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Abstract: Proteins are essential for life as they play a fundamental role in many
biological processes. Designing novel proteins with a desired function is an
important problem in drug development and biological research. Large databases
of protein sequences can be used to train large language models adapted from
natural language processing on the language of proteins, written in the alphabet
of amino acids. In this work, we demonstrate how large language models based
on pretrained deep neural networks can be effectively finetuned for controllable
generation of protein sequences from several distinct protein families. Using
bioinformatic and deep learning-based methods, we show that the model is able
to generate high-quality protein sequences that exhibit low similarity to existing
proteins.

Keywords: bioinformatics, large language models, protein engineering

Název práce: Generování proteinových sekvencí s danou charakteristikou

Autor: Hugo Hrbáň

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: doc. RNDr. David Hoksza, Ph.D., Katedra soft-
warového inženýrství

Abstrakt: Proteiny jsou nezbytné pro život, protože hrají zásadní roli v mnoha
biologických procesech. Navrhování nových proteinů s požadovanou funkcí je
důležitým problémem ve vývoji léků a biologickém výzkumu. Velké databáze pro-
teinových sekvencí lze použít k trénování velkých jazykových modelů převzatých
ze zpracování přirozeného jazyka na řeči proteinů zapsané v abecedě aminoky-
selin. V této práci demonstrujeme, jak lze velké jazykové modely založené na
předtrénovaných hlubokých neuronových sítích efektivně vyladit pro kontrolo-
vatelné generování proteinových sekvencí z několika odlišných proteinových rodin.
Pomocí bioinformatických metod a metod založených na hlubokém učení ukazu-
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Introduction
Proteins are a key component of all living organisms. They serve as the

fundamental building blocks for cells, tissues, and organs, playing a crucial role
in various biological processes, such as transport of small molecules throughout
the body, enzyme catalysis, and immune responses in the form of antibodies. The
importance of proteins extends also to DNA, where they function as integral
elements of DNA replication and transcription. Another example is structural
support of cells, organs, muscle and bone tissue which ultimately allows animals
and humans to perform complex movement (Alberts et al., 2015).

The fundamental components of proteins are amino acids, which are linked
together to form linear chains that form a protein. These so-called protein
sequences can be therefore viewed as a language, where the alphabet consists of 20
proteogenic amino acids instead of letters. Protein sequences (”sentences” in the
protein language) are information complete, so they fully determine the protein’s
structure and therefore also its function. Just as understanding the grammar and
vocabulary of a natural language allows us to understand and generate meaningful
sentences, learning the “grammar” of proteins can help us predict their function,
interactions and localization within the cell. This means that just by knowing the
sequence alone, we can predict the protein’s function without explicitly having the
information about the three-dimensional structure it folds into, especially because
predicting protein structure is a hard problem in biochemistry.

In the recent years, language models from natural language processing (NLP),
have been shown to exhibit useful capabilities emerging from scaling up the
model size, amount of training data and compute. This paradigm has also been
adapted to biological sequences (Elnaggar et al., 2021). Protein language models
can be used for a wide range of tasks in bioinformatics, like function prediction,
binding site prediction from the primary sequence, structure prediction and
sequence generation, similarly to the well-known GPT model family (Brown et al.,
2020). Using self-supervised learning objective and the vast amounts of available
protein sequence data, these models are able to effectively learn the contextualised
representation which can be used on numerous tasks in bioinformatics, including
de novo protein design, which means designing novel proteins completely from
scratch (Madani; McCann, et al., 2020).

There are many publicly available pre-trained protein language models based
on the transformer decoder architecture trained with the next-token prediction
objective which can be used for generation of high-quality sequences. The problem
with such models is that they have been trained on a very diverse set of protein
sequences which can perform various functions, but unlike instruction models in
NLP, they are missing an interface for specifying what kind of proteins we want
them to generate. It is only possible to specify a prefix and let the model continue
generating rest of the sequence, but we can’t specify what function we want the
generated protein to perform.

The goal of this work is to fine-tune an open-source pre-trained protein language
model ProGen2 (Nijkamp et al., 2022) to make the process of generation more
controllable. This model is based on the transformer architecture (Vaswani et al.,
2017), which has achieved great popularity in the recent years. We focus on

3



particular protein families taken from the Pfam (Mistry et al., 2020) database. We
achieve this goal by expanding the vocabulary of the language model by several
new tokens which are used as conditioning tokens that specify which protein family
each sequence belongs to. These special tokens are placed in the beginning of
the protein sequence and we continue training the model with this new data. We
explore which values of hyperparameters, such as batch size, number of updates,
learning rate, etc. achieve the best results for model fine-tuning as measured by
the model’s loss function on an independent test set. During inference, we choose
which family we want to generate from by only specifying a single conditioning
token and use the model to generate the rest of the protein sequence in an
autoregressive way. We systematically evaluate top-k sampling with temperature
to find out how they influence the generated proteins and how concepts from
NLP transfer to the realm of proteins. We evaluate the quality of generated
proteins by profile hidden Markov models to see if the protein sequence is likely
to belong to that family and also look for false positives (e.g. sequences belonging
to a different family than specified during generation). We also compute the
sequence identity to sequences in the training dataset, to see that the model is not
just replicating sequences it has seen during training, but is actually producing
novel sequences. Depending on the family, we may also look for motifs, which
are conserved sequence patterns in the protein, similar to regular expressions in
computer science. To further validate the quality of our model, we use other
deep learning models to predict the three-dimensional structure and likelihood
of the generated sequences. Additionally, we look into the intermediate learned
representations within the model to better understand how the transformer’s
self-attention mechanism processes the input in the fine-tuned model compared to
the base model and how it processes the newly introduced conditioning token.
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1 Bio(informatical) background
Firstly, we will introduce the main biological concepts and bioinformatic tools

necessary for understanding and executing our goals.

1.1 Proteins
Proteins are macromolecules crucial for all life on Earth. We will briefly

describe how they are formed, how they can be represented, how they evolve over
time, and motivate our goal by introducing the concept of de novo protein design.

1.1.1 Amino acids
Amino acids are the fundamental building blocks of proteins. There are over

500 amino acids in nature, however only 20 of them are the so-called standard
amino acids which are encoded in the standard genetic code. Amino acids are
characterized by having a central carbon atom (Cα) to which an amino group
(–NH2), a carboxyl group (–COOH), a hydrogen atom, and a variable side chain
(R group) are attached. The properties of an amino acid are determined by its
unique side chain, which can be, for example, polar or nonpolar, acidic or basic,
hydrophobic or hydrophilic, etc. These properties affect the amino acid’s role in
proteins, and the protein’s function as a whole. Each amino acid is assigned a
unique three-letter and one-letter code. Structures and letter codes of amino acids
are in Fig. 1.1

Peptide bonds form when the carboxyl group of one amino acid reacts with
the amino group of another, releasing a molecule of water as a byproduct. This
process creates chains of amino acids linked by peptide bonds. Depending on their
length, these chains are called peptides if their length is less than 50 residues, or
polypeptides if they are longer, however this threshold is not strict. A protein
consists of one or more peptides or polypeptides. After the peptide bond formation,
amino acids are often referred to as residues that are connected to the protein
backbone (Alberts et al., 2015).

1.1.2 Levels of protein structure
Structure of proteins can be described at the following four layers (Brändén;

Tooze, 1999):
Primary structure (usually referred to as protein sequence) is the linear

sequence of amino acids that form a protein. The length of a protein sequence
can vary widely, ranging from just a few tens to several thousands of amino
acid residues. The direction of the sequence matters, so the sequence of amino
acid residues MGEAK is not the same as KAEGM. By convention, the sequence is
written from the N-terminus to the C-teminus, where N-terminus is the end of the
polypeptide chain with the free amino group (–NH2) and C-terminus is the free
carboxyl group (–COOH). This choice is due to the way proteins are synthesized in
cells during the process of translation, although this choice is somewhat arbitrary
and not biologically significant.
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Figure 1.1 Table of 21 proteogenic amino acids (20 standard amino acids, plus
selenocysteine, which is encoded in special cases by a stop codon) Ryckmans, 2022

Secondary structure refers to local conformations of the protein backbone.
There exist two types of secondary structures:

– Alpha helix: backbone is twisted into a right-hand coil shape formed by
hydrogen bonds between amide and carbonyl groups four residues apart in the
sequence.

– Beta sheet: they consist of beta strands laid out next to each other and
connected by hydrogen bonds between residues of adjacent strands. They can be
parallel or anti-parallel, depending on the orientation of the beta strands.

While the secondary structure describes three-dimensional features of a protein,
it can be described using a one dimensional representation, because we can assign
each residue as being part of an alpha helix, beta sheet or neither.

Tertiary structure is a three dimensional representation of the whole protein
formed by the folding of its polypeptide chain. This structure is very useful for
understanding the protein’s biological function.

Quaternary structure of a protein describes the arrangement of multiple
polypeptide chains into a larger functional complex. Some proteins, such as
hemoglobin, which carries oxygen in the blood, occur in nature as an assembly of
several polypeptide chains.

Visualizations of all levels of protein structure can be found in Fig. 1.2 and
are adapted from Berman et al., 2000 and Bateman, 2013. Note, that when
we talk about protein structure, we usually refer to the tertiary structure (3D
representation) and when we mention protein sequence we are talking about the
primary structure (1D string).
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Figure 1.2 Example visualizations of primary, secondary, tertiary and quaternary
protein structure

1.1.3 Relationship between sequence, structure and func-
tion

Genetic information about the protein sequence is stored in the DNA which is
a long chain of nucleobases, where consecutive triplets of nucleobases, so-called
codons, each encode a specific amino acid. During the process of protein synthesis,
this information is used to produce the polypeptide chain of a protein, which
then assumes a three-dimensional shape. This process is known as protein folding.
Knowing the structure of a protein means knowing the coordinates of every atom
in it.

The function of a protein in the organism is closely linked to its structure,
which determines how it interacts with other molecules (Alberts et al., 2015).
Binding sites, which are parts of a protein where a ligand can bind, are usually
highly specific, allowing only particular ligands to bind to it. The ligand can be
for example an ion, small molecule, other protein, RNA or even bacteria or viruses
in the case of antibodies, which are proteins that play a key part in immune
responses.

Given a protein sequence, it is difficult to accurately determine the structure
it will fold into. One such experimental technique is X-ray crystallography. It
involves condensing protein into a crystal and shooting X-rays at it to determine
the shape. However, structure determination is expensive, both in terms of time
and resources, and these techniques are not able to capture the structure of any
protein, for example, in case of X-ray crystallography, many proteins cannot be
condensed into a crystal. Moreover, there are large classes of proteins, called
intrinsically disordered proteins (IDP) or intrinsically disordered regions (IDR)
which do not conform to a rigid three dimensional structure, but their shape
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Figure 1.3 Multiple sequence alignment of histone H1 in a few species (Paysan-Lafosse
et al., 2022)

is flexible and dynamic, typically in the absence of macromolecule interaction
partners, such as other proteins or RNA. Also, the conformation of a protein can
change depending on whether it is binding a ligand or not (Trivedi; Nagarajaram,
2022). All of this means that databases of protein structures are limited to a small
and biased subset of proteins.

1.1.4 Evolution
The process of evolution is a fundamental aspect of life. Through natural

selection and random mutations, it provides organisms the ability to adapt to
their environment and yields the diversity of species that we observe in nature
today. Just as species evolve over time, so does their DNA and hence proteins
it encodes. Proteins that perform an equivalent function in different organisms
that share a common ancestor usually have similar sequences. Two amino acid
sequences are said to be homologous if they share ancestry in their evolutionary
history. They differ due to random mutations in their coding DNA sequence. Such
mutations may have negative effects, for example, the relatively rare genetic disease
osteogenesis imperfecta (commonly known as brittle bone syndrome) is caused by
a single amino acid substitution (Gly → Ala) in collagen protein responsible for
the structural integrity of bones (Xiao et al., 2011). However random mutations
can also be positive and improve the protein’s fitness (the ability to perform its
function). Another type of mutation is an indel (insertion or deletion), where
a nucleotide or an amino acid residue is inserted or removed from a sequence.
Through natural selection, specimen with higher fitness get to spread their genes
to their offspring. This process has been going on for billions of years, and as
whole species evolve, so do the proteins that carry out functions in them.

Protein families

A protein family is a group of evolutionarily related proteins (Bateman, 2013).
This is reflected in similarity of their amino acid sequence, and therefore often
also structure and function. These proteins are derived from a common ancestral
sequence and have diverged over time through various evolutionary processes
such as mutations, gene duplication, and functional specialization. Members of a
protein family can be found within the same organism or across different species.
Depending on how long ago lived their last common ancestor, protein families
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may be more or less conserved. Certain parts of sequences may be well conserved
across an entire family, suggesting functional importance. Such regions are called
protein sequence motifs and evolve more slowly compared to rest of the sequence,
due to their significance for the protein function. Fig. 1.3 shows related histone
proteins in different organisms.

1.1.5 Protein engineering, de novo design
While evolution is a reliable tool for creating suitable proteins, it takes millions

of years to tailor proteins for specific functions through natural selection. In
contrast, protein engineering is a field that accelerates this process by designing
proteins with desired properties in a much shorter time. The goal of protein
engineering is to design completely new proteins or modify existing proteins to
obtain specific, desirable traits that are not found in natural proteins. For example,
enhancing enzyme catalytic efficiency, stability under extreme conditions, antibody
design, and more ambitiously, creating proteins with entirely new functions.

The term de novo protein design describes the process of creating novel proteins
from scratch, and aims to discover viable proteins, that have not yet evolved
in nature. By exploring parts of the protein sequence and structure space that
natural evolution has not reached, protein design has potential to create proteins
with unique functions that can be applied to key challenges in biomedicine and
biological engineering (Pan; Kortemme, 2021). The combinatorial space of possible
protein sequences is large, but only a few protein sequences are able to fold properly
and carry out a specific function in the cell. Moreover, it is often difficult to
find a suitable in silico (computational) metric for determining if a given protein
sequence is able to perform a particular function and experiments in a laboratory
can be time consuming and expensive. This makes de novo protein design a
difficult problem.

1.2 Tools
In this section, we describe the bioinformatic tools we will be using in this

work, including databases, algorithms, software tools, and lastly discuss available
machine learning models related to our work.

1.2.1 Databases
• Protein Data Bank (PDB) (Berman et al., 2000) is a public database

of three-dimensional structural data of biological macromolecules, mainly
proteins. The entries are experimentally determined. It is a key resource
for research in structural bioinformatics.

• UniProt (Universal Protein Resource) (The UniProt Consortium, 2022) is
a database of protein sequence and functional information. It serves as a
central hub for the collection of extensive data on the biological functions of
proteins, derived from literature curation as well as direct submissions from
researchers.
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• Pfam (Mistry et al., 2020) is a comprehensive collection of protein families,
each entry contains, amon others, the sequences belonging to the family,
multiple sequence alignment (MSA) and profile hidden Markov models
(HMMs) created from these MSAs. The primary aim of Pfam is to classify
protein sequences into families based evolutionary relations. Pfam enables
researchers to identify homologous sequences and predict the function of
uncharacterized proteins based on their membership in a particular protein
family. Recently, it has been integrated into the InterPro (Paysan-Lafosse
et al., 2022) database as one of its several member databases.

1.2.2 Sequence alignment
Sequence alignment is a way of arranging two or more protein sequences to

identify regions of similarity that may imply functional, structural or evolutionary
relationship between them. We may insert gaps between residues, so that identical
or similar residues can be aligned in successive columns. For two aligned sequences
that share a common ancestor, mismatches can be considered point mutations
and gaps are indels (insertion or deletion mutations).

Alignment of sequences can be computed using dynamic programming. We
distinguish between local alignment, which aligns only select parts of sequences,
and global alignment which aligns all residues in the sequences. In practice,
protein alignments use a substitution matrix, to assign a score to each possible
amino acid substitution, and a gap open and gap extension penalty because fewer
longer gaps are more common in nature than many short gaps. This technique
can be used to produce pairwise alignments (two sequences) and can be extended
to multiple sequence alignment (MSA) consisting of three or more sequences.
While guaranteed to find to optimal alignment, computing MSA using dynamic
programming is computationally expensive. With the naive approach it takes
O(Ln) time, where L is the length of alignment and n is the number of sequences.
In practice, various heuristic methods are used to find the MSA (Thompson et al.,
2011). Figure 1.3 contains visualization of a multiple sequence alignment. High
conservation of a certain region in the MSA suggests that it carries a functional
or structural importance.

Sequence identity between two sequences is calculated as the percentage of
identical residues in the alignment and is used as a measure of sequence similarity
(Pearson, 2013). We will use this metric in some experiments described later.

MMseqs2

MMseqs2 (Many-against-Many sequence searching) is an open-source software
suite developed by Steinegger; Söding, 2017 to search and cluster huge protein
and nucleotide sequence sets. The software is designed to run on multiple cores
and servers and exhibits very good scalability. The clustering of protein sequences
works by first performing pairwise sequence alignments and calculating identities
between all pairs of sequences in the dataset. Sequences above a set similarity
threshold are then grouped together into a single cluster, which is then represented
by a single representative sequence. The other common functionality is many-
against-many searching. It enables comparing a FASTA file with query sequences,
against another FASTA file or an MMseqs2 target database. The output is a
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tab-delimited file with columns indicating identifiers of query and target sequences,
percentage of sequence identity and length of the alignment, among others. FASTA
is a text file format commonly used for storing protein sequences.

1.2.3 Hidden Markov models
Definition 1 (Hidden Markov model). Let (Xn)N

n=1, (Yn)N
n=1 be sequences of

random variables, where N ≥ 1 and ∀i : Xi ∈ H ∧ Yi ∈ O, where H is a
finite set of hidden states and O is a finite set of observable states. The pair
((Xn)N

n=1, (Yn)N
n=1) is a (discrete time, discrete space) hidden Markov model if:

1. Xn is a Markov chain, meaning that ∀i : P (Xi+1 = hi+1|X1 = h1, ..., Xi =
hi) = P (Xi+1 = hi+1|Xi = hi), hi ∈ H. These are called the transition probabilities,
and Xn is the sequence of hidden states, which we do not directly observe.

2. P (Yi = a|X1 = h1, ..., Xi = hi) = P (Yi = a|Xi = hi) for every i ≥ 1 and
h1, ..., hi ∈ H, a ∈ O. These are called the emission or output probabilities, defined
for each hidden state. We directly observe only the sequence Yn.

We can think of the hidden Markov model (HMM) as a weighted oriented
graph, where each node corresponds to a hidden state and each edge corresponds
to a state transition. Each hidden state stores an emission probability distribution
over the set of observable states. The HMM can be represented using a transition
matrix A, where Aij = P (Xt = j|Xt−1 = i) for some t ≥ 1, i, j ∈ H and emission
probabilities matrix B ∈ R|H|×|O|, where Bij is the probability of emitting output
j at state i. Optionally, we can include an initial probability distribution π over
the set of hidden states, but we can work around this by defining a non-emitting
starting state as in Fig 1.4.

Profile hidden Markov models

Profile hidden Markov models (Eddy, 1998) are a special type of hidden Markov
models (HMM) designed to model multiple sequence alignments. They turn an
MSA into a position-specific scoring system, which is suitable for fast and sensitive
searches of remotely homologous sequences. For a given protein family, the profile
HMM is constructed from an MSA of a few sequences (seed alignment). See Fig.
1.4.

Each edge in the profile HMM transition graph has an assigned transition
probability based on the MSA. The hidden states (apart from the start and end
states) of a profile HMM can be divided into three types:

• Match states (M) are the central element of a profile HMM. They form
a linear sequence of states, each emitting a single residue according to the
probability distribution of residues in that particular column of the MSA.

• Insertion states (I) correspond to insertion of amino acid residues into
the sequence and multiple insertions can occur consecutively. Each insertion
state stores an emission probability distribution over the 20 residues.

• Deletion states (D) correspond to gaps in the alignment and are non-
emitting states.
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Figure 1.4 Profile hidden Markov model from an alignment of length 4. Transition
and emission probabilities are not depicted.

For each family in Pfam database (Mistry et al., 2020), there is a profile HMM
built from its MSA. This model can be used to detect if a novel sequence is
homologous to sequences in that family.

We use the forward algorithm (Jurafsky; Martin, 2024) to compute the proba-
bility of the observed sequence O given the HMM HA as P (O|HA). Thanks to
the Markov property, we can use dynamic programming to compute this value
efficiently. The score of the sequence is computed as log odds against the null hy-
pothesis of non-homology log P (O|HA)

P (O|H0) . The null hypothesis model H0 is defined as
a HMM with one state, with emission probabilities defined according to frequency
of residues in naturally occurring proteins (Johnson et al., 2010).

This gives us a score for a given sequence of observations, which we can use
to filter out sequences passing some threshold. After that, we use the Viterbi
algorithm (Forney, 1973), which also uses dynamic programming, to find the most
likely sequence of hidden states (path through the HMM transition graph), given
the observed sequence. This algorithm is also widely used in other fields, where
we assume some data can be modeled using a HMM, such as speech recognition,
computational linguistics, or in telecommunications for decoding codes from noisy
channels. In the case of profile HMMs, the most likely sequence of hidden states
corresponds to a sequence alignment.

HMMER

A popular open source tool for protein sequence analysis using profile hidden
Markov models is HMMER (pronounced ”hammer”) (Johnson et al., 2010). It is a
software package used for processing nucleotide, or in our case, protein sequences.
As the name suggests, it uses profile hidden Markov models to detect homologous
proteins. This software package provides several command line programs for
building, searching and alignment. For our purposes, we will introduce only the
hmmscan command.

The hmmscan command is used to search protein sequences against a profile
HMM database (specifically, in our case, this database will consist of a single
profile). Each query sequence is scanned against the profile HMM, which is
constructed from an MSA of sequences in a particular protein family, and if it
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passes the filter (log odd score above a certain threshold), HMMER produces
an alignment with the profile. We consider this as a success, meaning that we
generated a sequence belonging to the particular family, for which the profile
HMM was built. For each query, HMMER returns the score described above
and expectation value (E-value), which denotes the statistical significance of the
sequence score. E-value is the number of hits expected to have a score equal to,
or better, than the query sequence by chance. We use the default E-value 1e-2
and only report hits below this threshold. This means that on average we can
expect one false positive hit in 100 queries.

1.2.4 Machine learning in bioinformatics
Large amounts of collected biological data, such as genomic sequences, protein

sequences and structures, but also clinical data, among others, allow for using
machine learning tools to analyze and extract important information from this
data. Here, we will focus on ML applications to study proteins and their properties
and give a brief overview of common tasks relevant for our work and what type of
models can be used to solve them.

Ligand binding site prediction

Predicting parts of protein where a ligand, which can be a small molecule,
atom, or another protein among others, is an important question, because proteins
execute their functions by binding to a ligand. Binding sites can be viewed as
pockets on the surface of the protein and are usually highly specific, only allowing
molecules with particular shapes and physicochemical properties to bind to the
protein. Identifying binding sites is essential for drug development as they often
represent targets for therapeutics. The methods can be broadly divided into two
types:

• Structure-based methods take into account the tertiary structure of a
protein. There have been numerous machine learning algorithms developed
for this task, such as decision trees (Krivák; Hoksza, 2018) and neural
networks (Zhao et al., 2020).

• Sequence-based methods only rely on the protein sequence to predict
the binding site. This problem is harder, because as we know, binding is
dependent on the three dimensional structure of the pocket. The advan-
tage here is that there is much more available data than when working
with structures. Protein language models (pLMs) (Elnaggar et al., 2021)
trained only on unannotated sequence data are able to learn high-quality
contextualized representations of amino acids (embeddings) which can be
used as features for other models to classify which residues are part of the
binding site (Littmann et al., 2021). Note, that even though the residues
are close in the 3D space, they may not be close in the sequence. Successful
application of pLMs to these tasks imply that they are able to capture
structural information. There have also been developed hybrid methods
which use both structural and sequence paradigms (Gamouh et al., 2023).
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Tertiary structure prediction

Since protein function is determined by its structure, but sequence data is
far easier to obtain compared to structures, an obvious problem of determining
structure computationally emerges. For short sequences, molecular dynamics
simulations can be used, but they are very expensive in terms of time and
computational resources.

Deep learning methods have achieved state-of-the-art results in this task. The
development of AlphaFold (Jumper et al., 2021), which achieved much more
accurate structure prediction than previous methods, has had a great impact
on the field of bioinformatics. It first produces a multiple sequence alignment
with protein sequences from a large database to find similar sequences, and then
the MSA is used as input for a deep neural network. Other notable models for
structure prediction are OmegaFold (Wu et al., 2022) and ESMFold (Lin et al.,
2023), which do not rely on MSA, but use representations from a language model
as features for the folding model. This makes them much faster then searching
a database and aligning sequences. All of these models output the predicted
structure, along with a per-residue confidence of the prediction called pLDDT
(predicted local distance difference test). It represents a confidence score, which is
widely used as an in silico metric for evaluating the quality of artificially generated
proteins, or as a filter for deciding which sequences are more likely to work well
before synthesizing them in a living cell (Watson et al., 2023).

De novo protein design

Designing new proteins with desired functions is a challenging problem which
can also be divided into two paradigms: sequence and structure.

An example of structure design model is RFdiffusion (Watson et al., 2023),
which generates the backbone of the protein structure in 3D space. It is trained to
iteratively denoise a signal to reconstruct the protein’s shape, using the diffusion
process for efficient exploration of protein space. The downside of structure based
methods is that in order to actually synthesize the protein in a lab, it has to be
encoded as a DNA sequence which is then created in a living cell. This means that
there has to be an inverse folding component, ProteinMPNN (Dauparas et al.,
2022) in case of RFdiffusion, which predicts the sequence from the generated
structural backbone, since the backbone is only a shape in 3 dimensions, but does
not tell us the actual amino acid residues attached to it.

Because protein sequences can be considered a language, language models
can also be used for protein sequence generation. In natural language processing,
models like GPT-4 (OpenAI, 2024), LLaMA (Touvron et al., 2023), and countless
others have proved that by increasing model size, they are able to perform well on a
wide range of complex tasks which they have not been specifically trained for, and
with instruction-tuning they can serve as conversational assistants. Same principle
can be applied to proteins: models like ESM (Rives et al., 2021), ProtBert, ProtT5
(Elnaggar et al., 2021) provide embeddings that can be used to solve various
tasks, as previously mentioned. Generative language models are also available,
for example EvoDiff (Alamdari et al., 2023) is a diffusion model for sequence
denoising, ProtGPT2 (Ferruz et al., 2022) based on the GPT2 (Brown et al., 2020)
architecture, ProGen (Madani; McCann, et al., 2020) which uses conditioning
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tokens for specifying desired properties of the protein and ProGen2 (Nijkamp
et al., 2022) which is a more general causal language model available in different
size checkpoints and which will be the main subject of our work.
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2 Machine learning background
In this chapter, we provide a brief overview of language modeling theory,

a background of the machine learning tools we are using, including the model
architecture, training the model and model inference. Lastly, we discuss some
related works, describe the motivation for using these methods on proteins and
introduce model we will be working with.

2.1 Language modeling
At its core, the objective of a language model is to estimate the probability

distribution over the next tokens in a sentence, given a sequence of previous
tokens P (wt|w1, ..., wt−1) (Jurafsky; Martin, 2024). Tokens, also called sub-words,
are fundamental units of input for the language model. In most cases a tokens
corresponds to a word, but for rare or longer words one word can be broken down
into multiple tokens. This depends on how the tokenizer for a particular language
model was constructed. In case of protein language models, every token represents
one amino acid residue, or some utility tokens, which we will describe in following
chapters. For a sequence of tokens W = (w1, ..., wn), we can use the language
model to estimate the probability of a sentence P (W ) by using the chain rule of
probability

P (W ) = P (w1, ..., wn) = P (w1)P (w2|w1)...P (wn|w1, ..., wn−1) =
n∏︂

t=1
P (wt|w<t)

n-gram language models

Historically, there have been various statistical approaches to language model-
ing. One such straightforward approach are the so-called n-gram language models,
which use relative frequencies of n-grams to compute the next-word probability.
An n-gram is a contiguous sequence of n words from the training corpus. The
downside of n-gram language models is that they can’t generalize beyond sequences
unseen during training.

Neural language modeling

Neural language models offer a significant improvement over n-gram models
in terms of generalization. They rely on neural networks to learn distributed rep-
resentations of tokens, such that semantic information can be transferred between
similar sentences, while simultaneously learning the probability distribution of the
next word conditioned on previous tokens (Bengio et al., 2003). In practice, they
are also limited to a fixed context size of n previous tokens, but this n can be much
larger than in case of n-gram models. These distributed token representations are
referred to as embeddings. Neural language modes represent words in this prior
context by their embeddings, rather than just by their word identity.

The first layer of the neural network is the embedding layer, which is a matrix
with |V | rows and E columns, where V is the model’s vocabulary and E is the
model’s hidden dimension. Each token in the model’s vocabulary is assigned a

16



unique index, which corresponds to a row in the embedding matrix, that is the
token’s contextualized vector representation. In a well-trained model, we expect
the embeddings of similar tokens to be close in the embedding space. The output
of the embedding layer is a sequence of embeddings, which is used as the input to
the neural language model.

The language model outputs logits ŷ = f(xt−n+1, ..., xt−1), which is used to
calculate the next token probabilities as

P (wt|wt−n+1, ..., wt−1) = exp(ŷwt
)∑︁

i exp(ŷi)

where for every i, xi is the embedding of the i-th token in the sequence. The
definition of f depends on the network architecture. For example multilayer
perceptrons (MLP) or recurrent neural networks (RNN) have been used, but the
transformer architecture (Vaswani et al., 2017), which we will describe in section
2.2, has been the most used one in the past years.

2.1.1 Self-supervised training
Language models are trained using self-supervised learning. Unlike in super-

vised learning, there are no explicit annotations, however since our task is language
modeling, also referred to as next token prediction, the labels are actually provided
thanks to the structure of the data. This allows us to use large unannotated
corpora for training language models.

Training of the language model is an optimization problem of minimizing
the cross-entropy (negative log likelihood) loss of the data using the gradient
descent algorithm. Cross-entropy measures the difference between two probability
distributions over the same set of underlying events and is calculated as H(P ∗, P ) =
−∑︁x P ∗(x) log P (x), where P ∗ is the target distribution and P is the distribution
computed by the model. In case of language modeling, there is only one correct
label, so the loss can be calculated as − log P (wt|wt−n+1, ..., wt−1), which is the
negative logarithm of probability that our model assigned to the correct class
(Jurafsky; Martin, 2024). One update of model parameters is then performed as

θ ← θ + α
∂ log P (wt|wt−n+1, ..., wt−1)

∂θ

where θ are the model parameters and α > 0 is the learning rate. Using the chain
rule of derivatives, the derivative of loss is calculated with respect to all model
parameters in a process is called backpropagation.

2.2 Transformer architecture
In this section, we will describe the transformer architecture, originally in-

troduced by Vaswani et al., 2017 for machine translation, but is now used for
many different applications. The original transformer architecture, as shown in
2.1 consists of and an encoder and a decoder, where the encoder is used to process
the sentence in the source language and the decoder generates the translation in
target language. Our task is language modeling, i.e. predicting the next token, so
we use a decoder-only architecture.
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Attention

The main part of the transformer architecture is the scaled dot-product
attention mechanism. The inputs of attention are queries, keys and values
Q ∈ Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv and the output is computed as

Attention(Q, K, V) = softmax
(︄

QKT

√
dk

)︄
V

where the queries, keys and values. Sequence length is denoted as n, dk is the
dimension of keys and queries, dv is the dimension of values and d is the model’s
hidden dimension. Since we want the model to predict the next token, the
attention has to be causal, meaning that each token can only use the information
conveyed by the previous tokens. This is implemented by adding a matrix of shape
(n× n) with zeros on the diagonal and below it, and −∞ above the diagonal to
the matrix product QKT before applying the softmax activation. The softmax
function is defined as softmax(x)i = exp(xi)∑︁|V |

j=1 exp(xj)
for every index i in vocabulary of

size |V |.

Multi-head attention

In practice, multi-head attention is used. We split queries, keys and values into
several groups and compute the attentions of each group separately in parallel,
concatenate their outputs and pass them through a linear projection WO to
dimension d. See figure 2.1 for visualization.

MultiHead(Q, K, V) = Concat(head1, ..., headh)Wo

headi = Attention(QW Q
i , KW K

i , V W V
i )

where W Q
i ∈ Rd×dk , W K

i ∈ Rd×dk , W V
i ∈ Rd×dv and WO ∈ Rhdv×d are learnable

parameters.

Feed-forward network

Following is the feed-forward network, which consists of two fully-connected
layers with ReLU activation between them.

FFN(x) = max(0, xW1 + b1)W2 + b2

The inner dimension of the feed-forward network is empirically chosen to be 4
times larger than the model’s hidden dimension (Nijkamp et al., 2022).

Since the attention mechanism does not explicitly know relative positions of
tokens in the text, positional embeddings are used to pass information about
the positions to the transformer. There are residual connections bypassing each
sublayer which are then added to the sublayer’s output and normalized. There are
usually several transformer layers in a model, followed by a final linear projection
to |V | classes, which are used to calculate the probabilities using softmax.
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Figure 2.1 Transformer architecture, multi-head attention, scaled dot-product atten-
tion diagram. Adapted from Vaswani et al., 2017

2.2.1 Sampling
The process of generating text using a language model is referred to as inference,

generation or decoding. The model outputs a probability distribution over tokens
in the vocabulary at every step of the autoregressive generation. This means that
the token selected at time t is appended to the context given at time t and used
as context at time t + 1. We need to decide how we use the output probability
distribution to select the next token.

The most straightforward way is to always choose the token with the highest
assigned probability. This is called the greedy decoding and works well in
practice, but for a given prompt only generates deterministic outputs and choosing
the most probable token does not guarantee to generate the most probable
sequence.

An improvement over this is a strategy called beam-search, which is a
modification of BFS that only expands a fixed number of candidate nodes at
each layer. It works better than the previous method, however can be quite
computationally expensive and in practice may produce repetitive or otherwise
degenerated outputs (Ferruz et al., 2022).

Another alternative is top-p sampling, also known as nucleus sampling. It
involves choosing a value for p ∈ (0, 1] and then restricting the sampling to the set
of most probable tokens with cumulative probability less than p. Each token in
this set is chosen with a probability proportional to the probability it was assigned
by the model. The motivation is that we want to avoid sampling from the tail of
the distribution, which may be very long, especially in case of models with a large
vocabulary.

Top-k sampling has a similar motivation to top-p sampling, but restricts
the sampling to a fixed number of k ∈ {0, ..., |V | − 1} tokens with the highest
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probability. It is often combined with so-called temperature t > 0, which is a
constant that the model outputs (logits) ŷ are divided by before applying the
softmax activation function.

The temperature parameter keeps the relative order of probabilities the same,
but influences the shape of the probability distribution. Sampling with a high
temperature (t > 1) ”flattens” the probability distributions, and causes the model
to pick less likely tokens more often and therefore its responses are more diverse
and creative. However when the temperature is too high, the outputs become
too nonsensical and gibberish. A low sampling temperature (t < 1) makes the
distribution ”sharper” and makes picking the high-probability tokens even more
likely, which causes the outputs to be more confident and conservative, but
similar to the sequences in training data. Sampling with a very low temperature
approximates greedy decoding.

2.3 Related models
CTRL (Conditional Transformer Language model) is a language model devel-

oped by Keskar et al., 2019. Is is a natural language model trained on a large
corpus of text data collected from the internet, with special control tokens that
are placed in the beginning of each document in the training data and denote
its specific properties, such as style, content and task-specific behavior. These
control tokens were usually determined by the website the data was downloaded
from. Some examples of control tokens include Wikipedia for Wikipedia articles,
Review for Amazon reviews, etc. During generation, users can prompt the model
by only providing a control token and use the model to generate text that conforms
to the style and content that particular control token is associated with.

Following this model, ProGen was developed by Madani; McCann, et al.,
2020, which is trained on protein sequences prepended by special control tokens
(which were called conditioning tags or conditioning tokens in this paper). These
conditioning tokens specify various properties of the whole sequences, such as
molecular function, cellular component and biological process. Overall, they used
over 1100 different conditioning tokens and each training sequence contained
several conditioning tokens, up to 14. By finetuning this model on lysosome
families Madani; Krause, et al., 2023 have shown that the model is able to
generate high-quality protein sequences and experimentally validated that these
artificial sequences show similar catalytic efficiency to natural ones, with a very
low sequence identity to the natural sequences. Unfortunately, this model is not
open source.

Subsequently, its successor ProGen2 (Nijkamp et al., 2022) was released. It is
also a protein language model based on the transformer decoder-only architecture,
and is available in various size checkpoints, showing that by increasing the number
of trainable parameters, the model’s language modeling capabilities improve.
Contrary to its predecessor, its vocabulary does not contain special conditioning
tokens, which makes it hard for users to generate protein sequences with desired
properties.
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3 Implementation
Our goal is to finetune the ProGen2 (Nijkamp et al., 2022) language model to

be able to generate sequences from selected protein families. We achieve this by
prepending each sequence in a given family by a unique family token and continue
training the model on the next-token prediction task using these new sequences.
We use the cross-entropy loss function, same as during pretraining of the base
model. Then during inference, we want to generate valid protein sequences, which
belong to the correct family, only by specifying the special family token and a
terminus token as the prompt.

In this chapter, we will describe the code required for downloading and
preprocessing the data, finetuning the model, and generating protein sequences
with it. The code is available on GitHub: https://github.com/hugohrban/
ProGen2-finetuning/tree/main.

3.1 Data preparation
Each protein family in the Pfam database (Mistry et al., 2020), is characterized

by a unique code, consisting of the letters PF followed by five digits.
We chose the following seven families to finetune the model on:

• Family 2 of the G-protein coupled receptors (GPCRs) (PF00002)
are cell surface receptors that detect molecules outside the cell and activate
cellular responses. They contain seven alpha helices which pass through the
cell membrane.

• Globins (PF00042) are heme-containing proteins involved in binding and
transporting of oxygen molecules. They belong to a very large and well
studied family that is widely distributed in many organisms. Major types
include hemoglobin, myoglobin and neuroglobin.

• Core histones (PF00125) act as spools around which DNA winds to create
structural units called nucleosomes.

• Copper binding proteins (PF00127 ) are found in plants and bacteria
and facilitate electron transfer between cells via a copper ion.

• Dehydrins (PF00257 ) contribute to freezing stress tolerance in plants.

• Calreticulins (PF00262) are a family of calcium-binding proteins.

• P-loop ATPase protein family (PF03668). Members of this family
contain an ATP-binding site, mostly in form of the P-loop sequence motif.
Adenosine triphosphate (ATP) is a source of energy for the cell.

Using MMseqs2 (Steinegger; Söding, 2017) command easy-cluster, we clus-
tered sequences in each family at 90% sequence identity, in order to get rid of
redundancy in training data. In the table 3.1, we show information about the
individual protein families (after clustering):
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Pfam code Num. sequences Avg. length % of data
PF00002 19942 545 22.10
PF00042 17491 273 19.39
PF00125 16997 195 18.84
PF00127 18085 249 20.05
PF00257 203 228 0.23
PF00262 4433 433 4.91
PF03668 13065 287 14.48

Total 90216 324 100.00

Table 3.1 Summary of training families

Download

We download the individual families using the InterPro API (Paysan-Lafosse
et al., 2022). The python script download_pfam.py is a modification of the
automatically generated code from the InterPro website. Users can specify which
Pfam entries they want to download by specifying the Pfam codes as command
line arguments when running the script. Downloaded files are saved in FASTA
format.

Preprocess

For each family, we introduce a special token, based on its Pfam code,
e.g. <|pf00002|>. Same as the base model, we use tokens 1 and 2 to de-
note the N and C terminus respectively, and each amino acid residue corre-
sponds to one token. Each sequence is stored on a separate line, for example:
<|pf00262|>1MGEAKRV...LKLKMKML2. The prepare_data.py script takes as in-
put a list of files in FASTA format, converts the sequences to the described format,
splits the sequences according to the train-test split ratio and writes them in
two separate train and test files. Users can also specify whether they want the
data to also be stored in reverse, for training a bidirectional model, for example:
<|pf00262|>2LMKMKLKL...VRKAEGM1.

3.2 Finetuning & finding right hyperparameters
Model architecture and configuration

We chose to finetune the smallest available ProGen2 (Nijkamp et al., 2022)
checkpoint called ProGen2-small, containing 151 million parameters, because
we can finetune it in a relatively short amount of time on a single GPU. This
model consists of 12 layers, 16 attention heads, hidden dimension of 1024 and
context window size of 1024 tokens. The original model’s vocabulary contains 30
tokens, out of which 25 represent amino acids and 5 special tokens, namely 1,
2, <|pad|>, <|bos|>, <|eos|>. Note, that apart from the 20 standard amino
acids, there are also tokens for special amino acids, for example X denotes unknown
amino acid, but these appear quite rarely in the data.

Since we are not training the model from scratch, but only finetuning it, we
did not need to make any changes to the model’s architecture. The model archi-
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tecture and forward pass implementation are defined in file modeling_progen.py
and the configuration is defined in configuration_progen.py, both in the
models/progen/ directory. Both files in this directory are adapted from the
original ProGen2 implementation by Nijkamp et al., 2022. We slightly modified
the configuration to allow us to use different vocabulary dimension for the initial
embedding layer and the language modeling head, which is the model’s final
layer. The model architecture is broken down into several classes, defining the
attention module, the MLP module, the transformer block, and finally the whole
ProGenForCausalLM model class. The ProGenForCausalLM model class inherits
from the PreTrainedModel class implemented in the Hugging Face transformers
library (Wolf et al., 2019), which allows us to easily push our model weights and
the modeling and configuration files to the Hugging Face Hub. This makes it
easy for users to download and use the model for sequence generation or other
downstream tasks. The original ProGen2 model is implemented in the PyTorch
framework (Paszke et al., 2019), and therefore we are also using PyTorch for
finetuning and generating sequences using the model.

New embeddings

We added new tokens to the tokenizer’s vocabulary, therefore we need to train
new embeddings for them. The embedding layer is a matrix with shape (V, D),
where V is vocabulary size and D is the model’s embedding dimension. Note,
that although it is common in language models for the embedding matrix and
the language modeling head layer to share their weights in order to to reduce
the number of trainable parameters, ProGen2 does not do this, most likely due
to its small vocabulary size. This means that we only need to add new rows to
the embeddings matrix. We noticed, that although the model’s tokenizer only
contains 30 tokens, the embedding matrix has 32 rows so the last two rows have
not been trained since their initialization. We initialized the embeddings for the
new special tokens with random numbers from normal distribution with the same
mean and variance as the raw untrained token embeddings.

Finetuning

During finetuning, we use the Adam optimizer (Kingma; Ba, 2017) to update
the model weights. We use cosine learning rate decay with linearly increasing
warmup steps, in order to not get stuck in local optima and improve the rate of
convergence. For the data we described, we experimented with several combina-
tions of values for the hyperparameters, most influential ones being the batch
size, initial learning rate and number of training epochs. Our search for the right
hyperparameters was not really systematic, due to limited time and compute
resources. For reference, one training epoch on the described dataset took around
45 minutes on the faculty’s cluster, running on one A100 80GB GPU, using a
batch of 64 sequences. Fitting a model of such large size (151 M parameters),
with Adam optimizer for its weights and training data onto a GPU requires a
significant amount of memory. In our case, we were only able to fit 16 sequences in
a batch for one backward pass. In order to use a larger effective batch size for the
parameter update, we had to use a technique called gradient accumulation, which
involves not calling optimizer.step() after every backward pass, but only after
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a set number of batches, as shown in code listing 3.1. Using gradient accumulation
allows us to train the model with an arbitrary batch size, although each training
update takes longer real time.

Listing 3.1 Trinaing loop with gradient accumulation
for i, batch in enumerate(dataloader):

batch = batch.to(model.device)
loss = model(batch , labels=batch).loss
loss = loss / args.accumulation_steps
loss.backward()
if (i + 1) % args.accumulation_steps == 0:

optimizer.step()
scheduler.step()
optimizer.zero_grad()

We decided to train the model with a batch size of 64. Using a smaller batch
caused the model to reach a local optimum and start overfitting after just a
few epochs. On the other hand, using a larger batch resulted in much slower
convergence rate.

For the initial value of learning rate, we observed the best results for value
1e-4. A larger learning rate caused the model to have a lower loss after the first
few hundred iterations, but then get stuck in a local optimum and not reach low
enough loss, even with using learning rate warmup. A lower learning rate led to
not having enough time to reach an optimum and underfitted the data. We used
400 warmup steps for the lreaning rate scheduler, which was roughly 1/3 of the
updates per one finetuning epoch.

The final hyperparameters we settled on were batch_size=64 (4 accumulation
steps, 16 training examples per step), epochs=5, lr=1e-4, warmup_steps=400.

By running the finetune.py script, users can finetune the ProGen2 model,
which gets automatically downloaded from Hugging Face repository containing
a mirror of the original model 1. For the inputs, users specify the train and
test files containing preprocessed sequences, as described in the previous step.
Before actually finetuning the model parameters, the program automatically infers
the special family tokens from the provided train and test datasets and extends
the tokenizer’s vocabulary and the embedding matrix. Users can specify values
of hyperparameters using command line arguments, and can also specify the
checkpoint rate, meaning how often to save the model checkpoint during the
finetuning process, and optionally also save the optimizer and scheduler.

3.3 Inference
We implement autoregressive generation of sequences using top-k sampling

with temperature. Listing 3.2 shows an implementation of autoregressive sequence
generation employing top-k sampling with temperature and caching of previous
attention keys and values, which we describe below, in PyTorch (Paszke et al.,
2019). When launching sample.py, users specify the model name from Hugging
Face 2, or optionally a path to local checkpoint, device on which to run the program
(CPU or CUDA), the batch size (how many sequences to generate in parallel),

1https://huggingface.co/hugohrban/progen2-small
2https://huggingface.co/hugohrban/progen2-small-mix7
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how many batches to generate, and maximum length of sequences. Users can also
specify the prompt, which the model uses as initial context for the autoregressive
generation. For sampling from the output probability distribution, users can
specify values of k and temperature t. There is also the --bidirectional flag,
which causes the model to first generate half of the sequence in one direction, then
reverse it, and generate the second half in the opposite direction, ideally when
using a bidirectional model.

Listing 3.2 Implementation of top-k sampling with temperature
x = torch.tensor(tokenizer.encode(prompt).ids)
generated = x
past_key_values = None
while generated.shape[-1] < max_length:

output = model(x, past_key_values=past_key_values)
past_key_values = output.past_key_values
logits = output.logits
logits = logits[:, -1, :]
logits = logits / temperature
if k is not None:

v, _ = torch.topk(logits , k, dim=-1)
logits[logits < v[:, -1].unsqueeze(-1)] = -1e9

probs = torch.softmax(logits , dim=-1)
x = torch.multinomial(probs , num_samples=1)
generated = torch.cat([generated , x], dim=-1)

At each iteration of generation, we cache the attention keys and values for
every transformer layer, so at every step of generation, we compute attention
where the query is only from the token generated at the previous step and the
keys are projections of the embeddings of all previous tokens, which decreases the
computational complexity of the attention mechanism from quadratic to linear
with respect to sequence length. In practice, this results in roughly a 10-fold speed
improvement over a naive implementation for the generation of a whole sequence.

After the generation, padding and non-residue tokens are removed and all
generated sequences are saved in a .fasta file, whose name contains the prompt
and values of sampling parameters k and t.
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4 Results
4.1 Metrics

In this section, we will briefly describe the metrics we use to evaluate the
models and the sequences they generate.

• Cross-entropy We can use cross-entropy (same as the loss function during
training), denoted as H(p, q), to assess the model’s ability to to predict
residues in sequences unseen during training. It is usually reported as
the mean across all tokens in the sequence. It is important to distinguish
whether cross-entropy is calculated on padded or non-padded sequences.

• Perplexity is defined as PPL = exp(H(p, q)). Perplexity is a monotonous
function of cross-entropy and is often reported when evaluating language
models. It has a more intuitive interpretation than cross-entropy: If a model
has perplexity x, on average it predicts the correct label with probability
1/x. So a simple model predicting one of the 20 residues with uniform
probability would have PPL = exp(−log(1/20)) = 20.

• HMMER matches – We run the hmmscan command (Johnson et al., 2010),
scanning all generated sequences against the profile HMM and measure the
percentage of sequences that have an E-value below the default threshold of
1e-2.

• Sequence identity to training data – We use the MMseqs2 easy-search
command (Steinegger; Söding, 2017) to align all generated sequences against
all training sequences. For a given query (generated) sequence, we find
the target sequence with highest percent identity of aligned residues. We
aim to achieve low sequence identity to the training data to show that the
model is generating new sequences. Not all generated sequences will produce
an alignment, MMseqs2 only reports those with at least 40% sequence
coverage, which is the ratio between alignment length and length of the
longer sequence.

• pLDDT – Predicted local distance difference test is the confidence score
from models which predict the tertiary structure of a protein, in our case
ESMFold (Lin et al., 2023). The model outputs pLDDT per-residue, but
we report the mean across all amino acid residues in the sequence.

4.2 Finetuning progress
We finetuned the ProGen2-small model (Nijkamp et al., 2022) on a dataset

consisting of 7 protein families. Each training example consisted of a special token
specifying the family followed by the "1" token denoting the N-terminus, then
the sequence itself, and lastly a "2" token for the C-terminus. We used 80% of
the data for training and remaining 20% for testing. Here we visualize the loss on
train and test set with respect to number of finetuning iterations and epochs (in
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this case one epoch was 1114 iterations). We investigate how the performance on
our task is influenced by the number of training updates and how long it takes to
overfit in the following sections.

Figure 4.1a shows the graph of model’s cross-entropy loss during finetuning.
We measure loss on training data for every batch and plot the moving average
with window size 10 to make the graph appear less noisy. We also measure loss
on test dataset, which comes from the same distribution as training data. Both
train and test loss are computed on sequences padded up to 1024 tokens. This
allows us to put several sequences in a batch and compute the loss efficiently
in parallel on a GPU. However, since loss for a sequence is computed as the
average across sequence length, this means that padded sequences have lower loss
compared to non-padded sequences, because the padding token is trivial for the
model to predict accurately. This implementation is useful, for example, when we
want to compare models trained and tested on the same data but with different
hyperparameters, or to compare the same model during the finetuning process.

Figure 4.1b, we visualize the perplexity on test data for each family separately.
We see that perplexity varies for the different families, but for most of them, we
achieve lowest perplexity after 5 finetuning epochs, mainly thanks to decaying
the learning rate during finetuning. We also plot the loss on out-of-distribution
(OOD) data, which we obtain by taking a random subset of 250 sequences from
the UniProt database (The UniProt Consortium, 2022). This shows us how the
model starts to ”forget” the original data it was trained on. For the purposes of
our task, this is not detrimental, because we want the finetuned model to only
be able to generate from the selected families. During pretraining of the base
model ProGen2 (Nijkamp et al., 2022), the authors concatenated sequences to fill
the context widow size of 1024 tokens, so the padding token was not seen during
pretraining and the loss of the base model on padded sequences was extremely
high. Contrary to the left part of the figure, here we do not use padding, so we
can directly compare with the base model, which has very high loss on padded
sequences, because it did not learn the special padding token embedding, and also
we can directly compare the families regardless of the lengths of their sequences.

4.3 Experiments
In this section we will present experiments we have conducted with the model.

We will investigate how to find suitable parameters for sequence generation and
analyze the properties of the generated protein sequences.

4.3.1 Sampling parameters
As we discussed in section 2.2.1, there are various kinds of algorithms for

decoding outputs of language models. Here, we are using top-k sampling with tem-
perature t. We want to find out how the generation behaves depending on these two
parameters. Let K = {3, 5, 10, 15, 20, 32} and T = {0.1, 0.5, 1.0, 1.5, 2.0, 5.0}. For
each pair (k, t) ∈ K×T and every family, we generate 128 sequences. For example
when generating from family PF03668, we set the prompt as <|pf03668|>1 to
specify the family special token and that we want to generate from the N-terminus.
For each generated set of sequences, we run HMMER’s hmmscan command and

27



(a) Cross-entropy loss on
train and test data

(b) Perplexity per family and
on OOD sequences

Figure 4.1 Finetuning hyperparameters: batch_size=64, epochs=5, lr=1e-4,
decay='cosine'.

from its output determine the percentage of sequences that belong to the desired
family according to the profile HMM. We use MMseqs2 to calculate the aver-
age sequence identity to training data. We show the results for the generated
sequences from the model finetuned for 5 epochs. In figure 4.1 we show the tables
of results for 3 arbitrarily chosen families out of 7. The tables on the left show
the percentage of sequences belonging to the family according to HMMER. The
tables on the right show the average sequence identity to the training data. In
cases when no HMMER hits or no alignments from MMSeqs2 were obtained, the
cell is left blank. We chose not to perform greedy decoding (k = 1), because it
generates sequences in a deterministic fashion, and since our prompt is only the
family token and 1, we could always only produce one sequence per family.

For low values of temperature the sequences have very high sequence identity
to training data. Conversely, for higher values of temperature, sequences have
much lower percentage of sequence identity to training data, but also a much
lower percentage of HMMER hits, meaning that very few of them belong to the
family. This goes along with the intuition that with higher temperature, we are
able to produce more ”creative” sequences that are not similar to the ones in
training data and with low temperature, the model is more ”conservative” with
its responses and therefore sequences are close to the training data and hence
definitely belong to the specified family.

Depending on the family and t, changing values of k can have various effects.
In most cases, low values of k cause higher HMMER match rate, but overall the
best value for k is 10 or 15. In all cases, high values of both t and k cause the
generated sequences to become ”gibberish” and none of them produce a significant
score with the profile HMM or alignment to training data using MMseqs2. This
is because at each step of generation, the model is very likely to sample from the
tail of the probability distribution.

In case of some families, sampling with a low temperature t = 0.1, causes
the model to sometimes produce many repetitive and degenerated sequences, for
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Table 4.1 HMMER matches and sequence identity for various values of top-k and
temperature

example "<|pf00002|>1MSLSLSLSLSLSLS...", which are obviously not members
of the desired families. Sampling with such low temperature is very close to
greedy decoding, which means that the model outputs the token with the highest
probability almost always. This approach often results in the repetitive nature of
the sequences, although the reasons for this pattern remain unclear.

In the following experiments, all sequences will be generated with parameters
k = 15 and t = 1.0, unless specified otherwise.

4.3.2 HMMER matches
In the previous section, we compared generated sequences for each family with

the profile HMM built for that particular family in order to find appropriate values
of k and t. Now we want to see how capable our model is in generating sequences
from the remaining families and if the model also produces false positives, meaning
that it generates sequences which belong to a different family than the one specified
by the prompt.

In figure 4.2 we compare sequences generated for each of the 7 families against
a profile HMM from each family. Each cell in the table contains percentage of the
generated sequences that produce a significant score with that profile HMM, and
therefore belong to that family. We see that for most families, the percentage of
sequences belonging to the correct family is above 70%, but for families PF00257
and PF00262 the values lowest. For the first one mentioned, it may be because it
is the lowest resource family, comprising only around 0.23% of the training data.
In case of the second low-performing family, we hypothesize that the diversity
of the sequences in this family was too high and therefore the model could not
effectively able to learn the features of this particular family. For most cases we
do not get many false positive hits. The largest amounts of false positives are
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Table 4.2 Comparison of every set of generated sequences against every profile hidden
Markov model

reported by the profile HMM for family PF00125 suggesting that perhaps this
hidden Markov model’s parameters are more prone to reporting false positives
from the set of sequences generated for family PF00262, especially because in the
opposite direction we do not get as many false positive hits.

4.3.3 Diversity of generated sequences
We want to investigate how similar are the sequences our model generates to the

sequences in the training data to make sure that it is not just copying the sequences
seen during finetuning, but is it can actually generate novel sequences. We measure
sequence identity using MMseqs2 (Steinegger; Söding, 2017) command easy-
search, which outputs sequence identity of every generated sequence compared
to every sequence in the training data. Sequence identity is calculated as the
percentage of identical residues in the alignment of the two sequences. For
each generated sequence we consider the maximum identity to any sequence in
finetuning data as its sequence identity to the whole finetuning dataset.

In figure 4.2 we plot the cumulative density function of the sequence identity for
each family of generated sequences separately. Same as the previous experiments,
the initial prompt is set as only the family token and the N-terminus token,
e.g. <|pf00002|>1. We see that there are substantial differences between the
distributions for individual families. In case of families PF00125 and PF00257 the
sequences exhibit highest sequence similarity to the training data, but for example
when generating for family PF00002, the sequences have much lower sequence
identity to finetuning data. However, in all cases, there is a decent number of
sequences below 80% sequence similarity threshold, showing that our model is not
too overfitted on any of the seven families, and these differences likely originate
from the diversity of the individual families we finetuned on. For clarity, we show
the average sequence identity for each family in table 4.3.

4.3.4 Single-family vs multi-family model
So far, we finetuned the model on several distinct families simultaneously.

The advantage of this approach is that we can prompt the model to generate
sequences from these families by just specifying the family token and as we have
shown earlier, the model can generate valid sequences from the selected family.
We want to see how the performance of our model compared to a model finetuned
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Figure 4.2 CDF of sequence identity to finetuning dataset for each family

Family Avg. seq. identity (%)
PF00002 54.9
PF00042 60.6
PF00125 82.9
PF00127 59.6
PF00257 81.6
PF00262 70.8
PF03668 61.5

Table 4.3 Average sequence identity to finetuning dataset for each family
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(a) Cross-entropy loss (b) HMMER match rate

Figure 4.3 Overfitting on the P-loop ATPase family (PF03668)

only on one protein family. We choose the family PF00262 which had the lowest
HMMER match rate in the previous experiments to see if a model finetuned
specifically on this family can generate more sequences that belong to it. We
used the same finetuning hyperparameters as before: batch-size=64, lr=1e-4,
decay="cosine", epochs=5, warmup-steps=30. The training dataset contains
3565 sequences, so one epoch takes only 55 iterations. The following table compares
model perplexity on a held-out subset of the PF00262 family, HMMER match
rate and average sequence identity to training data of two sets of sequences – one
generated by the original 7-family model and model finetuned only on PF00262.

7-family model PF00262-only model
Perplexity 3.03 3.61

HMMER matches 40.62 55.27
Mean seq. identity 70.76 62.33

We see that despite having higher perplexity, the family-specific model is able
to generate more sequences that belong to the correct family, and also have lower
sequence identity to training data.

What does it look like when the model overfits the training data? This means
that the model memorizes the training sequences and during generation just
reproduces the sequences it has seen during training. The number of epochs
it takes to overfit depends on the choice of hyperparameters, most notably the
learning rate, and the choice of protein families. An overfitted model would have
a very high HMMER match rate, but also a very high average sequence identity
to training data. To illustrate why the HMMER match rate metric in itself is
not sufficient to asses the quality of the finetuned model, we purposefully overfit
another single-family model on family PF03668 – P-loop ATPase for 45 epochs,
starting from a learning rate 0.001, using cosine decay and batch size 64. Figure
4.3a shows the graph of train and test loss. The model achieves the lowest test
loss 0.301 after just 5 epochs. Fig. 4.3b shows the percentage of HMMER matches
and average sequence identity for sequences generated after every 5 finetuning
epochs. We see that HMMER match rate slightly increases, but is above 95%
already after 5 epochs. The average sequence identity keeps increasing almost up
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to 100%, meaning that towards the end, the model is only repeating its training
data.

As we showed earlier, despite clustering, the average sequence identity can
vary widely among different families depending on their level of conservation, so
before finetuning, we do not know what value of sequence identity we can expect.
This goes to show that cross-entropy or perplexity on test data is a more reliable
metric for evaluating the generative abilities of protein language models, but it
may take several training runs to find the right hyperparameters for our objective.

4.3.5 Directionality
The models that we trained thus far were only trained on sequences written

in the N→C direction and therefore only learned to predict the next token in one
way. The original ProGen2 models were pretrained on sequences in both directions
and the N and C termini were labeled using tokens "1" and "2" respectively.
Therefore we want to investigate if a model trained on sequences in both directions
can learn the protein language more effectively and hence generate sequences that
perform better on our evaluation metrics. This way of training the model is also
potentially more useful to end users, because they can specify a prompt which is
in the middle of the sequence, for example a conserved motif, and then continue
the generation in one direction and then the other direction.

We finetuned the model from the ProGen2-small checkpoint with the same
hyperparameters as the previous one-directional model. The finetuning in this
case took twice as many weight updates per epoch, since we doubled the amount
of finetuning data. From each checkpoint, we generated 512 sequences for each
prompt using sampling parameters k=15, t=1.0. For the prompts, we used the
special family token followed by token 1 in case of the original one-directional model
and either 1 or 2 token in case of the bidirectional model to specify the direction
of generation. After the generation, sequences generated in C→N direction, with
token 2 in the beginning, were reversed so that they could be compared with the
profile HMM. Table 4.4 shows the percentage of generated sequences that belong
to the specified family.

For 5 out of 7 families, we higher HMMER hit rate performance by generating
the bidirectional model. In case of the lowest resource family PF00257, the success
rate improves by almost 20% and in the case of the worst-performing family in the
one-directional model – PF00262 – the HMMER hit rate improves by nearly 18%
using the bidirectional model. When we compare the two directions of generation
within the bidirectional model, we see that in the majority of cases the difference
between them is just a few percent. On average across all families, the bidirectional
model generates more valid sequence in either direction than the one-directional
model, suggesting that seeing both directions of each sequence during finetuning
improves the model’s overall generation capabilities. The average sequence identity
did not differ much across the three ways of generation, the largest difference
within a family was less than 3%, which can be attributed to random noise in the
generated data.
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Protein family One-directional model Bidirectional model
N→C N→C C→N

PF00002 71.88 74.22 69.92
PF00042 79.88 77.73 75.39
PF00125 83.59 91.02 82.81
PF00127 92.58 91.41 91.41
PF00257 60.94 80.86 75.78
PF00262 40.62 55.08 58.59
PF03668 89.06 93.36 92.97
Average 74.08 80.53 78.12

Table 4.4 Percentage of sequences belonging to the specified family according to
HMMER. Comparison between one-directional and bidirectional model.

4.3.6 Unconditional generation
We would like to see what the model generates when we do not provide any

special family token, but only use "1" as the prompt, or also "2" in case of
the bidirectional model from the previous section, and if it is able to generate
sequences that are part of any of the seven families it was finetuned on. In this
way we generate 1000 sequences from the one-directional model and also 1000
sequences in both ways from the bidirectional model. The following table shows
percentage of sequences that belong to at least one of the 7 families, and if so,
which ones. We include only the families which had at least 10% of matches in
any of the three generated sets.

One-directional model Bidirectional model
N→C N→C C→N

Any family 22.32 45.14 36.58
PF00125 22.07 3.12 2.73
PF00127 0.00 37.11 19.14
PF00002 0.00 2.34 13.48

Surprisingly, the one-directional model generates predominantly sequences
from family PF00125 when no family tag is specified, although overall it generates
mostly sequences that do not belong to any family. Note, that only around 19%
of training sequences are belong to this family.

The bidirectional model is overall more successful in its generation, presumably
due to more weight updates during finetuning. When we use "1" as prompt,
meaning that it generates in N→C direction, most of the sequences belong to family
PF00127, and compared to the previous model, much fewer sequences belong to
PF00125. For the opposite direction of generation, the highest represented family
is still PF00127, but family PF00002 has substantially more members when we
generate in this direction.

4.3.7 P-loop motif
Sequences in the P-loop ATPase protein family PF03668 share a common motif

called the P-loop, or Walker A motif, wihch can be described by a Python regular
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expression r"G.{4}GK[TS]". This motif is known to have a highly-conserved
three-dimensional structure and is responsible for binding phosphate, such as
adenosine triphosphate (ATP). There is a relatively high probability, that this
pattern occurs by chance. A random sequence of 500 residues, contains the P-loop
with probability around 1.2%. Despite its name, only 61.91% of sequences in
the family actually contain this pattern and others were probably included in
the family due to having a significant match with the profile HMM constructed
from the hand-picked seed alignment. Out of the generated sequences from the
one-directional model, 58.14% of them contain the P-loop pattern. We can expect
the P-loop content to get only as high as the P-loop content in the training data,
but the fact that our P-loop content is so high, shows that the model is able to
learn more subtle features of the protein families, such as this sequence motif.

4.3.8 ESMFold visualizations
As we mentioned earlier, the confidence score from models predicting protein’s

three dimensional structure, called pLDDT, is often used as an in silico metric to
assess the quality of generated protein sequences (Watson et al., 2023). Values
of pLDDT range from 0 to 100, with 100 being the highest confidence. We used
ESMFold (Lin et al., 2023) to predict structures of several of the sequences, which
we have generated using our protein language model. We visualize a couple of
cherry-picked examples of structure predictions, for which ESMFold returns high
pLDDT, and at the same time have have relatively low sequence identity to the
training set.

Figure 4.4a contains the predictied structure of a sequence belonging to
the globins family (PF00042) shown in blue overlayed with the experimentally
determined structure of protein 1GVH from the PDB (Berman et al., 2000) shown
in green. Globins are a family of heme-contatining proteins involved in oxygen
binding and transport. Our generated protein has relatively low sequence identity
to other known proteins (71.4%) and is only 41.7% identical to 1GVH despite its
predicted fold being very similar to it. Figure 4.4b shows the prediction of an
ATP-binding protein containing the P-loop motif. Just like the previous example,
this structure is also predicted with high pLDDT, but an even lower sequence
identity to the training data.

The fact that our model is able to generate sequences, which can be predicted
with a high pLDDT score, suggests that it is indeed capable of generating novel
protein sequences yet unexplored by nature, which are likely to be well-folded into
structures that allow them to carry out their respective functions.

4.4 Learned representations
In this final section, we will not examine the generated protein sequences

from our finetuned model, but rather we will investigate some of the internal
properties of the model itself. We explore its learned token representations and
how it processes its inputs via the self-attention mechanism.
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(a) Generated for family PF00042 (blue) and 1GVH
(green). pLDDT: 90.4, seq. id.: 71.4%

(b) Generated for family
PF03668. pLDDT: 90.9, seq.
id.: 58.6%

Figure 4.4 ESMFold structure predictions

4.4.1 New token embeddings
The embedding layer of ProGen2 (Nijkamp et al., 2022) was initialized ran-

domly without any prior knowledge of physiochemical properties of individual
residues. Following this, we also initialized the special family token embeddings
with random values from the normal distribution with zero mean and small vari-
ance. In Figure 4.5, we visualize principal component analysis (PCA) to two
dimensions of all learned embeddings from our one-directional finetuned model,
including amino acid residue embeddings, as well as embeddings of special tokens.
Each amino acid in the protein has unique properties determined by its chemical
composition and the structure of its side chain. We see that using self-supervised
learning, the model is able to learn the properties of amino acids. We color the
individual residues depending on whether they are aromatic, polar, small, or
aliphatic. Note, that in reality, these properties are more complex, and one amino
acid may belong to several of these groups. We notice that the special tokens
1, 2 are close together as they denote the beginning or end of a sequence. The
special family tokens are all clustered together, near point (0, 0), suggesting that
their vector representations have not shifted much since their initialization.

4.4.2 Attention head visualization
Key part of the transformer architecture is the self-attention mechanism. It

allows the model to handle dependencies and relationships between input tokens
regardless of their distance within the context window. In our case, each of the
12 layers in the model contains 16 attention heads, which process the input in
parallel, independently of each other, and after that their individual outputs are
concatenated and passed to the next layer. This allows each attention head to
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Figure 4.5 PCA of token embeddings

focus on different properties of the input sequence. Generally, it may be hard to
interpret the specific function of a given attention head within the model. Since
our model follows the decoder-only architecture, the attention is causal, meaning
that each token only attends to the preceding tokens, since during autoregressive
generation, we can only see the past tokens, not the future ones. Here, we
highlight a few selected attention heads to better understand how input data
is processed inside the model. In this case, the input was a randomly chosen
protein sequence from the training dataset. We visualize the attention weights,
which is the matrix output of softmax(QKT /

√
dk), so each row is a probability

distribution over the previous tokens. Figure 4.6a shows a visualization of three
different attention heads, each with significantly different attention weights on
the same input sequence (we only show attention over the first 20 tokens). For
example, we see that in most cases, head 8 in layer 1 attends to the token 4
positions earlier, which may suggest that it plays a role in processing alpha helices,
because in an alpha helix, a hydrogen bond is formed between two amino acids
four positions apart in the sequence. Interestingly, in layer 6, head 7, very little
attention is paid to the special family token, which we denote as FT in the figure,
for simplicity. It is the case in the majority of attention heads, that the family
token is usually not attended to, especially when longer context is available. To
highlight this, in Figure 4.6b, we feed the same input sequence into the base model
and the finetuned model. Overall, the patterns look very similar, except that in
almost every level, except that the family token is mostly ignored. Despite this,
as we have shown earlier, the model is able to perform its task well, and more
importantly, is able to distinguish between the respective families. This implies,
that the special token is only important during early parts of generation, and
later the model is able to rely on the residue tokens to understand what family is
being generated.

Finally, in figure 4.7, we show two attention heads on a longer context window
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(a) Attention weights from three different attention heads of the finetuned model

(b) Comparison between attention of base and finetuned model

Figure 4.6 Visualization of attention heads

of size 150 tokens, taken from the same sequence as before. In figure 4.7a, we
depict attention weights from head 8 in layer 4. We notice several vertical lines,
usually highlighting part of the input sequence around 25 tokens in the past. These
could represent a significant part of the protein sequence, such as a sequence or
structural motif, an active or biding site, etc. Figure 4.7b shows another attention
head, which mostly focuses on the last few tokens at every step, but also the very
beginning of the sequence, again, except for the family token.
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(a) (b)

Figure 4.7 Attention over a larger context length

39



5 Discussion
We have finetuned a generative protein language model on a set of protein

families and shown that users can effectively prompt the model by only specifying
a single family token. There are limited in silico benchmarks for assessing quality
of protein sequences, since their actual functions and properties can be observed
only in a living cell, so it would be very interesting to see if someone can use this
model to generate sequences, synthesize them and experimentally validate their
properties.

We have invested quite a lot of time into finding the right finetuning hyperpa-
rameters and try to provide a general guideline based on our empirical observations
about how each hyperparameter influences the finetuning process.

5.1 Future ideas
We have developed a bidirectional model trained on both directions of the

protein sequence and our provided sampling script can perform bidirectional
generation, where the original prompt ends up in the middle of the final generated
sequence. We have, however, chosen not to perform such bidirectional prompting
experiments, because due to lack of deeper biological knowledge we were not sure
how to choose prompts that would work well in practice, such as conserved regions
or motifs.

An obvious extension of this work would be to increase number of families we
are finetuning the model on to see how far we can push the limits of how many
new control tokens the model can learn. Another idea is to use special tokens
not only for protein families, but also for specific properties. This would give the
users even more control over the generation, because they could specify multiple
special property tokens per sequence and create proteins tailored specifically to
their needs, similarly to how the original ProGen model (Madani; McCann, et al.,
2020) functioned. We see this lack of controllability as a major drawback for
de novo protein sequence design using autoregressive language models. Large
language models in NLP have seen tremendous success by instruction tuning to
make them useful as conversational assistants (OpenAI, 2024) and hopefully this
can be someday adapted in protein engineering. Structure design of proteins has
become very popular recently (Watson et al., 2023), but the sequence space is the
ultimate design space for proteins, since every protein is fully determined by the
sequence of residues.

There exist several techniques for more efficient finetuning of large language
models, such as quantization (Zafrir et al., 2019), which uses lower precision for
storing the parameters and therefore makes the model much more light-weight and
would allow users to work with much larger models. Another approach we would
like to try is prompt tuning (Lester et al., 2021), which involves only updating the
new token embeddings, instead of all model weights and would greatly decrease
the memory requirements for finetuning a large model. Another similar technique
called low rank adaptation (LoRA Hu et al., 2021) introduces new trainable
intermediate layers, while keeping rest of the model freezed, which also greatly
decreases compute requirements for finetuning. Although the smallest ProGen2
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checkpoint has been shown to work well in case of 7 families, larger checkpoints
may need to be used in order to finetune on more families or other special property
tokens, which would require using some of the previously mentioned methods for
parameter efficient finetuning.
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Conclusion
Designing new proteins with desired functions is an important problem in drug

design and therapeutics development. Deep neural networks and large language
models have proven useful for many tasks, including de novo protein design, which
could accelerate the drug discovery process. Exploring properties and abilities of
these machine learning models is an interesting area of research.

The goal of this work was to provide a more controllable generation interface for
a pre-trained protein language model (Nijkamp et al., 2022). We have finetuned
the model on seven distinct protein families and examined the properties of
sequences generated by the model. We have shown that the sequences our models
generate belong to the families specified by the prompt and can bear low similarity
to already existing proteins. This is usually sufficient for biologists who aim
to synthesise proteins in a laboratory, because commonly tens of thousands of
sequences can be generated by the autoregressive model cheaply and in a relatively
short amount of time, and afterwards they can select top candidate proteins to
be assembled in a living organism based on their respective objectives, which is
comparatively much more expensive.

Furthermore, our code and models are publicly available, and give users the
ability to finetune the model and generate sequences from protein families of their
choice, or use the finetuned models described in this work for generation of novel
protein sequences.
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A Attachments
A.1 Code

Code for this thesis is available at https://github.com/hugohrban/ProGen2-finetuning.
Description of provided files:

• README.md contains a description of provided python scripts illustrated by
a simple workflow that finetunes the model on 3 protein families.

• download_pfam.py described in section 3.1, downloads Pfam entries speci-
fied by user.

• prepare_data.py described in section 3.1 preprocesses the downloaded data
and adds special family tokens.

• finetune.py described in 3.2 finetunes a ProGen2-small model on prepro-
cessed data.

• sample.py described in section 3.3 generates sequences using top-k sampling
from a finetuned model or the base model.

• Files in the models/progen directory, namely modeling_progen.py and
configuration_progen.py are adapted from the original authors Nijkamp
et al., 2022 and define the model architecture and configuration.

Users can run all scripts with the --help or -h argument to display a help
message and a list and explanation of all available arguments.

A.2 Models
All models described in this work are available at Hugging Face (Wolf et al.,

2019).

• https://huggingface.co/hugohrban/progen2-small – Base ProGen2-
small model (Nijkamp et al., 2022).

• https://huggingface.co/hugohrban/progen2-small-mix7 – Model fine-
tuned on 7 families, only in N →C direction.

• https://huggingface.co/hugohrban/progen2-small-mix7-bidi – Con-
tains the model finetuned on 7 families in both directions.
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