
BACHELOR THESIS

Nikita Saydametov

Segmentation of scanned PDF
documents

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: doc. RNDr. Elena Šikudová, Ph.D.
Study programme: Computer Science

Study branch: IOI

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedication. I would like to express my sincere gratitude to doc. RNDr. Elena
Šikudová, Ph.D., for her constant and highly appreciated help along with her
endless enthusiasm. Also, I would like to thank my family for their support
throughout the work on this thesis.

ii

Title: Segmentation of scanned PDF documents

Author: Nikita Saydametov

Department: Department of Software and Computer Science Education

Supervisor: doc. RNDr. Elena Šikudová, Ph.D., Department of Software and
Computer Science Education

Abstract: Abstract.

Keywords: PDF OCR Tesseract segmentation

iii

Contents

Introduction 3

1 Background and theory 4
1.1 PDF . 4

1.1.1 About PDF . 4
1.1.2 PDF document types . 5
1.1.3 PDF software . 5
1.1.4 Security PDF . 5
1.1.5 Licensing . 6
1.1.6 Environmental Impact of Digital vs. Physical Documents . 6

1.2 OCR . 8
1.2.1 History of OCR . 8
1.2.2 Using OCR . 9
1.2.3 How OCR works . 10
1.2.4 Benefits of OCR . 12
1.2.5 Challenges and Limitations of OCR Technology 13
1.2.6 The Future of OCR and Its Role in Digitalization 14

1.3 Machine learning . 15
1.3.1 History of Machine Learning Development 15
1.3.2 Types of machine learning 16
1.3.3 Common machine learning algorithms 16

2 Available solutions 18
2.1 Paid solutions . 18

2.1.1 Adobe Acrobat DC . 18
2.1.2 ABBYY FineReader . 19

2.2 Free Solutions . 19
2.2.1 OCRmyPDF . 19
2.2.2 VietOCR . 20

3 Proposed solution 21
3.1 Technologies used . 21

3.1.1 Tesseract . 21
3.2 Description of the Graphical User Interface 25

3.2.1 The Main Application Window 26
3.2.2 Advanced Options Window 27

3.3 Work Scheme . 28
3.3.1 Input and Output Specifications 28
3.3.2 Python Script . 29
3.3.3 Algorithm Flowchart . 32

3.4 Analysis of the algorithm . 34
3.4.1 Analysis of Text Recognition Speed 36
3.4.2 Analysis of Image Recognition Efficiency 38
3.4.3 Integration of Libraries and Modules 39
3.4.4 Program Limitations . 39

1

3.4.5 Script Execution . 40
3.4.6 Validation of the Algorithm 40
3.4.7 Strengths . 40
3.4.8 Weaknesses . 41

4 Program Development Journey 42
4.1 First Version: OpenCV and Textract Integration 42

4.1.1 Objective and Tasks . 42
4.1.2 Technology Usage . 42
4.1.3 Development Process and Implementation 42
4.1.4 Challenges and Issues . 42
4.1.5 Conclusions and Lessons Learned 43

4.2 Intermediate Version: script improvement 43
4.2.1 Objectives and Goals . 43
4.2.2 Technology Usage . 43
4.2.3 Implementation and Functionality 43
4.2.4 Challenges and Issues . 43
4.2.5 Conclusions and Lessons 44

4.3 Final Version of the Script: Completion of Development 44
4.3.1 Development Overview . 44
4.3.2 Goals and Achievements 44
4.3.3 Features and Technologies 44
4.3.4 Implementation . 44
4.3.5 Conclusion and General Reflection 45
4.3.6 Project Outcome and Lessons Learned 45

Bibliography 48

List of Figures 51

List of Abbreviations 52

A Documentation 53
A.1 User documentation . 53

A.1.1 Downloading the development environment 53
A.2 Downloading and installing the program 53

A.2.1 Starting and using the program 53

2

Introduction
Every new day that we live becomes part of history. For many artifacts of history
are the remains of dinosaurs and mammoths that lived on earth more than 200
million years ago.

One of these artifacts we can consider and old preserved documents, clippings
of newspapers that were published over 300 years ago, which unfortunately in
normal conditions can not keep their original form due to the fact that the ink
fades over time , and the paper deteriorates. But the good news is that humanity
is not standing still. And people were able to preserve these ancient materials
through digitization. But also due to the development of the Internet a huge
number of databases are created, most of the data you need can be easily found
in large online libraries or through search engines.

But our digitized old newspapers clippings, books and booklets still remain
either as photos or as unindexable pdf documents. And because of that a huge
amount of information stored there remains outside the indexed Internet.

My goal is to change this problem by creating a program which segments a
pdf document into the text and pictures it contains. You might have a reason-
able question: ”But how can a program recognize text, when there are so many
different diacritical marks and nuances of spelling in the world? And you would
be right, because it’s a big enough problem that an ordinary program would be
unable to solve it, but we live in the 21st century! Technology is still going strong,
so at the heart of the program is the principle of machine learning, which allows
it to work with more than 100 languages.

3

1. Background and theory
To fully grasp the significance of this work, one must engage with the theoretical
data comprehensively to ensure an understanding of all critical details.

1.1 PDF
In today’s digital environment, Portable Document Format (PDF) stands out as a
prevalent file type, primarily due to its distinctive features that ensure consistent
visual representation of documents across different platforms. This section delves
deeper into the essence, history, varieties, and the range of software tools designed
for creating and editing PDFs. A thorough grasp of these elements not only
enriches our fundamental knowledge of PDF as a file format but also enhances
our understanding of the subsequent sections of this document. Here, we will
explore the specialized software that we have engineered for extracting text from
PDF files. This exploration will include a discussion on how PDFs maintain
layout and formatting consistency, making them indispensable in a multi-device,
platform-diverse digital landscape. Moreover, we will look at the evolution of PDF
standards and how they have adapted to the demands of digital documentation,
further cementing their role in document preservation.

1.1.1 About PDF
In the early 1990s, Adobe Systems Inc. replaced its PostScript language with the
PDF file format. Adding capabilities like interactive navigation and organized
document layering, the format expands upon this framework. Its primary benefit
is that documents display uniformly on all devices due to its independence from
both hardware and software.

As the name implies, PDFs fall within the Page Description Language (PDL)
group, which is concerned with a document’s graphical representation. It places
more emphasis on the visual presentation of a page than its informative content.
In contrast to Data Description Languages (DDLs) like HTML and RTF, markup
languages prioritize the semantic value and meaning of the data they include.

The visual arrangement of text and other components, such photos, is crucial
when it comes to PDFs. The significance or informative value of these compo-
nents, on the other hand, is incidental. For this reason, obtaining text from a
PDF document might be difficult. Some PDFs may even be created in such a
way that it is difficult to programmatically recognize the text using any other
technique than optical character recognition (OCR).

Because PDF files are so widely used in both the public and private sectors,
Adobe Systems Inc. decided on January 29, 2007, to offer a full specification in
PDF format for standardization and publishing in ISO (International Organiza-
tion for Standardization) format. January 2008, a year later, saw the paperwork
recognized as an ISO 32000-1 worldwide standard. As a result, PDF has become
a standard format. You may obtain the specification for free straight from the
Adobe website.

4

1.1.2 PDF document types
In the specification - globally, we can distinguish two types of PDF documents:

• Searchable PDF

• Non-searchable PDF

Let us go over them in detail.
The main task of our program is to extract and convert text. You can extract

text manually as follows:

• Open your document in any PDF editor

• Select and copy the text

This method works efficiently for most documents, which are often referred
to as ”searchable PDFs”. In such documents, the text is generated using different
PDF operators. Moreover, the linked font objects within these documents possess
accurate information regarding the correlation between the glyphs and Unicode
values, making them accessible for extraction.

Numerous PDF libraries have been developed with the capability to extract
text from these searchable PDFs. However, challenges arise with documents that
fall outside the category of searchable PDFs. These documents, called ”non-
searchable PDFs”, typically present their text as bitmap images. A perfect ex-
ample of this would be a scanned PDF document. In these scenarios, text can be
represented in vector paths, bypassing specific PDF operators and fonts.

Optical text recognition is performed to extract text from inaccessible PDFs.
Optical OCR does not guarantee proper text extraction 100% of the time. The
result depends on the quality of your document and the recognition algorithm.
Also, OCR is significantly slower than text extraction from searchable PDF files.

1.1.3 PDF software
The majority of PDF viewing programs are free, and there are several versions
accessible from different sources.

Software options for creating PDF files are numerous and include the pdfTeX
typesetting system, applications developed from Ghostscript and Adobe Acro-
bat itself, Adobe InDesign, Adobe FrameMaker, Adobe Illustrator, and Adobe
Photoshop; software options for creating PDF files include Scribus; LibreOffice;
Microsoft Office 2007 and up; WordPerfect 9; and many more. The online office
suite from Google, Google Docs, allows you to download and store documents in
PDF format. A few websites provide free tools for editing annotations and PDF
files [1].

1.1.4 Security PDF
Numerous incidents throughout PDF’s history have seen attackers taking advan-
tage of the format’s widespread use.

The attachment contained within the document was the most frequent vulner-
ability in these files. Because the virus was contained in the file and only became

5

active when the document was opened, inexperienced users need assistance in
identifying it.

The first reports of virus-containing PDF attachments date back to 2001. The
virus known as OUTLOOK.PDFWorm, also known as Peachy, sent itself as an
Adobe PDF attachment via Microsoft Outlook [2]. This virus was unique in that
it required Adobe Acrobat to initiate its activation, even if Acrobat Reader was
not able to activate it.

Occasionally, fresh vulnerabilities in different versions of Adobe Reader are
found, leading the business to provide security updates [3]. Other PDF viewers
are vulnerable as well. An further aggravating element is that if a web page has
an embedded PDF file, a PDF reader can be configured to launch automatically,
opening up a potential attack channel. Even with a secured browser, the system
can still be penetrated if a malicious web page has an infected PDF file that
takes advantage of a flaw in the PDF reader. The PDF standard, which permits
JavaScript to be used in the creation of PDF documents, is partially to blame
for these vulnerabilities. While disabling JavaScript execution in the PDF reader
does not shield against attacks in other areas of the PDF viewer software, it
can aid in preventing similar future exploits. JavaScript is not necessary to read
PDFs, according to security experts, and removing JavaScript has more security
advantages than compatibility problems. Using a local or web service to convert
files to a different format before viewing them is one method to prevent PDF
vulnerabilities.

Researchers from Hackmanit GmbH and Ruhr University Bochum released
information on attacks on PDFs that include digital signatures in November 2019.
By taking advantage of implementation defects, they demonstrated how to alter
visible information in a signed PDF file without nullifying the signature in 21 out
of 22 desktop PDF viewers and 6 out of 8 online validation services. They also
demonstrated how to filter out encrypted plaintext material from PDF files at the
same conference. They presented further shadow attacks on PDFs in 2021, taking
use of the features’ inherent flexibility. An summary of security vulnerabilities
in PDF files pertaining to arbitrary code execution attacks, data manipulation,
information exposure, and denial of service was provided by Jens Mueller [4].

1.1.5 Licensing
Applications that can write to and read PDF files can be made by anybody
without having to pay Adobe Systems royalties.

Although Adobe owns the PDF patents, it grants free licenses to developers
of software that complies with the PDF standard.

1.1.6 Environmental Impact of Digital vs. Physical Doc-
uments

Introduction

The transition from physical to digital documentation, particularly in the form of
PDFs, has significant environmental implications. This subsection analyzes the
sustainability impact of this shift.

6

Reduction in Paper Usage The most apparent environmental benefit of dig-
ital documents is the reduction in paper consumption. The manufacturing of
paper, primarily from wood pulp, has a considerable ecological footprint, involv-
ing deforestation, water consumption, and energy use.

Deforestation and Biodiversity Loss Paper production is a leading cause
of deforestation, which leads to biodiversity loss and habitat destruction. By re-
ducing reliance on paper, digital documents contribute to the preservation of
forests.

Water and Energy Resources Paper manufacturing is water and energy-
intensive. Transitioning to digital formats significantly reduces the consumption
of these vital resources, contributing to environmental sustainability.

Carbon Footprint of Digital Documents While digital documents reduce
paper use, they have their carbon footprint, primarily due to energy consumption
for data storage, processing, and transmission.

Data Centers and Energy Consumption The operation of data centers,
crucial for storing digital documents, requires substantial energy, often sourced
from fossil fuels, contributing to greenhouse gas emissions.

Efforts in Green Computing Advancements in green computing and the
increasing use of renewable energy sources for data centers are mitigating the
carbon footprint of digital documents.

Waste Management and Recycling Physical document disposal and recy-
cling processes have environmental impacts, including energy consumption and
pollution from recycling processes.

The Role of PDFs in Sustainability PDFs, as a universal digital document
format, play a vital role in promoting sustainability by enabling efficient digital
documentation and reducing the need for physical paper.

Longevity and Accessibility The durability and compatibility of PDFs
across platforms ensure document longevity, reducing the need for multiple copies
and reprints.

Interactive Features and Paperless Operations PDFs support interac-
tive features like forms and signatures, enabling completely paperless operations
in various sectors, further reducing the environmental impact.

Comparative Analysis A comparative analysis of the environmental impact
of physical and digital documents, considering factors like production, usage, and
end-of-life management.

7

Future Outlook Looking ahead, the subsection will explore potential devel-
opments in digital documentation technology and practices that could further
enhance environmental sustainability.

Innovations in Digital Storage Advancements in energy-efficient stor-
age technologies and practices could significantly reduce the carbon footprint of
digital documents.

Sustainable Practices in Document Management The adoption of
sustainable practices in document management, both in digital and physical for-
mats, is essential for a greener future.

Conclusion The shift to digital documentation, especially in the form of PDFs,
offers substantial environmental benefits, particularly in reducing paper use and
the associated ecological impacts. However, it is also essential to address the en-
vironmental challenges posed by digital documents, especially concerning energy
consumption and e-waste.

1.2 OCR
Pages from a printed book or papers with handwritten notes occasionally need
to be scanned. OCR, or optical character recognition, is useful in this situation.
This useful technology creates editable digital files from handwritten or printed
text [5].

Characters that are scanned, printed, or written can be digitally copied using
OCR. Data stored on paper, such as invoices, passports, papers, business cards,
letters, or printouts, are very commonly imported via this manner.

Text digitization allows for computerized text editing and searching. Further-
more, the technology makes it possible to save papers in a more compact format
and view them online.

1.2.1 History of OCR
Technology for text recognition first emerged in the latter part of the 1800s.

Emanuel Goldberg created a machine in 1914 that scans characters and trans-
lates them into telegraph code. Edmund Fournier d’Albe created the Optophone
concurrently [6], a portable scanner that generated auditory signals in response
to certain letters or symbols as it passed over a printed page.

Emanuel Goldberg created a ”Statistical Machine” in the late 1920s and early
1930s that used an optical code recognition method to search microfilm archives.
1931 saw him get U.S. 1,838,389 is the invention’s patent number. IBM obtained
the patent.

Systems in the contemporary meaning first appeared in the 1950s [7], many
decades later.

The initial text recognition systems were machine-based and were only dis-
covered to be utilized in specific establishments, such post offices, where they
were employed for mail sorting. It was not until the first personal computers

8

were introduced that software programs with modern text recognition capabili-
ties started to develop. The term ”monofont” refers to the fact that the first text
recognition technologies in use today could only recognize one font. OCR-A and
OCR-B, the extraordinary typeface standards used in the US and Europe respec-
tively, were developed for this reason. except since they were not being utilized,
there was no alternative except to keep advancing technology and raising the
sophistication of the systems. OCR systems of the following generation already
knew how to read additional typefaces (multi-font). However, they were still in
need of more precision and assistance in locating a more complete application
due to their high purchasing cost. This has only altered with the release of the
newest generation of systems, known as omnifont, which do not rely on type 16
fonts and are progressively finding their way into homes, workplaces, and small
businesses owing to advancements in information technology.

1.2.2 Using OCR
OCR technology helps millions worldwide convert information from paper to
electronic format.

Banking sector

The banking sector use OCR technology to efficiently and accurately process
and authenticate checks for purposes such as deposits, loans, and other financial
transactions. This verification has led to an enhancement in transaction security
and the efficacy of anti-fraud measures. BlueVine, a financial technology company
specializing in financing small and medium-sized enterprises, utilized Amazon
Textract, a cloud-based optical character recognition (OCR) service, to develop
a product that facilitates the process of obtaining loans under the COVID-19
stimulus package’s Wage Protection Program (PPP) for small businesses in the
US. Amazon’s OCR automatically processed and analyzed tens of thousands of
PPP forms daily, enabling BlueVine to help thousands of firms secure finance and
save more than 400,000 jobs [8].

Health care

The healthcare system utilizes OCR to manage patient data, including infor-
mation pertaining to hospital admissions, medical examinations, therapies, and
insurance reimbursements. OCR streamlines hospital operations, reduces the
need for human work, and ensures up-to-date record keeping. As an example,
the Nib Group processes a large number of medical service claims on a daily basis
and provides health insurance coverage to more than one million individuals in
Australia. Customers of the company have the ability to utilize a mobile applica-
tion to submit a photograph of their medical invoices. The identification system
automatically processes these photographs, therefore expediting the company’s
claim processing.

9

Logistics

Logistics companies utilize optical character recognition (OCR) as a technique
to more efficiently monitor documents including invoices, receipts, and package
labels. Foresight Group, for example, uses OCR to automate the processing of
SAP invoices. Foresight staff members had to manually enter data into many
accounting systems, which took time and raised the possibility of errors. OCR
increased business productivity by enabling Foresight software to read characters
on a range of media with better accuracy [9].

Electronic archiving

The electronic preservation of information (such as books) is known as electronic
archiving. Physical medium obsolescence, right owner insolvency, and out-of-
print publications are all resolved by electronic storage. In fact, a lot of the
classic books that were published in limited quantities or with basic editions
are now very hard to find, and many can only be acquired by hand. A book’s
publisher is more likely to stop supporting its dissemination the longer it has been
out of print than when it was first published, both in print and digital formats.
In that instance, the book can only be preserved by libraries and aficionados.

Ideally, a scanned book should be stored in both an unrecognized (non-OCR)
and a recognized (OCR) form. With the OCR version, you may search for key-
words and copy extracts to the clipboard, and it often takes up less space. The
unacknowledged version keeps a few small yet potentially significant information.
Transparent recognized text can occasionally be superimposed over scanned pages
to merge the two formats. In these documents, text can be highlighted and key-
words may be searched, but the file is much more important than in non-OCR
documents.

1.2.3 How OCR works
Pre-processing

OCR software often ”preprocesses” images to increase the chances of successful
recognition. Methods include:

• Skew Correction - If a document is not properly aligned when scanning, it
may require a slight rotation either clockwise or counterclockwise to ensure
that the lines of text are completely horizontal or vertical.

• Spot removal - involves eliminating both positive and negative spots while
also refining the borders to get a smoother appearance.

• Binarization - the process of converting a grayscale or color image to black
and white; the result is an image that has two colors, thus the name ”binary
image.” The task of binarization involves separating the backdrop from the
text, or any other desirable picture component.

• Removing strings - clears fields and strings that do not contain characters.

10

• ”Zoning” or layout analysis recognizes paragraphs, columns, captions, and
other elements as discrete blocks. This is particularly crucial for multi-
column tables and layouts.

• Line and word recognition is used to provide a reference point for words
and character shapes, and it may also separate words if needed.

• Script recognition - in multilingual documents, a script can change at the
word level. Therefore, script identification is required before invoking the
correct text recognition to handle a particular script.

• Character extraction, often known as ”segmentation,” refers to the process
of separating several characters that are connected owing to image arti-
facts. Similarly, it involves connecting individual characters that have been
fragmented into many sections due to artifacts [10].

• Normalization of aspect ratio and scale [10].

Segmentation of fixed-pitch typefaces may be easily accomplished by aligning
the picture to a uniform grid, focusing on the points where the vertical grid lines
intersect the black regions with the least frequency. Proportional typefaces need
more intricate techniques due to the potential presence of greater gaps between
letters compared to gaps between words, as well as the possibility of vertical lines
intersecting several characters.

Text recognition

Two fundamental recognition algorithms are capable of generating a prioritized
list of potential characters.

• Matrix matching is the process of comparing a picture to a recorded glyph
by examining each pixel individually. It is often referred to as ”pattern
matching,” ”pattern recognition,” or ”image correlation.” This is dependent
on accurately separating the input glyph from the surrounding picture and
ensuring that the stored glyph is in a comparable font and scale. This
method is most effective when used to typewritten material and is partic-
ularly successful when dealing with unfamiliar typefaces. This approach
refers to the direct implementation of early physical photocell-based OCR.

• Feature extraction breaks down glyphs into ”features” such as lines, closed
loops, line orientation, and line intersections. The extraction characteris-
tics decrease the number of dimensions in the representation and enhance
the computing efficiency of the recognition process. The characteristics
are compared to an abstract vector representation of a character, which
can be simplified to one or more glyph prototypes. Commonly utilized
in ”intelligent” handwriting recognition and contemporary OCR software,
general feature identification techniques in computer vision are applicable
to this sort of OCR. Nearest-neighbor classifiers, like the k-nearest neigh-
bors method, assess picture attributes by comparing them to stored glyph
features and select the most similar match.

11

Cuneiform and Tesseract employ a two-pass methodology for character recog-
nition. The second phase is referred to as ”adaptive recognition” and utilizes the
accurately identified letterforms from the first pass to enhance the recognition of
the remaining letters in the second pass. This is advantageous for atypical type-
faces or low-resolution scans when the font seems altered (such as being fuzzy or
faded).

Some examples of contemporary OCR applications are Google Docs OCR,
ABBYY FineReader, and Transym. OCRopus and Tesseract, among others,
employ neural networks that have been trained to identify complete lines of text
rather than individual letters.

The novel technique, referred to as iterative text recognition, autonomously
partitions a document into distinct portions based on the arrangement of the
page. The process of recognition is carried out separately for each part, utilizing
varying criteria for character confidence levels in order to optimize the accuracy
of identification at the page level. This method has been granted a patent by the
U.S. Patent and Trademark Office.

Post-processing

Limiting the output to a predetermined vocabulary, which consists of a certain
set of words that are permitted to appear in the text, can enhance the accuracy
of character recognition. For instance, this can encompass all the terms in the
English language or a more specialized lexicon specific to a certain field. This
approach may encounter difficulties when the text includes words that are not
listed in the dictionary, such as proper nouns. Tesseract utilizes its lexicon to
manipulate the process of character segmentation in order to enhance precision.

The output stream can be either a simple text stream or a character file.
Nevertheless, advanced OCR systems have the capability to preserve the original
page format and generate an annotated PDF document that has both the original
page image and a searchable text version.

The ”near-neighbor analysis” technique utilizes co-occurrence frequencies to
rectify mistakes by identifying common word pairings. As an illustration, the
term ”Washington, D.C.” is more often used in English than to ”Washington
DOC.”

Scanning the grammar of a language can also aid in determining if a word is
a verb or a noun, hence enhancing accuracy.

The Levenshtein distance technique has been utilized in OCR post-processing
to enhance the outcomes of the OCR API [10].

1.2.4 Benefits of OCR
Searchable text

Users can convert existing and new documents into a fully searchable knowledge
base. Automatic text-based processing software allows you to improve and expand
your knowledge base.

12

Work efficiency

OCR software can improve efficiency by automatically integrating document man-
agement and digital workflows. Here are a few examples of what OCR software
can do.

• Scan manually completed forms for automated verification, review, editing,
and analysis. This approach reduces manual document processing and data
entry time.

• Search for the documents you need with a quick-term search in a database
instead of manually going through files in a drawer.

• Converting handwritten notes into editable texts and documents.

Artificial Intelligence Solutions

OCR is frequently a part of further AI systems that businesses might use. OCR,
for instance, may be used to identify company logos in social media postings,
identify product packaging in advertising photos, and scan and recognize license
plates and road signs in self-driving automobiles. These artificial intelligence
technologies assist companies in making more cost-effective and customer-focused
marketing and operational decisions [9].

1.2.5 Challenges and Limitations of OCR Technology
Introduction

While Optical Character Recognition (OCR) has revolutionized the digitization
of texts, it has challenges and limitations. These issues can affect the technology’s
efficiency, accuracy, and usability in various applications.

Complex Document Layouts

One of the primary challenges for OCR systems is processing documents with
complex layouts. This includes handling multi-column texts, tables, graphs, and
images mixed with text. The presence of sidebars, footnotes, and headers can
further complicate text extraction.

Handwriting Recognition

Handwriting recognition remains a significant hurdle due to the immense variabil-
ity in individual writing styles. This includes cursive writing, where letters are
connected fluidly, making it hard for OCR to differentiate individual characters.

Language and Character Set Limitations

The effectiveness of OCR technology can vary significantly across different lan-
guages and scripts. Languages with extensive character sets, like Chinese, or
those with complex scripts, like Arabic, pose significant challenges.

13

Image Quality and Scanning Limitations

The quality of the source material plays a critical role in OCR accuracy. Poorly
scanned documents, low-resolution images, or text superimposed on complex
backgrounds can significantly reduce accuracy.

Technological and Software Limitations

Despite advancements, OCR software is only sometimes efficient. Some systems
need help with speed and performance, especially when processing large volumes
of data or particularly complex documents.

Impact on Different Industries

The limitations of OCR technology can have varying impacts across industries. In
sectors like healthcare and legal, where accuracy is paramount, these limitations
can lead to critical errors.

Conclusion

Addressing these challenges is essential for the advancement of OCR technology.
Ongoing research and development are crucial to enhance its accuracy, adapt-
ability, and efficiency. Machine learning and artificial intelligence innovations are
promising pathways to overcoming current limitations.

1.2.6 The Future of OCR and Its Role in Digitalization
Optical Character Recognition (OCR) technology, once confined to the realms of
typed text and basic fonts, has undergone a remarkable evolution. Today’s OCR
systems are adept at deciphering complex handwritten notes, cursive scripts, and
many languages, including those with intricate characters. This profound growth
is mainly attributable to integrating sophisticated artificial intelligence (AI) and
machine learning algorithms, which have significantly improved the accuracy and
efficiency of OCR tools.

As we look toward the future, the potential for OCR technology seems bound-
less. With advancements in deep learning and neural networks, future OCR sys-
tems are poised to interpret texts and understand the nuances and subtleties of
language. This could lead to groundbreaking applications in legal document anal-
ysis, where understanding the context and semantics is as crucial as recognizing
the words themselves.

The ongoing integration of OCR with other cutting-edge technologies promises
to revolutionize how we interact with digital content. One such promising integra-
tion is with natural language processing (NLP). By combining OCR’s ability to
convert images into text with NLP’s ability to understand and interpret language,
we could see the emergence of highly advanced automated customer service and
data entry systems. This synergy could transform vast amounts of unstructured
data into valuable, actionable insights.

Another critical area where OCR is set to impact significantly is the digital-
ization of documents and records. As businesses and institutions move towards
paperless operations, the demand for digitizing paper documents increases. OCR

14

stands at the forefront of this transition, enabling the conversion of physical docu-
ments into editable and searchable digital formats. This transformation is crucial
for accessibility, efficiency, and environmental sustainability.

Looking further ahead, we can envision the convergence of OCR with blockchain
technology, bringing about a new era of secure and verifiable digital documents.
This integration could be particularly transformative in sectors like banking, le-
gal, and governmental services, where the authenticity and integrity of documents
are paramount.

In summary, the future trajectory of OCR is inextricably linked with the
broader path of digital transformation. Its evolving capabilities, powered by AI
and machine learning, and its integration with other technological advancements
are set to expand its applications and utility. OCR is transitioning from a tool
of convenience to a critical component in the digital ecosystem, playing a pivotal
role in accessing, processing, and utilizing information in the digital age.

1.3 Machine learning
A computer may learn without explicit instructions by using mathematical data
models, which are the basis of machine learning (ML). In terms of artificial in-
telligence (AI), it is regarded as such. Algorithms are used in machine learning
to find patterns in data. A data model is developed for prediction [11] based on
these patterns. The accuracy of the findings increases with the amount of data
processed by the model and its duration of usage. This is quite similar to how
humans practice honing their talents.

Because machine learning is adaptable, it works well in situations where the
data is dynamic, the characteristics of queries or issues are unstable, or the prob-
lem is nearly impossible to handle using code [12].

1.3.1 History of Machine Learning Development
Arthur Samuel, an IBM employee who pioneered computer games and artificial
intelligence, developed machine learning in 1959. During this time, computers
were also linked with self-learning.

By the early 1960s, Raytheon had created the Cybertron, an experimental
perforated-memory ”learning machine” that uses basic reinforcement learning to
evaluate speech patterns, ECGs, and sonar data. It was repeatedly ”trained” to
identify patterns by a human operator/teacher and given a ”goof” button to force
him to reconsider his incorrect choices [13]. Nielson’s book on learning machines,
which focused mostly on machine learning for pattern classification [14], was a
typical book on machine learning research in the 1960s. As noted by Duda and
Hart in 1973, pattern recognition interest persisted into the 1970s. A study on
employing learning algorithms to teach a neural network to identify 40 characters
(ten digits, four special characters, and 26 letters) from a computer terminal was
given in 1981 [15].

The two main objectives of modern machine learning are to categorize data
using created models and forecast outcomes using these models. A hypothetical
data classification method might be trained to identify malignant moles using

15

supervised learning and computer vision on moles. A stock trading machine
learning algorithm might provide the trader with future prediction possibilities.

1.3.2 Types of machine learning
In a world saturated with artificial intelligence, machine learning, and too much
talk about them, it is interesting to learn to understand and identify the types of
machine learning that one might encounter. For the average computer user, this
means understanding how machine learning manifests itself in their applications.
For practitioners who create these applications, it is essential to know the types of
machine learning to create the right learning environment for any given task [16].

Supervised machine learning

Learning with a teacher uses a training set to teach the models to produce the
desired result. This training set includes input and correct output data that allow
the model to learn over time. The algorithm measures its accuracy using a loss
function, adjusting until the error is sufficiently minimized.

Unsupervised machine learning

Unsupervised learning employs machine learning algorithms to examine and group
unlabelled data sets. These algorithms autonomously identify concealed patterns
or clusters within data, eliminating the necessity for human involvement. The
capacity to identify parallels and dissimilarities in data makes it well-suited for
exploratory data analysis, cross-selling tactics, consumer segmentation, and im-
age recognition [17].

Deep learning

Deep learning technology is built on artificial neural networks. They are given
both the algorithm and the data to perform this learning, which is constantly
increasing in volume. The more information the neural networks receive, the
more influential the learning process will be.

1.3.3 Common machine learning algorithms
Various machine learning algorithms are commonly used. These include the fol-
lowing.

Neural Networks

Neural networks, which have several interconnected processing nodes, resemble
the human brain. Because of their superior ability to recognize patterns, neu-
ral networks are widely used in speech recognition, picture recognition, natural
language translation, and image creation applications.

16

Linear regression

This method uses a linear connection between several variables to predict numer-
ical numbers. This approach, for instance, may be used to forecast home values
using past neighborhood data.

Logistic regression

This supervised learning algorithm makes predictions for categorical response
variables such as yes/no answers to questions. It can be used for applications like
spam classification and quality control on a production line [18].

17

2. Available solutions
Our program is distinguishing features are its open code and free distribution.
However, there are other solutions from both large companies and small devel-
opers. Below, we will compare the functionality, pros, and cons of third-party
programs that perform similar tasks.

2.1 Paid solutions
As a rule, paid PDF recognition software is distributed on a monthly/annual
product subscription basis. This is a logical decision since large companies with
thousands of employees are involved in its development. Typically, paid programs
have a pleasant and functional interface with many internal modules to edit PDF
documents.

2.1.1 Adobe Acrobat DC
Adobe Acrobat is a software package developed in 1993 by Adobe Systems to
create and view electronic publications in PDF format.

As we said earlier, Adobe is the progenitor of the PDF format. The internal
capabilities of this program are vast, so in addition to the built-in OCR in Adobe
Acrobat, it presents the ability to edit documents, comment on individual lines/-
words, and work with the protection of PDF documents. The subscription for
this program starts at 15 euros per month.

Pros

• Stability / Compatibility

• Ease of use

• Functionality

Cons

• Expensive

• Text recognition software is not exclusive

• Large load on the system

• Takes up a lot of hard drive space

• Difficult to integrate with services such as Sharepoint or Dropbox

• Requires an Adobe Creative Cloud license [19]

18

2.1.2 ABBYY FineReader
ABBYY FineReader PDF is a text recognition program supporting editing PDF
files. The program allows you to convert graphical documents into editable elec-
tronic formats. This program is one of the few that emphasizes the possibilities
and improvement of file recognition algorithms. The price of this software starts
at 18 euros per month.

Pros

• Easy-to-use text recognition editor for manually correcting documents

• Unique document comparison function

• User-friendly interface

• Export to multiple formats

Cons

• It lacks full-text indexing for quick searches

• The prices of the software are quite high

• It is not possible to view the history of changes in a document

• It is not possible to merge several files into one

• May require some post-processing of the scanned files

• Slow processing of large files

2.2 Free Solutions
As a rule, free programs for working with PDF file recognition result from the
development of single programmers or small teams of developers. Any attractive
interface does not distinguish such programs; as a rule, a graphical interface
is absent. In programs distributed free, usually using open source OCR, which
previously trained and coached. However, due to the lack of costs for their servers
and a whole staff of employees, the software is free and free to use.

2.2.1 OCRmyPDF
OCRmyPDF adds an optical character recognition (OCR) text layer to scanned
PDF files, allowing you to search through them. This program makes applying
image processing and OCR to an existing PDF file easy.

This project is large, has sponsors, and has more than 7 thousand stars on
the GitHub platform. The program is in Python and uses Google’s Tesseract
document recognition software.

OCRmyPDF is available at https://ocrmypdf.readthedocs.io/en/latest/
The software creator is a user of github.com under the nickname jbarlow83.

19

https://ocrmypdf.readthedocs.io/en/latest/

Pros

• Creates a searchable PDF file from a regular PDF

• Places OCR text exactly below the image for easy copy/paste

• Optimizes PDF images, often creating smaller files than the input file

Cons

• Lack of graphical interface

2.2.2 VietOCR
This program is written in Java/.NET with a graphical interface for the Tesseract
text recognition engine. It supports optical character recognition for Vietnamese
and other languages supported by Tesseract.

It is a small project with a user-friendly graphical interface to work with the
recognized document.

VietOCR is available at https://sourceforge.net/projects/vietocr/
The software creator uses sourceforge.net under the nickname Quan Nguyen.

Pros

• Supports automatic download and installation of language packs

• Ability to select ROI

• Spell check with hunspell

• Ability to select a file by dragging in the GUI window

• Inserting an image from the clipboard

Cons

• Visible disadvantages were not noticed.

20

https://sourceforge.net/projects/vietocr/

3. Proposed solution
Most documents contain text, lines, and graphics. Successful document analysis
depends on the proper segmentation of these elements. Distinguishing graphics
from text is essential for the correct operation of OCR, which otherwise produces
meaningless text due to the presence of nontext components. However, it is chal-
lenging to distinguish text from graphics because graphics have similar properties.
Segmenting text from graphics is a classic document image analysis problem and
is still being solved by many studies. However, a reliable method is still needed
to detect all possible graphics and text types in documents. This paper will try a
basic segmentation when we find segments, image areas, and characters. We will
not look for characters directly; we first find lines in the document, which we re-
move from the image.Then, we find the non-textual elements in the image, which
we also remove. After these operations, we should have an image containing only
textual components.

3.1 Technologies used
The OCR module built into the Tesseract software is the primary tool.

3.1.1 Tesseract
Tesseract, initially developed by Hewlett-Packard as proprietary OCR software,
originated in the mid-1980s and continued its development until the mid-1990s.
After nearly a decade of inactivity, where it remained unused, or ”on the shelf,”
Google acquired it in August 2006, releasing its source code under the Apache 2.0
license to foster broader development and application across diverse fields [20].

From 1985 to 1994, the initial version of Tesseract was crafted within the con-
fines of Hewlett-Packard’s research labs in Bristol, England, and Greeley, Col-
orado. The software was originally written in C programming language, which
was subsequently upgraded to C++ to enhance its capabilities and adapt to
evolving technological frameworks. This shift also included transitioning all sub-
sequent code developments to be compatible with C++ compilers, marking a
significant evolution in its underlying technology. However, after this phase of
intense development, Tesseract experienced a period of dormancy where little to
no progress was made, until its revival in 2005 when Hewlett-Packard and the
University of Nevada, Las Vegas (UNLV) decided to open-source the project.
This move significantly expanded its accessibility to developers globally.

Since its acquisition, Google has actively sponsored the development of Tesser-
act, resulting in significant enhancements such as the integration of an LSTM
(Long Short-Term Memory) based OCR engine. This advancement broadened
Tesseract’s utility by extending its linguistic capabilities to include 116 languages
and 37 different scripts, significantly improving its recognition accuracy. Such
capabilities make it possible to effectively process documents that blend text
from both Central and Western European languages using the Latin alphabet,
among others. This expansion has not only improved the quality and flexibility

21

of Tesseract but also increased its appeal as a versatile tool in the field of optical
character recognition [21].

The continued development and expansion of Tesseract reflect a commitment
to improving digital text recognition technologies, making them more adaptable
and efficient in handling a wide range of languages and scripts. This ongoing
evolution aims to meet the increasing demands of globalization and digital doc-
umentation in numerous sectors.

Recurrent neural networks

Human cognition does not reset with every blink; it builds on accumulated knowl-
edge. This continuity ensures that when you read this undergraduate thesis, your
understanding of each sentence is informed by the context established by the
preceding text. Our thoughts are not fleeting—they have a sustained presence,
shaped by what we have already processed.

This characteristic of persistent memory is absent in traditional neural net-
works, marking a significant limitation in their application. These networks typ-
ically operate without the ability to retain prior information, which means each
new input is processed in isolation. Traditional neural networks face difficulties
in classifying sequences of events in movies because to their inability to retain
information about prior scenes, which is crucial for comprehending the continuing
narrative in a contextual manner.

However, this gap is bridged by Recurrent Neural Networks (RNNs). RNNs
are designed to overcome the memory limitations of traditional neural networks
by incorporating loops in their architecture, allowing information to persist. This
architecture enables RNNs to maintain a state or memory of previous inputs and
use this stored information to influence the processing of new inputs. This capa-
bility makes RNNs particularly effective for tasks that require an understanding
of sequence and context, such as speech recognition, language translation, and in-
deed, categorizing events in films where the understanding of prior developments
enhances the interpretation of subsequent actions.

LSTM

The capacity of Long Short-Term Memory (LSTM) networks to learn dependen-
cies over extended periods of time sets them out as a specific kind of Recurrent
Neural Network (RNN) architecture. When Sepp Hochreiter and Jürgen Schmid-
huber initially introduced this design in 1997, it was a major breakthrough in
the area. Since many researchers have improved and built upon their early work
over time, LSTMs’ effective management of long-term dependencies makes them
a solid answer for a range of challenging sequence prediction issues, from language
processing to stock market prediction [23].

Long-term dependencies are a typical problem for ordinary RNNs, which is
expressly addressed and resolved in the design of LSTMs. LSTMs are good at
retaining information for lengthy periods of time without running the danger
of losing crucial details over time, in contrast to standard RNNs, which find it
difficult to retain knowledge throughout longer sequences.

All RNNs, including LSTMs, are structurally made up of a series of network
modules connected together in a chain. To provide non-linearity to the processing

22

of input data, each module in a basic RNN normally has a simple layer with a non-
linear activation function like tanh (hyperbolic tangent) [22]. LSTM modules, on
the other hand, are more sophisticated and include many gates that govern the
information flow, so determining what is remembered and what is discarded. This
improves their capacity to handle long-term data without deteriorating the signal.

Figure 3.1: The usual RNN structure of a single module [28]

The repeating module in the standard RNN consists of one layer

Long Short-Term Memory (LSTM) networks have a structure similar to classic
Recurrent Neural Networks (RNNs), but with more complicated modules. Four
interacting layers are present in LSTM units, as opposed to the single layer that
is usually seen in an RNN. LSTMs can handle long-term dependencies more
successfully than regular RNNs because these layers work together to maintain
the memory of the network. LSTMs can more precisely regulate the flow of
information throughout the network because to this multi-layered configuration,
which includes input, forget, and output gates.

Figure 3.2: LSTM network of four interacting layers [28]

The repeating model in the LSTM network consists of four interacting
layers

Let’s comprehend the essential elements first, then dive into the complexity. In
the sections that follow, we will go into the specifics of each step inside the
LSTM framework. In order to better understand how these many layers interact
to process and retain information over time, let’s first become familiar with the
individual components and terminology utilized in these networks.

23

Figure 3.3: Special designations in the LSTM model [28]

• Neural Network Layer

• Pointwise Operation

• Vector Transfer

• Concatenate

• Copy

Each line in the following diagram transfers a whole vector from one node’s
output to the next node’s input. Pointwise operations, such as vector addition,
are represented by the pink circles and are essential for merging and manipu-
lating data. In the meanwhile, the layers of the neural network that have been
taught to efficiently handle and interpret the input are represented by the yellow
rectangles. Converging lines indicate the joining of data streams, which improves
the network’s capacity to incorporate data from different sources. On the other
hand, branching arrows represent data replication, making sure that exact copies
are dispersed across the network for concurrent processing [25].

The basic idea of LSTM

The cell state is a crucial element of the LSTM architecture and is represented
by a horizontal line that intersects the top of the diagram.

This cell state is similar to a conveyor belt that runs smoothly throughout
the whole network. It does very little in the way of linear modifications, letting
data flow along its length unaltered. In order to preserve long-term dependencies
in the data being processed, this design makes sure that information integrity is
preserved as it flows from one module to another [23].

Figure 3.4: The cell state in the LSTM model [28]

Nevertheless, by employing gates or filters, LSTM has the capability to choose
disregard some information from the cell state.

24

By permitting particular data to be skipped or passed through depending
on predetermined criteria, these filters have the power to regulate the flow of
information. An LSTM filter is structurally composed of a sigmoidal neural
network layer that determines how much information to keep and a pointwise
multiplication operation that carries out the decision [26]. This arrangement
effectively controls data flow inside the network.

Figure 3.5: The structure of filters in the LSTM model [28]

Values between zero and one, which indicate how much information should
be conveyed via the network, are produced by the sigmoidal layer of an LSTM.
More specifically, zero means that no information should be sent along (”skip ev-
erything”), while one means that all information should be kept (”skip nothing”).

LSTM by Tesseract 4

The presence of a high number of states in Long Short-Term Memory (LSTM)
models leads to a decrease in their processing speed, notwithstanding their profi-
ciency in learning sequences. Empirical evidence suggests that providing a lengthy
sequence for LSTM to learn is more advantageous than giving it a short sequence
with several courses. Tesseract is constructed using the Python OCRopus frame-
work, which was taken from the C++ LSMT branch called CLSTM. The CLSTM
library is used to implement the LSTM recurrent neural network model in C++,
utilizing the Eigen package for numerical computations.

TensorFlow is not related to Tesseract’s neural network framework. But it
works with it since Variable Graph Specification Language (VGSL), a network
description language, is also compatible with TensorFlow.

The premise of VGSL is that a neural network may be constructed and trained
with little to no knowledge. Python, TensorFlow, or even C++ code writing are
not required. Comprehending the VGSL specification language enough is all that
is needed to construct syntactically accurate network descriptions. It will be
imperative to possess a fundamental understanding of the various neural network
layer types and their combinations [27].

3.2 Description of the Graphical User Interface
This chapter provides an overview of the user interface of the program for optical
text recognition from PDF. It describes the basic controls that allow the user
to customize the recognition process, including file selection, text language de-
tection, and page orientation correction. Advanced settings are also considered,

25

which provide deeper possibilities for optimizing the quality of OCR, and the
function of resetting settings to standard values.

3.2.1 The Main Application Window

Figure 3.6: The Main Application Window

The main application window contains the following elements for user inter-
action:

• Window Title: “PDF image-to-text optical recognition”, which clearly
indicates its purpose.

• Source PDF File Selection Field: An input field with an accompanying
“Select...” button provides the user with the convenience of easily uploading
the source PDF file for processing.

• Directory Selection Field for Saving Results: Similarly, an input field
with a “Select...” button allows the user to define the folder where the text
files will be saved after recognition.

• Language Selection for Recognition: The drop-down list contains lan-
guage codes (e.g., “afr” for Afrikaans), allowing the user to select the lan-
guage of the text in the PDF document for accurate recognition.

• Page Rotation Fields: Users can specify page numbers that need to be
rotated clockwise or counterclockwise to ensure proper orientation before
OCR. This is crucial because text cannot be accurately recognized if the
images are scanned at an incorrect angle.

26

• Two-Column Format Specification Field: This field allows the user to
specify page numbers formatted in two columns. It enables the algorithm
to properly handle page layout and ensures correct text recognition.

• Advanced Options Button: Provides access to deeper recognition algo-
rithm settings, giving experienced users the ability to finely tune the OCR
process according to their requirements.

• Start Recognition Button: Initiates the recognition process after all
necessary parameters have been set. This is the main functional button
that triggers the core workflow of the application.

• Informational Message: Below is a message with instructions for the
user, indicating the need to fill in all mandatory fields before starting the
program.

• Exit Button: Allows the user to close the application at any time, provid-
ing an opportunity to exit without starting or after completing the OCR
process.

3.2.2 Advanced Options Window

Figure 3.7: GUI: Empty Fields Figure 3.8: GUI: Fields Populated

The GUI’s ”Advanced Options” window presents a set of parameters that
allow users to refine the criteria used during the image recognition process. Here’s
a detailed description of each element:

• Max character width: The maximum width in pixels that any single
character can occupy. Default value is 30 pixels.

• Max character height: The maximum height in pixels that any single
character can have. Default value is 40 pixels.

• Min image width: The minimum width in pixels that an image within
the document must have to be recognized as an image. Default value is 300
pixels.

27

• Min image height: The minimum height in pixels that an image within
the document must have to be recognized. Default value is 400 pixels.

• Min. textline length, characters: The minimum length of a line of
text, in characters, to be considered as a valid text line. Default value is 7
characters.

• Max. textline height, pixels: The maximum height in pixels that a line
of text can have. Default value is 40 pixels.

• Top margin of the page, pixels: The height in pixels of the top margin
of the page. It is the space at the top before the text starts. Default value
is 120 pixels.

• Image caption area height, pixels: The height in pixels reserved for the
image caption area. Default value is 120 pixels.

The window has two states: the first with empty fields, indicating that no
user-defined values have been entered, and the second state with pre-populated
default values, which are activated when the “Reset to Default” button is
pressed.

The “Reset to Default” button is used to quickly revert all fields to their
original settings, facilitating a return to the baseline configuration without the
need to manually enter each value.

The “OK” button confirms the changes made by the user and applies the
settings to the image recognition process.

The “Cancel” button closes the window without applying any changes, re-
taining any previous configurations.

This advanced configuration provides nuanced control over the OCR process,
allowing for fine-tuning according to the specific needs of the document being
processed.

3.3 Work Scheme
Our Python-based algorithm for image extraction from text documents, such
as PDF files, follows a carefully structured process involving various libraries,
techniques, and parameters to handle text and non-text regions effectively.

3.3.1 Input and Output Specifications
Input Data

PDF Document: The program accepts a PDF document as input. The doc-
ument can contain text, graphic elements, and images on different pages.

Output Data

Segmented Pages (PNG): Each page of the PDF document is processed and
saved as an individual PNG file, facilitating easy viewing and processing of each
page separately. Example file names include page-1.png, page-2.png, etc.

28

Deciphered Text (TXT): Text from each page is extracted and saved in
separate text files, providing access to the textual content of each page in a
readable format. Example file names include page-1.txt, page-2.txt, etc.

Images with Descriptions (Folders): All images found on each page of the
PDF document are cut out and saved in separate folders corresponding to each
page. Each folder contains images and their descriptions, making it easier to
identify and utilize these images. Example folder names include page-images-1,
page-images-2, etc.

3.3.2 Python Script
The primary script of the algorithm, written in Python, uses the following mod-
ules and libraries:

• os, sys, copy - Standard Python modules for various system-level interac-
tions.

• argparse - A standard Python library for command-line arguments and
parameters.

• collections.namedtuple - A factory function for creating tuple subclasses
with named fields, used for storing bounding box data.

• PIL (Python Imaging Library) - A library for opening, manipulating, and
saving many different image file formats.

• pytesseract - A wrapper for Google’s Tesseract-OCR Engine, used for char-
acter recognition in this context.

Initialization

In the initialization phase, the algorithm accepts an image or a file path containing
an image and a configuration dictionary as input. The configuration dictionary
contains various parameters that dictate the algorithm’s behavior, such as max-
imum character width, minimum image width, output path, language, etc. If a
file path is provided, the Image class from the PIL library opens the image, and
the resultant Image object is stored for future use.

Processing Image

The algorithm then executes the run() function, which is responsible for the
following tasks:

• Extracting character boxes

• Identifying lines and columns of text

• Detecting and saving potential illustrations as separate images

29

Figure 3.9: Original PDF Page

30

Character Boxes Extraction The algorithm uses the function below to re-
trieve the data from the binding box for each character in the image.
p y t e s s e r a c t . image to boxes ()

It discards any box exceeding the maximum dimensions of a character, as
defined in the configuration, to distinguish between text and non-text elements.

Figure 3.10: Text Region of Interest (ROI) Identification

The data for each bounding box are stored as a named tuple, ”Box,” compris-
ing the recognized character and the bounding box coordinates.

Figure 3.11: Comparison of Original PDF and Recognized Text

Text Lines and Columns Identification The algorithm identifies lines and
text columns based on each character’s bounding box data. It first groups the
bounding boxes into lines and then columns based on their horizontal and vertical
positions.

This allows the algorithm to process the text column by column, essential for
documents formatted in multiple columns.

31

Potential Illustrations Detection In between text lines, if a gap exceeds
the defined minimum image height, the algorithm assumes that an illustration is
present. It crops this region from the original image and saves it as a separate
image file in the output directory. The region is slightly expanded vertically to
ensure complete capture of the illustration.

Two-Columns Document Handling

For documents formatted in two columns, the algorithm processes each column
independently by creating a separate instance of the ImageExtractor class for
each column. This ensures accurate line and column identification, as well as
illustration detection, in two-column documents.

3.3.3 Algorithm Flowchart
The process begins with loading the PDF document for analysis, which involves
initializing the system to read the PDF content. The algorithm determines
whether the document contains vector images, crucial for selecting the processing
method:

• For vector images: Images are isolated and saved separately, usually
requiring fewer transformations and providing cleaner data for analysis.

• For raster images: The process involves identifying and extracting raster
images, often found in scanned documents.

Image Rotation: If necessary, images within the document can be rotated
according to specified settings to ensure proper orientation, which is critical for
accurate text recognition.

Applying OCR: During the OCR (Optical Character Recognition) stage,
such as with the Tesseract module, text is recognized and extracted from images.
This process involves analyzing text areas and converting visual content into
machine-readable text.

Saving the results: After processing the images and text, the results are
saved as segmented images, extracted text, and associated descriptions, ensuring
ease of access and use of the PDF data subsequently.

Completion of the Process: The process concludes after all operations
have been performed and the results have been saved.

The flowchart 3.12 presents a comprehensive visualization of the algorithm’s
sequence of operations. It details the workflow, starting from the initial loading of
the PDF document to the final stages where processed results are saved. Each step
in the flowchart corresponds to a critical function within the algorithm, including
image isolation, rotation, and text extraction using OCR. The structured layout of
the flowchart delineates the procedural advancements and the interdependencies
between different operational stages, thereby outlining the systematic approach
employed in the image search program for PDF documents.

32

Figure 3.12: Algorithm Flowchart

33

3.4 Analysis of the algorithm
In the course of developing and refining our text and image recognition software,
we conducted a comprehensive study to assess the efficiency of our algorithm.
This research utilized five scanned books; unfortunately, the quality of these
scans was suboptimal. These were PDF documents of books published around
the 1900s, comprising solely scanned pages of the original texts. The study focuses
on the algorithm’s capacity to process and recognize text and images across dif-
ferent volumes and types of data under these challenging conditions. The results,
which are detailed in this chapter, illustrate the effectiveness of our algorithm in
handling diverse tasks and provide insights into both its strengths and areas for
potential improvement.

Table 3.1: Overview of Book Processing Data
Book Pages Characters Images Reading Time Text Proc. Time Image Proc. Time

1 56 46,678 0 16 112 41
2 64 58,055 38 52 209 75
3 24 43,575 15 5 170 14
4 40 27,766 7 13 81 24
5 8 21,984 0 13 44 15

Book Data Analysis
Book 1

Book 1 contained 46,678 characters distributed across 56 pages, resulting in an
average of 833 characters per page. The text processing time was 112 seconds,
indicating good algorithm performance considering the relatively small amount
of text per page.

Book 2

This book, with 58,055 characters on 64 pages (approximately 907 characters per
page), showed a longer text processing time of 209 seconds. Despite only a slight
increase in text volume compared to Book 1, the processing time nearly doubled,
which may indicate more complex or densely packed text.

Book 3

With 43,575 characters on just 24 pages, this book demonstrated the highest text
density—averaging 1,815 characters per page. The text processing time was 170
seconds, making it one of the most challenging for the algorithm due to its high
text density.

Book 4

This book had 27,766 characters on 40 pages, averaging 694 characters per page.
Although this is the lowest average character count, the processing time of 81
seconds was quite efficient, highlighting that the algorithm performs better with
fewer characters per page.

34

Book 5

The smallest book by volume, with 8 pages and 21,984 characters (2,748 charac-
ters per page), showed a processing time of 44 seconds. This demonstrates that
even with a high density of characters, the algorithm can be efficient if the total
number of pages is small.

Visual Comparison of Pages
In the course of our research, we conducted a detailed analysis on pages with
varying amounts of text to observe the performance of our algorithm under dif-
ferent conditions. Below are images 3.13 3.14 showcasing two specific pages that
demonstrate how text volume impacts processing speed.

Figure 3.13: Page with a small number of characters (1,432 characters), recog-
nized in approximately 4 seconds.

35

Figure 3.14: Page with a large number of characters (3,291 characters), recognized
in approximately 9.2 seconds.

This visual comparison clearly illustrates the algorithm’s varying efficiency
based on text density. The data from these pages provide valuable insights into
optimizing the algorithm for different types of text-loaded documents, enhancing
overall performance.

3.4.1 Analysis of Text Recognition Speed
Methodology

To determine the average text recognition speed, we use the following formula:

Average Recognition Speed (characters per second) = Total Characters
Total Processing Time (s)

Statistical Analysis

We calculate the average speed of text recognition for each book, and analyze
the dispersion using variance and standard deviation. Additionally, we compute

36

the overall average speed across all books to evaluate the general efficiency of the
algorithm.

Results

• Book 1: Total Characters = 46,678, Total Time = 112 s.

Speed = 46, 678
112 ≈ 417 characters per second

• Book 2: Total Characters = 58,055, Total Time = 209 s.

Speed = 58, 055
209 ≈ 278 characters per second

• Book 3: Total Characters = 43,575, Total Time = 170 s.

Speed = 43, 575
170 ≈ 256 characters per second

• Book 4: Total Characters = 27,766, Total Time = 81 s.

Speed = 27, 766
81 ≈ 343 characters per second

• Book 5: Total Characters = 21,984, Total Time = 44 s.

Speed = 21, 984
44 ≈ 500 characters per second

Overall Average Speed

To calculate the overall average recognition speed, we take the average of the
speeds obtained for each book:

Overall Average Speed = 417 + 278 + 256 + 343 + 500
5 ≈ 359 characters per second

Conclusion

This analysis of text recognition speed across different books has highlighted sig-
nificant variability in performance, which is influenced by factors such as the
number of characters and the complexity of the text on each page. The calcu-
lated average recognition speeds for each book provide a clear indicator of the
algorithm’s efficiency in various conditions. The overall average speed of approx-
imately 359 characters per second offers a benchmark for assessing the general
efficiency of our text recognition system. This benchmark can serve as a guide
for future optimizations and enhancements to the algorithm, aiming to improve
consistency and reduce processing times across a wider range of text densities
and complexities.

37

3.4.2 Analysis of Image Recognition Efficiency
Background

Image recognition in document processing is notably complex due to variations in
image types, sizes, and the contextual information they contain. This complexity
increases the computational demands, especially when images are distributed
throughout the document.

Methodology

To evaluate image recognition efficiency, we consider the total number of pages,
as images need to be detected on each page, not just where they are known to
exist. We calculate the average time per image by considering the number of
pages:

Average Image Processing Time (s) = Total Image Processing Time (s)
Total Number of Pages with Images

Data Collection

Data regarding the total number of pages, images, and corresponding processing
times is collected from each book that includes images.

Analysis

• Book 2: Contains 38 images across 64 pages, with a total image processing
time of 75 seconds.

Average Time per Image per Page = 75
64 ≈ 1.17 seconds per page

• Book 3: Features 15 images across 24 pages, processed in 14 seconds.

Average Time per Image per Page = 14
24 ≈ 0.58 seconds per page

• Book 4: Includes 7 images on 40 pages, with a total processing time of 24
seconds.

Average Time per Image per Page = 24
40 ≈ 0.60 seconds per page

Overall Average Image Processing Speed

To calculate the overall average image processing speed across the books that
include images, we take the average of the image processing speeds obtained for
each book:

Avg. Image Speed (sec/page) = 1.17 + 0.58 + 0.60
3 ≈ 0.78 sec/page

38

Statistical Analysis

Statistical analysis involves assessing the variability and efficiency of image recog-
nition across books, with a particular focus on the average processing time per
page containing images. This will help understand the dispersion and reliability
of the image recognition process.

Conclusion

This detailed analysis underscores the impact of page volume on image processing
times. The findings indicate significant variability in efficiency, driven by the
number and complexity of images relative to page count. These insights guide
future optimizations to enhance image processing strategies, aiming to reduce
processing time while maintaining accuracy across a diverse set of document
types.

3.4.3 Integration of Libraries and Modules
The effective functioning of our algorithm relies on the seamless integration of
various Python libraries, each playing a crucial role in the image processing and
OCR workflow.

3.4.4 Program Limitations
• Input Format: The program exclusively accepts PDF documents. Other

file formats such as PNG, JPG, etc., are not supported.

• Handling Columnar Pages: The program does not automatically rec-
ognize pages where text is divided into columns. However, the GUI allows
manual specification of such pages.

• Automatic Language Recognition: The language of the text is not
automatically determined and must be manually set through the GUI.

• Page Rotation Recognition: The program does not automatically rec-
ognize rotated pages. The GUI allows specification of rotated pages and
the direction of rotation.

• Image and Description Boundary Recognition: There may be dif-
ficulties in accurately determining the boundaries of images and their de-
scriptions. The GUI includes settings for adjusting the minimum height
and width of images and descriptions.

• Technical Limitations: The program relies on external libraries sup-
porting each stage of the algorithm, which may limit updating and scaling
capabilities.

Interactions Between Libraries

• PIL and pytesseract: PIL is used for initial image processing, preparing
the images for the OCR process. pytesseract then takes these processed
images to extract textual data.

39

• System-level Modules: Modules like os, sys, and copy are used for file
system operations and memory management, ensuring efficient handling of
image and text data.

• argparse and configuration: The argparse module is utilized to interpret
user commands and arguments, feeding into the configuration of the OCR
process.

Data Flow Through Modules

The data flow through these modules is structured as follows:
1. Image loading and processing using PIL.

2. Text and non-text elements separation using pytesseract.

3. Handling of command-line inputs and configuration using argparse.

4. Storing and manipulating extracted text and image data using collections.namedtuple
and other system-level modules.

3.4.5 Script Execution
The script accepts command-line arguments for the source filename, output direc-
tory, language of the text, and a boolean flag that indicates whether the document
is in two columns. Create a configuration dictionary based on these arguments
and pass it along with the source filename to an instance of the ImageExtractor
class.

3.4.6 Validation of the Algorithm
To validate the efficiency of this algorithm, we can use a set of test cases consisting
of images with known outcomes. The extracted results can then be compared
with these expected results. The algorithm can also be evaluated based on its
performance in edge cases, such as when images are given with different languages,
sizes, colors, qualities, and document layouts.

To visually validate the intermediate results, we could modify the algorithm to
save images representing the identified lines and columns of text. This would in-
volve drawing bounding boxes around the identified text lines and columns based
on their coordinates and saving these images in the output directory. This process
could be performed in the get character lines() and get character columns()
methods, respectively.

3.4.7 Strengths
• The algorithm can handle images in various formats and sizes.

• It is capable of recognizing text in multiple languages.

• Works well with documents formatted in one or two columns.

• It allows fine-tuning of its behavior through various configurable parame-
ters.

40

3.4.8 Weaknesses
• The algorithm is highly dependent on the performance and accuracy of the

Tesseract OCR engine.

• It may need to identify text lines and columns in complex document layouts
correctly.

• The algorithm may not accurately distinguish between large text and small
non-text elements.

• Its performance may be affected by the quality and clarity of the image.

Further validation techniques may include peer code review and stress testing
with large or many images. Moreover, the algorithm can be improved by imple-
menting more sophisticated text and non-text element detection methods, such
as machine learning techniques or more advanced image processing libraries.

41

4. Program Development
Journey

4.1 First Version: OpenCV and Textract Inte-
gration

4.1.1 Objective and Tasks
My first version of the script was developed to automate the process of extracting
text from images and documents. The main motivation was to create an effective
tool that could handle various file formats and extract text with high accuracy.

4.1.2 Technology Usage
• OpenCV: This powerful computer vision library was used for initial image

processing. Tasks included loading images, converting them to grayscale to
improve contrast, and preparing them for text recognition.

• Textract: I chose textract for text extraction because it provides a universal
interface to various OCR engines and supports many file formats, making
it an ideal solution for my tasks.

4.1.3 Development Process and Implementation
• Image Conversion and Saving: Images were first converted to grayscale,

a common practice to enhance text analysis. They were then saved as
temporary files for subsequent recognition.

• Text Recognition: Using textract, the script extracted text from the saved
images. Textract automatically handled various aspects of OCR, simplifying
the process.

• Output of Results: The recognized text was displayed in the console, and
the processed images were shown for visual verification.

4.1.4 Challenges and Issues
• Accuracy of Recognition: Despite the use of textract, the accuracy of OCR

sometimes fell short, especially with low-quality source images.

• Performance: The process of saving images as temporary files and their
subsequent processing could be inefficient and slow down script execution.

• Configuration Complexity: Despite the versatility of textract, careful con-
figuration was required for optimal performance with various formats and
languages.

42

4.1.5 Conclusions and Lessons Learned
The first version of the script proved to be a valuable learning experience that
highlighted the importance of choosing the right tools for specific tasks. The
challenges I encountered prompted further research and experimentation, which
ultimately led to significant improvements in subsequent versions of the script.
The experience gained from working on the first version served as a catalyst
for developing an intermediate stage, where new technologies and approaches
were introduced, significantly improving the text recognition process and image
management.

4.2 Intermediate Version: script improvement

4.2.1 Objectives and Goals
After the first version of my script, where I encountered several performance and
accuracy issues, I decided to reconsider my development approach. The goal of
the intermediate version was to enhance the user interface and integrate more
powerful tools for text and image processing.

4.2.2 Technology Usage
• Tkinter: In this version, I introduced a graphical user interface using Tkin-

ter, allowing users to more comfortably manage the text recognition process
and select files through dialog windows.

• Pytesseract and Textract: I continued using pytesseract for OCR and
textract to support various file formats. These tools provided the foundation
for text extraction, but I hoped to improve their integration and efficiency.

4.2.3 Implementation and Functionality
• Graphical Interface: Users could select images for processing and save

results through the graphical interface, significantly simplifying interaction
with the program.

• Image Processing: The images were uploaded and processed using the
PIL library to improve quality before transferring them to pytesseract. Pre-
processing techniques such as contrast correction and cropping have been
used to increase recognition accuracy.

• Output of Results: Recognition results were displayed in the interface
and also saved in text files for further use.

4.2.4 Challenges and Issues
• Recognition Accuracy: Despite improvements, the accuracy of OCR

remained below expectations, particularly in cases with complex layouts
and low-quality images.

43

• Performance: Processing time remained an issue due to suboptimal pre-
processing and the time taken to load large images.

4.2.5 Conclusions and Lessons
The intermediate version of the script demonstrated a significant improvement in
the user interface and some improvement in text processing. However, problems
with accuracy and performance indicated the need for further improvement of
the technology stack and optimization of algorithms. These findings pushed me
to the next stage of development, where I focused on closer integration with
pytesseract and additional optimization to improve text recognition results and
overall system performance.

4.3 Final Version of the Script: Completion of
Development

4.3.1 Development Overview
The final version of the script is the result of numerous iterations and enhance-
ments aimed at improving previous versions. The main focus in this version was
on enhancing the accuracy of automatic text and image recognition and optimiz-
ing PDF document management to ensure increased performance.

4.3.2 Goals and Achievements
The goal of the final version was to create an effective and stable tool for ex-
tracting text and images from PDF documents without the need for additional
parameter settings.

4.3.3 Features and Technologies
• Enhanced Graphical User Interface (GUI): Implemented in Tkinter,

the GUI allows users to configure the saving parameters of the results and
edit them directly from the interface.

• Advanced OCR Features: The functionality of pytesseract has been
significantly optimized to flawlessly identify areas with text and images,
thus solving the problems of previous versions.

• Automatic Processing: The program can now process documents with
minimal user intervention, providing quick access to results.

4.3.4 Implementation
The functionality of the program allows users to easily upload and process PDF
documents, automatically identifying and processing text and graphic areas. The
processing process can be customized and a location can be selected to save the
results through a flexible user interface.

44

4.3.5 Conclusion and General Reflection
The final version demonstrates significant improvements in functionality and us-
ability, providing an effective solution for recognizing and processing data from
PDF documents.

4.3.6 Project Outcome and Lessons Learned
This project emphasizes the importance of an iterative approach in software de-
velopment, where each version is aimed at improving and solving the problems
of the previous one. The main goal—creating a stable working product—was
successfully achieved, confirming the importance of persistence and innovation in
the development process.

45

Conclusion
At the conclusion of this thesis, we aim to evaluate all the goals achieved and
discuss future work that would complement and expand upon this program.

Achieved Goals

Comprehensive OCR System Development
• Robust OCR Implementation: This thesis accomplished a significant

milestone by implementing a robust OCR system with Tesseract. The solu-
tion stands out for its enhanced ability to accurately recognize and process
text from various printed materials, especially from older documents where
text clarity might be compromised.

• Theoretical Insights into Image Preprocessing: The research deeply
explored image preprocessing theories, establishing a solid understanding
of their importance in enhancing OCR. This comprehensive theoretical ex-
amination illuminated various techniques, emphasizing their role in boost-
ing text recognition from challenging sources. These insights indicate a
roadmap for future OCR system improvements, focusing on performance
and accuracy.

• Innovative Text and Graphics Segregation: The development of inno-
vative methods to effectively distinguish text and graphical elements within
documents marked a significant achievement. This advancement substan-
tially improved extraction of accurate information from documents with
intricate layouts.

• Extensive Language Support: The software’s multilingual capabilities
were expanded, making it a versatile tool for OCR applications across var-
ious languages and scripts, broadening its usability and applicability.

• Technology Integration: The research successfully explored the inte-
gration of OCR with cutting-edge technologies like machine learning and
artificial intelligence, laying the groundwork for future advancements in this
field.

Future Work

Evolving OCR Technologies
• Advanced OCR Accuracy Enhancements: Future work should focus

on refining OCR accuracy, especially in processing handwritten texts and
documents with complex layouts. Implementing more sophisticated algo-
rithms and learning models could significantly boost recognition precision.

46

• Deeper Machine Learning Integration: Further integration of machine
learning algorithms is essential. These would enhance text recognition capa-
bilities and introduce predictive and adaptive features for various document
types and languages.

• Language and Script Expansion: Expanding OCR capabilities to in-
clude a wider range of languages, particularly those with non-Latin scripts
or complex orthographic systems, is a critical area for future development.

• Preprocessing Technique Optimization: Continuous improvement and
optimization of image preprocessing techniques are necessary to ensure con-
sistently high-quality outputs, regardless of the document’s initial condition.

• User Interface Enhancements: Developing a more intuitive and feature-
rich graphical user interface would significantly improve user experience,
making the software more accessible to a broader audience.

• Mobile Platform Adaptation: Adapting the OCR software for mobile
platforms would make this powerful tool accessible on the go, opening up
many practical applications.

• Real-time Processing Capabilities: Implementing real-time text recog-
nition could revolutionize how OCR is used in live scenarios, such as in
augmented reality applications or instant translations.

• Cross-technology Collaborations: Future developments could explore
collaborations with other digital technologies, such as blockchain for doc-
ument verification or cloud computing for enhanced data processing capa-
bilities.

47

Bibliography
[1] Wikipedia contributors. Portable document format — Wikipedia, the free

encyclopedia. https://en.wikipedia.org/wiki/PDF, 2023. [Online; ac-
cessed 5-July-2023].

[2] Wiki2 contributors. Xfdf — Wiki2, the free encyclopedia. https://wiki2.
org/en/XFDF, 2023. [Online; accessed 6-July-2023].

[3] Adobe PSIRT. Adobe security bulletin. https://helpx.adobe.com/
security.html, 2022. [Online; accessed 5-July-2023].

[4] Jens Müller, Dominik Noss, Christian Mainka, Vladislav Mladenov, and
Jörg Schwenk. Processing dangerous paths – on security and privacy of
the portable document format. 2020. [Online; accessed 30-April-2024].

[5] Wondershare. What is ocr and how does ocr work. https://pdf.
wondershare.com/ocr/what-is-ocr.html, 2023. [Online; accessed 5-July-
2023].

[6] Wikipedia contributors. Optical character recognition — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Optical_Character_
Recognition, 2023. [Online; accessed 6-July-2023].

[7] List Software Info. Optical character recogni-
tion. https://listsoftwareinfo.blogspot.com/2018/10/
optical-character-recognition.html, 2018. [Online; accessed 6-
July-2023].

[8] Dataconomy. What does ocr stand for? https://dataconomy.com/2023/
05/what-does-ocr-stand-for/, May 2023. [Online; accessed 6-July-2023].

[9] Amazon. What is ocr? https://aws.amazon.com/what-is/ocr/, 2022.
[Online; accessed 5-July-2023].

[10] Wikipedia contributors. Optical character recognition — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Optical_character_
recognition, 2023. [Online; accessed 6-July-2023].

[11] Boudy Technology. What is machine learning (ml)? https://www.
boudy-technology.tn/2022/04/WhatismachinelearningML.html, 2022.
[Online; accessed 6-July-2023].

[12] Microsoft Azure. What is a machine learning platform? https://azure.
microsoft.com/en-us/resources/cloud-computing-dictionary/
what-is-machine-learning-platform/, 2023. [Online; accessed 6-July-
2023].

[13] Wikipedia contributors. Machine learning — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Machine_learning, 2023. [Online;
accessed 6-July-2023].

48

https://en.wikipedia.org/wiki/PDF
https://wiki2.org/en/XFDF
https://wiki2.org/en/XFDF
https://helpx.adobe.com/security.html
https://helpx.adobe.com/security.html
https://pdf.wondershare.com/ocr/what-is-ocr.html
https://pdf.wondershare.com/ocr/what-is-ocr.html
https://en.wikipedia.org/wiki/Optical_Character_Recognition
https://en.wikipedia.org/wiki/Optical_Character_Recognition
https://listsoftwareinfo.blogspot.com/2018/10/optical-character-recognition.html
https://listsoftwareinfo.blogspot.com/2018/10/optical-character-recognition.html
https://dataconomy.com/2023/05/what-does-ocr-stand-for/
https://dataconomy.com/2023/05/what-does-ocr-stand-for/
https://aws.amazon.com/what-is/ocr/
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Optical_character_recognition
https://www.boudy-technology.tn/2022/04/WhatismachinelearningML.html
https://www.boudy-technology.tn/2022/04/WhatismachinelearningML.html
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-machine-learning-platform/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-machine-learning-platform/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-machine-learning-platform/
https://en.wikipedia.org/wiki/Machine_learning

[14] Department of Aeronautical Engineering, Malla Reddy College of Engineer-
ing & Technology. Digital notes on business analytics basics. Technical
report, Malla Reddy College of Engineering & Technology, Secunderabad –
500100, Telangana State, India, 2023. [Online; accessed 6-July-2023].

[15] Saikat Das, Sampita Mallick, Shyamapriya Chatterjee, and Sujata Kundu.
Machine Learning in Big Data Analytics. INTERNATIONAL JOURNAL
OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT), 09(11):01–
05, 2021.

[16] Phil Heidenreich. What are the types of ma-
chine learning? https://towardsdatascience.com/
what-are-the-types-of-machine-learning-e2b9e5d1756f, 2018.
[Online; accessed 6-July-2023].

[17] Shiteng Yang. Ds01-supervised-and-unsupervised-
learning. https://github.com/yangshiteng/
DS01-Supervised-and-Unsupervised-Learning, 2023. [Online; accessed
6-July-2023].

[18] IBM. What is machine learning. https://www.ibm.com/hk-en/topics/
machine-learning, 2023. [Online; accessed 6-July-2023].

[19] Nanonets. Ocr software: The best ocr software. https://www.nanonets.
com/blog/ocr-software-best-ocr-software/, 2023. [Online; accessed 6-
July-2023].

[20] S. V. Yelisieieva. Information Technologies in Translation. PMBSNU Pub-
lishing House, 2018.

[21] Wikipedia contributors. Tesseract (software) — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/wiki/Tesseract_(software), 2023.
[Online; accessed 5-July-2023].

[22] Ekaterina Obalyaeva. Time series prediction using reinforcement learning.
Master’s thesis, National Research University Higher School of Economics,
2019.

[23] Kirill Kolodiazhnyi. Hands-On Machine Learning with C++. Packt Pub-
lishing, 2020.

[24] Xiaoge Zhang. Machine Learning and Optimization Models to Assess and
Enhance System Resilience. PhD thesis, Graduate School of Vanderbilt Uni-
versity, Nashville, Tennessee, May 31 2019.

[25] Masoud Daneshtalab and Mehdi Modarressi. Hardware Architectures for
Deep Learning. The Institution of Engineering and Technology, 2020.

[26] Igor Kotenko, Igor Saenko, Oleg Lauta, and Mikhail Karpov. Methodology
for management of the protection system of smart power supply networks in
the context of cyberattacks. Energies, 14:5963, 2021.

49

https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://github.com/yangshiteng/DS01-Supervised-and-Unsupervised-Learning
https://github.com/yangshiteng/DS01-Supervised-and-Unsupervised-Learning
https://www.ibm.com/hk-en/topics/machine-learning
https://www.ibm.com/hk-en/topics/machine-learning
https://www.nanonets.com/blog/ocr-software-best-ocr-software/
https://www.nanonets.com/blog/ocr-software-best-ocr-software/
https://en.wikipedia.org/wiki/Tesseract_(software)

[27] Neural nets in tesseract 4.00. https://tesseract-ocr.github.io/
tessdoc/tess4/NeuralNetsInTesseract4.00.html, 2023. [Online; ac-
cessed 6-July-2023].

[28] Chris Olah. Understanding lstm networks. https://colah.github.io/
posts/2015-08-Understanding-LSTMs/, 2015. [Online; accessed 5-July-
2023].

50

https://tesseract-ocr.github.io/tessdoc/tess4/NeuralNetsInTesseract4.00.html
https://tesseract-ocr.github.io/tessdoc/tess4/NeuralNetsInTesseract4.00.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

List of Figures

3.1 The usual RNN structure of a single module [28] 23
3.2 LSTM network of four interacting layers [28] 23
3.3 Special designations in the LSTM model [28] 24
3.4 The cell state in the LSTM model [28] 24
3.5 The structure of filters in the LSTM model [28] 25
3.6 The Main Application Window 26
3.7 GUI: Empty Fields . 27
3.8 GUI: Fields Populated . 27
3.9 Original PDF Page . 30
3.10 Text Region of Interest (ROI) Identification 31
3.11 Comparison of Original PDF and Recognized Text 31
3.12 Algorithm Flowchart . 33
3.13 Page with a small number of characters (1,432 characters), recog-

nized in approximately 4 seconds. 35
3.14 Page with a large number of characters (3,291 characters), recog-

nized in approximately 9.2 seconds. 36

A.1 User interface . 54

51

List of Abbreviations
• PDF: Portable Document Format

• OCR: Optical Character Recognition

• PDL: Page Description Language

• DDL: Data Description Language

• ISO: International Organization for Standardization

• LSTM: Long Short-Term Memory

• RNN: Recurrent Neural Network

• AI: Artificial Intelligence

• NLP: Natural Language Processing

• ML: Machine Learning

• PIL: Python Imaging Library

• ROI: Region of Interest

• GUI: Graphical User Interface

• PPP: Paycheck Protection Program

• API: Application Programming Interface

• SAP: Systems, Applications, and Products in Data Processing

52

A. Documentation

A.1 User documentation

A.1.1 Downloading the development environment
• Download the current version for your operating system from https://

www.python.org/downloads/

• Install the Python program thanks to the previously downloaded file.

A.2 Downloading and installing the program
• Download the current version of PureOCR from https://gitlab.mff.

cuni.cz/teaching/nprg045/ikudov/saydametov-nikita/-/releases

• After downloading, you will have a zip file, which you need to unzip to a
folder convenient for you

• Go to the folder PureOCR where the file requirements.txt is located

• From here, we launch the console and write the command

pip install -r requirements.txt

• After writing this command, all the libraries you need for work will be
loaded on your computer

• The program is installed and ready to use!

A.2.1 Starting and using the program
1. Run the program using the console command

python3 ocr_gui.py

2. Then select PDF file using Select... button in the Source PDF file
window

3. After selecting the PDF file, select the directory where the recognized files
will be saved. To do this, click Select ... in the Save output text files
to directory window

4. Next, select the language used in the recognized PDF file. This is done
using the drop-down list in the Specify language window. You can only
select languages from those you have installed for PyTesseract.

5. Next, select the page numbers you want to rotate clockwise or counterclock-
wise. You can do this using the appropriate Numbers of pages to rotate
windows

53

https://www.python.org/downloads/
https://www.python.org/downloads/
https://gitlab.mff.cuni.cz/teaching/nprg045/ikudov/saydametov-nikita/-/releases
https://gitlab.mff.cuni.cz/teaching/nprg045/ikudov/saydametov-nikita/-/releases

Figure A.1: User interface

6. In addition, if the recognized PDF file contains pages consisting of several
columns, specify the numbers of those pages using the Numbers of pages
assumed two-column window.

7. You can also adjust the minimum and maximum sizes of images and letters
in the advanced settings (but as a rule, the default values are suitable in
90% of cases)

8. To start the recognition process, click the Start recognition button

9. When the recognition process is over, you can exit the program using the
Exit button

10. All the files processed by the program will be located in the folder you
specified in step 2

54

	Introduction
	Background and theory
	PDF
	About PDF
	PDF document types
	PDF software
	Security PDF
	Licensing
	Environmental Impact of Digital vs. Physical Documents

	OCR
	History of OCR
	Using OCR
	How OCR works
	Benefits of OCR
	Challenges and Limitations of OCR Technology
	The Future of OCR and Its Role in Digitalization

	Machine learning
	History of Machine Learning Development
	Types of machine learning
	Common machine learning algorithms

	Available solutions
	Paid solutions
	Adobe Acrobat DC
	ABBYY FineReader

	Free Solutions
	OCRmyPDF
	VietOCR

	Proposed solution
	Technologies used
	Tesseract

	Description of the Graphical User Interface
	The Main Application Window
	Advanced Options Window

	Work Scheme
	Input and Output Specifications
	Python Script
	Algorithm Flowchart

	Analysis of the algorithm
	Analysis of Text Recognition Speed
	Analysis of Image Recognition Efficiency
	Integration of Libraries and Modules
	Program Limitations
	Script Execution
	Validation of the Algorithm
	Strengths
	Weaknesses

	Program Development Journey
	First Version: OpenCV and Textract Integration
	Objective and Tasks
	Technology Usage
	Development Process and Implementation
	Challenges and Issues
	Conclusions and Lessons Learned

	Intermediate Version: script improvement
	Objectives and Goals
	Technology Usage
	Implementation and Functionality
	Challenges and Issues
	Conclusions and Lessons

	Final Version of the Script: Completion of Development
	Development Overview
	Goals and Achievements
	Features and Technologies
	Implementation
	Conclusion and General Reflection
	Project Outcome and Lessons Learned

	Bibliography
	List of Figures
	List of Abbreviations
	Documentation
	User documentation
	Downloading the development environment

	Downloading and installing the program
	Starting and using the program

