
MASTER THESIS

Jaroslav Kroutil

Computational methods for finding
cryptographic functions

Department of Algebra

Supervisor of the master thesis: Dr. rer. nat. Faruk Göloglu
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Title: Computational methods for finding cryptographic functions

Author: Jaroslav Kroutil

Department: Department of Algebra

Supervisor: Dr. rer. nat. Faruk Göloglu, Department of Algebra

Abstract: Recent studies have demonstrated several methods on different ap-
proaches to classification of vectorial Boolean functions up to certain equivalence
relation and to finding new quadratic Almost Perfect Nonlinear (APN) functions.
In this work we explore these classification methods of vectorial Boolean func-
tions, in particular those that minimise the search space up to EA-equivalence
or linear-equivalence. We also investigate various strategies for finding quadratic
APN functions. These methods are rooted in various aspects of algebraic the-
ory. We explore the mathematical theory in more detail, and provide a guide
to practical application of the theory. We also provide implementations of these
methods and illustrate them in the context of the presented theory.

Keywords: Boolean functions, APN, equivalence, quadratic, computational meth-
ods

ii

Contents

Introduction 3

1 Notation and Preliminaries 5
1.1 General Assumptions . 5
1.2 Algebraic Theory . 6

1.2.1 Modules . 7
1.2.2 Modules over Polynomial Ring 10
1.2.3 Finite Field . 13

1.3 Introduction to Boolean Functions 13
1.3.1 Representation . 14
1.3.2 Properties . 14

1.4 Equivalence Relations . 16

2 Recursive Tree Search and Classifying up to EA-equivalence 20
2.1 Coefficients in ANF . 20
2.2 EA-invariants . 23
2.3 Algorithm . 24

2.3.1 Search for a Quadratic APN Function 25
2.3.2 Search for Quadratic APN Functions 30
2.3.3 Classifying Functions up to EA-equivalence 30

3 LE-automorphism 34
3.1 Automorphism Group . 34
3.2 Modules . 37
3.3 Representatives up to Power-Similarity 43
3.4 Algorithm . 46

3.4.1 Description . 47
3.4.2 Results . 47

4 Function Trimming 50
4.1 Definitions and Notations . 50
4.2 EA-equivalence of Trim Spectrum 51
4.3 Algorithm . 58

4.3.1 Description . 59
4.3.2 Results . 61

5 Finding Quadratic APN Functions with Maximum Linearity 63
5.1 Ortho-derivative of a Function . 63
5.2 EA-equivalence of Quadratic Boolean Functions 65
5.3 EA-equivalence of Quadratic Boolean Function with Maximum

Linearity . 66
5.4 Algorithm . 83

5.4.1 Description . 84
5.4.2 Results . 87

Conclusion 89

1

Bibliography 90

A Attachments 92
A.1 Attachment one - Python 3 Implementation of the Algorithm from

Subsection 2.3.1 . 92
A.2 Attachment two - Python 3 Implementation of the Algorithm from

Subsection 2.3.1 - modified . 92
A.3 Attachment three - Python 3 Implementation of the Algorithm

from Subsection 2.3.2 . 92
A.4 Attachment four - Python 3 Implementation of the Algorithm from

Subsection 2.3.2 - modified . 92
A.5 Attachment five - Results from Subsection 2.3.2 92
A.6 Attachment six - Python 3 Implementation of the Algorithm from

Subsection 2.3.3 . 93
A.7 Attachment seven - Python 3 Implementation of the Algorithm

from Subsection 2.3.3 - modified 93
A.8 Attachment eight - Results from Subsection 2.3.3 93
A.9 Attachment nine - Python 3 Implementation of Algorithm from

Chapter 3 . 93
A.10 Attachement ten - Results from Chapter 3 94
A.11 Attachment eleven - Python 3 Implementation of the Algorithm

from Chapter 4 . 94
A.12 Attachment twelve - Results from Chapter 4 94
A.13 Attachment thirteen - Python 3 Implementation of the Algorithm

from Chapter 5 in Python 3 . 95
A.14 Attachment fourteen - Results from Chapter 5 95

2

Introduction
S-boxes, or substitution boxes, play a crucial role in modern symmetric cryp-
tographic systems. They are primarily used to introduce non-linearity into the
encryption process, which is essential to resist linear and differential cryptanalysis
attacks.

The relationship between S-boxes and vectorial Boolean functions is quite
profound. An S-box can be thought of as a vectorial Boolean function, which
is a function that maps an n-dimensional Boolean vector to an m-dimensional
Boolean vector. The properties of these functions, such as non-linearity, algebraic
degree, and differential uniformity, combined affect the strength of the S-box and,
consequently, the security of the entire cryptographic system.

Almost Perfect Nonlinear (APN) functions, are a special class of vectorial
Boolean functions. They have the best possible differential uniformity, a property
that is highly desirable for S-boxes. This makes it extremely difficult for an
attacker to derive the key based on the differences between pairs of plaintext and
ciphertext. However, designing S-boxes based on APN functions is a complex
task and is a the subject of ongoing research in cryptography.

Equivalences between vectorial Boolean functions are of a great importance in
the study of S-boxes. Two vectorial Boolean functions are equivalent if one can be
obtained from the other by a combination of affine transformations. Understand-
ing the structure of these equivalences can lead to the discovery of new, more
efficient, and more secure cryptographic primitives and it also helps to simplify
the design and analysis of S-boxes.

The advent of quantum computers poses a new set of challenges for symmetric
cryptography. Quantum computers can potentially perform attacks on crypto-
graphic systems more efficiently than classical computers. For example, Grover’s
algorithm [1], can significantly speed up the brute-force search for a cryptographic
key. However, it is worth noting that symmetric cryptographic systems like those
using S-boxes are generally more resistant to quantum attacks than their asym-
metric counterparts. This is because the time complexity of Grover’s algorithm
scales with the square root of the key size, meaning that doubling the key length
results in a quantum-resistant symmetric encryption system. Therefore, the study
of S-boxes, vectorial Boolean functions, and their equivalences remains crucial in
the era of quantum computing.

This thesis attempts to explore and understand several methods of approach-
ing computational methods for finding cryptographic functions that have been
introduced in recent articles. We extend the theory and proofs in more mathemat-
ical theory that is usually left out of these works. We then implement algorithms
and explain them in the context of the theory presented.

In Chapter 1 we give an introduction to the definitions and notations from
algebraic theory and Boolean functions that will be used in the thesis.

In Chapter 2 we introduce the first method for searching quadratic APN
functions using recursive search tree based on [2, Section 3]. We also use two
EA-invariants to classify found functions up to EA-equivalence, which we then
use to implement an algorithm for such classification.

In Chapter 3 we introduce a method for finding representatives for linear-

3

equivalence classes for vectorial Boolean function in a given dimension, using [2,
Section 4], [3, Section 4] and module theory from [4, Chapters 10 and 12]. Such
representatives are tuples of matrices in rational canonical form. Based on the
theory, we present an algorithm for finding such tuples.

In Chapter 4 we introduce the theory and algorithm of function trimming
based on [5, Section 3], which for a given APN function in dimension n can find
APN functions in dimension n− 1.

In Chapter 5 we introduce the theory and algorithm for finding quadratic
APN functions with maximum linearity based on [5, Section 5]. Using a quadratic
APN function from Fn

2 to Fn
2 , we can construct a quadratic APN function with

maximum linearity from Fn+1
2 to Fn+1

2 .

4

1. Notation and Preliminaries
In this chapter we will introduce the most important definitions, notations, the-
orems and propositions. These statements will be necessary for the following
chapters, where we will prove more complex theorems based on them. Most of
the content of this chapter is based on [6], [5, Section 2] and on the [4, Chapter
1].

1.1 General Assumptions
This section is dedicated to the notation which is used throughout the thesis. We
use the notation := in the sense of “define” to define a new element/set/etc.

We assume that n ∈ N, where N is the set of all positive integers, Fq denotes
the finite field with q elements (q ∈ N, such that q = pn, where p is prime), In

denotes the identity matrix of dimension n, 0 denotes zero element, thus zero
vector, zero matrix and zero number (depending on the context), and L(Fn

2 ,F
m
2)

denotes all linear mappings from Fn
2 into Fm

2 . Note that any L ∈ L(Fn
2 ,F

m
2) can

be represented by matrix with n columns and m rows.
For an n × m matrix A we denote the transpose of the matrix A as AT .

We consider the elements y ∈ Fn
2 to be column vectors, so yT is a row vector.

We only distinguish between column and row vectors when we use this vector
in operations where the form is important, i.e. matrix multiplication. We will
sometimes use the notation a⊕ b for a, b ∈ Fn

2 , a = (a1, . . . , an), b = (b1, . . . , bn),
where a⊕ b = (a1 + b1, . . . , an + bn) and the addition is in F2 to indicate that we
are working on elements from Fn

2 . Also for u, x ∈ Fn
2 we will denote the monomial∏︁n

i=1 x
ui
i by xu.

We denote by GL(n,F2) the group of n × n invertible matrices over F2 and
AGL(n,F2) denote the group of affine bijections on Fn

2 . Note also that an affine
function A : Fn

2 → Fm
2 has the form

A(x) = L(x) + c,

where x ∈ Fn
2 , L ∈ L(Fn

2 ,F
m
2) and c is a constant from Fm

2 . For n,m, p, q ∈ N and
matrices A,B over a field F such that

A =

⎛⎜⎜⎝
a11 · · · a1n
...
am1 · · · amn

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
b11 · · · b1q
...
bp1 · · · bpq

⎞⎟⎟⎠
we have a defined diag(A,B) as

diag(A,B) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1n 0 · · · 0
...
am1 · · · amn 0 · · · 0
0 · · · 0 b11 · · · b1q
...
0 · · · 0 bp1 · · · bpq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5

Let us consider a finite set A. We will denote the cardinality of this set as |A|.
We will also use the notation [a], where a is a positive real number, to denote the
integral part of a, therefore [a] := max{m ∈ Z | m ≤ x}.

1.2 Algebraic Theory
In this thesis we assume that the following terms are familiar to the reader and
do not need to be defined in this thesis. Such terms are group, abelian group,
ring, principal ideal domain (P.I.D. for short) and field. However, the definitions
are given in [4, Chapter 10].

Definition 1. A mapping ⟨·, ·⟩ : Fn
2 ×Fn

2 → F2 is a symmetric bilinear form if it
satisfies

1. ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ Fn
2 ,

2. ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩ for all u, v, w ∈ Fn
2 ,

3. ⟨αu, v⟩ = α ⟨u, v⟩ for all α ∈ F2 and for all u, v ∈ Fn
2 .

Definition 2. The inner product is a symmetric bilinear form such that

⟨·, ·⟩ : Fn
2 ×Fn

2 → F2

(u1, . . . , un), (v1, . . . , vn) ↦→ u1v1 + u2v2 + · · ·+ unvn.

Definition 3. The Hamming weight of the vector u ∈ Fn
2 , u = (u1, . . . , un) is

the number of ui such that ui = 1, where i ∈ {1, . . . , n}. We will denote the
Hamming weight of the vector u as wtH(u).

Definition 4. Let u = (u1, . . . , un) ∈ Fn
2 and v = (v1, . . . , vn) ∈ Fn

2 . We say
that u is covered by v, denoted by u ⪯ v, if these two vectors satisfy ui ≤ vi

∀i ∈ {1, . . . , n}.

Now we prove two remarks about the relation from the definition above.
Remark. Let u = (u1, . . . , un) ∈ Fn

2 , v = (v1, . . . , vn) ∈ Fn
2 and w = (w1, . . . , wn) ∈

Fn
2 . Let u ⪯ v and v ⪯ w. Then u ⪯ w.

Proof. Since u ⪯ v, we know that for all i ∈ {1, . . . , n} it holds that ui ≤ vi. Also
since v ⪯ w, we know that for all i ∈ {1, . . . , n} it holds that vi ≤ wi. Therefore
for all i ∈ {1, . . . , n} it holds, that ui ≤ vi ≤ wi =⇒ ui ≤ wi =⇒ u ⪯ w.

Remark. Let u = (u1, . . . , un) ∈ Fn
2 , v = (v1, . . . , vn) ∈ Fn

2 and w = (w1, . . . , wn) ∈
Fn

2 . Let u ⪯ v and u ⪯ w. Then neither v ⪯ w nor w ⪯ v may be true.

Proof. Let us use an example. Let us assume that

u = (0 0 1 0), v = (0 0 1 1), w = (1 0 1 0).

These vectors satisfy the conditions u ⪯ v and u ⪯ w. But because for the first
and last position in the vectors v and w we have neither v ⪯ w nor w ⪯ v.

6

1.2.1 Modules
The first algebraic structure, which we will define, is the module. Such a structure
is somewhat similar to the vector space, but with the difference that it suffices
to work over a ring instead of a field. The definitions in this subsection can be
found in [4, Chapter 10].

Definition 5. Let R be a ring. A left R-module or a left module over R is a set
M together with a binary operation + on M under which M is an abelian group,
and an action of R on M (that is, a map R ×M → M) denoted by rm, for all
r ∈ R and for all m ∈M which satisfies

1. (r+s)m=rm+sm, for all r, s ∈ R,m ∈M ,

2. (rs)m=r(sm), for all r, s ∈ R,m ∈M , and

3. r(m+n)=rm+rn, for all r ∈ R, m,n ∈M .

If the ring R has an identity element 1, we state the additional axiom:

4. 1m = m, for all m ∈M .

We will use the term “R-module M” because we only consider “left modules”
and want to emphasise the set M . For the definition of the vector space it is
sufficient to consider R as a field. This immediately gives us the observation
that modules over a field F and vector spaces over F are the same. Since we
are working with some group M , we can also restrict to some subgroup N of M ,
therefore we define the next three terms.

Definition 6. Let R be a ring and let M be an R-module. An R-submodule of
M is a subgroup N of M which is closed under the action of ring elements, i.e.,
rn ∈ N , for all r ∈ R, n ∈ N .

Definition 7. Let M be a R-module and let N1, . . . , Nn be submodules of M .
The sum of N1, . . . , Nn is the set of all finite sums of elements from the sets Ni

such that
{a1 + a2 + · · ·+ an | ai ∈ Ni, i ∈ {1, · · · , n}} .

We will denote this sum by N1 + · · ·+Nn.

Definition 8. A submodule N of M (possibly N = M) is cyclic if there exists
an element a ∈M such that N = Ra, that is, if N is generated by one element:

N = Ra = {ra | r ∈ R}.

Naturally, since we have algebraic structures, we can define mappings between
them. Thus, we define the following.

Definition 9. Let R be a ring and let M and N be R-modules. A map φ : M → N
is an R-module homomorphism if it respects the R-module structures of M and
N , i.e.,

1. φ(x+ y) = φ(x) + φ(y), for all x, y ∈M and

2. φ(rx) = rφ(x), for all r ∈ R, x ∈M .

7

An R-module homomorphism is an isomorphism (of R-modules) if it is both
injective and surjective. The modules M and N are said to be isomorphic, denoted
M ∼= N , if there is some R-module isomorphism φ : M → N .

If φ : M → N is and R-module homomorphism, let Ker(φ) = {m ∈ M |
φ(m) = 0} (the kernel of φ) and let φ(M) = {n ∈ N | n = φ(m) for some m ∈
M} (the image of φ).

Note that Ker(φ) from the definition is a submodule of M . Since the kernel is
a subgroup of M , it suffices to show that ra ∈ Ker(φ) holds for arbitrary r ∈ R
and a ∈ Ker(φ). Hence, φ(ra) = rφ(a) = r0 = 0, which implies ra ∈ Ker(φ).

Now let us state a first isomorphism theorem for modules. The theorem can
be found in [4, Section 10.2].

Theorem 1. Let M,N be R-modules and let φ : M → N be an R-module
homomorphism. Then Ker(φ) is a submodule of M and M/Ker(φ) ∼= φ(M).

Definition 10. An R-module M is said to be free on the subset A of M if for
every nonzero element m ∈M , there exist unique nonzero elements r1, r2, . . . , rn

of R and unique a1, a2, . . . , an in A such that

m = r1a1 + r2a2 + · · ·+ rnan,

for some n ∈ N∪{0}. In this situation we say A is a basis or set of free generators
for F . If R is commutative ring the cardinality of A is called the rank of M .

Note that the R-module M can be finitely generated but not free. This can
happen because we require the uniqueness of r1, . . . , rn ∈ R and this property
does not need to be provided in the module M . We will see this property in the
Proposition 5 for the F2[x]-module.

Definition 11. Let k ∈ N and M1, . . . ,Mk be a collection of R-modules. The
collection of k-tuples (m1,m2, . . . ,mk), where mi ∈ Mi with addition and action
of R defined component-wise is called the direct product of M1, . . . ,Mk, denoted
M1 ×M2 × · · · ×Mk.

Note that the direct product of M1, . . . ,Mk is also called the direct sum of
M1, . . . ,Mk and is denoted as M1 ⊕ · · · ⊕Mk. In the thesis we will sometimes
work with the direct sum of k copies of R, where k ∈ N. We will denote this as
Rk := R ⊕ R ⊕ · · · ⊕ R (k times). The action of R is defined component-wise.
This means that for r ∈ R and m = (m1, . . . ,mk) ∈M1 ⊕ · · · ⊕Mk we have

rm = (rm1, rm2, . . . , rmk).

Note that rm belongs to the direct sum of the Mi modules, since the element rmi

in each component is in the module Mi.
Now we make a remark about the relation between the sum of modules from

the Definition 7, the uniqueness of the basis of modules and the direct sum of
modules from the definition above. This will be useful later. The following
statement is based on the Proposition 5 from [4, Section 10.3]. The proof is
described in more detail in this thesis.

8

Proposition 2. Let N1, . . . , Nk, where k ∈ N, be submodules of R-module M . If
every x ∈ N1 + · · ·+Nk can be written uniquely in the form a1 + · · ·+ ak, where
ai ∈ Ni, then the map

π : N1 +N2 + · · ·+Nk → N1 ×N2 × · · · ×Nk

π(a1 + a2 + · · ·+ ak) = (a1, a2, . . . , ak)

is an isomorphism (of R-modules), therefore

N1 +N2 + · · ·+Nk
∼= N1 ×N2 × · · · ×Nk.

Proof. First we show that the given map π is homomorphism. Suppose we have
two elements a1 + · · ·+ak and b1 + · · ·+bk from N1 + · · ·+Nk such that ai, bi ∈ Ni

for i ∈ {1, . . . , k}. Hence

π(a1 + · · ·+ ak + b1 + · · ·+ bk) = π ((a1 + b1) + (a2 + b2) + · · ·+ (ak + bk))
= (a1 + b1, a2 + b2, . . . , ak + bk)
= (a1, a2 . . . , ak) + (b1, b2, . . . , bk),

where the last equation is given by the definition of the direct product (sum) of
modules, where the addition is defined component-wise. Now assume that we
have some r ∈ R. Then

π (r(a1 + a2 + · · ·+ ak)) = π(ra1 + ra2 + · · ·+ rak)
= (ra1, ra2, . . . , rak)
= r(a1, a2, . . . , ak),

where we have the last equation from the action of the element R being defined
component-wise.

Now we need to prove that the mapping π is surjective and injective. For the
surjection we choose any a ∈ N1 × N2 × · · · × Nk. This means, that there are
ai ∈ Ni such that a = (a1, a2, . . . , ak), therefore if we define α = a1 +a2 + · · ·+ak,
we get α ∈ N1 + · · ·+Nk such that π(α) = a.

For the injection let us assume that there exist a, b ∈ N1 + · · · + Nk, a ̸= b,
such that π(a) = π(b). We know that

a = a1 + a2 + · · ·+ ak for some unique ai ∈ Ni,

b = b1 + b2 + · · ·+ bk for some unique bi ∈ Ni.

The sums for a and b are unique, and since we assume that a ̸= b, then there
exist j ∈ {1, . . . , k} such that aj ̸= bj, which implies that π(a) and π(b) differ in
the j-th coordinate. But this contradicts the assumption that π(a) = π(b).

Assuming that the elements can be written uniquely, the following proposition
allows us to better examine the structure of the direct sum of modules. The
statement is based on the Proposition 3 from [4, Section 10.3]. The proof is
described in more detail in this thesis.

9

Proposition 3. Let N1, N2, . . . , Nk be submodules of R-module M . Then if every
x ∈ N1 + · · · + Nk can be written uniquely in the form a1 + a2 + · · · + ak with
ai ∈ Ni, then

Nj ∩ (N1 ×N2 × · · · ×Nj−1 ×Nj+1 × · · · ×Nk) = 0 for all j ∈ {1, . . . , k}.

Proof. Since every x can be written uniquely, we can use the Proposition 2.
Thus we have the isomorphism π : N1 ×N2 × · · · ×Nk → N1 +N2 + · · ·+Nk.

For contradiction, let us assume that we have aj ∈ (N1× · · · ×Nj−1×Nj+1×
· · ·×Nk)∩Nj such that aj ̸= 0. We can restrict the isomorphism π by excluding
the submodule Nj. This is possible due to the fact, that each element x can
be written uniquely, so elements with j-th coordinate equal to zero can also be
written uniquely. Therefore we can apply the Proposition 2 and we get

N1 × · · · ×Nj−1 ×Nj+1 × · · · ×Nk ≃ N1 + · · ·+Nj−1 +Nj+1 + · · ·+Nk.

Using this isomorphism we know that aj = a1 + · · ·+aj−1 +aj+1 + · · ·+ak. Thus
0 = a1 + · · ·+ aj−1 − aj + aj+1 + · · ·+ ak. Thus

(0, . . . , 0⏞ ⏟⏟ ⏞
n times

) = π−1(0)

= π−1(a1 + · · ·+ aj−1 − aj + aj+1 + · · ·+ ak)
= (a1, . . . , aj−1,−aj, aj+1, . . . , ak).

Which is a contradiction to π being an isomorphism, since we have a nonzero
element (a1, . . . , aj−1,−aj, aj+1, . . . , ak) ∈ Ker(π).

Definition 12. An element m of the R-module M is called a torsion element if
rm = 0 for some nonzero element r ∈ R. The set of torsion elements is denoted

Tor(M) = {m ∈M | rm = 0 for some nonzero r ∈ R} .

1.2.2 Modules over Polynomial Ring
In this subsection we will bring the theory from the previous subsection into the
scope of this thesis. The most used algebraic structure will be for us a finite
field F2. Over this finite field we will consider an n-dimensional vector space
Fn

2 . This vector space satisfies all the properties of the definition of an R-module
(Definition 5), thus we can understand the Fn

2 as a F2-module Fn
2 .

Another useful observation is that we can also consider the Fn
2 vector space

over F2 as a F2[x]-module Fn
2 , since F2[x] is a polynomial ring. This needs some

explanation, as the observation is not very straightforward. It follows [4, Section
10.1] but we put it in the scope of the F2[x]-module Fn

2 .
First we have to choose an arbitrary linear transformation T from Fn

2 to Fn
2 .

This transformation is mandatory for defining the action from the definition of the
R-module. Note that any linear transformation can be expressed in the matrix
form. Thus, applying this transformation to the vector v ∈ Fn

2 can be understood
as multiplying the vector v by the matrix representing such a transformation

10

from the left side. Also, since we are considering linear transformations, we have
the following property for two linear transformations A,B : Fn

2 → Fn
2 and two

elements α, β ∈ F2:

(αA+ βB)(v) = α(A(v)) + β(B(v)).

For the linear transformation T we define

T 0 = I,

...
T k = T ◦ T ◦ · · · ◦ T (k times),

where I is the identity map of Fn
2 → Fn

2 , ◦ denotes the composition of the map-
pings, and k ∈ N ∪ {0}.

Now we define the action of a polynomial in x on Fn
2 . Let p(x) be an arbitrary

polynomial in F2[x] such that

p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0.

Then for v ∈ Fn
2 we define an action of the ring elements p(x) on the module

element v by

p(x)v =
(︂
akT

k + ak−1T
k−1 + · · ·+ a0

)︂
(v)

= akT
k(v) + ak−1T

k−1(v) + · · ·+ a1T (v) + a0v.

From this definition of the action we can say that x acts on Fn
2 as the linear

transformation T . We can observe that this definition of the action on Fn
2 is

consistent with the action of the field F2 on the vector space Fn
2 , since the field F2

is a subring of F2[x] as constant polynomials. Thus our definition of the action
F2 extends to the action on F2[x].

Now we make an observation about Tor(Fn
2). Since we have defined the action

of x on Fn
2 , we can now observe Tor(Fn

2). From the Definition 12 we have

Tor(Fn
2) = {v ∈ Fn

2 | pv = 0 for some nonzero p ∈ F2[x]} .

Since all elements of F2[x] are of the form

p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0,

where k ∈ N ∪ {0}. We can follow the previous observation and therefore choose
any linear transformation T : Fn

2 → Fn
2 and vector v ∈ Fn

2 , thus

p(x)v = akT
k(v) + ak−1T

k−1(v) + · · ·+ a1T (v) + a0v.

The above equation can be understood as a linear combination of elements
from Fn

2 . These elements are T k(v), T k−1(v), · · · , T (v), v and the coefficients
ak, ak−1, . . . , a1, a0 ∈ F2. Since we know that Fn

2 is a finitely generated vector
space of dimension n, then any sequence of n + 1 elements from Fn

2 is linearly
dependent, thus for any v ∈ Fn

2 there exist bn, . . . , b0 ∈ F2 such that

bnT
n(v) + bn−1T

n−1(v) + · · ·+ b1T (v) + b0v = 0.

11

If we denote r(x) = bnx
n + bn−1x

n−1 + · · · + b1x + b0, then r(x) ∈ F2[x] and
r(x)v = 0, which implies that v is a torsion element, and since our choice of v
was arbitrary, we get that Fn

2 = Tor(Fn
2).

As mentioned earlier, some modules can be finitely generated but not free.
This is the case of the module Fn

2 . The vector space Fn
2 is finitely generated over

F2, thus it is finitely generated over F2[x] using the action of elements from F2[x]
on Fn

2 . But while the F2-module Fn
2 is free, the F2[x]-module Fn

2 is not free. We
will prove this in the following statements.

The following proposition is general, as we will need it later for a module other
than the F2-module Fn

2 . It is based on the theory from [4, Section 10.1].
Proposition 4. Let R be a ring with identity and let m ∈ N. Then R-module
Rn is free module of rank n over R.

Proof. We assume that R contains identity, so we can define the set A =
{e1, e2, . . . , en}, ei ∈ Rn for i ∈ {1, . . . , n}, where ei consists of identity on the
i-th component and zero on the j-th component for all j ̸= i.

Consider any nonzero element v ∈ Rn such that v = (v1, . . . , vn), where vi ∈ R.
Then we can express v using elements from the set A. Thus

v = v1e1 + v2e2 + · · ·+ vnen.

This gives us a unique expression of the v, since the i-th component of v is only
affected by the i-th summand viei, so the i-th component is equal to vi. Therefore
we found the basis A with cardinality n.

Proposition 5. F2[x]-module Fn
2 is not free.

Proof. Suppose for the sake of contradiction that Fn
2 is free as a F2[x]-module.

Then there exist basis b1, . . . , bk ∈ Fn
2 , k ∈ N such that ∀v ∈ Fn

2 , v ̸= 0,

v = r1(x)b1 + r2(x)b2 + · · ·+ rk(x)bk, (1.1)

where r1, . . . , rk ∈ F2[x] are unique nonzero elements. Since Tor(Fn
2) = Fn

2 ,
we know that ∀bi, i ∈ {1, . . . , k} there exist nonzero pbi

(x) ∈ F2[x] such that
pbi

(x)bi = 0. Therefore

r1(x)b1 + r2(x)b2 + · · ·+ rk(x)bk = v − 0
= v − (pb1(x)b1 + pb2(x)b2 + · · ·+ pbk

(x)bk) .

Thus

v = (r1(x) + pb1(x)) b1 + (r2(x) + pb2(x)) b2 + · · ·+ (rk(x) + pbk
(x)) bk.

Now we have two possible cases. If there is j ∈ {1, . . . , k} such that rj(x) ̸= pbj
(x),

then rj(x) + pbj
(x) ̸= 0, which is contradicts the uniqueness of the expression of

v in the equation 1.1.
The second case is when for all i ∈ {1, . . . , k} we have ri(x) = pbi

(x). This
implies that ri(x) + pbi

(x) = 0 and therefore v = 0, which contradicts with the
choice of v as a nonzero element.

12

1.2.3 Finite Field
Another important algebraic structure for this thesis is the finite field F2n and its
relation to the vector space Fn

2 . We are interested in the structure of the elements
of the finite field F2n . Note that F2n is an abstract notion for a finite field with
2n elements, and that such a finite field exists, since 2 is prime and we assume
that n ∈ N.

We start with the finite field F2. This finite field is isomorphic to Z2, since all
finite fields with the same number of elements are isomorphic. According to the
theory of splitting fields and finite fields [7, Chapter 28], there exists an element
α which is a root of an irreducible polynomial of degree n over Z2. Let us denote
such a polynomial by mZ2,α. This polynomial forms a finite field Z2[x]/mZ2,α

with 2n elements. This finite field is isomorphic to Z2(α), since they both have 2n

elements and two finite fields with the same amount of elements are isomorphic [7,
Chapter 28]. Thus we have an isomorphism between finite fields F2n and Z2(α).
Elements of Z2(α) are of the form

n−1∑︂
i=0

aiα
i,

where ai ∈ F2. Therefore, we can think of Z2(α) as a vector space over Z2.
Since this vector space is finite, it has a finite basis. For example, such a basis is
{1, α, α2, . . . , αn−1}.

Now we have a look at the vector space Fn
2 . This vector space is also finite and

has for example the basis e1, . . . , en, where ei ∈ Fn
2 is a zero vector with one on

the i-th coordinate, where i ∈ {1, . . . , n}. Therefore we can introduce a mapping
φ of vector spaces such that

φ : Z2(α)→ Fn
2

αi ↦→ ei+1,

where i ∈ {0, . . . , n − 1}. This mapping is an isomorphism of the vector spaces
Z2(α) and Fn

2 , thus we have that F2n and Fn
2 are isomorphic as vector spaces.

This implies that the vectorial Boolean function F : Fn
2 → Fn

2 can be understood
as a function from F2n to F2n .

In the thesis (usually in algorithms) we will denote vectors of Fn
2 by non-

negative integers, because each vector of Fn
2 corresponds to the binary notation

of a non-negative integer a ∈ {0, . . . , 2n − 1}.

1.3 Introduction to Boolean Functions
Definition 13. A Boolean function in dimension n is a function from the n-
dimensional vector space Fn

2 to F2.
We usually do not include the dimension when we use the term Boolean func-

tion, or we can say Boolean function in n variables, since the n is the number of
input bits in the Boolean function.
Definition 14. Let f1, . . . , fm be Boolean functions from Fn

2 to F2. The function
F : Fn

2 → Fm
2 given by F (x) = (f1(x), . . . , fm(x)), where x ∈ Fn

2 , is called
vectorial Boolean function. The functions fi(x), where i ∈ {1, . . . ,m}, are called
coordinate functions of F .

13

1.3.1 Representation
From [6] or [8, Section 2.2.1] we know that any Boolean function f can be uniquely
expressed in Algebraic Normal Form (ANF for short) as follows

f(x) =
∑︂

u∈Fn
2

au

n∏︂
i=1

xui
i ,

where au ∈ F2, x = (x1, . . . , xn), u = (u1, . . . , un). And similarly for the vectorial
Boolean function F

F (x) =
∑︂

u∈Fn
2

au

n∏︂
i=1

xui
i ,

where au ∈ Fn
2 , x = (x1, . . . , xn), u = (u1, . . . , un).

We will also represent functions in the form of look-up tables. For the vectorial
Boolean function F : Fn

2 → Fm
2 , where m ∈ N, the look-up table is an array with

2n positions denoted from 0 to 2n − 1. This denotation represents the vector of
Fn

2 as an input to the vectorial Boolean function. Thus, at the i-th position we
have the value F (i).

1.3.2 Properties
Definition 15. A vectorial Boolean function F : Fn

2 → Fm
2 is called almost

perfect nonlinear (APN for short) if

F (x) + F (x+ a) = b

has at most 2 solutions for all a ̸= 0 ∈ Fn
2 , b ∈ Fm

2 .

One of the most important properties for us is that the vectorial Boolean func-
tion can be APN. This property gives us the ability to deal with the (non)linearity
of the Boolean function. Since linearity is a bad property for functions to have in
terms of linear cryptanalysis, we are interested in those that are almost non-linear.

The reason, why the following definition works with two solutions and not
just one is very much simple. Suppose we have a vectorial Boolean function
F : Fn

2 → Fn
2 and we have found some x ∈ Fn

2 such that for all a ̸= 0, a ∈ Fn
2 and

for all b ∈ Fn
2 satisfies F (x) + F (x + a) = b. Now let us take some y = x + a.

This gives us the following

F (y) + F (y + a) = F (x+ a) + F (x+ a+ a) = F (x+ a) + F (x) = b.

This implies that whenever we have found a solution x of the equation F (x) +
F (x+a) = b, we know that that also y = x+a is also a solution of this equation,
so the minimum number of solutions (if any solution exists) is two, since a ̸= 0.

Definition 16. Let α ∈ Fn
2 \{0} and β ∈ Fn

2 . Let F be a vectorial Boolean
function such that F : Fn

2 → Fn
2 . The Difference Distribution Table (DDT for

short) is a two-dimensional array in which the rows correspond to all possible
values of α and the columns correspond to all possible values of β. The element
in the α-th row and the β-th column will then be

DDTF
α,β = |{x ∈ Fn

2 | F (x) + F (x+ α) = β}| .

14

The DDT of the vectorial Boolean function F is useful to decide whether the
function F is APN or not. It is enough to look in the table, and if in any position
there is a number greater than 2, then the function F is not APN. Because of
the property we mentioned after the definition of APN, we know that the values
in DDT are even numbers. This property can be used in some algorithms to
find APN functions by evaluating DDT for the function. If the value in DDT is
greater than 2, then the function cannot be APN.

Using the DDT we can define the differential spectrum. This spectrum will
have an impact in the Chapter 2 where we will prove that such a spectrum is
invariant under a certain equivalence relation of vectorial Boolean functions.
Definition 17. Let F : Fn

2 → Fn
2 be a vectorial Boolean function. The differential

spectrum is the multiset of the values DDTF
α,β.

Definition 18. The algebraic degree of a Boolean function f : Fn
2 → F2 with

ANF
f(x) =

∑︂
u∈Fn

2

au

n∏︂
i=1

xui
i ,

where au ∈ F2, is defined as

deg(f) = max{wtH(u) : u ∈ Fn
2 | au ̸= 0}.

The algebraic degree of a vectorial Boolean function F : Fn
2 → Fm

2 is defined
as the maximum algebraic degree over all of its coordinate functions.

Functions with an algebraic degree of 2 are called quadratic. Functions with
an algebraic degree of 1 or less are called affine.

Definition 19. Let F : Fn
2 → Fn

2 be a vectorial Boolean function. A component
of F is a function Fn

2 → F2, x ↦→ ⟨b, F (x)⟩, where b ∈ Fn
2 \{0}. The Walsh

transform of F at the point (α, β) ∈ Fn
2 ×(Fn

2 \{0}) is defined asˆ︁Fβ(α) :=
∑︂

x∈Fn
2

(−1)⟨α,x⟩+⟨β,F (x)⟩

and the linearity of F corresponds to the maximum absolute value of its Walsh
transform, i.e.,

max
α∈Fn

2 ,β∈Fn
2 \{0}

⃓⃓⃓ ˆ︁Fβ(α)
⃓⃓⃓
.

We have given the definition for vectorial Boolean functions, but the Walsh
transform and linearity can also be defined for Boolean functions. In this case,
in the definition of the Walsh transform, we can replace the component ⟨β, F (x)⟩
with the value of the Boolean function for the entry x. In the definition of
linearity, we search for the maximum only over all α ∈ Fn

2 , since we have no β.
We can put the values of Walsh transform into a two-dimensional array, thus

we define the following.
Definition 20. Let α ∈ Fn

2 and β ∈ Fn
2 \{0}. Let F be a vectorial Boolean func-

tion F : Fn
2 → Fn

2 . The Walsh spectrum, denoted by WF , is a two-dimensional
array whose rows correspond to all possible values of α and whose columns cor-
respond to all possible values of β. The element in the α-th row and the β-th
column is ˆ︁Fβ(α). Therefore

WF =
{︂ ˆ︁Fβ(α) | α ∈ Fn

2 , β ∈ Fn
2 \{0}

}︂
.

15

Definition 21. Let n ∈ N, n > 2 and Fn
2 . We say that a quadratic APN function

F : Fn
2 → Fn

2 has maximum linearity if it has linearity 2n−1.

As with the differential spectrum, we can define the following spectrum, which
is another invariant under a certain equivalence relation of vectorial Boolean
functions, as we will prove in Chapter 2.

Definition 22. Let F : Fn
2 → Fn

2 be vectorial Boolean function. The multiset

FF =
{︂⃓⃓⃓ˆ︂Fβ(α)

⃓⃓⃓
| α ∈ Fn

2 , β ∈ Fn
2 \{0}

}︂
is called the extended Walsh spectrum.

1.4 Equivalence Relations
In this section we will introduce four well-known equivalence relations. These
are linear equivalence, affine equivalence, extended-affine equivalence and Carlet-
Charpin-Zinoviev equivalence (CCZ-equivalence for short). We will also mention
important relations between these equivalence relations.

Definition 23. Let F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 , where n,m ∈ N, be two vec-
torial Boolean functions. We call these two functions F and G linear-equivalent,
if there exist a F2-linear automorphism of Fn

2 L and a F2-linear automorphism of
Fm

2 L′ such that
G = L′ ◦ F ◦ L.

Definition 24. Let F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 , where n,m ∈ N, be two
vectorial Boolean functions. We call these two functions F,G extended-affine
equivalent (EA-equivalent for short, denoted F ≈EA G) if there exist affine bijec-
tions A1 : Fn

2 → Fn
2 , A2 : Fm

2 → Fm
2 and an affine function B : Fn

2 → Fm
2 such

that
G = A2 ◦ F ◦ A1 +B.

Moreover, if B is a zero matrix, we call the vectorial Boolean functions F and
G affine-equivalent.

Proposition 6. The relation EA-equivalence is indeed an equivalence. In other
words, the relation EA-equivalence is reflexive, symmetric and transitive.

Proof. Let us assume that we have vectorial Boolean functions, affine bijections
and affine function as stated in the Definition 24. First we prove reflexivity.
Suppose we have given a vectorial Boolean function F : Fn

2 → Fm
2 . We want to

find affine bijections A1, A2 and affine function B such that ∀x ∈ Fn
2 it holds that

F (x) = A2 ◦ F ◦ A1(x) +B(x).

It is sufficient to choose A1 = Im, A2 = In and B as a zero matrix m× n.
Now for symmetry. Suppose we have G = A2◦F ◦A1+B, where F : Fn

2 → Fm
2 ,

G : Fn
2 → Fm

2 are vectorial Boolean functions, A1 : Fn
2 → Fn

2 , A2 : Fm
2 →

Fm
2 are affine bijections and B : Fn

2 → Fm
2 is an affine function. Since A1, A2

16

are bijections, we know that there exist their inversions, which are also affine
bijections. Therefore we can rewrite F as

F = A−1
2 ◦G ◦ A−1

1 + A−1
2 ◦B ◦ A−1

1 ,

where A−1
2 and A−1

1 are affine bijections and A−1
2 ◦ B ◦ A−1

1 is an affine function
since A−1

2 and A−1
1 are affine bijections.

Finally, we show transitivity. Suppose F,G,H are vectorial Boolean functions
such that F : Fn

2 → Fm
2 , G : Fn

2 → Fm
2 , H : Fn

2 → Fm
2 such that F ≈EA G and

G≈EA H, therefore

G = A2 ◦ F ◦ A1 +BG, H = A4 ◦G ◦ A3 +BH ,

where A1 : Fn
2 → Fn

2 , A2 : Fm
2 → Fm

2 , A3 : Fn
2 → Fn

2 , A4 : Fm
2 → Fm

2 are affine
bijections and BG : Fn

2 → Fm
2 , BH : Fn

2 → Fm
2 are affine functions.

We want to show that then F ≈EA H. Therefore

H = A4 ◦G ◦ A3 +BH

= A4 ◦ (A2 ◦ F ◦ A1 +BG) ◦ A3 +BH

= A4 ◦ (A2 ◦ F ◦ A1 ◦ A3 +BG ◦ A3) +BH .

Now we have to rewrite A4 and since A4 is an affine bijection, it is of the form
A4 = L4 + v, where L4 is a linear bijective mapping from Fm

2 to Fm
2 and v is a

vector in Fm
2 . Thus

= L4 (A2 ◦ F ◦ A1 ◦ A3 +BG ◦ A3) + v +BH

= L4 ◦ A2 ◦ F ◦ A1 ◦ A3 + L4 ◦BG ◦ A3 + v +BH .

Now let‘s look at L4 ◦A2 ◦ F ◦A1 ◦A3. L4 ◦A2 is an affine bijection because L2
is linear bijection and A2 is an affine bijection. A1 ◦A3 is also an affine bijection
since A1 and A3 are affine bijections.

The remainder is L4 ◦ BG ◦ A3 + v + BH . L4 ◦ BG ◦ A3 is an affine mapping
since L4 is linear mapping and BG and A3 are affine mappings. Also v + BH is
an affine mapping since BH is an affine function. Thus we have a sum of affine
mappings which is an affine mapping and therefore F ≈EA H.

To define CCZ-equivalence, we need to formally define a graph of a function.

Definition 25. Let F : Fn
2 → Fn

2 . We denote by ΓF the graph of the function F

ΓF = {(x, F (x)) | x ∈ Fn
2} ⊂ F2n

2 .

Definition 26. Let F , G : Fn
2 → Fn

2 . The functions F and G are CCZ-equivalent
if there exists an affine permutation σ : F2n

2 → F2n
2 such that σ(ΓF) = ΓG.

We can now establish relations between these equivalence relations.

Proposition 7. The relationship between linear equivalence, affine equivalence,
EA-equivalence and CCZ-equivalence is as follows

linear equiv. =⇒ affine equiv. =⇒ EA-equiv. =⇒ CCZ-equiv.

17

Proof. We can see the first two implications by expanding the relation of two
functions satisfying F ≈EA G. Suppose we have functions F,G and A1, A2, B as in
the definition of EA-equivalence (Definition 24). Let us assume, that A1 = L1+c1,
A2 = L2 + c2 and B = LB + cB, where L1 ∈ L(Fn

2 ,F
n
2), L2 ∈ L(Fm

2 ,F
m
2) and

LB ∈ L(Fn
2 ,F

m
2) are bijections, c1 ∈ Fn

2 and c2, cB ∈ Fm
2 . Then for any x ∈ Fn

2 we
have

G(x) = (A2 ◦ F ◦ A1)(x) +B(x)
= A2 ◦ F (L1(x) + c1) + LB(x) + cB

= L2 (F (L1(x) + c1)) + c2 + LB(x) + cB.

If we now choose c1 = 0, c2 = 0, cB = 0 and LB = 0, then we get G(x) =
L2(F (L1(x))), which satisfies definition of linear equivalence. If we keep LB = 0
and cB = 0, but we let c1 ∈ Fn

2 and c2 ∈ Fm
2 , we get G(x) = L2 (F (L1(x) + c1)) +

c2, which satisfies definition of affine equivalence. And finally, if we let LB ∈
L(Fn

2 ,F
m
2) and cB ∈ Fm

2 , then we have a formula that satisfies EA-equivalence.
For the last implication we assume that we have ΓF = {(x, F (x)) | x ∈ Fn

2},
ΓG = {(y,G(y)) | y ∈ Fn

2} and that F ≈EA G. We want to show that there exists
an affine permutation σ such that ΓG = σ(ΓF), in other words, we want σ such
that for any y ∈ Fn

2 we have some x ∈ Fn
2 which satisfies(︄

y
G(y)

)︄
= σ

(︄(︄
x

F (x)

)︄)︄
.

From the definition of EA-equivalence we have

G(x) = A2 ◦ F ◦ A1(x) +B(x).

This implies that

G ◦ A−1
1 (x) = A2 ◦ F (x) +B ◦ A−1

1 (x).

If we assume that A1(x) = L1(x)+ l1, A2(x) = L2(x)+ l2 and B(x) = LB(x)+ lB,
where L1, L2 ∈ GL(n,F2), LB ∈ L(Fn

2 ,F
m
2) and l1, l2, lB ∈ Fn

2 , we can write

A2 ◦ F (x) +B ◦ A−1
1 (x) = L2 (F (x)) + l2 + LBL

−1
1 x+ LBL

−1
1 l1 + lB,

thus if we use a substitution y = A−1
1 (x) we get(︄

y
G(y)

)︄
=
(︄

A−1
1 (x)

A2 ◦ F (x) +B ◦ A−1
1 (x)

)︄

=
(︄

L−1
1 x+ L−1

1 l1
L2F (x) + l2 + LBL

−1
1 x+ LBL

−1
1 l1 + lB

)︄

=
(︄
L−1

1 x 0
LBL

−1
1 L2

)︄(︄
x

F (x)

)︄
+
(︄

L−1
1 l1

LBL
−1
1 l1 + l2 + lB

)︄
,

which means that we have found the σ.

Our primary focus is on APN functions and EA-equivalence. We therefore state
the following proposition, which establishes a strong link between these two con-
cepts. This is an important contribution to the future chapters of this thesis.

18

Proposition 8. Let F,G be two vectorial Boolean functions F : Fn
2 → Fm

2 ,
G : Fn

2 → Fm
2 such that F ≈EA G. Then function F is APN if and only if G is

APN.

Proof. For the first implication, let us assume that G is APN. From the definition
of EA-equivalence we know, that G = A1 ◦F ◦A2(x)+B(x), where A1 : Fn

2 → Fn
2

and A2 : Fm
2 → Fm

2 are affine bijections and B : Fn
2 → Fm

2 is an affine function.
Since A2 is an affine bijection, it is of the form A2(x) = L2(x) + c2, where
L2 : Fm

2 → Fm
2 is a linear bijection and c2 ∈ Fm

2 .
Let us choose an arbitrary a ∈ Fn

2 , a ̸= 0. We define Da
G := {G(x)+G(x+a) |

x ∈ Fn
2}. Since we assume that G is APN, we know that any value G(x)+G(x+a)

will appear in the set with multiplicity at most two. We are interested in the
multiplicity of the elements of the set, thus we rewrite the condition of the set.

Da
G = {G(x) +G(x+ a) | x ∈ Fn

2}
= {A1 ◦ F ◦ A2(x) +B(x) + A1 ◦ F ◦ A2(x+ a) +B(x+ a) | x ∈ Fn

2}

The function B is affine, thus B(x+ a) = B(x) +B(a), therefore

= {A1 ◦ F ◦ A2(x) + A1 ◦ F ◦ A2(x+ a) +B(a) | x ∈ Fn
2}.

B(a) is a constant, therefore it does not affect the multiplicity of the elements.

= {A1 ◦ (F ◦ A2(x) + F ◦ A2(x+ a)) | x ∈ Fn
2}

= {A1 ◦ (F ◦ (L2(x) + c2) + F ◦ (L2(x+ a) + c2)) | x ∈ Fn
2}

= {A1 ◦ (F ◦ (L2(x) + c2) + F ◦ (L2(x) + L2(a) + c2)) | x ∈ Fn
2}

The mapping A1 is an affine bijection, therefore it does not change the multiplicity
of elements in the set. We also define y := L2(x) + c2. Thus

Da
G = {F (y) + F (y + L2(a)) | x ∈ Fn

2} = D
L2(a)
F .

We get, that Da
G = D

L2(a)
F . This means that the elements in the set DL2(a)

F have
a multiplicity of at most 2, so F is APN. For the second implication (assuming
that F is APN) we can use the same proof.

Now we give the theorem about the relation between EA-equivalence and
CCZ-equivalence for quadratic APN vectorial Boolean functions. The theorem
and proof can be found in [9].

Theorem 9. Let F,G : Fn
2 → Fn

2 be two quadratic APN vectorial Boolean func-
tions with n ≥ 2. Then F is CCZ-equivalent to G if and only if F is EA-equivalent
to G.

19

2. Recursive Tree Search and
Classifying up to EA-equivalence
This chapter introduces the first method which can possibly find new vectorial
Boolean APN functions. This method uses a recursive tree search. The number of
all possible vectorial Boolean functions grows exponentially, since for a dimension
n we have (2n)2n of possible choices. Therefore, we need to define some constraints
on the search. The whole chapter is based on the [2, Section 3].

We begin with a section introducing and proving a method for computing the
coefficients of the ANF form of a vectorial Boolean function. This method helps
us to find quadratic APN vectorial Boolean functions. These found functions can
be pairwise EA-equivalent, so in the next section we prove that the differential
spectrum and the extended Walsh spectrum are invariants under EA-equivalence,
so we can use them for classifying functions into EA-equivalence classes. The last
section is devoted to the algorithm of the recursive tree search for quadratic APN
vectorial Boolean functions and to the algorithm which places these functions in
EA-equivalence classes.

Our contribution is to present the theory in a clearer way, to prove the state-
ments in more detail, to present a corrected implementation of the algorithm
from [2, Section 3] for searching a quadratic APN vectorial Boolean functions
and describe it in the context of the theory from this chapter, to prove that the
differential spectrum and the extended Walsh spectrum are EA-invariants, and to
implement our own algorithm for classifying found functions up to EA-equivalence
using these EA-invariants.

2.1 Coefficients in ANF
In this section we will use the information provided in [10, Section 2] and [8,
Section 2.2]. The goal is to find a simple way to calculate the coefficients of the
ANF of the vectorial Boolean function. At first, we will concentrate only on the
Boolean functions. We will show, that it is possible to compute the coefficient
au ∈ F2 for u ∈ Fn

2 from an ANF of a Boolean function f using values of f for
x ⪯ u. Then we will show, that the same is possible for a vectorial Boolean
function. The following lemma and proof follows the theory from [8, Section
2.2.1].

Lemma 10. Let f : Fn
2 → F2 be a Boolean function. Let f(x) = ∑︁

u∈Fn
2
aux

u be
ANF of f . Then

f(x) =
⨁︂
u⪯x

au. (2.1)

Proof. We have ANF
f(x) =

∑︂
u∈Fn

2

aux
u.

Since this is a sum of elements in Fn
2 , we can rewrite it as

f(x) =
⨁︂

u∈Fn
2

aux
u.

20

If xu = 0, then also aux
u = 0, which means that these elements do not af-

fect the sum. Therefore, we are only interested in the case where xu = 1. We
extend the notation of the monomial, thus 1 = xu = ∏︁n

i=1 x
ui
i . Since both ui and

xi are from F2, there are only four possible cases. If xi = 0 and ui = 1, then
xui

i = 0 =⇒ xu = 0. In all other cases (xi = 0, ui = 0 and xi = 1, ui ∈ F2)
we have xui

i = 1. Therefore, if u ⪯ x we have xu = 1. This means that we can
rewrite the Boolean function f as f(x) = ⨁︁

u⪯x au.

Using the Equation 2.1, we can prove the following statement, which gives
us a simple method for computing the coefficients au just by using the values of
f(x) for x ⪯ u. The statement and proof follow Theorem 1 [8, Section 2.2].

Proposition 11. Let f : Fn
2 → F2 be a Boolean function. Let f(x) = ⨁︁

u∈Fn
2
aux

u

be ANF form of f . Then we have for each u ∈ Fn
2 that

au =
⨁︂
x⪯u

f(x)

Proof. Let us start by defining bu := ⨁︁
x⪯u f(x). With this bu, we can consider

a new function g(x), which we can define as follows

g(x) :=
⨁︂

u∈Fn
2

bux
u.

Using the Lemma 10, we can rewrite g(x) as

g(x) =
⨁︂
u⪯x

bu.

If we expand bu, we get

g(x) =
⨁︂
u⪯x

⎛⎝⨁︂
y⪯u

f(y)
⎞⎠ .

Now we want to transform these two xors so that they depend on the variable
y. To do this, we fix y. We want to know how often the value f(y) appears in
those two xors of g(x). Let u1, . . . , uk be all such vectors, that satisfy y ⪯ ui and
ui ⪯ x. Thus f(y) appears in the xors of g(x) exactly k times. This implies, that
we can rewrite g(x) as follows

g(x) =
⨁︂

y∈Fn
2

f(y)
⎛⎝ ⨁︂

y⪯u⪯x

1
⎞⎠ .

We will examine the second xor. If y ⪯ x and y ̸= x, then wtH(y) ≤ wtH(x)
must hold. Furthermore, since y ̸= x, wtH(y) < wtH(x) must hold. Thus, due
to y ⪯ u ⪯ x, the number of positions in the vector u that can be either 0 or 1,
is equal to wtH(y)− wtH(u) (the elements on the remaining positions are fixed).
This implies, that the number of v satisfying u ⪯ v ⪯ x is equal to

2wtH(x)−wtH(u),

21

which is an even number. This implies that we have a xor of an even number of
ones, so the xor is equal to zero. If neither x ⪯ y nor y ⪯ x is true, or if x ⪯ y,
then we have no possible choice for u.

The remaining case is y = x. Then we have only one possible choice for u and
that is u = y, so the second xor is equal to one. All together we have that the
second xor is equal to zero, except for the case when y = x. This implies that
g(x) = f(y) for y = x, so g(x) = f(x).

Since we know, that the ANF is unique, it must hold that au = bu for all
u ∈ Fn

2 . Therefore, ∀u ∈ Fn
2 we have that au = ⊕x⪯uf(x).

Therefore we know, that for an arbitrary Boolean function f : Fn
2 → F2 with

an ANF f(x) = ∑︁
u∈Fn

2
aux

u, we can compute au as au = ⨁︁
x⪯u f(x).

We know, that any vectorial Boolean function F : Fn
2 → Fm

2 can be expressed
as F (x) = (f1(x), . . . , fm(x)), where fi(x) : Fn

2 → F2 are coordinate (Boolean)
functions of F , for i ∈ {1, . . . , n}. We can therefore prove the following proposi-
tion.

Proposition 12. Let F : Fn
2 → Fm

2 , F (x) = (f1(x), . . . , fm(x)) be a vectorial
Boolean function with ANF such that F (x) = ∑︁

u∈Fn
2
aux

u, where au ∈ Fm
2 . Then

for all u ∈ Fn
2

au =
⨁︂
x⪯u

F (x).

Proof. Let us fix some arbitrary u ∈ Fn
2 . We want to compute au. The element au

is an m-dimensional vector. Now for all i ∈ {1, . . . ,m}, let us take i-th coordinate
from the vector, which we will denote au,i. The i-th coordinate of the function
F is determined by Boolean function fi(x). Therefore, for au,i ∈ F2, we can use
Proposition 11 and we get au,i = ⨁︁

x⪯u fi(x). Thus,

au =

⎛⎜⎜⎜⎜⎝
au,1
au,2

...
au,m

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
⨁︁

x⪯u f1(x)⨁︁
x⪯u f2(x)

...⨁︁
x⪯u fm(x)

⎞⎟⎟⎟⎟⎠ =
⨁︂
x⪯u

F (x)

Proposition 13. Let n ≥ 3, F : Fn
2 → Fm

2 , F (x) = (f1(x), . . . , fm(x)) be a
vectorial Boolean function with ANF F (x) = ∑︁

u∈Fn
2
aux

u, where au ∈ Fm
2 . The

function F (x) is quadratic if and only if for all u ∈ Fn
2 , which satisfies wtH(u) ≥ 3,

au = 0.

Proof. The proof follows directly from the uniqueness of the ANF of the vectorial
Boolean function, where au is the coefficient of the monomial xu.

22

2.2 EA-invariants
In this section we prove that the differential spectrum and the extended Walsh
spectrum are EA-invariants. We will use this property in the following section
where we present an algorithm for classifying quadratic APN vectorial Boolean
functions up to EA-equivalence. The fact that these spectra are EA-invariants is
stated without proof in [2, Section 3].

Theorem 14. Let F,G : Fn
2 → Fn

2 be two vectorial Boolean functions such that
F ≈EA G. Then differential spectrum of F consists of the same elements with
the same multiplicity as differential spectrum of G, i.e. differential spectrum is
EA-invariant.

Proof. Since F ≈EA G, we know that there exist affine bijections A1, A2 : Fn
2 →

Fn
2 and affine function B : Fn

2 → Fn
2 such that G = A2 ◦ F ◦ A1 + B. Let us take

an element a ∈ N from the differential spectrum of G. This means that for some
fixed α ∈ Fn

2 \{0}, β ∈ Fn
2 there exist x1, . . . , xa such that G(xi) +G(xi + α) = β

for i ∈ {1, . . . , a}. Thus

β = G(xi) +G(xi + α)
β = A2 ◦ F ◦ A1(xi) +B(xi) + A2 ◦ F ◦ A1(xi + α) +B(xi + α)
β = A2 ◦ F ◦ A1(xi) + A2 ◦ F ◦ A1(xi + α) +B(α)
β = A2 ◦ F ◦ A1(xi) + A2 ◦ F (A1(xi) + A1(α)) +B(α).

If we denote yi := A1(xi), then we get

β = A2 ◦ F (yi) + A2 ◦ F (y + A1(α)) +B(α)
A−1

2 (β) = A−1
2 (A2 ◦ F (yi) + A2 ◦ F (yi + A1(α)) +B(α))

A−1
2 (β) = F (yi) + F (yi + A1(α)) + A−1

2 (B(α))

and therefore
F (yi) + F (yi + A1(α)) = A−1

2 (β +B(α)) .
This implies that for α′ := A1(α) and β′ := A−1

2 (β +B(α)) we have that

F (yi) + F (yi + α′) = β′.

Since this is true for all xi ∈ {x1, . . . , xa} and A1 is an affine bijection, we have
that a belongs to the differential spectrum of F and the multiplicity of a in the
differential spectrum of F is equal to the multiplicity of a in the differential spec-
trum of G.

Theorem 15. Let F,G : Fn
2 → Fn

2 be two vectorial Boolean functions such that
F is EA-equivalent to G. Then FF = FG, i.e. the extended Walsh spectrum is
EA-invariant.

Proof. We start with notation where xT , for x ∈ Fn
2 is row vector, thus for

y ∈ Fn
2 we can write ⟨x, y⟩ = xTy.

23

Since F ≈EA G, we know that the function G = A1 ◦F ◦A2 +A3 where A1, A2
are affine bijections, so they are in a form Ai = Li + ci for i ∈ {1, 2}, where
Li is linear bijection and ci ∈ Fn

2 and A3 is affine function, which is of the form
A3 = L3 + c3, where L3 is linear function and c3 ∈ Fn

2 . We want to prove that
its possible to rewrite ˆ︃Gγ(δ), where γ ∈ Fn

2 and δ ∈ Fn
2 \{0}, in a form as ˆ︂Fα(β).

Therefore we want to find some specific α and β.

ˆ︃Gγ(δ) =
∑︂

x∈Fn
2

(−1)⟨δ,x⟩+⟨γ,G(x)⟩

We will now focus on the exponent. Therefore we have

⟨δ, x⟩+ ⟨γ,G(x)⟩ = δTx+ γT (L1 ◦ F (L2x+ c2) + c1 + L3x+ c3)

Now we denote z = L2x+ c2 which implies that x = L−1
2 z + L−1

2 c2. Thus for the
exponent

= δT
(︂
L−1

2 z + L−1
2 c2

)︂
+ γT

(︂
L1F (z) + c1 + L3L

−1
2 z + L3L

−1
2 c2 + c3

)︂
=
(︂
δTL−1

2 + γTL3L
−1
2

)︂
z + γTL1F (z) +

(︂
δTL−1

2 c2 + γT c1 + γTL3L
−1
2 c2 + γT c3

)︂
=
(︂
δTL−1

2 + γTL3L
−1
2

)︂
z + γTL1F (z) + ϵ

where ϵ = δTL−1
2 c2 + γT c1 + γTL3L

−1
2 c2 + γT c3 is a constant. Therefore

=
(︃(︂
δTL−1

2

)︂T
+
(︂
γTL3L

−1
2

)︂T
)︃T

z +
(︂
LT

1 γ
)︂T
F (z) + ϵ

= ⟨α, z⟩+ ⟨β, F (z)⟩+ ϵ,

for α =
(︂
δTL−1

2

)︂T
+
(︂
γTL3L

−1
2

)︂T
and β = LT

1 γ. Thus we have

ˆ︃Gγ(δ) =
∑︂

x∈Fn
2

(−1)⟨δ,x⟩+⟨γ,G(x)⟩ = (−1)ϵ
∑︂

z∈Fn
2

(−1)⟨α,z⟩+⟨β,F (x)⟩ = ±ˆ︂Fβ(α)

This implies that |ˆ︃Gγ(δ)| = |ˆ︂Fα(β)|, which implies that extended Walsh spectra
consists of the same elements with the same multiplicity.

2.3 Algorithm
In this section we will use the term “quadratic APN function” instead of the
term “quadratic APN vectorial Boolean function”. In the following subsections
we gradually develop an algorithm for recursive tree search of a quadratic APN
function. In the first subsection we present an algorithm that searches for a
quadratic APN function for a given dimension. In the next subsection we modify
the algorithm so that it searches for all quadratic APN functions in a given
dimension or it tries to randomly generate quadratic APN functions for a given
number of runs. In the last subsection we present an algorithm that put found
quadratic APN functions to the EA-equivalence classes.

24

All of the algorithms are implemented in the Python programming language,
but in this text we will use pseudo-code for better understanding. The imple-
mentations of algorithms and results are attached in A.

For clarity, we will use the notation, where names written in This Format are
functions, names written in “this format” (including the quotes) are arrays, and
names written in this format are integers or real numbers. We will also refer to
array[x] as the x-th position in an array “array”.

2.3.1 Search for a Quadratic APN Function
The core of the algorithm follows the algorithm from [2, Section 3], thus the
functions Add Degree Information, Remove Degree Information, Generate P,
Next Val, Add Point and Remove Point are taken from [2]. The functions Add
DDT Information and Remove DDT Information are taken from [3, Section 5].
We will use these functions and describe them in more detail in this paper. How-
ever, we will make some changes to the algorithm, because the algorithm in [2] is
not correct. This will be discussed later.

Description of the Algorithm

Our implementation of the following algorithm is attached in A.1.

Algorithm 1 APN search using recursive search tree
Output: a quadratic APN function

1: n← integer representing the dimension in which we want to search for APN
function

2: init value← −1
3: “output sbox” ← initialised as an empty array
4: “sbox” ← Generate Sbox(n)
5: “P” ← Generate P(n)
6: “DDT” ← Generate DDT(n)
7: “SUM”, “CTR” ← Generate SUM and CTR(n)
8: Next Val(0)

The lines 1-3 of the algorithm contain global variables and an array which
are initialised to the desired default values. The variable init value is set to the
value −1, which is the value, that will not appear as output from any process in
the algorithm. The variable “output sboxes” will store all APN functions found.
On the lines 4-7 more global arrays are initialised, but initialising each of them
requires a function.

We start with the function Generate Sbox. It creates an array “sbox” of size
2n, which is initialised with a value init value. The output of this function is
therefore an array with the value init value repeated 2n-times.

The next function is Generate P. Its purpose is to generate a global two-
dimensional array “P” of size 2n × 2n containing a list of 2n permutations of
{0, . . . , 2n − 1}. The randomness is provided by the random package in Python.
Its purpose is in higher dimensions, since it is not feasible to search through all
possible choices of the vectorial Boolean function (more on this later in Subsection

25

2.3.2). Therefore, we want to search through different vectorial Boolean functions
in each run of the algorithm.

The third function is Generate DDT. This function is used to generate a two-
dimensional array “DDT” of size 2n×2n. This array stores the DDT information
of the vectorial Boolean function, i.e. the i-th row is assigned to α, which is equal
to i, and the j-th column is assigned to β, which is equal to j, where α and β
are taken from the definition of DDT. Therefore for some x ∈ Fn

2 which satisfies
F (x) + F (x + α) = β, we increment the element DDT [α][β] by one. Using this
array, we can check, during the recursive search, if the function can still be APN,
or terminate the branch of the tree search and try another one.

The final initialisation function is the Generate SUM and CTR function. Its
purpose is to create 1×2n arrays “SUM” and “CTR” with all positions initialised
to zero. The array “SUM” stores information about the coefficients of the ANF
calculated according to Proposition 12, and the array “CTR” stores the number
of x already considered that satisfy x ⪯ u, since the xor in Proposition 12 runs
through all x ⪯ u.

We will now describe the following two functions: Hamming Weight and
Vector Ordering. The Hamming Weight function calculates the Hamming weight
of a given integer, which represents a binary notation as mentioned at the end of
Subsection 1.2.3.

The function Vector Ordering evaluates whether the given numbers a and b
(represented as elements from Fn

2) satisfy the relation a ⪯ b from the Definition
4. This relation is not satisfied if and only if there exists i such that ai = 1 and
bi = 0.

Now we examine the function Add Point. This function uses other two func-
tions. Therefore we will describe them as well.

1: function Add Point(x):
2: if Add DDT Information(x) then
3: return(Add Degree Information(x))
4: end if
5: return(0)
6: end function

We start with the function Add DDT Information. Its purpose is to keep the
array “DDT” updated, which means that when we call this function with the
parameter x, we have fixed x and we want to update “DDT” with all the α and
β from Definition 16. Therefore, if F (x) +F (x+α) = β, we increase the element
DDT [α][β] by two. This is because the algorithm assigns a value to the array
“sbox” in an ascending order, which means that “sbox” has a value different
from init value for all positions in [0, . . . , x]. Thus, when this function checks if
sbox[x⊕ α] ̸= init value, it can only happen if 0 ≤ x⊕ α < x. Therefore, for all
x ⊕ α > x we have sbox[x ⊕ α] = init value. An important observation is that
for every x that satisfies the equation from the definition of APN, there exists
x′ = x⊕ α that also satisfies the equation.

There are two possible cases. The first is that x < x′, thus when we examine
x we get sbox[x ⊕ α] = init value, so we do not change DDT [α][β]. But if we
examine x′ in another call of this function, we have sbox[x′] ̸= init value, so we
have to increase the DDT [α][β] by two (one for x and one for x′). During each
DDT update, the function also checks (on the line 5), if the APN property is not

26

violated. If so, it returns zero.
1: function Add DDT Information(x):
2: for α ∈ [1, . . . , 2n] do
3: if sbox[x⊕ α] ̸= init value then
4: DDT [α][sbox[x]⊕ sbox[x⊕ α]] ← increase the value by 2
5: if DDT [α][sbox[x]⊕ sbox[x⊕ α]]> 2 then
6: return(0)
7: end if
8: end if
9: end for

10: return(1)
11: end function

The function Add Degree Information checks, if the searched function can
still be quadratic during the recursive tree search. This is done by following
Proposition 13. In the array “SUM” we keep the updated values of the coefficients
au of ANF of the vectorial Boolean function searched with wtH(u) ≥ 3. We apply
Proposition 12 to the new x with the assignment value sbox[x]. On the line 4 we
check if the condition x ⪯ u is fulfilled and if so, on the line 6 we add the value
sbox[x] to the sum, which is assigned to the coefficient au (SUM [u]). Then we
check, if we consider all vectors x such that x ⪯ u. The number of such vectors
is exactly 2wtH(u). If so, we check on the line 8, that the coefficient au is zero. If
not, then the vectorial Boolean function examined cannot be quadratic.

1: function Add Degree Information(x):
2: for u ∈ [1, . . . , 2n] do
3: if Hamming Weight(u) > 2 then
4: if Vector Ordering(x, u) = 1 then
5: CTR[u]← ctr[u] + 1
6: SUM [u]← SUM[u]⊕sbox[x]
7: if CTR[u] = 2Hamming Weight(u) then
8: if SUM [u] ̸= 0 then
9: return(0)

10: end if
11: end if
12: end if
13: end if
14: end for
15: return(1)
16: end function

In summary, in the function Add Point, the addition of the point x with
the assigned value sbox[x] can be done if the APN property is not violated (via
function Add DDT Information) and if the function is still quadratic (via function
Add Degree Information).

The last function of the algorithm, before we examine the function Next Val,
is the function Remove Point, which again consists of two functions:
Remove DDT Information and Remove Degree Information. These functions do
the reverse of the functions Add DDT Information and Add Degree Information.

Finally, we can look at the function Next Val. The function takes as an input

27

the number x, which denotes the position in “sbox” (or the depth of the tree
search) that we are interested in. The values for sbox[x] are taken from the array
“P”, which contains a random permutation for each x. If this value does not
violate the condition that the vectorial Boolean function is APN and quadratic
(it passes the function Add Point on the line 8), the function calls itself at the
position x + 1. If one of the conditions is violated, or the function ends in the
depth x+ 1, the function calls the function Remove Point on the line 12.

1: function Next Val(x):
2: if isComplete(sbox) then
3: “output sbox” ← append “sbox” into the list
4: terminate all recursive searches
5: end if
6: for z ∈ [0, . . . , 2n − 1] do
7: sbox[x]← P [x][z]
8: b← Add Point(x)
9: if b = 1 then

10: Next Val(x+ 1)
11: end if
12: Remove Point(x)
13: sbox[x]← init value
14: end for
15: end function

Improvements and Changes

As mentioned above, in this subsection we will introduce some changes and im-
provements to the implementation of Algorithm 1 from [2]. We start with the
changes.

The implementation of Algorithm 1 in [2] contains two more lines before the
execution of the function Next Val (lines 4 and 5 in the implementation from
[2]). On the first one, the value 0 is assigned to the array “sbox” at the 0-th
position, therefore the vectorial Boolean function we are looking for has a zero
vector input and zero vector output. On the second, the function Add Point is
executed with the value 0.

The first one is removed in this thesis because it would restrict the search
space for the vectorial Boolean functions, since the condition sets the value for
the entire run of the algorithm and cannot be changed. Although the quadratic
APN vectorial Boolean function does not have to have a zero vector as an output
for a zero vector input. Since this line is removed in this thesis, the line with the
function Add Point(0) is also removed. It would make no sense to try to call this
function, if we had not previously set the value sbox[0].

Therefore, in the Algorithm 1 in this thesis, we try at position 0 in the array
“sbox” all values from [0, . . . , 2n − 1].

Another change is made in the function Next Val. We start with the comment
on the line 11 in the Algorithm 1 from [2]. The comment says, that the function
Next Free Position chooses the smallest i such that sbox[i] ̸= init value. But
as the algorithm is presented, this function would return 0 in every depth of
the recursive search. Therefore the function Next Free Position should return

28

the smallest i such that sbox[i] = init value. But as we mentioned, this would
mean, that there is no way, that the algorithm would change the value sbox[0] to
init value, if we strictly follow the implementation from [2], because the function
Next Free Position would never return i = 0.

The next change is to swap lines 19 and 20 of Algorithm 1 from [2]. The
function Remove Point contains the function Remove DDT Information which
operates on the value sbox[x]. Thus, if we changed sbox[x] to the value init value
first, we would get a nonsensical result.

Another change is, that we can replace the depth variable with x. The function
fills the array “sbox” in an ascending order, and since the function is first called
first with x = 0, there is no need for the depth variable.

The next change is that in the function Next Val in this thesis, we completely
remove the functions Is Complete and Next Free Position. As already men-
tioned, we start from the 0-th position and the algorithm examines the positions
in an ascending order, so the next position from x would always be x+1, therefore
we do not need the function Next Free Position. Also, the array “sbox” has
2n elements numbered from 0 to 2n − 1. Therefore, if x = 2n, we know that the
array does not contain the value init value at any position.

The last changes are in the functions Add DDT Information and Remove DDT
Information. In the [3] the functions do not return value 1. This means that
in the functions Add Point and Remove Point the functions Add Degree Infor-
mation and Remove Degree Information are never executed. Therefore we mod-
ify the functions Add DDT Information and Remove DDT Information by adding
a line that returns 1 if the for-cycle was not interrupted. We also had to modify
the functions by removing the line that checks if the Hamming weight of the α
is even. This restriction only applies to the APN permutation, but since we are
not only interested in the APN permutation, we need to remove this restriction.

Since finding a quadratic APN function may be infeasible in relatively small
dimensions (starting at n = 5), we introduce a modification where the user can
specify the number of runs and the number of seconds each run takes. In each
such run, we reshuffle the array “P”. This can improve our search, because since
the algorithm is recursive, the choice of sbox[x] for relatively small x can affect
the search in such a way, that it is impossible to find the APN function with that
choice of sbox[x]. Thus if we limit the search time with this choice, we can try
another random permutation that might lead to the result. The implementation
of the modified algorithm is attached in A.2.

Results

In dimension n = 2, 3, 4, 5 and 6 we are able to find quadratic APN function
practically instantaneously. For dimension n = 7, we were unable to find a
quadratic APN function after three attempts, each of which took 2 hours.

Using the modified algorithm we were able to find some quadratic APN func-
tions for n = 2, 3, 4, 5, 6, 7. For n = 8, 9 we were unable to find quadratic APN
functions after five tries, each for half an hour.

29

2.3.2 Search for Quadratic APN Functions
Description of the Algorithm

To have algorithm searching for all quadratic APN functions in given dimension
we modify the Algorithm 1 in a way that in the function Next Val we modify
the line 4 that it only terminates the recursive iteration in which is the algorithm
running in that moment. The implementation of the algorithm is attached in
A.3.

Improvements and Changes

Again, since running the algorithm for n = 4 and larger can be infeasible, we
modify the algorithm in similar way as the algorithm in the previous subsection.
We can limit the time of each run and the number of runs. This will lead to
the fact that we will not find all functions, but it can rise our chances to find at
least some functions. If we modify the algorithm by adding more runs (in each
we generate new array “P”), we can find some functions multiple time. Thus
we use function Remove Duplicates which return list of unique functions. The
implementation of the modified algorithm is attached in A.4.

Results

For n = 2 we are able to find all 192 quadratic APN functions. For n = 3 we are
able to find all 688128 quadratic APN functions, therefore those are all quadratic
APN functions in these dimensions. This correspond to the found APN functions
in [11, Table 4].

Using the modified algorithm we were able to find for 77014 quadratic APN
functions for n = 4. For n = 5 we were able to find 28975 quadratic APN
functions. For n = 6 we were able to find 13767 quadratic APN functions. For
n = 7 we were able to find 2 quadratic APN functions. All of these results are
attached in A.5.

2.3.3 Classifying Functions up to EA-equivalence
Description of the Algorithm

In the previous subsection we found some quadratic APN functions. Now we want
to put them into EA-equivalence classes. Thus we introduce an algorithm that
do that. The algorithm uses the theory from Section 2.2. The implementation of
the algorithm is attached in A.6.

Algorithm 2 Classifying found quadratic APN vectorial Boolean functions up
to EA-equivalence
Output: a list “classes” with classify functions to the EA-equivalence classes

1: n← integer representing the dimension in which we want to search for APN
function

2: init value← −1
3: “functions” ← initialised with look-up tables of functions we want to sort
4: “classes” ← Put Functions Into EA Classes(“functions”)

30

Before we examine the Put Functions Into EA Classes function, we need to
describe the Is Complete and Next Free Position functions. These functions
are only mentioned in [2]. The Is Complete function checks whether the given
list contains the value init value at any position. If so, the output of this function
is 0. Otherwise, the output will be 1.

The next function is Next Free Position. It’s purpose is to find the first
position in the given list that contains the value init value and give that position
as an output. This function can be used in the Put Functions Into EA Classes
function only after the Is Complete function has returned 0, which means that
there is a position in the list containing the value init value.

Now we can focus on the function Put Functions Into EA Classes. It’s pur-
pose is to put the given array “functions” of quadratic APN vectorial Boolean
functions into EA-equivalent classes. To indicate if the function is assigned to
some EA-equivalent class, we use the array “is in some class”. The while loop
checks if there is a function that is not in any EA-equivalence class. If there is
such a function, it creates a new EA-equivalence class (array “EA class”) and ap-
pends this function to the class. Then the algorithm checks the EA-equivalence
of the functions using Can Functions Be EA equivalent. This function com-
putes extended Walsh spectra and differential spectra for the input functions
and compares them according to Section 2.2. From the Chapter 5 of this thesis
and Proposition 30 we can use the ortho-derivatives of the input functions and
compute these spectra also for them. Therefore we get four EA-invariants. If
all functions from the input array are put into some EA-equivalence class, the
function returns the array “EA classes” with the equivalence classes.

1: function Put Functions Into EA Classes(“functions”):
2: “EA classes” ← initialised as an empty list
3: “is in some class” ← initialised as a list, which contains value init value

repeated k-times, where k is length of the array “functions”
4: while Is Complete(“is in some class”)=0 do
5: x← Next Free Position(“is in some class”)
6: “EA class” ← initialised as an empty list
7: “EA class” ← append element functions[x] into the list
8: “F”←“functions[x]”
9: “F ortho”←ortho derivative(“F”)

10: is in some class[x]← 1
11: for i ∈ [x+ 1, . . . , length of array “functions”] do
12: if is in some class[i] = init value then
13: “G”←“functions[i]”
14: “G ortho”←ortho derivative(“G”)
15: if (Can Functions Be EA equivalent(“F”,“G”)) and
16: (Can Functions Be EA equivalent(“F ortho”,“G ortho”)) then
17: “EA class” ← append element “functions[i]” into the list
18: is in some class[i]← 1
19: end if
20: end if
21: end for
22: “EA classes” ← append list “EA class” into the list
23: end while

31

24: return(“EA classes”)
25: end function

Improvements and Changes

Since we are using invariants, we cannot state with certainty that two functions
are EA-equivalent if their invariants are equal. For example our Algorithm 2 put
all found functions for n = 5 from Subsection 2.3.2 into one EA-equivalence class.
This is in contradiction with the results from [11, Table 3].

These lead us to modification using theory and algorithm from [12] where
the authors presented a method for finding matrices from the definition of EA-
equivalence. This method is very time consuming, since the algorithm is trying
to find the matrices from EA-equivalence. Even though we include the algorithm
from [12] in our modified algorithm in a way that if the algorithm pass the
condition on the line 16 we execute algorithm from [12]. Only if the algorithm
from [12] finds matrices from EA-equivalence, we execute lines 17 and 18.

Only a few minor changes had to be made to the Python code Equivalence.py
from [12]. All of these changes were made for the sole purpose of running the
code. The changes are mentioned in the source code in A.7.

Results

n = 2

In Subsection 2.3.2 we have found 192 quadratic APN functions. Using the
Algorithm 2 we put them all into one EA-equivalent class, which means that all
of these functions are EA-equivalent.

n = 3

In Subsection 2.3.2 we have found 688128 quadratic APN functions. Using the
Algorithm 2 we put them all into one EA-equivalent class, which means that all
of these functions are EA-equivalent.

n = 4

In Subsection 2.3.2 we have found 77014 quadratic APN functions. Using the
Algorithm 2 we put them all into one EA-equivalent class, which means that all
of these functions are EA-equivalent.

n = 5

In Subsection 2.3.2 we have found 28975 quadratic APN functions. Using the
modified Algorithm 2 we classified 2400 of them into 2 equivalence classes.

n = 6

In Subsection 2.3.2 we have found 13767 quadratic APN functions. Using the
Algorithm 2 we put them into 13 equivalence classes.

32

n = 7

In Subsection 2.3.2 we have found 2 quadratic APN functions. Using the Algo-
rithm 2 we sorted them into 2 equivalence classes. The two found functions are
EA-equivalent to two EA-inequivalent functions found before in [13], which are
listed in sevenBitAPN.py in [14].

The number of EA-equivalence classes for n = 4 and 5 corresponds to the
number of EA-equivalence classes of quadratic APN functions in [11, Table 2,
Table 3]. For n = 6 the number of EA-equivalence classes of quadratic APN
functions corresponds to [15, Table 1], because of Theorem 9. The results for
n = 5, 6 and 7 are attached in A.8.

33

3. LE-automorphism
This chapter is based on [2, Section 4], [3, Section 4] and [4, Chapters 10 and
12]. We will follow these papers as we extend the necessary theory and focus on
explaining the process.

In this chapter we will consider a vectorial Boolean function F : Fn
2 → Fn

2 .
We will put such functions into linear-equivalence classes which admit a non-
trivial linear self-equivalence (meaning that there exists a non-trivial element in its
automorphism group). In the first section we introduce the automorphism group
of the vectorial Boolean function F and its subgroup AutLE. Since the elements
of this group are tuples of matrices, we will use module theory in the second
section to show that every matrix is similar to a matrix in rational canonical form
(RCF). Similarity is an equivalence relation, so it defines equivalence classes. The
matrix in RCF is therefore representative of some equivalence class. In the third
section we introduce the power-similarity of matrices, which helps us to extend
the equivalence class for similarity to an equivalence class for power-similarity.
Then, in the fourth section, we introduce an algorithm that classifies all functions
that admit a non-trivial linear self-equivalence up to linear-equivalence in a given
dimension.

Our contribution is to put the theory from [4, Chapter 12] into the con-
text of the [2, Section 4]. Also, to prove the statements from [3, Section 4] in
more detail, to present our own implementation of the algorithm for finding such
linear-equivalence classes, which was approached purely on the basis of the theory
presented and independently of the implementation attached to [2] and [3], and
to provide results for dimensions up to 12.

3.1 Automorphism Group
In this section we will introduce the automorphism group and its associated
equivalence relation using the similarity of matrices. The definitions are based
on those from [3, Section 2] and [16, Section 5.1] respectively.

Definition 27. Let F : Fn
2 → Fm

2 . We say that an affine permutation σ of Fn+m
2 ,

such that ΓF = σ(ΓF), is automorphism for F.

We can easily observe, that for a given function F : Fn
2 → Fm

2 , all auto-
morphisms for F form a group. The identity element is an automorphism In+m

defined as x ↦→ x for all elements of ΓF . Associativity and the existence of an
inverse element for any automorphism for F σ is satisfied since σ is an affine
permutation.

Definition 28. The automorphism group of a function F : Fn
2 → Fn

2 is defined
as

Aut(F) := {σ ∈ AGL(2n,F2) | ΓF = σ(ΓF)}.

Now we use the restriction to the matrices of the affine permutations to get
the following subgroup.

34

Definition 29. Let F : Fn
2 → Fn

2 . Then we define the finite subgroup AutLE(F)
as follows

AutLE(F) :=
{︄
σ ∈ Aut(F) | σ =

(︄
A 0
0 B

)︄
for A,B ∈ GL(n,F2)

}︄
.

For any element σ ∈ AutLE(F), such that σ = diag(A,B), where A,B ∈
GL(n,F2), we will use the notation (A,B), where (A,B) is called the tuple. An
alternative way of expressing an element of AutLE(F) is given by the following
proposition.

Proposition 16. Let F : Fn
2 → Fn

2 . Then(︄
A 0
0 B

)︄
∈ AutLE(F) ⇐⇒ F ◦ A = B ◦ F.

Proof. From the definition of AutLE(F) (and Aut(F)) we have that for some
x, y ∈ Fn

2 (︄
y

F (y)

)︄
=
(︄
A 0
0 B

)︄(︄
x

F (x)

)︄
.

This is true if and only if

y = Ax and F (y) = B ◦ F (x).

Which is equivalent to
F ◦ A(x) = B ◦ F (x).

Again, we can easily observe that AutLE(F) satisfies the conditions of a finite
group, since it is sufficient to show that for r, s ∈ AutLE(F) it is true that rs ∈
AutLE(F). Since r, s ∈ AutLE(F), therefore r and s are of the form

r =
(︄
Ar 0
0 Br

)︄
, s =

(︄
As 0
0 Bs

)︄
.

From the properties of matrix multiplication we have

rs =
(︄
Ar 0
0 Br

)︄(︄
As 0
0 Bs

)︄
=
(︄
ArAs 0

0 BrBs

)︄
.

Since we need to show that rs ∈ AutLE(F), we need to show that the equation
F ◦ ArAs = BrBs ◦ F is satisfied.

F ◦ ArAs = (Br ◦ F) ◦ As = Br ◦ (F ◦ As) = Br ◦Bs ◦ F

Thus we have shown that rs ∈ AutLE(F), which implies that AutLE(F) is a
group. This group is finite, since we are in the finite field. For the purpose of the
following theory we define similarity of matrices.

35

Definition 30. Let M,M ′ be two matrices from GL(n,F2). We say that these
two matrices are similar, denoted M ∼M ′, if there exists a matrix P ∈ GL(n,F2)
such that M ′ = P−1MP .

Note that similarity is an equivalence relation. Reflexivity is given by M =
InMIn. Symmetry is given by M ′ = P−1MP =⇒ M = PMP−1 =⇒ M ′ ∼M .
For the remaining transitivity let us assume thatM ′ ∼M andN ∼M ′. Therefore
exists Q ∈ GL(n,F2) such that N = Q−1M ′Q. Thus N = Q−1P−1MPQ =⇒
N ∼M .

We want to study vectorial Boolean function with non-trivial linear self-
equivalence (meaning with non-trivial element in its subgroup AutLE) up to linear-
equivalence. Let us suppose that two vectorial Boolean functions F,G : Fn

2 → Fn
2

are linearly equivalent. The natural question is what we can say about AutLE(F)
and AutLE(G). We will show that vectorial Boolean functions F,G are linear-
equivalent if and only if for (A,B) ∈ AutLE(F) there exists (A′, B′), whereA′ ∼ A,
B′ ∼ B, such that (A′, B′) ∈ AutLE(G).

Suppose that F : Fn
2 → Fn

2 is a vectorial Boolean function. Let (A,B) ∈
AutLE(F). Assume that G : Fn

2 → Fn
2 is a vectorial Boolean function, such

that F and G are linear-equivalent. This means from the definition that there
exist L,L′ ∈ GL(n,F2) such that G = L′ ◦ F ◦ L. We define A′ := L−1AL and
B′ := L′BL′−1, therefore we have A = LA′L−1, which implies that A′ ∼ A, and
B = L′−1B′L′, which implies that B′ ∼ B. Hence

F ◦ A = B ◦ F
F ◦ LA′L−1 = L′−1B′L′ ◦ F

L′ ◦ F ◦ L ◦ A′ = B′ ◦ L′ ◦ F ◦ L
G ◦ A′ = B′ ◦G.

This means that for any vectorial Boolean function G which is linear-equivalent
to F , we have some matrices A′, B′ which are similar to A,B such that (A′, B′) ∈
AutLE(G).

Suppose again that F : Fn
2 → Fn

2 is a vectorial Boolean function. Let
(A,B) ∈ AutLE(F). Now let us assume that A ∼ A′ and B ∼ B′ for some
A′, B′ ∈ GL(n,F2). This implies that there exist P,Q ∈ GL(n,F2) such that
A′ = P−1AP =⇒ A = PA′P−1 and B′ = Q−1BQ =⇒ B = QB′Q−1. Thus

F ◦ A = B ◦ F
F ◦

(︂
PA′P−1

)︂ (︂
QB′Q−1

)︂
◦ F(︂

Q−1 ◦ F ◦ P
)︂
A′ = B′ ◦

(︂
Q−1 ◦ F ◦ P

)︂
.

We can define the function G := Q−1 ◦F ◦P . Therefore G is linear-equivalent to
F and (A′, B′) ∈ AutLE(G).

This gives us the notion that for a fixed vectorial Boolean function F : Fn
2 →

Fn
2 if we take any (A,B) from AutLE(F) and we take any (A′, B′) such that
A ∼ A′ and B ∼ B′, then we have a linear-equivalent function G for such
(A′, B′) ∈ AutLE(G).

36

3.2 Modules
The definition of AutLE(F) consists of tuples of invertible matrices. For a matrix
A ∈ GL(n,F2) we can define an equivalence class consisting of matrices similar
to A. This implies that we can divide GL(n,F2) into the equivalence classes up
to similarity. We are interested in a representative of these classes. To find such
a representative we need to introduce the theory of modules. Every F2[x]-module
Fn

2 is defined with an action, which can be represented by a linear transformation
T : Fn

2 → Fn
2 . Every linear transformation T can be represented by an n×nmatrix

A, which means that for every matrix A we can define a linear transformation T
which defines F2[x]-module Fn

2 . Using the Theorem 18 we will show that every
F2[x]-module Fn

2 can be decomposed into direct sum of modules, giving us a
matrix in rational canonical form (RCF). This implies that for any matrix A we
can find matrix in RCF. Furthermore, we will show that the matrix A is similar
to a matrix in RCF, which implies that we can consider matrices in RCF as
representatives of these similarity equivalence classes.

Let us begin with two theorems about modules. Both are from [4, Section
12.1, Theorems 4 and 5]. The first theorem (Theorem 17) gives us an insight into
the basis of submodules of free modules. We will not prove it. The detailed proof
can be found in the cited source.

The second theorem (Theorem 18) gives us a decomposition of the F2[x]-
module Fn

2 into a factor form. This theorem can be found in a more general form
in the cited source, but since we are only interested in the F2[x]-module Fn

2 , we
will state and prove the theorem specifically for this case and in a more detailed
way. The statement and proof follows from [4, Section 12.1].

Theorem 17. Let R be a P.I.D., let M be a free R-module of finite rank n and
let N be a submodule of M . Then

1. N is free of rank m, m ≤ n, m ∈ N and

2. there exists a basis y1, y2, . . . , yn of M so that a1y1, a2y2, . . . , amym is a basis
of N where a1, a2, . . . , am are nonzero elements of R with the divisibility
relations

a1 | a2 | · · · | am.

Theorem 18. Let Fn
2 be a vector space of finite dimension n ∈ N over finite field

F2. Consider Fn
2 as a finitely generated F2[x]-module. Then

Tor(Fn
2) ∼= F2[x]/(a1)⊕ F2[x]/(a2)⊕ · · · ⊕ F2[x]/(am),

where a1, a2, . . . , am are elements from F2[x] which are not units in F2[x] and
which satisfy the divisibility relations

a1 | a2 | · · · | am,

for some m ∈ N such that m ≤ n.

Proof. The vector space Fn
2 can be generated by a finite set of n elements. Let

us denote them g1, . . . , gn ∈ Fn
2 . Now let us consider F2[x]-module (F2[x])n. By

Proposition 4 we know that this module is a free F2[x]-module of rank n with

37

some basis which we denote b1, . . . , bn. Now we define a homomorphism π in such
a way that for all i ∈ {1, . . . , n} we have

π : (F2[x])n → Fn
2

bi ↦→ gi.

Such a mapping is surjective, since all gi are mapped to by bi and elements gi

generates Fn
2 . Now we can apply the first isomorphism theorem (Theorem 1). We

know that Ker(π) is a submodule (Subsection 1.2.1) of (F2[x])n, thus

(F2[x])n/Ker(π) ∼= Fn
2 .

This gives us conditions that satisfy the conditions of Theorem 17. In particular,
we have F2[x] which is P.I.D., (F2[x])n is a free module of rank n over F2[x] and
Ker(π) which is a submodule of (F2[x])n. Thus by Theorem 17 we have a basis
y1, . . . , yn of (F2[x])n so that a1y1, . . . , akyk is a basis of Ker(π), for some k ∈ N,
k ≤ n, where a1, a2, . . . , ak are nonzero elements of F2[x] with the divisibility
relations a1 | a2 | · · · | ak.

Since we have the basis y1, . . . , yn of the F2[x]-module (F2[x])n, we know that
for any nonzero element α from (F2[x])n there exist unique nonzero r1, . . . , rn such
that α = r1y1 + · · ·+ rnyn. The i-th summand riyi is from the cyclic submodule
F2[x]y1. We can apply Proposition 2 and we get that

(F2[x])n ∼= F2[x]y1 ⊕ F2[x]y2 ⊕ · · · ⊕ F2[x]yn.

The same can be done with the submodule Ker(π). Therefore

Ker(π) ∼= F2[x]a1y1 ⊕ F2[x]a2y2 ⊕ · · · ⊕ F2[x]akyk.

This gives us

Fn
2
∼= (F2[x]y1 ⊕ · · · ⊕ F2[x]yn)/(F2[x]a1y1 ⊕ · · · ⊕ F2[x]akyk).

We want to examine the right-hand side. For this let us define the mapping φ
which is an F2[x]-homomorphism

φ : F2[x]y1 ⊕ · · · ⊕ F2[x]yn → F2[x]/(a1)⊕ · · · ⊕ F2[x]/(ak)⊕ (F2[x])n−k,

which maps elements as follows

(α1y1, . . . , αnyn) ↦→ (α1 mod (a1), . . . , αk mod (ak), αk+1, . . . , αn).

Now we are interested in Ker(φ). It is clear that for i ∈ {1, . . . , k} the map φ
maps the i-th component to zero if and only if αi mod (ai) = 0 ⇐⇒ αi = βiai

for some βi ∈ F2[x] ⇐⇒ αiyi ∈ F2[x]aiyi.
For i ∈ {k+ 1, . . . , n} the map φ maps the i-th component to zero if and only

if αi = 0. Therefore

Ker(φ) = (F2[x]a1y1 ⊕ F2[x]a2y2 ⊕ · · · ⊕ F2[x]akyk)

and we can use the first isomorphism theorem again, so

(F2[x]y1 ⊕ · · · ⊕ F2[x]yn)/Ker(φ) ∼= F2[x]/(a1)⊕ · · · ⊕ F2[x]/(ak)⊕ (F2[x])n−k.

38

If we now combine this isomorphism with the one for map π, we get that

Fn
2
∼= F2[x]/(a1)⊕ · · · ⊕ F2[x]/(ak)⊕ (F2[x])n−k.

Now we have to show that the module (F2[x])n−k does not appear in the direct
sum, given that Tor(Fn

2) = Fn
2 . For the sake of contradiction, let us assume that

n− k > 0. Let us take

p ∈ F2[x]y1 + F2[x]y2 + · · ·+ F2[x]yk + F2[x]yk+1 + · · ·+ F2[x]yn,

such that
p = a1y1 + a2y2 + · · ·+ akyk + pk+1yk+1 + · · ·+ pnyn

for some nonzero pk+1, . . . , pn ∈ F2[x]. From the Subsection 1.2.2 we know that
Fn

2 = Tor(Fn
2), so there exist nonzero β ∈ F2[x] such that βp = 0. Therefore we

have
βp = βa1y1 + βa2y2 + · · ·+ βakyk + βpk+1yk+1 + · · ·+ βpnyn.

If we apply the map φ on βp we get

φ(βp) = (0, . . . , 0, βpk+1, . . . , βpn),

where βpk+1, . . . , βpn are nonzero elements. But since βp = 0, we have the
following equation

(0, . . . , 0)⏞ ⏟⏟ ⏞
n times

= φ(0) = φ(βp) = (0, . . . , 0, βpk+1, . . . , βpn),

which contradicts φ being a F2[x]-homomorphism, since βpi for i ∈ {k+1, . . . , n}
is nonzero. This implies that the submodule (F2[x])n−k cannot be in the direct
sum, thus we have

Tor(Fn
2) = Fn

2
∼= F2[x]/(a1)⊕ · · · ⊕ F2[x]/(ak).

Finally, if ai = 1, then F2[x]/(ai) = 0, since the ideal (ai) = F2[x]. This
implies that we can remove from the direct sum all F2[x]/(ai) for which ai = 1.
Let us denote the number of such submodules by t, so we define m := k − t.
Hence

Tor(Fn
2) = Fn

2
∼= F2[x]/(a1)⊕ · · · ⊕ F2[x]/(am).

Note also that the the factor form a1, . . . , am is unique. Let b1, . . . , bm′ be
another factor form, where m′ ∈ N, such that

Fn
2
∼= F2[x]/(a1)⊕ · · · ⊕ F2[x]/(am)
∼= F2[x]/(b1)⊕ · · · ⊕ F2[x]/(bm′).

For ai, where i ∈ {1, . . . ,m} we know that a1y1, . . . , amym is a basis of a free
submodule Ker(π). Let y′

1, . . . , y
′
m′ be such basis of Fn

2 that b1y
′
1, . . . , bm′y′

m′ is
another basis of a free submodule Ker(π). Since the submodule is free, it follows
that any element from Ker(π) can be express in a unique way. Thus let v ∈
Ker(π), thus

v = v1a1y1 + · · ·+ vmamym = v′
1b1y

′
1 + · · ·+ v′

m′bm′y′
m′ ,

39

which implies that m = m′ and since ai and bj are ordered, we know that (ai) =
(bi) for i ∈ {1, . . . ,m}, thus ai = bi.

The isomorphism implies that m = m′ and that (ai) = (bi), which implies
that ai = bi. Therefore we can define invariant factors of Fn

2 .

Note that the sum of the degrees of the polynomials a1, . . . , am is equal to n.
This follows from the fact that the cardinality of the left and right sides must
be equal due to isomorphism. The cardinality of Fn

2 is 2n and the cardinality
of F2[x]/(ai) is equal to 2deg ai . Therefore 2n = 2deg a12deg a2 · · · 2deg am =⇒ n =
deg a1 + deg a2 + · · ·+ deg am.

Definition 31. Let a1, . . . , am ∈ F2[x] be elements from Theorem 18. Then we
call them invariant factors of Fn

2 .

So far we know that for a fixed choice of transformation T the elements
a1, . . . , am ∈ F2[x] from Theorem 18 are invariants. The next theorem gives
us that the invariant factors are invariants up to a module isomorphism, i.e. if
two R-modules M1 and M2, each defined with different action, are isomorphic,
then it implies that the invariant factor form is the same for both of these trans-
formations.

With the definition of invariant factors we can state the following theorem
from [4, Section 12.1, Theorem 9]. The detailed proof can be found in the cited
source.

Theorem 19. Let R be P.I.D. Two finitely generated R-modules M1 and M2
are isomorphic if and only if they have the same free rank and the same list of
invariant factors.

Now we want to examine what it means to use the element β = x ∈ F2[x] on
the left (and therefore on the right side) of the isomorphism Fn

2
∼= F2[x]/(a1) ⊕

· · · ⊕ F2[x]/(am). For this we will use some parts of [4, Section 12.2].
First we see that this operation is valid, since we consider Fn

2 to be a F2[x]-
module, and since β ∈ F2[x] we know that the image of β via such an isomorphism
is still an element β. Suppose we have some v = (v1, . . . , vn) ∈ Fn

2 which is
isomorphic to (α1 mod (a1(x)), . . . , αm mod (am(x))), where αi ∈ F2[x] and ai

are from the Theorem 18. Thus, if we use β on the left side, we get the action of
x on the Fn

2 , which we examined in the Subsection 1.2.2 and thus

βv = Tv,

where T is any linear transformation. If we apply the same element β to the right
side of the isomorphism, we see that

β(α1 mod (a1(x)), . . . , αm mod (am(x)))
= (βα1 mod (a1(x)), . . . , βαm mod (am(x)))
= (xα1 mod (a1(x)), . . . , xαm mod (am(x))).

This gives us a feel for the behaviour of any linear transformation T . We see
that the transformation T behaves like a multiplication with the polynomial x on
the right side of the isomorphism.

40

Since the element β on the right side is used component-wise, we will examine
the first component F2[x]/(a1) without loss of generality. Let us assume that
a1(x) = xk + bk−1x

k−1 + · · · + b1x + b0 ∈ F2[x], where k ∈ N. Therefore in
F2[x]/(a1) we have that a1(x) = 0 =⇒ xk = b0 + b1x+ · · ·+ bk−1x

k−1.
We can consider the F2[x]/(a1) as a finite vector space over the finite field F2

with the basis 1, x, x2, . . . , xk−1. This gives us the option to consider the action
of β = x with respect to this basis. So the x acts as follows: 1 ↦→ x, x ↦→ x2, . . .,
xk−2 ↦→ xk−1, xk−1 ↦→ xk = b0 + b1x+ · · ·+ bk−1x

k−1.
The multiplication by x can be represented by a k × k matrix with respect

to the basis. Such a matrix is called a companion matrix and is subject to the
following definition.

Definition 32. Let p(x) = xk +bk−1x
k−1 + · · ·+b1x+b0 be any monic polynomial

in F2[x]. The companion matrix of p(x) is the k × k matrix with 1’s down the
first subdiagonal, −b0,−b1, . . . ,−bk−1 down the last column and zeros elsewhere.
The companion matrix of p(x) will be denoted Cp(x).

Cp(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · −b0
1 0 · · · · · · · · · −b1
0 1 · · · · · · · · · −b2

0 0
...
0 0 · · · · · · 1 −bk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This can be applied to any of the modules in the direct sum on the right side

of the isomorphism. Since F2[x]/(ai) is a free module for i ∈ {1, . . . ,m}, we can
choose the basis of such a submodule. For this basis we can find the corresponding
elements in Fn

2 . Let us denote the set of such elements as βi. This means that an
arbitrary linear transformation T acts on βi via the companion matrix Cai(x).

Now we can take the union of βi and denote it as β = ⋃︁m
i=1 βi. Then β forms the

basis of Fn
2 , because we know from the Proposition 3 that the submodules in the

direct sum are disjoint. Thus, if we define the matrix C := diag(Ca1(x), . . . , Cam(x)),
then we know that, with the respect to the basis β, we can represent the action
of a linear transformation T on the left side of the isomorphism by the matrix C
on the right side of the isomorphism.

From the Theorems 18 and 19, we know that the matrix is uniquely determined
by the factor form up to the isomorphism of Fn

2 as a F2[x]-module. Knowing the
uniqueness of the factors, we can define the following. The definition is from [4,
Section 12.2]

Definition 33. We say that a matrix is in a rational canonical form if it is of
the form diag(Ca1(x), . . . , Cam(x)) for monic polynomials a1(x), . . . , am(x) of degree
at least one with the condition

a1(x) | a2(x) | · · · | am(x).

A rational canonical form for a linear transformation T is a matrix represent-
ing T which is in rational canonical form.

41

With this definition we can say that every linear transformation T has a
rational canonical form. We are interested in whether this rational canonical
form is unique. For this we will use the following theorem which is based on the
theorem from [4, Section 12.2] for which we will give a proof that follows the
discussion from the same source.

Theorem 20. Let Fn
2 be a finite dimensional vector space over the field F2 and

let T be a linear transformation of Fn
2 .

There is a basis for Fn
2 with respect to which the matrix for T is in rational

canonical form, i.e., is a block diagonal matrix whose diagonal blocks are the
companion matrices for monic polynomials a1(x), a2(x), . . . , am(x) of degree at
least one with a1(x) | a2(x) | · · · | am(x).

The rational canonical form for T is unique.

Proof. The existence of such a basis was proved in the proof of Theorem 18.
The rational canonical form of the matrix for T was discussed after the proof.

We need need to prove the uniqueness of the rational canonical form for T .
Suppose that b1(x), b2(x), . . . , bt(x) are monic polynomials in F2[x] of degree at
least one such that b1(x) | b2(x) | · · · | bt(x) for some t ∈ N. Suppose also that
E is a basis of Fn

2 for which the matrix of T is of the form diag(Cb1(x), . . . , Cbt(x))
where Cbi(x) for i ∈ {1, . . . , t} is a companion matrix.

Let Di be the i-th subspace of Fn
2 such that the matrix of T on Di is the Cbi(x).

The vector space Fn
2 is therefore isomorphic to the direct sum of the subspaces

Di. Since F2[x] is P.I.D. and we now consider Fn
2 to be a F2[x]-module, we know

that there must be an element which generates each Di. Therefore, Di is a cyclic
F2[x]-module.

If we now apply the Theorem 18 on the Fn
2 , we get some a1(x) | · · · | am(x)

with the properties according to the theorem. Now we can use the Theorem
19, so we have that ai(x) and bi(x) must differ by a unit factor in F2[x], but
since we choose bi(x) as monic polynomials, therefore we have ai(x) = bi(x) for
i ∈ {1, . . . , t = m}.

So far, we have presented the theory in terms of linear transformations. For the
following part we will switch to the notion of matrices. Consider the n×n matrix
A over the finite field F2. We can define a linear transformation T : Fn

2 → Fn
2

as T (v) = Av for any v ∈ Fn
2 . Therefore, any statement that uses a linear

transformation can be expressed using a matrix instead. The following theorem
is given without proof as Lemma 3 in [3, Section 4].

Theorem 21. Every element M ∈ GL(n,F2) is similar to a unique M ′ ∈
GL(n,F2) of the form M ′ = diag(Cam(x), Cam−1(x), . . . , Ca1(x)) for polynomials ai

such that am | am−1 | · · · | q1. This matrix M ′ is called the rational canonical
form of M , denoted RCF(M).

Proof. The existence of such a matrix M ′ is given by the Theorem 20. Since we
assume thatM ∈ GL(n,F2), we know that such a matrix represents an isomorphic
linear transformation. So, M ′ is also a linear transformation, which is bijective,
thus M ′ ∈ GL(n,F2).

42

For similarity we know that M ′ can be obtained from M by choosing the
right basis of Fn

2 . This means that there exists a matrix U ∈ GL(n,F2) which
represents the transition from one basis to the basis for which the matrix M is
in RCF. So M = U−1CU , which is the definition of similarity.

3.3 Representatives up to Power-Similarity
In this section we start with a proposition that gives us three possible cases of
orders of a tuple from the automorphism group AutLE. For one of these cases
we can introduce the equivalence relation power-similarity, which extends the
definition of similarity. We will prove in Theorem 24 that the power-similarity
implies linear-equivalence. Therefore, for the classification of functions F : Fn

2 →
Fn

2 , with a non-trivial element in AutLE(F), up to linear-equivalence, we can only
consider tuples (RCF(A),RCF(B)) up to power-similarity.

The following proposition is based on the lemmas in [3, Section 4]. The proof
is described in more detail in this thesis.

Proposition 22. Let F : Fn
2 → Fn

2 for which there exists a non-trivial automor-
phism in AutLE(F). Then there exist A,B ∈ GL(n,F2) with F ◦A = B ◦ F such
that either

1. ord(A) = ord(B) = p for p prime, or

2. A = In and ord(B) = p for p prime, or

3. B = In and ord(A) = p for p prime.

Proof. Suppose g ∈ AutLE(F) is the non-trivial automorphism (thus g ̸= I2n).
This means from the definition of AutLE(F) and Proposition 16 that

g ∈ {diag(A,B) ∈ GL(2n,F2) | A,B ∈ GL(n,F2) and F ◦ A = B ◦ F} .

Since g is a non-trivial element of the group AutLE(F), hits implies that there
exists an element h ∈ ⟨g⟩ such that the order of the subgroup, generated by this
element, is prime. Denote this as p := ord(h).

Let us now assume, that h = diag(A,B) for some fixed A,B, where A ̸= In ̸=
B. This implies, that the order the of matrix h is equal to the least common
multiple of ord(A) and ord(B). Thus ord(h) = x · ord(A) = y · ord(B) for some
x, y ∈ N. As we mentioned before, the order of h is prime number, thus x = y = 1,
which implies, that p = ord(A) = ord(B).

Now let us assume, that A = In and B ̸= In. This implies that the order of A
is equal to one and the order of B is equal to some prime number p. Just like in
the previous case, the order of h is equal to the least common multiple of these
two orders, therefore the order of B is equal to p. The last case where A ̸= In

and B = In is similar to the previous one.

43

The following definition is from [3, Section 4]. It is given only for matrices
A,B,C,D ∈ GL(n,F2) of order p for p prime. This implies that this definition
can only be used at point 1 of the Proposition 22. We will prove in Proposition
23 that the power-similarity is an equivalence relation.

Definition 34. Let A,B,C,D ∈ GL(n,F2) be of order p for p prime. The tuple
(A,B) is said to be power-similar to the tuple (C,D), denoted (A,B) ∼p (C,D)
if there exists a positive integer i such that A ∼ Ci and B ∼ Di.

Proposition 23. Relation being power-similar is a relation of equivalence.

Proof. The equivalence relation must satisfy reflexivity, symmetry and transi-
tivity. Let us denote p ∈ N be prime.

For reflexivity, let us assume that (A,B) ∈ GL(n,F2), where A,B are of the
order p. We need to show that (A,B) ∼p (A,B). This is trivial since A = InAIn

and B = InBIn.
For symmetry, let us assume that (A,B) ∈ GL(n,F2) and (C,D) ∈ GL(n,F2),

where A,B,C,D are of the order p. We need to show that (A,B) ∼p (C,D) ⇐⇒
(C,D) ∼p (A,B).

For the first implication. We assume that (A,B) ∼p (C,D), then A ∼ Ci and
B ∼ Di, therefore Ci = P−1AP and Di = Q−1BQ for some P,Q ∈ GL(n,F2).
Thus A = PCiP−1 and B = QDiQ−1. This means that Ci ∼ A and Di ∼ B,
which is equivalent to (C,D) ∼p (A,B). The second implication can be proved
in the same way.

For transitivity, suppose that for A,B,C,D,E, F ∈ GL(n,F2) (all of the
order p), we have that (A,B) ∼p (C,D) and (C,D) ∼p (E,F). We want to show
that this implies (A,B) ∼p (E,F). Since (A,B) ∼p (C,D), then we know from
symmetry that (C,D) ∼p (A,B), thus we have matrices P,Q ∈ GL(n,F2) such
that Ai = P−1CP and Bi = Q−1DQ, which implies that C = PAiP−1 and D =
QBiQ−1. Also, since (C,D) ∼p (E,F), then we have matrices R, S ∈ GL(n,F2)
such that Ej = R−1CR and F j = S−1DS.

So if we replace C,D we get

Ej = R−1CR = R−1
(︂
PAiP−1

)︂
R =

(︂
R−1P

)︂
Ai
(︂
P−1R

)︂
F j = S−1DS = S−1

(︂
QBiQ−1

)︂
=
(︂
S−1Q

)︂
Bi
(︂
Q−1S

)︂
From the Proposition 22 we know that for the maximum of {ord(A), ord(B)},
denoted as p, that Ap = Bp = In. Therefore for k := i−1 mod p we have that

Ejk =
(︂
R−1CR

)︂k

=
(︂
R−1CR

)︂ (︂
R−1CR

)︂
· · ·

(︂
R−1CR

)︂
⏞ ⏟⏟ ⏞

k times

= R−1CkR

= R−1
(︂
PAiP−1

)︂k
R

= R−1PAikP−1R

=
(︂
R−1P

)︂
A
(︂
P−1R

)︂
.

44

This is equivalent to A ∼ Ejk. We can do the same for F jk which gives us
B ∼ F jk. Therefore (A,B) ∼p (E,F).

Now we can formulate the following theorem. It states that for every equiva-
lence class of power-similarity we can find a tuple which is in rational canonical
form. The following theorem and its proof are based on Lemma 4 from [3, Section
4]. The proof is described in more detail in this thesis.

Theorem 24. Let F : Fn
2 → Fn

2 with an automorphism diag(A,B) ∈ AutLE(F)
for A,B ∈ GL(n,F2) such that ord(A) = ord(B) = p, where p is prime. For
every (˜︁B, ˜︁A) power-similar to (B,A), there is a function G linear-equivalent to
F such that diag(RCF(˜︁A),RCF(˜︁B)) ∈ AutLE(G).

Proof. Let us take an arbitrary tuple (˜︁B, ˜︁A) which is power-similar to the tuple
(B,A). This implies from the Definition 34 that there exists a positive integer i
such that B ∼ ˜︁Bi and A ∼ ˜︁Ai, which implies from the Definition 30 that there
exist some matrices P,Q ∈ GL(n,F2) such that

A = P−1 ˜︁AiP and B = Q−1 ˜︁BiQ.

First we noticed that for any k ∈ N we have

Apk =
(︂
P−1 ˜︁AiP

)︂pk

In = P−1 ˜︁AipkP

PP−1 = PP−1 ˜︁AipkPP−1

In = ˜︁Aipk

and if we choose k := i−1 mod p, then we get In = ˜︁Ap. We can do the same with
the B and therefore get In = ˜︁Bp.

Second we noticed that again for any k ∈ N we have that Ak ∼ ˜︁Aik because

Ak =
(︂
P−1 ˜︁AiP

)︂k

= (P−1 ˜︁AiP)(P−1 ˜︁AiP) · · · (P−1 ˜︁AiP)⏞ ⏟⏟ ⏞
k times

= P−1 ˜︁AikP,

so we also have that Bk = Q−1 ˜︁BikQ.
The last thing we noticed is that F ◦ Ak = Bk ◦ F for any k ∈ N. We know

that diag(A,B) ∈ AutLE(F) implies that A,B satisfy F ◦A = B ◦F . It is trivial
that for k = 1 the equation F ◦ Ak = Bk ◦ F holds. Let us assume for induction
that the equation holds for k, thus we want to show that it holds for k + 1.

F ◦Ak+1 = (F ◦Ak) ◦A = (Bk ◦F) ◦A = Bk ◦ (F ◦A) = Bk ◦B ◦F = Bk+1 ◦F.

Now we can combine all these remarks together. Since we have F◦Ak = Bk◦F ,
we can replace A and B, therefore we get

F ◦
(︂
P−1 ˜︁AikP

)︂
=
(︂
Q−1 ˜︁BikQ

)︂
◦ F.

45

We apply matrixQ from the left and the matrix P−1 on both sides of the equation.
This gives us

Q ◦ F ◦ P−1 ˜︁Aik = ˜︁BikQ ◦ F ◦ P−1.

We denote G := Q ◦ F ◦ P−1 (this satisfies the definition of F , which is linearly-
equivalent to G), so we have

G ◦ ˜︁Aik = ˜︁Bik ◦G.

Since the k was arbitrary, we can choose k = i−1 mod p. This gives us

G ◦ ˜︁A = ˜︁B ◦G.
The relation of being power-similar forms equivalence, classes as we showed in

Proposition 23. Therefore, without loss of generality, we can choose the matrices˜︁A, ˜︁B up to similarity. We have shown in Theorem 21 that for ˜︁A, ˜︁B there exist
unique matrices RCF(˜︁A),RCF(˜︁B). Thus we can choose ˜︁A and ˜︁B in their rational
canonical form.

3.4 Algorithm
We can now use the statements from the previous sections of this chapter to
search for vectorial Boolean functions up to LE-automorphism. Suppose that we
have a vectorial Boolean function F : Fn

2 → Fn
2 . From the Proposition 22 we

know that for every AutLE(F) we have at least one element which satisfies the
proposition. Such elements are similar (or power-similar) to tuples of matrices in
RCF.

From the Proposition 23 we know that we can establish equivalence classes
up to power similarity on the elements satisfying the first point from Proposition
22. On the elements satisfying points 2 and 3 we can establish equivalence classes
up to similarity. We can use tuples of matrices in RCF as representatives of each
of the equivalence classes. So we find all RCF matrices of prime order and from
these matrices we create tuples (RCF matrix, In) and (In, RCF matrix). Then
we create tuples as all combinations of RCF matrices that are different from In

and which have the same prime order. We check these tuples to see if they are
pairwise power-similar, and if so, we remove such tuples, leaving only one tuple as
a representative. This gives us all the representatives of the equivalence classes.

Such an equivalence class contains matrices that are similar (or power-similar)
to matrices in the group AutLE for functions that are linear-equivalent. There-
fore, we have sorted vectorial Boolean functions with non-trivial element in their
automorphism group up to linear-equivalence.

This implies that we can run an algorithm which, for a given dimension n,
searches for all matrices in RCF of prime orders and from these matrices we can
generate all representatives of equivalence classes. The implementation of the
algorithm is attached in A.9.

46

Algorithm 3 Search for linear-equivalence classes
Output: list of linear-equivalence classes with representatives for each of them

1: n← integer representing the dimension in which we want to search for APN
function

2: “RCF matrices” ← generate all possible RCF matrices
3: “all prime tuples” ← generate all possible tuples of RCF matrices according

to the point 1 in Proposition 22
4: “tuples up to power-similarity” ← test all of tuples from “all prime tuples”

for power-similarity
5: “all le classes” ← append classes according to the point 1 in Proposition

22 from “all prime tuples” and classes according to the points 2 and 3 in
Proposition 22 from “RCF matrices”

3.4.1 Description
As a first step, the algorithm generates all RCF matrices of the given dimension
n that are of the prime order. This is done by generating companion matrices of
prime order for dimensions less than or equal to n and combining them according
to the Theorem 21. Then the algorithm generates all possible tuples where both
matrices in the tuple are not equal to the identity matrix and both matrices have
the same prime order. Such tuples are checked for power-similarity. If there are
some tuples that are power-similar, then we select one tuple as representative of
the equivalence classes. Tuples of the form where one of the matrices is equal to
identity do not need to be checked further, since we have only defined similarity
for these tuples, and each matrix is similar to a unique matrix in RCF.

3.4.2 Results
We run the Algorithm 3 for n ∈ {3, . . . , 12}. The specific results are attached in
A.10. We were able to achieve the same results for n = 7, 8, 9 and 10 as in [2] up
to power-similarity. The results for the remaining n have not been given.

Let us assume that p ∈ N is prime.

• n = 3
We have found 12 linear-equivalence classes of functions F : F3

2 → F3
2 which

have non-trivial element in AutLE(F). For ord(A) = ord(B) = p we have
found 4 equivalence classes. For ord(A) = p and B = I3 we have found 4
equivalence classes. For A = I3 and ord(B) = p we have found 4 equivalence
classes. The prime orders of matrices in RCF are 2, 3, 7.

• n = 4
We have found 25 linear-equivalence classes of functions F : F4

2 → F4
2 which

have non-trivial element in AutLE(F). For ord(A) = ord(B) = p we have
found 11 equivalence classes. For ord(A) = p and B = I4 we have found 7
equivalence classes. For A = I4 and ord(B) = p we have found 7 equivalence
classes. The prime orders of matrices in RCF are 2, 3, 5, 7.

• n = 5

47

We have found 43 linear-equivalence classes of functions F : F5
2 → F5

2 which
have non-trivial element in AutLE(F). For ord(A) = ord(B) = p we have
found 17 equivalence classes. For ord(A) = p and B = I5 we have found
13 equivalence classes. For A = I5 and ord(B) = p we have found 13
equivalence classes. The prime orders of matrices in RCF are 2, 3, 5, 7, 31.

• n = 6
We have found 74 linear-equivalence classes of functions F : F6

2 → F6
2 which

have non-trivial element in AutLE(F). For ord(A) = ord(B) = p we have
found 38 equivalence classes. For ord(A) = p and B = I6 we have found
18 equivalence classes. For A = I6 and ord(B) = p we have found 18
equivalence classes. The prime orders of matrices in RCF are 2, 3, 5, 7, 31.

• n = 7
We have found 128 linear-equivalence classes of functions F : F7

2 → F7
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p
we have found 56 equivalence classes. For ord(A) = p and B = I7 we
have found 36 equivalence classes. For A = I7 and ord(B) = p we have
found 36 equivalence classes. The prime orders of matrices in RCF are
2, 3, 5, 7, 31, 127.

• n = 8
We have found 157 linear-equivalence classes of functions F : F8

2 → F8
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p
we have found 75 equivalence classes. For ord(A) = p and B = I8 we
have found 41 equivalence classes. For A = I8 and ord(B) = p we have
found 41 equivalence classes. The prime orders of matrices in RCF are
2, 3, 5, 7, 17, 31, 127.

• n = 9
We have found 217 linear-equivalence classes of functions F : F9

2 → F9
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p
we have found 111 equivalence classes. For ord(A) = p and B = I9 we
have found 53 equivalence classes. For A = I9 and ord(B) = p we have
found 53 equivalence classes. The prime orders of matrices in RCF are
2, 3, 5, 7, 17, 31, 73, 127.

• n = 10
We have found 401 linear-equivalence classes of functions F : F10

2 → F10
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p
we have found 247 equivalence classes. For ord(A) = p and B = I10 we
have found 77 equivalence classes. For A = I10 and ord(B) = p we have
found 77 equivalence classes. The prime orders of matrices in RCF are
2, 3, 5, 7, 11, 17, 31, 73, 127.

• n = 11
We have found 431 linear-equivalence classes of functions F : F11

2 → F11
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p

48

we have found 257 equivalence classes. For ord(A) = p and B = I11 we
have found 87 equivalence classes. For A = I11 and ord(B) = p we have
found 87 equivalence classes. The prime orders of matrices in RCF are
2, 3, 5, 7, 11, 17, 23, 31, 73, 89, 127.

• n = 12
We have found 536 linear-equivalence classes of functions F : F12

2 → F12
2

which have non-trivial element in AutLE(F). For ord(A) = ord(B) = p
we have found 344 equivalence classes. For ord(A) = p and B = I12
we have found 96 equivalence classes. For A = I12 and ord(B) = p we
have found 96 equivalence classes. The prime orders of RCF matrices are
2, 3, 5, 7, 11, 13, 17, 31, 73, 89, 127.

49

4. Function Trimming
This chapter focuses on the other approach to finding APN functions. The basic
idea of this method is to restrict a function in dimension n to the dimension n−1.
We will introduce the notion of trimming a function and show how we can restrict
the search space up to EA-equivalence. The functions obtained do not have to be
APN, so we need to check this property. The first section introduces the notations
and definitions. In the second section we will show that the EA-equivalence can
reduce the search space, and in the third section we will introduce the algorithm
based on the theory presented in the first two sections. In the this chapter we
will use the information provided by [5, Section 3].

Our contribution is to present the theory in a clearer way, to prove the state-
ments in more detail, to present our own implementation of the algorithm for
finding a trim spectrum of a given function, which was approached independently
from the implementation provided on the GitHub repository by the authors of
[5], to describe the algorithm in the context of the theory from this chapter, to
introduce a function for computing function G : Fn−1

2 → Fn−1
2 based on the trim

of a function F (where F : Fn
2 → Fn

2) and to replicate the results presented in [5]
and make them available on the GitHub repository.

4.1 Definitions and Notations
We begin by defining the extension and restriction of two vectorial Boolean func-
tions based on [5, Section 1].

Definition 35. Let n,m ∈ N where m < n and let F : Fn
2 → Fn

2 and G : Fm
2 →

Fm
2 be two vecotrial Boolean functions. We say that F is an extension of G and

that G is restriction of F , denoted by G ≺ F , if there exists an affine injective
mapping ϕ : Fm

2 → Fn
2 and affine surjection φ : Fn

2 → Fm
2 such that

G = φ ◦ F ◦ ϕ.

In this chapter we will assume that m = n − 1. So our mappings from the
previous definition are φ : Fn

2 → Fn−1
2 and ϕ : Fn−1

2 → Fn
2 .

Suppose we have a given vectorial Boolean function F : Fn
2 → Fn

2 . As n
increases, finding all possible restrictions G ≺ F , G : Fn−1

2 → Fn−1
2 , becomes

infeasible already for very small values of n. So we try to find some constraints
for a more efficient approach.

Definition 36. For an element α ∈ Fn
2 \{0}, we define as α⊥ the following set

α⊥ = {x ∈ Fn
2 | ⟨α, x⟩ = 0}.

We say that α⊥ is orthogonal of α. We denote complement of α⊥ as α⊥ (the
complement is the set Fn

2 \α⊥).

The set α⊥ is a hyperplane, which means that α⊥ is of dimension n− 1. The
important fact is that for every hyperplane there is an element α ̸= 0 such that
the hyperplane is of the form α⊥. This follows from the fact that we can find an

50

orthogonal basis B of the hyperplane and then find α such that B ∪ {α} is an
orthogonal basis of the whole vector space. The following definitions are given in
[5, Section 3].

Definition 37. Let β ∈ Fn
2 and γ ∈ Fn

2 such that ⟨β, γ⟩ = 1. We define projection
ρ

(γ)
β of Fn

2 to γ⊥ as

ρ
(γ)
β : Fn

2 → γ⊥

x ↦→ x+ β · ⟨γ, x⟩.

The assumption ⟨β, γ⟩ = 1 implies that β ̸∈ γ⊥. Since we mentioned that
the orthogonal of an element is a n − 1-dimensional linear hyperplane, we can
represent Fn

2 as the direct sum Fn
2 = γ⊥⊕{0, β}. Therefore any vector x ∈ Fn

2 can
be written as x = xβ ⊕ xγ, where xβ ∈ {0, β} and xγ ∈ γ⊥. Using the projection
to γ⊥ we get ρ(γ)

β (x) = xγ. Thus with this projection we can define trim of a
vectorial Boolean function.

Definition 38. Let n ∈ N, n ≥ 2, β ∈ Fn
2 be a non-zero element and let H ⊆ Fn

2
be a hyperplane of dimension n−1, so that H = α⊥ or H = α⊥ for some non-zero
α ∈ Fn

2 . Let ϵ ∈ Fn
2 be zero if H = α⊥ and ϵ ̸∈ α⊥ otherwise, and let γ ∈ Fn

2 \β⊥.
The trim of a function F along (H, β) with respect to ϵ, γ is then defined as

T ϵ,γ
H⇝βF : α⊥ → γ⊥

x ↦→ ρ
(γ)
β ◦ F (x+ ϵ) =

⎧⎨⎩F (x+ ϵ) if F (x+ ϵ) ∈ γ⊥

F (x+ ϵ) + β otherwise
.

We can easily see, that the trim of a function is well defined, since

T ϵ,γ
H⇝βF (x) = ρ

(γ)
β ◦ F (x+ ϵ) = F (x+ ϵ) + β · ⟨γ, F (x+ ϵ)⟩

and ⟨γ, F (x+ϵ)⟩ = 0 if and only if F (x+ϵ) ∈ γ⊥ and ⟨γ, F (x+ϵ)⟩ = 1 otherwise.

4.2 EA-equivalence of Trim Spectrum
In this section we start with three important statements. The first is that all
trims of a function are affine-equivalent. In the second proposition we will prove
that every restriction of the vectorial Boolean function F is EA-equivalent to a
trim of F , and in the third we will show, that if two vectorial Boolean functions
are EA-equivalent, then their trims are also EA-equivalent.

The following proposition and proof are based on Proposition 1 from [5, Sec-
tion 3]. The proof is described in more detail in this thesis.

Proposition 25. Let n ∈ N, n ≥ 2. For a fixed choice of (H, β) with β ∈ Fn
2 \{0}

and H ⊆ Fn
2 being a hyperplane of dimension n− 1, all trims of F along (H, β)

with respect to some ϵ, γ are affine-equivalent.

Proof. We want to prove the statement for all possible combinations of ϵ and
γ. Therefore we start by fixing γ. Since γ must satisfy the definition of trim of
a function, we know that γ ∈ Fn

2 \β⊥. Suppose that H = α⊥ for some α ∈ Fn
2 .

51

This implies from the definition of trim that we have only one possible choice for
ϵ and that is ϵ = 0. Thus for the fixed choice of β, H = α⊥ and γ we have only
one possible trim.

Now let us assume that H = α⊥. Thus we know that ϵ ̸∈ α⊥, which implies
that ϵ ∈ Fn

2 \α⊥. So let us assume that we have ϵ, ϵ′ ∈ Fn
2 \α⊥. Notice that since

Fn
2 =

(︂
Fn

2 \α⊥
)︂
⊕ α⊥, then any element x ∈ Fn

2 can be written as x = x1 ⊕ x2,
where x1 ∈ Fn

2 \α⊥ and x2 ∈ α⊥. Therefore there exists element ϵα ∈ α⊥ such
that ϵ′ = ϵ+ ϵα. Thus

T ϵ′,γ
H⇝βF (x) = ρ

(γ)
β ◦ F (x+ ϵ′)

= F (x+ ϵ′) + β ⟨γ, F (x+ ϵ′)⟩
= F (x+ ϵα + ϵ) + β ⟨γ, F (x+ ϵα + ϵ)⟩
= F ((x+ ϵα) + ϵ) + β ⟨γ, F ((x+ ϵα) + ϵ)⟩
= ρ

(γ)
β ◦ F ((x+ ϵα) + ϵ)

= T ϵ,γ
H⇝βF (x+ ϵα).

This implies that T ϵ′,γ
H⇝βF (x) = In ◦ T ϵ′,γ

H⇝βF ◦A1(x), where A1 is an affine permu-
tation such that A1(x) = In(x) + ϵα, therefore T ϵ′,γ

H⇝βF (x) is affine-equivalent to
T ϵ,γ

H⇝βF (x+ ϵα).
Now suppose we have fixed ϵ ∈ Fn

2 . Suppose we have γ, γ′ ∈ Fn
2 \β⊥. Let us

define the following mapping Q as

Q : γ⊥ → γ′⊥

x ↦→ x+ β ⟨γ′, x⟩

We want to prove that such a mapping is bijective and linear. For the bijection we
start with the kernel of Q. Let us choose any x ∈ γ⊥, thus x+ β ⟨γ′, x⟩ = 0 ⇐⇒
x = β ⟨γ′, x⟩. Now we have two possible cases. First, if ⟨γ′, x⟩ = 0, then x = 0.
Second, if ⟨γ′, x⟩ = 1, then x = β. But we know that x ∈ γ⊥ ⇐⇒ ⟨x, γ⟩ = 0,
and since x = β it must also hold that ⟨β, γ⟩ = 0. But since γ ∈ Fn

2 \β⊥, it implies
that ⟨γ, β⟩ = 1, which is a contradiction. Thus Ker(Q) = {0}, which implies that
Q is injective. For the surjection let us assume that we have y1, y2 ∈ γ⊥ such that
y1 ̸= y2 and Q(y1) = Q(y2).

Q(y1) = Q(y2)
y1 + β ⟨γ′, y1⟩ = y2 + β ⟨γ′, y2⟩

(y1 + y2) + β ⟨γ′, y1 + y2⟩ = 0
Q(y1 + y2) = 0

We know from the Ker(Q) = {0} that y1 + y2 = 0, which implies that y1 = y2.
This is a contradiction. Therefore Q is bijective.

For linearity we define a matrix Γ which has n rows and each row is equal
to γ′. Therefore Γ(x) has a value of either 0 or 1 in each row. This value is
exactly the value of ⟨γ′, x⟩. Let us also define the matrix B = In(β). Therefore
BΓ(x) = β ⟨γ′, x⟩. Now let us look at In(x)+BΓ(x). This is equal to Q(x). Thus

52

Q(x) = In(x) +BΓ(x) = (In +BΓ)(x), which is a linear mapping. Hence

Q ◦ T ϵ,γ
H⇝βF (x) ◦ In(x) = Q ◦ ρ(γ)

β ◦ F (x+ ϵ)
= Q ◦ (F (x+ ϵ) + β ⟨γ, F (x+ ϵ)⟩)
= F (x+ ϵ) + β ⟨γ, F (x+ ϵ)⟩+ β ⟨γ′, F (x+ ϵ) + β ⟨γ, F (x+ ϵ)⟩⟩

=
⎧⎨⎩F (x+ ϵ) + β ⟨γ′, F (x+ ϵ)⟩
F (x+ ϵ) + β ⟨γ′, F (x+ ϵ)⟩+ β + β ⟨γ′, β⟩

where the first case occurs when ⟨γ, F (x+ ϵ)⟩ = 0 and the second case occurs
when ⟨γ, F (x+ ϵ)⟩ = 1. Since γ′ ∈ Fn

2 \β⊥ we know that ⟨γ′, β⟩ = 1, thus both
cases are equal. Therefore

Q ◦ T ϵ,γ
H⇝βF (x) ◦ In(x) = F (x+ ϵ) + β ⟨γ′, F (x+ ϵ)⟩ = T ϵ,γ′

H⇝βF (x)

which implies that T ϵ,γ
H⇝βF (x) and T ϵ,γ′

H⇝βF (x) are linear-equivalent.

From the proposition, we know that the choice of ϵ and γ is arbitrary up to
affine-equivalence (which is a special case of EA-equivalence due to Proposition
7). Therefore we can say that the EA-equivalence class of T ϵ,γ

H⇝β F is the trim of
F along (H, β), denoted by T H⇝β F .

The following proposition and proof are based on Proposition 2 from [5, Sec-
tion 3]. The proof is described in more detail in this thesis.
Proposition 26. Let n ∈ N, n ≥ 2. Let F : Fn

2 → Fn
2 and G : Fn−1

2 →
Fn−1

2 be two vectorial Boolean functions such that G ≺ F . Then, there exists
a β ∈ Fn

2 \{0} and an affine hyperplane H ⊆ Fn
2 of dimension n − 1 such that

G≈EA TH⇝βF .

Proof. We have G ≺ F , which means from the definition, that there exists an
affine injective mapping ϕ : Fn−1

2 → Fn
2 and an affine surjection φ : Fn

2 → Fn−1
2

such that
G = φ ◦ F ◦ ϕ.

Since ϕ is an affine mapping, we can rewrite it as ϕ = ˜︁ϕ+ ϵ, where ˜︁ϕ is the linear
part and ϵ ∈ Fn

2 is a constant.
Let us assume that ˜︁ϕ : Fn−1

2 → Im(˜︁ϕ). We know that ϕ = ˜︁ϕ+ ϵ is an injective
mapping. Therefore ˜︁ϕ is also an injective mapping. It is also straightforward to
see that ∀k ∈ Im(˜︁ϕ) ∃l ∈ Fn−1

2 such that l ↦→ k. So all together we know that˜︁ϕ is a linear bijection, thus an isomoprhism. Therefore Im(˜︁ϕ) is a hyperplane,
which implies that Im(˜︁ϕ) = α⊥ for some non-zero α ∈ Fn

2 . We can also rewrite
the mapping φ. Suppose φ = ˜︁φ + b, where ˜︁φ is the linear part of the mapping
φ and b ∈ Fn−1

2 . The mapping ˜︁φ is a surjection, since φ is surjective. Since˜︁φ(x) is a linear mapping, it can be represented as a (n − 1) × n matrix over
F2. Let the matrix be M , then ∀x ∈ Fn

2 : ˜︁φ(x) = Mx. The mapping ˜︁φ is
surjective, so rank(M) = n − 1. This means that the matrix M consists of a
linearly independent sequence of column vectors with cardinality n− 1. Suppose
that P−1 is an n× n permutation matrix, permuting linearly independent n− 1
columns of M to the left. Then we have

MP−1 =
(︂
A−1 σ

)︂
,

53

where A is an invertible (n − 1) × (n − 1) matrix and σ is a column vector
from Fn−1

2 , which is the remaining column from M . Now look at the mapping
G ◦ ˜︁ϕ−1 : Im(˜︁ϕ)→ Fn−1

2 . We need to rewrite this for future use.

G ◦ ˜︁ϕ−1(x) = (φ ◦ F ◦ ϕ) ◦ ˜︁ϕ−1(x)
= φ ◦ F ◦

(︂˜︁ϕ+ ϵ
)︂
◦ ˜︁ϕ−1(x)

= φ ◦ F ◦
(︂˜︁ϕ (︂˜︁ϕ−1(x)

)︂
+ ϵ

)︂
= φ ◦ F (x+ ϵ)
= (˜︁φ+ b) ◦ F (x+ ϵ)
= ˜︁φ ◦ F (x+ ϵ) + b

Now we want to get the equation for the trim T H⇝β F for some affine hyper-
plane H ⊆ Fn

2 and β ∈ Fn
2 . We will use the following equality for a vector in

Fn
2 . The further notation is not strict because it combines matrices, mappings

and elements from F2 which are included in the matrix notation, but introducing
some new notation including the dimensions of the elements would only be more
confusing. (︄

A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
=
(︄
A (˜︁φ ◦ F (x+ ϵ) + b)

0

)︄

=
(︄
A (M (F (x+ ϵ) + b))

0

)︄

=
(︄
AM (F (x+ ϵ))

0

)︄
+
(︄
Ab
0

)︄

=
(︄
AMP−1P (F (x+ ϵ))

0

)︄
+
(︄
Ab
0

)︄

=
(︄
AMP−1

0

)︄(︄
P (F (x+ ϵ))

0

)︄
+
(︄
Ab
0

)︄

=
(︄
A (A−1 σ)

0

)︄(︄
P (F (x+ ϵ))

0

)︄
+
(︄
Ab
0

)︄

=
(︄
In−1 Aσ

0 0

)︄
P (F (x+ ϵ)) +

(︄
Ab
0

)︄

The last equation can be rewritten using the vector en, which is a zero vector
with 1 at the n-th position.(︄
A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
= P (F (x+ ϵ)) +

(︄
Aσ
1

)︄
⟨en, P (F (x+ ϵ))⟩+

(︄
Ab
0

)︄

= P (F (x+ ϵ)) +
(︄
Aσ
1

)︄
⟨P T en, F (x+ ϵ)⟩+

(︄
Ab
0

)︄

= P

(︄
F (x+ ϵ) + P−1

(︄
Aσ
1

)︄
⟨P T en, F (x+ ϵ)⟩+ P−1

(︄
Ab
0

)︄)︄

Now we rearrange the last equation and multiply it by the P−1 matrix from the

54

left. We then get

P−1
(︄
A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
+ P−1

(︄
Aσ
0

)︄
= F (x+ ϵ) + P−1

(︄
Aσ
1

)︄
⟨P T en, F (x+ ϵ)⟩

= T H⇝β F (x)

for β = P−1
(︄
Aσ
1

)︄
, γ = P T en and H = Im(˜︁ϕ). Finally, we want to show, that G

is EA-equivalent to the T H⇝β F . To do this, we use the last equation

P−1
(︄
A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
+ P−1

(︄
Aσ
0

)︄
= T H⇝β F (x)

(︄
A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
+
(︄
Aσ
0

)︄
= P T H⇝β F (x)

(︄
A
(︂
G ◦ ˜︁ϕ−1(x)

)︂
0

)︄
= P T H⇝β F (x) +

(︄
Aσ
0

)︄
(︄
A 0
0 0

)︄(︄
G ◦ ˜︁ϕ−1(x)

0

)︄
= P T H⇝β F (x) +

(︄
Aσ
0

)︄
(︄
A−1 0

0 0

)︄(︄
A 0
0 0

)︄(︄
G ◦ ˜︁ϕ−1(x)

0

)︄
=
(︄
A−1 0

0 0

)︄(︄
P T H⇝β F (x) +

(︄
Aσ
0

)︄)︄

(︄
In−1 0

0 0

)︄(︄
G ◦ ˜︁ϕ−1(x)

0

)︄
=
(︄
A−1 0

0 0

)︄
P T H⇝β F (x) +

(︄
A−1 0

0 0

)︄(︄
A 0
0 0

)︄(︄
σ
0

)︄
(︄
G ◦ ˜︁ϕ−1(x)

0

)︄
=
(︄
A−1 0

0 0

)︄
P T H⇝β F (x) +

(︄
σ
0

)︄
(︄
G(x)

0

)︄
=
(︄
A−1 0

0 0

)︄
P T H⇝β F ◦ ˜︁ϕ(x) +

(︄
σ
0

)︄

The last step is to multiply both sides by a (n−1)×n matrix, which is composed
of the matrix In−1 and the last column is a zero vector. Therefore,

G(x) =
(︂
In−1 0

)︂(︄A−1 0
0 0

)︄
P T H⇝β F ◦ ˜︁ϕ(x) +

(︂
In−1 0

)︂(︄σ
0

)︄
=
(︂
A−1 0

)︂
P T H⇝β F ◦ ˜︁ϕ(x) + σ

From the last equation we can see that we have satisfied conditions from the def-
inition of EA-equivalence, so we have proved that G is EA-equivalent to T H⇝β.

With this proposition, we can reduce the number of all restrictions for a given
function F : Fn

2 → Fn
2 since the trims depend only on H, β. For each non-zero

element α ∈ Fn
2 we can define the hyperplane as either α⊥ or α⊥. Thus we have

2(2n − 1) possible hyperplanes. The β is a non-zero element from Fn
2 . Therefore

we have 2(2n − 1)2 possible choices.

55

Now we will establish another proposition, which stands for the fact that for
two EA-equivalent functions, their trims are also EA-equivalent, i.e. for EA-
equivalent functions F,G : Fn

2 → Fn
2 , the multiset of all possible trims of F is the

same as the multiset of all possible trims of G.
The following proposition and proof are based on the proposition from [5,

Section 3]. The proof is described in more detail in this thesis.

Proposition 27. Let n ∈ N, n ≥ 2 and let F,G : Fn
2 → Fn

2 be EA-equivalent via
G = A2◦F ◦(A1+a1)+a2+B with A1, A2 ∈ GL(n,F2), a1, a2 ∈ Fn

2 and B being an
affine function in Fn

2 . Then, for each hyperplane H ⊆ Fn
2 and each β ∈ Fn

2 \{0},
we have that T H⇝β G is EA-equivalent to T H′⇝β′ F , where H ′ = A1(H) + a1 and
β′ = A−1

2 (β).

Proof. Let us assume that H = α⊥ or H = α⊥ for some non-zero α ∈ Fn
2 . Let

also γ ∈ Fn
2 \β⊥ and ϵ ∈ Fn

2 such that ϵ = 0 if H = α⊥ and ϵ ̸∈ α⊥ if H = α⊥.
Let us also define the following notation for a n× n matrix A as follows

A(H) = {A(x) | x ∈ H}.

Now since A1 ∈ GL(n,F2) we know that A1(H) = α′⊥ for some α′ ∈ Fn
2 .

We will divide the proof into three cases. We start with the case that G =
F ◦ (A1 + a1). Let us consider that H = α⊥. This implies that ϵ = 0. Therefore

T 0,γ
H⇝β G(x) = G(x) + β ⟨γ,G(x)⟩

= F (A1(x) + a1) + β ⟨γ, F (A1(x) + a1)⟩
= T ϵ′,γ

H′⇝β F (x′)

Now we specify the new variables. For H ′ we know that A1(x)+a1 ∈ A1(H)+a1,
therefore H ′ := A1(H) + a1. Also, if a1 ∈ A1(H), then H ′ = A1(H) = α′⊥

and if a1 ̸∈ A1(H), then H ′ = A1(H) + a1 ̸= α′⊥. For the x′ we know that
x′ ∈ A1(H) + a1, therefore we can define x′ := A1(x) + a1. For the ϵ′ we can
use the fact that if a1 ∈ A1(H), then H ′ = α′⊥, which implies that ϵ′ = 0. If
a1 ̸∈ A1(H) = α′⊥, then we can define ϵ′ := a1. Therefore

T ϵ′,γ
H′⇝β F (x′) =

⎧⎨⎩T
0,γ
A1(H)+a1⇝β F (A1(x) + a1) if a1 ∈ A1(H)
T a1,γ

A1(H)+a1⇝β F (A1(x)) if a1 ̸∈ A1(H)

which implies that the trims are affine-equivalent.
Now let us consider H = α⊥ = Fn

2 \α⊥. Therefore there exists ϵ ̸∈ α⊥ such
that H = α⊥ + ϵ. Thus

T 0,γ
H⇝β G(x) = G(x) + β ⟨γ,G(x)⟩

= F (A1(x+ ϵ) + a1) + β ⟨γ, F (A1(x+ ϵ) + a1)⟩
= F (A1(x) + a1 + A1(ϵ)) + β ⟨γ, F (A1(x) + a1 + A1(ϵ))⟩
= F (A1(x) + (a1 + A1(ϵ))) + β ⟨γ, F (A1(x) + (a1 + A1(ϵ)))⟩
= T ϵ′,γ

H′⇝β F (x′)

56

Now we set the new variables. For H ′ we know that since A1(x) + a1 + A1(ϵ) ∈
A1(H) + a1 + A1(ϵ), therefore we can define H ′ := A1(H) + a1 + A1(ϵ). If
a1 + A1(ϵ) ∈ A1(H), then H ′ = A1(H) = α′⊥. This implies that ϵ′ = 0. If
a1 + A1(ϵ) ̸∈ A1(H), then H ′ = A1(H) + a1 + A1(ϵ). This implies that ϵ′ :=
a1 + A1(ϵ).

In both cases we can write H ′ as H ′ = A1(H) + a1 +A1(ϵ), but since A1(ϵ) ∈
A1(H), we can write H ′ = A1(H) + a1.

If ϵ′ = 0, then x′ ∈ A1(H) + a1 +A1(ϵ), which implies that x′ := A1(x) + a1 +
A1(ϵ). If ϵ′ = a1 + A1(ϵ), then x′ ∈ A1(H), which implies that x′ := A1(x).

T ϵ′,γ
H′⇝β F (x′) =

⎧⎨⎩T
0,γ
A1(H)+a1⇝β F (A1(x) + a1 + A1(ϵ)) if a1 + A1(ϵ) ∈ A1(H)
T a1+A1(ϵ),γ

A1(H)+a1⇝β F (A1(x)) if a1 + A1(ϵ) ̸∈ A1(H)

which implies that the trims are affine-equivalent.
For the second case let us assume that G = A2 ◦ F + a2. Let us define

γ′ := AT
2 (γ). Then for any x ∈ α⊥ we have

T ϵ,γ
H⇝β G(x) = G(x) + β ⟨γ,G(x)⟩

= A2 (F (x+ ϵ)) + β ⟨γ,A2 (F (x+ ϵ))⟩+ a2 + β ⟨γ, a2⟩
= A2 (F (x+ ϵ)) + β

⟨︂
AT

2 (γ), F (x+ ϵ)
⟩︂

+ a2 + β ⟨γ, a2⟩
= A2 (F (x+ ϵ)) + β ⟨γ′, F (x+ ϵ)⟩+ a2 + β ⟨γ, a2⟩
= A2

(︂
F (x+ ϵ) + A−1

2 (β) ⟨γ′, F (x+ ϵ)⟩
)︂

+ a2 + β ⟨γ, a2⟩

= A2 ◦ T ϵ,γ′

H⇝β′ F (x) + a2 + β ⟨γ, a2⟩ .

which means that the trims are EA-equivalent. For the third case let us assume
that G = F +B and let x ∈ α⊥. Then

T ϵ,γ
H⇝β G(x) = G(x) + β ⟨γ,G(x)⟩

= F (x+ ϵ) +B(x+ ϵ) + β ⟨γ, F (x+ ϵ) +B(x+ ϵ)⟩
= F (x+ ϵ) + β ⟨γ, F (x+ ϵ)⟩+B(x+ ϵ) + β ⟨γ,B(x+ ϵ)⟩
= T ϵ,γ

H⇝β F (x) + (B(x+ ϵ) + β ⟨γ,B(x+ ϵ)⟩) .

The element in the last brackets is an affine function. This implies that the trims
are EA-equivalent.

All together we get in each of the three cases that the trims of a function are
EA-equivalent. Since EA-equivalence is an equivalence relation, we can combine
these cases and still get EA-equivalence of the trims.

Because of the Proposition 27 we can define the trim spectrum of a function
F : Fn

2 → Fn
2 which is an EA-invariant, but first we introduce the following

notation. The following definitions are from [5, Section 3].

Definition 39. Let Hn be defined as the set of all n−1-dimensional hyperplanes
of Fn

2 . That means

Hn = {α⊥ | α ∈ Fn
2 \{0}} ∪ {α⊥ | α ∈ Fn

2 \{0}}.

57

Definition 40. Let n ∈ N, n ≥ 2. The trim spectrum of a function F : Fn
2 → Fn

2
is the multiset of all trims of F along (H, β), where (H, β) takes all 2(2n − 1)2

possibilities, i.e., the multiset {T H⇝β F | H ∈ Hn, β ∈ Fn
2 \{0}}.

The following proposition and proof are based on the proposition from [5,
Section 3]. The proof is described in more detail in this thesis.

Proposition 28. The trim spectrum of a vectorial Boolean function is an EA-
invariant. In other words, for n ∈ N, n ≥ 2, if F,G : Fn

2 → Fn
2 are EA-

equivalents, the multisets {T H⇝β F | H ∈ Hn, β ∈ Fn
2 \{0}} and {T H⇝β G |

H ∈ Hn, β ∈ Fn
2 \{0}} consist of the same EA-equivalence classes with the same

multiplicities.

Proof. We assume that the functions F and G are EA-equivalent. Therefore we
know from the definition that there exist matrices A1, A2 ∈ GL(n,F2), elements
a1, a2 ∈ Fn

2 and affine function B : Fn
2 → Fn

2 such that

G = A2 ◦ F ◦ (A1 + a1) + a2 +B.

From the Proposition 27 we know that for any hyperplane H ⊆ Fn
2 and any

β ∈ Fn
2 \{0} the T H⇝β G is EA-equivalent to T H′⇝β′ F , where H ′ = A1(H) + a1

and β′ = A−1
2 (β). Now we define the following two mappings. The first one is

ψ : Hn → Hn

H ↦→ H ′ = A1(H) + a1

and the second one is

π : Fn
2 \{0} → Fn

2 \{0}
β ↦→ β′ = A−1

2 (β)

Since A1, A2 ∈ GL(n,F2) we know that the mappings ψ and π are bijections.
Therefore

{T H′⇝β′ F | H ′ ∈ Hn, β
′ ∈ Fn

2 \{0}} = {T H⇝β F | H ∈ Hn, β ∈ Fn
2 \{0}}.

The cardinality of the multisets from the statement of this proposition is the same
because ψ, π are bijections, and the multisets consist of the same EA-equivalence
classes because of the EA-equivalence of T H⇝β G and T H′⇝β′ F .

4.3 Algorithm
In this section we will present an algorithm to find the trim spectrum of a given
function F : Fn

2 → Fn
2 and to find APN function among the functions in the trim

spectrum. This algorithm will also convert the APN trim of a function (which is
a function from α⊥ to γ⊥) to a function G : Fn−1

2 → Fn−1
2 . The implementation

of the algorithm is attached in A.11.

58

4.3.1 Description
We start with the input to the algorithm. The input function can be any vectorial
Boolean function F : Fn

2 → Fn
2 . From the theory in the previous sections we know

that we can apply EA-equivalence. If two functions F1, F2 : Fn
2 → Fn

2 are EA-
equivalent, then we know from Proposition 27 that their trim spectra consist of
the same EA-equivalence classes. Thus, when considering functions up to EA-
equivalence, it is sufficient to give only EA-inequivalent functions as input to the
algorithm.

In our case, the input functions will always be APN, since these functions are
in our main focus in this thesis.

The main function of the algorithm is Finding Trim Spectrum. The function
follows the theory from the previous sections of this chapter. From Proposition
25 we know that for a fixed choice of (H, β) all trims of F along (H, β) are
affine-equivalent with respect to some ϵ, γ. This implies that for fixed (H, β) it is
sufficient to consider only one choice of ϵ and γ.

From the Proposition 26 we know that for every G ≺ F there exists (H, β)
such that G is EA-equivalent to T H⇝β F . So if we consider all possible (H, β),
then we have examined all such G : Fn−1

2 → Fn−1
2 up to EA-equivalence. We know

that the cardinality of the trim spectrum is 2(2n − 1), thus we have 2(2n − 1)
possible choices for (H, β).

The function is therefore divided into two cases based on the definition of the
hyperplane H via the line 4. In the first iteration of the For loop we assume that
H = α⊥, and in the second iteration of the For loop we assume that H = α⊥.

If H = α⊥, then we know from the definition of a trim of a function that
ϵ = 0. If H = α⊥, then ϵ ∈ α⊥, so we have to find such ϵ with the while loop on
the line 8, which is only executed if H = α⊥. Also from the definition we know
that γ ∈ Fn

2 \β⊥, so we need to find such γ in a while loop on the line 14.
1: function Finding Trim Spectrum(“F”,n):
2: ϵ← 0
3: “trim spectrum” ← initialised as an empty array
4: for H ∈ [0, 1] do
5: for α ∈ [1, . . . , 2n − 1] do
6: if H = 1 then
7: ϵ← 1
8: while ⟨ϵ, α⟩ = 0 do
9: ϵ← ϵ+ 1

10: end while
11: end if
12: for β ∈ [1, . . . , 2n − 1] do
13: γ ← 1
14: while ⟨β, γ⟩ = 0 do
15: γ ← γ + 1
16: end while
17: “trim” ← initialised as an empty array
18: for x ∈ [0, . . . , 2n − 1] do
19: if ⟨α, x⟩ = 0 then
20: if ⟨γ,F[x⊕ ϵ]⟩ = 0 then

59

21: trim[x]←F[x⊕ ϵ]
22: else
23: trim[x]←F[x⊕ ϵ]⊕β
24: end if
25: end if
26: if ⟨α, x⟩ = 1 then
27: trim[x]← init value
28: end if
29: end for
30: “trim spectrum”←append “trim” into the list
31: “parameters”←append [α, β, γ, ϵ] into the list
32: end for
33: end for
34: end for
35: return(“trim spectrum”, “parameters”)
36: end function

The output of the function is a set of look-up tables of all functions from the
trim spectrum of F and a list of parameters α, β, γ, ϵ used to generate a trim.
Note that the look-up tables contain 2n values, of which 2n−1 are init value, since
the trim of a function is only defined on 2n−1 elements. These look-up tables can
still be used to determine whether the trim of a function is APN or not. For this
we use the function Is Function APN For Trim, which calculates the DDT table,
using only the values for which is the trim of a function is defined, and checks if
all the values in the DDT are less or equal to 2.

Since we want to continue working with the APN trims we have obtained, we
need to transform the trim (as a function from α⊥ to γ⊥) into the function G
from Fn−1

2 to Fn−1
2 . To do this, we need to find two mappings φ : Fn−1

2 → α⊥ and
π : γ⊥ → Fn−1

2 , such that G = π ◦ T H⇝β F ◦ φ.
To do this, we implemented the function Find Function G which we will now

describe.
The Fn−1

2 , α⊥ and γ⊥ are vector spaces of dimension n − 1, so we can find
bases of each of them with cardinality n − 1. For Fn−1

2 we can take the basis
{20, 21, 22, . . . , 2n−2}, where these integers represent elements of Fn−1

2 via their
binary notation as mentioned in subsection 1.2.3. For α⊥ and γ⊥ we will use the
following procedure. Without loss of generality we will only describe it for α⊥.

We start by finding all elements of the vector space α⊥, since aα ∈ α⊥ ⇐⇒
⟨aα, α⟩ = 0 using the function Find All Elements of Hyperplane. Then we use
the recursive function Find Basis of Hyperplane we select from these elements
a linear independent sequence of n− 1 elements v0,α, v1,α, . . . , vn−2,α which is the
basis of α⊥.

Now we can use the function Find Mapping, which is based on the following
idea. Since we want φ and π to be isomorphisms of vector spaces, we can define
these mappings using the basis elements. Again, without loss of generality, we
will only describe this for the mapping φ.

Let us define φ(2i) = vi,α for i ∈ {0, . . . , n − 2}. Then for any a ∈ Fn−1
2 we

can take the binary notation [a0, a1, . . . , an−2], thus a = a020 +a121 +a222 + · · ·+

60

an−22n−2, therefore

φ(a) = φ(a020 + · · ·+ an−22n−2)
= a0φ(20) + · · ·+ an−2φ(2n−2)
= a0v0,α + · · ·+ an−2vn−2,α

= aα,

where aα ∈ α⊥. so the output of the function Find Mapping on the line 7 is a
look-up table for φ, respectively for π on the line 8.

1: function Find Function G(α, γ,“trim”,m):
2: n← m+ 1
3: “elements of α⊥”←Find All Elements of Hyperplane(α, n)
4: “elements of γ⊥”←Find All Elements of Hyperplane(γ, n)
5: “basis of α⊥” ← Find Basis of Hyperplane(“elements of α⊥”,m)
6: “basis of γ⊥” ← Find Basis of Hyperplane(“elements of γ⊥”,m)
7: “mapping for α” ← Find Mapping(“basis of α⊥”,m)
8: “mapping for γ” ← Find Mapping(“basis of γ⊥”,m)
9: “lut” ← initialised as an empty array

10: for α ∈ [0, . . . , 2m − 1] do
11: output of trim←trim[mapping for α[1][i]]
12: index← 1
13: while mapping for γ[1][index] ̸= output of trim & index < 2m − 1

do
14: index← index+ 1
15: end while
16: lut[i]← index
17: end for
18: return(“lut”)
19: end function

Finally we can formulate the Algorithm 4 which, for each input function,
computes its trim spectrum and, if there is an APN function among the trims in
the trim spectrum, computes the function G : Fn−1

2 → Fn−1
2 .

4.3.2 Results
The following results corresponds to some results of [5, Section 3.1] and are at-
tached in A.12.

From n = 7 to 6

First we try to replicate the results of [5, Section 3]. Let us denote F =
{F1, . . . , F488} which is the set of all 7-bit quadratic APN functions founded in
the [13]. All of these functions are pairwise EA-inequivalent as it is stated in [5].
The values of these functions can be found in [14] in a file sevenBitAPN.py. For
these functions we run Algorithm 4.

The output of the algorithm is 438 APN functions G = {G1, . . . , G438}. So for
50 functions of F there is no APN function in their trim spectrum. All of these
functions are quadratic, which was tested using the result of Proposition 13.

61

Algorithm 4 Search for APN function in the trim spectrum
Input: a list “functions” of APN vectorial Boolean functions from Fn

2 to Fn
2

Output: a list of APN trims of an input functions and a list of the corresponding
functions from Fn−1

2 to Fn−1
2

1: for i ∈ [0, . . ., number of input functions] do
2: trim is APN ← 0
3: “trim spectrum”, “parameters”←Finding Trim Spectrum(functions[i],n)
4: while (k < number of trims in trim spectrum) & (trim is APN = 0) do
5: trim is APN ←Is Function APN For Trim(trim spectrum[k],n)
6: if trim is APN =True then
7: “list of APN trims”←append “trim spectrum[k]” into the list
8: “list of functions G”←append
9: Find Function G(α, γ, trim spectrum[k],n− 1) into the list

10: end if
11: k ← k + 1
12: end while
13: end for

Using the Algorithm 2 (A.6) we classified functions from G into 11 EA-
equivalence classes. This implies from the results of 2.3.3 that functions from
two EA-equivalence classes are not in the trim spectra of some 7-bit quadratic
APN function. Those two 2 EA-equivalence classes are classes 10 and 13 from
the results A.8 for n = 6.

From n = 6 to 5

First we used as input representatives of classes 10 and 13 from the results A.8
for n = 6 (we choose first function from these classes in A.8). We get that the
representative of the class 10 has a quadratic APN function in its trim spectrum
and the representative of the class 13 does not have such function in its trim
spectrum.

Next we have used 11 pairwise EA-inequivalent functions from G as an input.
We get 9 APN functions V = {V1, . . . , V9}. All of these functions are quadratic,
which was tested using the result of Proposition 13. Using the modified Algorithm
2 (A.7) we put the functions from V into 2 EA-equivalence classes. The trim of
representative of the class 10 is EA-equivalent to one of them since we have only
two EA-equivalence classes in dimension 5 (see Subsection 2.3.3).

From n = 5 to 4

We have used the functions V1, V2 as an input to the algorithm. We get 2 APN
functions W = {W1,W2}. All of these functions are quadratic, which was tested
using the result of Proposition 13. Since in dimension 4 exists only one EA-
equivalence class (see Subsection 2.3.3), the functions fromW are EA-equivalent.

62

5. Finding Quadratic APN
Functions with Maximum
Linearity
This focuses on the last method for finding APN functions presented in this thesis.
Based on the quadratic APN function G : Fn

2 → Fn
2 , we will construct a quadratic

APN function T : Fn+1
2 → Fn+1

2 with maximum linearity. In the this chapter we
will use the information provided by [5, Section 5].

Our contribution is to present the theory in a clearer way, to prove the state-
ments in more detail, to use the provided pseudo-code of the implementation
of Algorithm 1 from [5] to present our own Python implementation, to describe
the algorithm in detail and in the context of the theory of this chapter and to
replicate some of the results presented in [5, Section 5] and make them available
in A.

5.1 Ortho-derivative of a Function
We start with the following definition which is used in Chapter 2 and in this
chapter. The definition can be found in [5, Section 2].

Definition 41. Let G : Fn
2 → Fn

2 be a quadratic APN function. The ortho-
derivative of G is defined as the unique function πG : Fn

2 → Fn
2 with πG(0) = 0

such that for all α ∈ Fn
2 \{0}, we have πG(α) ̸= 0 and

∀x ∈ Fn
2 : ⟨πG(α), Bα(x)⟩ = 0,

where Bα : Fn
2 → Fn

2 , x ↦→ G(x) +G(x+ α) +G(α) +G(0).

The definition states that the ortho-derivative is well defined and unique. We
will show, that this is true, but first we make an observation about Bα in the
following lemma. This lemma is based on the statement in the proof of Theorem
1 in [5, Section 5], where it is stated without proof.

Lemma 29. Let G : Fn
2 → Fn

2 be a quadratic APN vectorial Boolean function.
Then the mapping Bα : Fn

2 → Fn
2 , x ↦→ G(x) +G(x+ α) +G(α) +G(0) is linear.

Proof. Since G is a vectorial Boolean function, we can write it in the ANF as
follows

G(x) =
∑︂

u∈Fn
2

au

n∏︂
i=1

xui
i ,

where au ∈ Fn
2 , x = (x1, . . . , xn) and u = (u1, . . . , un). We will divide the proof

into three cases based on the degree of an element which is contained in the ANF.
Let us start with an element of degree zero. Thus, u is a zero vector and the sum
in the ANF expression of G contains a0 ∈ Fn

2 . This means that Bα contains
a0 + a0 + a0 + a0 which is a zero vector.

63

The next case is that the ANF contains an element of degree 1. Therefore,
for some fixed u (u must be a vector composed of zeros and uj such that uj = 1,
where j ∈ {1, . . . , n}), the sum in the ANF expression of G contains aux

uj

j = auxj.
Thus, Bα contains auxj +au(xj +αj)+aj0+ajαj = auxj +auxj +auαj +auαj = 0.
So the degree 1 element of G disappears in Bα.

The remaining case is that where the ANF contains an element of degree 2
(since G is quadratic, it cannot contain an element of higher degree). Therefore,
for some fixed u (u must be a vector composed of zeros and uj, uk such that
uj = uk = 1, where j, k ∈ {1, . . . , n} and j ̸= k), the sum in the ANF expression
of G contains aux

uj

j x
uk
k = auxjxk. Thus Bα contains

auxjxk + au(xj + αj)(xk + αk) + au0 + auαjαk

= au(xjxk + xjxk + xjαx + xkαj + αjαk + αjαk

= auxjαk + auxkαj,

which is an element of degree 1.
Therefore, we can see, that Bα does not contain an element of degree less than

or greater than one, thus Bα is a linear mapping.

We can see from the proof, that also G(x)+G(x+α) is also a linear mapping.
This implies that the image of mapping the G(x) +G(x+α) is a linear subspace
of Fn

2 .
The function Bα is defined for given α ∈ Fn

2 \{0}. So let us fix such α. Now
we are interested in the cardinality of the set

{β | x ∈ Fn
2 , G(x) +G(x+ α) = β} . (5.1)

The function G is defined on the whole vector space Fn
2 , so every element of Fn

2
is mapped somewhere. Also, since G is APN, we know that for every such β, if
G(x1)+G(x1 +α) = β, then for x2 := x1 +α we know that G(x2)+G(x2 +α) = β.
From the APN property we also know that there are no more such x that satisfy
the equation for given β. Since the cardinality of Fn

2 is 2n, we know that if we
divide the Fn

2 into sets {x, x+ α} such that these sets are disjoint, we have 2n−1

of such sets. Therefore the cardinality of the set in 5.1 is also 2n−1. This implies
that the cardinality of the images of Bα is also 2n−1, since G(0)+G(α) is constant
for given α.

All in all we have that the image of Bα is a linear subspace and the car-
dinality of this subspace is 2n−1. This implies that we can find an orthogonal
basis v1, · · · , vn−1 of the subspace Bα. Such a basis can be transformed into an
orthogonal basis of Fn

2 by finding a unique vector vn ∈ Fn
2 such that ⟨vn, vi⟩ = 0

for i ∈ {1, . . . , n− 1}.
We can now define πG(α) = vn and since such vn ∈ Fn

2 exists for all α ∈ Fn
2 \{0}

and is unique, we have shown that the ortho-derivative is also well-defined and
unique.

The next important property of the ortho-derivatives is the following. The
proof of the proposition can be found in [12].
Proposition 30. Let F : Fn

2 → Fn
2 and G : Fn

2 → Fn
2 be two EA-equivalent

quadratic APN functions. Then their ortho-derivatives πF and πG are linear-
equivalent.

64

From the Proposition 7 we know that the Proposition 30 implies that the
ortho-derivatives πF and πG are EA-equivalent.

5.2 EA-equivalence of Quadratic Boolean Func-
tions

For the following section we need to prove that every quadratic Boolean function
can be expressed in a certain form given by Theorem 32. We start with Theorem
31. Theorem 31 is based on part (2) of Dickson’s theorem from [17, Chapter 15].
The proof of the theorem is technical and well presented in the cited source.

Let us start by noting that from the ANF of a Boolean function we can see
that a quadratic Boolean function f : Fn

2 → F2 can be also expressed as
f(x) = xTQx+ L(x) + ϵ,

where Q is an n× n upper triangular matrix over F2 with zero diagonal and L is
linear function from Fn

2 → F2 and ϵ ∈ F2.
Theorem 31. A quadratic Boolean function f : Fn

2 → F2 such that

f(x) = xTQx+ L(x) + ϵ,

where Q is an upper triangular matrix with zero diagonal, L is an arbitrary linear
function from Fn

2 to F2 and ϵ ∈ F2, is linear-equivalent to

h(y) =
r∑︂

i=1
y2i−1y2i + L1(y) + ϵ

where 2r = rank(B) for B = Q+QT .
Using the form of a quadratic Boolean function given by Theorem 31, we

can state the following theorem, which gives us the form of a quadratic Boolean
function up to EA-equivalence.
Theorem 32. Any quadratic Boolean function f : Fn

2 → F2, such that f(x) =
xTQx+L(x) + ϵ, where Q is a upper triangular matrix with zero main diagonal,
L : Fn

2 → F2 is a linear function and ϵ ∈ F2, is EA-equivalent to the function

g(y) =
r∑︂

i=1
y2i−1y2i,

where 2r = rank(Q+QT).

Proof. From Theorem 31 we know that f(x) is linear-equivalent to

h(y) =
r∑︂

i=1
y2i−1y2i + L1(y) + ϵ.

Thus for an affine function B(y) defined as B(y) := L1(y) + ϵ we have that

h(y) +B(y) =
r∑︂

i=1
y2i−1y2i,

thus f ≈EA g, where g(y) := ∑︁r
i=1 y2i−1y2i.

65

5.3 EA-equivalence of Quadratic Boolean Func-
tion with Maximum Linearity

Our goal in this section is to find for a quadratic vectorial Boolean function
F : Fn+1

2 → Fn+1
2 EA-equivalent function T which has a certain form using linear

functions L : Fn
2 → Fn

2 . Then we state conditions under which the function T
(and hence the function F) is APN. Finally, we prove that a certain choice of a
linear function L′ holds EA-equivalent function T ′ to T . Note to the reader that
we use the notation as in [5], where (x, y), for x ∈ Fn

2 and y ∈ F2, usually denotes
the element from Fn+1

2 .
We start by proving the Theorem 36, which is based on Proposition 4 from

[5, Section 5]. For this we need to state and prove Lemmas 33 and 34 which are
necessary for the proof of Proposition 35 which then leads to the proof of the
theorem.

The statement of the following lemma is given without proof in the proof of
Proposition 4 in [5, Section 4].

Lemma 33. Let T : Fn+1
2 → Fn+1

2 be a vectorial Boolean function. Let ti be the
i-th coordinate function of T for i ∈ {1, . . . , n + 1}. Then T is quadratic if and
only if for any i ∈ {1, . . . , n + 1} function x ↦→ ti(x, 0) + ti(x, 1) is of degree at
most 1, where x ∈ Fn

2 .

Proof. For the first implication, let us assume that T is quadratic. This
implies that it consists of some quadratic coordinate functions. Let us take
i ∈ {1, . . . , n+1} such that ti is a quadratic coordinate function. Such a function
can be expressed by its ANF. Hence

ti(z) =
∑︂

wtH(u)≤2, u∈Fn+1
2

bi,u

n+1∏︂
i=1

zui
i ,

where bi,u ∈ F2 and z = (z1, . . . , zn+1). This can be rearranged so that

ti(z) =
∑︂

wtH(u)≤2, un+1=0
bi,u

n+1∏︂
i=1

zui
i +

∑︂
wtH(u)≤2, un+1=1

bi,u

n+1∏︂
i=1

zui
i .

Since the inputs (x, 0) and (x, 1) differ only in the n + 1-th coordinate, we can
see that the first sum appears in both ti(x, 0) and ti(x, 1). Therefore, we are only
interested in the elements of the second sum.

For ti(x, 0) we can see that if un+1 = 1, then z
un+1
n+1 = 01 = 0, which implies

that there is no non-zero element in the second sum for ti(x, 0).
For ti(x, 1) we can divide the second sum based on the Hamming weight. If

wtH(u) = 2, then we have some index j ̸= n+ 1 such that uj = 1, so we have the
product zuj

j z
un+1
n+1 which for (x, 1) is equal to xuj

j 1 = xj, which is of degree one.
If wtH(u) = 1, then we have only one possible choice of u, and that is u =

(0, . . . , 0, 1), so zun+1
n+1 = 1, which is of degree 0. For wtH(u) = 0, there is no such

element u such that un+1 = 1. This means that we have proved that ti(x, 0) +
ti(x, 1) is of degree at most one.

Now for the second implication. Let us assume for the sake of contradiction
that the function T is of degree higher than 2. Without loss of generality let us

66

assume that it is of degree 3. Then there exists a coordinate function ti which is
of degree 3. Therefore there exists u ∈ Fn+1

2 such that uj = uk = ul = 1, where
j, k, l ∈ {1, . . . , n+ 1} and j, k, l are distinct. Since T is arbitrary, we can assume
that l = n + 1. So for such u we have that ti(z) contains bi,uzjzkzn+1. This
implies that ti(x, 0) contains bi,uxjxk0 = 0 and ti(x, 1) contains bi,uxjxk. Thus,
ti(x, 0) + ti(x, 1) contains bi,uxjxk, which is an element of degree 2, contradicting
the assumption that the function x ↦→ ti(x, 0) + ti(x, 1) is of degree at most 1.

Lemma 34. Let x ∈ Fn
2 be such that x = (x1, . . . , xn) and l ∈ {1, . . . , n}. Let

ℓ(x1, . . . , xl−1, xl+1, . . . , xn) be a non-zero linear function from Fn−1
2 to F2. Then

x1x2 is affine-equivalent to xlℓ(x1, . . . , xl−1, xl+1, . . . , xn).

Proof. We have ℓ which is a linear function, which means that

ℓ(x1, . . . , xl−1, xl+1, . . . , xn) =
n∑︂

i=1,i ̸=l

aixi,

where ai ∈ F2. Since ℓ is non-zero, we know that there exists m ∈ {1, . . . , l −
1, l + 1, . . . , n} such that am ̸= 0. Let us define the n× n matrix A. We start by
defining A as In with the following changes:

• the first row is a zero vector except for 1 at the l-th position,

• the second row contains the element ai at the i-th position for i ∈ {1, . . . , l−
1, l + 1, . . . , n} and zero at the l-th position,

• the l-th row is a zero vector except for 1 at the first position,

• the m-th row is a zero vector except for 1 at the second position.

Such a defined matrix satisfies A ∈ GL(n,F2), therefore if we consider the function
x1x2 as a function from Fn

2 to F2 as (x1, x2, x3, . . . , xn) ↦→ x1x2 we get that

x1x2 ◦ A(x) = xlℓ(x1, . . . , xl−1, xl+1, . . . , xn).

The proof of the following proposition is given, in the proof of Proposition 5 in
[5, Section 5], with reference only to [8, page 173]. Thus we studied the necessary
theory and proved the following proposition.

Proposition 35. Let F : Fn
2 → Fn

2 be quadratic APN vectorial Boolean function
with maximum linearity. Let f1, . . . , fn : Fn

2 → F2 be coordinate functions of
F . Then there exists quadratic APN vectorial boolean function G : Fn

2 → Fn
2

with maximum linearity such that G≈EA F and n-th coordinate function of G is
xlℓ(x1, . . . , xn−1), where ℓ is a linear function.

67

Proof. The function F has maximum linearity. This implies that there exist
α ∈ Fn

2 and β ∈ Fn
2 \{0} such that
ˆ︂Fβ(α) = 2n−1 or ˆ︂Fβ(α) = −2n−1.

Let us denote α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) where αi, βi ∈ F2,
i ∈ {1, · · · , n}. Since β is fixed, we can define the following set C := {i | βi = 1}.
Let us denote c1, . . . , ck the elements from C, where k is the cardinality of C.
Therefore for any x ∈ Fn

2 we have

⟨β, F (x)⟩ = β1f1(x)⊕ β2f2(x)⊕ · · · ⊕ βnfn(x)
= βc1fc1(x)⊕ βc2fc2(x)⊕ · · · ⊕ βck

fck
(x)

= fc1(x)⊕ · · · ⊕ fck
(x)

Let us define fC(x) := fc1(x) ⊕ · · · ⊕ fck
(x). From the definition of the Walsh

transform we now get
ˆ︂Fβ(α) =

∑︂
x∈Fn

2

(−1)⟨β,F (x)⟩⊕⟨α,x⟩ =
∑︂

x∈Fn
2

(−1)fC(x)⊕⟨α,x⟩ = ˆ︂fC(α).

F is quadratic, thus we have two possible cases for the degree of fC(x). The first
case is that deg(fC) = 2 and the second case is that deg(fC) ≤ 1.

Let us start with the first case. Since fC(x) is of degree 2, we know from
Theorem 32 that fC(x) is EA-equivalent to x1x2 ⊕ · · · ⊕ x2r−1x2r, where r ≤ n

2 .
We want to find the value of r. Since the absolute value of the Walsh transform
is EA-invariant according to Theorem 15, we can write

±2n−1 = ˆ︂Fβ(α) = ˆ︂fC(α) =
∑︂

x∈Fn
2

(−1)x1x2⊕···⊕x2r−1x2r⊕⟨α,x⟩ . (5.2)

We can rewrite ⟨α, x⟩ as follows

⟨α, x⟩ = (α1x1 ⊕ · · · ⊕ α2rx2r)⊕ (α2r+1x2r+1 ⊕ · · · ⊕ αnxn) .

Thus we can rewrite the exponent from the equation 5.2 using the expression
from [8, page 173].

x1x2⊕ · · · ⊕ x2r−1x2r ⊕ (α1x1 ⊕ · · · ⊕ α2rx2r)⊕ (α2r+1x2r+1 ⊕ · · · ⊕ αnxn)
= (x1x2 ⊕ α1x1 ⊕ α2x2 ⊕ α1α2 ⊕ α1α2) (5.3)
⊕ (x3x4 ⊕ α3x3 ⊕ α4x4 ⊕ α3α4 ⊕ α3α4)
⊕ · · ·⊕
⊕ (x2r−1x2r ⊕ α2r−1x2r−1 ⊕ α2rx2r ⊕ α2r−1α2r ⊕ α2r−1α2r) (5.4)
⊕ α2r+1x2r+1 ⊕ α2r+2x2r+2 ⊕ · · · ⊕ αn−1xn−1 ⊕ αnxn

For i ∈ {1, . . . , r} we can rewrite expressions from 5.3 to 5.4 using

(x2i−1 ⊕ α2i) (x2i ⊕ α2i−1) = x2i−1x2i ⊕ α2i−1x2i−1 ⊕ α2ix2i ⊕ α2i−1α2i,

therefore the exponent of 5.2 can be expressed as
r⨁︂

i=1
[(x2i−1 ⊕ α2i) (x2i ⊕ α2i−1)⊕ α2i−1α2i]⊕ α2r+1x2r+1 ⊕ · · · ⊕ αnxn.

68

and thus
ˆ︂fC(α) =

∑︂
x∈Fn

2

(−1)
⨁︁r

i=1[(x2i−1⊕α2i)(x2i⊕α2i−1)⊕α2i−1α2i]⊕α2r+1x2r+1⊕···⊕αnxn (5.5)

=
∑︂

x∈Fn
2

(−1)
⨁︁r

i=1[(x2i−1⊕α2i)(x2i⊕α2i−1)]⏞ ⏟⏟ ⏞
1st part

(−1)
⨁︁r

i=1 α2i−1α2i⏞ ⏟⏟ ⏞
2nd part

(−1)α2r+1x2r+1⊕···⊕αnxn⏞ ⏟⏟ ⏞
3rd part

Now we analyse the highlighted parts of the sum. The second part is constant
because α ∈ Fn

2 is fixed, so the second part is equal either to 1 or −1.
In the third part we can see that if we have αi ̸= 0 for i ∈ {2r + 1, . . . , n},

then for x ∈ Fn
2 , such that xi = 0, the whole exponent has value equal to some

δ and for x ∈ Fn
2 , such that xi = 1, the exponent has a value δ + 1 . Therefore,

such αi ̸= 0 causes that the sum in 5.5 is equal to 0. Thus we assume that αi = 0
for i ∈ {2r + 1, . . . , n}.

Now for the first part we will show how the values α2i−1, α2i for i ∈ {1, . . . , r}
affect the result of (x2i−1 ⊕ α2i)(x2i ⊕ α2i−1) since the sum in 5.5 is over all
x ∈ Fn

2 . We have four possible cases for the values of the tuple α2i−1, α2i (these
are {(0, 0), (1, 0), (0, 1), (1, 1)}) and for each of these cases we have again four
possible choices for the values of the tuple x2i−1, x2i. Let us denote γ := (x2i−1⊕
α2i)(x2i ⊕ α2i−1).

If we now fix i ∈ {1, . . . , r}, then we can observe that for each fixed value
of the tuple α2i−1, α2i we have γ = 1 for one choice of x2i−1, x2i and γ = 0 for
three choices of x2i−1, x2i. Thus we can see that (−1)γ = −1 for one choice
of x2i−1, x2i and (−1)γ = 1 for three choices of x2i−1, x2i. Therefore, since we
consider all x ∈ Fn

2 , we can see that in the the sum 5.5 have impact two choices of
x2i−1, x2i such that γ = 0 and the remaining choice of x2i−1, x2i such that γ = 0
is annihilated by the choice x2i−1, x2i such that γ = 1.

Thus for each i ∈ {1, . . . , r} we have four possible choices for x2i−1, x2i but
only two of them affect the sum. So for all x ∈ Fn

2 we have 2n−2r possible choices
of the part (x2r+1, x2r+2, . . . , xn) of x. For (x1, . . . , x2r) only 2r choices affect the
sum, so in total we have 2n−2r2r = 2n−r.

All together we have that ˆ︂fC(α) = ±2n−r when αi = 0 for i ∈ {2r + 1, . . . , n}
and ˆ︂fC(α) = 0 otherwise. Since we know from the equation 5.2 that 2n−1 = ˆ︂fC(α),
it must hold that ˆ︂fC(α) = ±2n−r, which implies that r = 1. Therefore in the case
I. we have that fC(x) is EA-equivalent to x1x2.

We assume that fC is quadratic. This implies that there are xlxm ∈ fC(x)
such that l,m ∈ {1, . . . , n}, l ̸= m and l < m. Therefore we can rewrite fC as

fC(x) = xlℓ(x1, . . . , xl−1, xl+1. . . . , xn) + f r
C(x)

for a linear function ℓ and a quadratic function f r
C such that xlxm ̸∈ f r

C(x).
Since xlxm ∈ fC(x), we know that deg(ℓ) = 1. Therefore we have satisfied
the conditions of Lemma 34 for xlℓ(x1, . . . , xl−1, xl+1. . . . , xn) which implies that
xlℓ(x1, . . . , xl−1, xl+1. . . . , xn) is affine equivalent to x1x2. Thus we have

fC(x)≈EA xlℓ(x1, . . . , xl−1, xl+1. . . . , xn).

Now we can define a permutation matrix Pℓ which permutes x = (x1, . . . , xn) into
(x1, . . . , xl−1, xn, xl, xl+1, xl+2, . . . , xn−2, xn−1). Therefore

(xlℓ) ◦ Pℓ(x) = (xlℓ)(x1, . . . , xl−1, xn, xl+1, . . . , xn−1) = xnℓ(x1, . . . , xn−1).

69

Since βc1 = 1, we can define the permutation matrix PF such that PF is an
identity matrix except that on the c1-th row we have a zero row vector with 1 at
the n-th position and the n-th row is βT . Hence

PF ◦ F (x) = PF ◦ (f1(x), . . . , fn(x))T

= (f1(x), . . . , fci−1(x), fn(x), fci+1(x), . . . , fC(x))T .

So we can define
(g1(x), . . . , gn(x)) := PF ◦ F ◦ Pℓ(x),

which satisfies that gn(x) = xnℓ(x1, . . . , xn−1). Thus if we define vectorial Boolean
function G : Fn

2 → Fn
2 such that its coordinate functions are gi, for i ∈ {1, . . . , n}

we get G from the statement of the proposition.
Now we have to prove to prove the statement for the second case, and that is

for deg(fC) ≤ 1. This implies that fC is an affine function, thus fC(x)≈EA 0 using

0 = I1 ◦ fC ◦ I1(x) + fC(x),

thus for affine function B : Fn
2 → Fn

2 such that B(x) := (0, . . . , fC ◦Pℓ(x)) we can
define

(g1(x), . . . , gn(x)) := PF ◦ F ◦ Pℓ(x) +B(x),
where gn(x) = 0.

Finally, we can prove the following theorem. This gives us for every vectorial
Boolean function F : Fn+1

2 → Fn+1
2 an EA-equivalent function T which has a

certain form. The theorem is from [5, Section 5]. The proof is described in more
detail in this thesis with references to previous lemmas and propositions.

Theorem 36. Let F : Fn+1
2 → Fn+1

2 be a quadratic vectorial Boolean function
with linearity 2n. Then, there exists a function G : Fn

2 → Fn
2 of algebraic degree

at most 2 and two linear functions L : Fn
2 → Fn

2 , ℓ : Fn
2 → F2, ℓ ̸= 0 such that F

is EA-equivalent to

T : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y.

Proof. Since F is a quadratic vectorial Boolean function with maximum linearity,
we can use Proposition 35. Thus we have a quadratic APN vectorial Boolean
function H ≈EA F such that H(x, y) = (h1(x, y), . . . , hn(x, y), hn+1(x, y)), where
hi is the i-th coordinate function of H for i ∈ {1, . . . , n + 1} and hn+1(x, y) =
yℓ(x) is the n + 1-th coordinate function of H, where ℓ is linear function. For
t ∈ {1, . . . , n} we denote by

ht(x) =
∑︂

u∈Fn+1
2

ai,u

n+1∏︂
i=1

xui
i

ANF of the Boolean function ht. Now we denote by e = (e1, . . . , en+1) :=
(0, . . . , 0, 1) the element with n zeros and one on the n + 1-th position. By

70

0n+1 we mean the zero element of Fn+1
2 . Let us choose any t ∈ {1, . . . , n}. We

now evaluate ht on en+1 and 0n+1. We start with en+1. Since H is quadratic,
then ht is at most quadratic, thus without loss of generality let ht be quadratic.
Hence

ht(e) =
∑︂

wtH(u)≤2, u∈Fn+1
2

ai,u

n+1∏︂
i=1

eui
i .

For each u such that wtH(u) = 2 we have indices j, k ∈ {1, . . . , n+ 1}, j ̸= k such
that uj = uk = 1. Thus in the summand for such u we have a product of ej and
ek, where at least one of ej and ek is equal to zero. Thus the product is equal to
zero which implies that the whole summand is equal to zero. Therefore we can
omit u ∈ Fn+1

2 such that wtH(u) = 2, thus we can rewrite ht as follows

ht(e) =
∑︂

wtH(u)≤1, u∈Fn+1
2

ai,u

n+1∏︂
i=1

eui
i .

If we have u such that wtH(u) = 1, then we have j ∈ {1, . . . , n+ 1} for which
uj = 1. Since 01 = 0 we are only interested in those u where un+1 = 1, therefore
we are only interested in one element u and that is u = e.

There is only one element for which wtH(u) = 0, and that is 0n+1. Therefore
we can rewrite ht again and so we have

ht(e) =
∑︂

wtH(u)=0, u∈Fn+1
2

ai,u

n+1∏︂
i=1

eui
i +

∑︂
wtH(u)=1, u∈Fn+1

2

ai,u

n+1∏︂
i=1

eui
i

= ai,e + ai,0n+1 .

Using the same argument we get the ht(0n+1) = ai,0n+1 . Now we define the affine
function B : Fn+1

2 → Fn+1
2 as follows

B(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a1,e

0 0 · · · 0 a2,e
...
0 0 · · · 0 an,e

0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
xn

y

⎞⎟⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1,0n+1

a2,0n+1

...
an,0n+1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

Since B is an affine function we can define the EA-equivalent function T to F as
follows

T = In+1HIn+1 +B.

Such a function satisfies

T (e) = H(e) +B(e) = 0n+1 and T (0n+1) = H(0n+1) +B(0n+1) = 0n+1,

since also hn+1(e) = 0 and hn+1(0n+1) = 0.
The vectorial Boolean function T can be expressed by its coordinate func-

tions t1, . . . , tn+1, where tj : Fn+1
2 → F2 for j ∈ {1, . . . , n + 1} and tn+1(x, y) =

hn+1(x, y). Using Lemma 33 gives us that the function x ↦→ ti(x, 0) + ti(x, 1) is of
degree at most 1 for any i ∈ {1, . . . , n}. This implies that there exists an affine
function li : Fn

2 → F2 such that

li(x) = ti(x, 0) + ti(x, 1) =⇒ ti(x, 1) = ti(x, 0) + li(x).

71

Since we know that for our choice of T it holds that ti(0n+1) = ti(e) = 0, we have
that

li(0, . . . , 0⏞ ⏟⏟ ⏞
n times

) = ti(e) + ti(0n+1) = 0,

which implies that li is linear, since the constant from the definition of the affine
function is zero. Any ti(x, y) can be expressed in such a way that

ti

(︄
x
y

)︄
= ti

(︄
x
0

)︄
(y + 1) + ti

(︄
x
1

)︄
y.

Using the linear function li, we can rewrite it in a way that as

ti

(︄
x
y

)︄
= ti

(︄
x
0

)︄
(y + 1) + ti

(︄
x
1

)︄
y

= ti

(︄
x
0

)︄
y + ti

(︄
x
0

)︄
+ ti

(︄
x
0

)︄
y + li(x)y

= ti

(︄
x
0

)︄
+ li(x)y.

Now let us define the functions gi(x) := ti(x, 0) for i ∈ {1, . . . , n} and the vectorial
Boolean function G(x) := (g1(x), . . . , gn(x)). Let also L be a linear function such
that the i-th row is equal to li for i ∈ {1, . . . , n}, so L(x) = (l1(x), . . . , ln(x))T .
We know that hn+1 = ℓ(x)y, therefore

T (x, y) =

⎛⎜⎜⎜⎜⎝
t1(x, y)

...
tn(x, y)
tn+1(x, y)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
t1(x, 0) + l1(x)y

...
tn(x, 0) + ln(x)y

ℓ(x)y

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
g1(x)

...
gn(x)

0

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
l1(x)

...
ln(x)
ℓ(x)

⎞⎟⎟⎟⎟⎠ y

=
(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
y.

Now we want to show, that the G in the Theorem 36 can be chosen up to
EA-equivalence. Thus we prove the following proposition, which is given as a
remark in [5, Section 5] without proof.

Proposition 37. Let L : Fn
2 → Fn

2 and ℓ : Fn
2 → F2, ℓ ̸= 0 be linear mappings. Let

G and G′ be two vectorial Boolean functions from Fn
2 to Fn

2 such that G≈EA G
′.

Then there exist linear mappings L′ : Fn
2 → Fn

2 and ℓ′ : Fn
2 → F2, ℓ′ ̸= 0 such that

the two functions(︄
x
y

)︄
↦→

(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y,

(︄
x
y

)︄
↦→

(︄
G′(x)

0

)︄
+
(︄
L′(x)
ℓ′(x)

)︄
· y

are EA-equivalent.

72

Proof. We know that G≈EA G
′, therefore from the definition of EA-equivalence

we have the existence of A2, A1 and B such that G(x) = A2 ◦G′ ◦A1(x) +B(x).
Let T be the function

T : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y.

and T ′ be the function

T ′ : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
G′(x)

0

)︄
+
(︄
L′(x)
ℓ′(x)

)︄
· y.

We want to show, that T ≈EA T
′. Let us first use the fact, that G≈EA G

′.

T =
(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y

=
(︄
A2 ◦G′ ◦ A1(x) +B(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y

=
(︄
A2 ◦G′ ◦ A1(x) + L(x)y

ℓ(x)y

)︄
+
(︄
B(x)

0

)︄

Since A1 and A2 are bijections, we can write

=
(︄
A2 ◦G′ ◦ A1(x) + (A2 ◦ A−1

2 ◦ L ◦ A−1
1 ◦ A1(x))y

(ℓ ◦ A−1
1 ◦ A1(x))y

)︄
+
(︄
B(x)

0

)︄
.

Now we define L′ := A−1
2 ◦ L ◦ A−1

1 and ℓ′ := ℓ ◦ A−1
1 . Therefore we get

=
(︄
A2 ◦ (G′ + L′y) ◦ A1(x)

(ℓ′ ◦ A1(x))y

)︄
+
(︄
B(x)

0

)︄
.

We can also define A′
2 and A′

1 as

A′
2 : Fn

2 ×F2 → Fn
2 ×F2 A′

1 : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
A2(x)
y

)︄ (︄
x
y

)︄
↦→

(︄
A2(x)
y

)︄

and B′ as

B′ : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
B(x)

0

)︄
.

Therefore, both A′
2 and A′

1 are still affine bijections, and B′ is still affine function.
Therefore, we can write

= A′
2 ◦

(︄(︄
G′

0

)︄
+
(︄
L′

ℓ′

)︄
y

)︄
◦ A′

1

(︄
x
y

)︄
+B′

(︄
x
y

)︄
.

73

This is the definition of T ≈EA T
′, so we have proved the proposition.

Since we are interested in APN functions, we state the following theorem
which gives us conditions under which the function T from Theorem 36 is APN.
The theorem is given as Theorem 1 in [5, Section 5]. The proof is described in
more detail in this thesis.

Theorem 38. Let G : Fn
2 → Fn

2 be a quadratic vectorial Boolean function. Let
L : Fn

2 → Fn
2 and ℓ : Fn

2 → F2, ℓ ̸= 0 be two linear functions. Then

T : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
y

is APN if and only if the following two assertions hold:

1. G is APN

2. ⟨πG(α), L(α)⟩ = 1 for all α ∈ Fn
2 \{0} with ℓ(α) = 0.

Proof. Recall, that if T is an APN function, then it means from the definition
it follows that ∀a ∈ Fn+1

2 , a ̸= 0 and ∀b ∈ Fn+1
2 the equation for any z ∈ Fn+1

2

T (z) + T (z + a) = b

has at most two solutions. This can be written as ∀α, γ ∈ Fn
2 and ∀β, δ ∈ F2

((α, β) ̸= (0, 0)), the equation

T

(︄
x
y

)︄
+ T

(︄
x+ α
y + β

)︄
=
(︄
γ
δ

)︄

has at most two solutions (x, y) ∈ Fn
2 ×F2. Using the definition of T we get

T

(︄
x
y

)︄
+ T

(︄
x+ α
y + β

)︄
=
(︄
γ
δ

)︄
(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
y +

(︄
G(x+ α)

0

)︄
+
(︄
L(x+ α)
ℓ(x+ α)

)︄
(y + β) =

(︄
γ
δ

)︄
(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
y +

(︄
G(x+ α)

0

)︄
+
(︄
L(x) + L(α)
ℓ(x) + ℓ(α)

)︄
(y + β) =

(︄
γ
δ

)︄
(︄
G(x) +G(x+ α)

0

)︄
+
(︄
L(α)
ℓ(α)

)︄
y +

(︄
L(x)
ℓ(x)

)︄
β +

(︄
L(α)
ℓ(α)

)︄
β =

(︄
γ
δ

)︄
(5.6)

Since (α, β) ̸= (0, 0) and β ∈ F2, we can divide the proof into two separable cases.
In the first case we assume that β = 0, which implies that α is not a zero vector.
In the second case we will assume that β = 1, so α can be a zero vector. So let
us start with the first case. β = 0 and fix some arbitrary α. For our fixed α we
recall that the mapping Bα : Fn

2 → Fn
2 , x ↦→ G(x) + G(x + α) + G(0) + G(α) is

linear due to Lemma 29.

74

Now we divide the proof again into two cases. First we assume that y = 0.
Then we have β = 0, y = 0 and α is a non-zero vector from Fn

2 . We assume that
T is an APN function.

T

(︄
x
y

)︄
+ T

(︄
x+ α
y + β

)︄
=
(︄
γ
δ

)︄

T

(︄
x
0

)︄
+ T

(︄
x+ α
0 + 0

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
+
(︄
L(α)
ℓ(α)

)︄
0 +

(︄
L(x)
ℓ(x)

)︄
0 +

(︄
L(α)
ℓ(α)

)︄
0

=
(︄
G(x) +G(x+ α)

0

)︄

Therefore

T

(︄
x
0

)︄
+ T

(︄
x+ α

0

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
=
(︄
γ
δ

)︄
(5.7)

This implies that δ = 0. For the sake of contradiction, let us assume that G is
not APN. Then the equation G(x) + G(x + α) = γ has at least three solutions.
Without loss of generality, let us assume that the number of solutions is three.
Denote them x1, x2, x3. Thus this three solutions satisfy

T

(︄
xi

0

)︄
+ T

(︄
xi + α

0

)︄
=
(︄
G(xi) +G(xi + α)

0

)︄
=
(︄
γ
δ

)︄
,

where i ∈ {1, 2, 3}. But this is in contradiction with T being an APN function.
The second property that ⟨πG(α), L(α)⟩ = 1 for all α ∈ Fn

2 \{0} with ℓ(α) = 0 is
satisfied, since in this case we have shown, that the equation 5.7 is independent
on L(α) and ℓ(α).

Now let us assume that the two conditions from the statement are satisfied.
We want to show that T is then an APN function. The proof is straightforward,
since we assume that G is an APN function and we have the following equation

T

(︄
x
0

)︄
+ T

(︄
x+ α

0

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
=
(︄
γ
δ

)︄
.

Thus T is an APN function.
Let us further assume that since T is an APN function, that (s1, 0) and (s′

1, 0)
are the only solutions for some fixed α, γ and β = δ = 0. Now suppose β = 0, y =
1 and α is a non-zero vector from Fn

2 .

T

(︄
x
1

)︄
+ T

(︄
x+ α

1

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
+
(︄
L(α)
ℓ(α)

)︄
1 +

(︄
L(x)
ℓ(x)

)︄
0 +

(︄
L(α)
ℓ(α)

)︄
0

=
(︄
G(x) +G(x+ α) + L(α)

ℓ(α)

)︄

=
(︄
γ
δ

)︄

T is an APN function, therefore the equation above have at most two solutions,
denoted for example by x1, x2. Therefore G(x) + G(x + α) + L(α) = γ must be
satisfied at most for these two solutions x1, x2 since ℓ(α) is a constant for a fixed

75

choice of α. L(α) is also a constant, so from G(x) + G(x + α) + L(α) = γ we
know that G must be an APN function.

Now we want to prove the second property. From the equation of Bα we know
that

G(x) +G(x+ α) = Bα(x) +G(α) +G(0).
Therefore

T

(︄
x
1

)︄
+ T

(︄
x+ α

1

)︄
=
(︄
G(x) +G(x+ α) + L(α)

ℓ(α)

)︄
=
(︄
γ
δ

)︄

⇐⇒
(︄
γ +G(x) +G(x+ α) + L(α)

0

)︄
=
(︄

0
δ

)︄

⇐⇒
(︄
γ +G(α) +G(0) + L(α)

0

)︄
=
(︄
Bα(x)
δ

)︄
⇐⇒ Bα(x) = γ +G(α) +G(0) + L(α)

Now let us assume that γ + G(α) + G(0) ∈ Im(Bα) and ℓ(α) = 0. This means
that there exists some s2 such that Bα(s2) = γ +G(α) +G(0). Moreover

Bα(s2) = γ +G(α) +G(0) & Bα(s2) = G(s2) +G(s2 + α) +G(0) +G(α)

which implies that G(s2) + G(s2 + α) = γ. Since G is an APN function, we can
assume that there is also s′

2 which satisfies the same as s2. Also, since

Bα(s2) = γ +G(α) +G(0) & Bα(s2) = γ +G(α) +G(0) + L(α),

it is equivalent to L(s2) being a zero vector. Overall, since ℓ(α) = 0, L(α) is a
zero vector, then

T

(︄
s2
1

)︄
+ T

(︄
s2 + α

1

)︄
=
(︄
G(s2) +G(s2 + α)

0

)︄
=
(︄
γ
0

)︄
.

Therefore (s2, 1) and (s′
2, 1) are solutions of the equation for some fixed α, γ and

β = δ = 0. But (s2, 0) and (s′
2, 0) are also solutions of the equation 5.7 which

implies, that we have four solutions for some fixed α, γ and β = δ = 0. This is a
contradiction.

Therefore γ + G(α) + G(0) ̸∈ Im(Bα) whenever ℓ(α) = 0 and since Bα(x) =
γ + G(α) + G(0) + L(α) it implies that L(α) ̸∈ Im(Bα). From the definition
of Bα and ortho-derivative function πG(α) we know that Im(Bα) = {x ∈ Fn

2 |
⟨πG(α), x⟩ = 0}. Thus L(α) ̸∈ Im(Bα) ⇐⇒ ⟨πG(α), L(α)⟩ = 1.

Now for the other implication. So let us assume, that the two conditions from
the statement are true. Since we assume that ⟨πG, L(α)⟩ = 1 for α non-zero
vector from Fn

2 with ℓ(α) = 0, then L(α) is a non-zero vector. This means, that
every solution of

T

(︄
x
1

)︄
+ T

(︄
x+ α

1

)︄
=
(︄
G(x) +G(x+ α) + L(α)

ℓ(α)

)︄
=
(︄
γ
δ

)︄
(5.8)

76

for some fixed α, γ and β = δ = 0 cannot be a solution of the equation 5.7. We
can rearrange the equation 5.8 as follows

T

(︄
x
1

)︄
+ T

(︄
x+ α

1

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
=
(︄
γ + L(α)

δ

)︄
.

Since L(α) is a constant for some fixed α, and we assume that G is an APN
function, this implies that T is also an APN function.

Now we move to the case β = 1. Thus α ∈ Fn
2 . Suppose T is an APN

function. We want to show that the two conditions from the statement hold.
From the equation 5.6 we get for y = 0

T

(︄
x
0

)︄
+ T

(︄
x+ α

1

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
+
(︄
L(α)
ℓ(α)

)︄

=
(︄
G(x) +G(x+ α) + L(x+ α)

ℓ(x+ α)

)︄
=
(︄
γ
δ

)︄
(5.9)

and for y = 1

T

(︄
x
1

)︄
+ T

(︄
x+ α

0

)︄
=
(︄
G(x) +G(x+ α)

0

)︄
+
(︄
L(α)
ℓ(α)

)︄
+
(︄
L(x)
ℓ(x)

)︄
+
(︄
L(α)
ℓ(α)

)︄

=
(︄
G(x) +G(x+ α) + L(x)

ℓ(x)

)︄
=
(︄
γ
δ

)︄
. (5.10)

Let us assume for a contradiction that G is not an APN function. Then for some
value ϵ ∈ Fn

2 we have that x1, x2 and x3 are solutions as follows

ϵ = G(x1) +G(x1 + α) = G(x2) +G(x2 + α) = G(x3) +G(x3 + α).

From the equation 5.9 we know that G(x) + G(x + α) = γ + L(x) + L(α). We
can assume, that ϵ = γ + L(x1) + L(α). Therefore

ϵ+ L(x1 + α) = γ = ϵ+ L(x1) + L(α)

and also

ϵ+ L(x2 + α) = γ = ϵ+ L(x2) + L(α)
ϵ+ L(x3 + α) = γ = ϵ+ L(x3) + L(α)

This implies that L(x1) = L(x2) = L(x3). Thus for i ∈ {1, 2, 3} we have

T

(︄
xi

0

)︄
+ T

(︄
xi + α

1

)︄
=
(︄
γ
δ

)︄

but this contradicts the fact that T is an APN function. Thus G is APN.
Now the second condition of the statement. It is easy to see that x + α is

a solution of 5.9 if and only if x is a solution of 5.10. Therefore, the equation
5.6 has at most two solutions if and only if the equation 5.10 has at most one
solution. This is the case if and only if the following mapping is injective.

Hα : Fn
2 → Fn

2 ×F2

x ↦→
(︄
G(x) +G(x+ α) + L(x)

ℓ(x)

)︄

77

Now we use a little trick. Let us pick an arbitrary element x ∈ Fn
2 and a non-zero

element ω ∈ Fn
2 . Let us consider

Hα(x) +Hα(x+ ω) =
(︄
G(x) +G(x+ α) +G(x+ ω) +G(x+ ω + α) + L(ω)

ℓ(ω)

)︄
.

We know that G is of algebraic degree at most 2, thus the mapping

x ↦→ G(x) +G(x+ α) +G(x+ ω) +G(x+ ω + α)

is constant because of the following. Let us assume that x = (x1, . . . , xn), α =
(α1, . . . , αn), ω = (ω1, . . . , ωn). If G contains a quadratic element as a result of
multiplication of the i-th and j-th coordination, then G(x) + G(x + α) + G(x +
ω) +G(x+ ω + α) will only remain constant since

xixj + (xi + αi)(xj + αj) + (xi + ωi)(xj + ωj) + (xi + ωi + αi)(xj + ωj + αj)

is equal to αiωj + αjωi. If it contains a linear element, then

xi + (xi + αi) + (xi + ωi) + (xi + ωi + αi) = 0.

Therefore,

Hα(x) +Hα(x+ ω) = Hα(0) +Hα(ω) =
(︄
Bω(α) + L(ω)

ℓ(ω)

)︄
.

To prove, that Hα is injective, we look at the kernel of the mapping, that is,
when the right-hand side is equal to zero. If the right-hand side is equal to 0,
this implies that H(0) and H(ω) map onto the same element. The right-hand
side is equal to the zero vector if and only if L(ω) ∈ Im(Bω) and ℓ(ω) = 0. Thus,
for the mapping Hα to be injective, we need to L(ω) ̸∈ Im(Bω) for all ω non-zero
vectors with ℓ(ω) = 0.

For the following, we need to give two definitions and a lemma. Definition 42
and Definition 43 are given in [5, Section 5]. Lemma 39 is based on the comment
from [5, Section 5] after the proof of Theorem 1.

Definition 42. Let G : Fn
2 → Fn

2 be a quadratic APN vectorial Boolean function.
Let L : Fn

2 → Fn
2 be linear and ℓ : Fn

2 → F2, ℓ ̸= 0 such that

T : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
G(x)

0

)︄
+
(︄
L(x)
ℓ(x)

)︄
· y

is APN. If T is APN, we say that the tuple (G, 0, L, ℓ) yields an APN function
T and we say that T is an APN extension of G in standard form.

Lemma 39. Let G be a quadratic vectorial Boolean function. Let L : Fn
2 → Fn

2
and ℓ : Fn

2 → F2, ℓ ̸= 0 be linear functions such that the tuple (G, 0, L, ℓ) yields
an APN function T . Then L is of rank n or n− 1.

78

Proof. Consider a mapping

Hα : Fn
2 → Fn

2 ×F2

x ↦→
(︄
G(x) +G(x+ α) + L(x)

ℓ(x)

)︄
.

We know from the end of the proof of Theorem 38 that for a non-zero element
ω ∈ Fn

2 which satisfies the condition of the second statement of Theorem 38, Hα

is injective. Suppose α is a zero vector. The mapping

H0 : Fn
2 → Fn

2 ×F2

x ↦→
(︄
L(x)
ℓ(x)

)︄
.

is still injective, which means, that the matrix
(︄
L
ℓ

)︄
must be of a rank n, since

the matrix is of a dimension (n + 1) × n. Since ℓ is a row vector, the rank of L
can only be n or n− 1.

Definition 43. Let G : Fn
2 → Fn

2 be a quadratic APN vectorial Boolean function
and πG be ortho-derivative of G. Let ℓ : Fn

2 → F2 be linear mapping such that
ℓ ̸= 0. We define the following set

ΓG,ℓ := {L ∈ L(Fn
2 ,F

n
2) | ⟨πG(x), L(x)⟩ = 1 for all x ∈ Fn

2 \{0} with ℓ(x) = 0}.

From Theorem 38 we have conditions under which the function T is APN.
Now we are interested whether some choice of linear mappings L and ℓ from
Theorem 38 gives us an EA-equivalent function to T . This is in the scope of the
following proposition, which is Proposition 6 from [5, Section 5]. The proof is
described in more detail in this thesis.

Proposition 40. Let n ∈ N, n ≥ 3. Let G : Fn
2 → Fn

2 be a quadratic mapping,
L : Fn

2 → Fn
2 be linear and ℓ : Fn

2 → F2, l ̸= 0 be linear such that (G, 0, L, ℓ) yields
an APN function T . For all µ, ν ∈ Fn

2 , the tuple (G, 0, L + Bµ + ℓν, ℓ) yields an
APN function EA-equivalent to T , where Bµ : Fn

2 → Fn
2 , x ↦→ G(x) +G(x+ µ) +

G(µ) +G(0).
The functions L+ Bµ + ℓν are pairwise distinct for µ, ν ∈ Fn

2 . Moreover, for
every µ ∈ Fn

2 , we have

|{ν ∈ Fn
2 | Rank(L+Bµ + ℓν) = n}| = 2n−1,

|{ν ∈ Fn
2 | Rank(L+Bµ + ℓν) = n− 1}| = 2n−1.

Proof. For an element c ∈ Fn
2 , let us consider the linear involution

Mc : Fn
2 ×F2 → Fn

2 ×F2(︄
x
y

)︄
↦→

(︄
x+ cy
y

)︄
.

79

For µ ∈ Fn
2 , let us consider the function

T ′
µ : Fn

2 ×F2 → Fn
2 ×F2(︄

x
y

)︄
↦→ TMµ

(︄
x
y

)︄
+
(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y.

The function Mµ is a linear involution, thus it is an affine permutation. The
function (︄(︄

L(µ) +G(µ) +G(0)
ℓ(µ)

)︄
y

)︄(︄
x
y

)︄
is linear, thus it is an affine function. This means that T ′

µ≈EA T . We can rewrite
T ′

µ as follows

T ′
µ

(︄
x
y

)︄
= TMµ

(︄
x
y

)︄
+
(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y

= T

(︄
x+ µy
y

)︄
+
(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y

=
(︄
G(x+ µy)

0

)︄
+
(︄
L(x+ µy)
ℓ(x+ µy)

)︄
y +

(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y

Since y ∈ F2, we can rewrite the first two summands and get the following

=
(︄
G(x+ µy)

0

)︄
(y + 1) +

(︄
G(x+ µy) + L(x+ µy)

ℓ(x+ µy)

)︄
y

+
(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y

The first summand is only relevant if y = 0 and the second summand is only
relevant if y = 1. Therefore

=
(︄
G(x)

0

)︄
(y + 1) +

(︄
G(x+ µ) + L(x+ µ)

ℓ(x+ µ)

)︄
y +

(︄
L(µ) +G(µ) +G(0)

ℓ(µ)

)︄
y

=
(︄
G(x)

0

)︄
(y + 1) +

(︄
G(x+ µ) + L(x) + L(µ) + L(µ) +G(µ) +G(0)

ℓ(x) + ℓ(µ) + ℓ(µ)

)︄
y

=
(︄
G(x)

0

)︄
(y + 1) +

(︄
G(x+ µ) +G(µ) +G(0) + L(x)

ℓ(x)

)︄
y

=
(︄
G(x)

0

)︄
+
(︄
G(x) +G(x+ µ) +G(µ) +G(0) + L(x)

ℓ(x)

)︄
y

=
(︄
G(x)

0

)︄
+
(︄

(Bµ + L) (x)
ℓ(x)

)︄
y

Since G is at most of algebraic degree 2, we can use Lemma 29, thus Bµ is linear.
Therefore Bµ +L is also linear, so we have T ′

µ in the form as in Theorem 38. This
means that the tuple (G, 0, L+Bµ, ℓ) yields the APN function T ′

µ.
For an element ν ∈ Fn

2 we have that Mν is by definition a linear involution,
thus it is an affine bijection, so MνT ≈EA T . We can also rewrite MνT , thus we

80

get

MνT

(︄
x
y

)︄
= Mν

(︄(︄
G(x)

0

)︄
(y + 1) +

(︄
G(x) + L(x)

ℓ(x)

)︄
y

)︄

= Mν

(︄
G(x)(y + 1) +G(x)y + L(x)y

ℓ(x)y

)︄

= Mν

(︄
G(x) + L(x)y

ℓ(x)y

)︄

=
(︄
G(x) + L(x)y + ℓ(x)y2ν

ℓ(x)y

)︄

=
(︄
G(x)

0

)︄
+
(︄

(L+ ℓν) (x)
ℓ(x)

)︄
y

which is again has the same form as in Theorem 38. Thus, the tuple (G, 0, L+ℓν, ℓ)
yields the APN function MνT . We can combine T ′

µ and MνT and we get that the
tuple (G, 0, L + Bµ + ℓν, ℓ) yields an APN function MνT

′
µ. Since T ≈EA T

′
µ and

T ≈EA MνT . Therefore MνT ≈EA MνT
′
µ, which leads to T ≈EA MνT

′
µ.

Now we want to prove, that L + Bµ + ℓν are pairwise distinct for µ, ν ∈ Fn
2 .

This can be proved by showing that the linear mapping

J : Fn
2 ×Fn

2 → L(Fn
2 ,F

n
2)(︄

µ
ν

)︄
↦→ Bµ + ℓν

is injective since L in L+Bµ +ℓν does not depend on µ, ν. For this, we will show,
that the kernel of J is trivial. Suppose, that we have a non-trivial element in the
kernel of J . This means that for all x ∈ Fn

2 , we have Bµ(x) + ℓ(x)ν = 0. Now
we can only consider all x ∈ Fn

2 for which ℓ(x) = 1. This implies Bµ(x) = ν. We
know from the assumptions, that T is an APN function, so by Theorem 38, G is
an APN function. Since Bµ(x) = G(x) +G(x+ µ) +G(µ) +G(0) = ν it follows
that

G(x) +G(x+ µ) = ν +G(µ) +G(0)
has at most two solutions for every non-zero µ. Thus the only way the equation
can be satisfied for all x ∈ Fn

2 is if µ is a zero vector. Therefore, Bµ(x) =
G(x) +G(x) +G(0) +G(0) is a zero vector. It follows from Bµ(x) = ν that ν is
a zero vector. So the kernel of J must be trivial.

Now we have to prove the last statement. Let us fix an element µ ∈ Fn
2 and

let us define L′ := L+Bµ. Now we will divide the proof into two cases based on
the rank(L′).

In the first case we assume that rank(L′) = n. Let us fix a ν ∈ Fn
2 . We are

interested in rank(L′ + ℓν). To examine it, we focus on the kernel of L′ + ℓν.
Since we are interested in all x ∈ Fn

2 such that L′(x) + ℓ(x)ν = 0, we will divide
the proof into two cases based on the value of ℓ(x).

In the first case, we focus on all x ∈ Fn
2 such that ℓ(x) = 0. Therefore,

L′(x) + ℓ(x)ν = L′(x) = 0. Since we assume that rank(L′), we know that L′ is
invertible, so L′(x) = 0 ⇐⇒ x = 0.

81

In the second case, we focus on all x ∈ Fn
2 such that ℓ(x) = 1. Thus, we have

L′(x) + ν = 0 ⇐⇒ L′(x) = ν

⇐⇒ x = L′−1(ν)
⇐⇒ ℓ(L′−1(ν)) = 1

Since ℓ ̸= 0, note that dim(Ker(ℓ)) = dim(Fn
2) − rank(ℓ) = n − 1. Therefore

|{x | ℓ(x) = 0}| = 2n−1. Since Im(ℓ) = {0, 1}, then |{x | ℓ(x) = 1}| = 2n−2n−1 =
2n−1.

Therefore, if ν ∈ Fn
2 is such that ℓ(L′−1(ν)) = 1, then Ker(L′ + ℓν) =

{0, L′−1(ν)}. This implies that dim(Ker(L′ + ℓν)) = 1. Therefore rank(L′ +ℓν) =
dim(Fn

2)− dim(Ker(L′ + ℓν)) = n− 1.
If ν ∈ Fn

2 is such that ℓ(L′−1(ν)) = 0, then Ker(L′ + ℓν) = {0}. This
implies that dim(Ker(L′ + ℓν)) = 0. Therefore rank(L′ + ℓν) = dim(Fn

2) −
dim(Ker(L′ + ℓν)) = n.

Put it all together, if rank(L′) = n, then we have 2n−1 possible choices of
ν ∈ Fn

2 (ℓ(L′−1(ν)) = 1) such that rank(L′ + ℓν) = n−1 and 2n−1 possible choices
of ν ∈ Fn

2 (ℓ(L′−1(ν)) = 0) such that rank(L′ + ℓν) = n.
For the second case we assume that rank(L′) ̸= n. Then the rank is equal to

n− 1 by Lemma 39, since the tuple (G, 0, L+Bµ, ℓ) yields an APN function. Let
us choose a ν ∈ Fn

2 . Again we are interested in rank(L′ + ℓν). We want to find
its value. To do this we focus on the kernel of L′ + ℓν. Since we are interested in
all x ∈ Fn

2 such that L′(x) + ℓ(x)ν = 0, we again divide the proof into two cases
based on the value of ℓ(x).

In the first case, we focus on all x ∈ Fn
2 such that ℓ(x) = 0. Therefore,

L′(x) + ℓ(x)ν = L′(x) = 0. Let us assume, that x is non-zero vector. Because of
the choice of x we know that(︄

L′

ℓ

)︄
(x) =

(︄
L′(x)
ℓ(x)

)︄
= 0.

But since x is a non-zero element, this contradicts the results of Lemma 39, be-

cause we know from this lemma that the rank of the matrix
(︄
L′

ℓ

)︄
is n. Therefore,

L′(x) = 0 is true if and only if x = 0.
In the second case, we focus on all x ∈ Fn

2 such that ℓ(x) = 1. Thus, we
have L′(x) + ℓ(x)ν = 0 ⇐⇒ L′(x) = ν. Our choice of ν was arbitrary. But
since ν ∈ Fn

2 , we can have either ν ̸∈ Im(L′) or ν ∈ Im(L′). Note that since
n − 1 = rank(L′) = dim(Im(L′)), then | Im(L′)| = 2n−1 and therefore |{ν | ν ̸∈
Im(L′)}| = 2n − 2n−1 = 2n−1.

If ν ̸∈ Im(L′), then L′(x) ̸= ν, which implies that for all x ∈ Fn
2 such that

ℓ(x) = 1 we have that x ̸∈ Ker(L′ + ℓν). This implies, with the combination of the
previous case where ℓ(x) = 0, that Ker(L′ + ℓν) = {0}, thus dim(Ker(L′ + ℓν)) =
0, which implies that rank(L′ + ℓν) = dim(Fn

2)− dim(Ker(L′ + ℓν)) = n− 0 = n.
Now if ν ∈ Im(L′), then we know that there exists y ∈ Fn

2 such that ν =
L′(y). Note that dim(Ker(L′)) = dim(Fn

2) − rank(L′) = n − (n − 1) = 1. Since
rank(L′) = n − 1, the L′ is not injective. Suppose y is the only solution of
L′(x) = ν. This implies that 0 = L′(y)− ν = L′(y − y), thus Ker(L′) = {0}, but
this is a contradiction with dim(Ker(L′)) = 1.

82

Now let us assume that there exists x1 ∈ Fn
2 such that x1 ̸= y and ν =

L′(y) = L′(x1), then 0 = L′(y − x1). Therefore Ker(L′) = {0, y − x1} and
Ker(L′ + ℓν) = {0, y, x1, y + x1} which implies that dim(Ker(L′ + ℓν)) = 2 =⇒
rank(L′ + ℓν) = n− 2. This is beyond the scope of this proposition.

Now suppose there exist x1, . . . , xk ∈ Fn
2 , for k ∈ N, k ≥ 2 such that they

are pairwise distinct and also y ̸= xi for i ∈ {1, . . . , k}. This implies that 0, y −
x1, . . . , y − xk ∈ Ker(L′) which contradicts dim(Ker(L′)) = 1.

Therefore if rank(L′) ̸= n, then we have 2n−1 possible choices of ν (ν ̸∈ Im(L′))
for which rank(L′ + ℓν) = n. If ν ∈ Im(L′), then neither rank(L′ + ℓν) = n nor
rank(L′ + ℓν) = n− 1 holds.

Using this proposition, we can get a lower bound on the size of the set ΓG,ℓ. Let
G : Fn

2 → Fn
2 be a quadratic APN vectorial Boolean function and let ℓ : Fn

2 → F2
be a linear mapping such that ℓ ̸= 0. Let us assume, that ΓG,ℓ ̸= ∅. Then we can
choose any µ ∈ Fn

2 , so we have 2n possible choices. For those µ we have 2 · 2n−1

possible choices for the element ν ∈ Fn
2 . Therefore we have 2n · (2 · 2n−1) = 22n

possible choices for (µ, ν), so |ΓG,ℓ| ≥ 22n.
We can give the following definition and proposition, which gives us a more

elegant way of denoting linear functions L + Bµ + ℓν for which we have EA-
equivalent functions to T from Proposition 40. The following definition is based
on the text from [5, Section 5]. Proposition 41 follows from the text at the end
of the first section of [5, Section 5].

Definition 44. Let G : Fn
2 → Fn

2 be a quadratic APN vectorial Boolean function
and let ℓ : Fn

2 → F2 be linear mapping such that ℓ ̸= 0. Let L,L′ ∈ ΓG,ℓ. We say
that L and L′ are Γ-equivalent if there exist µ, ν ∈ Fn

2 such that L′ = L+Bµ +ℓν.

Proposition 41. Let G : Fn
2 → Fn

2 be a quadratic APN vectorial Boolean function
and let ℓ : Fn

2 → F2 be linear mapping such that ℓ ̸= 0. Let L,L′ ∈ ΓG,ℓ be Γ-
equivalent. Then the tuples (G, 0, L, ℓ) and (G, 0, L′, ℓ) yield EA-equivalent APN
functions.

Proof. This proposition was proved in Proposition 40.

5.4 Algorithm
The algorithm for finding quadratic APN functions with maximum linearity is
presented in [5, Section 5.1] as Algorithm 1. We will describe the algorithm and
its functions and put them in the context of the theory presented in this chapter.
The idea behind the algorithm is that it takes as input a quadratic APN vectorial
Boolean function G : Fn

2 → Fn
2 and for all ℓ : Fn

2 → F2 it tries to find at least
one suitable L from ΓG,ℓ. If it finds such a L, it calculates the APN function
T : Fn+1

2 → Fn+1
2 from Theorem 38 and returns it as output.

All of the algorithms are implemented in the Python 3 programming language
using Sagemath, but in this text we will use pseudo-code for better understanding.
The implementation of the algorithm is attached in A.13.

83

The core of the algorithm follows the algorithm from [5, Attachment B], thus
the functions Gen System, Is Extendable and Extensions and Algorithm 5 are
taken from [5]. We will use these functions and describe them in more detail and
in the context of the theory presented.

5.4.1 Description
Now we will examine functions from that algorithm. Let us start with the function
Gen System. The goal of this function is to find L that satisfies condition 2 from
Theorem 38. Let us recall this condition:

⟨πG(α), L(α)⟩ = 1 for all α ∈ Fn
2 \{0} with ℓ(α) = 0.

The function takes as input a quadtratic APN function G : Fn
2 → Fn

2 , the ortho-
derivative πG and a function ℓ (which is a vector from Fn

2). The output is a matrix
M with k rows and n2 columns, where k is the number of α ∈ Fn

2 that satisfy
⟨ℓ, α⟩ = 0. If this matrix is solvable, then the solution will give us a mapping L
in the function Is Extendable. Then we will present the implementation of the
algorithm following the pseudo-codes of the functions

Because of the input, we have fixed πG and ℓ. Condition 2 from Theorem
38 is only true for non-zero α, which satisfies ℓ(α) = 0, which is equivalent to
⟨ℓ, α⟩ = 0. Let us assume for the moment that only one α satisfies this. We want
to find L such that ⟨πG(α), L(α)⟩ = 1. Let us denote L and α and their elements
by

L =

⎛⎜⎜⎜⎜⎝
l11 l12 · · · l1n

l21 l22 · · · l2n
...
ln1 ln2 · · · lnn

⎞⎟⎟⎟⎟⎠ α =

⎛⎜⎜⎜⎜⎝
α1
α2
...
αn

⎞⎟⎟⎟⎟⎠
and πG(α) and its elements as

(πG(α))T = (π1
G(α), π2

G(α), . . . , πn
G(α))T .

Thus, we can write

L(α) =

⎛⎜⎜⎜⎜⎝
l11 l12 · · · l1n

l21 l22 · · · l2n
...
ln1 ln2 · · · lnn

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝
α1
α2
...
αn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
l11α1 + l12α2 + · · ·+ l1nαn

l21α1 + l22α2 + · · ·+ l2nαn
...

ln1α1 + ln2α1 + · · ·+ lnnαn

⎞⎟⎟⎟⎟⎠
and therefore

⟨πG(α), L(α)⟩ = (π1
G(α), π2

G(α), . . . , πn
G(α)) ·

⎛⎜⎜⎜⎜⎝
l11α1 + l12α2 + · · ·+ l1nαn

l21α1 + l22α2 + · · ·+ l2nαn
...

ln1α1 + ln2α1 + · · ·+ lnnαn

⎞⎟⎟⎟⎟⎠
Using the property of matrix multiplication, we can rewrite the last equation as
follows. Since the notation is long, we will define Mα as

Mα :=
(︂
π1

G(α)α1, . . . , π
1
G(α)αn, π

2
G(α)α1, . . . , π

2
G(α)αn, . . . , . . . , π

n
G(α)αn

)︂
84

Therefore we have

⟨πG(α), L(α)⟩ = Mα · (l11, l12, . . . , l1n, l21, . . . , l2n, . . . , ln1, . . . , lnn)T

Let us denote the vector with the coefficients lij as ˜︁L, thus we have

1 = ⟨πG(α), L(α)⟩ = Mα · ˜︁L.
This means that if we want to find ˜︁L (which means that we want to find L), we
have to solve the equation Mα(˜︁L) = 1.

We have assumed, that we have only one α which satisfies ⟨ℓ, α⟩ = 0. Now
consider all such α. Suppose the number of such α is k. We can then do all of
this for each of those α, therefore we can define a matrix M , which will have k
rows consisting of Mα for those α. Therefore we have the equation M · ˜︁L = 1,
where 1 ∈ Fk

2. Therefore, if we solve the equation M · ˜︁L = 1, we get the matrix
L which we want. So let us put all of this into the context of the Gen System
function. As mentioned, we are only interested in α satisfying ⟨ℓ, α⟩ = 0. This is
the reason for the condition on the line 4. Then on the lines 6-8 we generate Mα

and on the line 11 we put this Mα into the matrix M .
1: function Gen System(“G”,“πG”,“ℓ”):
2: “M” ← initialised as an empty list
3: for α ∈ [1, 2n − 1] do
4: if ⟨ℓ, α⟩ = 0 then
5: “Mα” ← initialised as an empty list
6: for bit π ∈ [0, . . . , n− 1] do
7: for bit α ∈ [0, . . . , n− 1] do
8: “Mα” ← append (bit on bit α position in α)·(bit on bit π

position in “πG”[α]) to the list
9: end for

10: end for
11: “M” ← append “Mα” to the list
12: end if
13: end for
14: return(matrix M)
15: end function

As we mentioned before, the function Is Extendable will give us the linear
mapping L from Theorem 38 based on the output of the function Gen System.Now
we will examine the function Is Extendable.

On the line 2, we generate the matrix M (from the function Gen System).
This matrix, if M · ˜︁L = 1 from the description of the function Gen System is
solvable, will give us the solution ˜︁L, which contains elements from the matrix of
the linear mapping L. Therefore, if the matrix M is solvable, then we have our
desired linear mapping L. Thus we check this on the line 4.

The equation M · ˜︁L = 1 can have more solutions. We want to decide whether
they are Γ-equivalent or not. We will do this with some uncertainty. From
Proposition 40, we know that if ΓG,ℓ ̸= ∅, then |ΓG,ℓ| ≥ 22n. From the definition of
Γ-equivalence we know, that L,L′ ∈ ΓG,ℓ are Γ-equivalent if there exist µ, ν ∈ Fn

2
such that L′ = L + Bµ + ℓν. Thus the number of Γ-equivalent linear mappings
to L is 22n. Therefore, if we have more than 22n solutions of M ˜︁L = 1, then we

85

have |ΓG,ℓ| > 22n and | Im(M)| < 2n2 − 22n. Thus

| Im(M)| < 2n2 − 22n = 22n
(︂
2n2−2n − 1

)︂
< 22n

(︂
2n2−2n

)︂
< 2n2−2n.

This implies that dim(Im(M)) < n2 − 2n. Hence

dim(Ker(M)) = dim(F n2

2)− dim(Im(M)) > n2 − (n2 − 2n) = 2n.

Using this inequality, we can check on the line 9, if there might be some Γ-
inequivalent solutions by calculating the dimension of the kernel of M .

Then the function transforms the ˜︁L into the 2-dimensional array and computes
the function T from the Theorem 38. The function T is from Fn+1

2 to Fn+1
2 . As

in the Theorem 38, let the input of T be (x, y), where x ∈ Fn
2 and y ∈ F2. The

first for loop on the line 14 adds values for all (x, 0) to the function (which we
understand as a look-up table). The second for loop on the line 17 adds values
to the function for all (x, 1). Therefore, at the end of this function, the array T
contains 2n+1 elements.

1: function Is Extendable(“G”,“πG”,“ℓ”):
2: “M” ← Gen System(“G”,“πG”,“ℓ”)
3: “v1” ← vector with ones on k positions, where k is the number of rows of

“M”
4: if M ˜︁L = v1 has at least one solution then
5: solve: M ˜︁L = v1
6: else
7: return(empty list)
8: end if
9: if dim(Ker(M))> 2n then

10: Inform the user that there may be other Γ-inequivalent solutions.
11: end if
12: “L” ← transform ˜︁L into the 2-dimensional array
13: “T” ← initialised as an empty list
14: for i ∈ [0, . . . , 2n − 1] do
15: “T” ← append list with integer representation of: G[i] shifted by one

bit to the left
16: end for
17: for i ∈ [0, . . . , 2n − 1] do
18: “T” ← append list with integer representation of: (G[i]⊕ L[i] shifted

by one bit to the left) ⊕⟨ℓ, i⟩
19: end for
20: return(“T”)
21: end function

The last function is Extensions. It’s purpose is to find all functions T from
Theorem 38 for a given function G. The function gets a function G as an input.
First it calculates the ortho-derivative πG. Then, for all possible choices of ℓ, it
tries to find the extension of G in standard form using Is Extendable on the line
5. If it succeeds, the function adds the extension to the list “sol”.

1: function Extensions(“G”):
2: “sol” ← initialised as an empty list
3: “πG” ← compute ortho-derivative of G

86

4: for ℓ ∈ [1, . . . , 2n − 1] do
5: “T” ← Is Extendable(“G”,“πG”,“ℓ”)
6: if “T” is not an empty list then
7: “sol” ← append “T” to the list
8: end if
9: end for

10: return(“sol”)
11: end function

Now we can finally examine the Algorithm 1 from [5]. Since we described the
function Extensions, the description of the algorithm itself is very straightfor-
ward. It take function from the input set G and use it as an input to the function
Extensions. If the function Extensions found n+ 1-bit function T , it add it to
the list “solutions”. After examination of all G ∈ G, the algorithm shows founded
functions.

Algorithm 5 Classification of n+1-bit quadratic APN functions with maximum
linearity up to EA-equivalence
Input: set G which contains n-bit quadratic APN vectorial Boolean functions
Output: n+ 1-bit quadratic APN functions with maximum linearity

1: “solutions” ← initialised as an empty array
2: for i ∈ [0, . . . , |G|] do
3: “T” ← Extensions(G)
4: if “T” is not empty then
5: “solutions” ← append “T” to the list
6: end if
7: end for
8: Show all functions from the array “solutions”.

5.4.2 Results
The results are attached in A.14.

n=7

First we try to replicate the results of [5]. Let us denote G = {G1, . . . , G488}
which is the set of all 7-bit quadratic APN functions found in the [13]. All of
these functions are pairwise EA-inequivalent as it is stated in [5]. The values of
these functions can be found in [14] in a file sevenBitAPN.py. For each of these
functions we run Algorithm 5.

The output of the algorithm is four quadratic APN functions with maximum
linearity in the form of a look-up table. These four functions are pairwise EA-
inequivalent. This is because all of the functions in the file sevenBitAPN.py are
EA-inequivalent.

Application to results from Chapter 2.

We have used the results of Subsection 2.3.3 (A.8). By representative of an EA-
equivalence class, we mean the first function in the class, as given in A.8.

87

For n = 2 we know that there is only one EA-equivalence class. We applied
the algorithm to the representative of this class and got a function as an output.
For n = 3 we have only one EA-equivalence class. We applied the algorithm to
the representative of this class and got a function as an output. For n = 4 we have
only one EA-equivalence class. After applying the algorithm to the representative,
we did not get a function as an output. For n = 5 we know that there are two
EA-equivalence classes. After applying the algorithm to these representatives we
obtain a function for each of them. For n = 6 we have 13 EA-equivalence classes.
We applied the algorithm to representative of each of these classes, but we do not
get a function for any of these representatives.

88

Conclusion
This thesis intended to provide a better understanding of the methods for finding
APN vectorial boolean functions and to classify them into equivalence classes
which were presented in several recent articles. We mathematically expanded
the theory from these articles, extended and clarified proofs, and provided the
implementation of the algorithm with explanations in the context of the presented
theory. We were also able to reproduce the results of the papers, demonstrating
the effectiveness of the methods.

The methods presented in this thesis can be used in higher dimensions if useful
constraints are found, providing a direction for future research.

89

Bibliography
[1] Lov K. Grover. A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Associ-
ation for Computing Machinery. ISBN 0897917855. doi: 10.1145/237814.
237866.

[2] Christof Beierle and Gregor Leander. New Instances of Quadratic APN
Functions. IEEE Transactions on Information Theory, 68(1):670–678, 2022.
doi: 10.1109/TIT.2021.3120698.

[3] Christof Beierle, Marcus Brinkmann, and Gregor Leander. Linearly Self-
Equivalent APN Permutations in Small Dimension. IEEE Transactions
on Information Theory, 67(7):4863–4875, 2021. doi: 10.1109/TIT.2021.
3071533.

[4] David S. Dummit and Richard M. Foote. Abstract algebra. Third edition.
John Wiley and Sons, Inc., 2004. ISBN 0-471-43334-9.

[5] Christof Beierle, Gregor Leander, and Léo Perrin. Trims and extensions of
quadratic APN functions. Designs, Codes and Cryptography, 90:1009–1036,
03 2022. doi: 10.1007/s10623-022-01024-4.

[6] Faruk Göloglu. Lecture notes on Boolean functions. Faculty of Mathematics
and Physics Charles University, 2020.

[7] David Stanovský. Základy algebry. MatfyzPress, 2010. ISBN 978-80-7378-
105-7.

[8] Claude Carlet. Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, 2020. ISBN 978-1-108-47380-4. doi: 10.1017/
9781108606806.

[9] Satoshi Yoshiara. Equivalences of power APN functions with power or
quadratic APN functions. Journal of Algebraic Combinatorics, 44:561–585,
3 2016. doi: 10.1007/s10801-016-0680-z.

[10] Morgan Barbier, Hayat Cheballah, and Jean-Marie Le Bars. On the compu-
tation of the Möbius transform. Theoretical Computer Science, 809:171–188,
2020. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2019.12.005.

[11] Marcus Brinkmann and Gregor Leander. On the classification of APN func-
tions up to dimension five. Designs, Codes and Cryptography, 49:273–288, 3
2008. doi: 10.1007/s10623-008-9194-6.

[12] Anne Canteaut, Alain Couvreur, and Léo Perrin. Recovering or Testing
Extended-Affine Equivalence. IEEE Transactions on Information Theory,
68(9):6187–6206, 2022. doi: 10.1109/TIT.2022.3166692.

90

[13] Konstantin Kalgin and Valeriya Idrisova. The classification of quadratic
APN functions in 7 variables and combinatorial approaches to search for
APN functions. 15:239–256, 2023. doi: 10.1007/s12095-022-00588-1.

[14] Jules Baudrin, Aurélien Boeuf, Alain Couvreur, Mathias Joly, and Léo
Perrin. SboxU: Tools for studying S-boxes v1.3, 2023. URL https:
//github.com/lpp-crypto/sboxU.

[15] Marco Calderini. On the EA-classes of known APN functions in small di-
mensions. Cryptography and Communications, 12:821–840, 4 2020. doi:
10.1007/s12095-020-00427-1.

[16] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equiv-
alence, and function twisting. Finite Fields and Their Applications, 56:209–
246, 2019. ISSN 1071-5797. doi: 10.1016/j.ffa.2018.11.008.

[17] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-correcting Codes,
volume 16. North-Holland Publishing Company, 1977. ISBN 0-444-85010-4.

91

https://github.com/lpp-crypto/sboxU
https://github.com/lpp-crypto/sboxU

A. Attachments
To run the algorithms from A.1 to A.6, Python 3, Sagemath and the Cython
Module for Python and also the sboxU library [14] must be installed. The “.py”
files are also attached to the thesis in the form of “.txt” files. All functions in the
source codes includes comments. The following Python source codes and results
are available at https://github.com/arskn/master_thesis/ in the mentioned
folders.

A.1 Attachment one - Python 3 Implementa-
tion of the Algorithm from Subsection 2.3.1

The Python source code is available as chapter2-algorithm1-A1.py in the folder
chapter2.

A.2 Attachment two - Python 3 Implementa-
tion of the Algorithm from Subsection 2.3.1
- modified

The Python source code is available as chapter2-algorithm1-A2.py in the folder
chapter2.

A.3 Attachment three - Python 3 Implementa-
tion of the Algorithm from Subsection 2.3.2

The Python source code is available as chapter2-algorithm1-A3.py in the folder
chapter2.

A.4 Attachment four - Python 3 Implementa-
tion of the Algorithm from Subsection 2.3.2
- modified

The Python source code is available as chapter2-algorithm1-A4.py in the folder
chapter2.

A.5 Attachment five - Results from Subsection
2.3.2

The results are available in the folder chapter2/results-A5.

• for n = 2 as chapter2-algorithm1-A3-output-n2.py

92

https://github.com/arskn/master_thesis/

• for n = 3 as chapter2-algorithm1-A3-output-n3.py

• for n = 4 as chapter2-algorithm1-A4-output-n4.py

• for n = 5 as chapter2-algorithm1-A4-output-n5.py

• for n = 6 as chapter2-algorithm1-A4-output-n6.py

• for n = 7 as chapter2-algorithm1-A4-output-n7.py

A.6 Attachment six - Python 3 Implementation
of the Algorithm from Subsection 2.3.3

The Python source code is available as chapter2-algorithm2-A6.py in the folder
chapter2.

A.7 Attachment seven - Python 3 Implementa-
tion of the Algorithm from Subsection 2.3.3
- modified

Running the algorithm requires Python 3, Sagemath, the Cython Module for
Python, the sboxU library [14] and the Python code Equivalence.py from [12].
The Python source code is available as chapter2-algorithm2-A7.py in the folder
chapter2.

A.8 Attachment eight - Results from Subsec-
tion 2.3.3

The results are available in the folder chapter2/results-A8

• for n = 5 as chapter2-algorithm2-A7-output-n5.txt

• for n = 6 as chapter2-algorithm2-A6-output-n6.txt

• for n = 7 as chapter2-algorithm2-A6-output-n7.txt

A.9 Attachment nine - Python 3 Implementa-
tion of Algorithm from Chapter 3

To run the algorithm Python 3, Sagemath and the Cython Module for Python
must be installed. The Python source code is available in the folder chapter3 as
chapter3 -algorithm3-A9.py.

93

A.10 Attachement ten - Results from Chapter
3

The results are available in the folder chapter3/results-A10

• for n = 2 as chapter3-algorithm3-A9-output-n2.txt

• for n = 3 as chapter3-algorithm3-A9-output-n3.txt

• for n = 4 as chapter3-algorithm3-A9-output-n4.txt

• for n = 5 as chapter3-algorithm3-A9-output-n5.txt

• for n = 6 as chapter3-algorithm3-A9-output-n6.txt

• for n = 7 as chapter3-algorithm3-A9-output-n7.txt

• for n = 8 as chapter3-algorithm3-A9-output-n8.txt

• for n = 9 as chapter3-algorithm3-A9-output-n9.txt

• for n = 10 as chapter3-algorithm3-A9-output-n10.txt

• for n = 11 as chapter3-algorithm3-A9-output-n11.txt

• for n = 12 as chapter3-algorithm3-A9-output-n12.txt

A.11 Attachment eleven - Python 3 Implemen-
tation of the Algorithm from Chapter 4

To run the algorithm Python 3 and the sboxU library [14] must be installed. The
Python source code is available as chapter4-algorithm4-A11.py in the folder
chapter4.

A.12 Attachment twelve - Results from Chap-
ter 4

The results are available in the folder chapter4/results-A12

• for n = 7 to 6 as chapter4-algorithm4-A11-output-n7.txt

• for n = 6 to 5 as chapter4-algorithm4-A11-output-n6.txt

• for n = 5 to 4 as chapter4-algorithm4-A11-output-n5.txt

94

A.13 Attachment thirteen - Python 3 Imple-
mentation of the Algorithm from Chapter
5 in Python 3

To run the algorithm Python 3, Sagemath, the Cython Module for Python and
the sboxU library [14] must be installed. The Python source code is available as
chapter5-algorithm5-A13.py in the folder chapter5.

A.14 Attachment fourteen - Results from Chap-
ter 5

The results are available in the folder chapter5/results-A14 as
chapter5-algorithm5-A13-output.txt.

95

	Introduction
	Notation and Preliminaries
	General Assumptions
	Algebraic Theory
	Modules
	Modules over Polynomial Ring
	Finite Field

	Introduction to Boolean Functions
	Representation
	Properties

	Equivalence Relations

	Recursive Tree Search and Classifying up to EA-equivalence
	Coefficients in ANF
	EA-invariants
	Algorithm
	Search for a Quadratic APN Function
	Search for Quadratic APN Functions
	Classifying Functions up to EA-equivalence

	LE-automorphism
	Automorphism Group
	Modules
	Representatives up to Power-Similarity
	Algorithm
	Description
	Results

	Function Trimming
	Definitions and Notations
	EA-equivalence of Trim Spectrum
	Algorithm
	Description
	Results

	Finding Quadratic APN Functions with Maximum Linearity
	Ortho-derivative of a Function
	EA-equivalence of Quadratic Boolean Functions
	EA-equivalence of Quadratic Boolean Function with Maximum Linearity
	Algorithm
	Description
	Results

	Conclusion
	Bibliography
	Attachments
	Attachment one - Python 3 Implementation of the Algorithm from Subsection 2.3.1
	Attachment two - Python 3 Implementation of the Algorithm from Subsection 2.3.1 - modified
	Attachment three - Python 3 Implementation of the Algorithm from Subsection 2.3.2
	Attachment four - Python 3 Implementation of the Algorithm from Subsection 2.3.2 - modified
	Attachment five - Results from Subsection 2.3.2
	Attachment six - Python 3 Implementation of the Algorithm from Subsection 2.3.3
	Attachment seven - Python 3 Implementation of the Algorithm from Subsection 2.3.3 - modified
	Attachment eight - Results from Subsection 2.3.3
	Attachment nine - Python 3 Implementation of Algorithm from Chapter 3
	Attachement ten - Results from Chapter 3
	Attachment eleven - Python 3 Implementation of the Algorithm from Chapter 4
	Attachment twelve - Results from Chapter 4
	Attachment thirteen - Python 3 Implementation of the Algorithm from Chapter 5 in Python 3
	Attachment fourteen - Results from Chapter 5

