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Do you know the laws of the heavens? Can you set their dominion over the earth?1

Jób 38,33

1Vı́̌s, jaké jsou řády nebes? Ty jsi je ustanovil, aby doźırala na zemi?
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Introduction
A lot has been written about the effects of gravity on light rays. This is due to
the fact that it represents both one of the basic predictions of general relativity
and a powerful tool how to extend our knowledge about the Universe.

Although it became almost notoriously known that in vacuum the ray with
impact parameter b propagating in the vicinity of a gravitating object with mass
M is deflected by the angle

α = 4GM
c2b

,

where c denotes the speed of light and G is the gravitational constant, studies of
light propagation in the vicinity of various astrophysical objects still reveal many
unanticipated facts. Note that this formula is obtained in the linearized regime of
the Schwarzschild metric, i.e., in the simplest case possible, but it is good enough
to beat the Newtonian prediction.

During recent decades many new measurement techniques have been devised
and enabled completely new ways how to observe the Universe. Along with better
measurements also more detailed analytic descriptions of the systems are needed.
This is also the case of light propagation.

In fact, light waves traveling across the Universe, no matter whether they
span over distances near or far, are driven by several competing factors. It is not
only the gravitational field of objects the light is passing by, interactions with a
medium through which it propagates are also substantial. Then, in calculations
presented in this thesis aiming to describe real astrophysical systems it has to
be assumed that ultimate light trajectories are given by a composition of effects
caused by gravitation, refraction, and dispersion.

In real astrophysical applications, the medium through which light propagates
is typically plasma – the so-called fourth state of matter with many unintuitive
properties. In comparison with the vacuum case the deviation of light rays is
somewhat different than one would naively expect. This is shown in this thesis
as well. It should be mentioned that plasma in the investigated systems can take
many realistic types. When propagating around compact gravitating objects,
plasma is usually in the form of a hot (∼ 108 K) accretion disc, while around less
extreme objects it is believed that cold plasma occurs.

It has to be recalled that effects on light rays caused by the plasma presence
are often negligible. However, there is a strong dependence on the wave frequency
and the impact starts to be significant in the radio band. Moreover, if the wave
propagates in a dense atmosphere, refraction cannot be disregarded either.

Analytic description of both the gravitational field and the medium of refrac-
tive and dispersive properties acting on the light trajectories is much easier when
the Hamiltonian formalism is used. This approach was originally introduced by
J. L. Synge in his book Relativity: The General Theory [Synge, 1960], where the
basic Hamiltonian was derived in the geometrical optics approximation. Since
then, it has been applied in many studies. These works are often focused on
calculations of the deflection angle in a cold plasma around a specific gravitating
object and on the description of other parameters related to light bending.

This work follows the previously obtained results and provides new applica-
tions of the formalism with a special scope on problems which are typically not
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considered in the literature. It can thus bring new legitimate aspects in the field.
However, it somewhat exceeds this approach since it also contains results related
with the topic in a broader sense (especially the last chapter).

Throughout the text, I tend to call a gravitating object around which the
light bends as “a black hole”, while the formalism is more generic. It does not
have to be necessarily the most extreme gravitating compact source, but any
object of a sufficiently large gravitating field, e.g., a star. Except in the case of
specific examples, the term “black hole” is used only as a formal descriptor in the
text, keeping in mind that it is completely unimportant whether the object has
a horizon or not.

The thesis consists of six chapters. In Chapter 1 the formalism applied in
the rest of the thesis is introduced. Some recent findings related to the topic are
also summarised there. Chapter 2 presents several general relations derived for
an axially symmetric stationary spacetime surrounded by a medium of refractive
and dispersive properties. In Chapter 3 the formulae obtained in Chapter 2
are applied to specific systems and their validity is demonstrated. Chapter 4 is
focused on the calculation of the deflection angle around a spherically symmetric
object in a moving medium defined in two specific situations. Chapter 5 presents
a completely different approach to study the light rays in a cold plasma around an
object described by the Kerr metric, in terms of allowed regions for rays. Technical
details related to the construction of the accessible and forbidden regions are
provided in Chapter 6.

The notation of indices throughout the thesis is i, j = 1, 2, 3; α, β = 0, 1, 2, 3.
Unless specified otherwise, it is assumed that G = c = 1 and the signature reads
(−,+,+,+).
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1. The Hamiltonian Formalism
for Ray Propagation in
Relativistic Spacetimes
This chapter is dedicated to the theoretical description of the formalism which
is applied in the majority of the thesis. Since there is a lot of detailed literature
about this topic, it is not intended to provide a complete summary of all of them.
Complementary to that, the Hamiltonian formalism adjusted for a description
of light trajectories influenced simultaneously by the medium and gravitational
field is set into a broader context of a more general theory and also main terms
frequently applied in this context are thoroughly introduced. Moreover, the in-
tention was also to discuss the relevant parameters from a different perspective
than usual and to highlight some typically overlooked aspects of the theory. First,
the geometrical optics approximation is introduced, as it is the main assumption
under which the work is performed.

1.1 Geometrical Optics Limit
Relativistic geometrical optics seen as an approximation of the Maxwell equations
formulated in the covariant form is typically adapted for a non-dispersive isotropic
medium, but it can serve well also in dispersive and anisotropic media if certain
conditions hold in the instantaneous local Lorentz rest frame of such medium.
These conditions are [Bičák and Hadrava, 1975]

• typical wavelength λt of considered waves is short in comparison with the
typical scales on which the properties of the medium (i.e., the refractive
index, the velocity) vary,

• the waves are locally monochromatic, i.e., the variation scales of wave prop-
erties (the amplitude, wavelength, polarization) are large in comparison
with λt,

• the characteristic curvature radius of the spacetime is much larger than λt,

• the medium varies negligibly over one typical wave period.

As it basically relies on a comparison of two characteristic scales in the system,
geometrical optics is also sometimes called two-scale method and it corresponds
to approximate solutions based on the WKB methods [see, Breuer and Ehlers,
1980, 1981].

This approximation allows one to study the motion of photon particles in
terms of rays, interpreted as worldlines of the light signals. In this approach
there are thus three basic assumptions [Anile and Pantano, 1979]

• an existence of rays, a congruence of curves, is guaranteed,

• conservation equations of field square amplitudes along the rays exist,
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• a transport equation for the polarization vector of the field along the ray
can be derived.

To describe the geometrical optics approximation more rigorously, following
Breuer and Ehlers [1980, 1981], let me introduce a linear differential operator
which is a function of some real parameter ε, namely

D(ε) =
p∑︂

j=0
εj

j∑︂
k=0

Aj−k
k . (1.1)

Matrix Ar
k is of dimension (m × m) and its elements are forms of degree r in

the partial differential operators ∂/∂xa, where a = 1, ..., n. Their coefficients are
smooth, real, and functions of x ∈ Rn. Because D(ε) maps Rm functions on Rn

onto functions of the same kind, relation

D(ε) · U(ε) = 0 (1.2)

represents a linear, homogeneous partial differential equation of order p which
additionally depends on some parameter ε. This expression is solved via an m-
vector U on Rn. The analysed relations are complex in general, but they are
effectively real in the given application.

An asymptotic form of solution U can be written as

U(x, ε) = e(i/ε)S(x)V (x, ε) ε→0≈ e(i/ε)S(x)
∞∑︂

n=0

(︃
ε

i

)︃n

Vn(x), (1.3)

where S denotes the eikonal, which is generally a complex function, while am-
plitudes V , Vn are from Cm, defined on Rn. The next question is how to find S
and Vn in the limit ε → 0 (which effectively corresponds to the geometrical optics
approximation). The gradient operator d, written as

d = (∂/∂x1, ..., ∂/∂xn), (1.4)

can be applied in the identity

e−(i/ε)S(x)de(i/ε)S(x) = d+
(︃
i

ε

)︃
dS (1.5)

which transforms equation D(e(i/ε)SV ) = 0 into L · V = 0, where

L(ε) = e−(i/ε)S(x)D(ε)e(i/ε)S(x). (1.6)

Note that L(ε) contains also wave covector dS. Using the identity for d in the
definition of D(ε) leads to

L(ε) =
p∑︂

j=0
εjLj, (1.7)

where differential operator Lj is of order j. Moreover, the form of L0 can be
derived when i∂S/∂xa is plugged in ∑︁p

l=0 A
l
0 instead of ∂/∂xa. Then, operator L0

is a complex (m×m) matrix even when D(ε) contains real coefficients, functions
of xa and polynomially of ∂S/∂xa.
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Applying the identity (1.5) in the relation D(ε) · U(ε) = 0 with approximate
solution for ε → 0 returns

p∑︂
j=0

εjLj ·
∞∑︂

n=0

(︃
ε

i

)︃n

Vn(x) ∼ 0. (1.8)

The zeroth-order solution reads

L0 · V0 = 0, (1.9)

which effectively requires
det(L0) = 0. (1.10)

This is a polynomial of degree mp in ∂S/∂xa with real coefficients depending on
xa, while L0 can be complex. It is called the dispersion relation and it specifies a
principal variety in R2n of generally many branches, the cotangent bundle of Rn.
Moreover, since it is a partial differential equation of the first order of degree mp
in S, it represents the eikonal equation as well.

Taking a real factor of the polynomial det(L0) associated with one or more
branches of the principal variety as H(x, dS), the eikonal equation can also be
written as

H(x, dS) = 0, (1.11)
solutions of which are from R2n and have to satisfy the canonical equations

ẋ = ∂H
∂(dS) , dṠ = −∂H

∂x
. (1.12)

The projections of characteristic strips in R2n where the solutions given by the
canonical equations hold onto Rn are called rays. Infinitesimal parts on the ray
where S = const. are given by values of dS. Moreover, the dispersion relation
and canonical equations lead to the ray velocity with respect to any observer to
be the phase velocity, if ẋ ̸= 0 on the ray.

In the lowest-order approximation, where U (0) can be found from

U (0) = e(i/ε)SV0, (1.13)

the deviation between the exact solution U and the approximate one is given by

|U − U (0)| = O(ε). (1.14)

It is hence seen that ε governs the accuracy of the obtained solutions and more-
over, the described approach indeed represents an approximation method.

To provide a more physical context, in typical applications which are discussed
below, it holds p = 3, m = 3, n = 4. In this case, the solution U can be
interpreted as plane, monochromatic waves which, under the assumption ε ≪ 1,
can be expressed as

â(x, ε) ε→0≈ e(i/ε)S(x)
∞∑︂

n=0

(︃
ε

i

)︃n

ân(x). (1.15)

The asymptotes ân(x) have to be defined such that the linear approximation is
still legitimate, i.e., they have to be sufficiently small.
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In the complementary view, there are two scales, say λt and Lt, corresponding
to the scale of the typical wavelength and background variations, respectively.
Then, parameter ε is defined as ε = λt/Lt. The limit ε → 0 can thus be performed
in two separate ways:

(i) λt → 0,

(ii) Lt → ∞.

In the case (i), the background scale Lt is fixed and all terms in the dispersion
relation are of the same order in ε. Moreover, it is typically assumed that Lt = 1
and thus ε = λt. In contrast to that, case (ii) suggests to fix λt instead, which
leads to different powers of ε in individual terms of the dispersion relation. Setting
λt = 1 gives ε = L−1

t and the corresponding dispersion relation may be expressed
in terms of dimensionless covariant directional derivative given by Lt∇.

Although both approaches (i) and (ii) are based on the same assumptions and
are valid in the scope of the geometrical optics, the difference between them lies
in the domain of validity. In the case (i), the wave itself is approximated in the
given domain along with fixed inhomogeneity and the corresponding accuracy
increases with decreasing wavelength. However, a range of original wavelengths
is kept in the case (ii) and it is the spacetime which is approximated in order to
improve the description and reach smaller inhomogeneity. The latter method is
hence more suitable for describing the effect of matter on waves, e.g., dispersion,
as it is already included in the lowest order approximation. This is not true
for case (i). Choice of an appropriate approximation has to be set numerically
from the realistic values of relevant parameters in given physical systems. Due
to unknown error estimates for particular cases in corresponding systems it is
not always possible to decide unambiguously which approach is more suitable.
However, when dealing with the light propagation in a medium, main interest
lies in studying the dispersion effects and case (ii) is hence typically chosen.

1.2 Rays and Waves in the Hamiltonian Theory
To provide a slightly different, but still useful, insight into the topic, rays and
waves are studied from the perspective of the Hamiltonian formalism in this sec-
tion. It is useful to look at the Hamiltonian presented in the following section
from a more general perspective which is the main aim of the following para-
graphs. There are two different ways how to introduce the Hamiltonian, and
since these involve specific features in relativistic physics, it seems useful to in-
troduce the formalism from this broader point of view. Both descriptions were
originally presented by Synge [1960].

General theory
Initially, the existence of a spacetime metric gαβ is not assumed. In this more
general description only a Hamiltonian surface Σ is required, situated in an 8-
dimensional space with for now unspecified coordinates (xα, yα). A 7-dimensional
subspace is described by an equation in the form

H(x, y) = 0. (1.16)
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Note that it is Σ which is defined, not H(x, y). As the surface Σ can be associated
with a large variety of functions H(x, y), there is some kind of freedom which of
them will be chosen to represent Σ. Regardless of the exact choice, it still holds
that a displacement (δxα, δyα) is part of Σ iff

∂H
∂xα

δxα + ∂H
∂yα

δyα = 0. (1.17)

It leads to the conclusion that the expressions ∂H
∂xα , ∂H

∂yα
must reach definite values

at given points of Σ.
Let me consider an integral along an arbitrary curve σ in Σ as

I =
∫︂

(yαdx
α − lHds). (1.18)

It is assumed that there is an additional varied curve on Σ given by running
parameter s fixed at the same ending points as σ and l(s) represents a Lagrange
multiplier. It is a so-called side condition given by the second term in I. For such
an integral the extremals are relevant, and hence its variation in the form δI = 0
is required. A standard variational calculation returns

δI = [yαδx
α] +

∫︂ (︄
δyαdx

α − δxαdyα − Hδlds− l
∂H
∂xα

δxαds− l
∂H
∂yα

δyαds

)︄
.

(1.19)
From the condition δI = 0 for any δxα, δyα, and δl, with restriction δxα = 0 at
both ends of σ, one gets

dxα

ds
= l

∂H
∂yα

,
dyα

ds
= −l ∂H

∂xα
, H = 0. (1.20)

The Lagrange multiplier l(s) remains ambiguous, but for a given H it is possible
to choose s such that the extremal equations take the Hamiltonian, or canonical,
form, i.e.,

dxα

ds
= ∂H
∂yα

,
dyα

ds
= − ∂H

∂xα
. (1.21)

The constraint H(x, y) = 0 is necessary to determine the extremal by values of
(xα, yα) when s = 0.

A different interpretation of points xα and yα can be also applied, taking
now as a starting object a 4-dimensional spacetime with coordinates xα. The
Hamiltonian surface Σ is then not characterized as a 7-dimensional subspace,
but rather as a set of 3-dimensional spaces of y associated with each point of
the spacetime. Additionally, there is again the equation H(x, y) = 0 with xα

fixed, associated with the given space of y, which effectively forces to consider
this space as 4-dimensional. Since coordinates in the space of y are yα and to
keep the description invariant under any transformations of x coordinates in the
given spacetime, then yαdx

α has to be invariant. This necessarily leads to the
fact that yα transforms like a covariant vector and it justifies the introduction of
y coordinates with subscript indices, contrary to x coordinates.

In this geometrical interpretation the curve to be extremalized is xα = xα(s),
associated with a vector field yα = yα(s). Although it is the same geometrical

9



construct as before, its understanding is different, putting more emphasis on the
points of spacetime given by sets of x. Hence, if there exists an extremal between
two points A(x′) and B(x), it can be written as

S(x′, x) = S(A,B) =
∫︂ B

A
yαdx

α. (1.22)

Note that this integral is also known as the Hamilton principal or characteristic
function. Variation of this function gives

δS = yαδx
α − y′

αδx
′α. (1.23)

Since differentials δxα and δx′α are again arbitrary, this returns two equations

∂S

∂xα
= yα,

∂S

∂x′α = −y′
α. (1.24)

A corresponding substitution into H(x, y) = 0 leads to the form

H
(︄
x,
∂S

∂x

)︄
= 0, (1.25)

which is the well known Hamilton-Jacobi equation. Notice that an analogous
equation holds also for (x′, y′).

A set of extremals in the given spacetime forms a (simply connected) domain
D of an arbitrary dimension – typically two, three, or four. In D there is a vector
field yα given by the extremals. Moreover, circulation along an arbitrary closed
curve defined as ∮︂

C
yαdx

α (1.26)

can be introduced in D. If circulations along all closed curves in D are equal to
zero, the extremals form a coherent system. Such extremals are called rays.

In a coherent system, where A is a fixed point in D and point B from D varies,
the integral

I(A,B) =
∫︂ B

A
yαdx

α (1.27)

is independent of the integration path. With constant b̃, the relation

I(A,B) = b̃ (1.28)

restricts B to a subspace in D which can be denoted as a wave. A set of waves
given by changing b̃ does not depend on A. In other words, integrals of the total
differential equation yαdx

α = 0 are waves. It is important to mention that this
equation is integrable, as the only relevant system is coherent. Rays and waves
are thus defined by a set of extremals only from coherent systems. Both the
simplest and the most general examples of coherent systems are discussed below.

The simplest coherent system can be constructed from a set of extremals
starting at fixed A and forming D. Then, for the principal function S(A,B) and
for a closed curve C in D one gets∮︂

C
yαdx

α =
∮︂

C
dS = 0. (1.29)
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Thus, it can be seen that the system is coherent. The waves associated with this
system are given by

S(A,B) = const., (1.30)
where B generally varies. Since I(A,B) in the coherent system is only a function
of B (point A is fixed), S can be called a one-point principal function and the
wave equation can be written as

S(x) = const. (1.31)

The most general coherent system is constructed when a subspace W of ar-
bitrary dimension in the spacetime is considered and a vector field yα on it is
chosen, such that

H(x′, y′) = 0, y′
αδx

′α = δS ′. (1.32)
It is assumed that the function S on W is positioned at (x′α, y′

α). The given
relations are required for every displacement δx′α on W .

Then, all possible extremals are led from points at W with initial values
(x′α, y′

α). In the domain covered by the given extremals an arbitrary point B(x)
can be associated with the function

S(x) =
∫︂ B

A
yαdx

α + S ′(A). (1.33)

The integral is computed along the extremal. At point A the extremal aiming to
B leaves subspace W . Variation of B yields

δS(x) = yαδx
α − y′

αδx
′α + δS ′ = yαδx

α, (1.34)

where the differential condition given above for yα was applied. The obtained
relation corresponds to a differential in the domain of extremals, and the circula-
tion hence vanishes. Thus, the extremals form a coherent system of rays, where
waves are given by S(x) = const. and S(x) is the one-point principal function.

It was shown that the general Hamiltonian approach relies on an existence
of a surface Σ along with the corresponding equation H(x, y) = 0. Additionally,
when a Riemannian spacetime with a metric gαβ is assumed, there are two kinds
of fundamental curves – geodesics and the Hamiltonian extremals. However, no
direct relation between the two can be determined. This can be performed in
terms of geometrical optics, where the Hamiltonian extremals are interpreted as
optical rays and geodesics do not play a significant role. More details about this
aspect are provided below.

Riemannian spacetime
The theory for rays and waves can also be constructed in the Riemannian space-
time with the exclusive usage of tensor gαβ. This can be derived when for the
Hamiltonian surface Σ the equation H(x, y) is expressed in the form

H(x, y) = H1(x, y)H2(x, y)H3(x, y) = 0, (1.35)

where

H1(x, y) = gαβyαyβ, H2(x, y) = gαβyαyβ + 1, H3(x, y) = gαβyαyβ − 1. (1.36)

11



Figure 1.1: Hamiltonian surfaces in the
Riemannian spacetime (adapted from
Synge [1960]).

A subspace of three dimensions
where x are fixed and gαβ are con-
stants is thus split into sheets, where
either H1, H2, or H3 equals zero (see
Fig. 1.1). Vector y must reach its ex-
tremal value on one of these sheets.

From the Lagrange formulation
given above the corresponding equa-
tions for extremals read

dxα

ds
= lgαβyβ,

dyα

ds
= −lgβγ

,αyβyγ,

(1.37)
and because l is a scalar function,
changing the parameter s can lead to
the equations

dxα

ds
= gαβyβ,

dyα

ds
= −1

2g
βγ

,αyβyγ.

(1.38)

Due to that the following holds:

gαβ
dxα

ds

dxβ

ds
= gαβyαyβ

⎧⎪⎪⎨⎪⎪⎩
= 0 for H1 = 0,
= −1 for H2 = 0,
= 1 for H3 = 0.

(1.39)

It can hence be seen that the Hamiltonian extremals are geodesics, namely null
ones for H1 = 0, timelike for H2 = 0, and spacelike for H3 = 0. Note that this is
generally not the case when a medium is present, which is discussed in detail in
the following section.

From the obtained relations the Hamilton principal function can be written
as

S(A,B) =
∫︂ B

A
yαdx

α =
∫︂ B

A
gαβyαyβds = ι

∫︂ B

A
ds, (1.40)

where ι = {0,−1, 1} for null, timelike, and spacelike geodesics, respectively.
The first canonical equation presented above can be used to express

yα = gαβ
dxβ

ds
. (1.41)

From yαδx
α = 0 one can show further for null rays that

yα
dxα

ds
= gαβ

dxα

ds

dxβ

ds
= 0 (1.42)

which demonstrates that in this class rays both are orthogonal to waves and lie
in them, while in the remaining cases rays are solely orthogonal to waves.

Similarly to the previous approach, a coherent system can be constructed,
setting the subspace W and the corresponding function S ′. In the case when W
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is only one point of the spacetime, S ′ is constant, so that δS ′ vanishes, and solely
the condition H(x′, y′) = 0 has to be solved. In order to satisfy that, vector
yα has to be taken such that its end point lies on either H1 = 0, H2 = 0, or
H3 = 0. Hence, these extremals are either null, timelike, or spacelike geodesics,
respectively.

Especially in the case of null geodesics one gets yαdx
α = 0 along the rays,

which returns S(x) = S ′ = const. However, waves alone are defined by the
condition S(x) = const. and the null geodesics originating at point W thus form
a single wave, a null surface corresponding to the null cone. For timelike and
spacelike geodesics waves are obtained by considering constant elements along
the rays, forming hyperboloids. These curves effectively correspond to those
presented in Fig. 1.1.

When W is a timelike curve given by the relation x′α = x′α(p), where param-
eter p remains constant along the ray, the function S ′(p) and the vector y′

α have
to obey

H(x′, y′) = 0, y′
α

dx′α

dp
= dS ′

dp
. (1.43)

The latter expression corresponds to a flat 3-subspace which breaks the surfaces of
H into sheets, where suitable y exists. When only intersections of the 3-subspace
with H1 = 0 are assumed, one gets a system of null rays and waves. For the
option S ′ = const. there exists no y with extremal given from H1 = 0, such
that the second equation given above holds. It is worth mentioning that this
conclusion corresponds to the fact that any null vector is not orthogonal to a
timelike vector.

1.3 Synge’s Formalism
The pioneering work in analytical calculations of light propagation in a medium
around a compact gravitating source was performed by Synge [1960]. Although
this work might seem a little old fashioned, it experiences a huge revival, which
is supported also by more than 1 000 citations within last 10 years.

To give a more physical essence to the relevant variables, the canonical quan-
tities are further denoted as xα and pα. Meaning of the spacetime coordinates
for the former set is maintained, while the latter one is discussed more in detail
below.

To describe the ray propagation through a refractive, dispersive medium char-
acterized by refractive index n and 4-velocity V α, the corresponding Hamiltonian
takes the form

H(xα, pα) = 1
2
[︂
gβδpβpδ − (n2 − 1)(pγV

γ)2
]︂
. (1.44)

The spacetime metric gβδ characterizes a gravitating object, while n and V α

define the medium which surrounds it. Furthermore, the dependence of photon
frequency ω(xα) as measured by an observer at rest with respect to the medium
at point xα is derived from

ω(xα) = −pγV
γ. (1.45)

Both the wave phase speed and ω(xα) are assumed to be measured in the rest
frame of the medium.
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In accordance with classical optics, the medium can be described in terms of
the refractive index and its other properties via the medium equation, which in
this case takes the form

n2 = 1 + pαp
α

(pβV β)2 . (1.46)

Note that this expression is based on the relation between the wave phase velocity
vph for which n = v−1

ph . Moreover, the definition (1.46) relies on the fact that the
specific form of the refractive index is given by the medium description known
from outside and in this sense it enters the medium equation as a known quantity.
Note that (1.46) can be also applied to derive the Hamiltonian (1.44).

As discussed in previous sections, a substantial constraint laid on the Hamil-
tonian is H(xα, pα) = 0. In a more physical context it corresponds to energy
conservation in the system which restricts the initial values, while it is sustained
by the canonical equations.

The covariant component pα, regarded as fundamental in H(xα, pα), is the
frequency 4-vector which is typically treated as a 4-momentum component of a
photon. However, it should be mentioned that photons in plasma are usually con-
sidered as “phenomenological”, meaning that the derivation of their 4-momentum
from the quantum theory of the electromagnetic field in a medium is not unique.
Moreover, unlike photons in vacuum, their 4-momentum in an arbitrary medium
is neither tangent to the photon worldline, nor parallel-transported along it [Bičák
and Hadrava, 1975]. However, the most intuitive way how to define pα is such
that the corresponding photons can be directly related with photons associated
with wave packets in a given medium. In this sense rays discussed in terms of
geometrical optics and throughout this thesis represent the “history” of photons.
For more details about this description, see Bičák and Hadrava [1975].

Using the Hamiltonian (1.44), we get the equations of motion (canonical equa-
tions) in the form

dxα

ds
= ∂H
∂pα

,
dpα

ds
= − ∂H

∂xα
. (1.47)

It is necessary to mention explicitly that although sometimes stated in the liter-
ature, s is generally not an affine parameter. This is due to the inhomogeneity
caused by the plasma which prevents s from following the affine reparametri-
sation. However, if (1.47) imply geodesic, then s is an affine parameter in the
equation of the geodesic. Additionally, note that dispersion effects here naturally
enter the equations of motion because n is in this case a function of ω which is
from (1.45) a known function of pα.

As discussed above, a known definition of n determined from other parts of
physics such as plasma theory can be applied to the formalism to study light prop-
agation within such a medium. For instance, in the cold plasma approximation
the Hamiltonian takes the form1

H(xα, pα) = 1
2
[︂
gβδpβpδ + ω2

p(xα)
]︂
, (1.48)

where ωp is the electron plasma frequency, related to the electron number density
Ne through

ω2
p(xα) = e2Ne(xα)

ϵ0me

. (1.49)

1For details on deriving this relation from (1.44), see Chapter 4.
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Parameters e, ϵ0, and me represent the electron charge, vacuum permittivity, and
the electron mass, respectively.

Note that the derivation of Hamiltonian (1.48) can be also performed in full
generality, based on Maxwell’s equations, the equation of motion for the electron
fluid, electron charge conservation equation and normalisation of 4-velocity. This
calculation can be found in Perlick [2000]. Notice that this relation can be used
only for light propagation in a non-magnetized plasma.

A more general approach was performed by Breuer and Ehlers [1980, 1981],
where the case of a magnetized cold plasma was studied. The corresponding
Hamiltonian can then be expressed as

H(xα, pα) = ω2
0(ω2

0 − ω2
p)(ω2

0 − k⃗
2

− ω2
p)2 (1.50)

− (ω2
0 − k⃗

2
)[ω2

0ω⃗
2
L(ω2

0 − k⃗
2

− ω2
p) + ω2

p(ω⃗L · k⃗)2],

where ki is the wave 3-vector (i.e., p2 = k⃗
2

− ω2
0), and ωi

L is the Larmor angular
velocity defined as ω⃗L = (−e/me)B⃗.

If B⃗ = 0, one gets

H(xα, pα) ∼ −ω2
0 + k⃗

2
+ ω2

p = p2 + ω2
p = gβδpβpδ + ω2

p,

and this expression corresponds to (1.48) defined without a magnetic field.
Note that although there is a significant importance of a description which

includes the magnetic field, besides Breuer and Ehlers [1980, 1981] only Broderick
and Blandford [2003] seriously studied such systems. This tends to be a serious
issue when speaking about applications to real physical systems. For this reason,
one of the future research directions in this field should definitely be focused on
this topic.

1.4 Applications of Synge’s Formalism
As mentioned in the previous section, many works based on Synge’s approach
have been published during the last several years. At this stage it might be
useful to provide a brief overview of the main findings presented in these studies.
Thus, it can easily be seen how results presented in this thesis contribute to the
current state of the field.

One of the earliest studies developing the formalism of Synge was probably the
one by Bičák and Hadrava [1975], where more astrophysical context was provided.
Furthermore, an extensive description of this subject, in a broader range, was
provided in a monograph by Perlick [2000]. Among others, the deflection angle
around a Kerr black hole in a cold plasma was given there.

Recent attention to the Synge approach probably started with papers by
Bisnovatyi-Kogan and Tsupko [2009, 2010], where light deflection was studied in
the weak-field approximation and a cold plasma was assumed. The Schwarzschild
metric was used to define the gravitating object and plasma was considered both
homogeneous and non-homogeneous. The main conclusion of these studies was
that a plasma effect on light deflection occurs even in a homogeneous medium.
The deflection angle around a slowly rotating object in a cold plasma in the weak-
field limit was studied by Morozova et al. [2013]. In the corresponding systems,
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Bisnovatyi-Kogan and Tsupko [2010] and Morozova et al. [2013] also described
possible effects on gravitational lensing in terms of image magnification.

A strong gravitational field of a Schwarzschild black hole along with a homo-
geneous cold plasma were assumed for calculating the deflection angle by Tsupko
and Bisnovatyi-Kogan [2013]. Relativistic images were also studied within this
work, which includes derivation of their angular positions and magnifications.

Ray tracing of light in the vicinity of a Schwarzschild black hole in plasma
was investigated in a series of papers by Rogers [2015, 2017a,b]. Several profiles
of plasma density were assumed and its relevance in comparison to the gravita-
tional effects was analysed. Moreover, the dependence of photon trajectories on
frequency was discussed in detail.

On the contrary to the spherically symmetric spacetime, practically the only
axially symmetric spacetime almost exclusively studied is the Kerr case. Light
propagation in the Kerr metric in the presence of a cold plasma was studied in
detail by Perlick and Tsupko [2017, 2024]. The main result of the work by Perlick
and Tsupko [2017] is a general formula for the plasma electron frequency which
satisfies the separability conditions for the Hamilton-Jacobi equation that are
necessary to completely solve the problem. Furthermore, the black hole shadow,
the deflection angle, and different types of orbits were discussed in this study.
The continuation of the research on this topic in Perlick and Tsupko [2024] is
devoted to more specific types of photon orbits, resulting in additional effects not
observed in vacuum. The deflection angle in the weak deflection limit up to the
second order is also presented by the authors.

Application of the Synge Hamiltonian to the Robertson-Walker spacetime
was performed in Schulze-Koops et al. [2017]. The findings show that possible
cosmological redshift and distance measurement fluctuations due to plasma are
small, but they lead to measurable values in the radio frequency band. Note that
light propagation in a plasma in the Friedmann universe was studied already by
Bičák and Hadrava [1975].

The deflection angle for a stationary spacetime in a cold plasma in the weak-
field limit was calculated by Crisnejo et al. [2019]. Contrary to the studies pre-
sented so far, a technique based on the Gauss-Bonnet theorem was applied in
this work. The orbit equation in the equatorial plane was presented and terms of
the deflection angle up to the third order in the weak-field approximation were
obtained.

Dispersion effects caused by the presence of a plasma on the light rays around
a Kerr black hole were analysed by Kimpson et al. [2019a]. Implications for
observations of pulsar rays bent near the galactic center were discussed. Kimpson
et al. [2019b] followed this setting and investigated possible ways how to test
general relativity in the given framework. This can be obtained in terms of the
time-frequency signal which can be directly measured. The study suggests which
factors are relevant in order to calculate the time-frequency dependence in order
to compare them with observations.

Light propagation around a Kerr black hole surrounded by a cold plasma of
various profiles was described by Sárený and Balek [2019]. Moreover, star distri-
bution functions defined as the angular dependence of the density of background
star images were introduced. Examples for vacuum and a few plasma distribu-
tions were plotted and discussed.
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A detailed analysis of the light-deflection angle around a spherically symmet-
ric spacetime surrounded by a general dispersive medium characterised by its
refractive index was given by Tsupko [2021]. The derived general formula was
applied to particular media and corrections to the vacuum case were discussed.
Note that in these calculations the medium was assumed to be static.

Following the preceding discussions, some recent works considered more spe-
cific systems. Matsuno [2021] calculated the deflection angle around a gravitating
object characterized by the Kaluza-Klein metric immersed in a cold plasma. The
ray behaviour around a neutron star given by a spherically symmetric metric in
a cold plasma was analysed by Briozzo and Gallo [2023].

Another feature frequently studied in this field is the so-called black hole
shadow. The shadow occurs due to the presence of an event horizon which is
magnified by the gravitating effects of the black hole. As a result, the shadow is
much larger than the event horizon itself. The form of a shadow of an arbitrary
spherically symmetric black hole embedded in a cold plasma was calculated in
Perlick et al. [2015]. Note that a useful general form of a spherically symmet-
ric gravitating object which was further applied in other studies was probably
originally introduced in this work.

Some recent works calculating the black hole shadow in a plasma are, e.g.,
Bad́ıa and Eiroa [2023], Briozzo et al. [2023], Zhang et al. [2023], Kobialko et al.
[2024]. A detailed review of analytical results related to the black hole shadows
was presented by Perlick and Tsupko [2022].

Several works focused on gravitational lensing problems also assume the pres-
ence of a plasma. Er and Mao [2014] considered two astrophysically motivated
forms of the lensing objects and studied gravitational lensing in the presence of
a cold plasma. They assumed that the lens can be either a spiral or elliptical
galaxy, defined the respective plasma density in such a galaxy and analyzed var-
ious parameters of strong lensing, such as the magnification, time delay, image
positions, etc. This study argued that the effect of plasma depends on the galaxy
redshift, as the ionized gas gets denser. Moreover, the presence of a plasma
causes a change between the image positions in different frequency bands which
can be applied to determine the plasma density of the lens galaxy. Er and Mao
[2022] analyzed effects of a plasma in the lensing galaxy on strongly lensed fast
radio bursts. They found the plasma effect to be apparent especially for low ra-
dio frequencies and proposed that the detection of lensed fast radio bursts could
constrain both the mass and the plasma distributions in the lens. The effects of
plasma on microlensing were investigated by Tsupko and Bisnovatyi-Kogan [2020]
and the time delay due to plasma was discussed by Bisnovatyi-Kogan and Tsupko
[2023]. Sun et al. [2023] considered a system composed of a star, its stellar wind,
and a planet and analysed additional lensing effects due to the plasma.

A majority of studies based on the Synge formalism hence assume as a medium
surrounding the gravitating object a cold non-magnetized plasma. It is the sim-
plest plasma approximation with unexpected properties and astrophysical appli-
cations (see Section 4.1). However, in real physical systems it is not the only one.
Furthermore, the gravitating object is usually assumed to be either spherically
symmetric (Schwarzschild) or an axially symmetric Kerr black holes. For inves-
tigations of the validity of the description by the Kerr metric, a more general
approach should be taken. This is typically not the case.
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2. Light Propagation in a
General Axially Symmetric
Stationary Spacetime
In most of the studies based on Synge’s approach [e.g., Rogers, 2017a, Tsupko,
2021, Briozzo and Gallo, 2023], spherically symmetric spacetimes were considered.
In some other works [e.g., Morozova et al., 2013, Liu et al., 2017, Perlick and
Tsupko, 2017], the Kerr metric was considered. However, none of them assumed
a general axially symmetric spacetime, similarly as it was performed for a general
spherically symmetric spacetime in Perlick et al. [2015]. Before analyzing the
light deflection, we study a system with an axially symmetric object surrounded
by a cold plasma and find general conditions for both the spacetime and the
plasma which guarantee that the equations describing the light propagation are
integrable. Results presented in this and the following chapter were published in
Bezděková et al. [2022], Bezděková and Bičák [2023].

2.1 The Generalized Carter Constant
Due to conventional notation, let me assume that an axially symmetric station-
ary metric is defined in coordinates (t, φ, r, ϑ), and the metric coefficients are
only functions of r and ϑ. They are independent of t and φ, as we assume the
existence of two Killing vectors which are related to these coordinates. In order
to study the deflection angle, it is necessary to derive an integrable system which
requires the existence of a (generalized) Carter constant [Carter, 1968]. For this
reason, one has to find conditions under which the existence of the Carter con-
stant is guaranteed. As it is demonstrated further, this is closely related to the
separability of the Hamilton-Jacobi equation for light rays in a plasma in a given
spacetime.

The separability of the Hamilton-Jacobi equation is an entirely local property
and for this reason, the specific physical interpretation of the coordinates is quite
irrelevant. This means that whether t runs over all R and φ runs between 0 and
2π is in fact not important. From this point of view, the assumed coordinate
system is not necessarily restricted, but coordinates are required to guarantee
an existence of two commuting Killing vector fields that span timelike surfaces.
This coordinate system is further denoted as (t, φ, r, ϑ) (due to its natural and
usual understanding), but the coordinates can be basically arbitrary. Let me
further mention that standard spherical coordinates – these typically denoted as
(t, φ, r, ϑ) – can be inappropriate for finding the Carter constant, while defining
the desired symmetries in another system can be much more convenient. This
fact is discussed further in Section 3.1.

The separation of the Hamilton-Jacobi equation is possible if and only if the
plasma density is independent of t and φ, or more generally, of the coordinates
which do not occur in the metric coefficients. Moreover, since the possible sepa-
ration depends on the chosen coordinate system, if the Hamilton-Jacobi equation
separates, then it separates in a coordinate system in which the metric coefficients
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gtr, gtϑ, gφr, gφϑ, and grϑ vanish. Hence, the axially symmetric stationary metric
can be written in a general form as
ds2 = −A(r, ϑ)dt2 +B(r, ϑ)dr2 + 2P (r, ϑ)dtdφ+D(r, ϑ)dϑ2 +C(r, ϑ)dφ2 . (2.1)

As outlined above, there are two Killing vector fields ∂/∂t and ∂/∂φ which span
timelike surfaces. Meeting this condition requires AC + P 2 > 0, B > 0, and
D > 0.

In addition to the dependence on coordinates, the metric coefficients can be
in principle functions of arbitrary many parameters. As an example, in the Kerr
metric there are two additional parameters – the mass M and the spin a. How-
ever, from the perspective of the equations of motion these are solely parameters
(constants), and it is hence not necessary to state them explicitly in order to find
the complete solution.

Non-vanishing terms of the inverse metric to (2.1) are

grr = 1
B(r, ϑ) , gϑϑ = 1

D(r, ϑ) , gφφ = A(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) , (2.2)

gtt = −C(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) , gtφ = P (r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) .

Since the separation can be performed only if the plasma frequency ω2
p(xα)

is solely a function of coordinates r and ϑ, let me set ω2
p(r, ϑ). Hence, when a

spacetime is defined by the metric (2.1), the Hamiltonian (1.48) can be written
as

H(xα, pα) = 1
2

[︄
p2

r

B(r, ϑ) + p2
ϑ

D(r, ϑ) +
p2

φA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) (2.3)

− p2
tC(r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + 2ptpφP (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + ω2

p(r, ϑ)
]︄
.

One can directly infer that pt and pφ are constants of motion because it is
clearly seen that ∂H

∂t
= 0 and ∂H

∂φ
= 0. In an asymptotically flat spacetime, the

constant −pt has a direct physical meaning for a ray reaching infinity, i.e., the
frequency measured by a stationary observer at infinity [see, e.g., Perlick and
Tsupko, 2017]. For emphasizing direct connection to its physical meaning, let me
denote −pt as ω0. Two more constants of motion in the system are still needed.
One of them is the Hamiltonian itself, since H(xα, pα) = 0. In order to derive the
Hamilton-Jacobi equation, the Hamiltonian is typically expressed as a function
of xα and ∂S

∂xα rather than of xα and pα. For this reason, let me introduce the
action S which can be written in a separated form as

S(t, φ, r, ϑ) = −ω0t+ pφφ+ Sr(r) + Sϑ(ϑ). (2.4)
The Hamilton-Jacobi equation is then derived from

0 = H
(︃
xα,

∂S

∂xβ

)︃
, (2.5)

which leads to the form

0 = 1
B(r, ϑ)

(︄
dSr(r)
dr

)︄2

+ 1
D(r, ϑ)

(︄
dSϑ(ϑ)
dϑ

)︄2

+
p2

φA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) (2.6)

− ω2
0C(r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) − 2ω0pφP (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + ω2

p(r, ϑ).
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Note that this condition holds for arbitrary pφ and ω0. Thus, to find the sepa-
rability conditions the only freedom is to multiply the equation by an arbitrary
non-zero function F (r, ϑ), i.e.,

0 = F (r, ϑ)
B(r, ϑ)

(︄
dSr(r)
dr

)︄2

+ F (r, ϑ)
D(r, ϑ)

(︄
dSϑ(ϑ)
dϑ

)︄2

+ F (r, ϑ)ω2
p(r, ϑ) (2.7)

+ F (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)

[︂
p2

φA(r, ϑ) − ω2
0C(r, ϑ) − 2ω0pφP (r, ϑ)

]︂
.

Equation (2.7) is regarded as separable if and only if its individual terms are
either a function of r alone or a function of ϑ alone for arbitrary pφ and ω0. Terms
independent of pφ and ω0 will be discussed first. The functions dSr(r)/dr and
dSϑ(ϑ)/dϑ are generally non-zero for light rays; separability can be achieved if

F (r, ϑ)
B(r, ϑ) ≡ F(r) and F (r, ϑ)

D(r, ϑ) ≡ G(ϑ), (2.8)

which gives

B(r, ϑ)
D(r, ϑ) = G(ϑ)

F(r) . (2.9)

This is the first necessary condition for separability which has been found. If
the quotient of functions B(r, ϑ) and D(r, ϑ) is not in the form given by (2.9), one
knows that separability cannot be achieved. Moreover, this is true for light rays
moving both in vacuum and in a medium of any plasma density. Additionally,
if condition (2.9) holds, the function F (r, ϑ) can be found either from the first
or equivalently from the second equation in (2.8). The function F (r, ϑ) can be
defined unambiguously up to a non-zero constant factor which can exist because
G(ϑ) and F(r) are unique up to a common non-zero constant factor. Further-
more, the function F (r, ϑ) is defined solely by the metric coefficients, i.e., it is
independent of the plasma. From the requirement given above that B(r, ϑ) and
D(r, ϑ) are positive, it is also obvious that F(r) and G(ϑ) have to be both positive
and F (r, ϑ) is hence positive, too and it is further secured that it has no zeros.

Applying conditions (2.8) in the Hamilton-Jacobi equation (2.6) returns

0 = F(r)
(︄
dSr(r)
dr

)︄2

+ G(ϑ)
(︄
dSϑ(ϑ)
dϑ

)︄2

+ F (r, ϑ)ω2
p(r, ϑ) (2.10)

+ F (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)

(︂
p2

φA(r, ϑ) − ω2
0C(r, ϑ) − 2ω0pφP (r, ϑ)

)︂
.

One more term independent of pφ and ω0 is the term with plasma frequency
ω2

p(r, ϑ). In order to satisfy its separable character, it has to be the general form

ω2
p(r, ϑ) = fr(r) + fϑ(ϑ)

F (r, ϑ) , (2.11)

where fr(r) and fϑ(ϑ) are arbitrary functions of r and ϑ, respectively. In this
condition, it is obvious that the function F (r, ϑ) introduced in the previous step
has to be non-zero, and it is determined uniquely, up to a constant factor, by the
metric alone without any relation to the plasma frequency itself.
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Let us now look at the terms from (2.10) proportional to p2
φ, ω2

0, and pφω0,
respectively. There has to be an additional condition set on A(r, ϑ), C(r, ϑ), and
P (r, ϑ) in order to satisfy the separability which reads

F (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)X(r, ϑ) = Xr(r) +Xϑ(ϑ), (2.12)

where X stands for A, C, or P .
If all separability conditions discussed above are satisfied, (2.7) can be rewrit-

ten as

F(r)
(︄
dSr(r)
dr

)︄2

+ fr(r) + p2
φAr(r) − ω2

0Cr(r) − 2ω0pφPr(r) = (2.13)

−G(ϑ)
(︄
dSϑ(ϑ)
dϑ

)︄2

− fϑ(ϑ) − p2
φAϑ(ϑ) + ω2

0Cϑ(ϑ) + 2ω0pφPϑ(ϑ) ≡ −K.

The Hamilton-Jacobi equation expressed in the form given above allows one to
introduce the parameter K independent of both r and ϑ, i.e., a new constant of
motion. Hence, the parameter K will be called the (generalized) Carter constant
below.

Let me further make two crucial observations. It is important to realize that
if the Hamilton-Jacobi equation for light rays does not separate in vacuum for
the given spacetime, it does not separate for light rays in plasma either, whatever
the plasma density is, i.e., plasma itself cannot cure possible non-separability
stemming from the spacetime definition. On the other hand, if the Hamilton-
Jacobi equation for light rays separates in vacuum, there exists a range of plasma
densities, defined by condition (2.11), where F (r, ϑ) is given by the metric, but
functions fr(r) and fϑ(ϑ) are arbitrary, defined to separate for light rays in the
plasma as well.

The Carter constant found in (2.13) is associated with a conformal Killing
tensor field both in vacuum and in plasma. To show this, recall that definition
(2.13) sets the Carter constant only on the hypersurface H = 0. The Carter
constant can be defined over the entire cotangent bundle (xα, pα), but one has to
introduce

K(xα, pβ) = Kµν(xα)pµpν − 1
2fr(r) + 1

2fϑ(ϑ) (2.14)

where

Kµν(xα)pµpν = 1
2G(ϑ)p2

ϑ − 1
2F(r)p2

r + 1
2
(︂
Aϑ(ϑ) − Ar(r)

)︂
p2

φ (2.15)

−1
2
(︂
Cϑ(ϑ) − Cr(r)

)︂
p2

t +
(︂
Pϑ(ϑ) − Pr(r)

)︂
pφpt.

A symmetric second-rank tensor field Kµν(xα) depends on the metric coefficients,
but not on the plasma density. When performing a straightforward calculation,
one finds out that the function K(xα, pβ) can be expressed in two equivalent forms
as

K(xα, pβ) = −F(r)p2
r −Ar(r)p2

φ +Cr(r)p2
t −2Pr(r)pφpt −fr(r)+F (r, ϑ)H(xα, pβ) ,

(2.16)
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K(xα, pβ) = G(ϑ)p2
ϑ +Aϑ(ϑ)p2

φ −Cϑ(ϑ)p2
t +2Pϑ(ϑ)pφpt +fϑ(ϑ)−F (r, ϑ)H(xα, pβ).

(2.17)
When assuming that H = 0, i.e., under a specific choice of the hypersurface,
expressions (2.16) and (2.17) lead to the function K defined by (2.14) of exactly
the same form as the Carter constant introduced in (2.13).

Moreover, the Poisson bracket {K,H} vanishes on the hypersurface H = 0
because K is a constant of motion. This is true for arbitrary definitions of fr(r)
and fϑ(ϑ). Choice fr(r) = 0 and fϑ(ϑ) = 0 returns the Poisson bracket in the form
{Kµν(xα)pµpν , g

ρσ(xβ)pρpσ} which is zero on the hypersurface gρσ(xβ)pρpσ = 0.
Hence, Kµν(xα) is a conformal Killing tensor field of the spacetime.

2.2 General Form of the Photon Region
After finding the necessary and sufficient conditions for the existence of the Carter
constant and hence integrability of the equations of motion, the parameters rel-
evant for the light description in the vicinity of an axially symmetric object in
a plasma can be studied. One of them is the so-called photon region, i.e., the
region where light rays move along a sphere with r = const. defined in the Boyer-
Lindquist coordinates. For the compactness of the expressions, let me further
write Ar instead of Ar(r) etc., bearing in mind that these functions are actually
functions of the argument they carry as an index.

It is now useful to rewrite dSr

dr
and dSϑ

dϑ
in (2.13) by applying dSr

dr
= pr and

dSϑ

dϑ
= pϑ, respectively. From simple algebraic manipulations of (2.13) we derive

F(r)p2
r = −K − fr − p2

φAr + ω2
0Cr + 2ω0pφPr, (2.18)

G(ϑ)p2
ϑ = K − fϑ − p2

φAϑ + ω2
0Cϑ + 2ω0pφPϑ. (2.19)

Since the photon region is defined as a set of all light ray trajectories entirely
present on the hypersurface r = const., ṙ = r̈ = 0 has to be satisfied along
these rays. The dot means the derivative with respect to the curve parameter
present in Hamilton’s equations. These light rays will be further called “spherical”
although r does not have to be necessarily a radius coordinate. The corresponding
equations of motion are

ṙ = ∂H
∂pr

= pr

B(r, ϑ) , ϑ̇ = ∂H
∂pϑ

= pϑ

D(r, ϑ) . (2.20)

They return

B2(r, ϑ)F(r)ṙ2 = −K − fr − p2
φAr + ω2

0Cr + 2ω0pφPr, (2.21)

and
D2(r, ϑ)G(ϑ)ϑ̇2 = K − fϑ − p2

φAϑ + ω2
0Cϑ + 2ω0pφPϑ. (2.22)

Along an arbitrary spherical light ray there are two equations which have to hold
and take the form

0 = −K − fr − p2
φAr + ω2

0Cr + 2ω0pφPr ≡ R(r), (2.23)
0 = −f ′

r − p2
φA

′
r + ω2

0C
′
r + 2ω0pφP

′
r ≡ R′(r). (2.24)
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The derivative with respect to r is denoted by ′. From these two equations it is
possible to express, for every spherical light ray, the constants of motion K and
pφ. The general formulae take the form

pφ =ω0P
′
r

A′
r

(︄
1 ±

√︄
1 − A′

r

ω2
0P

′2
r

(f ′
r − ω2

0C
′
r)
)︄
, (2.25)

K =Ar

A′
r

(︂
f ′

r − ω2
0C

′
r

)︂
− fr + ω2

0Cr (2.26)

+ 2ω
2
0P

′
r

A′
r

(︄
Pr − ArP

′
r

A′
r

)︄(︄
1 ±

√︄
1 − A′

r

ω2
0P

′2
r

(f ′
r − ω2

0C
′
r)
)︄
.

The remaining pair of the equations of motion reads

φ̇ = ∂H
∂pφ

= pφA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) − ω0P (r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) , (2.27)

ṫ = ∂H
∂pt

= ω0C(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + pφP (r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) . (2.28)

The inequality
K − fϑ ≥ p2

φAϑ − ω2
0Cϑ − 2ω0pφPϑ (2.29)

has to be satisfied because the left-hand side of (2.22) cannot be negative. Ex-
pressions (2.25) and (2.26) can be further plugged into inequality (2.29) which
gives the final formula

Ar

A′
r

(︄
f ′

r

ω2
0

− C ′
r

)︄
+ Cr + 2P

′
r

A′
r

(︄
Pr − ArP

′
r

A′
r

)︄⎛⎝1 ±

⌜⃓⃓⎷1 − A′
r

P ′2
r

(︄
f ′

r

ω2
0

− C ′
r

)︄⎞⎠− fr

ω2
0

≥ fϑ

ω2
0

− Aϑ

A′
r

(︄
f ′

r

ω2
0

− C ′
r

)︄
− Cϑ + 2P

′
r

A′
r

(︄
AϑP

′
r

A′
r

− Pϑ

)︄⎛⎝1 ±

⌜⃓⃓⎷1 − A′
r

P ′2
r

(︄
f ′

r

ω2
0

− C ′
r

)︄⎞⎠ .
(2.30)

The inequality (2.30) establishes the photon region because a spherical light ray
is present at every point (r, ϑ) where the given condition holds. Note that there
can be up to two solutions corresponding to the plus or minus signs before the
square root.

There are two kinds of spherical light rays – stable or unstable when regarding
perturbations in the r-direction. Considerably significant are the unstable rays,
for they can be used as limit trajectories of light rays that reach the photon region
from infinity. A spherical light ray is unstable if

0 < R′′(r) = −f ′′
r − p2

φA
′′
r + ω2

0C
′′
r + 2ω0pφP

′′
r . (2.31)

2.3 Black Hole Shadow
Thanks to the separability of the Hamilton-Jacobi equation for light rays, it is
possible to obtain the analytical formula for the boundary curve of the shadow.
This will be done for the case when the defined spacetime describes a black hole,
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with a general form given by (2.1), but the chosen procedure can be applied also
to other compact objects, e.g., wormholes or neutron stars.

The shadow is typically calculated for an observer located at fixed coordinates
(rO, ϑO) outside the black hole horizon. To adequately describe the configuration
of the system, a suitable orthonormal tetrad has to be introduced. It takes a
general form

e0 = Y1∂t + Y2∂φ|(rO,ϑO) , (2.32)

e1 = 1√︂
D(r, ϑ)

∂ϑ

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

, (2.33)

e2 = Y3∂t + Y4∂φ|(rO,ϑO) , (2.34)

e3 = − 1√︂
B(r, ϑ)

∂r

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

. (2.35)

The functions Y1, Y2, Y3, Y4 are defined by the orthonormality conditions
g(e0, e0) = −1, g(e2, e2) = 1, g(e0, e2) = 0. Their specific forms have to be
obtained individually for a given metric. Component e0 can be treated as the
4-velocity of an observer. In full generality, the orthonormality conditions for the
chosen form of the metric (2.1) are

−A(r, ϑ)Y 2
1 + 2P (r, ϑ)Y1Y2 + C(r, ϑ)Y 2

2 = −1, (2.36)
−A(r, ϑ)Y 2

3 + 2P (r, ϑ)Y3Y4 + C(r, ϑ)Y 2
4 = 1, (2.37)

−A(r, ϑ)Y1Y3 + P (r, ϑ)(Y1Y4 + Y2Y3) + C(r, ϑ)Y2Y4 = 0. (2.38)

Note that there are only three equations (2.36)–(2.38) for four unknown functions
Y1, Y2, Y3, Y4. Due to that, one of the unknowns has to be chosen arbitrarily.
Although this statement might seem to be rather artificial, it is only a consequence
of the fact that any normalized timelike vector in the two-space spanned by ∂t

and ∂φ can be chosen for the 4-velocity.
Furthermore, let me define the tangent vector to the light ray

λ(s) = (r(s), ϑ(s), φ(s), t(s)). (2.39)

It can be written as
λ̇ = ṙ∂r + ϑ̇∂ϑ + φ̇∂φ + ṫ∂t . (2.40)

The dot again has the meaning of the derivative with respect to parameter s
used in Hamilton’s equations. Because this tangent vector can be defined at an
arbitrary point, it can be in principle defined also at the point of the observer.
At this position, the tangent vector takes the form

λ̇ = −α̃e0 + β̃(sin θ cosψe1 + sin θ sinψe2 + cos θe3)
⃓⃓⃓
(rO,ϑO)

. (2.41)

The positive functions α̃, β̃ will be defined below, while θ and ψ are the observer’s
celestial coordinates – the colatitude and the azimuthal angle, respectively. The
Hamiltonian (1.48) gives the parametrization of light rays in the form g(λ̇, λ̇) =
−ω2

p and then
α̃2 − β̃

2 = ω2
p

⃓⃓⃓
(rO,ϑO)

. (2.42)
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Additionally, α̃ is given by

α̃ = g(λ̇, e0) = g(λ̇, Y1∂t + Y2∂φ) = Y1(ṫgtt + φ̇gtφ) + Y2(ṫgtφ + φ̇gφφ) (2.43)
= Y1(−ω0) + Y2pφ,

and hence

β̃ =
√︂

(−Y1ω0 + Y2pφ)2 − ω2
p. (2.44)

In agreement with previous definitions, the derived expressions have to be calcu-
lated at the point of the observer, i.e., at (rO, ϑO). The condition α̃ > 0 governs
the orientation of the light ray from observer’s position into the past, which means
that ω0 = −pt is negative.

As a further step, it is desirable to find a relation between the celestial co-
ordinates θ, ψ and the constants of motion pφ, K. This can be performed when
comparing the factors before ∂r and ∂φ in (2.40) and (2.41) with the usage of
(2.32)–(2.35). This gives

ṙ = −β cos θ 1√︂
B(r, ϑ)

, (2.45)

φ̇ = −α̃Y2 + β̃ sin θ sinψY4. (2.46)

In order to find the specific formulae for the given system, the expressions
for the dotted variables (2.21), (2.22), (2.27), (2.28), and the factors α̃, β̃ (2.43),
(2.44) derived above have to be plugged into the obtained general relations. After
doing that, they read

sin θ =
⎛⎝1 +

K + fr + p2
φAr − ω2

0Cr − 2ω0pφPr

F (r, ϑ)((−Y1ω0 + Y2pφ)2 − ω2
p)

⎞⎠1/2
⃓⃓⃓⃓
⃓⃓⃓
(rO,ϑO)

, (2.47)

sinψ = (Ar +Aϑ + F (r, ϑ)Y 2
2 )pφ − (Pr + Pϑ + F (r, ϑ)Y1Y2)ω0

F 1/2(r, ϑ)Y4

[︂
F (r, ϑ) (−Y1ω0 + Y2pφ)2 + K − fϑ + p2

φAr − ω2
0Cr − 2ω0pφPr

]︂1/2

⃓⃓⃓⃓
⃓⃓⃓
(rO,ϑO)

.

(2.48)

In order to discuss the shadow, all light rays that come from the observer po-
sition into the past have to be considered. As a boundary of the shadow, light
rays asymptotically approaching the spherical light rays forming the photon re-
gion outside the horizon consisting of unstable spherical light rays are taken. In
principle, both kinds of light rays have the same constants of motion pφ and K.
Due to that, expressions (2.25) and (2.26) can be plugged into (2.48) to express
coordinates θ and ψ as functions of the radius coordinate r = rp (pφ and K de-
pend on this radius). This allows one to derive the boundary of the shadow on
the observer’s sky as a parameterized curve in terms of rp between its minimal
and maximal values. These limits are given from the condition sinψ = ±1. The
boundary values can hence be calculated from

(Ar + Aϑ + F (r, ϑ)Y 2
2 )pφ − (Pr + Pϑ + F (r, ϑ)Y1Y2)ω0

⃓⃓⃓
(rO,ϑO)

= (2.49)
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±F (r, ϑ)Y4

[︂
F (r, ϑ)((−Y1ω0 + Y2pφ)2 − ω2

p) + K + fr + p2
φAr − ω2

0Cr − 2ω0pφPr

]︂1/2
⃓⃓⃓⃓
(rO,ϑO)

.

In comparison with the vacuum case, the shadow in a plasma is also a function
of ω0. As was already discussed above, in the asymptotically flat spacetime ω0 is
the light ray frequency measured by a stationary observer at infinity. The light
rays considered in the current calculations are parameterized in the past-oriented
direction, and ω0 is hence negative, while the positive frequency ωobs measured
by the observer at (rO, ϑO) reads

ωobs = Y1(−ω0) + Y2pφ. (2.50)

The 4-velocity of this observer is determined by the tetrad factors Y1 and Y2.
When Y2 = 0, the light rays of the same ω0 return the identical ωobs, but this is
not true for Y2 ̸= 0.

2.4 General Formula for the Deflection Angle
The deflection angle α is given in full generality as

α = ∆φ− π. (2.51)

Recalling that motion along a straight line would be ∆φ = π, the deflection angle
represents the deviation from this case and hence the subtraction of π. The term
∆φ is given from the relation dφ/dr and is calculated further below. However, at
this stage it should be mentioned that in fact it consists of two parts which are
identical but for the sign. This is important for the final form of ∆φ which can
be thus expressed in the form

∆φ = −
R∫︂

∞

dφ

dr
dr +

∞∫︂
R

dφ

dr
dr = 2

∞∫︂
R

dφ

dr
dr. (2.52)

For this reason, the ± sign present along with dφ/dr in the following expressions
disappears in the final formula for α.

In this section, in comparison to the previous text, the form of the Hamilto-
nian (1.44) will be considered. Moreover, the medium is assumed to be at rest
in the chosen coordinate frame, and its individual components hence are V i = 0,
V t = (−gtt)−1/2. Then, the Hamiltonian takes the form

H(xα, pα) = 1
2
[︂
gβδpβpδ + (n2 − 1)p2

tg
−1
tt

]︂
. (2.53)

As already discussed, for a fully general dispersive medium n = n(xα, ω(xα)).
Moreover, from the relation between the photon frequency ω(xα), the momen-

tum pα, and the medium velocity V α (1.45) and by applying the above-mentioned
assumption, one gets

ω(xα) = −pt(−gtt)−1/2. (2.54)
Using the form of the metric (2.1) leads to the expression

ω(r, ϑ) = −pt
1√︂

A(r, ϑ)
. (2.55)
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Furthermore, assuming the metric (2.1) also yields

H(xα, pα) = 1
2

[︄
p2

r

B(r, ϑ) + p2
ϑ

D(r, ϑ) +
p2

φA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) (2.56)

− p2
tC(r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + 2ptpφP (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) + p2

t (1 − n2)
A(r, ϑ)

]︄
.

The relation −pt = ω0 can be again applied in the following relations, and it
will be further assumed that the medium has a refractive index n = n(r, ω(r)).

By applying the Hamiltonian (2.56), the equations of motion read

φ̇ = ∂H
∂pφ

= pφA(r, ϑ) − P (r, ϑ)ω0

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) , (2.57)

ṙ = ∂H
∂pr

= pr

B(r, ϑ) . (2.58)

The condition H(xα, pα) = 0 can be used for deriving an equation for compo-
nent pr. In such a defined system its form is

pr = ±
√︂
B(r, ϑ)

⌜⃓⃓⎷ω2
0C(r, ϑ) + 2ω0pφP (r, ϑ) − p2

φA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) − ω2

0(1 − n2)
A(r, ϑ) − p2

ϑ

D(r, ϑ) .

(2.59)

Combination of the relations given above gives an equation of motion for the
rays in the form

dφ

dr
= φ̇

ṙ
= B(r, ϑ)

pr

pφA(r, ϑ) − P (r, ϑ)ω0

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) . (2.60)

In the following calculations, it is assumed that the rays lie in the equatorial plane,
i.e., ϑ = π/2 and pϑ = 0. An expression for a total deflection angle can be then
derived in a fully analytical form. Moreover, studying the rays in the equatorial
plane is the most intuitive case and it is also a natural choice, considering further
the well-known Bardeen-Petterson effect.

Plugging the expression for pr (2.59) into (2.60) gives

dφ

dr
= ±

√︂
A(r)B(r)

(︂
pφ

ω0
− P (r)

A(r)

)︂
√︂
A(r)C(r) + P 2(r)

(2.61)

×
(︄
C(r)
A(r) −

p2
φ

ω2
0

+ 2pφ

ω0

P (r)
A(r) − (1 − n2)A(r)C(r) + P 2(r)

A2(r)

)︄−1/2

.

This equation actually describes two parts of the ray trajectory, with the r co-
ordinate either decreasing or increasing along increasing φ. Motion in each part
corresponds to a different sign in relation (2.61) – + when r increases, while −
for r decreasing.

After some algebraic manipulations, formula (2.61) can be rearranged to take
the form

dφ

dr
= ±

⌜⃓⃓⎷ A(r)B(r)
A(r)C(r) + P 2(r)

⎛⎜⎝n2
(︂

C(r)
A(r) + P 2(r)

A2(r)

)︂
(︂

pφ

ω0
− P (r)

A(r)

)︂2 − 1

⎞⎟⎠
−1/2

. (2.62)
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Following the notation introduced in previous works [e.g., Perlick et al., 2015],
the function h2(r) can be defined, and in this case it reads

h2(r) = n2
(︄
C(r)
A(r) + P 2(r)

A2(r)

)︄
. (2.63)

For photons moving in the vicinity of the Schwarzschild black hole (when P (r) =
0 and the remaining metric coefficients have corresponding forms) in vacuum
(when n = 1), the function h2(r) has the physical meaning of the photon effective
potential [Misner et al., 1973].

Moreover, in the cold plasma approximation, the refractive index n can be
rewritten as

n2 = 1 −
ω2

p(r)
ω2(r) = 1 −

ω2
p(r)
ω2

0
A(r), (2.64)

where relation (2.55) for the photon frequency ω(r) modified for the case of the
equatorial plane was used. Note that the form of the plasma frequency ωp(r)
has to be specified from the properties of the medium surrounding the compact
source and it enters the equation as an additional parameter. Furthermore, note
that equation (2.64) characterizes only an unmagnetized cold plasma, while when
considering magnetic field, the corresponding dispersion relation would be more
complicated, with a non-isotropic tensor needed to describe the medium. In a
cold plasma the function h2(r) thus is

h2(r) = A(r)C(r) + P 2(r)
A2(r)

(︄
1 −

ω2
p(r)
ω2

0
A(r)

)︄
. (2.65)

When going back to the more general case, the deflection angle formula in an
axially symmetric stationary spacetime with a refractive medium characterized
by refractive index n finally takes the form

α = 2
∞∫︂

R

⌜⃓⃓⎷ A(r)B(r)
A(r)C(r) + P 2(r)

⎛⎜⎝ h2(r)(︂
pφ

ω0
− P (r)

A(r)

)︂2 − 1

⎞⎟⎠
−1/2

dr − π. (2.66)

Parameter R denotes the minimal value of the r coordinate which a ray can reach,
i.e., it is the turning point of the ray. Thus, this point is defined by the relation

dr

dφ

⃓⃓⃓⃓
⃓
r=R

= 0. (2.67)

Considering the form of the equation of motion (2.62), the condition for R is
analogous to a situation when

h2(R) =
(︄
pφ

ω0
− P (R)
A(R)

)︄2

. (2.68)

The fraction pφ

ω0
has the well-known physical meaning of the ray impact parameter

b, and expression (2.68) hence actually describes a relation between R (in terms
of the function h2(R)) and b. This relation is very useful, because while R is a
coordinate-dependent variable, b is a frame-independent dimensionless quantity
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which is commonly used for the description of light deflection. In the case of a
general axially symmetric spacetime and plasma, the impact parameter can be
expressed as a function of R as

b = pφ

ω0
= P (R)
A(R) ± h(R) = P (R)

A(R) ± n

⌜⃓⃓⎷C(R)
A(R) + P 2(R)

A2(R) . (2.69)

When using definition (2.68), the deflection angle can be expressed in the compact
form

α = 2
∞∫︂

R

⌜⃓⃓⎷ A(r)B(r)
A(r)C(r) + P 2(r)

⎛⎜⎝ h2(r)(︂
P (R)
A(R) − P (r)

A(r) ± h(R)
)︂2 − 1

⎞⎟⎠
−1/2

dr − π. (2.70)

With the help of equation (2.69), the deflection angle can be further expressed
as a function of b. However, there are more elegant ways how to obtain the
dependence of the deflection angle on b, and at this stage, it was sufficient just
to briefly outline how it can be performed in the chosen approach.
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3. Applications of the General
Formulae
The general expressions obtained in Chapter 2 will be applied here to demonstrate
their relevance for particular cases. Separability of different spacetimes with the
usage of the conditions derived in Section 2.1 is discussed in Section 3.1, and
various applications of the deflection angle formula obtained in Section 2.4 are
presented in Sections 3.2, 3.3, and 3.4.

3.1 Separability of Chosen Spacetimes
As was already outlined in Section 2.1, the derived formulae can hold in principle
for an arbitrary frame system and it is hence necessary to carefully choose the
suitable coordinates. Moreover, the derived conditions can be used to directly
decide whether in the given spacetime the equations for the rays are separable.
This is shown for several examples in the following section. Moreover, if the
separability can be performed, in particular cases the Carter constant is found.

3.1.1 The hairy Kerr metric
First, let me use the general expressions for the case of the hairy Kerr metric.
As it is a straightforward generalization of the Kerr metric, which was already
studied by Perlick and Tsupko [2017], the derived results can be easily compared
with their previously found relations. A generalized form of the Kerr metric in
Boyer-Lindquist coordinates is [e.g., Islam and Ghosh, 2021]

ds2 = −
(︄

1 − 2rM(r)
ρ2

)︄
dt2 + ρ2

∆dr2 + ρ2dϑ2 − 4arM(r)
ρ2 sin2 ϑdtdφ (3.1)

+
(︄
r2 + a2 + 2a2rM(r)

ρ2 sin2 ϑ

)︄
sin2 ϑdφ2,

where ∆ = r2 + a2 − 2M(r)r, ρ2 = r2 + a2 cos2 ϑ. The expressions are formally
the same as defined for the Kerr metric, which can be derived as a special case
when M(r) = m = const.

The terms introduced in Section 2.1 in this case are

B(r, ϑ) = ρ2

∆ , D(r, ϑ) = ρ2, (3.2)

F (r, ϑ) = ρ2, F(r) = ∆, G(ϑ) = 1, (3.3)

Ar = −a2

∆ , Aϑ = sin−2 ϑ, (3.4)

Cr = (r2 + a2)2

∆ , Cϑ = −a2 sin2 ϑ, (3.5)

Pr = −a(r2 + a2)
∆ , Pϑ = a. (3.6)
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The relations are formally identical with the equations found for the Kerr metric,
but ∆ now contains a general function M(r).

When the form of ω2
p(r, ϑ) is taken as it was defined with (2.11) and the

above-defined expressions are considered, the two equations defining K take the
form

F(r)
(︄
dSr

dr

)︄2

+fr+p2
φAr−ω2

0Cr−2ω0pφPr = ∆
(︄
dSr

dr

)︄2

+fr−
1
∆(apφ+(r2+a2)ω0)2

(3.7)
and

G(ϑ)
(︄
dSϑ

dϑ

)︄2

+fϑ+p2
φAϑ−ω2

0Cϑ−2ω0pφPϑ =
(︄
dSϑ

dϑ

)︄2

+fϑ+
(︃
pφ

sinϑ + a sinϑω0

)︃2
.

(3.8)
The derived formulae are formally identical with relation (27) presented in Perlick
and Tsupko [2017].

A significant disagreement between the case of the Kerr metric and the hairy
Kerr metric arises in the expression for the photon region. Indeed, applying the
general expression (2.30) derived in the previous chapter to the hairy Kerr metric
gives
⎡⎢⎣ r2∆

(r −M − rM ′)2

⎛⎝1 ±

⌜⃓⃓⎷1 − f ′
r(r −M − rM ′)

2r2ω2
0

⎞⎠2

− fr + fϑ

ω2
0

⎤⎥⎦ a2 sin2 ϑ ≥ (3.9)

[︄
1

r −M − rM ′

(︄
M(a2 − r2) + rM ′(r2 + a2) ± r∆

√︄
1 − f ′

r(r −M − rM ′)
2r2ω2

0

)︄
+ a2 sin2 ϑ

]︄2

.

When one wants to reproduce the result for the Kerr case as it was obtained by
Perlick and Tsupko [2017], it is necessary to set M ′ = 0.

The last remaining formula to calculate is the expression for the hairy Kerr
black hole shadow. However, this relation is exactly the same as for the Kerr
metric derived by Perlick and Tsupko [2017], except that the definition of ∆
would be as defined above and hence more general. From this point of view,
stating this expression explicitly here would bring nothing new, and it is hence
omitted.

It should be also mentioned that the physical systems defined by the two
metrics (Kerr, hairy Kerr) differ substantially, although their formal appearance
is very similar. A physically legitimate definition of the function M(r) is that it
proportionally decreases with increasing r, while the matter stress tensor emerges
along with the presence of a non-constant M(r) by maintaining energy conditions.

3.1.2 The Hartle-Thorne metric

The Hartle-Thorne (HT) metric describes both the interior and the exterior parts
of a neutron star. Its form for the external gravitational field of a rotating star
accurate to the second order in the angular velocity can be found in the Appendix
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of Hartle and Thorne [1968]. This metric reads

ds2 = −
(︄

1 − 2M
r

+ 2J2

r4

)︄{︄
1 + 2P2(cosϑ)

[︄
J2

Mr3

(︃
1 + M

r

)︃
(3.10)

+5
8
Q− J2/M

M3 Q2
2

(︃
r

M
− 1

)︃]︄}︄
dt2

+
(︄

1 − 2M
r

+ 2J2

r4

)︄−1 {︄
1 − 2P2(cosϑ)

[︄
J2

Mr3

(︃
1 − 5M

r

)︃

+5
8
Q− J2/M

M3 Q2
2

(︃
r

M
− 1

)︃]︄}︄
dr2

+r2
{︄

1 + 2P2(cosϑ)
[︄
− J2

Mr3

(︃
1 + 2M

r

)︃
+ 5

8
Q− J2/M

M3⟨︄
2M√︂

r(r − 2M)
Q1

2

(︃
r

M
− 1

)︃
−Q2

2

(︃
r

M
− 1

)︃⟩︄⎤⎦⎫⎬⎭×
{︄
dϑ2 + sin2 ϑ

(︃
dφ− 2J

r3 dt
)︃2}︄

.

The constant factors M , J , and Q denote the mass, the total angular mo-
mentum, and the quadrupole moment of the star, respectively. The function
P2(cosϑ) is the Legendre polynomial of order 2 with the argument cosϑ, while
the associated Legendre functions of the second kind with the argument r

M
− 1

are denoted by Qm
n

(︂
r

M
− 1

)︂
.

Glampedakis and Babak [2006] showed that the Hartle-Thorne metric in the
given coordinate frame separates the Hamilton-Jacobi equation for geodesics only
when J = 0 and Q = 0, i.e., in the Schwarzschild metric. Otherwise, even for the
specific choice Q = J2/M ̸= 0 which corresponds to the Kerr metric, separability
cannot be achieved.

Because the derived statement holds for lightlike geodesics, it is obviously still
true for light rays in given coordinates in a plasma, regardless of the definition of
the plasma density. In the following calculations these findings will be recovered
with usage of the general conditions presented above.

To simplify the long expressions in the HT metric, let us introduce a compact
notation in the form

A1 = 1 − 2M
r

+ 2J2

r4 , j = J2

Mr3 , (3.11)

K = 5
8
Q− J2/M

M3 , j1 = 2J
r3 .

Moreover, Qm
n will be used below rather than Qm

n

(︂
r

M
− 1

)︂
.

Let us further introduce

MA = 1 + 2P2(cosϑ)
[︃
j
(︃

1 + M

r

)︃
+KQ2

2

]︃
, (3.12)

MB = 1 − 2P2(cosϑ)
[︃
j
(︃

1 − 5M
r

)︃
+KQ2

2

]︃
, (3.13)

Mφ = 1 + 2P2(cosϑ)
⎡⎣−j

(︃
1 + 2M

r

)︃
+K

⎛⎝ 2M√︂
r(r − 2M)

Q1
2 −Q2

2

⎞⎠⎤⎦ . (3.14)
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The particular metric coefficients presented in (2.1) then read

A(r, ϑ) = A1MA − j2
1r

2 sin2 ϑMφ, B(r, ϑ) = A−1
1 MB, (3.15)

C(r, ϑ) = r2 sin2 ϑMφ, D(r, ϑ) = r2Mφ,

P (r, ϑ) = −j1r
2 sin2 ϑMφ.

From the derived expressions it can be clearly seen that the ratio of terms B(r, ϑ)
and D(r, ϑ) equals

B(r, ϑ)
D(r, ϑ) = MB

A1r2Mφ

. (3.16)

However, from the separability conditions it follows that this ratio has to be a
function of ϑ alone – G(ϑ) – divided by a separate function of r – F(r). The
definitions of MB and Mφ clearly demonstrate that their dependence on r and
ϑ requires that the separability can be performed only if J = 0 and Q = 0, i.e.,
for the Schwarzschild metric. In the case when Q = J2/M (̸= 0) (Kerr metric)
the suitable frame transformation to Boyer-Lindquist coordinates can be applied.
It is well known that in this coordinate system separability can be achieved.
An explicit form of the desired coordinate transformation can be found, e.g., in
Glampedakis and Babak [2006] and it is discussed in more detail further (see
Section 3.2.1).

3.1.3 The Melvin universe
The Melvin universe is a specific solution of the Einstein-Maxwell equations with
a uniform magnetic field. It was originally derived by Bonnor [1954] and 10 years
later rediscovered by Melvin [1964]. A detailed analysis of the geodesics in the
Melvin spacetime can be found in Melvin and Wallingford [1966].

The Melvin universe can be described by a metric of the form

ds2 = ã2
[︂
(1 + ρ2)2(−dt2 + dρ2 + dz2) + ρ2(1 + ρ2)−2dφ2

]︂
, (3.17)

where ã is a positive constant taking the role of an overall scaling factor, t denotes
the time coordinate, and ρ, z, and φ are the cylindrical polar coordinates. For
the purpose of further calculations, let me introduce Λ(ρ) ≡ 1 + ρ2.

Separation in spherical coordinates
As was already discussed in Chapter 2, metric terms have to obey several con-
ditions in order to find the individual separated terms and the Carter constant.
Although the coordinate system can be arbitrary and the obtained expressions
can be then written in the system of choice, the most natural frame is provided
by the spherical coordinates (t, r, ϑ, φ). However, metric (3.17) is expressed in the
cylindrical coordinates (t, ρ, z, φ). Hence, let me use a coordinate transformation

t =t, (3.18)
ρ =r sinϑ, (3.19)
z =r cosϑ, (3.20)
φ =φ, (3.21)
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which allows one to express the Melvin universe in the spherical coordinates. It
then transforms to

ds2 = ã2
[︂
Λ2(r, ϑ)(−dt2 + dr2 + r2dϑ2) + r2 sin2 ϑΛ−2(r, ϑ)dφ2

]︂
, (3.22)

where Λ(r, ϑ) = 1 + r2 sin2 ϑ. In the case when Λ(r, ϑ) = 1, metric (3.22) would
correspond to the Minkowski spacetime.

Applying the notation from Section 2.1, individual metric terms yield

A(r, ϑ) = ã2Λ2(r, ϑ), B(r, ϑ) = ã2Λ2(r, ϑ), (3.23)
C(r, ϑ) = ã2r2 sin2 ϑΛ−2(r, ϑ), D(r, ϑ) = ã2r2Λ2(r, ϑ),
P (r, ϑ) = 0.

These terms return the functions
B(r, ϑ)
D(r, ϑ) = r−2 ⇒ F (r, ϑ) = ã2r2Λ2(r, ϑ), F(r) = r2, G(ϑ) = 1, (3.24)

and
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) = ã4r2 sin2 ϑ. (3.25)

However, plugging these expressions into (2.12) when searching for separated
parts of A(r, ϑ) returns

F (r, ϑ)A(r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) = Λ4(r, ϑ) sin−2 ϑ = sin6 ϑ(r2 + sin−2 ϑ)4 ̸= Ar + Aϑ,

(3.26)
which obviously cannot be separated, while the remaining terms are

F (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)C(r, ϑ) = r2 = Cr, (3.27)

F (r, ϑ)
A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)P (r, ϑ) = 0. (3.28)

Hence, it is evident that due to the lack of feasible separation of the term A(r, ϑ),
it is impossible to determine the Carter constant in this coordinate frame.

Separation in cylindrical coordinates
However, when different, more suitable, coordinates are used instead of the spher-
ical ones, the separation can still be derived. For this reason, let me do the same
procedure in the cylindrical coordinates ρ, z in which the Melvin metric was
originally introduced, see (3.17). Using the original notation of Section 2.1, the
discussed metric terms are

A(ρ, z) = ã2Λ2(ρ), B(ρ, z) = ã2Λ2(ρ), (3.29)
C(ρ, z) = ã2ρ2Λ−2(ρ), D(ρ, z) = ã2Λ2(ρ),
P (ρ, z) = 0.

Notice that these terms are only functions of ρ. For this reason, it is simple to
find

B(ρ, z)
D(ρ, z) = 1 ⇒ F (ρ, z) = ã2Λ2(ρ), F(ρ) = 1, G(z) = 1, (3.30)
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and moreover
A(ρ, z)C(ρ, z) + P 2(ρ, z) = ã4ρ2, (3.31)

which further yields

Aρ = ρ−2Λ4(ρ), Az = 0, (3.32)
Cρ = 1, Cz = 0, (3.33)
Pρ = 0, Pz = 0. (3.34)

Naturally, the derived results are not unique, as an equal constant can always be
added to Xρ and subtracted from Xz, where X denotes A, C, or P .

In order to find the Carter constant, substituting the individual parts of A,
C, and P into (2.13) returns the Hamilton-Jacobi equation in the form(︄

dSρ

dρ

)︄2

+ fρ(ρ) + p2
φρ

−2Λ4(ρ) − ω2
0 = −

(︄
dSz

dz

)︄2

− fz(z) ≡ −K, (3.35)

which corresponds to the results obtained in Melvin and Wallingford [1966].
Then, the photon region can be described by the expression

ρΛ(ρ)f ′
ρ(ρ)

2(3ρ2 − 1) + ω2
0 − fρ(ρ) − fz(z) ≥ 0. (3.36)

In vacuum the entire spacetime basically represents the photon region. Since the
separation in the Melvin universe was finally performed in cylindrical coordinates
rather than in spherical coordinates, the photon region is filled with “cylindrical
light rays” rather than with spherical light rays. Moreover, these cylindrical light
rays are not restricted to a spatially limited compact region, and there is hence
no meaningful definition for a “shadow” in the Melvin spacetime.

Let me briefly mention that one can assume in principle a more general case
when analysing an exact solution of the Einstein-Maxwell equations describing
either a Schwarzschild or a Kerr black hole embedded in a Melvin universe. For
the Schwarzschild case see Ernst [1976] and see Ernst and Wild [1976] for the Kerr
case. Moreover, a shadow of either of these black holes was recently discussed in
Lima Jr. et al. [2021], Wang et al. [2021], respectively. Unfortunately, the light
ray equations are not separable in these cases.

3.1.4 The Teo wormhole metric
One more example demonstrating how to apply the derived general formulae when
searching for the generalized Carter constant is a stationary and axisymmetric
metric describing a rotating traversable wormhole obtained by Teo [1998]. The
necessary and sufficient conditions for separability of the Hamilton-Jacobi equa-
tion for light rays in a plasma in such a spacetime can be found from the general
results. Moreover, it is possible to analytically determine the photon region and
the shadow in this case. Note that in vacuum and for a specific subclass of the
Teo metrics, the shadow was already obtained by Nedkova et al. [2013].

The metric describing the object takes the form

ds2 = −N2dt2 +
(︄

1 − b

r

)︄−1

dr2 + r2K2dϑ2 + r2K2 sin2 ϑ (dφ− ω̃dt)2 , (3.37)
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where N , K, b, and ω̃ are functions of r and ϑ. It is assumed that the metric is
asymptotically flat. To satisfy this requirement, at r → ∞ the functions present
in the metric must behave as follows:

N = 1 − M

r
+ O

(︃ 1
r2

)︃
, K = 1 + O

(︃1
r

)︃
, (3.38)

b

r
= O

(︃1
r

)︃
, ω̃ = 2J

r3 + O
(︃ 1
r4

)︃
.

The coordinates for the spacetime are chosen so that they cover the region
between the “neck” of the wormhole, which is characterized by the equation
b(r, ϑ) = r, and infinity. Moreover, the functions N , b, and K have to be strictly
positive in this range. Furthermore, it is required that ∂b(r, ϑ)/∂ϑ → 0 and
b(r, ϑ) > r∂b(r, ϑ)/∂r at the point of the neck. To get a wormhole that connects
two asymptotically flat copies of a spacetime, they have to be glued together at
the neck.

From the notation introduced in (2.1) one can be directly deduce that

A(r, ϑ) = N2 − r2K2ω̃2 sin2 ϑ, B(r, ϑ) =
(︄

1 − b

r

)︄−1

, (3.39)

C(r, ϑ) = r2K2 sin2 ϑ, D(r, ϑ) = r2K2,

P (r, ϑ) = −ω̃r2K2 sin2 ϑ.

Application of (2.8), (2.12) implies

F (r, ϑ) = r2K2, F(r) = r2K2
(︄

1 − b

r

)︄
, G(ϑ) = 1, (3.40)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) = N2r2K2 sin2 ϑ, (3.41)

and, finally,

Ar = −r2K2

N2 ω̃2, Aϑ = sin−2 ϑ, (3.42)

Cr = r2K2

N2 , Cϑ = 0, (3.43)

Pr = −r2K2

N2 ω̃, Pϑ = 0. (3.44)

In order to find the photon region, it is necessary to determine the following
functions

A′
r = −2rK

2

N2 ω̃
2 − r2ω̃2

(︄
K2

N2

)︄′

− r2K2

N2 (ω̃2)′, (3.45)

C ′
r = 2rK

2

N2 + r2
(︄
K2

N2

)︄′

, (3.46)

P ′
r = −2rK

2

N2 ω̃ − r2ω̃

(︄
K2

N2

)︄′

− r2K2

N2 ω̃′. (3.47)
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It is obvious from these relations that to perform the separability of variables,
each of the functions

K

N
, K2

(︄
1 − b

r

)︄
, ω̃

have to be solely a function of r.
When this assumption holds, a new radial coordinate ℓ can be introduced,

satisfying

dℓ = ±

⎛⎝K
√︄

1 − b

r

⎞⎠−1

dr. (3.48)

This variable is useful because it depicts the radial length in a new metric obtained
by the conformal transformation gµν ↦→ K−2gµν . As ℓ ∈ (−∞,∞), the new
coordinate system (ℓ, ϑ, φ, t) captures the whole spacetime from one asymptotic
end to the other, while the original Teo coordinates (r, ϑ, φ, t) describe only one
half of the spacetime (from infinity up to the neck). To find the discussed light
ray functions, it is more useful to use the original Teo coordinates.

The separated parts of A, C, and P can be substituted into (2.13), which
gives the relation for the Carter constant

r2K2
(︄

1 − b

r

)︄(︄
dSr

dr

)︄2

+ fr(r) − p2
φ

r2K2

N2 ω̃2 − ω2
0
r2K2

N2 + 2ω0pφ
r2K2

N2 ω̃ (3.49)

= −
(︄
dSϑ

dϑ

)︄2

− fϑ(ϑ) − p2
φ sin−2 ϑ ≡ −K.

Moreover, the equations for the derivatives of the functions Sr and Sϑ can be
expressed with the help of K, namely

N2
(︄

1 − b

r

)︄(︄
dSr

dr

)︄2

= (ω0 − ω̃pφ)2 − N2

r2K2 (K + fr(r)), (3.50)(︄
dSϑ

dϑ

)︄2

= K − fϑ(ϑ) − p2
φ sin−2 ϑ. (3.51)

Note that the special case when the plasma density is zero (i.e., in vacuum) and
the metric functions N , b, K, and ω̃ separately depend solely on r was already
studied by Nedkova et al. [2013], and the corresponding equations were already
derived there.

In the next step, relations for K and pφ have to be found. From the general
expressions (2.25) and (2.26) one gets

ω̃pφ =
ω0
(︂
Q′ + Q ω̃′

ω̃

)︂
± ω0

√︃
Q2

(︂
ω̃′

ω̃

)︂2
+ f ′

r

ω2
0

(︂
Q′ + 2Q ω̃′

ω̃

)︂
Q′ + 2Q ω̃′

ω̃

, (3.52)

K =
ω2

0Q
(︄

Q ω̃′

ω̃
∓
√︃

Q2
(︂

ω̃′

ω̃

)︂2
+ f ′

r

ω2
0

(︂
Q′ + 2Q ω̃′

ω̃

)︂)︄2

(︂
Q′ + 2Q ω̃′

ω̃

)︂2 − fr, (3.53)
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where
Q ≡ r2K2

N2 .

Note that the function Q depends on r only and, similarly to the previous cases,
′ denotes the derivative with respect to r.

Using the derived equations for pφ and K in (3.51) yields

Q

⎛⎜⎝Q ω̃′

ω̃
∓

⌜⃓⃓⎷Q2

(︄
ω̃′

ω̃

)︄2

+ f ′
r

ω2
0

(︄
Q′ + 2Q ω̃′

ω̃

)︄⎞⎟⎠
2

− fr + fϑ

ω2
0

(︄
Q′ + 2Q ω̃′

ω̃

)︄2

≥

sin−2 ϑω̃−2

⎛⎜⎝Q′ + Q ω̃′

ω̃
±

⌜⃓⃓⎷Q2

(︄
ω̃′

ω̃

)︄2

+ f ′
r

ω2
0

(︄
Q′ + 2Q ω̃′

ω̃

)︄⎞⎟⎠
2

, (3.54)

which is the condition for the existence of a spherical light ray around the Teo
wormhole. This expression is naturally obtained also when the general formula
(2.30) is used.

When assuming that the equations for pφ and K given by (3.52) and (3.53),
respectively, are functions of the radius coordinate r = rp, the boundary curve of
the shadow parameterized by rp can be obtained from the equations (2.47) and
(2.48) which return

sin θ =
(︄

K − fϑ

Q(ω̃pφ − ω0)2 − (fr + fϑ)

)︄1/2
⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

, (3.55)

sinψ = pφ

sinϑ
√

K − fϑ

⃓⃓⃓⃓
⃓
(rO,ϑO)

. (3.56)

To derive the expressions for the wormhole shadow, it is necessary to introduce
an orthonormal tetrad, in this case chosen in the form

e0 = 1
N

(∂t + ω̃∂φ)
⃓⃓⃓⃓
(rO,ϑO)

, (3.57)

e1 = 1
rK

∂ϑ

⃓⃓⃓⃓
(rO,ϑO)

, (3.58)

e2 = 1
rK sinϑ∂φ

⃓⃓⃓⃓
(rO,ϑO)

, (3.59)

e3 = −
(︄

1 − b

r

)︄1/2

∂r

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

. (3.60)

Until now, the Teo wormhole was studied only generally for arbitrary forms
of N , K, b, and ω̃. In the following calculations, a specific example of the Teo
wormhole is assumed, taking the form

ds2 = Ω(r, ϑ)
⎛⎝− dt2 + dr2

1 − r2
0
r2

+ r2dϑ2 + r2sin2ϑ
(︃
dφ− 2 a

r3 dt
)︃2
⎞⎠ (3.61)

with
Ω(r, ϑ) = 1 + (4 a cosϑ)2

r3
0 r

. (3.62)
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The parameter r0 is a positive constant factor of the dimension of length and
a is a constant with the dimension of length squared. The radius coordinate is
defined between r0 and infinity. The neck is set at point r0, where it holds that(︂
r/Ω(r, ϑ)

)︂(︂
1 − r2

0/r
2
)︂

= 0.
Individual metric terms of this object are

A(r, ϑ) = Ω(r, ϑ)
(︄

1 − 4a2

r4 sin2 ϑ

)︄
, B(r, ϑ) = Ω(r, ϑ)

(︄
1 − r2

0
r2

)︄−1

, (3.63)

C(r, ϑ) = Ω(r, ϑ)r2 sin2 ϑ, D(r, ϑ) = Ω(rϑ)r2,

P (r, ϑ) = −2a
r

Ω(r, ϑ) sin2 ϑ .

The functions relevant for the separation in this case read

F (r, ϑ) = Ω(r, ϑ)r2, F(r) = r2
(︄

1 − r2
0
r2

)︄
, G(ϑ) = 1, (3.64)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) = Ω2(r, ϑ)r2 sin2 ϑ, (3.65)

and the separated metric terms are

Ar = −4a2

r4 , Aϑ = sin−2 ϑ, (3.66)

Cr = r2, Cϑ = 0, (3.67)

Pr = −2a
r
, Pϑ = 0. (3.68)

To find the generalized Carter constant for such a spacetime, the plasma density
has to be of the form

ωpl(r, ϑ)2 = fr(r) + fϑ(ϑ)
Ω(r, ϑ)r2 . (3.69)

The equations of motion generally defined by (2.21), (2.22), (2.27), and (2.28)
now yield

Ω2(r, ϑ)r4 ṙ2 =
(︃
r2 − r2

0

)︃⎛⎝− K +
(︃2a
r2 pφ − ω0r

)︃2
− fr(r)

⎞⎠ , (3.70)

Ω2(r, ϑ)r4 ϑ̇2 = K −
p2

φ

sin2ϑ
− fϑ , (3.71)

φ̇ =
pφ

(︂
r4 − 4a2sin2ϑ

)︂
+ 2 aω0 r

5 sin2ϑ

Ω(r, ϑ) r6 sin2ϑ
, (3.72)

ṫ = ω0 r
3 − 2 a pφ

Ω(r, ϑ) r3 . (3.73)

The right-hand side of (3.70) and its derivative are equal to zero for the case of
spherical light rays. It can be easily found that this is true at r = r0, i.e., at the
neck. Moreover, the Carter constant for the light rays satisfying this condition is
a function of pφ and hence

K(pφ) =
(︃2a
r2 pφ − ω0r

)︃2
− fr(r) . (3.74)
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These spherical light rays at the neck are unstable in vacuum, but in plasma
their stability depends on the function fr(r). Assuming r ̸= r0, calculating the
right-hand side of (3.70) and its derivative when they equal zero leads to the two
equations for pφ and K. These constants of motion for a light ray on a sphere of
radius rp read

pφ(rp) =
ω0r

2
p

8a

⎛⎝rp ∓

⌜⃓⃓⎷9r2
p − 4rp

f ′
r(rp)
ω2

0

⎞⎠ , (3.75)

K(rp) = ω2
0

16

⎛⎝3rp ±

⌜⃓⃓⎷9r2
p − 4rp

f ′
r(rp)
ω2

0

⎞⎠2

− fr(rp) . (3.76)

As a result, at the neck there is not only the photon sphere, but in general
there is also a photon region universally defined by (2.30) and evaluated for the
studied case as

⎛⎝3r ±

⌜⃓⃓⎷9r2 − 4rf
′
r(r)
ω2

0

⎞⎠2

−16fr(r) + fϑ(ϑ)
ω2

0
≥ r4

4a2sin2ϑ

⎛⎝r ∓

⌜⃓⃓⎷9r2 − 4rf
′
r(r)
ω2

0

⎞⎠2

.

(3.77)
Equation (3.70) also returns the condition when the spherical light orbits in the
photon region are unstable, which yields

0 < R′′(r) = −f ′′
r (r) + 2

(︄
40a2

r6 p2
φ + ω2

0 − 4a
r3 ω0pφ

)︄
. (3.78)

There are several restrictions for (3.77) in vacuum. First, only the upper signs
are allowed, and second, for a < r2

0/6 the photon region does not exist at all, i.e.,
the only unstable photon orbits which can serve as limit curves for light rays
defining the boundary of the shadow are those at the neck. On the contrary,
the photon region exists when a > r2

0/6. Such a photon region is formed by
two symmetric parts which are connected in the photon sphere at the neck. The
shadow boundary line results from light rays of two kinds – those which spiral
towards the photon sphere and those which spiral towards unstable spherical
orbits in the photon region where rp ̸= r0. A new interesting effect occurring in
a plasma is that the photon region may become separated from the neck, while
the spherical orbits at the neck are stable. In this case, the shadow boundary is
hence completely defined by light rays that spiral towards spherical orbits in the
part of the photon region that lies on the same side of the neck as the observer.

The photon orbits for a wormhole defined by (3.61) with the specific choice
a = r2

0/3 and a = 0.8r2
0, are shown in the two panels of Fig. 3.1. The plasma

profile determined by the functions fr = 4ω2
0r

2
0(r0/r)1/2 and fϑ = 0 was chosen.

Note that in a thus defined plasma, the photon region of the Teo wormhole with
a = r2

0/3 does not exist.
When determining the wormhole shadow, the same tetrad as in (3.57)–(3.60)
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(a) (b)

Figure 3.1: Teo wormhole photon regions with (a) a = r2
0/3 and (b) a = 0.8r2

0.
The dashed blue curves show the boundary of the photon region in vacuum and
the red solid curve corresponds to the plasma case when fr = 4ω2

0r
2
0(r0/r)1/2 and

fϑ = 0. For such a plasma profile the photon region does not exist if a = r2
0/3.

is used, but with the corresponding form of the given functions, i.e.,

e0 = 1√︂
Ω(r, ϑ)

(︃
∂t + 2a

r3 ∂φ

)︃⃓⃓⃓⃓⃓⃓
(rO,ϑO)

, (3.79)

e1 = 1√︂
Ω(r, ϑ)r

∂ϑ

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

, (3.80)

e2 = 1√︂
Ω(r, ϑ)r sinϑ

∂φ

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

, (3.81)

e3 = − 1√︂
Ω(r, ϑ)

(︄
1 − r2

0
r2

)︄1/2

∂r

⃓⃓⃓⃓
⃓⃓
(rO,ϑO)

. (3.82)

Note that the observer position rO is not the same as the neck radius r0. The
corresponding coefficients at ∂t and ∂φ determined from (2.40) in comparison with
those in (2.41) allow one to get

α̃ = 2apφ − ω0r
3
O√︂

Ω(rO, ϑO) r3
O

, (3.83)

β̃ = pφ√︂
Ω(rO, ϑO) rO sinϑO sinψ sin θ

. (3.84)

In order to derive the specific forms of α̃ and β̃, relations (3.72) and (3.73) were
used. The coefficients at ∂r and ∂ϑ can be treated in a similar manner. After doing
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so, the obtained formulae for ṙ and ϑ̇ have to be used in (3.70) and (3.71), along
with applying the expression (3.84) for β̃. Evaluation of the celestial coordinates
ψ and θ then yields

tan2θ = K − fϑ(ϑO)(︄
2a
r2

O
pφ − ω0rO

)︄2

− K − fr(rO)
, (3.85)

sin2ψ =
p2

φ(︃
K − fϑ(ϑO)

)︃
sin2ϑO

. (3.86)

Furthermore, when assuming that pφ = pφ(rp) and K = K(rp) as known from
(3.75), a part of the shadow boundary determined by light rays that spiral towards
spherical light rays in the photon region can be found. This curve is parameterized
by rp. The part of the shadow boundary defined by light rays that spiral towards
the photon sphere at the neck is parameterized by pφ and can be found when
applying K = K(pφ) from (3.74).

The shadow of the Teo metric seen by an observer set at position rO = 5r0/2
and ϑO = π/2 both in vacuum and in a plasma is shown in Fig. 3.2. To depict
the shape of the shadow, dimensionless Cartesian coordinates previously used in
Perlick and Tsupko [2017] were adopted. They are of the form

X(r) = −2 tan
(︄
θ(r)

2

)︄
sin(ψ(r)), (3.87)

Y (r) = −2 tan
(︄
θ(r)

2

)︄
cos(ψ(r)). (3.88)

The coordinates are defined in the tangent plane to the celestial sphere at the
pole where θ = 0 and the stereographic projection onto it is performed.

3.2 Deflection in the Weak Field Approxima-
tion vs Complete Solution

A comparison of the derived general analytical formula for the deflection an-
gle (2.70) and an approximate solution when weak field is assumed, i.e., when
M/R ≪ 1 will be performed in this section. It is an instructive way how to
demonstrate the relevance of a complete solution and at what distance from the
black hole it is necessary to consider it. This calculation is performed for both
the Kerr metric and the HT metric and it is thus also possible to express the ef-
fect of the quadrupole moment that is generically present in the latter case. The
expansion is derived up to the third order in M/R while maintaining terms up to
the second order in angular velocity when the approximation of the HT metric as
an external gravitational field of a rotating star is still valid. Moreover, as it will
become clear further, the effect of the quadrupole moment can be observed first
at this order. Because the main goal of this section is to compare directly the
deflection angles for both the HT and Kerr metrics in the weak field, it is useful to
compute the formula for the HT metric, although it was already discussed as an
approximation of the external field of nonrelativistic stars by Hartle and Thorne
[1968].
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(a) (b)

Figure 3.2: Shadow of the Teo wormhole seen by an observer at rO = 5r0/2
and ϑO = π/2 when (a) a = r2

0/3, fr = 0, fϑ = 0 and (b) a = 0.8r2
0, fr =

4ω2
0r

2
0(r0/r)1/2, fϑ = 0. The shadow boundary determined by light rays spiraling

towards spherical light rays in the photon region is marked by the thick purple
curves, while boundary parts defined by light rays that spiral towards the photon
sphere at the neck, i.e., when r = r0, are marked by the thin green curve. The
dash-dotted circles show the position of the celestial equator.

3.2.1 The Kerr metric

The expression for the deflection angle of light in a cold plasma propagating
around an object described by the Kerr metric in Boyer-Lindquist coordinates
in the equatorial plane was already derived and discussed, e.g., in Perlick [2000].
This formula takes the form

α = 2
∞∫︂

R

√︂
r(r − 2M)

r2 − 2Mr + a2

(︄
(R − 2M)2h2(r)

(2Ma(R − r) ± (r − 2M)h(R))2 − 1
)︄−1/2

dr − π,

(3.89)
where

h2(r) = r2(r2 − 2Mr + a2)
(︄

1 −
ω2

p(r)
ω2

0

(︃
1 − 2M

r

)︃)︄
. (3.90)

The introduced relation can be also obtained from the derived general formula
(2.70) assuming that

A(r) = 1 − 2M
r
, B(r) = r2

r2 − 2Mr + a2 , (3.91)

C(r) = r2 + a2 + 2Ma2

r
, P (r) = −2Ma

r
.

These terms are taken in the equatorial plane and thus they do not resemble the
usual Kerr metric coefficients.

In order to make the manipulation with the equations more convenient, let
me introduce a general form of the deflection angle formula in the Kerr metric in
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the equatorial plane as

α = 2
∞∫︂

R

fKerr(r)dr − π, (3.92)

where

fKerr(r) =

√︂
r(r − 2M)

r2 − 2Mr + a2

(︄
(R − 2M)2h2(r)

(2Ma(R − r) ± (r − 2M)h(R))2 − 1
)︄−1/2

. (3.93)

Although an analytical calculation of the integral (3.92) is quite complicated
in general, it is significantly simpler in the weak-field approximation. In this
approximation, terms up to the third order will be derived below. The reason for
the choice of this order will be clarified. Assuming a vacuum case (ωp = 0) and
under the conditions of the weak field, the function fKerr(r) can be treated as

fKerr(r) ≈ R

r
√
r2 −R2

(︄
1 + M(R2 + rR + r2)

rR(r +R) + 3M2(R2 + rR + r2)2

2r2R2(r +R)2 (3.94)

+a
2(r2 − 2R2)

2r2R2 ∓ 2Mar

R2(r +R)

(︄
1 + M(5R2 + 4rR + 2r2)

rR(r +R)

)︄

+3Ma2(r4 +R(R + r)(r2 − 2R2))
2r3R3(r +R) + 5M3(R2 + rR + r2)3

2r3R3(r +R)3

)︄
.

The individual terms are then integrated as follows∫︂ ∞

R

Rdr

r
√
r2 −R2

= π

2 , (3.95)∫︂ ∞

R

M(R2 + rR + r2)dr
r2(r +R)

√
r2 −R2

= 2M
R
, (3.96)

∫︂ ∞

R

3M2(R2 + rR + r2)2dr

2r3R(r +R)2
√
r2 −R2

= M2

8R2 (15π − 16), (3.97)∫︂ ∞

R

2Madr

R(r +R)
√
r2 −R2

= 2Ma

R2 , (3.98)
∫︂ ∞

R

a2(r2 − 2R2)dr
2r3R

√
r2 −R2

= 0, (3.99)∫︂ ∞

R

2M2a(5R2 + 4rR + 2r2)dr
rR2(r +R)2

√
r2 −R2

= M2a

R3 (5π − 8), (3.100)
∫︂ ∞

R

3Ma2(r4 +R(R + r)(r2 − 2R2))dr
2r4R2(r +R)

√
r2 −R2

= Ma2

R3 , (3.101)
∫︂ ∞

R

5M3(R2 + rR + r2)3dr

2r4R2(r +R)3
√
r2 −R2

= M3

R3

(︃61
3 − 15π

4

)︃
. (3.102)

Note that no term ∝ a3

R3 is present in (3.94) by definition.
Hence, the deflection angle in the Kerr metric in Boyer-Lindquist coordinates

in the weak field approximation in vacuum reads

αBL =4M
R

+ M2

R2

(︃15π
4 − 4

)︃
∓ 4Ma

R2 ∓ M2a

R3 (10π − 16) + 2Ma2

R3 (3.103)

+ M3

R3

(︃122
3 − 15π

2

)︃
.
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Terms up to the second order were previously calculated, e.g., in Perlick and
Tsupko [2024]. Notice that the deflection angle formula in the weak-field approx-
imation for the Schwarzschild metric can be obtained directly from (3.103) by
assuming a = 0. Moreover, the first term of (3.103) is the so-called Einstein
deflection angle [see Schneider et al., 1992, Bisnovatyi-Kogan and Tsupko, 2009].
Additionally, analogous formulae for the deflection angle in the Kerr metric can
be derived by different techniques. This was performed in several earlier works,
e.g., Iyer and Hansen [2009], Aazami et al. [2011], Crisnejo et al. [2019]. Notice
that in these studies the deflection angle was expressed as a function of mass M ,
angular momentum per unit mass a, and impact parameter b.

However, as the ultimate goal of this part is to compare the deflection angles
in the Kerr and HT metrics, one has to derive the deflection angles in the same
coordinate system (unless they are expressed in terms of the impact parameter b).
For this reason, it is desirable to apply the coordinate transformation originally
introduced by Hartle and Thorne [1968], namely

r → r

[︄
1 − a2

2r2

(︃(︃
1 + 2M

r

)︃(︃
1 − M

r

)︃
− cos2 ϑ

(︃
1 − 2M

r

)︃(︃
1 + 3M

r

)︃)︃]︄
,

(3.104)

ϑ → ϑ− a2

2r2 sinϑ cosϑ
(︃

1 + 2M
r

)︃
,

which in the equatorial plane up to the order relevant for the present study reads

r → r

[︄
1 − a2

2r2

(︃
1 + M

r

)︃]︄
, ϑ → ϑ. (3.105)

When applying the introduced transformation through the individual terms
of expansion (3.94), it turns out that the only change occurs in the term ∝ Ma2

R3 .
It now changes to1

∞∫︂
R

3Ma2(r4 +R(R + r)(r2 −R2))dr
2r4R2(r +R)

√
r2 −R2

= 2Ma2

R3 . (3.106)

Finally, the deflection angle formula for the Kerr metric with assumption
M/R ≪ 1 up to the third order in the new coordinate system yields

αtransf =4M
R

+ M2

R2

(︃15π
4 − 4

)︃
∓ 4Ma

R2 ∓ M2a

R3 (10π − 16) + 4Ma2

R3 (3.107)

+ M3

R3

(︃122
3 − 15π

2

)︃
.

1Relevant transformation factors actually occur in√︁
r(r − 2M)

r2 − 2Mr + a2 ≈ 1
r

(︃
1 + M

r
− a2

r2 + 3M2

2r2 + 5M3

2r3 − 3Ma2

r3

)︃
→ 1

r

[︃
1 + a2

2r2

(︃
1 + M

r

)︃]︃[︃
1 + M

r

(︃
1 − a2

2r2

)︃
− a2

r2 + 3M2

2r2 + 5M3

2r3 − 3Ma2

r3

]︃
,

and the remaining factors arising from this transformation in the other terms vanish up to the
given order.
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When comparing the deflection angles (3.103) and (3.107), one can see that the
coordinate transformation terminates with an additional factor of 2 in (3.107) in
front of the term Ma2

R3 . This is given by the order of the expansion used in this sec-
tion. Other relevant factors stemming from the coordinate transformation would
occur in higher-order terms which are not considered in the present calculation.

3.2.2 The Hartle-Thorne metric

To demonstrate the difference from the Kerr metric, light deflection is studied in
the equatorial plane (formula (2.70) was obtained under this condition anyway)
and at the first approximation, the situation without a quadrupole moment when
K = 0 (cf. (3.11)) is considered. Under these assumptions, the relevant HT
metric terms present in the deflection angle formula take the form

A(r) = 1 − 2M
r

− j ≡ A0, (3.108)

A(r)B(r) = 1 ≡ AB0, (3.109)

A(r)C(r) + P 2(r) = r2
(︃

1 − 2M
r

)︃
≡ ACP0, (3.110)

1 −
ω2

p(r)
ω2

0
A(r) = 1 −

ω2
p(r)
ω2

0

(︃
1 − 2M

r
− j

)︃
≡ 1 −

ω2
p(r)
ω2

0
A0, (3.111)

P (r)
A(r) = −2J

r

(︃
1 + 2M

r

)︃
≡ PA0, (3.112)

h2(r) =
r2
(︂
1 − 2M

r

)︂
(︂
1 − 2M

r
− j

)︂2

(︄
1 −

ω2
p(r)
ω2

0

(︃
1 − 2M

r
− j

)︃)︄
. (3.113)

The simplified form of the deflection angle for the HT metric in this case is

αHT 0 = 2
∞∫︂

R

fHT 0(r)dr − π, (3.114)

where

fHT 0(r) = 1√
ACP0

⎛⎜⎜⎝ ACP0

(︃
1 − ω2

p(r)
ω2

0
A0

)︃
A2

0

(︂
P (R)
A(R) − P (r)

A(r) ± h(R)
)︂2 − 1

⎞⎟⎟⎠
−1/2

.

Moreover, when vacuum is considered, i.e., ωp(r) = 0, one gets

fHT 0(r) = 1√︃
r2
(︂
1 − 2M

r

)︂
⎛⎜⎜⎜⎜⎜⎝

r2(1− 2M
r )(︂

1− 2M
r

− J2
Mr3

)︂2

(PA0(R) − PA0(r) ± h(R))2 − 1

⎞⎟⎟⎟⎟⎟⎠
−1/2

.

In the weak-field approximation, i.e., when M/r ≪ 1, we expand the result
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to obtain

fHT 0(r) ≈ R

r
√
r2 −R2

[︄
1 + M(R2 + rR + r2)

rR(r +R) + 3M2(R2 + rR + r2)2

2r2R2(r +R)2 (3.115)

∓ 2Jr
R2(r +R)

(︄
1 + M(5R2 + 4rR + 2r2)

rR(r +R)

)︄
+ J2(R2 +Rr + r2)

MrR3(r +R)

+5M3(R2 + rR + r2)3

2r3R3(r +R)3

]︄
.

In order to get the full analytical form of the deflection angle, individual terms
obtained in the expansion have to be integrated. The result is

∫︂ ∞

R

Rdr

r
√
r2 −R2

= π

2 , (3.116)∫︂ ∞

R

M(R2 + rR + r2)dr
r2(r +R)

√
r2 −R2

= 2M
R
, (3.117)

∫︂ ∞

R

3M2(R2 + rR + r2)2dr

2r3R(r +R)2
√
r2 −R2

= M2

8R2 (15π − 16), (3.118)∫︂ ∞

R

2Jdr
R(r +R)

√
r2 −R2

= 2J
R2 , (3.119)

∫︂ ∞

R

2MJ(5R2 + 4rR + 2r2)dr
rR2(r +R)2

√
r2 −R2

= MJ

R3 (5π − 8), (3.120)
∫︂ ∞

R

J2(R2 + rR + r2)dr
Mr2R2(r +R)

√
r2 −R2

= 2J2

MR3 , (3.121)
∫︂ ∞

R

5M3(R2 + rR + r2)3dr

2r4R2(r +R)3
√
r2 −R2

= M3

R3

(︃61
3 − 15π

4

)︃
. (3.122)

In comparison with the Kerr metric, most of the terms present for the HT metric
are identical, except for the term proportional to a2

R2 (equivalently to J2

M2R2 in the
HT metric). Such a term is not present in the expansion of the HT metric, while
it drops out during the integration in the Kerr metric.

Finally, the corresponding part of the deflection angle in the HT metric in the
weak-field approximation in vacuum yields

αHT 0 =4M
R

+ M2

R2

(︃15π
4 − 4

)︃
∓ 4J
R2 ∓ MJ

R3 (10π − 16) + 4J2

MR3 (3.123)

+ M3

R3

(︃122
3 − 15π

2

)︃
.

The derived expression is the same as the deflection angle formula (3.107) ob-
tained for the Kerr metric after the coordinate transformation (3.105) when set-
ting J = −Ma.

Furthermore, it is desirable to add the effect of the quadrupole moment in
its lowest order. When terms proportional to both J

MR
and Q

R3 , i.e., ∝ JQ
MR4 are
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neglected, one gets additional factors in the given terms in the form

A(r) = A0 −KQ2
2, (3.124)

A(r)B(r) = AB0, (3.125)

A(r)C(r) + P 2(r) = ACP0 −K
2Mr2√︂
r(r − 2M)

Q1
2, (3.126)

1 −
ω2

p(r)
ω2

0
A(r) = 1 −

ω2
p(r)
ω2

0

(︂
A0 −KQ2

2

)︂
, (3.127)

P (r)
A(r) = PA0, (3.128)

h2(r) =
ACP0 −K 2Mr2√

r(r−2M)
Q1

2

(A0 −KQ2
2)

2

(︄
1 −

ω2
p(r)
ω2

0

(︂
A0 −KQ2

2

)︂)︄
. (3.129)

The deflection angle for the HT metric is then modified to

αHT = 2
∞∫︂

R

fHT (r)dr − π, (3.130)

where

fHT (r) =
⌜⃓⃓⃓
⎷ AB0

ACP0 −K 2Mr2√
r(r−2M)

Q1
2

(3.131)

×

⎛⎜⎜⎝
(︃
ACP0 −K 2Mr2√

r(r−2M)
Q1

2

)︃(︃
1 − ω2

p(r)
ω2

0
(A0 −KQ2

2)
)︃

(A0 −KQ2
2)

2 (PA0(R) − PA0(r) ± h(R))2 − 1

⎞⎟⎟⎠
−1/2

.

Notice that the functions Q1
2 and Q2

2 explicitly present in the expression for fHT (r)
are functions of r, whereas the function h(R) also includes the functions Q1

2 and
Q2

2, but as functions of R. These are also present in the lowest term including
the quadrupole moment in fHT (r), namely

fK(r) = K
M√︂

r(r − 2M)
Q1

2(r) +K
r2

r2 −R2 (3.132)

×

⎛⎝ M√︂
r(r − 2M)

Q1
2(r) − M√︂

R(R − 2M)
Q1

2(R) +Q2
2(R) −Q2

2(r)
⎞⎠

≈ 2
5K

[︄
M4(R4 − r2R2 − r4)

r4R4 + 4M3(r3 −R3)
rR3(r2 −R2)

]︄
.

Additionally, let me present here also a mixed term combining both the plasma
(∼ ωp) and quadrupole (∼ K) parts. It has the form

fpl(r) = r2

r2 −R2

[︄
ω2

p(r)
2ω2

0

(︂
1 −KQ2

2(r)
)︂

−
ω2

p(R)
2ω2

0

(︂
1 −KQ2

2(R)
)︂]︄

(3.133)

≈
r2(ω2

p(r) − ω2
p(R))

2ω2
0(r2 −R2) −

4KM3
(︂
R3ω2

p(r) − r3ω2
p(R)

)︂
5ω2

0rR
3(r2 −R2) = fpKerr(r) − fpHT (r).
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The introduced relations were derived by applying the simplifications which
hold for the following expressions

2M√︂
r(r − 2M)

Q1
2 −Q2

2 = 3(2M2 − r2)
2M2 ln

(︃
r

r − 2M

)︃
− 2M2 − 3rM − 3r2

rM
,

(3.134)
2M√︂

r(r − 2M)
Q1

2 = 3(M − r)
M

ln
(︃

r

r − 2M

)︃
+ 2M2 − 12rM + 6r2

r(r − 2M) , (3.135)

Q2
2 =3r(r − 2M)

2M2 ln
(︃

r

r − 2M

)︃
+ (r −M)(2M2 + 6rM − 3r2)

rM(r − 2M) .

(3.136)

In the weak-field approximation (M/r ≪ 1) these formulae take the form in the
leading order

2M√︂
r(r − 2M)

Q1
2 ≈ 4

5
M4

r4 , Q2
2 ≈ 8

5
M3

r3 . (3.137)

When the simplified deflection angle formula for the HT metric (3.123) obtained
in the weak-field approximation is considered, it can be extended by the additional
quadrupole and plasma terms as

αHT = 2
∞∫︂

R

fHT (r)dr − π (3.138)

= 2
∞∫︂

R

[︄
fHT 0(r) + R

r
√
r2 −R2

(fK(r) + fpl(r))
]︄
dr − π,

where the partial terms were already derived and take the form given by (3.115),
(3.132), and (3.133).

Integration of the additional terms in comparison to the vacuum and the
K = 0 case returns∫︂ ∞

R

R

r
√
r2 −R2

fK(r)dr = 2
5K

∫︂ ∞

R

[︄
M4(R4 − r2R2 − r4)

r5R3
√
r2 −R2

+ 4M3(r3 −R3)
r2R2(r2 −R2)3/2

]︄
dr

= 2
5K

(︄
−9πM4

16R4 + 8M3

R3

)︄
, (3.139)

∫︂ ∞

R

R

r
√
r2 −R2

fpKerr(r)dr = R

2ω2
0

∫︂ ∞

R

r(ω2
p(r) − ω2

p(R))dr
(r2 −R2)3/2 = 1

2αrefr(R),

∫︂ ∞

R

R

r
√
r2 −R2

fpHT (r)dr = 4KM3

5ω2
0

∫︂ ∞

R

(︂
R3ω2

p(r) − r3ω2
p(R)

)︂
dr

r2R2(r2 −R2)3/2 = 1
2αrefrHT (R).

(3.140)

In the case of a homogeneous plasma when ωp(r) = ωp(R), angle αrefr vanishes.
Combining all the above calculated terms gives the complete form of the

deflection angle in the HT metric in the weak-field approximation in the form

α = αHT 0 + 32
5
KM3

R3 − 9π
20
KM4

R4 + αrefr(R) − αrefrHT (R). (3.141)
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To provide a specific example of a plasma profile, let me define the plasma
frequency as ω2

p(r) = Cr−k, where C and k are constants. Then, the last two
terms of (3.141) can be written as

αrefr(R) = −RCk
ω2

0

∫︂ ∞

R

r−k−1dr

(r2 −R2)1/2 = Ck
ω2

0R
k

∫︂ 1

0

ukdu

(1 − u2)1/2 (3.142)

= C
√
π

ω2
0R

k

Γ
(︂

k
2 + 1

2

)︂
Γ
(︂

k
2

)︂ ,

αrefrHT (R) = −8KM3RC(k + 3)
5ω2

0

∫︂ ∞

R

r−k−4dr

(r2 −R2)1/2 (3.143)

= 8KM3C(k + 3)
5ω2

0R
k+3

∫︂ 0

1

uk+3du

(1 − u2)1/2 = 8KM3C
√
π

5ω2
0R

k+3

Γ
(︂

k
2 + 2

)︂
Γ
(︂

k
2 + 3

2

)︂ ,
where

Γ(z) =
∫︂ ∞

0
tz−1e−tdt. (3.144)

Formula (3.142) was already derived in Bisnovatyi-Kogan and Tsupko [2010].
However, in the present approximation the deflection angle depends also linearly
on the quadrupole moment Q, as seen in (3.143) when recalling that K ∼ Q.

3.2.3 Visual comparison
Having obtained analytical forms of the deflection angles in the Kerr and HT
metrics in the weak-field approximation, it would be further instructive to demon-
strate visually the difference between the exact and approximate solutions. Such
comparison is performed in vacuum, i.e., no terms ∝ ωp are considered in the
present section. This assumption is still valid because, as it is shown further,
cold plasma presence basically causes only a decrease of the deflection angles
when compared with vacuum, and this case hence provides an upper estimate of
possible light deflection. This approach thus serves as a good estimate when using
an exact formula is necessary. Note that in the case of very large radial distances
(when r ≫ M), terms proportional to all parameters but M become negligible
and the solution takes the form of deflection in the Schwarzschild metric for an
arbitrary spacetime.

Fig. 3.3 shows the dependence of the exact and approximate deflection angles
in vacuum as functions of the closest radial distance R around an object described
by the Kerr metric (panel a) and by the HT metric (panel b). The exact solutions
for the deflection angles, obtained by using equation (2.70) with corresponding
definitions of A, B, C, and P , are drawn by the solid curves, while the approxi-
mate relation calculated from either (3.107) or (3.141) where ωp = 0 is shown by
the dashed curves. It is nicely seen that at sufficiently large radial distances in
both cases, an approximate formula for the deflection angle can replace the ex-
act solution with satisfactory accuracy. Moreover, it is clearly seen that whereas
the exact solution at small radial distances asymptotically reaches the photon
sphere radii, the approximate solution deviates and yields finite deflections even
at smaller R. Because of the presence of the angular momentum, the Kerr and
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Figure 3.3: Exact and approximate deflection angles for the (a) Kerr metric with
J = 0.8 and (b) HT metric with J = 0.8, Q = 2.5 as a function of minimal radial
distance R. The deflection angles derived by using the exact general formula
(2.70) are drawn by solid curves, and the approximate solutions calculated in the
weak-field approximation are shown by the dashed curves.

HT metrics exhibit two branches of solutions, corresponding to the co-rotating
(+)/counter-rotating (-) rays, respectively.

In Fig. 3.3a it can be seen that in the Kerr metric, sufficient correspondence
(the difference is less than 10%) between the exact and approximate solutions
occurs already around 4M in the branch with a negative sign of a, which is sig-
nificantly closer to the photon sphere radius than the positive branch. On the
contrary, the solution with a negative sign gives worse accuracy of the approxi-
mate solution in the HT metric (see Fig. 3.3b). This is caused by the different sign
in the definition of J in the Kerr and HT metrics (for the correspondence between
the Kerr and HT metric one has to set J = −Ma, cf. Hartle and Thorne [1968]).
Hence, the branches are transposed. The angular momentum values were set to
be equal to J = 0.8 in both cases to directly expose the effect of the quadrupole
moment. The quadrupole moment in Fig. 3.3b was chosen to be Q = 2.5. In
comparison with the Kerr metric, due to the presence of the quadrupole moment
the position of the photon sphere radius is further in radial distances for both
branches in the HT metric case. In the Kerr metric the correspondence between
the approximate and exact solutions occurs already around 4M in the negative
branch and around 7M in the positive branch. On the contrary, in the HT metric
the coincidence of both solutions in the negative branch is at around 8M and in
the positive branch it is at around 6M .

3.3 Plasma Effect on Light Trajectories
Having studied the relevance of the weak-field approximation, it is desirable to
include plasma in the model. In the remaining parts, the exact formula (2.70) is
applied because the plasma effect can thus be solved completely, rather than con-
centrating only on its highest contribution part. It is expected that the presence
of plasma will change the light deflection in the vicinity of a gravitating object and
that this modification will depend on the plasma properties. According to Per-
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lick and Tsupko [2024], the plasma frequency was defined as ωp(r)2 = 10ω2
0

(︂
M
r

)︂k
,

where k = 3/2, 5/2, 7/2, respectively. This is a useful definition of a plasma
because it has a natural profile at large radial distances, it is expressed as a
function of the ratio M/r which was previously discussed in connection with the
weak-field approximation, and it is a function of the constant of motion ω0 which
can be further set equal to 1. The deflection angles around an object described
by the Schwarzschild and Kerr metrics surrounded by a plasma with the above
defined profile were previously studied in Perlick and Tsupko [2024]. Note that
the parameter M occurring in the definition of ωp(r) is characterized as the mass
of a given gravitating object, and it has hence the same interpretation as in the
expansion terms in the weak-field approximation.

(a) (b)

2 3 4 5 6 7 8 9 10
0

2

3

Kerr Metric

R/M

vacuum

pl
2  r-3/2

pl
2  r-5/2

pl
2  r-7/2

3 4 5 6 7 8 9

R/M

0

2

HT Metric

vacuum

pl
2  r-3/2

pl
2  r-5/2

pl
2  r-7/2

Figure 3.4: Comparison of the deflection angles in vacuum (solid red curves) and
various plasma cases (dashed, dot-dashed, and dotted curves) for the (a) Kerr
metric with J = 0.8 and (b) HT metric with J = 0.8, Q = 2.5. In panel (a),
the branch closer to R/M = 0 corresponds to the rays with negative angular
momentum, the other to rays with positive angular momentum. In panel (b),
the rays with negative angular momentum occur in the branch further from the
origin.

Exact solutions for the deflection angle α as a function of R in vacuum and
in a plasma with different profiles defined by the specific choice of k are shown in
Fig. 3.4. Results obtained for the Kerr metric are shown in panel (a), while for
the HT metric they are plotted in panel (b). Red solid curves show the deflection
angles obtained in vacuum, and the dashed curves demonstrate the deflection-
angle behaviour in plasma. The obtained results clearly demonstrate a statement
already mentioned that the light rays in the presence of plasma are less bent
than in vacuum. Although this finding might seem to be counterintuitive, it is
absolutely logical when one recalls that the refractive index in a plasma is < 1,
while in common non-vacuum media with n > 1 the rays would be bent more.
Moreover, from the definition of the plasma frequency (or more precisely the
plasma density2) one can also see that the plasma effects become substantially

2When taking ω2
p(r) = CeN(r), where Ce is a constant factor and N(r) usually stands for

electron density, it can be easily seen that the radial dependence of plasma frequency is actually
given by the definition of plasma density.
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weak with a larger radial distance and the plasma effect is hence more attenuated
than for a gradual decrease in vacuum. The chosen profile of plasma frequency
functions thus results in the fact that the plasma frequency significantly decreases
at larger r and the light deflection in plasma is then close to deflection angles in
vacuum. The deflection angles at small radial distances are generally limited by
the photon sphere radius.

Notice the peculiar profile of the deflection angle in plasma with k = 3/2
(brown dashed curves), where is the plasma effect substantially stronger than in
the other cases. The deflection angle is in this case steeply decreased already at
low R, much closer to the photon sphere radius, and it remains significantly lower
than in the vacuum or other plasma cases even at large radial distances. This rep-
resents a nice manifestation that plasma presence can indeed substantially change
the deflection angles not only sufficiently close to the gravitating object, but this
effect can also remain at larger radial distances. However, for such a significant
behaviour the definition of plasma frequency must be chosen appropriately. Still,
one can detect a system where the rays are potentially less influenced by gravity
(their closest radial distance is large), but they are continually influenced by the
plasma.

Furthermore, the deflection angles for the Kerr metric with negative angular
momentum in plasma where k = 3/2 are slightly negative at small R. This feature
can be observed at radial distances between around 3.5M and 6M . Such values
can be understood as a situation when light ray in fact bends to the opposite side
and plasma presence thus causes a completely different trajectory than in vacuum.
Although for the chosen toy plasma profiles the revealed negative deflection angles
are small, in some other types of plasmas this effect could be more apparent.

The substantial difference between the HT metric and the Kerr metric is the
choice of the quadrupole moment. It would be expected that the quadrupole
moment present in the HT metric would lead to a quantitative change of the
deflection angles (they are in general larger than in the Kerr metric), but no
significant qualitative change is observed. The most significant effect of plasma
on the deflection angles occurs in the range from the photon sphere radius to few
closest radial distances, with specific values varying in both solution branches.
The solution with the negative angular momentum in the Kerr metric (corre-
sponding to positive angular momentum in the HT metric) has the most obvious
plasma influence at radial distances up to around 6M , while in the branch with
the positive angular momentum in the Kerr metric (negative branch in the HT
metric) this effect extends slightly further, approximately between 7M and 8M .

3.4 Ray Tracing in Axisymmetric Spacetimes
To make the derived results even more instructive, they are presented in the
following paragraph as individual rays propagating around given gravitating ob-
jects. The plasma definition introduced in the previous section is used, with the
same choices of the coefficient k, except k = 3/2 omitted because the obtained
ray trajectories are rather disorganized with all these choices.

For deriving the individual ray trajectories the equations of motion (2.57),
(2.58) and the corresponding relations for pφ and pr were applied. The plots
were computed for all rays starting at the same initial point, but having different

54



impact parameters (defined by Eq. (2.69)), 2, 5, 8, 10 specifically. Note that there
is a connection between the impact parameter b and the closest radial distance
R applied in the previous sections which was studied in detail in Appendix D of
Bezděková and Bičák [2023].
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Figure 3.5: Comparison of ray trajectories characterized by impact parameters
with values 2, 5, 8, 10 in vacuum (solid lines) and plasma cases (dash-dotted and
dotted lines) when k = 5/2 (yellow) and k = 7/2 (orange). The dashed circle
shows the circular photon orbit. The compact gravitating object corresponds to
(a) the Kerr metric with J = 0.8 and (b) the HT metric with J = 0.8, Q = 2.5.

The ray behaviour around an object described by the Kerr and HT metrics
is shown in panels (a) and (b) of Fig. 3.5, respectively. Trajectories of rays
propagating in vacuum are plotted by solid purple curves and those propagating
in a plasma are shown by the dash-dotted and dotted curves. Rays in a plasma
with k = 5/2 are marked yellow, while rays in a plasma with k = 7/2 are marked
orange. The obtained ray trajectories clearly show that the rays in a plasma are
generally less bent than in vacuum as n < 1. Additionally, the higher value of k
causes the rays to be less bent.

The position of the circular photon orbits is drawn by red dashed circles.
However, objects described by the Kerr and HT metrics have actually two circular
photon orbits, one for co-rotating, the other for counter-rotating rays. Not to
make the figure too crowded, only orbits with a positive angular momentum as
defined in the HT metric are considered in the presented plots. Radii of black
circles representing the size of the chosen gravitating object are defined as their
event horizons.

The obtained ray profiles clearly demonstrate that the rays of one impact
parameter can be captured by the black hole or not, but this strongly depends
on the chosen plasma profile. This is particularly obvious for the HT metric in
Fig. 3.5b. However, when the impact parameters are too small, even an arbitrary
plasma profile cannot secure the rays from being captured by the black hole.

The plots also show how significantly different the ray trajectories generally
can be and it is also clear that the plasma enters the overall results as a significant
participant. Additionally, it is evident that the effect of the plasma decreases
for rays with larger impact parameters, which is a consequence of the gradual
decrease of the plasma density so that the light trajectories are then less affected
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by its presence. Moreover, the gravitation of the central object is also weaker at
distances corresponding to larger impact parameters.

Fig. 3.5 also illustrates the effect of the quadrupole moment. Comparing the
objects characterized by the Kerr and HT metrics with the same angular momen-
tum, it is apparent that the one defined by the HT metric has a significantly larger
event horizon than in the case of the Kerr metric and it thus influences the ray
trajectories with larger impact parameters. It is obvious that a larger quadrupole
moment causes larger effects at sufficiently further radial distances and it hence
leads to strong changes of light trajectories with high impact parameters.
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4. Light Deflection in a Moving
Medium
Calculations performed in this chapter are carried out in settings different from
those assumed in the previous sections. While an axially symmetric stationary
spacetime was assumed for deriving the results in Chapter 2, one step backwards
is now taken and a black hole described by a spherically symmetric metric is con-
sidered. The reason for this lies in various definitions of the medium surrounding
the object which is here more complicated. An overwhelming majority of previous
studies employing Synge’s approach focuses on systems where just non-moving
cold plasma occurs. Even though this approximation has many useful properties,
as discussed in detail in the following section, it is not sufficient and it is hence
desirable to study other media. Possible solutions how this can be performed
in the suggested formalism are presented below. The results described in this
chapter were originally presented in Bezděková et al. [2024].

4.1 Uniqueness of Cold Plasma Approximation
and Going Beyond

As indicated in previous chapters, the cold plasma approximation is very fre-
quently used in systems describing light propagation in the vicinity of a compact
gravitating object surrounded by a refractive and dispersive medium. Indeed, the
Hamiltonian for light in a cold plasma in relativistic applications is very specific
with several important properties.

To derive the Hamiltonian (1.48), one has to define the medium equation for
the cold plasma first. This approximation is applied in systems in which it is
assumed that the thermal velocity of the medium is much lower than the wave
phase speed, i.e.,

ω

k
≫ vth. (4.1)

In the most extreme case the thermal velocity is set to zero. The refractive index
in this case can be expressed from the equation

n2 = 1 −
ω2

p(xα)
ω2(xα) . (4.2)

The plasma frequency ωp(xα) is defined by expression (1.49), while the wave
frequency ω(xα) can be derived from relation (1.45).

Applying the definition of the refractive index (4.2) in the medium equation
(1.46) yields

ω2
p(xα) = −pβpβ, (4.3)

which represents the relativistic form of the dispersion relation in a cold plasma
between the plasma frequency ωp and the frequency 4-vector pβ. Moreover, plug-
ging (4.2) in the general formula (1.44) leads to the Hamiltonian in the form
given by (1.48). For convenience, it is copied here again in view of the following
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discussion, i.e.,
H(xα, pα) = 1

2
[︂
gβδpβpδ + ω2

p(xα)
]︂
.

The Hamiltonian given above is independent of the medium velocity V α due to
the specific form of refractive index given by (4.2).

However, it is still necessary to characterize the photon frequency ω which
is a function of the medium velocity. The reason for this originates from the
fact that the refractive index n has to be real in regions where the rays can
occur, at least in principle. This is satisfied when ω ≥ ωp. This condition would
have to be studied independently for any rays described solely by Hamilton’s
equations. Fortunately, the theory involves one supplemental restriction set on
the Hamiltonian itself which guarantees its conservation, i.e., H(xα, pα) = 0. This
directly leads to the conclusion that for the light rays one gets ω =

√︂
k2 + ω2

p,
and the condition ω ≥ ωp thus holds automatically.

The fact that the Hamiltonian above is independent of the plasma velocity
has several consequences for light propagation. Due to it, light rays moving in
a cold plasma are not directly affected by the motion of the medium and their
trajectories thus remain the same for both static and moving cold plasma, while
their constants of motion do not change. This means that two rays with identical
photon frequency at infinity and identical impact parameters follow the same
paths even though one travels in a static cold plasma and the other in a moving
cold plasma.

Note that the photon Hamiltonian above is formally identical to the Hamilto-
nian of a particle with mass m moving in the gravitational field in vacuum, which
has the form [Misner et al., 1973]

H(xα, pα) = 1
2
[︂
gβδpβpδ +m2

]︂
. (4.4)

If the cold plasma is homogeneous and hence ωp(xα) = const., this correspon-
dence can be used for an alternative interpretation of the discussed Hamiltonian:
it describes a particle (photon) with an effective mass ωp moving in the gravi-
tational field in vacuum. However, this equivalence is still useful even in a non-
homogenous plasma, i.e., when ωp(xα) ̸= const. Although the intuition is not
so straightforward in this case, the Hamiltonian (1.48) can be viewed as one de-
scribing the motion of a massive particle in vacuum with a dissipating/fluctuating
effective mass (depending on the exact definition of ωp). This also demonstrates
the known fact that photons in a plasma generally do not follow geodesics, which
is a consequence of the refractive nature of the plasma. Nevertheless, note that
the physical momentum and mass of a particular photon differ from p and ωp

discussed here, as they formally read ℏp and ℏωp, respectively. For a detailed
discussion about this feature of the cold plasma approximation, see Kulsrud and
Loeb [1992].

Besides its useful algebraic properties which significantly simplify the calcula-
tions of specific problems, the cold plasma approximation is also relevant in many
astrophysical applications, at least up to the first order in relevant parameters.
Cold plasma is believed to occur in the interstellar medium or in the ionospheres
of planets (in the vicinity of the Earth it has been studied for decades). How-
ever, it is evident that it is not always reasonable to assume just the cold plasma

58



approximation. Hot plasma forms stars, black hole accretion discs, or astrophys-
ical jets. When one wants to proceed one step further and see how different
velocity definitions impact the light trajectories, it is necessary to abandon the
cold plasma approximation. Moreover, a non-static medium has to be assumed.
In principle, there are several physically relevant ways how to define the medium
velocity satisfying the given conditions. These are discussed in following sections.

4.2 Radially Falling Medium
Contrary to the previous chapters, propagation of light rays in this section is
assumed around a gravitating object described by a general spherically symmetric
metric and the medium surrounding the object is moving in the radial direction.
This assumption can be applied to describe radially falling matter onto a black
hole. A general form of the deflection angle in this case is discussed first, where it
is also indicated which difficulties occur in this general approach. Application of
the general formalism to three particular forms of the refractive index is performed
afterwards.

4.2.1 Deflection angle in general
The metric describing a spherically symmetric and static object can be generally
written as

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dϑ2 + sin2 ϑ dφ2), (4.5)

where A(r), B(r), and C(r) are positive functions. Moreover, note that because
the spacetime is regarded to be spherically symmetric, they are solely functions
of radial coordinate. This assumption is also true for the considered dispersive
medium, as its refractive index takes on the general form n(r, ω(r)), i.e., it is
spherically symmetric as well.

As it was already discussed above, the medium surrounding the compact ob-
ject is not static (this was assumed in Section 2.4 where V i = 0); instead, it is
falling towards a black hole. Hence, the individual 4-velocity components of the
medium are defined as

V α = (V 0, V r, 0, 0). (4.6)
Moreover, it is required that the V r component is only a function of radial coor-
dinate, i.e.,

V r = f(r). (4.7)
Because the medium is expected to fall radially on the compact object, it is
assumed f(r) < 0.

It is now easy to find V 0 from the normalization condition

V αVα = −1, (4.8)

which in this case leads to the expression

V 0(r) =

⌜⃓⃓⎷1 +B(r)f 2(r)
A(r) . (4.9)
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To make the desired formulae more compact, it will be further written just V 0(r),
keeping in mind its actual form given by (4.9) which can be substituted anywhere
as needed.

The photon frequency generally given by (1.45) now has to be derived from
the relation

ω(r) = −ptV
0(r) − prV

r = −ptV
0(r) − prf(r). (4.10)

Although the photon frequency is obtained from a more complicated relation than
for the static medium, it still is only a function of r, independent of time, and
pt is hence again a constant of motion. This conclusion can be also derived from
the equation of motion for ṗt.

The introduced spacetime is assumed to be asymptotically flat, i.e., it satisfies
A(r) → 1, B(r) → 1 at r = ∞. Moreover, f(r) → 0 at r = ∞ and also, to define
the deflection angle properly, C(r)/r2 → 1 for r = ∞. Due to that, the expression
(4.10) at infinity gives the relation between ω0 (the photon frequency at infinity)
and the constant of motion pt in the same form as in the previous chapters, i.e.,

pt = −ω0. (4.11)

For further applications, it is more convenient to rewrite equation (4.10) as a
function of ω0 in the form

ω(r) = ω0V
0(r) − prf(r). (4.12)

In comparison to the axially symmetric spacetime, the equatorial plane, where
ϑ = π/2 and pϑ = 0, can be considered without a loss of generality. Applying
the metric in the form (4.5) and the photon frequency given by (4.10) in the
Hamiltonian (1.44) leads to

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) + w(r, ω(r))
]︄
, (4.13)

where
w(r, ω(r)) = −(n2 − 1)ω2(r), n = n(r, ω(r)). (4.14)

The function w(r, ω(r)) will be exploited further when it will be necessary to
capture the main properties of light propagation in a medium in the gravitational
field for which it is more useful than the refractive index n(r, ω(r)) alone. Note
that in a cold plasma w = ω2

p(r).
The equations of motion for pt and pφ are

ṗt = −∂H
∂t

= 0, (4.15)

ṗφ = −∂H
∂φ

= 0, (4.16)

and it can be explicitly seen that both pt and pφ are indeed constants of motion.
The equation of motion for coordinate r yields

ṙ = ∂H
∂pr

= pr

B(r) + 1
2
∂w

∂ω

∂ω(r)
∂pr

, (4.17)
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and it can be further rewritten with the usage of relation (4.10). Moreover, intro-
ducing the variable wω(r;ω0) ≡ ∂w/∂ω (defined solely for a concise formulation
of the expressions) leads to the form

ṙ = pr

B(r) − 1
2wω(r;ω0)f(r). (4.18)

The equation of motion for φ is

φ̇ = ∂H
∂pφ

= pφ

C(r) . (4.19)

To obtain a fully analytic form of the deflection angle, it is desirable to find an
expression for pr which could be applied in further calculations. This is typically
performed by applying the condition H(xα, pα) = 0, where the form of H(xα, pα)
would be taken in this general case from (4.13). The obtained relation for pr

would be then plugged into (4.18) and this would be further used along with
(4.19) to derive the corresponding equation for dφ/dr. However, generally it is
not guaranteed that this procedure allows one to find an analytic formula for pr.
Nevertheless, searching for a form of pr can be always performed numerically at
least.

In the further step, let me assume that an analytic expression for pr(r; pφ, ω0)
exists. Then, applying (4.18) and (4.19) leads to a general relation

dφ

dr
= pφ

C(r)

(︄
pr(r; pφ, ω0)

B(r) − 1
2wω(r;ω0)f(r)

)︄−1

. (4.20)

The deflection angle can be derived by integrating the obtained relation from the
closest radial distance R reached by the ray to infinity. It is now desirable to
obtain the final formula as a function of R and ω0 only, as it is assumed that
these two quantities can be in principle evaluated (ω0 is measurable), while the
value of pφ is more problematic. To exclude pφ from the formula, one has to find
pφ(R;ω0) which can be derived from the expression

pr(R; pφ, ω0)
B(R) − 1

2wω(R;ω0)f(R) = 0. (4.21)

This equation was obtained from the constraint at r = R where dr/dφ = 0. Note
that this condition actually defines the position of the closest radial distance R.

4.2.2 Deflection angle for three particular examples
As it was outlined in the previous section, an analytic formula for the deflection
angle (dφ/dr) can be written if and only if the exact analytic expression for pr

can be derived, which is typically found from the condition H(xα, pα) = 0. This
evidently cannot be performed in a general case without knowing the specific
form of the function w(r, ω(r)), which is generically defined by (4.14) and it
might depend on the photon frequency ω(r) in a complicated way. Note that the
dependence of w(r, ω(r)) on ω(r) is crucial, as the photon frequency is a function
of pr, which can be seen in (4.12).
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When the form of the refractive index and its dependence on the photon fre-
quency are known, it is possible to find an analytic solution for the deflection
angle in the integral form, even if the refractive index is not specified for a par-
ticular physical situation. For instance, when one assumes a rather general form
of the refractive index, such as

n2(r, ω(r, pr)) = a0(r) + a1(r)
ω(r, pr)

+ a2(r)
ω2(r, pr)

, (4.22)

where coefficients a0(r), a1(r) and a2(r) are some functions of r, the deflection
angle formula can be derived. The functions a0(r), a1(r), and a2(r) can attain
any values, positive, zero, or negative, requiring only that the overall expression
for n2 is non-negative and the corresponding group velocity in such a medium is
less than c.

Taking the refractive index in the form (4.22) and the Hamiltonian (4.13)
gives

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) − a0(r)ω2(r, pr) − a1(r)ω(r, pr) (4.23)

−a2(r) + ω2(r, pr)
]︂
,

where the expression for ω(r, pr) is known from (4.12).
After applying the definition of ω(r, pr), the Hamiltonian (4.23) becomes a

quadratic polynomial of pr, which is quite convenient for finding a solution for
pr. This leads to a compact analytic form of the deflection angle. In order to find
the solution, it is suitable to rewrite the Hamiltonian (4.23) as

H(xα, pα) = 1
2
[︂
Ar(r)p2

r + 2Br(r)pr + Cr(r, pφ)
]︂
. (4.24)

The functions Ar(r), Br(r), Cr(r, pφ) depend on r, possibly on pφ, and they should
not be replaced by the metric coefficients introduced in (4.5). Furthermore, they
can also contain ω0 as a parameter. When the velocity of the medium is given by
(4.6), without loss of generality the function Cr(r, pφ) can be defined as follows

Cr(r, pφ) =
p2

φ

C(r) − ω2
0

A(r) + Cr1(r). (4.25)

The functions introduced in the Hamiltonian (4.24) can be expressed as functions
of the metric coefficients and variables in the refractive index (4.22), namely

Ar(r) = 1
B(r) + (1 − a0(r))f 2(r), (4.26)

Br(r) =
[︃
(a0(r) − 1)ω0V

0(r) + 1
2a1(r)

]︃
f(r), (4.27)

Cr(r, pφ) =
p2

φ

C(r) − ω2
0

A(r) − a2(r) + ω0V
0(r)

[︂
(1 − a0(r))ω0V

0(r) − a1(r)
]︂
,

(4.28)
Cr1(r) = −a2(r) + ω0V

0(r)
[︂
(1 − a0(r))ω0V

0(r) − a1(r)
]︂
. (4.29)
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To see some remarkable features of the Hamiltonian in the form (4.24), the
deflection angle will be now calculated from it. First, one has to write down the
equations of motion. They now take on a quite simple form,

ṙ = Ar(r)pr + Br(r), (4.30)

and
φ̇ = pφ

C(r) . (4.31)

Then, pr can be easily found from the condition H(xα, pα) = 0 in a general
form as

pr =
−Br(r) ±

√︂
B2

r(r) − Ar(r)Cr(r, pφ)
Ar(r)

, (4.32)

or
Ar(r)pr + Br(r) = ±

√︂
B2

r(r) − Ar(r)Cr(r, pφ). (4.33)
Such an expression for pr turns out to be very useful because after using it in the
equation for ṙ (4.30), one simply gets

ṙ = ±
√︂

B2
r(r) − Ar(r)Cr(r, pφ). (4.34)

This is quite a noteworthy observation – if the Hamiltonian can be written as
(4.24), the condition H(xα, pα) = 0 then straightforwardly leads to the algebraic
equation for ṙ in form (4.34). This simplifies the calculations significantly and
the expression for deflection angle is just

dφ

dr
= ± pφ

C(r)
[︂
B2

r(r) − Ar(r)Cr(r, pφ)
]︂−1/2

. (4.35)

In order to make the obtained formula more compact and similar to the
deflection angle relations presented in the previous studies [e.g., Tsupko, 2021,
Bezděková and Bičák, 2023], it is further rewritten as

dφ

dr
= ± 1√︂

Ar(r)C(r)

(︄
ω2

0
p2

φ

h2(r) − 1
)︄−1/2

, (4.36)

where the function

h2(r) = C(r)
A(r)

[︄
1 + A(r)

ω2
0

(︄
B2

r(r)
Ar(r)

− Cr1(r)
)︄]︄

(4.37)

is a generalization of the function (2.63) originally introduced for the axially
symmetric metric, but when setting P (r) = 0 it can be applied to the spherically
symmetric case. Considering that dr/dφ = 0 at r = R (at the closest radial
distance), it can be stated that

p2
φ

ω2
0

= h2(R), (4.38)

and thus
dφ

dr
= ± 1√︂

Ar(r)C(r)

(︄
h2(r)
h2(R) − 1

)︄−1/2

. (4.39)
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Note that the condition dr/dφ = 0 at r = R can be achieved also when either
Ar(R) = 0 or C(R) = 0, but these cases are not relevant in the present discussion.

Finally, one can define the deflection angle α for light rays propagating from
infinity to the black hole, reaching their closest radial distance, R, and heading
back to infinity, in the form

α = 2
∞∫︂

R

1√︂
Ar(r)C(r)

(︄
h2(r)
h2(R) − 1

)︄−1/2

dr − π . (4.40)

As it was carefully analyzed above, the expression is independent of the constant
pφ and the formula (4.40) thus depends solely on the closest approach R and
the photon frequency at infinity ω0. Note that an analogous expression for the
deflection angle in vacuum would depend only on R.

Let me emphasize that the relation (4.40), eventually (4.39), was obtained
considering a quite general refractive index (4.22) and the Hamiltonian in the
specific form (4.24), where functions Ar(r), Br(r), and Cr(r, pφ) are arbitrary.
With a such-defined Hamiltonian it is possible to identify the dependence on pr

easily. When the functions Ar(r), Br(r), and Cr(r, pφ) are defined for a chosen
refractive index function, the deflection angle formula can be found by substitut-
ing the corresponding values in (4.40). The specific form of the deflection angle
hence depends on the chosen plasma profile.

In principle, there are at least three examples with different definitions of the
refractive index which can be solved analytically. All of them are described by
the Hamiltonian (4.24) with prescribed forms of the functions Ar(r), Br(r), and
Cr(r, pφ). Below, these are identified for the discussed examples and the final
expressions for the corresponding functions h2(r) are presented as well.

Example 1. – cold plasma
This well-known plasma definition is characterized by a refractive index gen-

erally given by (4.2). However, in this particular case let me assume a simpler
definition, namely

n2 = 1 −
ω2

p(r)
ω2(r) . (4.41)

Then, the function w(r, ω(r)) introduced by (4.14) is independent of ω(r), and
it reduces to

w(r, ω(r)) = ω2
p(r). (4.42)

Furthermore, both expressions (1.48) and (4.13) can be applied in this case to
derive the Hamiltonian in the form

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) + ω2
p(r)

]︄
. (4.43)

Knowing all the relations defined above, it is easy to find the functions Ar(r),
Br(r), and Cr1(r). These are now

Ar(r) = 1
B(r) , (4.44)

Br(r) = 0, (4.45)
Cr1(r) = ω2

p(r). (4.46)

64



The deflection angle formula (4.40) is simplified to

α = 2
∞∫︂

R

⌜⃓⃓⎷B(r)
C(r)

(︄
h2(r)
h2(R) − 1

)︄−1/2

dr − π, (4.47)

and the function h(r) here is given by

h2(r) = C(r)
A(r)

(︄
1 − A(r)

ω2
p(r)
ω2

0

)︄
. (4.48)

This is a more general approach how to calculate already known results, but from
a broader perspective. Note that expressions (4.47) and (4.48) were previously
obtained in Perlick et al. [2015]; see their Eqs.(20) and (17), respectively.

Example 2. – non-dispersive medium
In this medium the refractive index is solely a function of r, i.e., it is inde-

pendent of the photon frequency ω(r) and hence

n = n(r). (4.49)

The Hamiltonian in the equatorial plane for such a medium formally still takes
the form of (4.13), namely

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) + w(r, ω(r))
]︄
, (4.50)

but n present in w(r, ω(r)) is now only a function of r and the dependence on
ω(r) is thus explicitly stated there.

From the known Hamiltonian the functions Ar(r), Br(r), and Cr1(r) can be
defined as

Ar(r) = 1
B(r) − (n2(r) − 1)f 2(r), (4.51)

Br(r) = (n2(r) − 1)ω0V
0(r)f(r), (4.52)

Cr1(r) = −(n2(r) − 1)(ω0V
0(r))2. (4.53)

This yields the function h(r) as

h2(r) = C(r)
A(r)

(︄
1 + A(r) (n2(r) − 1)(V 0(r))2

1 − (n2(r) − 1)B(r)f 2(r)

)︄
. (4.54)

After applying this form of h(r), it can be seen that the deflection angle is a func-
tion of f(r) which is directly related to the motion of the medium. Hence, there
is a clear difference in light deflection between a static and a moving medium.

Example 3. – general non-cold plasma medium
Let me assume a medium which is dispersive, but not a cold plasma, and

which can be generally described by the refractive index

n2 = 1 + a(r)
ω(r) . (4.55)
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The Hamiltonian in the equatorial plane for light rays propagating in such a
medium then is

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) − a(r)ω(r)
]︄
. (4.56)

Note the different power of ω(r) in the Hamiltonian in this example in comparison
with the non-dispersive case. The coefficients Ar(r), Br(r), and Cr1(r) identified
from the Hamiltonian (4.56) are

Ar(r) = 1
B(r) , (4.57)

Br(r) = 1
2a(r)f(r), (4.58)

Cr1(r) = −a(r)ω0V
0(r). (4.59)

Finally, the function h(r) has the form

h2(r) = C(r)
A(r)

[︄
1 + A(r)a

2(r)
ω2

0

(︄
1
4B(r)f 2(r) + ω0V

0(r)
a(r)

)︄]︄
. (4.60)

4.3 Rotating Medium
One more example of a moving medium is discussed below, namely a medium
rotating in the equatorial plane of a spherically symmetric black hole, where it
creates a geometrically thin accretion disc. The light propagation is considered
to happen in this plane, but due to the symmetry of the system, the described
configuration can be assumed without any loss of generality as the same setting
including the medium would work in an arbitrary plane. The metric of the
gravitating object is still given by (4.5).

Note that some relations already defined in the previous section are stated
here again, since while they formally remain the same as for the radially falling
medium, their implicit dependence on the discussed variables might be different.

As it was already described, the medium is now assumed to be rotating, which
defines its 4-velocity components as

V α = (V 0, 0, 0, V φ). (4.61)

Again, V φ can be introduced as a known function of r, i.e.,

V φ = f(r). (4.62)

Moreover, the velocity of the medium is independent of t, and so the component
pt is a constant of motion.

It is easy to obtain the form of V 0 from the 4-velocity normalization, which
is very similar to the previous case (cf. (4.9)), leading to

V 0 =

⌜⃓⃓⎷1 + C(r)f 2(r)
A(r) . (4.63)
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As demonstrated in the previous section, it is more convenient to use only V 0(r)
in further calculations rather than the full expression, but it is suitable to have
(4.63) at hand to be substituted as necessary.

The general form of the photon frequency (1.45) in this medium reduces to

ω(r) = −ptV
0(r) − pφV

φ = −ptV
0(r) − pφf(r). (4.64)

The spacetime metric is still defined the same as in the previous section, and it is
still required that f(r) → 0 at r = ∞. For this reason, one can see that pt = −ω0.
Hence, ω(r) given by the expression (4.64) can be rewritten to

ω(r) = ω0V
0(r) − pφf(r). (4.65)

As stated above, it is assumed that both the motions of the photon and of
the medium occur in the equatorial plane. As a result, ϑ = π/2 and pϑ = 0, and
the Hamiltonian now is

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) + w(r, ω(r))
]︄
, (4.66)

which is formally identical with (4.13), except for the function

w(r, ω(r)) = −(n2 − 1)ω2(r), n = n(r, ω(r)) (4.67)

expressed with the usage of (4.65) rather than (4.12).
Because ω(r) is now defined in a different way than in the previous section, also

the Hamiltonian (4.66) and its dependence on pr and pφ vary in comparison with
the Hamiltonian (4.13) discussed in the case of a radially falling medium. This
difference will hence manifest itself also in a different approach to the calculation
of the deflection angle. There are two terms proportional to p2

r in the Hamiltonian
(4.13) (one stemming from gβδpβpδ, the other occurring in w(r, ω(r))) and only
one term proportional to p2

φ. While the constant pφ can be easily expressed
from the restriction H(xα, pα) = 0, the component pr cannot, and it is hence
necessary to search for possible simplifications how to solve this problem. In the
Hamiltonian (4.66) the situation is quite the opposite. There is only one term
including pr and the component pφ is present in one separate term and also inside
the function w(r, ω(r)). Thus, it is straightforward to find a relation for pr from
H(xα, pα) = 0 in this case, but it does not hold for pφ. For this reason, special
attention has to be paid to how to express the dependence on pφ.

The equations of motion for the Hamiltonian (4.66) are

ṙ = ∂H
∂pr

= pr

B(r) , (4.68)

φ̇ = ∂H
∂pφ

= pφ

C(r) + 1
2
∂w

∂ω

∂ω(r)
∂pφ

. (4.69)

The equations of motion for pt and pφ remain completely identical to those ob-
tained in the previous case in the form (4.15) and (4.16), respectively. Conse-
quently, both are the constants of motion. It is further useful to express the
derivative ∂ω(r)/∂pφ explicitly, which yields

φ̇ = pφ

C(r) − 1
2wω(r;ω0)f(r). (4.70)
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The differentiation term wω(r;ω0) formally corresponds to the one present in
(4.18), but ω(r) inside is now defined with (4.65).

Unlike for the radially falling medium, here one can easily derive an equation
for pr from the condition H(xα, pα) = 0. It takes the form

pr = ±
√︂
B(r)

⌜⃓⃓⎷ ω2
0

A(r) −
p2

φ

C(r) − w(r, ω(r)). (4.71)

When the desired expression for pr is applied in (4.68), the equation for the ray
trajectory can be written as

dφ

dr
= ±

⌜⃓⃓⎷B(r)
C(r)

⎧⎪⎨⎪⎩
C(r)
p2

φ

[︂
ω2

0
A(r) − w(r, ω(r))

]︂
− 1[︂

1 − C(r)
2pφ

wω(r;ω0)f(r)
]︂2

⎫⎪⎬⎪⎭
−1/2

. (4.72)

It is further useful to get rid of pφ in the trajectory equation and express the
deflection angle again solely as a function of R and ω0. This can be performed
when applying dr/dφ = 0 at the closest radial distance R and hence deriving
pφ(R;ω0). When looking carefully at the equation of motion (4.68), one finds out
that this can be found from the relation

pr(R; pφ, ω0) = 0. (4.73)

Furthermore, calculations along the similar lines as at the beginning of Section
4.2.2 can be performed, but here the governing momentum component is pφ rather
than pr. This means that the refractive index still takes the general form (4.22),
i.e.,

n2(r, ω(r, pϑ)) = a0(r) + a1(r)
ω(r, pϑ) + a2(r)

ω2(r, pϑ) , (4.74)

repeated to emphasize that in this formulation ω(r) is defined as (4.65) and it
hence differs from expression (4.22). The same holds also for the Hamiltonian
(4.66) which can now be expressed as

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) − a0(r)ω2(r, pφ) − a1(r)ω(r, pφ) (4.75)

−a2(r) + ω2(r, pφ)
]︂
.

Although the structure of the Hamiltonian corresponds to (4.23), it is in fact
a completely different equation because of the definition of ω(r), given here by
(4.65).

To make the different character of the Hamiltonian (4.75) more apparent, it
is now expressed as

H(xα, pα) = 1
2
[︂
Aφ(r)p2

φ + 2Bφ(r)pφ + Cφ(r, pr)
]︂
, (4.76)

where Aφ(r), Bφ(r), Cφ(r, pr) are additional functions of r and pr, which generally
differ from the functions Ar(r), Br(r), Cr(r, pφ) introduced in the Hamiltonian
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(4.24), but they also contain ω0 as a parameter. It is useful to set explicitly
the dependence on pr in the discussed relations, which for the assumed medium
velocity is present only as

Cφ(r, pr) = p2
r

B(r) + Cφ1(r). (4.77)

With the known Hamiltonian and the defined form of the refractive index
(4.74) it is then possible to find the functions Aφ(r), Bφ(r), Cφ(r, pr), obtaining

Aφ(r) = 1
C(r) + (1 − a0(r))f 2(r), (4.78)

Bφ(r) =
[︃
(a0(r) − 1)ω0V

0(r) + 1
2a1(r)

]︃
f(r), (4.79)

Cφ(r, pr) = p2
r

B(r) − ω2
0

A(r) − a2(r) + ω0V
0(r)

[︂
(1 − a0(r))ω0V

0(r) − a1(r)
]︂
.

(4.80)
After finding their forms for a given refractive index, it can be seen that the
function Bφ(r) is exactly the same as the function Br(r), while the functions
Aφ(r), Cφ(r, pr) differ from the functions Ar(r), Cr(r, pφ).

The equations of motion for the Hamiltonian in the form (4.76) are

ṙ = pr

B(r) , (4.81)

φ̇ = Aφ(r)pφ + Bφ(r). (4.82)

Then, the condition H(xα, pα) = 0 is easily applied to express pr as

pr = ±
√︃
B(r)

[︂
−Aφ(r)p2

φ − 2Bφ(r)pφ − Cφ1(r)
]︂
, (4.83)

which one may substitute in the relation for ṙ to get

ṙ = ±

⌜⃓⃓⎷−Aφ(r)p2
φ − 2Bφ(r)pφ − Cφ1(r)

B(r) . (4.84)

The derived formulae can now be used in the equation for the deflection angle,
the final form of which is

dφ

dr
= ±

√︂
B(r)Aφ(r)

{︄
B2

φ(r) − Aφ(r)Cφ1(r)
(Aφ(r)pφ + Bφ(r))2 − 1

}︄−1/2

. (4.85)

To make the deflection angle formula more compact, it is useful to define the
function h(r) similarly to (4.37) as it was introduced in the previous sections, but
in this case it is more general, namely

h2(r) = 1
A2

φ(r)
(︂
B2

φ(r) − Aφ(r)Cφ1(r)
)︂
. (4.86)

As usual, it is desirable to find an expression describing the dependence of pφ

on the closest radial distance R and on the photon frequency at infinity ω0. In
this case, it leads to a quadratic equation with solutions

pφ =
−Bφ(R) ±

√︂
B2

φ(R) − Aφ(R)Cφ1(R)
Aφ(R) = − Bφ(R)

Aφ(R) ± h(R). (4.87)
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This formulation is particularly convenient for the given definitions of the Hamil-
tonian and the refractive index and it can be applied in the deflection angle
formula. It can be finally expressed as

dφ

dr
= ±

√︂
B(r)Aφ(r)

⎡⎢⎣ h2(r)(︂
Bφ(r)
Aφ(r) − Bφ(R)

Aφ(R) ± h(R)
)︂2 − 1

⎤⎥⎦
−1/2

, (4.88)

and the total deflection angle formula hence reads

α = 2
∞∫︂

R

√︂
B(r)Aφ(r)

⎡⎢⎣ h2(r)(︂
Bφ(r)
Aφ(r) − Bφ(R)

Aφ(R) ± h(R)
)︂2 − 1

⎤⎥⎦
−1/2

dr − π. (4.89)

Notice a formal agreement between the obtained relation and the formula
(2.70) which indicates that there are two solutions depending on the relative
motion of light and medium. Thus, the light deflection will behave similarly in
the case when either a medium or a black hole rotates.

Note that in comparison with the radially falling medium, the function h(r)
was defined more generally, and the same holds for the coefficient Cφ1(r). This
is due to the fact that in this case one cannot obtain a direct relation between
pφ

ω0
, i.e., the impact parameter, and h(r). In fact, this was the main purpose for

defining h(r). It cannot be derived for the rotating medium, and it is hence more
instructive to derive a relation between h(r) and pφ alone, as performed in the
present section.

4.4 Perturbative Approach
When dealing with light propagation around a relativistic object in a medium,
a completely different procedure how to solve this problem can be applied. This
approach is taken in the present section, where the corresponding equations are
derived with the assumption that the effect of the medium can be described as
a small perturbation. There are different ways how to calculate them, and two
specific perturbation methods are discussed below. In the first part I define the
medium as a linear perturbation of vacuum, while in the second part perturbation
of a cold plasma is considered. This might be useful in order to compare different
aspects which occur in the presence of a medium and how they arise in different
perturbation schemes.

4.4.1 Perturbation of vacuum
In the case of a perturbative description, as performed by Läänemets et al. [2022],
one can assume that the presence of a medium is actually a small perturbation
with respect to the vacuum case (the medium is thin), i.e.,

n2(xα) = 1 + ϵn2
1(xα), (4.90)

and after substituting this relation in (1.44), the Hamiltonian takes the form

H(xα, pα) = 1
2
[︂
gβδpβpδ − ϵn2

1(xα)(pγV
γ)2
]︂

≡ H0 + ϵH1, (4.91)
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with the corresponding right-hand sides of the equations of motion taking the
form

∂H
∂pr

= pr

B(r) + ϵ∂prH1, (4.92)

∂H
∂pφ

= pφ

C(r) + ϵ∂pφH1. (4.93)

From the condition ṙ = 0 at r = R, it can be derived that

pr = − ϵB(R)∂prH1|r=R , (4.94)

i.e., at this point there is only a contribution of the first order, and from the
condition H(xα, pα) = 0 at r = R it further follows that

p2
φ = C(R)

(︄
ω2

0
A(R) − 2ϵH1|r=R

)︄
. (4.95)

The term ∝ p2
r was omitted because it is a higher-order term at this point.

Applying the condition H(xα, pα) = 0 at an arbitrary position while assuming
the previous relations one gets

pr = pr0 + ϵ
B(r)
pr0

(︄
C(R)
C(r) H1|r=R − H1

)︄
, (4.96)

where

pr0 = ±ω0

⌜⃓⃓⎷B(r)
A(r)

(︄
1 − C(R)A(r)

C(r)A(R)

)︄1/2

. (4.97)

The deflection angle formula can then be derived from the relation

dφ

dr
=

pφ

C(r) + ϵ∂pφH1
pr

B(r) + ϵ∂prH1
, (4.98)

which leads to the expression

dφ

dr
=
ω0B(r)

√︂
C(R)

pr0C(r)
√︂
A(R)

+ ϵ
B(r)
pr0

⎡⎣∂pφH1 −

√︂
C(R)A(R)
ω0C(r) H1|r=R (4.99)

−B(r)
pr0

ω0

√︂
C(R)

C(r)
√︂
A(R)

∂prH1 + B(r)
p2

r0

ω0

√︂
C(R)

C(r)
√︂
A(R)

(︄
H1 − C(R)

C(r) H1|r=R

)︄⎤⎦ .
The first term (zeroth-order term) in (4.99) corresponds to formula (24) in Tsupko
[2021] when setting n = 1. The obtained equation thus shows the effect of the
presence of the medium seen as a perturbation characterized by the order of the
parameter ϵ. Note that in this description an arbitrary medium is seen as a
perturbation.
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4.4.2 Perturbation of a cold plasma
However, for the purpose of the present study, it is more useful to explore the case
when a small perturbation from the cold plasma case rather than from vacuum
is assumed, and thus

n(xα) = n0(xα) + ϵn1(xα). (4.100)
The individual parts of n(xα) are defined in such a way that

w = −(n2
0 − 1)ω2(r) − 2ϵn0n1ω

2(r) = w0 + 2ϵw1, (4.101)

where
w0 = ω2

p(r) , w1 = −n0n1ω
2(r) . (4.102)

The introduced notation is further applied in the corresponding Hamiltonian,
yielding

H(xα, pα) = 1
2

[︄
p2

r

B(r) +
p2

φ

C(r) − ω2
0

A(r) + ω2
p(r)

]︄
+ ϵw1 ≡ H0 + ϵH1 . (4.103)

It is now nicely seen that the unperturbed part indeed describes the cold plasma
case.

Next, the equations of motion for the system have to be found. The momen-
tum derivatives of the Hamiltonian are obtained, i.e.,

∂H
∂pr

= pr

B(r) + ϵ∂prw1, (4.104)

∂H
∂pφ

= pφ

C(r) + ϵ∂pφw1. (4.105)

They are formally the same as when the perturbation of vacuum is assumed, but
the definition of w1 differs from H1 in the vacuum case. Again, the condition
ṙ = 0 at r = R can be used to find a possible expression for pr. It takes the form

pr = − ϵB(R)∂prw1|r=R , (4.106)

i.e., individual perturbation terms can be found order by order. Then, the equa-
tion H(xα, pα) = 0 at r = R in this case can be used to express the momentum

pφ =

⌜⃓⃓⎷C(R)
(︄

ω2
0

A(R) − ω2
p(R)

)︄
− ϵ

√︂
C(R) w1|r=R√︃

ω2
0

A(R) − ω2
p(R)

≡ pφ0 + ϵpφ1. (4.107)

Similarly to the previous calculations, only terms up to O(ϵ) were considered.
Moreover, an analogous approach can be used also when searching for the form
of ω0 which leads to

ω0 =

⌜⃓⃓⎷A(R)
(︄

p2
φ

C(R) + ω2
p(R)

)︄
+ ϵ

√︂
A(R) w1|r=R√︃

p2
φ

C(R) + ω2
p(R)

≡ ω00 + ϵω01. (4.108)

What remains to be found is the form of pr as a perturbative series. This
can be performed by using the equation H(xα, pα) = 0 at an arbitrary value of r,
yielding

pr = pr0 + ϵ
B(r)
pr0

(︄
ω00ω01

A(r) − w1

)︄
, (4.109)
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where

pr0 = ±

⌜⃓⃓⎷B(r)
(︄
ω2

00
A(r) −

p2
φ

C(r) − ω2
p(r)

)︄
. (4.110)

Note that here it is assumed that w1 is a function of ω00 and pr0 expressed by
(4.110).

However, as there are now two perturbed variables, ω0 and pφ, there are also
two possibilities how to express pr. The second option is

pr = pr0 − ϵ
B(r)
pr0

(︄
pφ0pφ1

C(r) + w1

)︄
, (4.111)

but now

pr0 = ±

⌜⃓⃓⎷B(r)
(︄
ω2

0
A(r) −

p2
φ0

C(r) − ω2
p(r)

)︄
. (4.112)

The variable w1 is now a function of pφ0 and pr0 given by (4.112).
After deriving all the parameters in the form of perturbations, it is now pos-

sible to express also the deflection angle in the form of a perturbed function.
Indeed, using the corresponding relations in

dφ

dr
=

pφ

C(r) + ϵ∂pφw1
pr

B(r) + ϵ∂prw1
(4.113)

leads to

dφ

dr
=
(︄
pφ0

C(r) + ϵ
pφ1

C(r) + ϵ∂pφw1

)︄(︄
pr0

B(r) − ϵ
1
pr0

(︄
pφ0pφ1

C(r) + w1

)︄
+ ϵ∂prw1

)︄−1

(4.114)

= B(r)
C(r)

pφ0

pr0
+ ϵ

B(r)
pr0

{︄
pφ1

C(r) + ∂pφw1 + B(r)
C(r)

pφ0

pr0

[︄
1
pr0

(︄
pφ0pφ1

C(r) + w1

)︄
− ∂prw1

]︄}︄

when the series of pφ is considered, while when applying the perturbation of ω0
one gets

dφ

dr
=
(︄
pφ

C(r) + ϵ∂pφw1

)︄(︄
pr0

B(r) − ϵ
1
pr0

(︄
ω00ω01

A(r) − w1

)︄
+ ϵ∂prw1

)︄−1

(4.115)

= B(r)
C(r)

pφ

pr0
+ ϵ

B(r)
pr0

{︄
∂pφw1 + B(r)

C(r)
pφ

pr0

[︄
1
pr0

(︄
ω00ω01

A(r) − w1

)︄
− ∂prw1

]︄}︄
.

There are thus two ways how to derive the deflection angle – either as a
function of (R,ω0) or as a function of (R, pφ). The particular choice depends on
the given variables and on the specific application of the formulae.
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5. Allowed Regions in the Kerr
Metric in a Cold Plasma
This chapter describes an innovative approach when the light rays propagating in
a medium around a compact object are characterized by their impact parameters,
rather than by their deflection properties. Due to that it is possible to find regions
around a compact object which the rays are forbidden to enter. The suggested
approach thus provides a global description of the photon motion and various
effects detectable by an observer at different positions can then be easily found.
Results presented in this and the following chapters are based on calculations
performed by Balek et al. [2023].

5.1 Allowed Regions in Terms of Impact Param-
eter

In order to derive the description in terms of impact parameters, let me now
write the Hamiltonian (1.44) in a slightly different notation to emphasize some
of its other properties. The dispersion relation in the rest frame of the medium
in which the light propagates is |p| = nω, and it can be further expressed in a
Lorentz invariant form as

p2 − (n2 − 1)ω2 = 0, ω = −p · V, (5.1)

where pα is the wave 4-vector and V α is the 4-velocity of the medium already
introduced in Chapter 1. Notice that this relation holds both in a flat space-
time and in a curved spacetime (with substitution ηµν → gµν) in the geometrical
optics approximation (for more details, see Chapter 1). In the cold plasma ap-
proximation the Hamiltonian (1.48) is applied and the dispersion relation hence
reads

p2 + ω2
p = 0. (5.2)

The Kerr metric is assumed in further calculations. Let me recall that its
form in the Boyer-Lindquist coordinates can be found from (3.1), where M(r) =
m = const. is chosen. A plasma medium of the same symmetries as those of the
metric is considered. The rays are assumed to move in the equatorial plane where
ϑ = π/2. In a such-defined system the Kerr metric has a block-diagonal form

gµν =
(︄
gAB 0
0 grr

)︄
, (5.3)

where A,B = t, φ, and then p2 = gABpApB + grrṙ
2. Note that the equation of

motion in the form ṙ = pr was used in the expression for p2. Moreover, the
dispersion relation (5.2) now takes the form

ṙ2 = −grr(gABpApB + ω2
p). (5.4)

As described already in previous sections, the covariant components t and φ of the
momentum 4-vector are constants of motion. In accordance with the introduced
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notation we denote them as pt = −ω0 and pφ = ωb, where ω0 is the wave frequency
at infinity and b represents the impact parameter. Notice that both quantities (ω0
and b) can be in principle measured by distant observers, and it is hence assumed
that the rays can reach them. It is also worth emphasizing that rays of given ω0
and b can reach radius r if and only if ṙ2 > 0, i.e., the right-hand side of (5.4)
is not negative, and in the special cases when ṙ2 = 0 such radius corresponds to
either the turning point (closest radial distance) or a circular orbit.

To furthermore simplify the calculations, the Kerr mass factor is taken as m =
1 and the metric then involves only one parameter, i.e., the angular momentum
per unit mass a. It is also useful to introduce new functions present in the metric
under given simplifications, namely

f = 1 − 2u, A = 1 + a2u2 + 2a2u3, D = 1 − 2u+ a2u2, (5.5)

where u = r−1. These functions are related by the identity

fA + 4a2u4 = D. (5.6)

Then, the Kerr metric in the equatorial plane can be written as

ds2 = −fdt2 − 4ar−1dtdφ+ Ar2dφ2 + D−1dr2. (5.7)

Applying this form of the metric and introducing the relations for pt and pφ allow
one to express

gABpApB = − ω2
0

Dr2

(︂
Ar2 − 4ar−1b− fb2

)︂
≡ − ω2

0
Dr2Fvac. (5.8)

The justification for introducing the function Fvac will become clearer after sub-
stituting (5.8) in (5.4) and applying grr = D which leads to

ṙ2 = ω2
0Fr

−2, where F = Fvac − Dr2ω
2
p

ω2
0
. (5.9)

It is evident that when ωp = 0, i.e., in vacuum, the right-hand side of the equa-
tion of motion for ṙ is proportional to Fvac. With the above relation it is now
straightforward to study regions in the (r, b)-plane where the light rays can occur.
Moreover, it can be seen that in these regions necessarily F ≥ 0, while at turning
points (where ṙ = 0) F = 0. Additionally, the radii of circular light orbits are
found at positions where not only F = 0, but also F ′ = 0 (taking prime as the
differentiation with respect to r).

In the following sections it is analysed how the allowed regions for rays evolve
in the (r, b)-plane when the Kerr metric is considered in the equatorial plane and
it is surrounded by a cold plasma. In order to perform the calculations fully, it is
necessary to choose a suitable plasma profile. For this purpose the approximation
of a nonsingular isothermal sphere [see, e.g., Bisnovatyi-Kogan and Tsupko, 2010,
Liu et al., 2017] is assumed, for which Ne(r) ∝ (r2 + r2

c )−1. To avoid problems
with the singularity at r = 0, the plasma is assumed to have a core of radius rc.

Two specific situations are analyzed in detail. First, light rays of a fixed
frequency ω0 at infinity are considered. Second, light rays are assumed to have a
fixed “telescope frequency” ωobs measured by an observer with a given 4-velocity
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uµ
obs at the established radius robs. The latter case is well justified when considering

that at an arbitrary position (outside the black hole horizon) the observer in
principle encounters light of a broad spectrum of frequencies ω, coming both
from distant sources (stars) and from sources close to the horizon, and out of
them they can always detect the one which is ωobs.

The observer with a fixed “telescope frequency” can be defined in various
ways. The most traditional one is to assume that they are at rest with respect to
a given locally nonrotating frame (LNRF) or falling freely from rest at infinity.
Both configurations are discussed below.

To find relations between the parameters describing the LNRF and freely
falling observers, one has to recall that a particle moving in the equatorial plane
is characterized by a 4-velocity of the form

uµ = Γ(1, v, 0,Ω), Γ = dt

dτ
, v = dr

dt
, Ω = dφ

dt
, (5.10)

where v and Ω are the radial and angular coordinate velocities, respectively.
Moreover, Γ denotes the (Lorentz) conversion factor between the time of distant
observers t and the proper time τ of the particle. It is now desirable to find these
parameters for the two introduced sets of observers.

The LNRF observers are characterized by

Γobs =
√︄

Aobs

Dobs

, vobs = 0, Ωobs = 2au3
obs

Aobs

, (5.11)

while a freely falling particle obeys

Γ̂obs = Aobs

Dobs

, v̂obs = −Dobs

Aobs

√
αobs, Ωobs = 2au3

obs

Aobs

, (5.12)

where αobs = Aobs −Dobs = 2uobs(1+a2u2
obs). Notice that the angular velocity Ωobs

remains the same for both classes of observers. For a detailed derivation of the
introduced formulae from the geodesic equations, see, e.g., Bičák and Stuchĺık
[1976].

The frequency seen by an observer with the given 4-velocity uµ can be found
as

ωobs = −p · u = ω0Γ(1 − v
ηobs

Dobs

− Ωb), (5.13)

where ηobs denotes the rescaled light radial velocity detected at robs, i.e.,

ηobs = ṙphoton,obs

ω0
= ±

√︂
Fobsuobs. (5.14)

To be more specific, the frequency derived for the locally nonrotating observer
then reads

ωobs = ω0Γobs(1 − Ωobsb), (5.15)

and for the freely falling observer it is

ωobs = ω0Γ̂obs(1 − ξobsηobs − Ωobsb), (5.16)

where ξobs = D−1
obsv̂obs = −A−1

obs

√
αobs.
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5.2 Allowed Regions for Rays with Fixed ω0

Before studying the effects of the plasma presence on the accessible regions for
rays, they are briefly analyzed in vacuum. To find them, one has to solve the
relation Fvac = 0 for b, which defines the boundaries between allowed and forbid-
den regions. This leads to a quadratic equation with two solutions which can be
written in two equivalent forms, namely

b̊± = 1
f

(−2ar−1 ±
√

Dr) = Ar2

2ar−1 ±
√

Dr
. (5.17)

It can be seen that the two solutions b̊± meet at the horizon rh, where D = 0
and thus rh = 1+

√
1 − a2, and at r ≫ 1 they both approach the same asymptotes

as b̊± ∼ ±r. The first formulation of the solutions in (5.17) also reveals that there
is a singularity at r = 2 (static limit) for b̊−, as f → 0, but not for b̊+ (cf. the
second formulation of the solutions in (5.17)).

As shown in Fig. 5.1, where the allowed regions for the rays in vacuum in
the (r, b)-plane are depicted, there are two detached regions forbidden for rays.
They are shaded and bounded by black bold curves and inside them Fvac < 0.
Their boundaries are formed by either a combination of b̊+ and b̊− (the “upper
corner”) or solely by b̊− (the “lower corner”). Note that in the latter case the
position of the static limit naturally appears as an asymptote. There are also two
areas which are accessible, at least in principle, by rays and which lie outside the
forbidden regions. They are labeled in Fig. 5.1 as O̊I and O̊II and are located
between the two corners or to the left of the upper corner at r < 2, respectively.

Note that the photon orbits are located at the minimum of the upper corner
(co-rotating orbit) and at the maximal point of the lower corner (counter-rotating
orbit).

One additional aspect of light observed in the allowed regions should be further
discussed. When assuming an arbitrary (not necessarily LNRF) observer with
v = 0, the observed wave frequency is ωobs = ω0Γ(1 − Ωb). Although inevitably
ωobs > 0, this is not necessarily true for ω0. On the contrary, its sign has to
be derived at a given point of the (r, b)-plane by setting possible values of the
angular velocity Ω.

The angular velocities of co- and counter-rotating circular photon orbits can
be used as limiting cases. In vacuum, their impact parameters are b = b̊± and
their 4-velocity satisfies

u2
photon = −ω0ṫphoton + pφφ̇photon ∝ −1 + bΩ = 0. (5.18)

The velocity has to vanish because the rays are assumed to stay on the given
orbit (ṙ = 0). From this relation it is clearly seen that the angular velocities for
these rays are directly related to the light impact parameters as they are inverse
to each other, i.e., b̊± = Ω−1

± . Hence, the given values of Ω in the allowed regions
lie between b/b̊− < Ωb < b/b̊+ for b > 0 and they have to satisfy Ωb < b/b̊− when
b < 0.

This causes the light signals to have various signs of ω0 in different accessible
regions. While ω0 > 0 in O̊I , in O̊II it satisfies ω0 < 0. Although rays with ω0 < 0
might seem rather suspicious, they represent only a special case of a “particle”
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Figure 5.1: Allowed regions for rays in vacuum around an object described by the
Kerr metric with a = 0.8. Radial distances r (abscissa) from the black hole are
plotted as a function of ray impact parameters b (ordinate). The shaded areas
bounded by the black lines b̊+ and b̊− (“corners”) are forbidden for the rays, while
the white regions O̊I and O̊II are accessible for rays, at least in theory. The thin
vertical line at r = 2 denotes the static limit and it represents the asymptote of
the inner boundary of forbidden regions given by b̊−. Note that the minimal radial
value in the plot is the horizon radius which for the chosen a equals rh = 1.6.

with negative energy, which is frequently discussed as a necessary constituent of
the well known Penrose process (see, e.g., Misner et al. [1973], §33.7).

Next, let me include plasma in the system. Light rays propagating in it are
assumed to have a fixed frequency ω0 at infinity which is positive in O̊I and
negative in O̊II . Moreover, the boundaries of the allowed regions are given in
this case by F = 0, where F is defined in (5.9). This condition gives again a
quadratic equation with solutions

b± = 1
f

(︃
−2ar−1 ± r

√︂
(1 − fζ2)D

)︃
, (5.19)

where ζ = ωp/ω0. Note that the solutions (5.19) formally correspond to the
vacuum solutions b̊± given by (5.17) if one replaces D → (1−fζ2)D. From this it
can be further seen that the functions b± approach the same asymptotes as b̊± at
r ≫ 1, i.e., b± ∼ ±r. Moreover, also the behaviour of b− is similar to b̊− around
the static limit (r = 2), reaching a singularity there.

However, although the qualitative profile of the functions b± corresponds to
the vacuum solutions b̊±, their quantitative shapes depend substantially on the
chosen plasma parameters. Generally, it can be stated that b± are closer to each
other than b̊± and the forbidden regions for rays are hence larger. For particular
choices of plasma parameters it can even happen that they merge and form a
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neck, so that a ray of any impact parameter heading from the black hole cannot
reach a distant observer or opposite. Formation of the neck is discussed in detail
in Section 6.1.

It is a natural consequence that the larger the forbidden regions, the smaller
the allowed ones. The regions OI and OII are then actually just parts of the
larger vacuum regions O̊I and O̊II . Due to this, ω0 > 0 in OI , while ω0 < 0 in
OII . Moreover, if there is a neck, OI is effectively split into two parts, OIA and
OIB (see Fig. 5.2).
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Figure 5.2: Comparison of the allowed regions for rays in a plasma with fixed
frequency ω0 at infinity and for rays in vacuum. Kerr metric with a = 0.8 was
assumed and the plasma parameters were set as rc = 1, rref = 1.8 (so the reference
radius lies halfway between the horizon and the static limit), and q = 1 and 3.5
in the left and right panels, respectively. Forbidden regions for rays in a plasma
are shaded, while the remaining white areas correspond to either regions OI or
OIA, OIB and OII . Boundaries of the forbidden regions in vacuum are drawn by
thin black curves which lie exclusively in the shaded regions. Thin vertical line
shows the position of the static limit for the chosen Kerr metric (r = 2), which
also represents an asymptote of the boundary of the allowed regions. In region
OI , possibly in OIA and OIB, the frequency ω0 > 0, while ω0 < 0 in OII .

In terms of practical calculations, it is necessary to define the plasma proper-
ties and incorporate them somehow into the equations. Because a specific choice
of ωp and ω0 might lead to a broad variety of combinations, it seems more useful
to work only with their ratio. To do that, a reference radial distance, rref , is
randomly chosen (requiring only that it lies outside the horizon) and the corre-
sponding plasma parameter can be slightly rearranged as follows:

ζ = ωp(r)
ω0

ωp(rref )
ωp(rref ) = ±ωp(rref )

|ω0|

⌜⃓⃓⎷ Ne(r)
Ne(rref ) = ±ωp(rref )

|ω0|

⌜⃓⃓⎷r2
ref + r2

c

r2 + r2
c

≡ ±q
√

P .

(5.20)
When working with the plasma, its profile as a nonsingular isothermal sphere with
Ne(r) ∝ (r2 + r2

c )−1 is assumed, and the definition of the plasma frequency (1.49)
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is utilized. The parameter P thus represents the ratio of electron densities at r
and rref . The signs + and − in (5.20) refer to regions OI and OII , respectively.

The accessible regions for light rays with fixed ω0 for two different choices of
q are depicted in Fig. 5.2. As described above, the forbidden regions for rays in
a plasma (shaded areas) are larger than those in vacuum. Moreover, the value
of q used in the right panel is larger than qcrit (see Section 6.1) and thus a neck
occurs.

5.3 Rays with Fixed ωobs for LNRF Observers
In this section a LNRF observer set at r = robs with a telescope receiving fre-
quency ωobs is considered. This frequency can then be calculated using equation
(5.15). It was already argued that it is more practical to study the relevant ex-
pressions as a function of the ratio ζ = ωp/ωobs rather than of ωobs itself. For this
class of observers one gets

ζ = ±qΓobs(1 − Ωobsb)
√

P , (5.21)

where ± is the relative sign between ω0 and ωobs. In this case the reference radius
corresponds to the position of the observer, and hence both q and P are functions
of robs.

However, in the following calculations it is assumed that q is independent
of robs, and hence, along with changing ωp at different robs also the telescope
frequency ωobs has to vary, decreasing for larger r. It is thus possible to express
the effect of plasma also on rays propagating at r ≫ 1, although the plasma
is thin there. Moreover, for locally nonrotating plasma ω = ωobs and because
n2 ≥ 0, only rays with q < 1 can reach the observer. Nevertheless, the restriction
for q is more general, since n has to be always real in the regions with F ≥ 0.
This can be also seen, e.g., in equation (6.25) in Section 6.4.

To find the allowed regions for rays with fixed frequency ωobs as seen by
LNRF observers, one has to use relation (5.21) in equation (5.9) and solve for b.
It is again a quadratic equation, as in the case with fixed ω0 where ζ = const.,
but the individual polynomial coefficients are shifted. This shift causes that the
asymptotes of solutions b± for r ≫ 1 behave as b± ∼ ±Cr, where C < 1, while
in the previous case C = 1. Moreover, the branch b− does not have to reach a
singularity at the static limit r = 2, but it can occur already at r < 2. The exact
value depends on the chosen plasma parameters. In Section 6.2 it is shown how
both C and the asymptote radius increase as a function of observer position robs,
which can span from the horizon to infinity. Moreover, it is also shown that in
this case the function diverging at the given asymptote can be b+ rather than b−.

In this case a neck between the forbidden regions can emerge in the (r, b)-plane.
The neck exists for such values of r which cause the discriminant of F = 0 to be
negative. It is worth noting that the neck can appear for both the observer radii
close to the horizon and far away, but there is a radial interval ρobsA < robs < ρobsB,
where it disappears. Note that for observers at ρobsA and ρobsB the neck effectively
shrinks into a point at radii ρA and ρB, respectively. Their derivation and their
values for specific cases are discussed in detail in Section 6.3.

When ωobs is fixed, rays that actually reach the observer are not the only ones
adjusted to be received by the telescope. In principle, there are also “ghost rays”
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which bounce on their way back to the observer and have a suitable combination
of frequency ω0 and impact parameter b, so their frequency measured by the
observer, ωobs, is just the tuned value. For this type of rays the allowed regions
OI and OII exist, and they are of a similar shape as those obtained for a fixed
ω0. However, sometimes the frequency ωobs associated with the “ghost rays” has
to be negative, according to their value of the impact parameter. To show this,
one has to recall that there are limit impact parameters given by blim = Ω−1

obs.
One knows from (5.15) that ωobs ∝ ω0(1− b/blim), so that when ω0 > 0 in OI and
ω0 < 0 in OII , in the upper part of OI where b > blim one has to set ωobs < 0,
same as in the lower part of OII where b < blim.

Regions accessible for rays with fixed ωobs as seen by LNRF observers are
depicted in Fig. 5.3. The white areas bounded by thick grey curves represent
allowed regions for rays that potentially reach the observer at robs, either directly
or after bouncing back. The remaining free regions around the shaded corners
and the shaded strip in the right panel (where a neck emerges) define allowed
regions for “ghost rays”, however, they never reach the observer.
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Figure 5.3: Allowed regions for rays in a plasma with fixed frequency ωobs seen
by a LNRF observer. Kerr and plasma parameters were chosen as a = 0.8
and rc = 1, respectively. The frequency ratio was set to be q = 2/3. The
observer positions are marked by a dot; in the left panel at robs = 1.8, while
in the right panel two values are applied, namely 1.65 and 7.25 in its left and
right parts, respectively. Forbidden regions for rays, including the “ghost rays”,
are shaded. Boundaries between the accessible and forbidden areas for rays in
vacuum are drawn by thin curves. Solid vertical lines show the asymptote of the
inner boundaries of forbidden regions. Dotted horizontal lines denote values of
blim, which divide the regions with “ghost rays” according to the relevant sign of
ωobs. It has to be negative at r > 2 above blim, while for r < 2 this happens for
impact parameters under blim up to b at the horizon. Dashed vertical lines depict
rays at the moment of arriving at the observer. Regions bounded by the thick
grey lines, labeled as F , GI+ and GI− in the left panel and GIA, GII and GIB in
the right panel, are accessible for rays truly reaching the observer. Region GII in
the left panel, ranging from b > 25.7, as well as blim = 276.5 of the right part in
the right panel, are not depicted because of their large b values.
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The observer position robs chosen in the left panel of Fig. 5.3 belongs to the
interval (ρobsA, ρobsB), and hence there is no neck. This allows the rays of impact
parameters from the free band F to propagate easily between infinity and the
horizon back and forth. Otherwise, the allowed regions are always bounded from
one side. For robs smaller than the position where function b+ reaches its minimum
(which is the case in the left panel), the observer can detect the rays coming from
regions GI+ and GI−, but not the rays from GII (not shown in the left panel) which
is separated from F . All these regions are inaccessible for rays from infinity.

The values of robs used in the right panel of Fig. 5.3 do not belong to the
interval (ρobsA, ρobsB) and thus a neck is formed. Depending on the exact choice
of robs, rays can reach the observer either from regions GIA and GII (when robs <
ρobsA), or from region GIB (if robs > ρobsB). Both situations are depicted in the
right panel of Fig. 5.3.

When looking at a set of LNRF observers located at various distances robs,
the allowed regions for rays can be identified in the (robs, b)-plane in a similar
manner as the regions OI and OII presented for fixed ω0 in the left panel of
Fig. 5.2. Their boundaries are then formed by functions B± which are solutions
of the equation F |r=robs

= 0. These functions can be expressed as the second
form of the solutions in (5.17), where r is replaced by robs and the transformation
Dobs → Dobs(1 − q2)−1 is performed (cf. equation (6.25)). Strictly speaking,
the correspondence between the solutions with fixed ω0 and in the (robs, b)-plane
is more complicated as there has to be a specific choice of the frequency ratio
q < qcrit, where qcrit is introduced in Section 6.4. However, at the current stage
this fact does not hinder us from describing the main properties of the allowed
regions in the (robs, b)-plane.

The main difference between the rays discussed in the (r, b)-plane and (robs, b)-
plane is that in the latter case the allowed regions contain two rays of the same
telescope frequency at one point; one oriented towards the black hole (ṙphoton < 0)
and the other away from it (ṙphoton > 0). According to the original orientation of
the rays, it is possible to separate the allowed regions in the (robs, b)-plane into
areas Oh and Oi such that at least one ray begins at the horizon or at infinity,
respectively. These regions can be viewed in Fig. 5.4. Of course, in some parts
of the allowed regions both kinds of rays meet. This region is further denoted
as Oh+i, as it effectively represents the intersection of Oh and Oi. The regions
labeled as O′

h and O′
i correspond to segments of Oh and Oi which are complements

to Oh+i.
Rays forming the region Oh+i correspond to those present in the (r, b)-plane

in the free band, and it is hence equivalent to F introduced in the left panel of
Fig. 5.3. Along the same lines, regions O′

h and O′
i consist of rays originating in

allowed regions bounded from one side, similarly to regions from Fig. 5.3 – either
GI+, GI− in the left panel or GIA, GII and GIB in the right panel.

The boundaries of region Oh+i can be found as the minimum of b+, which
at the same time represents the maximum of F . It is hence the upper limit of
Oh+i, while its bottom part is limited by the local maximum of b− for r larger
than its asymptote (minimum of F). These two limits are denoted in Fig. 5.4 as
B+ and B−, respectively. It should be emphasized that the boundaries of Oh+i

are not part of this region, as rays with b = B± have a limited access to the
observers because they do not get over the peak of the corresponding forbidden
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Figure 5.4: Allowed regions for rays seen by LNRF observers in the (robs, b)-
plane. The values of parameters a, rc, and q remain the same as in Fig. 5.3.
Similarly as in the previous plots, the forbidden regions for rays are shaded, but
here the rays can be detected by observers at various radii robs. Boundaries of
the allowed regions in vacuum are drawn by thin curves. Solid vertical lines show
the positions of the asymptotes of the boundary between allowed and forbidden
regions. The white area bounded by thin and thick curves in the center of both
panels is Oh+i. In this region rays originally coming to the observer from both
the black hole horizon and infinity meet. The regions O′

h± in the left panel are
formed solely by rays reaching the observers from the horizon, while in region O′

i

in the right panel rays detected by the observers come from infinity. Points P±
divide the boundary of Oh+i into parts, where the relevant regions adjoin. In the
left panel it is region Oh, consisting of two parts, located between the horizon
and the thick curve connecting P+ and P−, while in the right panel region Oi is
limited from below only by the thick curve between points P+ and P−.

region standing in their way.
The positions of minimal and maximal values of b+ and b−, respectively, de-

pend on the choice of robs. When it continuously increases from ρobsA to ρobsB,
the functions B± intersect with functions B± at two points, which are labeled in
Fig. 5.4 as P±. These points divide the boundary of Oh+i into two parts, where
O′

h meets Oh+i from the left, while O′
i is adjacent from the right. A derivation

of the position of points P± and a detailed description of the behaviour of the
functions B± and B± in their neighbourhood can be found in Section 6.4.

The allowed regions in the (robs, b)-plane describing rays detectable by LNRF
observers located at various radii from the Kerr black hole are depicted in Fig. 5.4.
In the left panel the region Oh is shown, composed of Oh+i, the neighbouring
region O′

h−, and the detached part O′
h+. The region Oi consisting of Oh+i and

O′
i is shown in the right panel of Fig. 5.4. Point P+ is located at r slightly lower

than the static limit, and reasons for this, as well as other technical details, are
clarified in Section 6.4.

Note that the boundaries between the allowed and forbidden regions in vac-
uum shown in Fig. 5.4 (thin curves inside the shaded areas) correspond to the

84



boundaries already obtained in the (r, b)-plane because in vacuum they are inde-
pendent of ω0.

5.4 Rays with Fixed ωobs for Freely Falling Ob-
servers

Having (5.16) at hand, the parameter ζ corresponding to an observer freely falling
from rest at infinity can be expressed as

ζ = qΓ̂obs(1 − ξobsηobs − Ωobsb)
√

P . (5.22)

Unlike in the previous case, the presented formula can be applied solely to rays
that truly reach the observer, as ηobs defined with (5.14) is imaginary elsewhere.
For this reason, ωobs is exclusively positive and hence there are no “ghost rays”
as for LNRF observers. Due to that, there is no ± in equation (5.22).

For this class of observers, it is necessary to find ηobs first. This can be
performed by squaring equation (5.14) and solving the corresponding quadratic
equation for ηobs. The allowed regions in the (robs, b)-plane can be found from
the condition Fobsu

2
obs ≥ 0, similarly as in the previous case. However, here it

is necessary to require that the quadratic equation has real solutions and its
discriminant hence is not negative. In Section 6.5 it is shown that the bound-
aries between the accessible and forbidden regions are given by relations analo-
gous to B± obtained for LNRF observers, but with the replacement q → q̃NR =
qΓobs/ [1 + q2(Γ2

obs − 1)]1/2. This set of solutions is further denoted as B̃±. When
q is defined as a function of robs to return q̃NR = const., the allowed regions for
falling observers are of the same shape as those derived for locally nonrotating
observers.

Here again, there are two rays for each robs in the allowed regions, but they
differ by rescaled radial velocities η(±)

obs which represent two solutions of the cor-
responding quadratic equation and thus it is not only a sign by which they vary.
Considering the (robs, b)-plane, η(−)

obs is negative in OI , while η(+)
obs is positive inside

this region and zero at its boundary (corresponding to B±). Similarly, η(+)
obs is

positive everywhere in OII and η
(−)
obs is negative there except for the line B−. In

OII also the sign of ṙphoton,obs differs from the sign of ηobs, as ω0 < 0 there (cf.
(5.14)).

For the purpose of further description, rays of velocities η(+)
obs in region OI and

η
(−)
obs in region OII are characterized as “rays of class I”, while the complementary

rays in the given regions are “rays of class II”. From the sign analysis of η(±)
obs it

follows that the rays of class II are oriented towards the black hole, as is a subset
of the rays of class I which lie between impact parameters B̃± and B±.

The discussion related to regions Oh and Oi in the same manner as in the
previous section is more complicated because there are two classes of rays which
behave differently. For this reason, these classes of rays are analysed separately
and the categorization of rays belonging to corresponding regions is now maxi-
mally extended in time. Then, rays are part of region Oh if they either begin or
end on the horizon, and they belong to region Oi when either their beginning or
end is at infinity.
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Figure 5.5: Allowed regions seen by freely falling observers in the (robs, b)-plane
for rays of class I (left panel) and II (right panel). Parameters a, rc, and q have
the same values as in the previous figures. The shaded areas are forbidden for
rays and the thin curves inside them show boundaries of the allowed regions in
vacuum. The dashed curves in the left panel denote the boundaries B±, where
the radial velocity η(+)

obs changes sign. The region Oh in the case of rays from class
I
(︂
with η

(+)
obs

)︂
consists of Oh+i and O′

h±, while the region Oi contains, in addition
to Oh+i, the region O′

i. In the case of rays from class II
(︂
with η

(−)
obs

)︂
, the region

Oh+i extends straight from the horizon and the region O′
h− is thus divided into

two segments, O′
h−+ and O′

h−−. Unlike in the case of LNRF observers, where it
involved just a pair of points, region Oh+i meets the boundary of the forbidden
regions at the arcs PA+PB+ and PA−PB− marked by thick black segments. More-
over, the arcs connecting points PA+, PA− and PB+, PB− in the left panel create
a boundary of region Oh+i, intersecting the curves B± at points Q±.

Fig. 5.5 shows the allowed regions for rays detected by freely falling observers
at various distances from a black hole, i.e., in the (robs, b)-plane. The behaviour
of rays from class I and II is depicted independently, in the left and right panel,
respectively. The positions of the corresponding regions Oh and Oi are shown
for both classes of rays in the figure. In Fig. 5.5 the regions Oh+i, in the sense
of the original definition of Oh and Oi, can be related to the regions O′

i and O′
h.

The part of the region Oh+i in the left panel located between curves B̃± and B±
and the region Oh+i in the right panel adjoin region O′

i and the horizon, while
the remaining boundary of Oh+i in the left panel is shared only with O′

h. In
Section 6.5 it is demonstrated how the shape of the regions depicted in Fig. 5.5
can be derived without defining explicit relations for the accessible regions in the
(r, b)-plane.

Rays with impact parameters B̃±, which form the boundaries of the forbidden
regions, have only one nonzero rescaled radial velocity η̃obs at each point. Their
trajectories are rather peculiar because those coming from infinity return back
after they meet the observer and rays originating near the horizon bounce back
already before they reach the observer. This is due to their radial velocities which
are given as ṙphoton,obs = ω0η̃obs < 0. Furthermore, there are also rays which can
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continue straight from infinity to the horizon instead of being bounced back. This
kind of rays is located along the arcs PA+PB+ and PA−PB−, which are highlighted
in Fig. 5.5 by thick black segments. These segments play a similar role as the
points P+ and P− discussed in the previous section, i.e., they can be linked by
curves connecting points PA+, PA− and PB+, PB− that allow one to distinguish
which part of the boundary of Oh+i separates it from regions O′

h and O′
i.

Notice that the rays of class I that are situated in the allowed region limited
by the curves B+ and B− reflect back once they reach the observer. The region
Oh+i is constricted to a point at the curves B±, which are denoted by Q± in
Fig. 5.5. Altogether, Oh+i consists of three separate parts connected at points
Q± – two segments of triangular shape on the top and bottom and a central
region between them. In addition, the central part is adjacent to the region O′

i

at points Q±, in a similar manner as Oh+i is adjacent to Oi at points P± in the
case of LNRF observers. The region Oh+i is substantially broader for rays from
class II than from class I, and it also extends down to the horizon for the former
class of rays.

The shapes of the allowed regions for both kinds of rays are described in detail
in Section 6.5. Formation of a smaller region O′

I for the rays of class I, where
the rays bounce back after reaching the observer, is also discussed. It is shown
that the choice q̃NR < 1/

√
2 has to be made in order to extend O′

I down to the
horizon. This is the case shown in Fig. 5.5.
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6. Technical Aspects of
Constructing Allowed Regions
for Rays in a Plasma
This chapter is devoted to some more technical issues which occur when dealing
with the allowed regions around a black hole in a cold plasma. While they were
mostly outlined in the previous chapter, here they are discussed in detail. The
presented calculations hence serve as a useful tool for better understanding the
results presented in Chapter 5, although their proper analysis is not necessary for
a basic overview about the allowed regions.

6.1 Neck Occurrence for Fixed ω0

As mentioned in Section 5.2, in the case with fixed frequency ω0 a neck connecting
both forbidden regions can occur. The circumstances under which the neck forms
are analyzed below.

In this case the solutions for the impact parameter, b±, are given by (5.19).
Let me rewrite this equation with the usage of (5.20) to get

b± = 1
f

[︃
−2au±

√︂
(1 − q2fP)Du−2

]︃
. (6.1)

The term fP present in the square root in (6.1) is important in order to
describe the behaviour of the boundary functions b± at specific values of r (or u
analogously). This term satisfies

fP ∝ (1 − 2u)u2

(1 + r2
cu

2) ,
d(fP)
du

∝ 1 − 3u− r2
cu

3. (6.2)

These relations reveal some important properties. First, it is obvious that fP is
positive for 0 < u < 1/2 which corresponds to the radial distances from infinity
up to the static limit, while at these boundary points (i.e., at u = 0 and u = 1/2)
it vanishes. Second, its derivative decreases as u increases (and r decreases) and
it reaches zero at some uC < 1/2. This means that the maximum of fP lies
somewhere outside the static limit of the black hole, which is situated at r = 2.
For convenience we denote qcrit = (fP)−1/2|u=uC

. Then, with the choice q = qcrit

the functions b+ and b− intersect at rC as the square root in (6.1) vanishes. Since
their shapes lead to the formation of forbidden regions as two “corners” pointing
towards each other, their peaks meet at rC when q = qcrit.

This behaviour can be further clarified by considering that in the neighbour-
hood of rC the expressions for b± can be written as

b± = g1 + g2(r − rC) ± g3|r − rC |, (6.3)

where the coefficients g1, g2, and g3 are independent of r. This expression reveals
that at r = rC there is a spike-like minimum and maximum for b+ and b−,
respectively. Furthermore, when q > qcrit the term in the square root of (6.1)
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becomes negative in an interval (rA, rB), which includes rC . This interval extends
for larger q. Thus, the two originally detached forbidden regions for rays merge
through a neck of a width given by rA and rB. The interval (rA, rB) is always
above the static limit for arbitrary q > qcrit because the square root in (6.1) is
real for r < 2.

When using the black hole and plasma parameters applied in Fig. 5.2, one gets
rC = 3.104 and consequently (fP)|u=uC

= 0.1418, qcrit = 2.656. With the value
q = 3.5 chosen in the right panel of Fig. 5.2 the neck lies between rA = 2.268 and
rB = 5.727.

6.2 Allowed Regions at Extreme Radial Values
with Fixed ωobs

When the rays are assumed to have a fixed ωobs as detected by LNRF observers,
their allowed regions can be determined from F = 0, where F originally given by
(5.9) yields

F = Ar2 −Q2 + 2(−2ar−1 +Q2Ωobs)b− (f +Q2Ω2
obs)b2 (6.4)

with Q = qΓobs

√
DPr. This leads to a set of two functions b± which can be

expressed via the general solutions of a quadratic equation. These two functions
can be then either solved numerically or expressed graphically as performed in
Section 5.3. However, the limiting solutions of (6.4) are discussed analytically in
this section to describe how these functions evolve.

Let me first consider the case when r ≫ 1. Then,
√

DP ≃
√︂
r2

obs + r2
c and

F ≃ r2 + 2(qΓobs

√︂
r2

obs + r2
c )2Ωobsb− (1 + (qΓobs

√︂
r2

obs + r2
c )2Ω2

obs)b2. (6.5)

The solutions of F = 0 in the leading order of r are b± = ±Cr, where

C = (1 + (qΓobs

√︂
r2

obs + r2
c )2Ω2

obs)−1/2. (6.6)

It can be seen that C < 1 and hence the forbidden regions expand for fixed ωobs

in comparison to the case when ω0 is fixed.
It is clear that the shape of C will change with respect to robs. In order to

describe this, it is useful to write

qΓobs

√︂
r2

obs + r2
cΩobs ∝

√︂
r2

obs + r2
c

r3
obs

√
AobsDobs

. (6.7)

One thus sees that this term decreases for a given robs above the static limit (from
∞ to 0), and C thus increases between the horizon and infinity, ranging from 0
to 1. For the choice of parameters applied in Fig. 5.3 one gets C = 0.681 in the
left panel and C = 0.9997 for the right part of the right panel.

It was already discussed in the previous chapter that there exists an asymptote
of either b− or b+. Its value can be found when setting the term ∝ b2 in (6.4)
equal to 0. This yields

f = −Q2Ω2
obs = −q2Γ2

obsDPr2Ω2
obs. (6.8)
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Since f can be negative only for r < 2, the asymptote can occur exclusively
below the static limit. Notice that the asymptote is located precisely at r = 2
in the case when ω0 is fixed while in the other case it is shifted closer to the
horizon. Moreover, recall that the position of the asymptote represents not only
the boundary of a forbidden region for rays, but also the innermost radius where
a neck can occur (for details see Section 6.3).

The value of −f decreases from positive values to 0 between the horizon and
the static limit, while Dr2 increases in this interval of radii, starting from 0 at
the horizon. The exact position of the asymptote is hence given by the remaining
terms and implicitly by robs. At the horizon Γobs → ∞, while Ωobs → 0 for r → ∞.
Then, the larger the assumed observer position, the closer to the static limit the
asymptote is. This is a natural conclusion when one realizes that the fixed ωobs

case merges with the fixed ω0 case for robs → ∞. In Fig. 5.3 the used parameter
values yield the position of the asymptotes at r = 1.836 in the left panel and at
r = 1.691 in the left part of the right panel.

While in the case with fixed ω0 one always gets similar results as in vacuum,
i.e., that the asymptote lies at r = 2 and the diverging function is b−, this needs
not to be the case with fixed ωobs. It has been shown already that the asymptote
position can be closer to the horizon in the latter case, and moreover, the divergent
function can be b+ rather than b−. The reason for this can be explained when one
studies the term ∝ b in (6.4) more carefully. If this term is negative at the position
of the asymptote, the divergent function is b−, while it is b+ in the opposite case.
Furthermore, if the diverging function is b+, a neck necessarily occurs and the
boundary of the forbidden regions touches the asymptote from the opposite side
than if the diverging function is b−. That is, the function b+ falls to −∞ from
the left side of the asymptote and aims to +∞ from the right side of it.

At the asymptote position, the term ∝ b in (6.4) can be rewritten as(︄
−2ar−1 − f

Ωobs

)︄⃓⃓⃓⃓
⃓
f=−Q2Ω2

obs

∝ Aobsr
3
obs(2 − r)
4a2 − 1. (6.9)

This term remains positive below some r1 which is larger than the outer horizon
radius and can be found from

r1 = rh+ + rh−

(︄
1 − 4a2

Aobsr3
obsrh−

)︄
, (6.10)

where rh± denote the two horizon positions (roots of D = 0). Note that these
positions satisfy the equality 2 = rh+ + rh−.

With the parameter values used in the left part of the right panel of Fig. 5.3
one finds that r1 = 1.625, which is less than the asymptote position (1.691) and
the diverging function hence has to be b−. Additionally, to obtain b+ as the
diverging function requires q > qrev = (ΓobsΩobs)−1

√︂
−f/(DP)|r=r1 (“rev” stands

for “reversed”). In the case shown in Fig. 5.3, qrev = 1.421 and hence q < qrev.

6.3 Neck Occurrence for Fixed ωobs

The allowed regions for rays with fixed ωobs seen by LNRF observers can be deter-
mined from F = 0 with F defined by (6.4). This equation has a discriminant ∆
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of the form

∆ = (1 − q2Γ2
obsf+P)Dr2, f+ = f + 4ar−1Ωobs − Ar2Ω2

obs. (6.11)

This relation differs from the discriminant obtained in the vacuum case, where
∆ = Dr2, by the extra factor in the brackets. However, the bracket factor is
crucial for determining the occurrence of a neck, which can connect the forbidden
regions for rays in the (r, b)-plane as described in the previous chapter. The
interval (rA, rB) describing the neck extent can be calculated by setting ∆ = 0,
which in this case reduces to the condition 1 − q2Γ2

obsf+P = 0. Note that the
neck formation in the case with fixed ω0 is limited to sufficiently large q > qcrit

(see Section 6.1 for details), but this is not true in the case with fixed ωobs. The
parameter q can now be chosen arbitrarily and the neck forms, requiring that robs

does not lie in the interval (ρobsA, ρobsB), where the discriminant of (6.4) equals
or is larger than zero. This statement can be proven when the form of (6.11) is
studied in the two limiting situations in which robs is chosen close to the horizon
or far from it. Let me now discuss these two cases separately.

In the vicinity of the horizon position rh, one can expand the corresponding
expressions in terms of ϵh = r − rh, assuming that ϵh ≪ 1. Then,

D ≃ 2
√

1 − a2u2
hϵh, Ah = 4u2

h. (6.12)

Note that in the leading order it is reasonable to take the value of A precisely
at the horizon. Furthermore, the observer is assumed to be displaced from the
horizon by ϵobs ≪ 1. This leads to

Γobs ≃
√︄

Ah

Dobs

≃ 2(2
√

1 − a2ϵobs)−1/2, Ωobs ≃ 1
2auh. (6.13)

Hence, the bracket term in (6.11) close to the horizon reduces to

1 − q2Γ2
obsf+P ≃ 1 − 4q2(2

√
1 − a2ϵobs)−1f+, (6.14)

where

rf+ = r − 2 + 4aΩobs(1 − Ar3

4a Ωobs) ≃ [1 − 1
4a

2(3 + a2u2
h)]ϵh. (6.15)

Recall that P ≃ 1 when both robs and r are assumed to lie close to the horizon.
Then, when ϵobs ≪ 1 a neck occurs in the (r, b)-plane with the inner edge

oriented away from the horizon limited by some ϵA. Considering that (6.14) has
to vanish at this point, with the usage of (6.15) one reveals that ϵA is given by

ϵA = q−2ϵobs

4
2rh

√
1 − a2

1 − 1
4a

2(3 + a2u2
h) = q−2ϵobs

2r3
h

√
1 − a2

(4 − 3a2)r2
h − a4 = q−2ϵobs. (6.16)

Here the fact was utilized that the denominator of the second fraction equals
2r3

h

√
1 − a2, which can be inferred after substituting rh = 1 +

√
1 − a2. If one

wants to estimate the position of the asymptote of b−, an expansion of F up to
the first order in ϵh leads to the same result as for ϵA, i.e., q−2ϵobs. Hence, to show
that ϵA is larger than the asymptote position and thus that the point where b−
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intersects with b+ lies beyond the asymptote of either b− or b+, it is necessary to
proceed one order higher in ϵobs.

In the other limit, when robs ≫ 1, one gets

Γobs ≃ 1, Ωobs = O(u3
obs). (6.17)

When also r ∼ robs, one gets

f+ ≃ 1, P ≃ r2
obsu

2. (6.18)

All these values lead to the conclusion that the bracket term in (6.11) for large
robs (far from the horizon) yields

1 − q2Γ2
obsf+P ≃ 1 − q2r2

obsu
2. (6.19)

Hence, in the (r, b)-plane there is also a neck, of an outer edge aimed towards the
horizon down to rB = qrobs.

Besides the limiting values rA and rB, there are special choices of robs which
cause the neck to formally shrink to a point. The position of this point can be
derived from the requirement that not only the bracket term of (6.11) equals zero,
but also its first derivative with respect to the radial coordinate vanishes. These
two conditions return two equations which have to be solved, namely

1 = q2Γ2
obsf+P , (6.20)

(f+P)′ ∝ (1 − aΩobs)2u(3 + r2
cu

2) − (r2
c − a2)Ω2

obs − 1 = 0. (6.21)

The second equation is a cubic equation for u. To solve this problem completely,
one has to apply the formula for corresponding solutions (Cardano’s formula) as a
function of Ωobs and combine that with a numerical approach in order to find two
pairs of values (robs, r). The corresponding solutions for the choice of parameters
used in Fig. 5.4 are (ρobsA, ρA) = (1.726, 2.176) and (ρobsB, ρB) = (6.769, 3.080).

The analysis performed above of the neck occurrence in the two limiting
regimes for robs (close and far from the horizon) indicates that the neck connects
the forbidden regions if robs < ρobsA and also when robs > ρobsB. It follows that
robs chosen within the interval (ρobsA, ρobsB) returns two separate forbidden re-
gions without any neck. Furthermore, the interval (ρA, ρB) is situated completely
inside the interval (ρobsA, ρobsB). Due to this, the relations ϵA = q−2ϵobs > ϵobs and
rB = qrobs < robs revealed at robs ∼ rh and robs ≫ 1, respectively, hold over the
whole range of robs chosen between rh and ρobsA and further from ρobsB to infinity.
The verification of this conclusion can be performed numerically, as the bracket
term of (6.11) is a cubic expression for r and applying Cardano’s formula allows
one to express rA and rB as functions of robs.

6.4 Allowed Regions in the (robs, b)-plane
Although the idea of identifying the allowed regions in the (robs, b)-plane is the
same as in the (r, b)-plane, there are some technical differences which should be
treated separately. In this section these aspects are analyzed for the rays detected
by LNRF observers. The task is still the same, i.e., to find the functions limiting
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the impact parameters, but in this case such that B± = b±(robs). In order to
complete this task, one has to redefine F presented in (5.9), taking into account
that the unknown radial variable is now solely robs, i.e.,

Fobs = Fobsu
2
obs = Aobs − 4au3

obsb− fobsu
2
obsb

2 − Dobsζ
2
obs, (6.22)

where ζobs is given by relation (5.21).1 Moreover, because P|r=robs
= 1, the

formula for ζobs is simplified in comparison with the original form (5.21) to

ζ2
obs = q2Γ2

obs(1 − Ωobsb)2 = q2 Aobs

Dobs

(1 − Ωobsb)2. (6.23)

Substituting this expression in (6.22) and applying identity (5.6) returns

Fobs = (1 − q2)Aobs(1 − Ωobsb)2 − Dobs

Aobs

u2
obsb

2. (6.24)

This expression corresponds to the equivalent formula for vacuum with the sub-
stitution Dobs → Dobs(1 − q2)−1. Setting Fobs = 0, one finds the solutions

B± = Aobsr
2
obs

2ar−1
obs ±

√︂
Dobs(1 − q2)−1robs

. (6.25)

The asymptotes of B± at robs ≫ 1 are ±
√

1 − q2robs. For large b, Fobs can be
expressed as

Fobs =
[︄
(1 − q2)AobsΩ2

obs − Dobs

r2
obsAobs

]︄
b2 ∝

[︃
1 − q2 − Dobs

4a2 r
4
obs

]︃
b2. (6.26)

Thus, the asymptote position of the function B− can be found from the condition√
Dobsr

2
obs = 2a

√
1 − q2. For the parameter values used in Fig. 5.4 the asymptote

occurs at radius robs = 1.874.
In order to construct the curves B± in the (robs, b)-plane, it is necessary to

define the interval (ρobsA, ρobsB), in which a neck does not occur. For robs from this
interval one has to calculate the maximum and minimum impact parameters of
the lower and upper forbidden regions in the (r, b)-plane, respectively. A sequence
of these points drawn in the (robs, b)-plane leads to the desired B± curves. The
two lines B− and B+ are separated inside (ρobsA, ρobsB), but they intersect at
the boundaries of this interval. Thus, these two curves form a closed loop in
the (robs, b)-plane as shown in Fig. 5.4. This loop hence forms the boundary of
the region Oh+i, which is situated inside and the corresponding rays can reach
the observer from both sides, i.e., from the horizon as well as from infinity. On
the contrary, the rays on the boundary, lying either on B+ or B−, arrive at the
observer’s position from one side only. The rays originating either on the horizon

1The vacuum part of (6.22) originally given by (5.8) can be treated with identity (5.6), but
notice that the same form can be directly derived when a 2D metric is defined, namely

ds2
2 = −D

A
dt2 + Ar2dφ̃2,

where dφ̃ = dφ − Ωdt. Then, the corresponding formula can be obtained from Fvac =
−ω−2

0 DgAB k̃Ak̃B , assuming that k̃A = ω0(−1 + Ωb, b).
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or at infinity can be distinguished on the curves B+ and B− due to the points P±
which divide the boundary of Oh+i into two parts. The positions of the points
P± and the lines B± and B± in their vicinity are discussed further in detail.

Along with the change of robs between ρobsA also ρobsB, the minima of b+ and
the maxima of b− also vary, from ρA to ρB. In general, ρA > ρobsA and ρB < ρobsB,
and at some robs the observer’s position equals the radius at which the considered
limiting value of either b+ or b− appears. Hence, these values of robs correspond
to the positions of the points P± in the (robs, b)-plane. The functions B+(robs)
and B+(robs) intersect at robs which corresponds to the radius of minimum b+
and similarly B−(robs) and B−(robs) coincide at the position of maximum b−. The
positions of the extreme values in the (r, b)-plane can be found from the condition
∂rb±(robs, r) = 0 or, equivalently, from the equation ∂rF (robs, r, b)

⃓⃓⃓
b=b±(robs,r)

= 0.
Then, in order to find the corresponding robs in the (robs, b)-plane, one has to
solve

∂rF (robs, robs, b)
⃓⃓⃓
b=B±(robs)

= 0. (6.27)

This relation is rather complicated, and to express the substantial dependences
concisely, the subscript “obs” will now be omitted for a while and left only at its
original places. Furthermore, rather than with F itself in this case it is useful to
deal with the relation

fF = Dr2 − (fb+ 2ar−1)2 − fQ2(1 − Ωobsb)2, (6.28)

where the identity (5.6) and Q defined in Section 6.2 were used. Then,

∂r(fF ) ∝ 1
4(f(Dr2)′r2 + a2) −

(︃
fb+ 2ar−1 − a

2

)︃2
− 1

4f(fQ2)′r2(1 − Ωobsb)2.

(6.29)
The first and third terms can be simplified later by using

1
2f(Dr2)′r2 = r3 − 3r2 + 2r, (6.30)

1
2f(fQ2)′r2 = q2Γ2

obsPf
(︄
r3 − 2r2 + a2 − fDr5

r2 + r2
c

)︄
≡ q2Γ2

obsPfν. (6.31)

Considering the condition (6.27) and getting rid of Q2 by applying (6.28), from
(6.29) one gets

1
4(f(Dr2)′r2 + a2) −

(︃
fB± + 2ar−1 − a

2

)︃2
− 1

2ν
(︄

1 − (fB± + 2ar−1)2

Dr2

)︄
= 0.

(6.32)
From this equation it is possible to find the values of radii robs where either b+
or b− reach their extreme values. The parameter values chosen in Fig. 5.4 yield
1.965 as the radius where b+ has its minimum, while b− reaches its maximum at
radius 3.593.

The significance of the points P± is not only being the points of coincidence of
the functions B± and B±, but in addition the functions are mutually tangent at
these points. It should be recalled here that the corresponding pairs of lines (i.e.,
either B+ and B+ or B− and B−) have exclusively one common point. The same
conclusion can be also seen when analysing the functions B±(robs) and B±(robs)
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close to their extreme values. This is illustrated for the functions B+ and B+.
The line B+(robs) is defined as the minimum of function b+(robs, r), and hence
B+ > B+ in the vicinity of the position where b+(robs, r) is minimal. Thus, for
robs larger than this position the relation

dB+

drobs

≥ dB+

drobs

(6.33)

has to be satisfied, while at robs less than the minimal radius,

dB+

drobs

≤ dB+

drobs

. (6.34)

From these two inequalities one directly sees that exactly at the position robs of
minimal b+

dB+

drobs

= dB+

drobs

, (6.35)

and so these two derivatives correspond to each other.
Note that in addition to the minimal radii calculated for particular choices

of parameters a, rc, and q, relation (6.32) is also always fulfilled at robs = 2
regardless of the parameter values. This can be easily seen, since at robs = 2 one
gets

1
2f(Dr2)′r2|r=2 = 0, fB± + 2ar−1|r=2 = a, D = a2r−2 (6.36)

and (6.32) reduces to

1
4(0 + a2) −

(︃
a− a

2

)︃2
− 1

2ν (1 − 1) = 0. (6.37)

However, this solution is rather pathological and it cannot be interpreted that the
functions B±(robs) and B±(robs) merge twice for the same robs, i.e., at the static
limit robs = 2 (inside (ρobsA, ρobsB)) and outside the interval (ρobsA, ρobsB). The
pathology occurs because the expressions used for deriving (6.32) were based on
calculating fF , not F only, and the relation ∂rF includes the additional factor
f−2 which has to appear also when substituting in (6.32). Then, the correct
equation which has to vanish is (6.32) multiplied by f−2 evaluated at robs. When
robs ∼ 2, fobs = ϵobs/2 and (6.32) is O(ϵ2

obs), where ϵobs = robs − 2. Due to this,
the corresponding equation does not generally have a solution at robs = 2. Just
for completeness, the coefficient of the term ∝ ϵ2

obs in (6.32) is(︄
1 + a2

2

)︄[︄
1
2 + 4

(4 + r2
c ) − 2

(︄
1 + a2

2

)︄
a−2q−2

]︄
k± + 3

2 + a2

8 , (6.38)

where

k± =

√︂
(1 − q2)−1 ∓ 1√︂
(1 − q2)−1 ± 1

. (6.39)

For a ∼ 0, the factors (6.38) are negative, reaching the order ∝ −a−2, but
while the negative branch remains less than zero even for a close to 1, the factor
with k+ crosses 0 at some acrit < 1. This is true if one assumes that q is not
too close to 1. For the parameter values used in Fig. 5.4 one gets acrit = 0.784.
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The behaviour of (6.38) at the horizon and for robs ≫ 1 suggests that zero is
intersected at robs > 2 like an increasing function from below and at robs < 2 as
decreasing from above. From this I conclude that the radius where b− reaches
its maximum is always larger than 2 for arbitrary a, while the radius of minimal
b+ is larger than 2 only for a < acrit. In Fig. 5.4 it was chosen a = 0.8, which is
greater than acrit and, hence, point P+ is shifted slightly to the left of robs = 2.

In order to perform a proper derivative of B± and B± at robs, one has to realize
that the observer’s position is present in F only through the additional plasma
term introduced in (5.9). Hence, its derivative with respect to robs in the case of
the LNRF observer is

(∂robs
F )|r=robs

= −2Q2
obsY (1 − Ωobsb), (6.40)

where

Y =
(︄
robs − a2r−2

obs

Aobsr2
obs

− robs − 1
Dobsr2

obs

+ robs

r2
obs + r2

c

)︄
(1 − Ωobsb) + 2a(3r2

obs + a2)b
(Aobsr3

obs)2 .

(6.41)

The corresponding derivatives are then found by setting b = B±. As seen in
Fig. 5.4, it might seem that these derivatives are zero. However, they are only
close to zero. Indeed, with the parameter values used in Fig. 5.4, the values of robs

where Y = 0 return 1.944 and 3.580 for minimal b+ and maximal b−, respectively.
Comparing these with the values obtained using equation (6.32), one sees that
they are close to each other, not identical. If one calculates

∂bFobs = −2(fobsb+ 2ar−1
obs −Q2

obsΩobs(1 − Ωobsb)) (6.42)

and associates it with (6.40), one finds that

dB
drobs

= −0.0794 and dB
drobs

= 0.0074 (6.43)

at robs corresponding to the minimum of b+ and the maximum of b−, respectively.

6.5 Special Features for a Freely Falling Ob-
server

The allowed regions detected by freely falling observers are studied in the (robs, b)-
plane. To describe them, it is useful to define the function Fobs analogously as in
the previous section by (6.22), but with ζ known from (5.22). Due to this, a new
term appears in the plasma part, so that one gets

ζ2 = q2Γ̂2
obsP(1 − Ωobsb− ξobsηobs)2. (6.44)

In order to compare the relations obtained for LNRF and for freely falling ob-
servers, the corresponding relations should be as similar as possible. It is thus
reasonable to introduce an “effective LNRF parameter” defined by

qNR = q
Γ̂obs

Γobs

= qΓobs, (6.45)
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which can be used in (6.44) to get

ζ2 = q2
NRΓ2

obsP(1 − Ωobsb− ξobsηobs)2. (6.46)

A substantial difference between the LNRF and freely falling observers is that
in the latter case

Fobs = η2
obs. (6.47)

Note that in the case of the LNRF observer Fobs = 0. For this reason, the
solutions for ηobs have to be found first. Hence, one can write an additional
quadratic equation for finding η(±)

obs rather than b±, namely

−Fvac|r=robs
+ q2

NRAobs(1 − Ωobsb)2 (6.48)
−2q2

NRAobsξobs(1 − Ωobsb)ηobs + (1 + q2
NRAobsξ

2
obs)η2

obs = 0.

It is worth mentioning that the coefficient in front of η2
obs can be also written as

1 + q2
NR(1 − Γ−2

obs).
In order for the rays to reach the observer, the discriminant of (6.48) must be

non-negative. One can thus write

Fvac|r=robs
(1 + q2

NRAobsξ
2
obs) − q2

NRAobs(1 − Ωobsb)2 (6.49)
∝ Fvac|r=robs

− q̃2
NRAobs(1 − Ωobsb)2 ≥ 0,

where
q̃2

NR = q2
NR(1 + q2

NRAobsξ
2
obs)−1 (6.50)

can be viewed as a “modified effective LNRF parameter”. Only rays satisfying
(6.49) can reach a freely falling observer at robs. Moreover, analogously to the
previous section, q̃NR < 1 is required for rays of the corresponding frequency. The
boundary impact parameters for the allowed regions of the rays are then given
by B̃± = B±(q → q̃NR) (cf. (6.25)). The impact parameters b for rays which
can reach the observer at robs vary as a function of this radius and the asymptote
of B̃−. For sufficiently large robs (greater than the asymptote radius) the ray
impact parameters have to satisfy B̃− < b < B̃+, while for observer positions
below the asymptote either b < B̃+ or b > B̃−. This leads to the same shapes
of the allowed regions in the (robs, b)-plane as for the LNRF observers. There
are two separate allowed regions for the rays. The region OI extends over such
robs, where B̃− < b < B̃+ and robs is larger than the asymptote of B̃−, while for
smaller robs it includes regions where b < B̃+. The region OII is located only at
radii smaller than the asymptote where b > B̃−.

The turning points of the rays are not situated at the boundaries of OI and
OII as it was shown in the case of the LNRF observer. On the contrary, the
radial velocity of the ray ηobs < 0 at the boundary of OI , while ηobs > 0 at the
boundary of OII . Within OI and OII the radial velocity ηobs attains two values
at each point, with either the same sign as at the boundary or the opposite. Of
the same sign are the values η(−)

obs in OI and η(+)
obs in OII , while η(+)

obs in OI and η(−)
obs

in OII have the opposite sign. The sign of the given ηobs changes at the curves
B± which are calculated from the assumption that the solution of (6.48) is zero.
This leads to solving the equation

Aobs − 4au3
obsb− fobsu

2
obsb

2 − q2
NRAobs(1 − Ωobsb)2 = 0. (6.51)
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As robs approaches the horizon, the function Γobs increases from 1 to infinity,
which causes also q̃NR to increase towards 1, since

q̃NR = qNR√︂
1 + q2

NRAobsξ2
obs

= qNR√︂
1 + q2

NR(1 − Γ−2
obs)

= q√︂
(1 − q2)Γ−2

obs + q2
. (6.52)

Note that q̃NR is limited from below by q. For a fixed q the shapes of the regions
OI and OII look different close to the horizon than in the case with a LNRF
observer. While they meet at a given b = bh on the horizon for the LNRF
observer, in the case of the freely falling observer they are separated by a gap
limited by

bh± = bh

1 ± qbh

√︂
(1 − q2)−1

. (6.53)

With the parameter values used in Fig. 5.5 one gets bh+ = 1.045 and bh− =
−2.188. The gap is thus located completely under the meeting point bh = 4.

To maintain the formal correspondence of the regions OI and OII with those
obtained for LNRF observers, it is suitable to fix q̃NR rather than q. Then, q
decreases from q̃NR to 0 as robs heads from infinity to the horizon2. In comparison,
qNR increases as robs comes from infinity to the horizon, ranging between q̃NR and
q̃NR(1 − q̃2

NR)−1/2. The latter limit is larger than 1 for q̃NR > 1/
√

2. Then, also
qNR exceeds 1 at some point above the horizon and the functions B± are thus
defined only for robs above this limit. As a result, ηobs does not change its sign at
positions between the horizon and the limiting radius. However, with q̃NR = 2/3
chosen in Fig. 5.5 the functions B± are defined over the whole range of robs.

The main goal of analyzing the allowed regions in the (robs, b)-plane is to find
the boundaries of the regions Oh+i, O′

h, O′
i. In the case of an LNRF observer, the

functions B± were found for a given robs as the minimum of b+ and the maximum
of b− in the (r, b)-plane, respectively. This is effectively performed by calculating
F(r, robs, b) = 0, which is a quadratic equation in b and can be solved analytically.
In the case of a freely falling observer the task is more complicated because there
are two classes of rays, given by η(+)

obs in class I and η
(−)
obs in class II. Hence, there

are also two functions F (±) which have to be considered, i.e.,

F (±) = F|
ηobs=η

(±)
obs

= Fvac − q̃2
NRΓ2

obsDP
[︄

1 − q2
NR(1 − Γ−2

obs)
1 + q2

NR(1 − Γ−2
obs)

(1 − Ωobsb)2 (6.54)

+ξ2
obsFvac|r=robs

∓ 2ξobs
(Fvac|r=robs

− q̃2
NRAobs(1 − Ωobsb)2)1/2

(1 + q2
NR(1 − Γ−2

obs))1/2 (1 − Ω0b)
]︄
.

However, the corresponding impact parameters solving F (±) = 0 have to satisfy
the equation F (+)F (−) = 0 which is quartic in b. In principle, an analytical
solution of this expression could be calculated, but it is not much helpful for
determining B±. Thus, the values of these functions are found here as the points
where F (+) and F (−) cross zero at a given robs, if these exist.

In the case of an LNRF observer, the discussed curves are just segments along
the boundary of Oh+i divided by the positions of P±. Here, although they are still

2Recall that
q = q̃NR√︁

(1 − q̃2
NR)Γ2

0 + q̃2
NR

.
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parts of this boundary, they are separated by whole segments of the curves B̃±
rather than only by points. On the curve B̃+ the limiting points of these segments
are PA+, PB+, while on B̃− the points are PA−, PB−. Moreover, at PA+ and PB+
the value of b is maximal and at PA−, PB− it is minimal out of all rays which can
reach the observer with the given frequency. In addition, the rays at PA± originate
at the peak of the boundary between the forbidden regions in the (r, b)-plane,
while those situated at PB± terminate there. Hence, the radial positions of the
corresponding peaks between the allowed and forbidden regions are different than
the positions of the observers at these points. The observer positions are lower
at PA± and larger at PB±. The positions of these points for the parameter values
used in Fig. 5.5 are (robsA+, rA+) = (1.708, 1.900), (robsB+, rB+) = (2.405, 1.919),
(robsA−, rA−) = (2.859, 3.644), and (robsB−, rB−) = (4.548, 3.624).

As for the LNRF observer, for which B± curves are tangent to the lines B±,
the same relationship can be identified also for functions discussed in the case of
a freely falling observer. Thus, B(±)

+ are tangent to B̃+ and B(±)
− to B̃−, i.e., to

the boundaries of OI . Note that B(+)
+ lies on the upper border of O(+)

h+i, close to
the arc PA+PB+, while B(+)

− is situated on the lower border of O(+)
h+i, close to the

arc PA−PB−. Similarly, B(−)
± define the boundaries of the region O(−)

h+i.
The tangency of the curves can be demonstrated in the vicinity of PB+ for

rays of class I (left panel of Fig. 5.5). Close to this point, the boundary of Oh+i is
crossed three times at a given robs = const. and there is an additional forbidden
region confined from both sides. While the rays with b = B̃+ at positions robs

larger than PB+ bounce back once they reach the observer, those at robs less than
PB+ reach the upper border of the additional forbidden region. In accordance
with the previous case, one gets

dB+

drobs

≥ dB+
(−)

drobs

and dB+

drobs

≤ dB(+)
+

drobs

(6.55)

for robs larger and robs lower than PB+, respectively. This leads to the appearance
of a new feature. While for an LNRF observer the forbidden region shifts to
the left without any deformation as robs passes P+ from larger radii, here, after
crossing PB+ from the right, the forbidden region shrinks to a point before forming
a new forbidden region. From numerical calculations we infer that the transition
from the upper forbidden region to the new region is smooth and dB/drobs is thus
continuous.

As demonstrated in Fig. 5.5, the regions Oh+i are significantly different for
rays of classes I and II. In comparison with the previous case, they touch the
forbidden regions not only at one point, but along a finite part of their mutual
boundary. The region Oh+i shrinks to a point at Q± located on B± for rays of
class I, and it directly reaches the horizon over a finite range of b for rays of class
II.

It can also be seen from Fig. 5.5 that the boundary of O(−)
h+i is formed by the

arcs PA+PA− and PB+PB− which intersect at the points Q±. In the (r, b)-plane
there are two forbidden regions in the neighbourhood of Q−: the upper region and
the additional one discussed above. These two areas are detached and after robs

crosses Q− (here at 3.494) the new region diminishes to a point before expanding
again with an opposite direction than before.
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In the right neighbourhood of Q+, the lower forbidden corner and the ad-
ditional forbidden region are situated. They touch as robs passes through Q+
(here at 2.159) and at smaller radial distances only the forbidden corner re-
mains. The central part of O(+)

h+i has its left border at larger radii than Q+.
In this region ρ

(+)
obsA = ρ

(+)
A , which furthermore corresponds to the position of

Q+. Besides that, numerical calculations yield the values of the maximal radii
(ρ(+)

obsB, ρ
(+)
B ) = (3.966, 3.161).

Finally, we investigate the limiting values of b where O(−)
h+i reaches the horizon.

First, let me rewrite the additional term present in F (−) due to the presence of a
plasma as (cf. (6.54))

−q2
NRΓ2

obsDP(1 − Ωobsb− ξobsηobs)2 = −q2
NRΓ2

obsDP (6.56)

×
[︄

1 − Ωobsb+ ξobs((1 + q2
NRAobsξ

2
obs)Fvac|r=robs

− q2
NRAobs(1 − Ωobsb)2)1/2

1 + q2
NRAobsξ2

obs

]︄2

.

The term in the square root can be rearranged with the help of the identities
(5.6) and (6.52) as follows

(1 + q2
NRAobsξ

2
obs)

[︃
(1 − q̃2

NR)Aobs(1 − Ωobsb)2 − Dobs

Aobs

u2
obsb

2
]︃
. (6.57)

Notice that the relation in the square brackets in (6.57) formally corresponds to
(6.24) with replacement q → q̃NR. The obtained expressions now have to be
evaluated at robs = rh. Because D = 0 at the horizon, in this limit one gets

ξ|robs=rh
= −A−1/2

h , qNR|robs=rh
= q̃NR√︂

1 − q̃2
NR

, (6.58)

which further leads to

(1 + q2
NRAobsξ

2
obs)

⃓⃓⃓
robs=rh

= 1 + q2
NR = 1

1 − q̃2
NR

. (6.59)

Substituting all these relations in (6.56) shows that at robs = rh this term

∝ 1 − Ωobsb− |1 − Ωobsb|. (6.60)

Thus, one can see that at the horizon the plasma term in F (−) completely drops
out and the function F (−)(r, robs, b) then reduces to Fvac(r, b). Due to this, at
robs = rh also B±(robs) reduce to the vacuum solutions b̊±. Recall that B±(robs)
are defined with F (−)(r, robs, b) = ∂rF (−)(r, robs, b) = 0.

The choice a = 0.8 used in Fig. 5.5 yields limit values of b seen by an observer
at the horizon as (Bh+,Bh−) = (3.237,−6.662). Because O(−)

h+i is directly adjacent
to the horizon, the radial distances of rays which can reach the black hole are
limited only from above, in Fig. 5.5 by the values (ρ(−)

obsB, ρ
(−)
B ) = (11.378, 3.067).
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Conclusion
My thesis focuses on an analytical description of various aspects of light prop-
agation in a medium of dispersive and refractive properties in the vicinity of a
gravitating object. Although this topic has been widely studied in the literature,
there are several important features which are typically overlooked. The main
aim of this work was to contribute to the field with a rigorous analysis of these
ignored problems.

The applied formalism is based on the geometrical optics approximation and
the approach introduced by Synge [1960], for this purpose a basic description
of both is provided in Chapter 1. Their main ideas and principles are usually
discussed in many papers related to the subject. Instead, this chapter puts more
emphasis on aspects of the formalism that are often not explained appropriately
and on providing a broader context for the involved terms. At the end of the
chapter, a brief review of recently published relevant work is given. Although the
presented overview cannot cover the full range of works published in the field, it
was included to help clarify the limits of current applications and indicate possible
directions of future research.

General formulae obtained for an axially symmetric stationary spacetime im-
mersed in a medium, possibly but not necessarily limited to a cold plasma, are
presented in Chapter 2. These expressions include the generalized Carter con-
stant, the photon region, the black hole shadow, and the deflection angle. Note
that in order to find the Carter constant, the functions describing both the space-
time and the medium have to satisfy several simple algebraic conditions. These
are based on the separability requirement of the Hamilton-Jacobi equation. Such
general conditions are also stated in this chapter, providing a simple way how to
decide whether a solution exists or not. Moreover, it is shown that the conditions
set on the medium (plasma) and on the gravitating objects are independent.

In order to demonstrate the utility of the obtained relations, the general for-
mulae presented in Chapter 2 are applied to specific settings in Chapter 3. For
several axially symmetric spacetimes the separability conditions revealed whether
the Carter constant exists or not. In those cases where it exists, the Carter con-
stant is calculated and analytical forms of both the photon region and the shadow
are derived. The deflection angle around an object characterised by the Hartle-
Thorne metric in the weak-field approximation is derived and compared with the
solution given by a general formula introduced in Chapter 2. Moreover, ray trac-
ing in a plasma and in vacuum is compared for objects described by both the
Kerr and Hartle-Thorne metrics. It is demonstrated that the light deflection in
plasma is smaller than in vacuum.

A slightly different setting is studied in Chapter 4. In comparison with the
previous chapters, a spherically symmetric spacetime is considered here and a
general moving medium is assumed. This assumption requires going beyond the
cold plasma approximation and, hence, a more general form of the refractive index
is studied. Deflection angles are calculated for the cases of radially falling and
rotating media. Furthermore, a perturbative approach to the whole problem is
presented. Two perturbative schemes were assumed in this work, namely that any
kind of plasma represents a small deviation from vacuum and the perturbation
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from the cold plasma case. In the former case the zeroth-order term corresponds
to the vacuum results, while in the latter the zeroth-order term is the cold plasma
deflection angle previously obtained in the literature [e.g., Tsupko, 2021].

Chapters 5, 6 provide a non-standard approach to the topic. Taking the
cold plasma approximation characterised as a nonsingular isothermal sphere sur-
rounding a Kerr black hole, the allowed regions for rays are studied. The rays
are described by their impact parameters and various aspects of the accessible
regions are studied for two classes of observers, locally nonrotating and freely
falling. This approach serves as a complementary description to the previous
chapters and since it is not commonly applied, it provides unique and useful
insights.

The topic of ray propagation in refractive and dispersive media around a
relativistic compact object is a broad field. Within the scope of this thesis, it was
not possible to capture all of its aspects. There are more effects which should
be further included in the description, such as absorption or scattering by the
medium and the presence of a magnetic field generated by the plasma. While a
proper analysis of some of them lies beyond the geometrical optics approximation,
others should be more straightforward to explore in future studies.

Although the presented results may appear to be simple in some sense, a
basic understanding of the problems outlined here can still be very valuable.
Particularly desirable is the distinction between the effects caused by the medium
and those due to gravity. Several additional findings have been already obtained
in this regard, and prospective astrophysical applications are among the topics
that are next in line.
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J. Bičák and Z. Stuchĺık. The fall of the shell of dust on to a rotating black hole.
Mon. Not. R. Astron. Soc., 175(2):381–393, 1976.

W. B. Bonnor. Static magnetic fields in general relativity. volume 67, page 225.
IOP Publishing, 1954.

R. A. Breuer and J. Ehlers. Propagation of high-frequency electromagnetic waves
through a magnetized plasma in curved space-time. I. Proc. R. Soc. A: Math.
Phys. Eng. Sci., 370(1742):389–406, 1980.

105



R. A. Breuer and J. Ehlers. Propagation of high-frequency electromagnetic waves
through a magnetized plasma in curved space-time. II. Application of the
asymptotic approximation. Proc. R. Soc. A: Math. Phys. Eng. Sci., 374(1756):
65–86, 1981.

G. Briozzo and E. Gallo. Analytical expressions for pulse profile of neutron stars
in plasma environments. Eur. Phys. J. C, 83(2):165, 2023.
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Matfyzpress, pp. 13–20, 2021.
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and T. Turunen. Conjugate Observations of a Remarkable Quasiperiodic
Event by the Low-Altitude DEMETER Spacecraft and Ground-Based In-
struments. J. Geophys. Res. Space Phys., 121(9), 8790–8803, 2016.
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