each head produces an equal part of the embedding vector. We will also
pass the same mask to all heads. We will obtain h predicted value matrices
Ṽ 1, Ṽ 2, . . . , Ṽ h. We concatenate them into a single matrix Ṽ = [Ṽ 1, Ṽ 2, . . . , Ṽ h].
We have Ṽ ∈ Rlx×dvalueH . We then apply an output mapping to Ṽ to obtain the
predicted value vectors of the multi-head attention. This is done so that the results
of different heads can communicate between them, to improve the encoding. This
mapping is a linear predictor function represented by a matrix Wo ∈ RdvalueH×de

and a bias bo ∈ Rde . We then obtain the matrix X̃ = Ṽ Wo + 1⊺bo, i-th row of
which corresponds to the encoding of the i-th token after attending to the context.

13

We denote the result of multi-head attention for primary sequence X, con-
text sequence Z (they don’t have to be different) and a mask matrix M by
MHAttention(X, Z, M) where the last argument may be omitted, and in that
cask attention will be unmasked.

A block-diagram of attention and multi-head attention can be seen in Fig-
ure 1.1.

Figure 1.1 On the left is a scheme of a single head of attention. On the right is a
scheme of a multi-head attention. Image was taken from the original paper [Vas+17].

1.1.6 Feed-forward layer
Transformers also include position-wise feed-forward layers to improve the

model’s processing abilities. All of them operate separately and identically on
each position in the sequence. They employ multilayer perceptrons with a single
hidden layer. This simply means that a linear predictor function is applied to
the data, then a non-linear activation function, and then again a linear predictor
function. Activation functions introduce non-linearity and make the model capable
of learning more convoluted concepts. The transformation can be represented
by two matrices Wmlp1 ∈ Rde×dmlp and Wmlp2 ∈ Rdmlp×de , two biases bmlp1 ∈ Rdmlp

and bmlp2 ∈ Rde , and a non-linear activation function f . All of these, except for
the function f , are learnable parameters. Common choices for the function f are:

1. ReLU - rectified linear unit. This is a simple activation function defined as

ReLU(x) = max(0, x).

It was first introduced by Kunihiko Fukushima in 1969 [Fuk69] for visual
feature extraction in neural networks.

2. GELU - Gaussian error linear unit. It is defined as

GELU(x) = xP(X ≤ x) = xΦ(x)

14

where X ∼ N (0, 1) is a standard normal random variable, and Φ(x) is
the cumulative distribution function of a standard normal random variable.
GELU weights inputs by percentile while ReLU does just by sign, thus, we
can think of GELU as a smoothed version of ReLU.

Let X be the matrix of the token sequence that the model is trying to predict,
with each row corresponding to a token in the sequence. Then the transformation
resulting from application of this layer is

X̃ = f(XWmlp1 + 1⊺bmlp1)Wmlp2 + 1⊺bmlp2

where the function f is applied element-wise.
Intuitively, we can understand the purpose of this layer as individual tokens

‘thinking’ on the information they obtain from the context during attention stage.
We denote the result of applying a feed-forward layer to a matrix X by

FeedForward(X).

1.1.7 Layer normalization
Layer normalization [BKH16] is introduced to solve the problem of changes

in output of one layer causing highly correlated changes in the summed inputs
of the next layer. This problem can be fixed by fixing the mean and variance
within each layer. The layer norm is represented by two learnable parameters
γ, β ∈ Rde , representing the new mean and variance respectively. The parameters
are learnable instead of being fixed beforehand to provide the network with the
possibility to learn optimal scaling and shifting.

For a given representation of a context token by a vector x ∈ Rde we then
compute its mean m = ∑︁

i=1
xi

de
, and variance v = ∑︁

i=1
(xi−m)2

de
. We then compute

the normalized representation

x̃ = x − m√
v

⊙ γ + β

where ⊙ denotes element-wise multiplication.
We denote the result of applying layer normalization to a matrix X by

LayerNorm(X).

1.1.8 Unembedding
We need a procedure to go back from the vectors in the embedding space to

actual tokens. This will be done by producing a probability distribution over all
the tokens in the alphabet A. The model then samples from this distribution to
produce a token that is supplied to the output. Let x be a vector in the embedding
space. We will use a learnable matrix Wu ∈ Rde×|A| to produce a vector of values
xWu, i-th coordinate of which will determine how much the i-th token corresponds
to the embedding vector x. We will then use the softmax function introduced
earlier to obtain the probability distribution p = softmax(xWu). We can again
make use of parallelism here and do this for all embeddings at once by calculating
softmax(XWu), where softmax is applied row-wise and X ∈ Rlx×de is the matrix,
with each row corresponding to a token encoding.

15

1.1.9 Residual connections
The transformer employs residual connections all over it’s structure. Residual

connections were introduced in [He+15]. A residual connection is an identity
mapping with a short-cut to a layer in the neural network. The identity is simply
added to the value at the current layer. For example instead of sending output of
an attention computation to the next layer, we first add the initial data to it and
only then continue the computation. These have been introduced to help with
the vanishing gradient problem during back-propagation in training, because with
using a non-linear activation function in a lot of cases the gradient is 0, residual
connections help to mitigate that effect. Another reason is that deep networks
tend to ‘forget’ features of the original data, and residual connections help to
‘remind’ deeper layers of the original state.

1.2 Types of Transformers
We are now ready to explain the actual structure of a transformer model.

We will again base our descriptions on [PH22], and the original papers about
particular transformers. The core difference between these types of transformers
is in attention. The encoder-only transformer uses bidirectional attention while
the decoder-only uses unidirectional attention. Finally, the encoder-decoder
transformer consists of both an encoder and a decoder (same as in the ‘only’
versions) but also uses cross-attention to unite their outputs. We will now proceed
with the models in order of simplicity. For each we will describe the structure
of a particular transformer from a given family, since all of them are the same
in important for us parts. But they may differ, for example in the activation
function, or order of application of layer-norms.

1.2.1 Encoder-only transformer
We will follow the structure of an encoder-only transformer BERT - Bidirec-

tional Encoder Representation from Transformers [Dev+19]. It has been trained
on the task of masked language modeling. Given a piece of text, some tokens in it
are masked using a mask token describe earlier in the tokenization section. The
task of the model is to predict the masked token. After the training, the model
can be fine-tuned for various natural language processing tasks.

The model first performs conversion of the input, which is a single sequence
of characters, into token IDs. It uses subword tokenization with a 30000 token
vocabulary. The tokens are then converted to vector representations as described
in subsection 1.1.2. The positional encodings are then obtained as described in
subsection 1.1.3. The two values are added up for each token to obtain initial
embeddings. We will denotes them by matrix E ∈ Rlx×de where lx is the lengths of
the sequence, and each row corresponds to an embedding of a token. The matrix
E is supplied to input of the first encoder block.

The model has L layers of encoder blocks. Let X be the input to an encoder
block. An encoder block is comprised of 4 parts.

1. The first is a multi-head bidirectional attention block with H heads as
described in subsection 1.1.5. The output of the attention block applied to X

16

is then added to the initial embeddings to implement the residual connections
described in subsection 1.1.9. We thus get X1 = X + MHAttention(X).

2. We apply layer normalization as described in subsection 1.1.7 to obtain
X2 = LayerNorm(X1).

3. The next step is the application of a feed-forward layer as described in sub-
section 1.1.6; in this model, we use an activation function f = GELU.
We again implement residual connections, thus, we have X3 = X2 +
FeedForward(X2).

4. We then again normalize the embeddings to obtain output of an encoder
block X4 = LayerNorm(X3).

Encoder blocks are chained, with the output of the block i supplied to the input
of the block i + 1.

After applying the encoder blocks the model applies a final linear projection
and layer normalization to output of last encoder block X ′, to obtain

X̃ = LayerNorm(GELU(X ′Wf + 1⊺bf))

where Wf ∈ Rde×df and bf ∈ Rdf are learnable parameters, and df is the dimension
of final embeddings. We then obtain the probability distribution P on tokens as
described in subsection 1.1.8.

The encoder-only transformers are used in various classification tasks. The
use of bidirectional attention means that each token infers context from the
entire sequence, and thus, it is able to provide general predictions about the
entire sequence. It isn’t suited well for text generation because it can look into
the ‘future’ during training due to bidirectional attention. This motivates the
decoder-only architecture.

1.2.2 Decoder-only transformer
The core difference of a decoder-only transformer from an encoder-only trans-

former is the usage of unidirectional attention. We will look at the architecture of
the most popular decoder-only transformer GPT - Generative Pre-trained Trans-
former, in particular GPT-2 [Rad+19]. It has a few other differences from BERT,
different order of layer normalization and absence of the final linear projection.

Similarly to BERT, GPT also uses subword tokenization, and has a vocabulary
of 50257 tokens. It also takes a single sequence as input. It performs input encoding
in the same way as BERT, by adding up token and positional embeddings; thus,
we won’t describe it in detail.

The main difference between the models is the type of the used blocks. The
model has L layers of decoder blocks. Let X be the input to a decoder block. A
decoder block in GPT also consists of 4 parts, as an encoder block in BERT, but
it performs operations in different order.

1. It starts by applying layer normalization to the input to obtain X1 =
LayerNorm(X), as described in subsection 1.1.7.

17

2. Then it performs multi-head unidirectional attention with H heads on X1,
as described in subsection 1.1.5, and adds that to the input to implement
the residual connection, as described in subsection 1.1.9. We have X2 =
X +MHAttention(X1, M) where M is the upper-unitriangular (all 1s on and
above the main diagonal, and 0s below) mask matrix, since we are using
unidirectional attention.

3. We then again normalize rows of the matrix to obtain X3 = LayerNorm(X2).

4. The model then applies supplies X3 as input to a feed-forward layer, as
described in subsection 1.1.6, and adds its output to X2, to implement
the residual connection. Thus, the output of an entire decoder block is
X4 = X2 + FeedForward(X3).

The decoder blocks are chained, with output of the block i supplied to the input
of the block i + 1.

GPT then doesn’t apply any more linear projections, but applies a layer
normalization one last time to the output of last decoder block X ′, to obtain
X̃ = LayerNorm(X ′). We obtain the matrix of probability distributions P from
X̃ as described in subsection 1.1.8.

Decoder-only transformers excel in sequence modeling tasks. Given beginning
of a sequence its task is to predict the next token. They often feed their output to
themselves as input, to produce one token after another. Usage of unidirectional
attention is motivated by model being able to only use tokens coming before the
currently predicted token in the sequence to produce it.

1.2.3 Encoder-decoder transformer
This is the architecture of the original transformer introduced in the 2017

paper by Vaswani et al [Vas+17]. We will follow its structure. It looks like an
encoder-only and decoder-only transformers united together by cross-attention.
It also takes not a single sequence as the other two, simpler, variants, but two
sequences. One is the context sequence supplies as input to the encoder part, and
the other is the primary sequence, supplied to the decoder part.

The encoder part of the encoder-decoder transformer is almost identical to
a prefix of the encoder-only transformer described in subsection 1.2.1, we thus
won’t describe it in detail. The only difference lies in using ReLU as activation
function in the feed-forward layers, instead of GELU. By prefix we mean that it
doesn’t perform any operations after the last encoder block since we don’t need to
generate any distributions for the context sequence but only process it to supply
as context for the primary sequence.

The decoder part contains one crucial difference: it contains an extra cross-
attention module that is used so that the primary sequence can attend to tokens
from the context sequence. It also differs from decoder-only transformer in order
of application of layer normalization, thus we describe the structure here in detail.
The process of obtaining initial embeddings has the same structure as in GPT,
and thus we won’t describe it in detail, you can refer to subsection 1.2.2. Then
the primary sequence encoded in a matrix X is supplied as input to the first
decoder block. We will have Ld layers of decoder blocks. It is worth noting that
the number of encoder block layers may be a different number Le.

18

Each decoder block will consist of 6 parts. Let matrix X be the input to a
block, and let Z be the matrix of embeddings of the context tokens that have
been already processed by the encoder part.

1. The model first computes unidirectional multi-head self-attention (subsec-
tion 1.1.5) while also implementing a residual connection (subsection 1.1.9).
We obtain X1 = X+MHAttention(X, M) where M is the upper-unitriangular
(all 1s on and above the main diagonal, and 0s below) mask matrix.

2. We then apply layer normalization to get X2 = LayerNorm(X2).

3. The next step is applying cross-attention. Here instead of treating X
as both primary sequence and context, we use Z for the context. The
attention is unmasked since the tokens should be able to attend to entire
context. The cross-attention procedure was also described in subsection 1.1.5,
since we didn’t constraint ourselves to primary sequence and context being
the same there. We also, again, add a residual connection. We have
X3 = X2 + MHAttention(X2, Z).

4. We then apply a layer norm to get X4 = LayerNorm(X3).

5. Finally, the data is passed trough a feed-forward layer (subsection 1.1.6),
with activation function f = ReLU. Once again we add a residual connection.
We get X5 = X4 + FeedForward(X4).

6. We apply a final layer norm to get output of a decoder block X6 =
LayerNorm(X5).

The decoder blocks are chained, with output of block i supplied to the input of
block i + 1.

We then derive the probability distribution from the output of the last decoder
block as described in subsection 1.1.8.

A block-diagram of an encoder-decoder transformer is depicted in the Figure 1.2.
Note that the left side represent the encoder part and the right side represent the
decoder part.

19

Figure 1.2 Model architecture of an encoder-decoder transformer. Image was taken
from the original paper [Vas+17].

20

2 Limits of Softmax Attention
In this chapter we will see that, in general, it is impossible to calculate

approximate softmax attention in subquadratic time, assuming one unproven
conjecture. This will motivate search for alternative methods which will make
faster attention computation possible. This section is based on a paper by Alman
and Song [AS23].

It is pretty clear that attention computation is the runtime bottleneck of
transformers since it is the only place where we need to realize a matrix of size
O(n2). Thus, it is an important goal to try to improve this time.

2.1 Prerequisite statements
In this chapter we will assume that primary and context sequences have the

same length n and dimension of attention and values are also the same, denoted
by d. We will thus have a query matrix Q ∈ Rn×d, a key matrix K ∈ Rn×d

and a value matrix V ∈ Rn×d. We will work in real-RAM model [Sha78], this
model assumes ability to store and perform operations on exact real numbers.
The allowed operations include addition, multiplication, subtraction, division and
comparison, each of these operations is assumed to take constant time.

We will now state a formal definition of approximate softmax attention, we
will use the same idea as in equation (1.1) for softmax.

Definition 1 (Approximate attention computation AAttc(n, d, B, εa)).
Let εa, B > 0 be parameters. Given three matrices Q, K, V ∈ Rn×d, such that

||Q||∞, ||K||∞, ||V ||∞ ≤ B we need to calculate a matrix T such that

||T − D−1AV ||∞ ≤ εa

where
A = exp

(︃
QK⊺

d

)︃
, and D = diag(A1⊺). (2.1)

For a matrix M by ||M ||∞ we mean maxi,j |Mi,j|, and exp is applies element-
wise.
Remark. Notice that in equation (2.1) we divide by d instead of

√
d inside of the

exponential function, unlike in attention described in previous chapter. This is will
be more convenient in the proof, and doesn’t make a difference for the definition
since result of attention is invariant for different divisor inside the exponential.

We will focus on the setting where d = O(log n) and εa = 1
poly(n) , since we

need to model long sequences and want to have small enough error to be able to
combine multiple attention computations.

We now define the Strong Exponential Time Hypothesis (SETH) which was
introduced by Impagliazzo and Paturi [IP01]. It is a hypothesis from fine-grained
complexity theory which studies exact upper bounds for problems solvable in
polynomial time. SETH is based on assumption that current SAT algorithms are
roughly optimal.

21

Hypothesis 1 (Strong Exponential Time Hypothesis). For every ε > 0 there is
an integer k ≥ 3 such that k-SAT on formulas with n variables cannot be solve in
O(2(1−ε)n time, even by a randomized algorithm.

It is a popular conjecture, which have been used to prove a lot of lower-
bounds [Wil19].

We will now state a problem which we will reduce to computation of softmax
attention and its relation to SETH.

Definition 2 (Approximate hamming nearest neighbour search (ANN)). Let
ε > 0 be a parameter. We are given two sets A, B ⊂ {0, 1}n with |A| = |B| = n
and we need to find a⋆ ∈ A and b⋆ ∈ B such that

||a⋆ − b⋆||0 ≤ (1 + ε) min
a∈A,b∈B

||a − b||0. (2.2)

Here, for a vector a, ||a||0 denotes the L0 norm - number of non-zero entries.
Note that for a difference of two 0/1 vectors a and b it is equal to the number of
coordinates where a differs from b.

It was shown by Rubinstein [Rub18] that in general it is impossible to solve
ANN in subquadratic time, assuming SETH.

Theorem 1. Assuming SETH, for every every constant δ > 0, there exist
constants ε ∈ (0, 1) and C > 0 such that solving ANN with accuracy parameter ε
in dimension d = C log n requires Ω(n2−δ) time.

Remark. Notice that in Theorem 1 we can assume that every vector in both A and
B in has half entries equal to 0 and the other half to 1. Given an instance where that
doesn’t hold we can convert each input vector v ∈ {0, 1}d into v′ =

[︂
v v

]︂
{0, 1}2d,

where vi = 1 − vi. Obviously v′ has half zeroes and half ones, since if v had k
ones, v would have d − k ones, for a total of d − k + k = d ones in the vector v′.
For two vectors a ∈ A and b ∈ B we have that ||a′ − b′||0 = 2||a − b||0, thus we
can just solve the version of the problem with transformed vectors.

We will now state a different version of ANN, for convenience of further
analysis.

Definition 3 (Gap approximate nearest neighbour search (Gap-ANN(n, d, t, ε)).
Let n and d be two positive integers. Let t > 0 be a threshold parameter and ε > 0
be an accuracy parameter. Given two sets of points A = {a1, . . . , an} ⊂ {0, 1}d

and B = {b1, , . . . , bn} ⊂ {0, 1}d, we need to distinguish the following two cases
for each i ∈ [n]:

1. There exists j ∈ [n] such that ||ai − bj||0 ≤ t.

2. For all j ∈ [n], we have ||ai − bj||0 ≥ (1 + ε)t.

If neither of these cases happens we may output any of the two.

Intuitively, for small t we will be in the case 2, then with increase in t we will
enter a gray area where neither of the cases holds, and thus we may receive as
output both case 1 and case 2, and then increasing t even further we will be in
the case 1. Other way to look at this is that if we got case 1 as output then case
2 definitely does not happen and vice-versa.

We will now prove that Theorem 1 hols for Gap-ANN as well.

22

Lemma 1. Assuming SETH, for every every constant δ ∈ (0, 1), there exist
constants ε ∈ (0, 1) and C > 0 such that solving Gap-ANN(n, d, t, ε) with
accuracy parameter ε in dimension d = C log n requires Ω(n2−δ) time.

Proof. We will reduce ANN to Gap-ANN(n, d, t, ε). Let A, B ∈ {0, 1}d, |A| =
|B| = n be the input to ANN, and ε the accuracy parameter. First, we will iterate
over all k ∈ {0, d} (since 0 and d are the smallest and the biggest possible distances,
respectively) and call Gap-ANN(n, d, k, ε) on A, B. Let t⋆ be the smallest k such
that for at least one i ∈ [n] we received that we are in case 1, and let i⋆ be one
of those i’s. Getting case 1 as output means that we are definitely not in case 2.
That means, there exists j ∈ [n] such that ||ai⋆ − bj||0 < (1 + ε)t. On the other
hand, we received case 2 for t⋆ − 1 (notice that we are always in case 2 for k = 0,
so this is valid), since t⋆ is the smallest k for which we received case 1. That
implies that we are definitely not in case 1 for t⋆ − 1. Thus, for all j ∈ [n] we
have ||ai⋆ − bj||0 > t⋆ − 1 ⇒ ||ai⋆ − bj||0 ≥ t⋆. Thus, if we find j ∈ [n] such that
||ai⋆ − bj||0 < (1 + ε)t⋆ we will be done since t⋆ ≤ mina∈A,b∈B ||a − b||0. Such a
j exists by the choice of t⋆. Thus, we can just check all vectors in B to find it.
Thus, we have solved ANN.

We will now analyze the complexity. Let ε and C be from Theorem 1 for δ
2 .

Suppose it is possible to solve Gap-ANN(n, C log n, t, ε) in o(n2−δ) time. Calling
Gap-ANN for d + 1 values of t will then take o(n2−δd) = o(n2−δ log n) = o(n2− δ

2),
since log n = o(nc) for any c > 0. Checking all vectors in B will take O(nd) =
O(n log n) = o(n2−δ), since δ < 1. Thus total complexity to solve ANN will be
o(n2− δ

2), contradicting Theorem 1.

2.2 Hardness Result
We are now ready to prove the result about hardness of approximating attention.

We will first prove a reduction of gap approximate nearest neighbour search to
approximate attention computation.

Lemma 2. For all constant Cγ ∈ (0, 0.1), ε > 0 and C > 0 there exist Ca and
Cb such that, if Attcc(2n, 2C log n, B = Cb

√
log n, n−Ca) can be solved in time T ,

then Gap-ANN(n, C log n, t, ε) can be solved in time O(T + n2−Cγ).

Proof. We will show an algorithm for Gap-ANN(n, C log n, t, ε) with the claimed
runtime. Let c > 0 be a parameter that will be chosen later. Our algorithm
will consider two cases. For t < c log n we will use a bruteforce algorithm which
works in \∈−Cγ . In the other case, for t ≥ c log n, we will use a reduction to
Attcc(2n, 2C log n, B = Cb

√
log n, n−Ca) resulting in an O(T) runtime.

Let d = C log n. Let a1, . . . , an, b1, . . . , bn be the input vectors to Gap-ANN.

Case 1: t < c log n. In this case we will bruteforce for the answer. First, we
will store vectors from the set B in a lookup table (we are not concerned about
memory constraints here). Then for each i ∈ [n] we will iterate over all vectors
from B at distance (distance here is the number of coordinates where two vectors
differ) at most t from ai and check if they are present in the lookup table. If there
is such vector we output case 1, otherwise we output case 2.

23

For each i ∈ [n] there are ∑︁t
j=0

(︂
d
t

)︂
vectors at distance at most t from ai.

Thus the total running time will be O
(︂
n
∑︁t

j=0

(︂
d
t

)︂)︂
. Recall that t < c log n and

d = C log n, we will assume c < C
2 . Using

(︂
a
b

)︂
≤
(︂

ea
b

)︂b
we obtain

n
t∑︂

j=0

(︄
d

t

)︄
≤ n(t + 1)

(︄
C log n

c log n

)︄

≤ cn log n
(︃

eC

c

)︃c log n

= cn1+c log n
(︃

C

c

)︃c log n

= cn1+c+c log C
c log n.

Now since, for a fixed C, limc→0 1 + c + log C
c

= 0 and log n = O(na) for any a > 0,
we can pick c sufficiently small so that 1 + c + log C

c
+ 0.1 ≤ 2 − Cγ and c < C

2 .

Case 2: t ≥ c log n. Let C0 be such that t = C0 log n. Let Cb =
√︂

40C
C0ε

and
Ca = 2 + C2

b

(︂
1 + C0

C

)︂
. We will construct input to Attcc(ñ, d̃, B, εa) where ñ = 2n,

d̃ = 2d = 2C log n, B = Cb

√
log n and εa = n−Ca .

We now define the input matrices Q, K ∈ Rñ×d̃ as

Q = B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1d

a2 1d
... ...

an 1d

0d 1d

0d 1d
... ...

0d 1d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and K = B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0d

b2 0d
... ...

bn 0d

0d 2d

0d 2d
... ...

0d 2d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Each entry of both Q and K is either 0 or B, since input vectors are 0/1. We
then have that ||Q||∞, ||K||∞ ≤ B where || · ||∞ denotes the L∞ norm, that is
maximum absolute value among all entries.

Let β = B2 and τ = eβ. We then have the matrix A = exp
(︂

QK⊺

d̃

)︂
∈ Rñ×ñ as

in Definition 1 which looks like

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp
(︂

βa1b⊺1
d̃

)︂
· · · exp

(︂
βa1b⊺n

d̃

)︂
τ · · · τ

...
exp

(︂
βanb⊺1

d̃

)︂
· · · exp

(︂
βanb⊺n

d̃

)︂
τ · · · τ

0 · · · 0 τ · · · τ
...
0 · · · 0 τ · · · τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that we do not compute matrix A in our algorithm.

24

For all pairs of i, j ∈ [n] we have

Ai,j = exp
(︄

βaib
⊺
j

d̃

)︄

≤ exp
(︄

βd

d̃

)︄

= exp
(︄

β

2

)︄
≤ exp (β)
= τ

where the first inequality follows from ai and bj being 0/1 vectors. On the other
hand we also have Ai,j for all pairs i, j ∈ [n] since they are values of the exponential
function. We thus have nτ ≤ (A1⊺)i ≤ 2nτ for all i ∈ [n] from the structure of
matrix A (each row has n entries equal to τ on the right, and the entries on the
left are upper-bounded by τ). Thus, we also have nτ ≤ Di,i ≤ 2nτ for all i ∈ [n],
where D is from the Definition 1.

Let

t̃ =
exp

(︂
1
4β
(︂
1 − t

d

)︂)︂
6nτ

.

We then have

t̃ = 1
6nτ

exp
(︃1

4β
(︃

1 − t

d

)︃)︃
= 1

6 exp
(︃1

4β
(︃

1 − t

d

)︃
− β − log n

)︃
)

= 1
6 exp

(︄
−0.75β − 0.25βt

d
− log n

)︄

= 1
6 exp

(︃
−0.75C2

b log n − 0.255C2
b log n

C0

C
− log n

)︃
= 1

6 exp
(︃

−0.75C2
b log n − 0.25C2

b log n
C0

C
− log n

)︃
≥ n−Ca

= εa

where the penultimate step succeeds for big enough n (due to division by 6 it may
fail for n < 6).

We will now define V ∈ Rñ×d̃ - the last input matrix for Attcc. Let v =
[︄
1n

0n

]︄
,

then V =
[︂
v 0ñ · · · 0ñ

]︂
. Then the output of Attcc will be a matrix U such

that
||U − D−1AV ||L∞ < ε < t̃.

Let u be the first row of U . We then have

||u − D−1Av||L∞ < t̃

and, in particular,
||u − (D−1Av)||L∞ < t̃ (2.3)

25

for all i ∈ [n]. We will use ui to determine the answer for i.
Using Remark 2.1 we have ||ai||0 = ||bj||0 = d

2 for all i, j ∈ [n]. Thus, for any
pair i, j ∈ [n] we have

aib
⊺
j

d
= 1

2d
(||ai||0 + ||bj||0 − ||ai − bj||0)

= 1
2d

(︄
d

2 + d

2 ||ai − bj||0
)︄

= 1
2 − ||ai − bj||0

2 ,

where the first equality is true because dot product for 0/1 vectors is the number
of coordinates where they both have a 1.

Recall that the goal is to distinguish two cases for each i ∈ [n]:
1. exists j ∈ [n] such that ||ai − bj||0 ≤ t;
2. for all j ∈ [n] we have ||ai − bj||0 ≥ (1 + ε)t.

We will decide that by checking if ui is less or greater than t̃0 = 2t̃. We now
consider these 2 cases separately for a fixed i ∈ [n].
Case 2.i: There exists a j ∈ [n] such that ||ai − bj||0 ≤ t. We then have

βaib
⊺
j

d̃
=

βaib
⊺
j

2d

=
β
(︂

1
2 − ||ai−bj ||0

2d

)︂
4

≥
β
(︂
1 − t

d

)︂
4 .

(2.4)

Which implies that

ui ≥
exp

(︃
β
(︁

1− t
d

)︁
4

)︃
2nτ

− t̃

= 3t̃ − t̃

= t̃0,

where the first step follows from the inequality (2.4), inequality (2.3) and the fact
that Di,i ≤ 2nτ , since ui has to be at least as big as sum of first n entries of row i.

Thus, if ui ≥ t̃0 we output case 1.
Case 2.ii: For all j we have ||ai − bj||0 ≥ (1 + ε)t. We then have

βaib
⊺
j

d̃
≥

β
(︂
1 − t(1+ε)

d

)︂
4 . (2.5)

26

We then have

ui ≤
n · exp

(︂
1
4β
(︂
1 − t(1+ε)

d

)︂)︂
nτ

+ t̃

=
exp

(︂
1
4β
(︂
1 − t

d

)︂)︂
2nτ

+ 2n

exp
(︂

βεt
4d

)︂ + t̃

< 3t̃ · 2n

6n
+ t̃

= 2t̃

= t̃0,

where the first step follows from the inequality (2.5), inequality (2.3) and the fact
that Di,i ≥ nτ , since ui cannot be greater than sum of first n entries of row i.
And the third step follows from inequality (2.6).

exp
(︄

βεt

4d

)︄
= exp

(︄
βεC0

4C

)︄

= exp
(︄

βεC0

4C

)︄

= exp
(︄

C2
b log n · εC0

4C

)︄

= exp
⎛⎝ 40C

C0ε
log n · εC0

4C

⎞⎠
= exp

⎛⎝ 40C
C0ε

log n · εC0

4C

⎞⎠
= exp(10 log n)
= n10

> 6n,

(2.6)

where the last step holds for big enough n.
Note that if case 1 happens, we have ui ≥ t̃0 and thus will never output case 2,
and vice-versa.

We are now ready to prove the main result of this chapter

Theorem 2. Assuming SETH, for every sufficiently small δ > 0, there are
constants C > 0, Cα > 0 and Cβ > 1 such that AAttC(n, C log n, Cβ

√
log n, n−Cα)

(definition 1) requires Ω(n2−δ) time.

Proof. The proof trivially follows from Lemma 1 and Lemma 2.

27

3 Linearized Attention
The limitations of softmax attention motivate seeking other ways to implement

attention. The lofwer bound of Alman and Song [AS23], as described in chapter 2,
shows that it is, in general, impossible to approximate softmax attention in
subquadratic time, assuming the strong exponential time hypothesis. We may try
to use other, perhaps ‘friendlier’ functions, to reduce the time it takes to compute
attention. This was explored by Katharopoulos et al. [Kat+20], and we base this
chapter on materials from this paper.

3.1 Generalized formula for attention
Given a query matrix Q ∈ Rlx×dattn , a key matrix K ∈ Rlz×dattn and a value

matrix V ∈ Rlz×dvalue , we can write down updated representations of tokens after
attention as

Attention(Q, K, V) = softmax
(︄

QK⊺

√
dattn

)︄
V (3.1)

as we’ve seen in subsection 1.1.4. Here we only consider unmasked attention for
now. If we expand equation (3.1) to see how the softmax function works, we
obtain

Attention(Q, K, V)i =
∑︁lz

j=1 exp(QiK
⊺
j)Vj∑︁lz

j=1 exp(QiK
⊺
j)

(3.2)

where for a matrix M we denote by Mi its i-th row. Writing the equation (3.1) in
this form motivates considering a more general function in place of exponent of
the dot product in equation (3.2):

Attention(Q, K, V)i =
∑︁lz

j=1 sim(Qi, Kj)Vj∑︁lz
j=1 sim(Qi, Kj)

(3.3)

, where sim(A, B) is a similarity function between two vectors. For example,
if we set sim(A, B) = exp(AB⊺)√

dattn
in equation (3.3) we obtain equation (3.2). One

restriction we want to impose on sim(A, B) is non-negativity. We want for
the output of a similarity function to always be non-negative, so that we are
always able to normalize it into a distribution. Thus, we only consider functions
sim : Rdattn × Rdattn → R+ where R+ denotes non-negative reals.

3.2 Linearized attention
The paper [Kat+20] considers usage of kernel functions for similarity function

in equation (3.3). We now define kernel functions.

Definition 4. A function k : Rn ×Rn → R is said to be a kernel function if there
exists a function φ : Rn → Rm such that ∀x, y ∈ Rn : k(x, y) = φ(x)φ(y)⊺. The
function φ is called a feature representation or mapping.

28

If we consider a non-negative kernel function k : Rdattn × Rdattn → R with
feature mapping φ : Rdattn → Rm, we can rewrite equation (3.3) as

Attention(Q, K, V)i =
∑︁lz

j=1 k(Qi, Kj)Vj∑︁lz
j=1 k(Qi, Kj)

=
∑︁lz

j=1 φ(Qi)φ(Kj)⊺Vj∑︁lz
j=1 φ(Qi)φ(Kj)⊺

(3.4)

which can be further simplified due to distributive property of matrix multiplication
over addition to obtain

Attention(Q, K, V)i =
φ(Qi)

∑︁lz
j=1 φ(Kj)⊺Vj

φ(Qi)
∑︁lz

j=1 φ(Kj)⊺
. (3.5)

We cannot divide numerator and denominator by φ(Qi) since those are vectors,
not numbers; the denominator becomes a number only after multiplication of
φ(Qi) with ∑︁lz

j=1 φ(Kj)⊺. Using the same tricks as for obtaining matrix form of
softmax in equation (1.1), the equation (3.5) can be rewritten in matrix form to
obtain

Attention(Q, K, V) = D−1φ(Q)φ(K)⊺V,

where D = diag(φ(Q)φ(K)⊺1⊺)
(3.6)

where φ is applied row-wise.
For simplicity of calculation, let n = max(lx, lz). Also let T be the time it takes

to compute function φ for a single vector. We now can make use of associativity
of matrix multiplication and first compute A = φ(K)⊺V in O(nT + ndattndvalue)
which is linear in n if we treat T , and dimensions of attention and values as
constants, which makes sense since they are fixed for a given model. We have that
A ∈ Rdattn×dvalue . We can then compute φ(Q)A in O(nT + ndattndvalue) = O(n)
time. By identical analysis the calculation of φ(Q)φ(K)⊺1⊺ can also be done in
O(n) time. Notice that in real implementation we don’t have to realize this large
matrix D−1 (it has size of O(n2)), but instead can just divide the entries of the
matrix in the denominator by values stored in the vector φ(Q)φ(K)⊺1⊺. This
achieves O(n) time and memory complexity for the entire attention computation.
It’s a significant speedup in comparison with O(n2) time it takes to compute
softmax attention. We have to be careful though to use φ such that T is smaller
than realistic n, since if it is very big, this becomes impractical.
Remark. Notice that the described approach corresponds to just computing the
sums in equation (3.5) once and then using them for all queries.

In [Kat+20] a simple feature mapping φ(v)i = ELU(v)i + 1 is considered,
where ELU is the exponential linear uni activation function [CUH16] defined as

ELU(x) =

⎧⎨⎩x, x > 0
α(ex − 1), x ≤ 0

where α > 0 is a parameter which is taken to be 1 in this case. They use ELU
instead of ReLU to avoid getting 0 gradient when vi is negative. Using this feature
representation results in having T = dattn which is a very practical value. The
usage of this function instead of just taking raw dot products is necessary for non-
negativity of the kernel function defined by this feature map. The paper [Kat+20]
claims that attention implemented with this feature map has performance close
to that of softmax attention while obviously being significantly faster. We will
check those claims in our experiments.

29

3.3 Masked attention
In previous parts of this chapter we assumed usage of unmasked attention for

simplicity of description. We will now see how masked attention can be computed
with the described methods. We won’t describe how to do this for general mask,
since, in general, it is impossible to do that faster than O(n2) since we may need
to mask any subset of values of the big O(n2) sized matrix QK⊺. Thus, we will
work with unidirectional attention used in decoders (subsection 1.2.2). That is, for
a given token we will only attend to tokens before it in the sequence. Considering
this, the equation (3.3) changes into

Attention(Q, K, V)i =
∑︁i

j=1 sim(Qi, Kj)Vj∑︁i
j=1 sim(Qi, Kj)

and for a given kernel, following the equation (3.5) it becomes

Attention(Q, K, V)i =
φ(Qi)

∑︁lz
j=1 φ(Kj)⊺Vj

φ(Qi)
∑︁lz

j=1 φ(Kj)⊺
. (3.7)

We can use prefix sums to perform this calculation in O(n) time as well using
remark 3.2. We will define Ni = ∑︁lz

j=1 φ(Kj)⊺Vj and Di = ∑︁lz
j=1 φ(Kj)⊺, then the

equation (3.7) becomes

Attention(Q, K, V)i = φ(Qi)Ni

φ(Qi)Di

. (3.8)

Notice that both Ni and Di can be computed once for all i and then reused
for all queries. Finally, we can compute Ni+1 from Ni in constant time from
Ni+1 = Ni + φ(Ki+1)⊺Vi+1, and likewise for Di+1. Since there are only O(n) times
we need to perform this, the total calculation still takes O(n) time.

30

4 Polynomial Attention
In this chapter, we will explore replacing softmax attention with a polynomial of

dot product, building up on the generalized formulas for attention from Chapter 3.
In the first two sections we explore usage of polynomial kernels suggested in
[KMZ24]. In the third section we explore usage of a more general class of
polynomials. We won’t describe handling of masked attention since it can be
implemented as described in subsection 3.3.

4.1 Exploring polynomial kernel
In this section we will explore usage of kernels which are polynomials of dot

product. Recalling our requirement on the similarity function to be non-negative
(subsection 3.1), we only consider kernels of form

k(x, y) =
(︄

xy⊺ + α

β

)︄p

where p is an even positive integer, x, y ∈ Rdattn are vectors and α, β are real
numbers. It is obvious that changing value of β will not change attention values
(we can take out 1

βp from the sum and divide both numerator and denominator
by it) but selecting an appropriate β will help with numerical stability, similarly
to softmax attention.

We observe that in the case when x1⊺ = 0 and y1⊺ = 0, that is, the entries of
both vectors have mean 0, we have

xy⊺ + α

β
= x′y′⊺

for

x′ = x√
β

+
√︄

α

βdattn

1dattn ,

y′ = y√
β

+
√︄

α

βdattn

1dattn .

In other words, x′ and y′ are obtained from x and y by applying the same rescaling
and bias. We thus add an additional layer normalization (subsection 1.1.7) to
obtain Q′ and K ′ from query and key matrices and use a kernel of the form

k(x, y) = (xy⊺)p

for even positive integers p. For simplicity, we will abuse notation and use Q and
K in place of Q′ and K ′.

The attention formula now looks like

Attention(Q, K, V)i =
∑︁lz

j=1(QiK
⊺
j)pVj∑︁lz

j=1(QiK
⊺
j)p

.

31

Unlike softmax attention, here the denominator may be very close to 0. To avoid
that we add 1 to it to obtain

Attention(Q, K, V)i =
∑︁lz

j=1(QiK
⊺
j)pVj

1 +∑︁lz
j=1(QiK

⊺
j)p

.

Notice that in this case the weights applied to values for a given token will not
sum up to 1, and thus we won’t have a distribution. That is not a problem because
the model will just learn to work with that, since it is just simple scaling. For
example the model can learn the value matrix to be scaled by an appropriate
parameter, and then the model will be identical. Notice that the values are still
non-negative. Thus, this measure is applied just for numerical stability.

We have introduced this class of functions as kernels but have not yet provided
a corresponding feature map. We first define the Kronecker product for two
vectors.

Definition 5 (Kronecker product). Let x ∈ Rn and y ∈ Rm be vectors. We
say that the vector (x1y1, x1y2, . . . , x1ym, x2y1, x2y2, . . . , x2ym, . . . , xnym) is the
Kronecker product of x and y. We denote it by x ⊗ y.

We also define a Kronecker power x⊗p recursively as x ⊗ x⊗(p−1) and x⊗1 = x.
We are now ready to introduce a proposition that will help us to obtain the
required feature map.

Proposition 1. For all vectors x, y ∈ Rn we have (xy⊺)p = x⊗p (y⊗p)⊺.

Proof. We have

(xy⊺)p =
∑︂

i1,i2,...,ip

p∏︂
j=1

xij
yij

by the binomial theorem. We can look at x⊗p as a flattening into a vector of a
p-dimensional array, where at position (i1, . . . , ip) we have ∏︁p

j=1 xij
. The same

holds for y⊗p. Thus, by tacking their dot product we obtain exactly the right-hand
side of equation 4.1.

Thus, for a kernel k(x, y) = (xy⊺)p we can use a feature representation φ(x) =
x⊗p. We may write down polynomial attention in matrix form using equation (3.6).

The paper [KMZ24] claims that polynomial attention with p ≥ 4 performs
with similar accuracy compared to softmax attention.

For our attention computation with attention dimension dattn, computing the
feature map φ(x) would take O(dp

attn) time. This is constant in n (where n is
defined as in subsection 3.2) but for big p this constant is going to be huge which
makes it impractical, and only worth it if dp

attn < n for realistic values of n. This
motivates the next section.

4.2 Approximating polynomial attention
In this section we will denote dattn by h to not clutter the notation. Since

hp can be very big, we may try to approximate polynomial attention without

32

computing feature maps explicitly, to speed up the algorithm. In this section we
will only consider primary and context sequences having the same length n as in
subsection 3.2 for simplicity of analysis. We will make use of sketching techniques.
We first define the approximate matrix multiplication (AMM) property [Woo14].

Definition 6 (Approximate matrix multiplication). Let n, h and p be integer
parameters and ε > 0 a real parameter. A randomized sketching matrix S ∈ Rhp×r

has the (ε, p)-AMM property if for any two matrices A, B ∈ Rn×h we have that

||(A⊗pS)(B⊗pS)⊺ − A⊗p(B⊗pS)⊺||F ≤ ε||(A⊗p||F ||(B⊗p||F

with probability at least 9
10 over the randomized sketching matrix S.

In the above definition the Kronecker product is applied to a matrix row-
wise and ||A||F denotes the Frobenius norm of a matrix, that is

√︂∑︁
i,j A2

i,j. The
parameter r in the definition above is called the sketch size, it is a function of the
accuracy parameter ε. We would want both the sketch size to be small and to be
able to compute A⊗pS fast for an arbitrary matrix A.

We use a result from sketching theory given by Ahle et. al [Ahl+20].

Theorem 3. Let p = 2k and ε > 0 be parameters. There is a randomized sketching
matrix S with r = Θ(p

ε2) columns such that S satisfies the (ε, p)-AMM property.
For an arbitrary matrix A ∈ Rn×h, computing A⊗pS requires O(nphr +npr2) time.

They also provide a construction of the sketch S. We will first describe how to
implement the sketch for p = 2. We sample two random matrices G1, G2 ∈ Rh×r

such that each entry is drawn independently from a standard normal distribution.
Then the result of applying the sketch S to matrix A is

Sketch(A, r, p) = A⊗2S =
√︄

1
r

((AG1) ⋆ (AG2)),

where by ⋆ we denote the entry-wise product. We can extend this construction to
all powers of 2 via recursion. If we want to compute Sketch(A, r, p) we will start
by computing M1 = Sketch(A, r, p

2) and M2 = Sketch(A, r, p
2) and then setting

Sketch(A, r, p) =
√︄

1
r

((M1G1) ⋆ (M2G2)).

Note that here G1, G2 ∈ Rr×r because M1, M2 ∈ Rn×r come from computing the
sketch. It is obvious that the described procedure achieves claimed complexity,
since we perform one matrix multiplication of time complexity O(nhr), one martrix
multipllication of time complexity O(nr2) and one entry-wise product of time
complexity O(nr) - O(p) times each.

Thus, we can approximate the matrix φ(Q)φ(K)⊺ = Q⊗p(K⊗p)⊺ with
(Q⊗pS)(K⊗pS)⊺ to compute attention as in equation (3.6).

One issue we have is that (Q⊗pS)(K⊗pS)⊺ may contain negative values, which
would not work, since we require the kernel function to be non-negative. To fix this
we may notice that for two arbitrary vectors x, y we have x⊗2(y⊗2)⊺ = (xy⊺)@ ≥ 0.
We thus may use an approximate feature map

φ(X) = (X⊗ p
2 S)⊗2 (4.1)

33

instead, at the cost of squaring the sketch size r.
Does this still represent a good sketch? Yes, the paper [KMZ24] proves the

following theorem.

Theorem 4. Let ε, δ > 0 and p = 2k be constants. Let S ∈ Rh
p
2 ×r be a randomized

sketching matrix for r = Ω
(︃

p log 1
δ

ε2

)︃
and let φ be as in equation (4.1). Then for

any two matrices Q, K ∈ Rn×h we have

||φ(Q)(φ(K))⊺ − (QK⊺)⊗p||F ≤ ε||Q⊗p||F ||K⊗p||F

with probability at least 1 − δ over the randomized sketching matrix S.

Authors of the paper [KMZ24] call this mechanism for computing attention
‘Polysketch Attention’.

Note that since we can compute A⊕ p
2 S in O(nphr + npr2) time by the con-

struction for Theorem 3, we can computer φ(X) in O(nphr + npr2) time since
we just need to bring n vectors of dimension r to second Kronecker power which
requires O(nr2) time.
Remark. It is worth noting that instead of generating random matrices G1, G2
during computation of the sketch we may instead try to replace them with learnable
parameters. The authors of the paper [KMZ24] claim that using a non-linear
transformation introduced by a dense neural network (a network similar to the
one described in subsection 1.1.6) with size comparable to size of matrices G1, G2
leads to a model with better quality.

4.3 More general polynomials
In previous sections we’ve only considered polynomials with a single term.

In this section we will look at a more general class of polynomials. Due to the
necessity of non-negativity of kernel function we cannot just use an arbitrary
polynomial. On the other hand, we can use any polynomial that produces only
non-negative values. We will consider a class of all polynomials that have the
form of (poly(n))2. Obviously, they only produce non-negative values. We thus
will consider a functions of the form

f(x, y) =
(︄ p∑︂

i=0
ai(xy⊺)i

)︄2

for arbitrary parameters p ∈ Z+ and a0, . . . , ap ∈ R. It may not always be a kernel
function, or, at least, have a non-trivial feature representation but we will show
how it is still possible to use it for attention. We can first expand the square to
get

f(x, y) =
2p∑︂

i=0
bi(xy⊺)i

where b0, . . . , b2p are not arbitrary anymore, and depend on a0, . . . , ap. We can
now make use of Proposition 1 to get

f(x, y) =
2p∑︂

i=0
bix

⊗i
(︂
y⊗i

)︂⊺
.

34

We now modify equation (3.3) with sim = f to get

Attention(Q, K, V)i =
∑︁lz

j=1 f(Qi, Kj)Vj∑︁lz
j=1 f(Qi, Kj)

=
∑︁lz

j=1
∑︁2p

r=0 brQ
⊗r
i

(︂
K⊗r

j

)︂⊺
Vj∑︁lz

j=1
∑︁2p

r=0 brQ
⊗r
i

(︂
K⊗r

j

)︂⊺
=
∑︁2p

r=0 brQ
⊗r
i

(︂∑︁lz
j=1

(︂
K⊗r

j

)︂⊺
Vj

)︂
∑︁2p

r=0 brQ
⊗r
i

(︂∑︁lz
j=1

(︂
K⊗r

j

)︂⊺)︂ .

We see that for a fixed r we obtain the same expressions in numerator and
denominator (considered separately) as for attention with a kernel function, thus
we can use the same methods. That is, we can calculate the inner sums once and
reuse them for each query. The complexity of this is dominated by computation
for the largest power (due to properties of geometric series) and thus is the same
O(ndp+1

attn) as if we were computing for just a single term. Moreover, it is linear in
n.

We may try to either hardcode such a polynomial or try to learn it. That
means we can fix the power p and then let the model learn best coefficients
a0, a1, . . . , ap. This was suggested to me by Dr. Timothy Chu [Chu24].
Remark. Note that implementing unidirectional attention can again be done in
the same way as in subsection 3.3.

35

5 Experiments
In this chapter we will test accuracy of a an encoder-only transformer with

various attention variants described in previous chapters. We will focus only on
accuracy because properly measuring speed isn’t possible due to standard libraries
not having optimizations for necessary functions.

We use Python with PyTorch library [Pas+17] to implement the model. During
implementation we used tutorials [Lip; Kar] and official documentation [Fou]. We
used the Matplotlib library [Hun07] to produce plots.

The code we used during experiments can be found in attachments to this thesis.
We implement an encoder-only transformer described in subsection 1.2.1, except
we use different variants of attention. We implemented the non-standard variants
of attention in quadratic time because the library isn’t optimized for operations
necessary to perform attention in linear time as described in subsection 3.1.
Thus, using linear implementations is very impractical. Models using linear
implementation of attention take more than 20 times the time it takes for models
with quadratic implementation.

During training we use the AdamW optimizer [LH19], which uses gradient
descent, and is known to perform better for transformers than the stochastic
gradient descent.

The task on which we test our models is reversing an integer sequence. Obvi-
ously, this task can be trivially solved without any usage of neural networks but it
is not such an easy task for neural networks. Still, it is not extremely complicated
and thus would allows us to use a model of a small size to be able to train it in
relatively short time. We use a single encoder layer and a single attention head.
We use an embedding dimension of 32. We use batch size of 128. Batch size is
just the number of requests to the model that we do at the same time, to make
use of parallelism. The sequences we use consist of integers from 0 to 9 (inclusive)
and have length 50.

To measure accuracy of a model we use a loss function. The smaller values
it outputs, the better a model is. We use cross entropy loss function, which is
standard. If p is a probability distribution produced by a model and q is the
true probability distribution (which, in our case, is just a probability 1 for some
element and 0 for all other) then the cross entropy loss is defined as

−
C∑︂

c=1
log

(︄
excyc∑︁C
i=1 exi

)︄

where C is the number of tokens. Loss for multiple batches is simple the mean of
their respective losses.

We train each model for 10000 iterations, with calculation of average loss
of 10 samples each 100 iterations. Additionally, during the first 1000 iterations
we calculate average loss each 10 iterations. Each sequence will be randomly
generated.

To not clutter the legends, we will write polynomial kernels as polynomials in
variable x instead of xy⊺ in our plots.

For each group we plot two plots:

1. Based on first 1000 iterations with linear scale of y-axis.

36

2. Based on last 9000 iterations with logarithmic scale of y-axis.

The implementation may be found in attachments to this thesis in the file
main.py.

5.1 Single term polynomials of even degree
In this section, we test polynomials of even degree from Section 4.1, in partic-

ular, we test attention with the following kernel functions:

1. k(x, y) = (xy⊺)2;

2. k(x, y) = (xy⊺)4;

3. k(x, y) = (xy⊺)8.

Figure 5.1 First 1000 training iterations with points every 10 iterations

In Figure 5.1 we can see that polynomials with higher degree perform better than
those with lower degree. Interestingly, the polynomial with the lowest degree x2

achieves better loss until around 400-th iteration, where it is overtaken by x8, and,
a little later, by x4 as well. We can see that x8 reaches very small values of loss
relative to the other two polynomials around 600-th iteration, while both x2 and
x4 continue decreasing throughout the entire training process at a similar rate, as
can been seen from Figure 5.2.

The final values of losses the models achieve after 10000 training steps are ap-
proximately 0.19621022, 0.01990822 and 0.00000408, with x8 having an extremely
better result than the other two polynomials.

37

Figure 5.2 Last 9000 training iterations with points every 100 iterations

5.2 Squares of general polynomials
In this section, we test squares of general polynomials from Section 4.3. By

trying different polynomials by hand we noted that polynomials with all coefficients
being equal to 1 seem to have a consistently better performance than other
polynomials. Thus, we will test such polynomials of different degrees. In particular
we will test attention with all polynomials of form (1 + x + · · · + xd)2 for d from 1
to 6 (inclusive).

In the Figure 5.3 we can see that here it is not the case that polynomials
of higher degree perform better. In first 1000 iterations, all polynomials except
(1 + x)2 have similar learning curves. The only exception, (1 + x)2, almost
immediately gets stuck seeing tiny to no improvement. This trend continues on
for the next 9000 iterations, with (1 + x)2 never reaching below 2.2. Thus, we
exclude it from the Figure 5.4 to be able to see plots for other polynomials much
better. We also exclude it from further discussion.

In the Figure 5.4 we see that polynomials of degree 5 and 3 perform significantly
better than others. The degree 5 polynomial is consistently improving, while the
degree 3 polynomial is jumping up and down, but still improves overall. The jumps
don’t reach neither degree 5 polynomial nor the other polynomials. Polynomials
of degrees 2, 4 and 6 all perform on a similar level, but significantly worse the
polynomials of odd degree (excluding 1).

From the Figure 5.4 we notice that polynomials of odd degree perform sig-
nificantly better than polynomials of even degree. We also notice that among
polynomials with degree of same parity polynomials of higher degree perform
better.

38

Figure 5.3 First 1000 training iterations with points every 10 iterations

Figure 5.4 Last 9000 training iterations with points every 100 iterations

The final values of losses the models achieve after 10000 training steps are
approximately 2.20814011, 0.17952636, 0.00001183, 0.14318735, 0.00000469 and

39

0.09295710 for the degree from 1 to 6, respectively.

5.3 Learning squares of general polynomials

Figure 5.5 First 1000 training iterations with points every 10 iterations

In this section, we try learning a polynomial as suggested in the end of
Section 4.3. We will initialize polynomials by sampling each coefficient from a
U(−50, 50) (uniform real distribution) independently. We’ve tried sampling from
other uniform distribution, such as U(−1, 1) or U(−500, 500) but they seemed to
perform significantly worse.

As can be seen in the Figure 5.5, all of the models have a very steep drop
at around 400 iterations, with much less steep improvement after that. From
the Figure 5.6 we see that polynomials of degree 1 and 4 don’t improve much.
Polynomials of degree 2 and 3 are a very different story, with both seeing continuous
improvement until the very end. Polynomials of degree 5 and 6 have a more
curious behaviour. Degree 6 polynomial decrease similarly to polynomials of
degree 2 and 3 but at some points has high spikes, with decrease in performance,
quickly returning to better performances. Degree 5 polynomial stagnates until
around 7000 iterations, much like polynomials of degree 1 and 4, but then very
steeply drops to the level of polynomial of degree 6.

We see that here there is no obvious relationship between degree of polynomial
and performance. In general, though, this group has the best performance out of
3 groups we have considered in first 3 sections of this chapter.

The final values of losses the models achieve after 10000 training steps are
approximately 0.21729853, 0.00000564, 0.00000451, 0.18778882, 0.00001671, and

40

Figure 5.6 Last 9000 training iterations with points every 100 iterations

0.00001326 for degrees 1 to 6 respectively. Learned coefficients of polynomials may
be seen in attachment learned_polynomials.txt. Coefficient of a polynomial
are ordered from the coefficient by the lowest exponent to the one by the highest.

5.4 Comparing best from different groups
In this section we will compare best performers from the first 3 sections and

also 3 new models:

1. Softmax attention, as a benchmark.

2. Attention using entry-wise ELU as the feature map from the section 3.2

3. Taking the best learned polynomial (the degree 3 polynomial from the
previous section) and using it as a polynomial. This way the model will
be able to learn other parameters without need to improve kernel function
of attention. We will call this a fixed learned polynomial.

As best representatives of each of the three previous sections we will chose x8,
1 + x + x2 + x3 + x4 + x5 and the polynomial of degree 3 respectively from
Section 5.3.

In the Figure 5.7 we see a similar learning curve for most of the functions,
starting with initial stagnation and then a very steep drop at around 400 iterations.
The only outlier is ELU, it also stagnates up to around 400 and after that start
improving but the improvement is much less steep. From the Figure 5.8 we can

41

Figure 5.7 First 1000 training iterations with points every 10 iterations

Figure 5.8 Last 9000 training iterations with points every 100 iterations

see that this trend for ELU continues in the next 9000 iterations. It has a slow
but consistent improvement.

42

Fixed learned polynomial and 1+x+x2 +x3 +x4 +x5, on the other hand, don’t
see any improvement over last 9000 iterations, and end up with a much worse
result then they had in previous sections. From our tests we noticed that all of
these functions except softmax and ELU are highly susceptible to initial conditions,
sometimes performing very bad and sometimes very well. This suggests that they
are unstable and it is not clear if this is an inherent flaw of these attention models.

Plots suggest that in the best scenario one of the alternative attention functions
manages to beat softmax, as in this case x8 ends up with a smaller loss. But it is
not clear how to reach those cases.

Finally, learned polynomial has a weird graph, with occasional spikes increasing
loss by a lot in a span of few iterations and then decreasing back. It is not clear
why this happens.

The final values of losses the models achieve after 10000 training steps are
approximately 0.00000477, 0.11890406, 0.04012463, 0.09217419, 0.00000410, and
0.00052050 for the functions in the same order as in the legend of Figure 5.7 (top
to bottom).

43

Conclusion
In this thesis we have explored the inner working of transformers. In particular,

we have focused on the attention mechanism. We have looked at alternatives of
softmax attention with potential to be much more efficient. All of them run in
linear time with respect to context length, which is better than the theoretical
limit of quadratic time for softmax attention, as we’ve seen in Chapter 2 (assuming
SETH).

We’ve implemented an encoder-only transformer and used it to conduct multi-
ple experiments, comparing softmax attention with its alternatives. We’ve found
some alternatives that, on our dataset, performed on par with softmax attention.
For example, the square of polynomial with all coefficients equal to 1 of degree 3
(albeit only in the first experiment). The function x8 managed to beat softmax
in the final experiment, and this function can be approximated very fast with
polysketch.

Further directions of research may include further investigations of approxi-
mation of polynomial attention, so that it becomes possible to approximate fast
attention defined by square of general polynomial, since those seem to perform
much better than single-term polynomials with degree equal to a power of 2.
Another direction of research may be handcrafting polynomials that perform
better, and looking into theoretical reasons for their superiority. This is motivated
by our finding that a square of polynomial with all coefficients equal to 1 seems
to perform much better than other polynomials. Finally, another direction of de-
velopment is creation of optimized libraries that can support operations necessary
for implementation of polynomial attention.

44

Bibliography
[Ahl+20] Thomas D. Ahle et al.

“Oblivious Sketching of High-Degree Polynomial Kernels”.
In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,
2020. Ed. by Shuchi Chawla. SIAM, 2020, pp. 141–160.
doi: 10.1137/1.9781611975994.9.
url: https://doi.org/10.1137/1.9781611975994.9.

[AS23] Josh Alman and Zhao Song.
“Fast Attention Requires Bounded Entries”.
In: Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023.
Ed. by Alice Oh et al. 2023.
url: http://papers.nips.cc/paper%5C_files/paper/2023/
hash/c72861451d6fa9dfa64831102b9bb71a-Abstract-
Conference.html.

[BKH16] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
“Layer Normalization”. In: CoRR abs/1607.06450 (2016).
arXiv: 1607.06450. url: http://arxiv.org/abs/1607.06450.

[Chu24] Timothy Chu. Personal communication. Apr. 2024.
[CUH16] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter.

“Fast and Accurate Deep Network Learning by Exponential Linear
Units (ELUs)”. In: 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2016.
url: http://arxiv.org/abs/1511.07289.

[Dev+19] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”.
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers).
Ed. by Jill Burstein, Christy Doran, and Thamar Solorio.
Association for Computational Linguistics, 2019, pp. 4171–4186.
doi: 10.18653/V1/N19-1423.
url: https://doi.org/10.18653/v1/n19-1423.

[Fou] The Pytorch Foundation. PyTorch documentation.
url: https://pytorch.org/docs/stable/index.html (visited on
05/09/2024).

45

https://doi.org/10.1137/1.9781611975994.9
https://doi.org/10.1137/1.9781611975994.9
http://papers.nips.cc/paper%5C_files/paper/2023/hash/c72861451d6fa9dfa64831102b9bb71a-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2023/hash/c72861451d6fa9dfa64831102b9bb71a-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2023/hash/c72861451d6fa9dfa64831102b9bb71a-Abstract-Conference.html
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1511.07289
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423
https://pytorch.org/docs/stable/index.html

[Fuk69] Kunihiko Fukushima. “Visual Feature Extraction by a Multilayered
Network of Analog Threshold Elements”.
In: IEEE Trans. Syst. Sci. Cybern. 5.4 (1969), pp. 322–333.
doi: 10.1109/TSSC.1969.300225.
url: https://doi.org/10.1109/TSSC.1969.300225.

[He+15] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385.
url: http://arxiv.org/abs/1512.03385.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”.
In: Computing in Science & Engineering 9.3 (2007), pp. 90–95.
doi: 10.1109/MCSE.2007.55.

[IP01] Russell Impagliazzo and Ramamohan Paturi.
“On the Complexity of k-SAT”. In: Journal of Computer and System
Sciences 62.2 (2001), pp. 367–375. issn: 0022-0000.
doi: https://doi.org/10.1006/jcss.2000.1727.
url: https://www.sciencedirect.com/science/article/pii/
S0022000000917276.

[Kar] Andrej Karpathy. NanoGPT video lecture. url:
https://github.com/karpathy/ng-video-lecture/tree/master
(visited on 05/09/2024).

[Kat+20] Angelos Katharopoulos et al. “Transformers are RNNs: Fast
Autoregressive Transformers with Linear Attention”.
In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020,
pp. 5156–5165. url:
http://proceedings.mlr.press/v119/katharopoulos20a.html.

[KMZ24] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong.
PolySketchFormer: Fast Transformers via Sketching Polynomial
Kernels. 2024. arXiv: 2310.01655 [cs.LG].

[LH19] Ilya Loshchilov and Frank Hutter.
“Decoupled Weight Decay Regularization”.
In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
url: https://openreview.net/forum?id=Bkg6RiCqY7.

[Lip] Phillip Lippe. Tutorial 6: Transformers and Multi-Head Attention.
url: https://uvadlc-
notebooks.readthedocs.io/en/latest/tutorial_notebooks/
tutorial6/Transformers_and_MHAttention.html (visited on
05/09/2024).

[Mik+13] Tomás Mikolov et al.
“Efficient Estimation of Word Representations in Vector Space”.
In: 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2013.
url: http://arxiv.org/abs/1301.3781.

46

https://doi.org/10.1109/TSSC.1969.300225
https://doi.org/10.1109/TSSC.1969.300225
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1006/jcss.2000.1727
https://www.sciencedirect.com/science/article/pii/S0022000000917276
https://www.sciencedirect.com/science/article/pii/S0022000000917276
https://github.com/karpathy/ng-video-lecture/tree/master
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://arxiv.org/abs/2310.01655
https://openreview.net/forum?id=Bkg6RiCqY7
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
http://arxiv.org/abs/1301.3781

[Pas+17] Adam Paszke et al. “Automatic differentiation in PyTorch”.
In: NIPS-W. 2017.

[PH22] Mary Phuong and Marcus Hutter.
“Formal Algorithms for Transformers”.
In: CoRR abs/2207.09238 (2022).
doi: 10.48550/ARXIV.2207.09238. arXiv: 2207.09238.
url: https://doi.org/10.48550/arXiv.2207.09238.

[Rad+19] Alec Radford et al.
“Language Models are Unsupervised Multitask Learners”. In: 2019.
url: https://api.semanticscholar.org/CorpusID:160025533.

[Rub18] Aviad Rubinstein. “Hardness of approximate nearest neighbor search”.
In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018.
Ed. by Ilias Diakonikolas, David Kempe, and Monika Henzinger.
ACM, 2018, pp. 1260–1268. doi: 10.1145/3188745.3188916.
url: https://doi.org/10.1145/3188745.3188916.

[Sha78] M.I. Shamos. Computational Geometry.
THESIS (Ph.D) - YALE UNIVERSITY, 1978. Yale University, 1978.
url: https://books.google.cz/books?id=Mf50SQAACAAJ.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”.
In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762.
url: http://arxiv.org/abs/1706.03762.

[Wil19] Virginia Vassilevska Williams. “ON SOME FINE-GRAINED
QUESTIONS IN ALGORITHMS AND COMPLEXITY”.
In: Proceedings of the International Congress of Mathematicians
(ICM 2018) (2019).
url: https://api.semanticscholar.org/CorpusID:19282287.

[Woo14] David P. Woodruff.
“Sketching as a Tool for Numerical Linear Algebra”.
In: Found. Trends Theor. Comput. Sci. 10.1-2 (2014), pp. 1–157.
doi: 10.1561/0400000060.
url: https://doi.org/10.1561/0400000060.

47

https://doi.org/10.48550/ARXIV.2207.09238
https://arxiv.org/abs/2207.09238
https://doi.org/10.48550/arXiv.2207.09238
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916
https://books.google.cz/books?id=Mf50SQAACAAJ
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://api.semanticscholar.org/CorpusID:19282287
https://doi.org/10.1561/0400000060
https://doi.org/10.1561/0400000060

	Introduction
	General Structure of Transformers
	Components of transformer
	Input Tokenization
	Token embedding
	Positional embedding
	Attention
	Multi-head attention
	Feed-forward layer
	Layer normalization
	Unembedding
	Residual connections

	Types of Transformers
	Encoder-only transformer
	Decoder-only transformer
	Encoder-decoder transformer

	Limits of Softmax Attention
	Prerequisite statements
	Hardness Result

	Linearized Attention
	Generalized formula for attention
	Linearized attention
	Masked attention

	Polynomial Attention
	Exploring polynomial kernel
	Approximating polynomial attention
	More general polynomials

	Experiments
	Single term polynomials of even degree
	Squares of general polynomials
	Learning squares of general polynomials
	Comparing best from different groups

	Conclusion
	Bibliography

