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Let me be truthful, just once, but nonetheless
In this short piece that does not quite belong
With the rest. All that follows is worthless

It doesn’t really matter if it’s right or wrong

What’s important are only those few moments
In which, after weeks of confused meandering,
I glimpsed, in lines of math, a few fragments

Of something unearned, unlooked for, something
That went beyond the drudgery of equations

And, if not true, was truly beautiful
In those moments my thoughts were revelations

So wondrously childlike, simple and cheerful

And my mind, so exhausted and exposed
Danced in exhilaration, all unease gone

I knew then of truths never before proposed
And I knew I’m close, but never could go on

This is all, I have nothing more to tell
For my mind fails to describe where it went
So, stop reading, before you break the spell
And just find for yourself such a moment.
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Langer and Jǐŕı Bičák.
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Introduction
The main subject of this thesis is the recovery of the equations governing the
gravitational dynamics by thermodynamic reasoning. This area of research arose
in the mid nineties Jacobson [1995]. However, it is based on the systematic
exploration of phenomena lying at the intersection of gravity, quantum physics
and thermodynamics dating back to the early seventies. Gravity indeed shows
a deep interconnection with thermodynamics, which is not yet fully understood
and remains an active subject of exploration. It first emerged with the realisa-
tion that entropy of any matter falling inside a black hole apparently vanishes,
breaking the second law of thermodynamics Wheeler and Ford [1998]. Moreover,
a proposal to use a black hole in a construction of a perpetuum mobile was put
forward Geroch [1971], Bekenstein [1973], leading to another challenge to the
second law, which forbids a cyclic process operating with no energy loss. Such
potential conflicts with the fundamental laws of thermodynamics were addressed
by the idea that black holes possess entropy proportional to the area of a spatial
cross-section of their event horizon Bekenstein [1973]. Then, the increase of black
hole entropy due to absorption of matter restores the validity of the second law,
as the total entropy of the universe does not decrease. A more detailed analysis
also showed that assigning entropy to a black hole makes the construction of a
perpetuum mobile impossible1. Thus, black holes are compatible with the second
law of thermodynamics. Along the proposal of black hole entropy, an equation
governing a small, stationary perturbation of a black holes spacetime was derived,
relating the change in the black hole’s energy to the change of its entropy Beken-
stein [1973], Bardeen et al. [1973]. For a Schwarzschild black hole, it takes the
form ∆M = Θ∆S, where M denotes energy, S entropy, and Θ is a function con-
stant on the horizon and proportional to its surface gravity Bekenstein [1973]. If
the function Θ could be interpreted as the black hole temperature, this equation
would become a genuine first law of thermodynamics relating the change of the
total energy to the heat transfer term T∆S. This interpretation was confirmed
soon afterwards, with the realisation that, when one takes into account the quan-
tum effects, black holes emit a black body radiation corresponding precisely to
the required temperature Hawking [1975]. Therefore, a black hole can be seen
as a genuine thermodynamic object that possesses a well defined entropy and
temperature and follows the standard laws of thermodynamics. Notably, quan-
tum physics plays a crucial role in completing the thermodynamic description of
the black hole’s horizon, making it a phenomenon at the intersection of quan-
tum and gravitational physics. Exploiting this unique position of gravitational
thermodynamics is one of the principal aims of the present text.

Thermodynamics of the black hole horizons thus provides a connection be-
tween gravitational dynamics, which determines the form of the first law, and
quantum physics, which provides a notion of black hole temperature. Follow-

1Both statements are somewhat subtle and depend on assuming some reasonable properties
of the matter (essentially the null energy condition and the Bekenstein entropy bound). See,
e.g. Wald [2001] for a short review and further references.
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ing the seminal papers on the subject, the thermodynamic description has been
extended to other types of horizons, e.g. the de Sitter cosmological horizon Gib-
bons and Hawking [1977] and even locally constructed, observer-dependent hori-
zons Unruh [1976], Bombelli et al. [1986], Jacobson and Parentani [2003], Barbado
and Visser [2012], Baccetti and Visser [2014], Chakraborty et al. [2016], Jacobson
and Visser [2019a, 2023a,b].

Extending the thermodynamic description to local horizons opened up a dif-
ferent perspective on the connection between gravity and thermodynamics. In
particular, two decades after the inception of gravitational thermodynamics, it
was realised that thermodynamic equilibrium conditions applied to local, ap-
proximate Rindler (acceleration) horizons constructed in every regular spacetime
point imply the Einstein equations of gravitational dynamics Jacobson [1995]. In
other words, thermodynamics actually encodes the information necessary to re-
construct gravitational dynamics. The idea of the thermodynamic reconstruction
of the gravitational dynamics lies at the heart of this thesis. Hence, we find it
worthwhile to recount the principal ideas and assumptions involved, emphasising
the conceptual issues rather than the mathematical details.

To begin our exposition, we note that an approximate Rindler horizon can
indeed be constructed in an arbitrary regular spacetime point, P , provided that
we only consider a part of the wedge much smaller than the local curvature length
scale (an inverse of the square root of the largest eigenvalue of the Riemann ten-
sor). Then, constructing an approximately flat coordinate system in the vicinity
of P (e.g. Riemann normal coordinates) allows us to identify approximate world-
lines of uniformly accelerating observers and the corresponding Rindler horizon.
We show the details of the construction of a local Rindler horizon in figure 1. The
equations governing the gravitational dynamics are then encoded in the Clausius
equilibrium relation, which equates a small change in entropy of the Rindler hori-
zon to the heat flux divided by the temperature of the system.

Thence, to discuss the thermodynamics of local Rindler horizons, we first re-
quire a suitable notion of temperature. Due to the Unruh effect, an eternally
uniformly accelerating observer with acceleration a, who perceives the Rindler
horizon, sees the Minkowski vacuum as a thermal bath of particles at a temper-
ature TU = a/2π. While the observers associated with an approximate Rindler
wedge do not accelerate precisely uniformly and can be well defined only in fi-
nite regions, the Unruh effect still applies under certain conditions Chirco and
Liberati [2010], Barbado and Visser [2012], Baccetti and Visser [2014], Fewster
et al. [2016], Shevchenko [2017], Rick Perche [2021, 2022]. First, the local approx-
imate Minkowski vacuum state must be well defined. The sufficient condition is
the Einstein equivalence principle, which states that all the non-gravitational test
physics behaves locally as it would in the absence of gravity di Casola et al. [2015].
Then, the Minkowski vacuum can be locally defined in the usual way, as the state
invariant under the (approximate) Poincaré group associated with the local in-
ertial system, we chose Chirco and Liberati [2010]. Second, while the observers
we study do not have an exactly uniform acceleration and the approximation we
consider breaks down in finite proper time, they still may perceive the Minkowski
vacuum as a thermal bath of particles at the Unruh temperature. The necessary
condition is that the acceleration magnitude is much greater than both the vari-
ations in the acceleration and the inverse of the finite proper time interval. Only
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Figure 1: The construction of the local approximate Rindler wedge. Its centre is
the bifurcate spacelike (n− 2)-surface B denoted by a small black circle. The red
line shows a sample trajectory of a uniformly accelerating observer who perceives
the horizon. The thick black line represents a part of one branch of the past
causal horizon Σ. This part must be chosen small enough to be viewed as an
approximate Rindler horizon. The choice of the past boundary of Σ is arbitrary.
The blue arrow shows the physical direction of the heat flux across the horizon,
whereas the green arrow is the null normal to Σ.

the second requirement matters in our setup, since the acceleration variations
occur only due to spacetime curvature and we must anyway choose our Rindler
wedge much smaller than the local curvature length scale.

To complete the right hand side of the Clausius equilibrium relation, we need
a definition of the heat flux crossing the horizon. For a timelike (n− 1)-surface S
(n denotes the dimension of the spacetime), the heat flux measured by a uniformly
accelerating observer with velocity vµ tangent to S is simply defined as an integral
of the energy-momentum tensor

δQ = −
∫︂

S
T µνvµdSν . (1)

For a null surface, i.e., in the limit of vµ becoming light-like, the heat flux diverges.
However, the acceleration a and, therefore, the Unruh temperature measured by
the observer with velocity vµ also becomes divergent in this limit. It turns out
one may rigorously compute the null limit of the ratio δQ/TU, obtaining a finite
result Baccetti and Visser [2014]. Incidentally, the limit of infinite acceleration
also ensures that all the approximations required to invoke the Unruh effect can
always be done, as they rely on the acceleration being sufficiently large.

For the left hand side of the Clausius relation, we require an expression for the
change of entropy of the horizon due to the heat flux across it. Several standard
methods for computing entropy associated with the presence of a causal horizon
have been developed, most notably the Wald entropy formula Wald [1993], Iyer
and Wald [1994], the Euclidean canonical ensemble construction Gibbons and
Hawking [1977], Jacobson and Visser [2023a,b] or the vacuum entanglement en-
tropy paradigm Bombelli et al. [1986], Srednicki [1993], Solodukhin [2011]. Each
method prescribes the same entropy to any causal horizon, regardless of whether
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it is the event horizon of a black hole or a locally constructed, observer-dependent
horizon. The key point is that the entropy computation is performed in the space-
time region causally accessible to the given observer, which is naturally bounded
by the horizon(s). The correct microscopic interpretation of this entropy as-
sociated with a causal horizon remains an open problem, which we discuss in
chapter 2. The upshot of this discussion is that any causal horizon possesses
entropy proportional, to the leading order, to the area of its spatial cross-section,
i.e., S = ηA. The proportionality constant η cannot be determined without
specifying the gravitational dynamics.

At this point, we have all the ingredients necessary to reconstruct the equa-
tions governing the gravitational dynamics. If the local approximate Rindler
wedge is in thermodynamic equilibrium, the Clausius equilibrium relation im-
plies ηδA = δQ/TU, where the heat flux is given by the integral of the energy-
momentum tensor over the horizon. The change in the horizon area A is encoded
in the expansion of the null congruence forming it. Using the Raychaudhuri equa-
tion Raychaudhuri [1955] to compute the expansion we find it to be proportional
to the Ricci tensor Jacobson [1995]. The Clausius equilibrium relation is then
equivalent to the traceless equations governing the dynamics of the spacetime
metric, which are valid locally in the point P 2

Rµν (P ) − 1
n
R (P ) gµν (P ) = 2π

ℏη

(︃
Tµν (P ) − 1

n
T (P ) gµν (P )

)︃
. (2)

The equivalence principle guarantees that the same equations can be derived
in this way at any regular spacetime point and, therefore, hold throughout the
spacetime. The Newtonian limit of these equations allows us to identify the
Newton gravitational constant G as G = 1/ (4ℏη). Crucially, G is defined in
terms of the entropy proportionality constant η and the Planck constant ℏ. Notice
that, the entropy density of any causal horizon has a universal constant value
η = 1/4l2P, which agrees with the Bekenstein entropy formula Bekenstein [1973],
Hawking [1975], Wald [2001] valid for black hole horizons in general relativity.

Finally, if we postulate that the energy-momentum tensor is divergenceless,
we recover the Einstein equations

Gµν + Λgµν = 8πGTµν , (3)

with Λ appearing as an arbitrary integration constant. Notice that, while ℏ
disappears from the final gravitational equations, it is a necessary ingredient in
the derivation. The reason is the role of the quantum Unruh effect in defining
the Clausius entropy flux.

All the key physical insights of the original thermodynamic derivation Ja-
cobson [1995] have been confirmed by later works, although some more technical
points required further refinement Chirco and Liberati [2010], Baccetti and Visser
[2014]. The derivation has even been extended beyond general relativity to a class
of local, purely metric theories of gravity Eling et al. [2006], Padmanabhan [2010],
Guedens et al. [2012], Bueno et al. [2017], Parikh and Svesko [2018], Svesko [2019].
The derivation then relies on identifying the entropy of local causal horizons with
Wald entropy. However, the details are rather subtle and we reserve their discus-
sion for chapter 2.

2Throughout the thesis, we set c = 1 for simplicity.
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Of course, we do not need to make any reference to the Unruh effect or lo-
cal equilibrium conditions to derive the Einstein equations (for a slightly dated,
but nevertheless impressive list of the various approaches to their derivation,
see Misner et al. [2017]). Then, why should we be interested in the thermody-
namic approach which relies on extra assumptions? Is it anything more than a
curiosity? The answer proposed in the seminal paper and extended in a number
of follow-up works is that gravity is emergent Jacobson [1995], Padmanabhan
[2010], Verlinde [2011], Svesko [2019]. In this paradigm, the gravitational inter-
action emerges in a suitable thermodynamic limit from the behaviour of some
fundamental quantum spacetime degrees of freedom, in principle unrelated to
the metric. Then, the Einstein equations have the status of equations of state
and gravitons acquire a similar role as phonons, being merely a convenient way to
describe excitations of the underlying quantum spacetime structure. This emer-
gence interpretation of gravitational dynamics circumvents the issue of having to
quantise the Einstein-Hilbert action and has proven to be stimulating for new
ideas regarding the (quantum) nature of the spacetime Padmanabhan [2010],
Verlinde [2011], Kothawala [2013], Kothawala and Padmanabhan [2014, 2015],
Padmanabhan [2020], Padmanabhan and Chakraborty [2022]. However, the fact
that the Einstein equations can be derived from thermodynamics in no way im-
plies that gravity is emergent. To even formulate the local equilibrium conditions,
one already requires a classical curved spacetime, which would presumably only
arise in the thermodynamic limit applied to the quantum degrees of freedom
making up the spacetime. Then, the derivation is not really in a position to tell
us anything about the existence of such a limit, much less about whether the
Einstein equations can emerge from it. Moreover, it has been shown that the
thermodynamic derivations are consistent with loop quantum gravity, which is
a manifestly non-emergent approach to quantum gravitational dynamics Chirco
et al. [2014].

In this thesis, we show that the local equilibrium conditions allow us to learn
a lot about gravity even without embracing the emergence scenario. Instead, we
shall proceed with a more modest requirement that the local equilibrium condi-
tions encode the gravitational dynamics, or at least its most important features.
In other words, we consider them to be the consistency conditions that any can-
didate theory of quantum gravity should ultimately recover. This way of thinking
is similar in spirit to the expectation that quantum gravity ought to reproduce
Bekenstein entropy of black holes in a suitable limit. However, the recovery of
Bekenstein entropy only allows us to test the already proposed candidate theo-
ries. In contrast, as we will show, the local equilibrium conditions make it possible
to develop new predictions relevant independently of the microscopic nature of
gravity.

In particular, we report on two main branches of our research into the rela-
tionship between gravitational dynamics and local equilibrium conditions. One
branch consists of re-examining the implications of thermodynamics of spacetime
for the (semi)classical gravity, the other one in employing it to gain insights into
the quantum gravitational dynamics.

In regards to the (semi)classical gravitational dynamics, we note a some-
what awkward point occurring in the majority of the thermodynamic deriva-
tions Jacobson [1995], Padmanabhan [2010], Chirco and Liberati [2010], Jacobson
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[2015], Parikh and Svesko [2018]; the need to introduce a divergenceless energy-
momentum tensor as an extra assumption. We argue that one should instead treat
the traceless equations (2) as the final description of the gravitational dynamics
implied by the local equilibrium conditions (together with the equivalence princi-
ple). These equations are actually equivalent to the equations of motion of Weyl
transverse gravity Unruh [1989], Finkelstein et al. [2001], Tiwari [2006], Álvarez
et al. [2006], Barceló et al. [2014], Carballo-Rubio [2015], Álvarez et al. [2016],
Barceló et al. [2018], Carballo-Rubio et al. [2022]. In other words, if one assumes
that the local equilibrium conditions and the (strong) equivalence principle en-
code all the information about the classical gravitational dynamics, the resulting
theory is Weyl transverse gravity rather than general relativity Alonso-Serrano
and Lǐska [2020a, 2022], Alonso-Serrano et al. [2024].

Weyl transverse gravity has the same classical solutions as general relativity,
but its local symmetries are the spacetime volume preserving diffeomorphisms
and Weyl rescaling of the metric. It has been suggested that this difference in the
symmetry group partially addresses the so called cosmological constant problem
which arises in general relativity Unruh [1989], Carballo-Rubio [2015], Barceló
et al. [2018] (the key point is that vacuum energy does not couple to gravity). To
develop a full understanding and control over the relationship between the local
equilibrium conditions and Weyl transverse gravity, we found it necessary to
first study the thermodynamics of this theory. We chose to apply the covariant
phase space formalism, which allows a rigorous derivation of the first law of
horizon thermodynamics and a (heuristic) identification of black hole entropy,
known as Wald entropy Lee and Wald [1990], Wald [1993], Iyer and Wald [1994],
Iyer [1997], Wald and Zoupas [2000]. Since the covariant phase space formalism
in its original form only applies to fully diffeomorphism invariant theories, we
had to develop it for Weyl transverse gravity from the scratch. We actually
obtained formalism applicable to a wide class of arbitrary, local gravitational
theories which are invariant under volume preserving diffeomorphism and Weyl
transformations Alonso-Serrano et al. [2023a, 2022]. Aside from applying the
covariant phase formalism in the context of local causal horizons, we also studied
other physical relevant settings, in particular stationary black holes and the de
Sitter horizon.

The second principal direction of our research is the application of the lo-
cal equilibrium conditions to study low-energy quantum gravitational effects. In
particular, we introduce a correction term to entropy of the local horizons which
is logarithmic in the horizon area. Remarkably, this form of the leading order
correction to entropy is predicted nearly universally by all the major candidate
theories of quantum gravity Kaul and Majumdar [2000], Banerjee et al. [2011],
Faulkner et al. [2013], entanglement entropy calculations Solodukhin [1995] as
well as various phenomenological approaches Adler et al. [2001], Gour and Medved
[2003], Hod [2004]. Therefore, the predictions for gravitational dynamics implied
by the presence of the logarithmic term in the entropy of local causal horizon
are in principle theory-independent. While the completely general analysis of
the relevant local equilibrium conditions is very complicated, we were able to
treat two different simplified cases. First, by linearising in the curvature tensors,
we derive a result equivalent to the linearised equations of motion of quadratic
gravity Alonso-Serrano and Lǐska [2023a]. Second, a different set of simplifying
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assumptions allows us to explore the nonlinear regime, leading to relatively sim-
ple equations with correction terms quadratic in the Ricci tensor Alonso-Serrano
and Lǐska [2020b, 2023b]. Notably, in the cosmological setting these equations
reproduce the low energy dynamics of loop quantum cosmology Alonso-Serrano
et al. [2023b,c]. Whereas the (semi)classical part of the thesis can be considered
essentially complete, the quantum phenomenological gravitational dynamics en-
coded in the local equilibrium conditions remains an active area of research. On
the one side, we are currently studying its physical implications in more compli-
cated settings, e.g. anisotropic cosmologies and gravitational collapse. On the
other side, we are working to complete the derivation of the equations without
any simplifying assumptions.

The thesis is organised as follows. In chapter 1, we first recall the main fea-
tures of Weyl transverse gravity. We also include a novel discussion of the status
of the various formulations of the equivalence principle in it. Then, we introduce
a version of the covariant phase space formalism we obtained for Weyl transverse
gravity and more general theories with the same symmetry group Alonso-Serrano
et al. [2023a, 2022]. Chapter 2 shows that the local equilibrium conditions are
fully consistent with Weyl transverse gravity. We argue this point in several dis-
tinct setups, providing a compelling and complete overall picture. Chapter 3 sums
up our results in regards to the quantum gravitational corrections implied by the
logarithmic term in entropy. Lastly, chapter 4 discusses the physical implica-
tions of these corrections in the context of a homogeneous, isotropic cosmological
spacetime.
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1. Weyl transverse gravity and
the covariant phase space
formalism
In this chapter, we explore some interesting features of Weyl transverse gravity,
an alternative theory to general relativity. This theory reproduces all the known
solutions of general relativity Álvarez et al. [2006], Barceló et al. [2014, 2018],
Carballo-Rubio et al. [2022]. It also offers a different perspective on the nature of
the cosmological constant, partially addressing the problems related to its value.
Moreover, as we show in chapter 2, from the thermodynamic perspective, Weyl
transverse gravity appears to provide a more natural description of gravity than
general relativity. Given these attractive features of Weyl transverse gravity, we
decided to develop the covariant phase space formalism for it. This formalism has
the potential to address several of the most interesting aspects of Weyl transverse
gravity. First, it provides a way to define the conserved quantities and to derive
the first law of horizon thermodynamics for the theory. Second, it allows us
to check how the different status of the cosmological constant (as compared to
general relativity) affects both the thermodynamics and the phase space structure
in general. Lastly, it opens a way to compare Weyl transverse gravity and general
relativity on the level of their phase space formulations. The last possibility is
not explored here in depth, but we plan to study it in a future work.

The chapter is organised as follows. Section 1.1 introduces Weyl transverse
gravity as well as the more general class of local, WTDiff-invariant gravitational
theories. While we mostly recount the well established results (summed up in
the recent excellent review Carballo-Rubio et al. [2022]), we also include a novel
discussion of the equivalence principle. The remarkable (though unsurprising)
outcome is that Weyl transverse gravity, much like general relativity, obeys the
strong equivalence principle, i.e., even a strongly self-gravitating test body (e.g., a
sufficiently small black hole) locally behaves as it would in the absence of external
gravitational fields. Hence, general relativity and Weyl transverse gravity are
the only two theories in four spacetime dimensions known to respect the strong
equivalence principle1. Section 1.2 recalls the main features of the covariant
phase space formalism, both in full generality and as a useful method to study
the thermodynamics of local, Diff-invariant theories of gravity. The last two
sections then contain our new results. Namely, in section 1.3, we present the
construction of the covariant phase space formalism for Weyl transverse gravity
and its application to horizon thermodynamics. Section 1.4 then generalises this
construction to arbitrary local, WTDiff-invariant theories of gravity.

1Nordström gravity also obeys the weak gravitational equivalence principle that applies to
strongly self gravitating bodies. However, it is not invariant under transverse diffeomorphisms
and, therefore, does not incorporate the strong equivalence principle di Casola et al. [2014,
2015].

10



1.1 Weyl transverse gravity
Weyl transverse gravity2 is a gravitational theory offering a classical alterna-
tive to general relativity. Unlike many other alternative theories of gravity, its
equations of motion have the same classical solutions as those of general relativ-
ity Carballo-Rubio et al. [2022]. The difference between both theories lies in the
symmetry group of Weyl transverse gravity, which no longer consists of arbitrary
diffeomorphisms. Instead, it contains the subgroup of spacetime volume preserv-
ing diffeomorphisms together with Weyl transformations. As we will show, this
difference in local symmetries leads to a different behaviour of the cosmological
constant. Consequently, Weyl transverse gravity partially addresses the cosmo-
logical constant problems which plague general relativity Carballo-Rubio [2015],
Barceló et al. [2018].

From the field theory viewpoint, gravity can be described as theory of in-
teracting spin 2 massless particles, the gravitons. If we want gravitons to be
described by an object invariant under Poincaré transformations, we must choose
a symmetric rank 2 tensor hµν with n (n+ 1) /2 independent components (n be-
ing the spacetime dimension) Deser [1970], Padmanabhan [2008], Barceló et al.
[2014, 2018]. The most general action for linearised theory of massless spin 2
particles described by hµν reads Álvarez et al. [2006]

I =
∫︂

V

(︄ 4∑︂
k=1

Mατβγρσ
(k) ∇αhβγ∇τhρσ

)︄
ωdnx (1.1)

where V is our spacetime manifold, ω = √
−η stands for the determinant of the

flat Minkowski metric ηµν (in arbitrary coordinates, so ω ̸= 1 in general), and
matrices Mατβγρσ

(k) are given as

Mατβγρσ
(1) = − 1

4η
ατηβ(ρησ)γ, (1.2)

Mατβγρσ
(2) =1

4 (1 + w1)
(︂
ηγτηβ(ρησ)α + ηβτηγ(ρησ)α

)︂
, (1.3)

Mατβγρσ
(3) = − 1

4 (1 + w2)
(︂
ηρσηα(βηγ)τ + ηβγητ(ρησ)α

)︂
, (1.4)

Mατβγρσ
(3) =1

4 (1 + w3) ηατηβγηρσ, (1.5)

with w1, w2, w3 being arbitrary numbers. While hµν contains n (n+ 1) /2 in-
dependent functions, a massless particle can only have 2 physical polarisations.
To ensure that no other physical degrees of freedom appear in hµν , we must in-
troduce n (n+ 1) /2 constraints and/or gauge symmetries for it. Various choices
of numbers w1, w2, w3 require different combinations of gauge symmetries and
constraints. However, only two sets of the parameters allow maximum gauge free-
dom, leaving hµν as an arbitrary symmetric rank 2 tensor with n (n+ 1) /2 gauge

2A brief note on the terminology is in order: names Weyl transverse gravity and unimodular
gravity are often used interchangeably. However, the latter also refers to other theories distinct
from Weyl transverse gravity Henneaux and Teitelboim [1989], Padilla and Saltas [2014], Bufalo
et al. [2015]. For the sake of clarity, we stick to Weyl transverse gravity in the present text,
although many notable recent works prefer to call the same theory unimodular gravity Carballo-
Rubio et al. [2022], Álvarez et al. [2023].
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symmetries. First, for w1 = w2 = w3, action (1.1) is invariant under infinitesimal
diffeomorphisms (Diff invariant), i.e., under any transformation of the form

h′
µν = hµν + 2∇(µξν), (1.6)

where ξµ can be arbitrary sufficiently smooth vector field. This choice leads to
linearised general relativity (and including graviton self-interactions allows one
to iteratively construct the full non-linear theory). However, there is a second
option. By setting w1 = 0, w2 = −1/2, w3 = −5/8 we obtain an action invariant
under the following transformations

h′
µν = hµν + 2σηµν + 2∇(µξν), (1.7)

with σ being any non-negative function. Vector field ξµ cannot be arbitrary in
this case, but must obey the divergence-free condition ∇µξ

µ = 0. The term
proportional to σ corresponds to a Weyl rescaling of the metric, and we refer
to the transformation generated by ξµ as a transverse (or volume preserving)
diffeomorphism. Therefore, we call the resulting theory Weyl transverse gravity
and its symmetry group WTDiff.

To conclude this introduction let us briefly compare Diff and WTDiff groups
in the linearised setting we considered so far. Clearly, both groups contain as a
proper subgroup the transverse diffeomorphisms. In fact, WTDiff group has a
structure of a semi-direct product of the group of transverse diffeomorphisms and
the group of Weyl transformations Álvarez et al. [2016]. Apart from transverse
diffeomorphisms, the only other kind of transformations in the intersection of
Diff and WTDiff groups are those generated by the conformal Killing vectors ζµ
defined by the conformal Killing condition £ζηµν = σηµν , where σ is again an
arbitrary function. In flat spacetime, the conformal Killing vectors can be given
explicitly

ζµ = aµ + bxµ + xνx
νcµ + 2cνxνxµ, (1.8)

where aµ, b, cµ are arbitrary constants. It is easy to check that both Diff
and WTDiff groups contain transformations that cannot be written as a linear
combination of a transverse diffeomorphism and a conformal Killing transforma-
tion Álvarez et al. [2006]. Therefore, both groups overlap but neither of them is
a subset of the other one. Since Diff and WTDiff groups differ, Weyl transverse
gravity represents a gravitational theory distinct from general relativity or any
gauge fixed version thereof.

1.1.1 Non-linear vacuum theory
Upon discussing the field theoretical motivation for Weyl transverse gravity, let us
introduce the full, non-linear theory in a geometric language (a field theoretical
viewpoint is also possible for the non-linear theory Barceló et al. [2014, 2018],
but it is not well suited for the purposes of this thesis). To write a non-linear
WTDiff-invariant gravitational action, it turns out to be necessary to introduce
some non-dynamical background structure. One possibility is suggested by the
field theoretical viewpoint, in which one keeps track of the background metric ηµν
while constructing the theory of self-interacting gravitons Barceló et al. [2014].
In the Diff-invariant case (general relativity), this metric can be safely discarded
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upon completing the construction. However, with the WTDiff-invariance, one
eventually obtains the following action

IWTG = 1
16π

∫︂
V

[︄
R + (n− 1) (n− 2)

n2 gαβ∂α ln
√

−g

ω
∂β ln

√
−g

ω

]︄(︄√
−g

ω

)︄ 2
n

ωdnx

− 1
8π

∫︂
V
λωdnx+ 1

8π
n− 1
n

∮︂
∂V

(︄√
−g

ω

)︄ 1
n

∂µ ln
√

−g

ω
nµωdn−1x, (1.9)

where g denotes the determinant of the dynamical metric gµν , ω = √
−η is the

determinant of the background metric, and λ is a constant. The boundary integral
does not affect the equations of motion, but ensures that the Weyl invariance of
the theory is exact. The dependence of the action on ω cannot be removed. To
work with ω, we may keep track of the full background metric ηµν , obtaining a
Rosen-style bi-metric theory Rosen [1940, 1973]. However, while interesting in
its own right (e.g. for its relation with analogue gravity Barceló et al. [2022]),
this choice is a bit of an overkill. The minimal amount of the non-dynamical
background information we need to preserve is encoded in the volume n-form
associated to the background metric ω = ω (x) dx0 ∧ dx1 ∧ ... ∧ dxn−1, with ω
being a strictly positive function. We can then discard the rest of the information
about the background metric. In the present work, we choose this route.

As we study gravity in the geometric paradigm, we do not even need to in-
troduce the background metric at any point. We simply consider a manifold V
endowed with metric gµν and n-form ω. On this manifold, we wish to write the
most general theory of gravity invariant under WTDiff transformations and lin-
ear in the spacetime curvature. The unique solution is the action (1.9) Álvarez
and Herrero-Valea [2013a] (much like general relativity is the unique metric, Diff-
invariant theory linear in the curvature). The term − (1/8π)

∫︁
V λωdnx does not

depend on the metric (the only dynamical variable in vacuum) in any way. There-
fore, it does not contribute to the equations of motion or even to higher order
effective field theory calculations Carballo-Rubio [2015] and it can be removed
without any loss of generality. Therefore, unless specified otherwise, we always
set λ = 0 in the following.

The derivatives of the metric determinant in action (1.9) are somewhat awk-
ward to handle. We can write it in a much more elegant form by switching to
suitable auxiliary variables that respect the WTDiff symmetry (keeping the met-
ric gµν as the actual dynamical variable). First, we define the WTDiff-invariant
(but not Diff-invariant) auxiliary metric

g̃µν =
(︂√

−g/ω
)︂−2/n

gµν . (1.10)

We further introduce an auxiliary connection which is Levi-Civita with respect
to g̃µν , i.e.,

Γ̃µνρ = Γµνρ − 1
n

(︂
δµν δ

α
ρ + δµρ δ

α
ν − gνρg

µα
)︂
∂α ln

√
−g

ω
. (1.11)

Finally, we get the auxiliary Riemann tensor by the standard expression

R̃
µ

νρσ = 2Γ̃µν[σ,ρ] + 2Γ̃µλ[ρΓ̃
λ

σ]ν . (1.12)
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These WTDiff-invariant objects allow us to rewrite the action (1.9) in a way more
reminiscent of the Einstein-Hilbert action of general relativity

IWTG = 1
16π

∫︂
V
R̃ωdnx, (1.13)

where we defined the auxiliary scalar curvature R̃ = g̃µνR̃
λ

µλν . We stress that
the actions (1.9) and (1.13) are identical, including the boundary terms (the only
difference being that we have already set λ = 0 in the action (1.13)).

Before proceeding, let us stress a subtle, but very important point. The
auxiliary metric g̃µν corresponds to the dynamical metric gµν restricted to the
unimodular gauge, in which √

−g = ω. However, we do not impose any such
gauge restrictions. Instead, we treat g̃µν as a mere notational device. We keep
gµν as our dynamical variable and also use it to raise and lower indices (with the
obvious exception of the contravariant auxiliary metric g̃µν which we define as an
inverse of g̃µν).

By construction, the action IWTG is invariant under Weyl transformations

δgµν = e2σgµν , (1.14)

and transverse diffeomorphisms,

δgµν =2∇(νξµ), (1.15)

∇̃µξ
µ =0 ⇐⇒ ∇µξ

µ = ξµ∂µ ln
√

−g

ω
, (1.16)

where the second equation represents a WTDiff-invariant generalisation of the
flat background transversality condition, ∇µξ

µ = 0, valid for the full, non-linear
theory. The transversality condition does not depend on the connection. Hence,
we can separate the transverse diffeomorphism subgroup from the Diff group in a
general background. However, the remaining vectors lying in the intersection of
the WTDiff and the Diff groups, i.e., the conformal Killing vectors, are defined by
a connection-dependent condition, £ζgµν = σgµν . Thence, for a generic metric,
we are unable to specify the intersection of the WTDiff and the Diff groups as
we did for the flat background in the previous subsection.

To find the vacuum equations of motion for Weyl transverse gravity, we vary
IWTG with respect to gµν . Upon some straightforward manipulations, we get

R̃µν − 1
n
R̃g̃µν = 0. (1.17)

These equations are explicitly WTDiff-invariant and traceless. We may also re-
state them in a divergenceless form which is closer to the Einstein equations. To
that end, we use the contracted Bianchi identities

2g̃νρ∇̃νR̃µρ = ∇̃µR̃, (1.18)

to show that, on shell,

(n− 2) / (2n) R̃g̃µν = Λg̃µν , (1.19)
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where Λ is an arbitrary integration constant. Adding this expression to the
traceless equations of motion for Weyl transverse gravity yields

R̃µν − 1
2R̃g̃µν + Λg̃µν = 0. (1.20)

By comparison to the Einstein equations, it can be seen that Λ plays the role
of the cosmological constant. Crucially, unlike in general relativity, Λ has no
connection to the constant parameter λ in the Lagrangian. Furthermore, Λ is
only well defined on shell, i.e., for a particular solution of the equations of motion,
as it only appears in the process of integrating them. Then, Λ naturally takes
different values for different solutions of the theory. In other words, Λ represents
an additional, global degree of freedom of Weyl transverse gravity.

Equations (1.20) reduce to the Einstein equations (aside from the origin of Λ)
of general relativity in the unimodular gauge, √

−g = ω. Hence, Weyl transverse
gravity has the same classical solution as general relativity. Moreover, it can
be shown that linearised quantisations of both theories are equivalent, and both
theories allow for equivalent formulations of the Euclidean path integral quantisa-
tion and embedding in the string theory Carballo-Rubio et al. [2022], Garay and
Garćıa-Moreno [2023]. The only known physical difference between them is thus
the behaviour of Λ, which is a fixed Lagrangian parameter in general relativity,
but a global degree of freedom in Weyl transverse gravity. Given the similarity
of general relativity and Weyl transverse gravity, one may wonder whether there
exists a parent theory invariant under both arbitrary diffeomorphisms and Weyl
transformations. General relativity and Weyl transverse gravity would then just
correspond to different gauge fixing in this theory. A scalar-tensor theory with
this property has indeed been found Oda [2017], but it tacitly assumes the re-
striction Λ = 0. If one keeps the value of Λ free, a recent result shows that no
such theory exists Garćıa-Moreno and Jiménez Cano. The reason is that a Diff-
invariant metric theory of gravity cannot accommodate the cosmological constant
as a global degree of freedom (although a Diff-invariant action with this property
has been recently proposed in a first-order formalism Montesinos and Gonzalez
[2023]).

1.1.2 Coupling to matter fields
Upon introducing the vacuum theory, we now turn to matter fields minimally
coupled to Weyl transverse gravity. We start by choosing an appropriate WTDiff-
invariant action. It reads

Iψ =
∫︂

V

(︂√
−g/ω

)︂2k/n
Lψωdnx, (1.21)

where V is again the spacetime, Lψ denotes a function of the matter variables ψ,
their partial derivatives, and k contravariant metric tensors gµν . If more fields are
present, Iψ simply becomes a sum of several contributions of this form, possibly
including interaction terms. The factor (√−g/ω)2k/n compensates the behaviour
of gµν under Weyl transformations and is added to ensure that the action is
WTDiff-invariant. We stress that the Weyl transformations by definition do not
affect the matter variables and only act on the gravitational sector of the theory.
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A simultaneous variation of the matter action Iψ and the gravitational ac-
tion IWTG with respect to the dynamical metric gµν yields the full gravitational
equations of motion

R̃µν − 1
n
R̃g̃µν = 8π

(︄√
−g

ω

)︄2 k−1
n (︃

Tµν − 1
n
Tgµν

)︃
. (1.22)

The energy momentum tensor is defined via the Hilbert prescription

Tµν = −2 ∂Lψ
∂gµν

+ Lψgµν , (1.23)

and T = Tµνg
µν is its trace. Under Weyl transformations, the energy-momentum

tensor behaves as
T ′
µν = e−2(k−1)σTµν , (1.24)

making the right hand side of the equations of motion (1.22) WTDiff-invariant.
Taking a WTDiff-invariant divergence of the equations of motion (1.22), we

find that the contracted Bianchi identities do not enforce a divergenceless energy-
momentum tensor. Instead, they only imply Álvarez and Herrero-Valea [2013a]

8π∇̃ν

[︃(︂√
−g/ω

)︂2k/n
T ν
µ

]︃
= ∇̃µJ , (1.25)

where J is some function. The Einstein-like divergenceless equations of motion
then read

R̃µν − 1
2R̃g̃µν + Λg̃µν = 8π

(︄√
−g

ω

)︄2 k−1
n

Tµν − J g̃µν . (1.26)

where Λ is again an arbitrary integration constant. The vanishing divergence of
the energy-momentum tensor is equivalent to the local energy-momentum con-
servation. Conversely, if J does not equal zero, it represents a measure of the
local energy non-conservation.

To conclude this subsection, we provide a brief discussion of an illustrative
example of a scalar field ϕ minimally coupled to Weyl transverse gravity. The
complete WTDiff-invariant action reads

I = 1
16π

∫︂
V
R̃ωdnx+

∫︂
V

[︃1
2
(︂√

−g/ω
)︂2/n

gαβ∂αϕ∂βϕ+ V (ϕ)
]︃
ωdnx, (1.27)

where V (ϕ) denotes the potential (possibly including a mass term). The gravi-
tational equations of motion are

R̃µν − 1
n
R̃g̃µν = 8π

(︃
∂µϕ∂νϕ− 1

n
g̃αβ∂αϕ∂βϕg̃µν

)︃
, (1.28)

whereas the equation of motion for the scalar field reads

g̃αβ∇̃α∇̃βϕ = V ′ (ϕ) . (1.29)

Taking a divergence of the gravitational equations of motion and invoking the
Bianchi identities yields

n− 2
2n ∇̃µR̃ =8π

(︃
n− 2
n

g̃αβ∇̃µ∇̃αϕ∇̃βϕ+ g̃αβ∇̃α∇̃βϕ∇̃µϕ
)︃

=8π∇̃µ

(︃
n− 2

2n g̃αβ∇̃αϕ∇̃βϕ+ V (ϕ)
)︃
, (1.30)
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where we used the equation of motion for the scalar field to get the second equality.
Integrating and subtracting the result from the traceless gravitational equations
of motion finally leads to

R̃µν − 1
2R̃g̃µν + Λg̃µν = 8π

(︃
∂µϕ∂νϕ− 1

2 g̃
αβ∂αϕ∂βϕg̃µν − V (ϕ) g̃µν

)︃
, (1.31)

where Λ again appears as an integration constant. The right hand side is just the
Hilbert energy-momentum tensor of the scalar field. Hence, in this case J = 0 and
the equations of motion for the scalar field ensure the local energy conservation,
even though the gravitational equations of motion in principle allow its violation.
We further discuss this observation in subsection 1.1.5.

1.1.3 The cosmological constant problem
Observational evidence shows that the expansion of the universe is accelerating.
Its acceleration agrees with the effect of a small non-zero cosmological constant
Λ, present in the Einstein equations, with the value Λ ≈ 10−122l−2

P Barrow and
Shaw [2011]. However, there exists no fully convincing microscopic interpretation
of Λ Padmanabhan [2008]. Even if one were to accept Λ as a fundamental con-
stant of nature, another problem occurs. In semiclassical gravity, which treats
matter fields as quantum and gravity as classical, the vacuum energy density ρ0
contributes to the Einstein equations by a term of the form ρ0gµν . This contri-
bution has the same form as the cosmological constant term Λgµν . However, it
has been proposed that the natural scale of the vacuum energy density is the
Planck length, i.e., ρ0 ≈ l−2

P Weinberg [1989], Burgess [2013]. Thus, there is a
huge discrepancy between the expected value of ρ0 and the cosmological constant
required to explain the observed acceleration of the universe (or even the largest
cosmological constant not ruled out by solar system experiments Kagramanova
et al. [2006]). Then, there would need to be a very precise cancellation between Λ
and ρ0 almost to zero. Even more seriously, in the effective field theory approach
to gravity, each higher loop contribution to ρ0 again apparently leads to a value
much larger than 10−122l−2

P Weinberg [1989], Carballo-Rubio [2015], requiring an
infinite amount of fine-tuning. In other words, the value of the cosmological
constant is radiatively unstable Weinberg [1989]. Then, either the effective field
theory approach to gravity fails (and the value of Λ can only be explained by the
full quantum gravity), or some mechanism cancelling out the huge contributions
to ρ0 must be found. While such mechanisms have been put forward even in
the context of general relativity Mooij and Shaposhnikov [2021a,b], Donoghue
[2021], de Brito et al. [2021], Hossenfelder [2021], Mottola [2022], Weyl transverse
gravity offers a particularly elegant and robust solution. Since the equations of
motion are traceless, they are invariant under adding a term of the form ρ0gµν
(with ρ0 being a constant) to the energy-momentum tensor. Then, the vacuum
energy simply does not gravitate. Moreover, it can be shown that the value of
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the cosmological constant is manifestly radiatively stable in Weyl transverse grav-
ity Carballo-Rubio [2015]. This result is possible thanks to the WTDiff invariance
of the theory and to the absence of any quantum anomaly corresponding to lo-
cal Weyl symmetry Álvarez and Herrero-Valea [2013b]. While Weyl transverse
gravity, by itself, still does not explain the observed value of the cosmological
constant, it allows us to apply the effective field theory approach without any
extra assumptions regarding the vacuum energy.

1.1.4 General WTDiff-invariant theories
Weyl transverse gravity represents only the simplest example of WTDiff-invariant
gravity. The most action describing such a local theory reads

I =
∫︂

V
L
(︃
g̃µν , R̃

µ

νρσ, ∇̃α1R̃
µ

νρσ, . . . , ∇̃(α1 . . . ∇̃αp)R̃
µ

νρσ,

ψ, ∇̃α1ψ, . . . , ∇̃(α1 . . . ∇̃αp)ψ
)︃
ωdnx, (1.32)

where p is a natural number, and ψ denotes some collection of matter variables
(with suppressed spacetime and gauge indices for simplicity of notation). We
are free to only use fully symmetrised covariant derivatives, as we can employ
the definition of the auxiliary Riemann tensor to rewrite any other ordering of
derivatives in terms of a fully symmetric one and some lower derivative terms.
By construction, action 1.32 is WTDiff-invariant. To obtain the gravitational
equations of motion, we vary action (1.32) with respect to gµν , obtaining

16π
(︄√

−g

ω

)︄ 2
n δS

δgµν
= Å

µν = −8π
(︄√

−g

ω

)︄2 k+1
n (︃

T µν − 1
n
Tgµν

)︃
, (1.33)

where, from now on, symbol ◦ signifies traceless, WTDiff-invariant tensors. We
define the energy momentum tensor via the Hilbert prescription (1.23) applied to
the part of the Lagrangian that does not depend on the auxiliary connection. We
include the other, non-minimally coupled terms depending on the matter fields
ψ in the “gravitational part” of the equations of motion Å

µν . To conform with
the literature on the covariant phase space formalism, we vary the action with
respect to gµν rather than gµν . Consequently, the overall sign of the equations of
motion is opposite to the one usually preferred in different contexts (which comes
from variations with respect to the contravariant metric gµν).

Next, as with Weyl transverse gravity, we would like to rewrite the equations
of motion so that they are divergenceless. To this end, we use that action (1.32)
is invariant under transverse diffeomorphisms, which implies

0 = δS

δgµν
∇(νξµ) = 1

16π

∫︂
V

(︄√
−g

ω

)︄− 2
n

Å
µν

∇(νξµ)ωdnx

= 1
16π

∫︂
V

(︄√
−g

ω

)︄− 2
n

ξµ∇̃νÅ
µν
ωdnx. (1.34)

We tacitly imposed the appropriate Neumann boundary conditions to ensure
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that all the boundary integrals vanish3. Equation (1.34) holds for an arbitrary
generator ξµ of an infinitesimal transverse diffeomorphism. Therefore, we must
have

∇̃νÅ
µν = ∇̃µΦ, (1.35)

where Φ is a function. In principle, we can fully specify Φ, up to a constant,
by taking a WTDiff-invariant divergence of Åµν and rewriting it as a gradient
of a scalar. For the divergence of the energy-momentum tensor, we can use
equation (1.25). In total, we have on shell

Φ = −Λ + J − 1
n

(︄√
−g

ω

)︄2 k
n

T, (1.36)

where Λ is an arbitrary integration constant. Hence, the divergenceless equations
of motion are

Å
µν

− (Φ + Λ) g̃µν = −8π
(︄√

−g

ω

)︄2 k+1
n

T µν + J g̃µν . (1.37)

In the unimodular gauge, √
−g = ω, and with J = 0, these equations reduce

to the equations of motion of some Diff-invariant theory with the same classical
solutions Carballo-Rubio et al. [2022]. In this way, one can show that for every
local WTDiff-invariant theory with a conserved energy-momentum tensor, there
exists a corresponding local, Diff-invariant theory with the same classical solutions
(see Carballo-Rubio et al. [2022] for a more detailed version of this argument).

1.1.5 Local energy (non-)conservation
One might wonder how realistic are the scenarios of local energy non-conservation
which any WTDiff-invariant gravitational equations of motion in principle al-
low. To be as general as possible, we tackle this issue for any collection of non-
minimally coupled matter fields ψ. Since matter variables are unaffected by Weyl
transformations, they are automatically WTDiff-invariant. Hence, to construct

3The use of the Gauss theorem for a WTDiff-invariant divergence deserves a brief explana-
tion. For an integral of a WTDiff-invariant divergence of some WTDiff-invariant vector Wµ it
holds ∫︂

V

∇̃µW
µωα1...αn =

∫︂
V

(ω∂µWµ +Wµ∂µω) ϵα1...αn =
∫︂
V

∂µ (ωWµ) ϵα1...αn ,

where ϵα1...αn stands for the n-dimensional anti-symmetrisation symbol and ωα1...αn = ωϵα1...αn

is the non-dynamical volume element. The Gauss theorem now gives us∫︂
V

∂µ (ωWµ) dnx =
∫︂
∂V

Wµnµn
α1ωα1...αn

,

where nµ is a unit normal to ∂V . Under Weyl transformations, it changes as n′µ = e−σnµ.
For greater clarity, suppose we choose the coordinate system so that nµ becomes a coordinate
vector. Then, we have∫︂

∂V

Wµnµn
α1ωα1...αn =

∫︂
∂V

(︁√
−g/ω

)︁−1/n
Wµnµdn−1x.
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the matter action, we can only include WTDiff-invariant objects constructed from
the metric, i.e., the auxiliary metric g̃µν , the WTDiff-invariant derivative ∇̃µ, and
the auxiliary Riemann tensor R̃µ

νρσ. The matter Lagrangian is then a local func-
tional Lψ

[︂
ψ, g̃µν , ∇̃µ, R̃

µ

νρσ

]︂
. Taking the corresponding Diff-invariant Lagrangian

Lψ
[︂
ψ, gµν ,∇µ, R

µ
νρσ

]︂
(its existence has been shown in the previous subsection),

we easily find that ∇νT
ν

µ = 0 for it. Then, we also have (just using the definition
of the WTDiff-invariant derivative)

∇̃ν

[︃(︂√
−g/ω

)︂2k/n
T ν
µ

]︃
= 0. (1.38)

The right hand side of equations (1.26) then has J = 0 and is divergenceless.
In total, for any WTDiff-invariant Lagrangian Lψ

[︂
ψ, g̃µν , ∇̃µ, R̃

µ

νρσ

]︂
(with any

matter fields present and including non-minimal coupling) the local conservation
of energy holds.

We are aware of three possible ways to bypass this restriction. First, resigning
on having a Lagrangian description for the matter sector would certainly allow us
more possibilities Josset et al. [2017]. However, it is unclear how to interpret an
energy-momentum tensor that cannot be obtained using a variational principle.
Second, we may consider matter variables with non-trivial behaviour under Weyl
transformations. These would allow us to construct a Lagrangian for locally non-
conserved matter, but the idea is rather artificial. Third, we can use that the
background n-volume measure ω does not change under Weyl transformations
and add terms constructed from the matter variables and derivatives of ω (e.g.
terms of the form Snc =

∫︁
ω g̃

αβ (ω,α/ω)ϕ,βωdnx). However, derivatives of ω then
explicitly appear in the equations of motion for the matter fields, allowing us in
principle to experimentally probe the non-dynamical volume top form ω. This
possibility does mark a clear departure from the usual framework of WTDiff-
invariant gravity in which ω remains experimentally inaccessible Barceló et al.
[2018]. Then, the time derivative of ω can serve as a non-dynamical measure
of time, breaking the classical correspondence between Weyl transverse gravity
and general relativity. In any case, aside from these three exotic and/or patho-
logical scenarios, it appears that WTDiff-invariance suffices to enforce the local
energy conservation. Nevertheless, to be as general as possible, we consider the
possibility of the energy non-conservation in the following.

Finally, we remark that the constraint on local energy conservation we dis-
cussed only works for the WTDiff-invariant Lagrangians. If we restrict our sym-
metry group to just transverse diffeomorphisms (without Weyl transformations)
as is common in some approaches to unimodular gravity Bufalo et al. [2015],
Josset et al. [2017], Perez et al. [2018], we are free to use any powers and deriva-
tives of the metric determinant in our matter Lagrangian. Then, the local energy
conservation need not be respected Alonso-López et al. [2023], Jaramillo-Garrido
et al. [2024].
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1.1.6 Equivalence principle(s)
The equivalence principle played an important role in guiding the development
of the general relativity Einstein [1911], and its validity is experimentally tested
with a high precision Overduin et al. [2009], Pacilio and Liberati [2017]. From the
theoretical perspective, the main interest in the various formulations of the equiv-
alence principle nowadays lies in studying their validity in alternative theories of
gravity di Casola et al. [2014] and in situations in which quantum effects become
relevant Giacomini and Brukner, Wagner et al. [2023], Balsells and Bojowald
[2023], Zhang [2024]. Furthermore, the Einstein and the strong equivalence prin-
ciples play a key role in studying the gravitational dynamics from the perspective
of thermodynamics of spacetime. Thence, it is of interest to us to see whether
and how all the different equivalence principles are respected by Weyl transverse
gravity and WTDiff-invariant theories of gravity in general. The discussion we
present here is novel and its conclusions complement the state of the art in the
understanding of the (non)equivalence of Weyl transverse gravity and general
relativity Carballo-Rubio et al. [2022].

We proceed by checking the validity of the relevant formulations of the equiv-
alence principle one by one. The classification of the equivalence principles we
adapt follows di Casola et al. [2015]. The weakest form of the equivalence prin-
ciple is known as the Newton equivalence principle. It states “In the Newtonian
limit, the inertial and gravitational masses of a body are equal” di Casola et al.
[2015]. Since this formulation concerns only the Newtonian limit, it is naturally
obeyed by Weyl transverse gravity.

The weak gravitational principle asserts that “Test particles with negligi-
ble self-gravity behave, in a gravitational field, independently of their proper-
ties”di Casola et al. [2015]. A suitable test particle is one whose back-reaction at
its environment can be disregarded. By a negligible self gravity, we mean that the
ratio of the object’s mass and size is much smaller than unity in the natural units.
The weak equivalence principle is obeyed if the effect of gravity on a test particle
can be (locally, i.e., disregarding geodesic deviation and similar effects relevant
on length scales comparable with the curvature length scale) fully captured by
the connection. To discuss this requirement in the context of WTDiff-invariant
gravity, we must first properly define the motion in a gravitational field. The
Diff-invariant geodesic equation reads

vν∇νv
µ = Pvµ, (1.39)

where vµ denotes a unit vector tangent to the geodesic and P is an arbitrary
function (for affine parametrisation P = 0). However, this equation changes
under Weyl transformations. Therefore, force-free trajectories in one Weyl frame
would be subjected to forces in a different frame. This behaviour is clearly in
conflict with Weyl invariance of physics required in WTDiff-invariant gravity.
Therefore, we must adapt a different, WTDiff-invariant definition of a geodesic4.
The obvious solution lies in replacing the derivative by the WTDiff-invariant one

ṽν∇̃ν ṽ
µ = P ṽµ. (1.40)

4This form of the geodesic equation is equivalent to the condition (1.25) on the WTDiff-
invariant divergence of the energy-momentum tensor Alonso-Serrano et al. [2024].
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To keep the tangent vector ṽµ properly normalised in any Weyl frame, we define
it in a WTDiff-invariant manner, i.e.,

ṽµ =
(︂√

−g/ω
)︂−1/n

vµ. (1.41)

The geodesics found as solutions of equation (1.40) correspond to true WTDiff-
invariant force-free trajectories. With this definition of a geodesic, the weak
equivalence principle is incorporated in Weyl transverse gravity as well as in any
WTDiff-invariant theory of gravity given by a Lagrangian of the form (1.32).

Before continuing, one should appreciate the significance of the WTDiff-
invariant geodesic equation. It directly implies that, while the dynamical met-
ric gµν remains the dynamical variable describing gravity, the geometry of the
spacetime is actually described by the auxiliary metric g̃µν . Since the difference
between both metrics lies only in the, experimentally inaccessible, measure of
the spacetime volume, there is no (known) way in which this use of two differ-
ent metrics allows to distinguish WTDiff-invariant and Diff-invariant theories of
gravity Barceló et al. [2018], Carballo-Rubio et al. [2022]. Nevertheless, the dif-
ference is conceptually significant and important for the understanding of Weyl
transverse gravity.

A stronger formulation of the weak equivalence principle is the Einstein equiv-
alence principle, which states “Fundamental non-gravitational test physics is not
affected, locally and at any point of spacetime, by the presence of a gravita-
tional field” di Casola et al. [2015]. It extends the principle of equivalence just
from the motion of particles to all non-gravitational physics. While the status
of the equivalence principle for matter fields is an interesting subject in its own
right di Casola et al. [2015], WTDiff-invariant theories of gravity do not change
the non-gravitational physics (in particular, it is unaffected by Weyl transforma-
tions). Therefore, the principle applies to WTDiff-invariant gravity in the same
way it does to Diff-invariant theories and with the same caveats.

A different way to strengthen the weak equivalence principle lies in including
self-gravitating bodies in it, resulting in the gravitational weak equivalence prin-
ciple “Test particles behave, in a gravitational field and in vacuum, independently
of their properties” di Casola et al. [2015]. The principle is not a straightforward
generalisation of the weak equivalence principle as it needs to be restricted to vac-
uum. Otherwise, the intrinsic gravitational field of the test particle would affect
nearby particles, breaking the universality. A simple criterion for the validity of
the gravitational weak equivalence principle has been proposed di Casola et al.
[2014], based on a generalisation of the Geroch-Jang theorem Geroch and Jang
[1975]. The key condition for the validity of the gravitational weak equivalence
principle is ∇̄νE ν

µ = 0, where E ν
µ = 0 are the linearised (divergenceless) vac-

uum equations of motion of the theory and ∇̄ν denotes the background covariant
derivative. The idea is that the linearised E ν

µ corresponds to the gravitational
perturbation generated by the test particle. Then, the condition E ν

µ = 0 to-
gether with the Geroch-Jang theorem allows us to find a geodesic for the motion
of the body in the unperturbed background spacetime. In this way, it encodes
the universality of the geodesic motion for self-gravitating bodies and, thus, the
gravitational weak equivalence principle. If we take E ν

µ = 0 to be a perturbation
of the divergenceless equations (1.20) for vacuum Weyl transverse gravity and
consider ∇̄ν to be the Weyl invariant covariant divergence with respect to the
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background (see the discussion above regarding the geodesics), we indeed find
∇̄νE ν

µ = 0 (we show the calculation in appendix A.1). Therefore, just like gen-
eral relativity, Weyl transverse gravity obeys the gravitational weak equivalence
principle. As for the general WTDiff-invariant theories, only the Lovelock ones
(purely metric theories with second order equations of motion) incorporate the
gravitational weak equivalence principle. We can show that by a simple modifica-
tion of the arguments presented for Diff-invariant gravity di Casola et al. [2014].
Therefore, Weyl transverse gravity and general relativity appear to be the only
two metric gravitational theories compatible with the gravitational weak equiva-
lence principle.

Finally, the strong equivalence principle generalises the Einstein equivalence
principle to test gravitational physics “All test fundamental physics (including
gravitational physics) is not affected, locally, by the presence of a gravitational
field” di Casola et al. [2015]. It essentially has the same relation to the Einstein
equivalence principle as the generalised weak equivalence principle to the weak
equivalence principle. As such, we expect it to be obeyed by Weyl transverse
gravity and WTDiff-invariant versions of the other Lovelock theories, but not by
any other (known) WTDiff-invariant gravitational theory5.

1.2 Covariant phase space formalism
One of the crucial results presented in this thesis is the construction of the co-
variant phase space formalism for arbitrary local, WTDiff-invariant theories of
gravity. This formalism offers a method to construct the phase space as a sym-
plectic manifold without the need to break the general covariance. The covari-
ant phase space formalism also provides powerful tools for computing conserved
quantities Wald [1993], Iyer and Wald [1994], Wald and Zoupas [2000]. More-
over, it allows for a straightforward check of (non)-equivalence of different theo-
ries Margalef-Bentabol and Villaseñor [2021], Fernando Barbero G. et al. [2021],
Barbero G. et al. [2022]. Herein, we recall the basics of the covariant phase space
formalism in general and, in particular, its applications to Diff-invariant theo-
ries. We first introduce the construction of the symplectic structure. Then, we
show how to express the symplectic form in terms of the conserved currents and
charges. Lastly, we apply the general formalism to the particular case of Killing
horizons in arbitrary diffeomorphism invariant theories of gravity.

1.2.1 General formalism
Consider a manifold V equipped with a volume form ε. We define a covariant
derivative on this manifold by condition ∇µε = 0 (obviously, ∇µ is non-unique).
We introduce a Lagrangian L as a local functional of a collection of dynamical

5While a detailed proof of such a statement would be quite involved, it essentially follows
from our arguments for the Einstein and the gravitational weak equivalence principles. Indeed,
it has been conjectured that the simultaneous validity of both principles together already implies
the strong equivalence principle di Casola et al. [2015]. Nevertheless, one should keep in mind
that the validity of the strong (and even Einstein) equivalence principle represents a very subtle
issue even in the context of general relativity.
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variables ϕ; non-dynamical variables γ, and their covariant derivatives. Non-
dynamical variables are fixed a priori, whereas the dynamical variables are gov-
erned by the equations of motion. Under their small, arbitrary variation δ1ϕ, the
Lagrangian changes as

δ1L = Aϕδ1ϕ+ ∇µθ
µ [δ1] , (1.42)

where Aϕ = 0 are the equations of motion for the fields ϕ. The Gauss theorem
ensures that ∇µθ

µ [δ1] contributes only with a boundary term to the variation of
the action

I =
∫︂

V
Lε. (1.43)

We call θµ the symplectic potential current density (or, for brevity, symplectic
potential) for reasons that will become apparent soon Lee and Wald [1990].

Now we consider a second arbitrary variation of the dynamical variables δ2ϕ.
The commutator of both variations acting on δ1L gives

(δ1δ2 − δ2δ1)L = δ1Aϕδ2ϕ− δ2Aϕδ1ϕ+ ∇µΩµ [δ1, δ2] , (1.44)

where
Ωµ [δ1, δ2] = δ1θ

µ [δ2] − δ2θ
µ [δ1] , (1.45)

is called the symplectic current density (or symplectic current). Defining Ω [δ1, δ2]
as an integral of Ωµ [δ1, δ2] over a suitable initial data surface C, i.e.,

Ω [δ1, δ2] =
∫︂

C
Ωµ [δ1, δ2] dCµ, (1.46)

we can introduce a 2-form
Ω = ΩABδ

AϕδBϕ. (1.47)
Defining similarly a 1-form

θ = θAδ
Aϕ =

∫︂
C
θµ [δ] dCµ, (1.48)

we have Ω = dθ. It is then easy to see that Ω is antisymmetric and closed.
Hence, it satisfies two of the three requirements for a symplectic form. The
third requirement, its non-degeneracy, is not in general satisfied. To ensure it,
we must restrict Ω to the subspace of field configurations ϕ satisfying all the
constraints of the theory. This subspace together with the symplectic form Ω
then forms a symplectic manifold corresponding to the covariant phase space.
For a more detailed exposition of this procedure, see e.g. Lee and Wald [1990].
Unless specified otherwise, we always assume that such a restriction of Ω has
been performed.

Hamiltonian

In the special case when one of the field variations corresponds to a Lie derivative
with respect to the vector field ξµ, i.e., δ1ϕ = £ξϕ (for simplicity, we also write
δ2ϕ = δϕ), the Hamilton equations of motion imply

δHξ = Ω [£ξ, δ] , (1.49)
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provided that the Hamiltonian Hξ corresponding to the evolution along ξµ exists.
Thus, the symplectic form directly offers a prescription for a small variation of
the Hamiltonian. If ξµ generates a global symmetry of all ϕ, it follows that Hξ

is conserved and, therefore, δHξ = 0. Equation (1.49) then represents a useful
constraint on small changes of fields ϕ, as we explore in the following.

Let us now discuss when is the Hamiltonian Hξ well defined. The necessary
condition turns out to be Wald and Zoupas [2000]∫︂

∂C
Ωµ [£ξ, δ] ξνdCµν = 0, (1.50)

where ∂C denotes the boundary of the initial data surface C. To see it, consider
some solution of the equations of motion for the fields ϕ. For this solution, select
a vector field ξµ, such that the Hamiltonian Hξ exists. For two independent
variations of ϕ’s, we have (δ1δ2 − δ2δ1)Hξ = 0. If we expand this expression
using equations (1.49), (1.45) and (1.48), we obtain6

0 = (δ1δ2 − δ2δ1)Hξ = δ1£ξθ [δ2] − δ2£ξθ [δ1] . (1.51)

The Cartan magic formula £ξθ = ξ · dθ + d (ξ · θ) then implies

d (ξ · δ1θ [δ2] − ξ · δ2θ [δ2]) = 2
∫︂

C
∇ν

(︂
ξ[νΩµ] [£ξ, δ]

)︂
dCµ. (1.52)

Finally, applying the Gauss theorem yields condition (1.50).

Noether charges

Noether theorems assert that to every symmetry of a Lagrangian L corresponds
a conserved quantity. To construct these quantities, we consider a variation δ̂ϕ
corresponding to a local symmetry of fields ϕ. Then, the change in the Lagrangian
is a total divergence, δ̂L = ∇µα

µ
[︂
δ̂
]︂
. Defining a vector

jµ
[︂
δ̂
]︂

= θµ
[︂
δ̂
]︂

− αµ
[︂
δ̂
]︂
, (1.53)

we can easily check that its covariant divergence is ∇µj
µ
[︂
δ̂
]︂

= −Aϕδ̂ϕ. Therefore,
the vector jµ

[︂
δ̂
]︂

is divergence-free on shell. We call jµ
[︂
δ̂
]︂

the Noether current
corresponding to local symmetry δ̂. The conserved Noether charge associated
with jµ is just its integral over the initial data surface C

Q =
∫︂

C
jµdCµ. (1.54)

As we will see, in the case of Diff-invariant theories, the Noether charges can
be used to express the symplectic form. Equation δHξ = Ω [£ξ, δ] for a global
symmetry then provides a relation between small changes of the various conserved
charges.

6We stress that δξµ = 0 by definition.
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1.2.2 Application to diffeomorphism invariant theories of
gravity

Upon introducing the covariant phase space formalism, we review its application
to arbitrary local, Diff-invariant theories of gravity. We also use this formalism to
find the first law of black hole mechanics and a (heuristic) prescription for black
hole entropy in modified theories of gravity.

Covariant phase space formalism for diffeomorphism invariant theories
of gravity

We consider the most general local, Diff-invariant gravitational action in n space-
time dimensions

I = 1
16π

∫︂
V

[︃
L
(︃
gµν , R

µ
νρσ,∇α1R

µ
νρσ, ...,∇(α1 ...∇αp)R

µ
νρσ,

ψ,∇α1ψ, ...,∇(α1 ...∇αp)ψ
)︃

− 2Λ
]︃√

−gdnx, (1.55)

where V denotes the spacetime manifold, Λ is the cosmological constant, and ψ
are the matter fields (for simplicity of notation, we suppress their spacetime in-
dices). We stress that any matter fields with gauge symmetries require separate
treatment Prabhu [2017], Elgood et al. [2020]. The indices of covariant deriva-
tives can be fully symmetrised without any loss of generality, since any other
combinations of derivatives can be removed using the Bianchi identities.

Varying the action with respect to the metric and the matter fields yields

δI =
∫︂

V

[︄√
−g

16π (Aµν − Λgµν) δgµν + Aψδψ + ∇µθ
µ [δ]

]︄
dnx. (1.56)

The first term gives the equations of motion for the metric7. The second term
corresponds to the equations of motion for the matter fields. The last term con-
tributes only with a boundary integral, with θµ [δ] being the symplectic potential
of the theory. The symplectic current and symplectic form are then defined by
equations (1.45) and (1.46). Hence, we now have everything we need to work
out the explicit form of a variation of the Hamiltonian Hξ corresponding to the
evolution along some vector field ξµ. While this direct method for finding δHξ in
principle works, we can also use that our theory is diffeomorphism invariant, and
conveniently express δHξ in terms of the Noether charges corresponding to the
diffeomorphism generated by ξµ.

The Noether current associated with an infinitesimal diffeomorphism gener-
ated by ξµ reads

jµξ = θµ [£ξ] − Lξµ, (1.57)
Since its divergence vanishes on shell, it follows that jµξ is given by the sum of
terms proportional to the equations of motion and a divergence of an antisym-
metric rank 2 tensor density Wald [1990]. An explicit calculation shows that

jµξ = −
√

−g

8π (A µ
ν − Λδµν ) ξν − (Aψ · ψ · ξ)µ + ∇νQ

νµ
ξ . (1.58)

7Following the seminal papers Wald [1993], Iyer and Wald [1994], we vary the Lagrangian
with respect to gµν rather than gµν . Consequently, the equations of motion of general relativity
are −Gµν − Λgµν + 8πTµν = 0 in our convention.
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where Aµν − Λgµν = 0 are the equations of motion for the metric, and Aψ = 0
the equations of motion for the matter fields8. The antisymmetric tensor density
Qνµ
ξ corresponds to the Noether charge. It equals

Qνµ
ξ = 2Eνµρσ∇ρξσ +W νµ

ρ ξρ, (1.59)

where
E νρσ
µ =

p∑︂
i=0

(−1)i ∇α1 ...∇αi

(︄
∂L

∂∇(α1 ...∇αi)R
µ
νρσ

)︄
, (1.60)

and W νµ
ρ = W [νµ]

ρ is a rank 3 tensor density whose precise form does not matter
for our purposes. Notably, while W νµ

ρ depends both on gravitational and matter
fields, the tensor density Eνµρσ is fully determined by the vacuum gravitational
Lagrangian Iyer and Wald [1994], Iyer [1997].

To relate Noether charges Qνµ
ξ with the symplectic form, we first study a

small perturbation of the Noether current, δjµξ . If we assume that the equations
of motion are satisfied both before and after the perturbation, we have, starting
from the definition of jµξ (1.57)

δjµξ = δθµ [£ξ] − ξµ∇νθ
ν [δ] . (1.61)

At the same time, it holds δjµξ = ∇νδQ
νµ
ξ . Putting both expressions for δjµξ

together, we have after some straightforward manipulations,

∇νδQ
νµ
ξ = Ωµ [δ,£ξ] + 2∇ν

(︂
ξ[νθµ] [δ]

)︂
, (1.62)

where the symplectic current Ωµ [δ,£ξ] is given by equation (1.45). Integrating
this relation over some Cauchy surface C then yields the symplectic form which
is equal to the perturbation of the Hamiltonian Hξ, i.e.,

δHξ = Ω [δ,£ξ] =
∫︂

C
Ωµ [δ,£ξ] dCµ =

∫︂
∂C

(︂
δQνµ

ξ − 2ξ[νθµ] [δ]
)︂

dCµν , (1.63)

where we used the Gauss theorem to convert the right hand side to an integral
over the boundary ∂C of the Cauchy surface C.

From equation (1.63) for δHξ, we can infer the expression for the full Hamil-
tonian Hξ

Hξ =
∫︂
∂C

(︂
Qνµ
ξ − 2ξ[νBµ]

)︂
dCµν , (1.64)

where Bµ obeys θµ [δ] = δBµ (Bµ need not be covariant). This establishes an
important result: if the Hamiltonian corresponding to the evolution along the
vector field ξµ exists for a Diff-invariant theory, it can always be given as an
integral over the boundary of the Cauchy surface. In the next section we show
that this result no longer holds for WTDiff-invariant theories.

8For simplicity of notation, we suppress the index structure of the matter fields. The ex-
pression (ψ ·Aψ · ξ)µ should be understood as ψAψξµ for scalar fields and 2ψνA(µ

ψ ξ
ν) for vector

fields. More general tensorial fields need to be treated separately.
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Figure 1.1: Relevant part of the Penrose diagram of the stationary black hole
spacetime we analyse. H denotes the horizon, I+ and I− are the future and
past null infinity, and I0 the spatial infinity. We draw the Cauchy surface C for
the exterior region as the oblique line extended from H to I+. The grey region
represents the interior of the black hole, whose structure we do not specify.

First law of black hole mechanics and Wald entropy

Expression (1.63) for δHξ becomes especially useful if ξµ is a Killing vector, i.e.,
£ξgµν = 0. We show its usefulness on the physically interesting case of a station-
ary, asymptotically flat spacetime containing a single black hole in four spacetime
dimensions. We display the corresponding Penrose diagram in figure 1.1. The
spacetime possesses a Killing vector ξµ = tµ + ΩHφ

µ, where tµ denotes the time
translational Killing vector, φµ the rotational Killing vector, and ΩH is the con-
stant angular velocity of the black hole event horizon. The vector ξµ has timelike
norm outside the horizon, null norm on the horizon, and spacelike inside it. Hence,
the event horizon coincides with the Killing horizon. We evaluate equation (1.63)
on a spacelike surface C orthogonal to ξµ and extended from the spatial infinity
I0 to the horizon H. If the null energy condition holds (notably, this implies ab-
sence of Hawking radiation), C represents a Cauchy surface for the region outside
the horizon. Then, the details of the internal structure of the black hole, e.g. the
presence of a Cauchy horizon or a singularity, are irrelevant for our purposes.

Let us now expand equation (1.63) in the above described setting. Since ξµ is
a Killing vector and £ξgµν = 0, it follows that δHξ = Ω [£ξ, δ] = 0. To evaluate
the right hand side, we split the boundary in two pieces, the intersection of the
Cauchy surface with the asymptotic infinity ∂C∞, and with the horizon ∂CH. In
total, equation (1.63) becomes∫︂

∂C∞

(︂
δQνµ

t − 2t[νθµ] [δ]
)︂

dCµν + ΩH

∫︂
∂C∞

δQνµ
φ dCµν

−
∫︂
∂CH

(︂
δQνµ

ξ − 2ξ[νθµ] [δ]
)︂

dCµν = 0, (1.65)

where we split the integral over ∂C∞ into the time translational and rotational
contributions and used that φνdCµν = 0 there. The first two terms define the
variations of the canonical energy

δM =
∫︂
∂C∞

(︂
δQνµ

t − 2t[νθµ] [δ]
)︂

dCµν , (1.66)

and the canonical angular momentum

δ J = −
∫︂
∂C∞

δQνµ
φ dCµν , (1.67)
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of the spacetime. For general relativity, both expressions reduce to the corre-
sponding ADM formulas Iyer and Wald [1994]. For the integral over the horizon
we use the explicit form (1.59) of the Noether charge, obtaining

−
∫︂
∂CH

(︂
δQνµ

ξ − 2ξ[νθµ] [δ]
)︂

dCµν = −
∫︂
∂CH

[︃
δ
(︃

2Eνµρσ∇ρξσ

+W νµ
ρ ξρ

)︃
− 2ξ[νθµ] [δ]

]︃
dCµν . (1.68)

Note that the horizon H can be analytically extended to contain a bifurcation
surface at which ξµ vanishes and ∇ρξσ = κϵρσ, where κ =

√︂
−∇ρξσ∇ρξσ/4|H is

the surface gravity of the black hole, and ϵρσ denotes the bi-normal to the horizon.
Since ξµ is a Killing vector, expression (1.68) has the same value at any cross-
section of the horizon orthogonal to ξµ. Thus, we are free to evaluate it at the
bifurcation surface Jacobson et al. [1994], where the last two terms disappear9 and
the first term simplifies to −

∫︁
∂CH

δ (2κEνµρσϵρσ) ϵµνdn−2A, where dn−2A denotes
the area element on ∂CH. Assuming δκ = 0, we have in total

δM − ΩHδJ − κ

2π

∫︂
∂CH

δ (4πEνµρσϵρσ) ϵµνdn−2A = 0. (1.69)

This equation is the first law of black hole mechanics for a stationary, asymp-
totically flat black hole spacetime in an arbitrary local, Diff-invariant theory of
gravity Wald [1993], Iyer [1997]. For general relativity, it reduces to the expression
derived in the seminal papers concerning the laws of black hole mechanics Beken-
stein [1973], Bardeen et al. [1973].

The analysis in curved spacetime quantum field theory shows that black holes
radiate at temperature TH = κ/2π known as the Hawking temperature Hawking
[1975], Visser [2003]. If we identify TH in the first law of black hole mechan-
ics (1.69), we may rewrite it as a genuine first law of thermodynamics

δM = THδSW + ΩHδJ, (1.70)

where δM plays the role of internal energy (or enthalpy Kubiznak and Mann
[2015]), ΩHδJ represents a work term appearing due to the change in black hole
rotation, and

δSW = 4π
∫︂
∂CH

Eνµρσϵρσϵµνdn−2A, (1.71)

is the Wald entropy of the black hole event horizon. In general relativity, Wald en-
tropy is proportional to the area A of the horizon’s cross-section, i.e., SW = A/4,
which is just the famous Bekenstein entropy Bekenstein [1973]. It has been ar-
gued that Wald entropy represents the appropriate generalisation of Bekenstein
entropy for modified theories of gravity Wald [1993]. It indeed satisfies the second
law of thermodynamics, although the entropy prescription needs to be refined to
account for dynamically changing black hole horizons Wall [2012], Dong [2014],
Wall [2015], Hollands et al. [2024].

The covariant phase space formalism yields not only the first law, but also
the Smarr formula, a mathematical identity relating the parameters of a black

9Unless W νµ
ρ or θµ diverge at the bifurcation surface Jacobson et al. [1994], Sarkar and

Wall [2011].
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hole. One just needs to integrate the on-shell relation jµξ = ∇νQ
νµ
ξ over a Cauchy

surface C. The integration proceeds along the same lines as for the first law and
we find the following Smarr formula

M = 2THSW + 2ΩHJ . (1.72)

This identity can be easily verified by plugging in the parameters of the Kerr met-
ric (the most general vacuum stationary, asymptotically flat black hole spacetime
in four dimensional general relativity).
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Covariant phase space formalism
for WTDiff-invariant gravity
Given the status of Weyl transverse gravity as a classical alternative to general
relativity, it is of interest to also apply the covariant phase space formalism to
it and to derive expressions for the conserved charges as well as the first law of
black hole mechanics.

Unfortunately, the standard treatment of the covariant phase space formalism
works only for local, fully Diff-invariant theories of gravity without any non-
dynamical structures Iyer and Wald [1994]. An extension of the formalism has also
been applied to Einstein-aether gravity which breaks the local Lorentz invariance
by introducing a preferred direction of time Foster [2006], Berglund et al. [2012],
Pacilio and Liberati [2017], Ho et al. [2018], Ding and Zhai [2020], Kucukakca
and Akbarieh [2020], Chan et al. [2022]. However, since the time direction is
introduced as a dynamical vector (or scalar) field and the action is written in a
covariant form, the loss of the local Lorentz symmetry does not really represent
any technical difficulties for the covariant phase space approach. The situation in
WTDiff-invariant gravity is somewhat more subtle. On the one side, the presence
of a non-dynamical volume n-form ω requires careful treatment. On the other
side, the cosmological constant appears as a global degree of freedom and is
only meaningfully defined on shell. We were able to address both challenges,
obtaining the symplectic structure for general local, WTDiff-invariant theories
of gravity. The results are mostly physically equivalent to the ones found in the
Diff-invariant case. However, the different behaviour of the cosmological constant
leads to a volume term being present in the Hamiltonian. This marks a departure
from Diff-invariant theories, where the Hamiltonian always reduces to a surface
integral.

Herein, we discuss the construction of the WTDiff-invariant covariant phase
space formalism in detail. Furthermore, we apply it to derive the first law of black
hole mechanics, an expression for Wald entropy, and to study thermodynamics
of causal diamonds. First, to introduce our approach, we treat the special case
of Weyl transverse gravity. Then, we move on to the fully general local, WTDiff-
invariant theories.

1.3 Covariant phase space formalism for Weyl
transverse gravity

Before going to the most general local, WTDiff-invariant gravitational action,
we introduce the covariant phase space formalism for vacuum Weyl transverse
gravity. We begin by varying the Lagrangian (1.13) with respect to the dynamical
metric gµν ,

δL = − 1
16π

[︃(︂√
−g/ω

)︂2/n
R̃
µν − 1

n

(︂√
−g/ω

)︂−2/n
R̃g̃µν

]︃
δgµν + ∇̃µθ

µ. (1.73)
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This expression contracted with δgµν corresponds to the vacuum equations of
motion. The second term yields the symplectic potential

θµ [δ] = 1
16π

(︄√
−g

ω

)︄ 4
n

(gµνgρσ − gµσgνρ) ∇̃σδg̃νρ, (1.74)

where the variation of the auxiliary metric δg̃νρ reads

δg̃νρ =
(︄√

−g

ω

)︄− 2
n
(︄
δgνρ − 2

n
gνρδ ln

√
−g

ω

)︄
. (1.75)

One can easily verify that θµ [δ] is WTDiff-invariant. The symplectic current
Ωµ [δ1, δ2] and the symplectic form Ω [δ1, δ2] are then simply given by the general
expressions (1.45) and (1.46), respectively.

As in the Diff-invariant case, we want to relate the symplectic form with
the Noether currents and charges associated with the local symmetries of the
theory, i.e., Weyl transformations and transverse diffeomorphisms. We start
with the Noether current corresponding to an infinitesimal Weyl transformation,
δWgµν = 2σgµν . We recall the general definition of the Noether current

jµ
[︂
δW
]︂

= θµ
[︂
δW
]︂

− αµ
[︂
δW
]︂
, (1.76)

where αµ [δW] obeys ∇̃µα
µ [δW] = δWL, with L being the Lagrangian. Since

action (1.13) is exactly Weyl invariant, δWL = 0, and αµ [δW] vanishes. The sym-
plectic potential θµ [δW] is proportional to the variation of the auxiliary metric,
δWg̃µν . However, the auxiliary metric does not change under Weyl transformation.
Thence, θµ [δW] = 0 and, in total, the Noether current jµ [δW] vanishes identi-
cally. This result has been obtained in different ways by several authors, leading
them to call Weyl invariance “a fake symmetry” Jackiw and Pi [2015], Oda [2017,
2022]. It has also been argued that the vanishing Noether current plays a key role
in the absence of a quantum anomaly for this local Weyl symmetry Oda [2017].
The absence of the anomaly is then crucial for the explicit radiative stability of
the cosmological constant in Weyl transverse gravity Carballo-Rubio [2015].

For transverse diffeomorphisms, we have £ξL = ξµ∇̃µL, implying αµξ = Lξµ

(where we used the transversality condition ∇̃µξ
µ = 0). Putting this together

with the symplectic potential θµ [£ξ] we obtain, after some straightforward ma-
nipulations

jµξ = 1
8π

(︃
g̃µρR̃ρν − 1

2R̃δ
µ
ν

)︃
ξν + ∇̃ν

[︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ξµ]
]︃
, (1.77)

where the second term corresponds to the divergence of the Noether charge anti-
symmetric tensor

Qνµ
ξ = 1

8π

(︄√
−g

ω

)︄ 2
n

∇̃[ν
ξµ], (1.78)

which is explicitly WTDiff-invariant.
On shell, we have the following expression for the Noether current

jµξ = − 1
8πΛξµ + ∇̃ν

[︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ξµ]
]︃
. (1.79)
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It is easy to verify that the WTDiff-invariant divergence of the Noether current
vanishes.

Let us now compare our result for the Noether current in Weyl transverse
gravity with general relativity. We can do so by fixing the unimodular gauge,√

−g = ω, for the metric, in which the equations of motion of Weyl transverse
gravity reduce to the traceless part of the Einstein equations. In this gauge, the
Noether current for Weyl transverse gravity simplifies to

jµξ = 1
8π

√
−g

(︃
R µ
ν − 1

2Rδ
µ
ν

)︃
ξρ + 1

8π
√

−g∇ν∇[νξµ], (1.80)

whereas the Noether current for transverse diffeomorphisms in general relativity
reads

jµGR,ξ = 1
8π

√
−g

(︃
R µ
ν − 1

2Rδ
µ
ν + Λδµν

)︃
ξν + 1

8π
√

−g∇ν∇[νξµ]. (1.81)

Comparing both expressions, the Noether current for Weyl transverse gravity
lacks the term √

−gΛξµ/8π. In general relativity, this contribution enters the
Noether current through the Lagrangian term −Lξµ which contains Λ as a fixed
parameter. By contrast, the Lagrangian of Weyl transverse gravity can include a
fixed parameter λ, but, due to WTDiff-invariance, it does not affect the equations
of motion. Instead, Λ appears as an arbitrary integration constant. If we do not
set λ = 0, the Noether current for transverse diffeomorphisms in Weyl transverse
gravity is

jµξ = 1
8π

(︃
g̃µρR̃ρν − 1

2R̃δ
µ
ν + λδµν

)︃
ξν + ∇̃ν

[︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ξµ]
]︃
. (1.82)

It might appear that setting λ = Λ allows us to recover the Noether current of
general relativity in the unimodular gauge. However, since Λ in Weyl transverse
gravity arises as an integration constant in the process of solving the equations of
motion, it is only defined on shell. Moreover, Λ takes a different value for every
solution. We obviously cannot set the fixed off shell parameter λ to match all the
possible values of Λ. Therefore, the difference between the Noether currents in
Weyl transverse gravity and general relativity is genuine and cannot be removed.
In the following, we again keep the irrelevant parameter λ equal to zero, unless
specified otherwise.

Let us note that the symplectic potential, the symplectic current, the Noether
current, and the Noether charge are not completely unambiguous. First, adding
a total divergence ∇̃µγ

µ to the Lagrangian leads to

θµ [δ] → θµ [δ] + δγµ, (1.83)
Ωµ [δ1, δ2] → Ωµ [δ1, δ2] , (1.84)

jµξ → jµξ − 2∇̃ν

(︂
ξ[νγµ]

)︂
, (1.85)

Qνµ
ξ → Qνµ

ξ − 2ξ[νγµ]. (1.86)

Furthermore, we can shift the symplectic potential by a WTDiff-invariant diver-
gence of an arbitrary antisymmetric rank 2 tensor density ∇̃νY

νµ [δ]. We are also
free to shift the Noether charge tensor by a divergence of any fully antisymmetric
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rank 3 tensor ∇̃λZ
λνµ
ξ Jacobson et al. [1994], Iyer and Wald [1994]. Altogether,

the possible ambiguities are (same as in the Diff-invariant case)

θµ [δ] → θµ [δ] + δγµ + ∇̃νY
νµ [δ] , (1.87)

Ωµ [δ1, δ2] → Ωµ [δ1, δ2] + ∇̃ν (δ1Y
νµ [δ2] − δ2Y

νµ [δ1]) , (1.88)
jµξ → jµξ + 2∇̃ν

(︂
ξ[νγµ]

)︂
+ ∇̃νY

νµ [£ξ] , (1.89)

Qνµ
ξ → Qνµ

ξ + 2ξ[νγµ] + Y νµ [£ξ] + ∇̃λZ
λνµ
ξ . (1.90)

We discuss the potential physical implications of these ambiguities in the next
subsection.

1.3.1 Hamiltonian for transverse diffeomorphisms
Upon defining the Noether currents and charges for transverse diffeomorphisms,
we show how to relate them with the Hamiltonian corresponding to the evolution
along the transverse diffeomorphism generator ξµ. To find this relation, we study
a small perturbation of the Nother current jµξ . We assume that both the back-
ground spacetime and the perturbation solve the equations of motion. Then, we
can vary the on shell expression for jµξ (1.79), obtaining (we stress that δξµ = 0)

δjµξ = − 1
8πξ

µδΛ + ∇̃νδ
[︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ξµ]
]︃
. (1.91)

At the same time, we can also work with the general definition of the Noether
current, jµξ = θ [£ξ] − Lξµ. By varying it, after some manipulations and using
the definition of the symplectic current (1.45), we find

δjµξ = Ωµ [£ξ, δ] + 2∇̃ν

(︂
ξ[νθµ] [δ]

)︂
. (1.92)

Comparing expressions (1.91) and (1.92) for δjµξ , we get an equation for the
symplectic current

Ωµ [£ξ, δ] = ∇̃ν

{︄
δ
[︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ξµ]
]︃

− 2ξ[νθµ] [δ]
}︄

− 1
8πξ

µδΛ. (1.93)

Now, choose a Cauchy surface C in the unperturbed spacetime. We can define a
WTDiff-invariant volume element on C by dCµ = (√−g/ω)−1/n

nµωdn−1x, with
nµ being a unit normal to C (gµνnµnν = ±1) and dn−1x a coordinate volume
element on C. Integrating equation (1.93) over the Cauchy surface C yields the
symplectic form

Ω [£ξ, δ] =
∫︂
∂C

(︂
δQνµ

ξ − 2ξνθµ [δ]
)︂

dCµν −
∫︂

C

1
8πδΛξ

µdCµ, (1.94)

where we used the Gauss theorem to convert the first term into a boundary inte-
gral over ∂C and introduced a WTDiff-invariant surface element on ∂C,
dCµν = (√−g/ω)−2/n

n[µmν]ωdn−2x, wheremµ denotes the unit normal to ∂C with
respect to its embedding in C and dn−2x is the coordinate area
element on ∂C.
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If condition (1.50) is fulfilled, there exist a Hamiltonian Hξ for the evolution
along the vector field ξµ. By the Hamilton equations of motion, its perturbation
equals the symplectic form Ω [£ξ, δ], i.e.,

δHξ =
∫︂
∂C

(︂
δQνµ

ξ − 2ξνθµ [δ]
)︂

dCµν −
∫︂

C

1
8πδΛξ

µdCµ. (1.95)

In fully Diff-invariant theories, the variation of the Hamiltonian can always be
written as a surface integral Wald [1993], Iyer and Wald [1994]. By contrast,
in Weyl transverse gravity, we also have a volume integral proportional to δΛ.
Since the volume integral clearly gives an infinite contribution and variations of
Λ occur generically, we must suitably regularise the Hamiltonian (except for the
special case Λ = δΛ = 0). We discuss the regularisation on some examples in
subsection 1.3.3.

To conclude the general discussion of the variation of the Hamiltonian, we
check whether it is affected by the ambiguities in θµ [δ], Ωµ [δ1, δ2], jµξ , and Qνµ

ξ

mentioned in the previous subsection. In the definition of the symplectic form
Ω [£ξ, δ], we have only the following ambiguity

∆Ω [£ξ, δ] =
∫︂

C
∆Ωµ [£ξ, δ] dCµ =

∫︂
∂C

(£ξY
νµ [δ] − δY νµ [£ξ]) dCµν . (1.96)

This term may affect the symplectic form in general Jacobson et al. [1994], Iyer
and Wald [1994], Compère and Fiorucci [2018]. However, in the following, we will
be mostly interested in the case of Killing vector fields ξµ. Then, by definition,
£ξg̃µν = 0 and we have ∆Ω [£ξ, δ] = 0 (the same reasoning applies even in the
presence of matter fields). Hence, we can treat the Hamiltonian corresponding to
a Killing vector field as unambiguous. In general, the ambiguity can be cured by
applying a more sophisticated method known as the relative bi-complex frame-
work, which goes beyond the scope of the present work Margalef-Bentabol and
Villaseñor [2021, 2022].

1.3.2 The first law in vacuum and Wald entropy
We now have an expression for a variation of the Hamiltonian generating the
evolution along a transverse diffeomorphism generator ξµ. As in subsection 1.2.2,
we can apply this expression to Killing vectors in stationary black hole space-
times. In this subsection, we focus on asymptotically flat black hole spacetimes
with Λ = δΛ = 0. Since Weyl transverse gravity and general relativity lead to
equivalent classical physics aside from the behaviour of Λ, we expect to recover
the first law of black hole mechanics obtained in general relativity.

Any stationary, asymptotically flat black hole spacetime of dimension n pos-
sesses a Killing vector ξµ = tµ + ∑︁(n−1)/2

i=1 ΩH,(i)φ
µ
(i), where tµ denotes the time

translational Killing vector, φµ(i) are the rotational Killing vectors, and ΩH,(i)
denote the angular velocities of the black hole Killing horizon in various direc-
tions (the rigidity theorems guaranteeing constancy of ΩH translates directly
from general relativity to Weyl transverse gravity). We stress that the Killing
vectors are defined in a WTDiff-invariant manner, i.e., the Killing equations reads
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£ξg̃µν = 010. Likewise, the horizons (and, indeed, the entire causal structure) are
defined with respect to the WTDiff-invariant geodesic equation (1.41).

We introduce the Cauchy surface C orthogonal to ξµ for the exterior of the
horizon as in figure 1.1. Let us evaluate the Hamiltonian perturbation (1.95) for
this Cauchy surface. Since ξµ is a Killing vector, the symplectic form Ω [£ξ, δ]
vanishes and so does δHξ. Splitting the boundary of C into its intersection with
the asymptotic infinity C∞, and with the horizon CH, we have∫︂

∂C∞

(︂
δQνµ

ξ − 2ξνθµ [δ]
)︂

dCµν −
∫︂
∂CH

(︂
δQνµ

ξ − 2ξνθµ [δ]
)︂

dCµν = 0. (1.97)

The first term yields perturbations of quantities measured at the asymptotic
infinity. Namely, the contribution corresponding to time translations defines the
total canonical energy of the spacetime

δM =
∫︂
∂C∞

(δQµν
t − 2tνθµ [δ]) dCµν , (1.98)

whereas the rotational contributions quantify the total angular momentum for
the given axis of rotation

δJ(i) = −
∫︂
∂C∞

δQµν
φ(i)

dCµν , (1.99)

where the overall minus sign ensures positive J(i). As φµ(i) are all orthogonal to
dCµν , we have no contribution proportional to φν(i)θ

µ. The expressions for both
mass and angular momenta are Weyl invariant. In the unimodular gauge and for
perturbations that do not change the metric determinant, δg = 0, δM and δJ(i)
reduce to the expressions for variations of the ADM energy and angular momenta
valid in general relativity.

Next, we analyse the integral over the Killing horizon. By the same arguments
as in Diff-invariant gravity Jacobson et al. [1994], any terms proportional to ξµ
vanish on the horizon (barring those singular on the bifurcation surface), and a
covariant derivative g̃λµ∇̃νξ

λ contributes as κϵνµ, with ϵνµ being the bi-normal to
the horizon, and κ the (WTDiff-invariant) surface gravity

κ =
√︂
gµνgρσ∇̃ρξµ∇̃σξν

⃓⃓⃓⃓
H
. (1.100)

In total, equation (1.97) then yields

δM −
(n−1)/2∑︂
i=1

ΩH,(i)δJ(i) − 1
8πκ

∫︂
∂CH

δ
[︃(︂√

−g/ω
)︂2/n

ϵνµ
]︃

dCµν = 0. (1.101)

This is the first law of black hole mechanics in Weyl transverse gravity. In the
unimodular gauge and for perturbations which leave the metric determinant in-
variant, it reduces to the familiar first law of general relativity Bekenstein [1973],
Bardeen et al. [1973], Wald [1993]

δM −
(n−1)/2∑︂
i=1

ΩH,(i)δJ(i) − 1
8πκδA = 0, (1.102)

10While the auxiliary metric does not change along Killing vectors, this statement depends
on the specific form of the metric. Thence, the Noether currents and charges derived from the
general action do not vanish identically for Killing vectors, although the ones derived from a
reduced action respecting the Killing symmetries would indeed be zero.
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where A stands for the area of the horizon’s cross-section ∂CH computed with
respect to the dynamical metric gµν . Hence, the physical content of the first law
of black hole mechanics in Weyl transverse gravity and in general relativity is the
same, as long as we set Λ = δΛ = 0.

So far, we have strictly considered classical gravitational physics, and, accord-
ingly, found the first law of black hole mechanics which looks similar to that of
thermodynamics, but lacks a TδS term. To identify the black hole temperature,
we need to invoke the Hawking effect which requires insights from quantum field
theory in a curved background Hawking [1975], Visser [2003]. Since Hawking
radiation is a kinematic effect and results from fluctuations of matter fields which
are unaffected by Weyl transformations (and there are no quantum anomalies as-
sociated with local Weyl symmetry Álvarez and Herrero-Valea [2013b], Carballo-
Rubio [2015]), the Hawking radiation calculation works the same way for WTDiff-
invariant and Diff-invariant setting. The only difference is that the Hawking
temperature TH = κ/2π contains WTDiff-invariant surface gravity (1.100). If we
heuristically take into account the Hawking effect in our otherwise fully classi-
cal calculation, we can identify the last term on the left hand side of the first
law (1.101) as THδS. Then, equation (1.101) becomes a genuine first law of black
hole thermodynamics,

δM −
n−3∑︂
i=1

ΩH,(i)δJ(i) − THδS = 0. (1.103)

Wald entropy of the black hole Killing horizon appearing in equation (1.103)
reads

S = 1
4

∫︂
∂CH

(︂√
−g/ω

)︂2/n
ϵνµdCµν = 1

4

∫︂
∂CH

(︂√
−g/ω

)︂(2−n)/n√︂
hdn−2x, (1.104)

where h denotes the determinant of the (n− 2)-dimensional reduced metric on
∂CH and dn−2x the corresponding coordinate area element. Wald entropy of Weyl
transverse gravity is by construction WTDiff-invariant and, in the unimodular
gauge, it coincides with Bekenstein entropy of general relativity, SB = A/4.

1.3.3 First law with non-zero cosmological constant
We have pointed out that the only known physical difference between Weyl trans-
verse gravity and general relativity lies in the nature of the cosmological constant,
which appears as a global degree of freedom in Weyl transverse gravity. Moreover,
this difference also manifests in the Hamiltonian (1.95). Hence, it is of interest
to apply our framework to the cases with Λ ̸= 0 and/or δΛ ̸= 0. In particular,
we choose two important yet tractable examples, a Schwarzschild-anti-de Sitter
black hole and de Sitter spacetime in four spacetime dimensions. Results for more
general cases can be straightforwardly inferred from our discussion here and from
the calculations performed in the context of general relativity.

Schwarzschild-anti-de Sitter spacetime

We begin by deriving the first law of black hole mechanics in Schwarzschild-anti-
de Sitter spacetime with Λ < 0. The spacetime is static and thus possesses a time
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translational Killing vector field, tµ, which is timelike everywhere in the black hole
exterior and becomes null on the horizon. In this case, equation (1.79) for the
on-shell Noether current jµt integrated over the Cauchy surface C orthogonal to
tµ yields∫︂

C
jµt dCµ = − 1

8πΛ
∫︂

C
tµdCµ +

∫︂
∂C∞

Qνµ
t dCµν −

∫︂
∂CH

Qνµ
t dCµν . (1.105)

We first evaluate the Noether current from its general definition (1.57). Since
£tg̃µν = 0, the symplectic potential term vanishes (see equation (1.74)). For
the special case Λ = 0, we have R̃ = 0 and the Lagrangian vanishes. Then,
the integral of Qνµ

t over C∞ corresponds to M/2, where M is in this case the
Komar mass Iyer and Wald [1994] (the Komar, ADM and canonical definitions
of mass of course coincide in this case). The integral over CH then gives THS in
the thermodynamic interpretation and we have the well-known Smarr formula

M

2 − THS = 0, (1.106)

for a Schwarzschild black hole. However, for Λ < 0, both sides of equation (1.105)
diverge. Since these infinities are of the same nature as in the pure anti-de Sitter
spacetime, we can choose it as our reference background, and impose that the
Noether current and charge vanish there. Stated differently, we define the physical
Noether charge and current as the difference of their value in our Schwarzschild-
anti de Sitter spacetime and the pure anti-de Sitter spacetime characterised by
the same value of Λ11, obtaining

Qνµ
t,phys =Qνµ

t,S-AdS −Qνµ
t,AdS, (1.107)

jµt,phys =jµt,S-AdS − jµt,AdS = ∇̃νQ
νµ
t,phys. (1.108)

Using these physical variables, the Smarr formula (1.105) becomes finite and reads∫︂
C
jµt,physdCµ =

∫︂
∂C∞

Qνµ
t,physdCµν −

∫︂
∂CH

Qνµ
t,physdCµν ,

0 =1
2M − THS + 1

3Λr3
H, (1.109)

where rH is the horizon radius. This is simply the WTDiff-invariant version of
the Smarr formula valid for a Schwarzschild-anti-de Sitter black hole in general
relativity Kastor et al. [2009, 2010].

Upon, deriving the Smarr formula we turn to the first law. Thus, we consider
a perturbation δHt of the Hamiltonian generating evolution along tµ between
two Schwarzschild-anti-de Sitter solutions of the equations of motion of Weyl
transverse gravity that are related by a small perturbation. As we discussed
previously, the cosmological constant generically varies between different solutions
in Weyl transverse gravity. Hence, to subtract the divergent terms in δHt, we
must first define the physical Hamiltonians in both Schwarzschild-anti-de Sitter
spacetimes by subtracting the corresponding anti-de Sitter backgrounds (one with

11Since Λ is only defined on shell, we cannot perform the subtraction at the level of the action
as it is usually done in general relativity Hawking and Horowitz [1996].
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Λ and the other with Λ + δΛ). Only then can we compute δHt as a difference of
these physical Hamiltonians. The result is

δHt,phys = δHt,S-AdS − δHt,AdS =
∫︂
∂C

(︂
δQνµ

t,phys − 2tνθµphys [δ]
)︂

dCµν , (1.110)

where
θµphys = θµS-AdS − θµAdS. (1.111)

Evaluating the integrals, we obtain the first law of thermodynamics valid for a
Schwarzschild-anti-de Sitter black hole in Weyl transverse gravity

M − THδS + 4π
3 r3

H
δΛ
8π = 0. (1.112)

A varying negative cosmological constant has been extensively studied in the lit-
erature, in the context of the so-called black hole chemistry Kastor et al. [2009],
Kubizňák and Mann [2014]. There, it has been argued that −Λ/8π effectively
acts as a pressure in the black hole thermodynamic system. This observation led
to a definition of the thermodynamic volume of a Schwarzschild-anti-de Sitter
black hole as 4πr3

H/3 (this quantity has no relation to the black hole’s geometric
volume, which is infinite). As the first law (1.112) contains a term proportional
to a variation of pressure, the canonical mass M of the spacetime plays the role of
enthalpy. This picture allows one to apply many insights from standard thermo-
dynamics to asymptotically anti-de Sitter black holes, including, e.g. the concept
of phase transitions Hawking and Page [1996], Kubizňák and Mann [2014], Ku-
biznak and Mann [2015], Kubizňák et al. [2017]. While perturbations of the
cosmological constant δΛ must be added somewhat ad hoc in general relativity,
they appear naturally in Weyl transverse gravity already in the fully classical
setting.

De Sitter spacetime

Asymptotically de Sitter spacetimes generically contain both an event and a cos-
mological horizon (both Killing horizons). The presence of two accessible horizons
makes their thermodynamics somewhat complicated Aneesh et al. [2019]. Herein,
we thus limit ourselves to a cosmological horizon in a pure de Sitter spacetime. It
is a Killing horizon with respect to the time translational Killing vector tµ which
is timelike inside the horizon and spacelike outside of it.

We study a small variation of the metric in de Sitter spacetime that satisfies
the vacuum equations of motion of Weyl transverse gravity. The corresponding
variation of the Hamiltonian generating the evolution along tµ vanishes, implying

δHt =
√︄

Λ
3

∫︂
∂C
δ
[︃(︂√

−g/ω
)︂1/2

ϵνµ
]︃

dCµν + 1
8πδΛ

∫︂
C
tµdCµ = 0. (1.113)

where we again generically have to consider a variation of the cosmological con-
stant, in contrast to the situation in general relativity. We can explicitly compute
the integrals, obtaining the first law of the de Sitter cosmological horizon√︄

Λ
3

(︄
δA∂C − 1

2A∂Cδ

√
−g

ω

)︄
+ 1

8πVCδΛ = 0, (1.114)
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where A∂C = 12π/Λ denotes the area of ∂C and VC = 4
√

3π/Λ3/2 the volume of C.
If we consider quantum field theory on curved backgrounds to define the Hawking
temperature of the de Sitter horizon, TdS = (1/2π)

√︂
Λ/3, we can identify the

entropy of de Sitter horizon. It reads

S = 3π/Λ, (1.115)

in agreement with the result in general relativity.
We may also derive the Smarr formula relating the volume and the area of C.

Integrating the on-shell relation for jµt (1.79) over C, we find∫︂
C
jµt dCµ = − 1

8πΛ
∫︂

C
tµdCµ +

∫︂
∂C
Qνµ
t dCµν . (1.116)

Since jµt = −Ltµ = −Λtµ/4π (the symplectic potential contribution to the
Noether current vanishes for any Killing vector), the final result reads

ΛVC

8π = 1
2π

√︄
Λ
3

A∂C

4 , (1.117)

The validity of this Smarr formula can be easily checked by plugging in the
expressions for VC and A∂C.

It has been argued that Euclidean path integral calculations of de Sitter en-
tropy in Weyl transverse gravity (or any model of unimodular gravity) yield a
different result than in general relativity Fiol and Garriga [2010]. This would
clearly lead to a contradiction with our result for the de Sitter entropy (1.115).
Thence, we briefly discuss the Euclidean path integral result and address this
apparent contradiction. The approach is based on approximating the partition
function Z of the de Sitter spacetime canonical ensemble by the classical ac-
tion Gibbons and Hawking [1977]. A standard thermodynamics argument then
implies (assuming no pressure and chemical potentials are present)

lnZ = −E/T + S, (1.118)

where T denotes the de Sitter temperature, E the total energy, and S the entropy.
The Euclidean action of general relativity in the region inside the de Sitter horizon
(a 4-sphere of radius

√︂
3/Λ) equals

I = −3π
Λ . (1.119)

Since E = 0, we then straightforwardly have that entropy obeys equation (1.115).
In Weyl transverse gravity, the same procedure yields (keeping the parameter λ
in the action nonzero)

I = −3π
Λ

(︄
2 − λ

Λ

)︄
. (1.120)

If we assume E = 0 as before, we obtain entropy which differs from the general
relativistic result and from Wald entropy we obtained (1.115), unless we choose
λ = Λ Fiol and Garriga [2010]. While this resolution was previously suggested,
we have argued that it cannot work, since λ is just a single parameter, whereas
Λ is only defined on shell and takes different values for different solutions.
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To reconcile the apparent discrepancy in entropy, we instead propose the
following. As we pointed out above, it has been argued in the context of gen-
eral relativity that varying negative cosmological constant can be identified with
pressure, pΛ = −Λ/8π Kubiznak and Mann [2015]. Adopting the same interpre-
tation for the varying positive cosmological in de Sitter (we note that variations
of cosmological constant appears in Weyl transverse gravity without any further
assumptions), we have

I = −S + pΛVdS = −S − 3π
Λ , (1.121)

where VdS denotes the volume of the Euclidean 4-sphere enclosed by the de Sitter
horizon. Entropy thus obeys

S = 3π
Λ

(︄
1 − λ

Λ

)︄
. (1.122)

By setting λ = 0 one then recovers the expected entropy (1.115). The λ-
proportional term has a simple interpretation in Weyl transverse gravity. Its
contribution to the action (in any spacetime) equals V(ω)λ, where V(ω) denotes
the spacetime volume of the integration domain V evaluated with respect to the
non-dynamical volume measure ω. Then, V(ω)λ is a universal constant which
quantifies our freedom to shift the value of entropy by a constant. In conclusion,
we can see the equivalence of the Euclidean canonical ensemble and the covariant
phase space formalism calculations of entropy (since the only possible obstruction
to equivalence is the behaviour of Λ, it clearly holds in general).

1.3.4 First law of black hole mechanics in the presence of
matter

So far, we have considered vacuum Weyl transverse gravity. However, the first law
of black hole mechanics in general relativity was originally derived for a stationary,
asymptotically flat black hole spacetime with a perfect fluid Bardeen et al. [1973].
The covariant phase space formalism then allowed to generalise this derivation
to arbitrary local, Diff-invariant theory of gravity Iyer [1997]. For the sake of
comparison, we would like to obtain the same result in Weyl transverse gravity.
In order to do so, we first discuss the first law in the presence of general matter
content. Then, we introduce a suitable WTDiff-invariant Lagrangian description
of a perfect fluid. Lastly, we specialise the first law of black hole mechanics in
the presence of matter for this model of the perfect fluid. For simplicity, we
set Λ = δΛ = 0 throughout, but the generalisation to nontrivial Λ is fairly
straightforward.

First law in the presence of matter

To obtain the symplectic potential θµψ and symplectic current Ωµ
ψ for matter

fields, we can simply apply the general equations (1.42) and (1.45), respectively,
to the WTDiff-invariant matter Lagrangian (1.21). The derivation of the ex-
pressions for the matter Noether currents is more subtle. Since Weyl transfor-
mations do not act on matter fields, the corresponding Noether current triv-
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ially vanishes. Regarding transverse diffeomorphisms generated by some vec-
tor field ξµ, we can straightforwardly apply the general equation (1.53) with
αµψ,ξ = (√−g/ω)2k/n

Lψξ
µ. The result is

jµψ,ξ = θµψ [£ξ] − Lψξ
µ. (1.123)

To learn something about the matter Noether current in general, rather than for
specific matter fields, we evaluate its WTDiff-invariant divergence, obtaining

∇̃µj
µ
ψ,ξ =∇̃µθ

µ
ψ,ξ − £ξ

[︃(︂√
−g/ω

)︂2k/n
Lψ

]︃
= − Aψ£ξψ −

(︂√
−g/ω

)︂2k/n
(︃
T µν − 1

n
Tgµν

)︃
2∇(µξν), (1.124)

where we used the definition of the symplectic potential (1.42) and denoted the
matter equations of motion by Aψ = 0. By a series of straightforward manipula-
tions, we get Iyer [1997]

∇̃µj
µ
ψ,ξ = ∇̃µ

[︃
− (ψ · Aψ · ξ)µ −

(︃(︂√
−g/ω

)︂2k/n
T µ
ν − J δµν

)︃
ξν
]︃
, (1.125)

where J corresponds to the potential local energy non-conservation defined by
equation (1.25). Since we can express ∇̃µj

µ
ψ,ξ by equation (1.125), we must have

for the Noether current Wald [1990], Iyer [1997]

jµψ,ξ = − (ψ · Aψ · ξ)µ −
[︃(︂√

−g/ω
)︂2k/n

T µ
ν − J δµν

]︃
ξν + ∇̃νQ

νµ
ψ,ξ, (1.126)

where Qνµ
ψ,ξ denotes the matter Noether charge. For any given matter Lagrangian,

we can easily find the Noether charge by comparing expressions for jµψ,ξ, (1.123)
and (1.126). The second term in equation (1.126) is just twice the right hand
side of the divergence-free equations (1.26) of Weyl transverse gravity. Therefore,
the sum of the matter (1.126) and the gravitational (1.77) Noether currents on
shell becomes the divergence of the Noether charge and a cosmological constant
contribution, just like in vacuum Weyl transverse gravity (see equation (1.79)).

We stress that the matter Noether charge is proportional to the transverse dif-
feomorphism generator ξµ. To see this, we note that a Lagrangian for minimally
coupled matter fields can contain at most first derivatives of the matter variables.
Then, the symplectic potential can only contain variations of the matter variables
and not their derivatives. If these variations correspond to transverse diffeomor-
phisms, they are simply given by Lie derivatives along ξµ, which depend at most
on first derivatives of ξµ. The Noether current jµψ,ξ and, hence, also the diver-
gence of the Noether charge Qνµ

ψ,ξ can also contain at most first derivatives of ξµ.
This implies that Qνµ

ψ,ξ does not contain any derivatives of ξµ and there exists a
WTDiff-invariant antisymmetric tensor W νµ

ρ = W [νµ]
ρ , such that Qνµ

ψ,ξ = ξρW νµ
ρ .

Since we have shown that terms of the form W νµ
ρ = W [νµ]

ρ do not affect Wald
entropy, minimally coupled matter fields do not contribute to it.

To study the Hamiltonian, we need the matter symplectic current Ωµ
ψ [£ξ, δ]

corresponding to a transverse diffeomorphism and an arbitrary small perturbation
of the metric and the matter fields. Starting from the general definition (1.45),

42



and following the same strategy as for the gravitational symplectic current, we
eventually obtain

Ωµ
ψ [£ξ, δ] =∇̃ν

(︂
δQνµ

ψ,ξ − 2ξ[νθ
µ]
ψ [δ]

)︂
− δ

[︃(︂√
−g/ω

)︂2k/n
T µ
ν − J δµν

]︃
ξν

+ 1
2
(︂√

−g/ω
)︂2k/n

ξµ
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβ, (1.127)

where we assumed that both the original spacetime and the perturbed one satisfy
the equations of motion. An integral of Ωµ

ψ [£ξ, δ] over a suitable Cauchy surface
C then yields the matter symplectic form Ωψ [£ξ, δ] (see equation (1.46)). If the
matter Hamiltonian exists (this is guaranteed by condition (1.50)), the Hamilton
equations of motion imply δHψ,ξ = Ωψ [£ξ, δ]. Thence, we have

δHψ,ξ =
∫︂
∂C

(︂
δQνµ

ψ,ξ − 2ξνθµψ [δ]
)︂

dCµν −
∫︂

C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν − J δµν

]︃
ξνdCµ

+ 1
2

∫︂
C

(︂√
−g/ω

)︂2k/n
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβξ

µdCµ. (1.128)

The complete Hamiltonian perturbation consists of a sum of the matter δHψ,ξ

and the gravitational δHg,ξ parts (we introduce subscript g to set δHg,ξ apart
from the perturbation of the total Hamiltonian δHξ), so that

δHξ = δHg,ξ + δHψ,ξ. (1.129)

For the perturbation of the total on shell Hamiltonian, we obtain Alonso-Serrano
et al. [2023a] (following the same steps as in the vacuum case)

δHξ =
∫︂

C
Ωµ [£ξ, δ] dCµ =

∫︂
∂C

(︂
δQνµ

g,ξ + δQνµ
ψ,ξ − 2ξνθµg [δ] − 2ξνθµψ [δ]

)︂
dCµν

−
∫︂

C

1
8πδΛξ

µdCµ, (1.130)

where the total symplectic current is again simply a sum of the matter and the
gravitational contributions, i.e., Ωµ = Ωµ

g + Ωµ
ψ. As before, the total Hamiltonian

can be expressed in terms of a surface integral, except for the volume contri-
bution proportional to the cosmological constant. Combining equations (1.129)
and (1.130) for δHξ together with the expression (1.128) for δHψ,ξ, we find for
the perturbation of the gravitational Hamiltonian

δHg,ξ =
∫︂
∂C

(︂
δQνµ

g,ξ − 2ξνθµg [δ]
)︂

dCµν −
∫︂

C

1
8πδΛξ

µdCµ

−
∫︂

C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν − J δµν

]︃
ξνdCµ

+ 1
2

∫︂
C

(︂√
−g/ω

)︂2k/n
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβξ

µdCµ. (1.131)

In contrast with the vacuum case, the perturbation of the gravitational Hamil-
tonian now contains volume integrals given by the matter content of the theory.
Equation (1.131) represents the starting point for a straightforward derivation of
the first law of black hole mechanics, as we show in the following.

Consider an n-dimensional, stationary, asymptotically flat spacetime with ar-
bitrary minimally coupled matter fields present. We have, just like in the vac-
uum case, a time translational Killing vector field , tµ, and (n− 1) /2 rotational
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Killing vectors, φµ(i). Their combination ξµ = tµ +∑︁n−3
i=1 ΩH,(i)φ

µ
(i), with ΩH,(i) be-

ing the constant angular velocities of the horizon, is again a Killing vector. The
black hole event horizon is then a Killing horizon with respect to ξµ. Our task
is now to evaluate equation (1.131) for the Cauchy surface C orthogonal to ξµ.
Its boundary consists of the intersection with the spatial infinity, C∞, and with
the horizon, ∂CH.

Since ξµ is a Killing vector field, δHg,ξ vanishes. If δHψ,ξ was zero as well, we
would have δHξ = 0 and equation (1.130) would then give us the first law of black
hole mechanics in terms of boundary integrals (since we set δΛ = 0). However,
the matter fields do not in general possess the same symmetries as the spacetime
(although the energy-momentum tensor does) and their Lie derivatives with re-
spect to a Killing vector do not necessarily vanish Iyer [1997]. This occurs, e.g.,
in the physically relevant case of perfect fluids. Their Lagrangian must include
Lagrange multipliers which in general do not share the spacetime symmetries,
although fluid’s entropy, temperature, velocity, particle density, energy density
and pressure do. To sum up, δHψ,ξ does not generically equal zero and we have
to use the more complicated equation (1.131) to derive the first law of black hole
mechanics.

Evaluating the perturbation of the gravitational Hamiltonian (1.131) in our
stationary, asymptotically flat setup yields∫︂

∂C

(︂
δQνµ

g,ξ − 2ξνθµg [δ]
)︂

dCµν −
∫︂

C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν − J δµν

]︃
ξνdCµ

+ 1
2

∫︂
C

(︂√
−g/ω

)︂2k/n
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβξ

µdCµ = 0. (1.132)

The first term comes from the gravitational degrees of freedom and has the same
interpretation as in vacuum

∫︂
∂C

(︂
δQνµ

g,ξ − 2ξνθµg [δ]
)︂

dCµν =δE −
(n−1)/2∑︂
i=1

Ω(i)
H δJ(i)

− 1
8πκ

∫︂
∂CH

δ
[︃(︂√

−g/ω
)︂2/n

ϵνµ
]︃

dCµν , (1.133)

where perturbations of the canonical energy, δE, and the angular momenta, δJ(i),
include contributions from both the black hole and the matter fields. Let us now
look at the matter field contributions. There, we further assume that a vector
field co-moving with the matter takes the form Uµ = tµ +∑︁(n−1)/2

i=1 Ω(i)φ
µ
(i), where

Ω(i) denotes the matter angular velocities (not necessarily constant) in the various
rotational directions. Then, we can conveniently rewrite the first volume integral
in equation (1.132) as

−
∫︂

C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν − J δµν

]︃
ξνdCµ = −

∫︂
C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν

]︃
UνdCµ

−
∫︂

C
δJ ξµdCµ +

∫︂
C

(n−1)/2∑︂
i=1

(︂
Ω(i) − Ω(i)

H

)︂
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν

]︃
φν(i)dCµ, (1.134)

where the first term is proportional to the perturbation of the energy-momentum
tensor contracted with the vector field Uν co-moving with the matter. The second
term quantifies the possible local energy non-conservation (keep all the caveats of
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such a possibility we discussed in subsection 1.1.5 in mind). The last contribution
yields perturbations of the WTDiff-invariant angular momenta of the matter δJ̃µ(i),
defined by the standard prescription

δJ̃
µ

(i) = δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν

]︃
φν(i). (1.135)

The terms ΩH,(i)δJ̃
µ

(i) can be combined with the total angular momenta perturba-
tions present in equation (1.133), leaving only the black hole contribution JH,(i).
In total, the first law for a stationary, asymptotically flat black hole spacetime in
the present of matter fields read

δE −
(n−1)/2∑︂
i=1

Ω(i)
H δJ

(i)
H − 1

8πκ
∫︂
∂CH

δ
[︃(︂√

−g/ω
)︂2/n

ϵνµ
]︃

dCµν

−
∫︂

C
δ
[︃(︂√

−g/ω
)︂2k/n

T µ
ν

]︃
UνdCµ

+ 1
2

∫︂
C

(︂√
−g/ω

)︂2k/n
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβξ

µdCµ

+
∫︂

C

(n−1)/2∑︂
i=1

Ω(i)δJ̃
µ

(i)dCµ +
∫︂

C
δJ ξµdCµ = 0. (1.136)

Further analysis of the first law requires specifying the matter content. We choose
as an example a black hole surrounded by a perfect fluid, a setup treated already
in the seminal paper on black hole mechanics Bardeen et al. [1973]. However, we
first need to introduce a Lagrangian description for a WTDiff-invariant perfect
fluid.

WTDiff-invariant perfect fluids

To apply the covariant phase space formalism to a perfect fluid, we require a
Lagrangian description for it12. We choose to introduce a WTDiff-invariant (and
somewhat simplified) variant of the formalism introduced in Brown [1993]. Hence,
we take the entropy per particle s, and the particle density ν, as the configura-
tional variables for the fluid. The fluid equation of state then expresses the energy
density as a function of these variables, i.e., ρ = ρ (s, ν). We also introduce the
velocity of the fluid uµ, normalised to uµu

µ = −1. To make the normalisa-
tion Weyl-invariant, uµ must change under Weyl transformations as u′µ = e−σuµ

(stated differently, gµν + uµuν remains a projector to the subspace orthogonal to
uµ in every Weyl gauge). The particle number density flux then reads

Iµ =
(︂√

−g/ω
)︂1/n

νuµ, (1.137)

12The form of the first law (1.136) in the presence of matter we derived, works even without
knowing the Lagrangian, since the matter Noether charges do not enter it (and it can be derived
by different methods just from the equations of motion and boundary conditions Bardeen et al.
[1973]). Then, we may in principle apply it even to non-Lagrangian matter fields which can
violate the local energy conservation and have δJ = 0. However, the Lagrangian description
of the fluid is still needed to make the covariant phase space derivation self-consistent, as well
as to generalise it to arbitrary local, WTDiff-invariant theories of gravity, which we do in the
next section.
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where the included power of the metric determinant ensures its overall WTDiff
invariance.

The main part of our fluid Lagrangian can be chosen to be simply the energy
density, ρ (ν, s) Brown [1993]. To have a perfect fluid, we must further ensure
that the fluxes of the particle number density and entropy are conserved along
the flow lines. We add these conditions using Lagrange multipliers, obtaining the
following full Lagrangian13

Lf = −ρ (s, ν) + Iµ
(︂
∇̃µη + s∇̃µτ

)︂
. (1.138)

Here, the functions η and τ are the Lagrange multipliers. As we will see, their
physical interpretation is encoded in the equations of motion. Varying the action
with respect to the dynamical metric gives us the traceless part of the energy-
momentum tensor

Tµν − 1
n
Tgµν = (ρ+ p)

(︃
uµuν + 1

n
gµν

)︃
, (1.139)

where we identify the pressure as

p = ν
∂ρ

∂ν
− ρ, (1.140)

using a comparison our result with the standard form of the perfect fluid energy-
momentum tensor. By design, variations with respect to the Lagrange multipliers
η and τ lead to the conservation laws for the particle number density flux and
the entropy flux, respectively,

∇̃µI
µ = 0, ∇̃µ (sIµ) = 0. (1.141)

Varying the action with respect to the entropy per particle s yields

−∂ρ

∂s
+ Iµ∇̃µτ = 0. (1.142)

If we define the Weyl-invariant fluid temperature as

T =
(︂√

−g/ω
)︂1/n

uµ∇̃µτ, (1.143)

equation (1.142) becomes
T = 1

ν

∂ρ

∂s
, (1.144)

which corresponds to the first law of thermodynamics for the fluid Brown [1993].
Lastly, varying the action with respect to the particle number density ν gives

∂ρ

∂ν
−
(︂√

−g/ω
)︂1/n

uµ
(︂
∇̃µη + s∇̃µτ

)︂
= 0. (1.145)

13To specify the flow lines and fix their form at the boundaries, we should also include their
description in terms of Lagrange coordinates Brown [1993]. However, in our case of a stationary,
asymptotically flat spacetime, the fluid is not present at the boundaries and no such terms are
necessary.
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The last term is simply −T s, whereas the first one corresponds to (ρ+ p) /ν
(see equation (1.140)). If we invoke the Gibbs-Duhem relation of the standard
thermodynamics, we can define the chemical potential µ

µ = ρ+ p

ν
− T s = ∂ρ

∂ν
− s

(︂√
−g/ω

)︂1/n
uµ∇̃µτ. (1.146)

Equation (1.145) then represents a relation between the chemical potential and
the Lagrange multiplier η

µ =
(︂√

−g/ω
)︂1/n

uµ∇̃µη. (1.147)

Varying the action with respect to the fluid velocity uµ gives an equation govern-
ing the behaviour of the Lagrange multipliers η and τ on the surfaces orthogonal
to the flow lines, which is irrelevant for our purposes.

One can easily check that the fluid equations of motion imply that the energy-
momentum tensor has a vanishing divergence, i.e., ∇̃νT

ν
µ = 0, and, therefore,

J = 0. As expected based on our discussion in subsection 1.1.5, the local energy-
momentum conservation is directly built into the Lagrangian description of the
fluid.

To illustrate the general covariant phase space formalism for matter fields, let
us apply it to our perfect fluid Lagrangian. The expressions for the symplectic
potential and the Noether current corresponding to transverse diffeomorphisms
can be straightforwardly derived from the general definitions. The results read

θµf = Iµ (δη + sδτ) , jµf,ξ = −T µ
ν ξν . (1.148)

Thence, the Noether charge Qνµ
f,ξ vanishes identically. Finally, the on-shell perfect

fluid symplectic current Ωµ
f [£ξ, δ], corresponding to a transverse diffeomorphism

and a small perturbation of the metric and the fluid variables, equals

Ωµ
f [£ξ, δ] = −2∇̃ν

(︂
ξ[νθ

µ]
f

)︂
− ξνδT µ

ν + 1
2ξ

µ
(︃
Tαβ − 1

n
Tgαβ

)︃
δgαβ. (1.149)

By integrating this expression over a Cauchy surface, we directly obtain a per-
turbation of the fluid Hamiltonian δHξ,f (see equation (1.128)).

First of black hole mechanics with a perfect fluid

We now have a first law of mechanics for stationary, asymptotically flat black
hole spacetimes in the presence of arbitrary, minimally coupled matter fields, and
a WTDiff-invariant Lagrangian description of a perfect fluid. All that remains
is combining these two results. We aim to both illustrate how the matter field
contributions to the Hamiltonian perturbation affect the first law and to show the
physical equivalence of the final expression with the result in general relativity.
Starting from the general equation (1.136), we specialise it to find the first law
of black hole mechanics in the presence of a perfect fluid. For the perturbation
of the fluid energy-momentum tensor we obtain Alonso-Serrano et al. [2023a]

UνδT µ
ν =1

2U
ν (ρ+ p)

(︃
uνu

µ + 1
n
δνµ

)︃
+
(︂√

−g/ω
)︂−1/n

|U |µδIµ

+
(︂√

−g/ω
)︂−1/n

|U |T δ
[︃(︂√

−g/ω
)︂1/n

νsuµ
]︃
. (1.150)
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The first term is simply the traceless part of the energy-momentum tensor, which
precisely cancels out with the last integral in equation (1.136). Then, the first law
of black hole mechanics for a stationary, asymptotically flat black hole spacetime
filled with a perfect fluid becomes

δE − Ω(i)
H δJ(i) − 1

8πκ
∫︂
∂CH

δ
[︃(︂√

−g/ω
)︂2/n

ϵνµ
]︃

dCµν

−
∫︂

C

(︂√
−g/ω

)︂−1/n
|U |µδIµdCµ −

∫︂
C

(︂√
−g/ω

)︂−1/n
|U |T δS̃µdCµ

−
∫︂

C

n−3∑︂
i=1

Ω(i)δJ̃
µ

(i)dCµ = 0. (1.151)

In the unimodular gauge and for perturbations that leave the metric determi-
nant unchanged, δg = 0, this formula reduces to the form of the first law in
general relativity Bardeen et al. [1973], Iyer [1997], and it has the same physical
meaning. Let us briefly focus on the content of equation (1.151). In the first
line we find the familiar terms given by the surface integrals over the asymp-
totic infinity and the horizon. The first integral on the second line quantifies the
change in the fluid’s energy as a result of an absorption of particles by the black
hole. It is given by the perturbation of the particle density current Iµ, multi-
plied by the chemical potential µ, and a red-shift factor (√−g/ω)−1/n |U |. The
latter accounts for the red-shift between the event horizon and the asymptotic
infinity. The last term on the second line quantifies the heat flow from the fluid
into the black hole, with S̃

µ = (√−g/ω)1/n
suµ being the WTDiff-invariant en-

tropy flux, and (√−g/ω)−1/n |U |T the red-shifted fluid temperature. This term
leads to the decrease of the fluid entropy. Therefore, unless the black hole also
possesses entropy which correspondingly increases, it violates the second law of
thermodynamics. This observation is one of the main arguments for identify-
ing the term − (1/8π)κ

∫︁
∂CH

δ
[︂
(√−g/ω)2/n

ϵνµ
]︂

dCµν with the heat term for the
black hole, and, hence, for the notion of Wald entropy. It actually quantifies the
famous John Wheeler’s question about pouring a cup of tea into a black hole,
which helped to shape the field of black hole thermodynamics Wheeler and Ford
[1998].

1.3.5 The first law of causal diamonds
The Diff-invariant covariant phase space formalism applies straightforwardly not
only to Killing vectors, but also to conformal Killing vectors generating an in-
finitesimal Weyl transformation of the metric,

δζgµν = £ζgµν = 2∇(µζν) = 1
n

∇ρζ
ρgµν . (1.152)

Since ζµ, like any vector field, generates an infinitesimal diffeomorphism, it corre-
sponds to an infinitesimal symmetry of any Diff-invariant theory. Hence, we can
directly apply the machinery of Hamiltonian perturbations expressed in terms
of the Noether charge. In Weyl transverse gravity, the situation is different.
Since ∇̃µζ

µ ̸= 0, ζµ is not a transverse diffeomorphism transformation. While it
does generate a Weyl transformation, this statement does not hold in an arbi-
trary spacetime (unlike the transversality condition), but depends on a particular
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background metric. Therefore, we cannot define a background-independent con-
served Noether current corresponding to ζµ. Nevertheless, we can still compute
the symplectic potential, symplectic current and, eventually, the Hamiltonian
perturbation by brute force, although we lose its relation with background inde-
pendent Noether charges.

At this point, the difference between δζ and £ζ becomes important. While
any variation of a non-dynamical volume measure vanishes by definition, i.e.,
δζω = 0, for its Lie derivative we have £ζω = ωa∇̃µζ

µ ̸= 0. Consequently, it can
be shown that a conformal Killing vector leaves the auxiliary metric invariant,
δζ g̃µν = 0.

Herein, we first derive the Hamiltonian perturbation for a completely arbitrary
vector field ζµ. Then, we apply it to the particular case of a causal diamond in
flat background, which possesses a conformal Killing symmetry. There, we derive
the first law of causal diamonds in Weyl transverse gravity and show its physical
equivalence with the one valid in general relativity. This result (as well as its
generalisation to arbitrary local, WTDiff-invariant theories we derive in the next
section) plays an important role in our discussion of thermodynamics of spacetime
in chapter 2.

Hamiltonian

The symplectic current corresponding to a diffeomorphism generated by an arbi-
trary vector field ζµ and a small spacetime perturbation reads

Ωµ [δζ , δ] = δθµ [δζ ] − δζθ
µ [δ] . (1.153)

We are interested in comparing two solutions of Weyl transverse gravity related
by a small perturbation. Therefore, in the following, we assume that both the
original and the perturbed spacetime satisfy the vacuum equations of motion.
The first term is a perturbation of the symplectic potential θµ [δζ ], which we
express from its general definition (1.74)

θµ [δζ ] = 1
16π

(︄√
−g

ω

)︄ 4
n

(gµνgρσ − gµσgνρ) ∇̃σδζ g̃νρ, (1.154)

with
∇̃σδζ g̃νρ = 2∇̃σ∇̃(ν

(︂
g̃ρ)λζ

λ
)︂

− 2
n
g̃νρ∇̃σ∇̃λζ

λ. (1.155)

After some straightforward calculations, we obtain

θµ [δζ ] = 1
8π g̃

µρR̃ρνζ
ν + ∇̃ν

(︃ 1
8π

(︂√
−g/ω

)︂2/n
∇̃[ν

ζµ]
)︃

+ Πµ
ζ , (1.156)

where we introduced
Πµ
ζ = 1

8π
n− 1
n

g̃µν∇̃ν∇̃ρζ
ρ. (1.157)

Term Πµ
ζ gives the only contribution which does not appear in the previously

analysed case of transverse diffeomorphisms. One may notice that the first term
on the right hand side of equation (1.156) corresponds to the Noether charge,
in the case when ∇̃µζ

µ = 0. However, a general ζµ does not generate a local
symmetry of Weyl transverse gravity and we cannot assign a conserved Noether
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charge to it (at least not for a general metric). For the perturbation of the
symplectic potential (1.156) δθµ [δζ ], we have, using the vacuum equations of
motion,

δθµ [δζ ] = 1
8π

1
n
ζµδR̃ + 1

8π ∇̃ν

[︃
δ
(︃(︂√

−g/ω
)︂2/n

∇̃[ν
ζµ]
)︃]︃

+ δΠµ
ζ . (1.158)

The second term in equation (1.153) obeys

δζθ
µ [δ] = ζν∇̃νθ

µ [δ] − θν [δ] ∇̃νζ
µ + 2

n
θµ [δ] ∇̃νζ

ν + 1
16π ∇̃ν∇̃ρζ

ρδg̃µν . (1.159)

Plugging expressions (1.158) and (1.159) into equation (1.153) we find, after some
work (see our paper Alonso-Serrano et al. [2023a] for details),

Ωµ [δζ , δ] = − 1
8πζ

µδΛ + 1
8π ∇̃ν

[︃
δ
(︃(︂√

−g/ω
)︂2/n

∇̃[ν
ζµ]
)︃]︃

− ∇̃ν

(︂
ζ [νθµ] [δ]

)︂
− ζµ∇̃νθ

ν [δ] + n− 2
n

θµ [δ] ∇̃νζ
ν + 1

16π
n− 2
n

∇̃ν∇̃ρζ
ρδg̃µν . (1.160)

Integrating the symplectic current over a Cauchy surface C yields the symplec-
tic form Ω [δζ , δ] and, thus, the Hamiltonian perturbation (assuming that the
Hamiltonian exists)

δHζ =
∫︂
∂C

{︄
1

8πδ
[︃(︂√

−g/ω
)︂2/n

∇̃[ν
ζµ]
]︃

− 2ζνθµ [δ]
}︄

dCµν

−
∫︂

C

1
8πδΛζ

µdCµ + n− 2
n

∫︂
C

(︃ 1
16π ∇̃ν∇̃ρζ

ρδg̃µν + θµ [δ] ∇̃νζ
ν
)︃

dCµ.
(1.161)

Notably, even for δΛ = 0, the perturbation of the Hamiltonian depends on a
volume integral. We clarify its interpretation on the example of a causal diamond
in the following.

Causal diamonds

Causal diamonds in flat spacetime are defined as the intersection of past and
future light cones of a spacelike (n− 1)-dimensional ball. Being very simple
compact objects with a null boundary which encode the causal structure of the
spacetime, they are extensively studied in the field of thermodynamics of space-
time Jacobson [2015], Jacobson and Visser [2019a,b, 2023a,b], Svesko [2019],
Alonso-Serrano and Lǐska [2020a,b, 2022, 2023a,b]. Hence, it is worthwhile to
also analyse their thermodynamics in Weyl transverse gravity.

In a flat spacetime, we specify the causal diamond by choosing an arbitrary
point P , a length scale l and a unit timelike vector nµ. Then, we construct the
(n− 1)-dimensional spacelike ball Σ0 of radius l, centred in P and orthogonal to
nµ. The causal diamond is defined as the union of the internal regions of the
past and future light cones of Σ0. We show this construction in figure 1.2. In
a curved spacetime, there exist several non-equivalent ways to define a causal
diamond Wang [2019]. However, their distinction is irrelevant for the purposes of
our discussion here (we return to this issue in the next chapter).
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Figure 1.2: A sketch of a causal diamond centred in a spacetime point P . We
suppress n− 3 angular coordinates. The unit, future-directed timelike vector nµ
specifies the local direction of time. Diamond’s base is an (n− 1)-dimensional
spatial ball Σ0 of radius l, whose boundary B is an approximate (n− 2)-sphere.
The tilted lines starting in the diamond’s past apex Ap (t = −l/c) and ending
in the future apex Af (t = l/c) demonstrate the null generators of the diamond’s
boundary. One can see that Σ0 is the intersection of the future domain of depen-
dence of Ap and the past domain of dependence of Af.

The metric for the causal diamond can be conveniently written in terms of the
Riemann normal coordinates expansion Brewin [2009], choosing the coordinate
origin in P , and the local time coordinate so that nµ = (∂/∂t)µ. The Riemann
normal coordinate expansion around the flat metric reads

gµν(x) = ηµν − 1
3Rµανβ (P )xαxβ +O

(︂
x3
)︂
, (1.162)

where the flat spacetime metric ηµν is in arbitrary coordinates. The Christoffel
symbols then vanish in point P and, near it, they obey

Γµρσ (x) = −2
3R

µ
[ρσ]ν (P )xν +O

(︂
x2
)︂
. (1.163)

Employing this coordinate expansion, we can identify an approximate (up to
O (l3)) conformal isometry of the causal diamonds generated by conformal Killing
vector

ζµ = C

[︄(︂
l2 − t2 − r2

)︂(︄ ∂
∂t

)︄µ
− 2rt

(︄
∂

∂r

)︄µ]︄
, (1.164)

where r stands for the radial distance from point P , and C is an arbitrary con-
stant. The conformal Killing vector ζµ becomes null on the boundary of the
causal diamond and vanishes at B. Thus, the diamond boundary corresponds to
a conformal Killing horizon and B to its bifurcation surface. As we discuss in
the following, one can study thermodynamics of this horizon using the covariant
phase space formalism.
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The first law

In Weyl transverse gravity, we, of course, have to define the causal diamond and
its conformal Killing vector ζµ with respect to the auxiliary, WTDiff-invariant
metric g̃µν . The Riemann normal coordinate expansion also has to be applied
to the auxiliary metric. With these subtleties in mind, we can easily derive the
first law for the conformal horizon of the causal diamond. We start with a flat
spacetime causal diamond and introduce a small perturbation of the metric which
solves the vacuum equations of motion of Weyl transverse gravity. To derive
the first law, we analyse the perturbation (1.161) of the Hamiltonian generating
the evolution along the conformal Killing vector ζµ. As δζ g̃µν = 0, it follows
that the symplectic current Ωµ [δζ , δ] vanishes and, therefore, δHζ = 0. Then,
equation (1.161) directly leads to the first law of causal diamonds (since the
determinant of ηµν equals ω2, we are in the unimodular gauge)

1
8πκδÃ − 1

8πkκδṼ + 1
8π

n− 1
n

kκ
∫︂

Σ0
δ ln

(︂√
−g/ω

)︂
dn−1x = 0, (1.165)

where κ = 2lC denotes the surface gravity corresponding to ζµ, and k = (n− 2) /l
the extrinsic curvature of B with respect to its embedding in Σ0. We define δÃ
and δṼ as the perturbations of the area of B and the volume of Σ0, respectively;
both measured with respect to the auxiliary metric g̃µν and, therefore, WTDiff-
invariant. If the determinant does not change under the perturbation we consider,
δg = 0, we recover the first law of causal diamonds of general relativity Jacobson
and Visser [2019a].

It has been suggested that one can assign temperature T = κ/2π to the di-
amond’s horizon Jacobson [2015], Jacobson and Visser [2019a,b] (we discuss the
question of the normalisation of κ in chapter 2). Then, the first two terms in
equation (1.165) become TδS, with S being the Wald entropy given by equa-
tion (1.182). Then, the first law of causal diamonds becomes a genuine first law
of thermodynamics, where we now can also identify a work term of the form

−kκ

8π

[︃
δV + n− 1

n

∫︂
Σ0
δ ln

(︂√
−g/ω

)︂
dn−1x

]︃
, (1.166)

where kκ/8π is an effective pressure and the term in the squared brackets corre-
sponds to the perturbation of the WTDiff-invariant spatial volume of Σ0.

At the first glance, it might be surprising that we recover the same physical
results as in general relativity, since an arbitrary conformal Killing vector gen-
erates a local symmetry of general relativity (a diffeomorphism), but it does not
correspond to a local symmetry of Weyl transverse gravity (not a transverse dif-
feomorphism). However, for a flat (or in principle any fixed) background, we can
fully specify the intersection of Diff and WTDiff groups, which consists of trans-
verse diffeomorphisms and conformal Killing transformations. Then, a conformal
Killing vector does generate a WTDiff symmetry of the given background space-
time. It is still somewhat remarkable that this background-dependent statement
suffices. It might also indicate that the recent background-dependent analysis of
entanglement entropy in arbitrary spacetime regions in terms of von Neumann al-
gebras Jensen et al. [2023] should also directly translate to the WTDiff-invariant
setup. We plan to address this question in a future work.
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Although the physical content of the first law is the same in Weyl transverse
gravity and in general relativity, the volume perturbation enters it in different
ways. In Weyl transverse gravity, the volume term comes from the volume integral
in the Hamiltonian perturbation (1.161)

n− 2
n

∫︂
C

(︃ 1
16π ∇̃ν∇̃ρζ

ρδg̃µν + θµ [δ] ∇̃νζ
ν
)︃

dCµ. (1.167)

By contrast, in general relativity, the Hamiltonian is given in as a surface inte-
gral. However, unlike in Weyl transverse gravity, the Hamiltonian perturbation
corresponding to a conformal Killing vector does not automatically vanish (since
£ζgµν ̸= 0). Instead, δHζ (the “left hand side” of the first law) precisely yields
the volume perturbation contribution.

1.4 Covariant phase space formalism for local,
WTDiff-invariant theories of gravity

We have seen how the covariant phase space formalism works for a particular
(and simplest) WTDiff-invariant theory, Weyl transverse gravity. While this re-
sult is of interest by itself, the formalism is much more powerful. Therefore, we
now generalise our approach to the case of an arbitrary local, WTDiff-invariant
gravitational theory. We have argued that there exists a one to one correspon-
dence between WTDiff- and Diff-invariant Lagrangians (barring some possible
loopholes mentioned in subsection 1.1.5). Herein, we thus present a complete
WTDiff-invariant alternative to the Diff-invariant covariant phase space formal-
ism developed in the literature Lee and Wald [1990], Wald [1993], Iyer and Wald
[1994], Iyer [1997], Wald and Zoupas [2000].

We first derive the symplectic potential for the general WTDiff-invariant ac-
tion (1.32). A rather lengthy series of manipulations starting from a variation of
the Lagrangian yields Alonso-Serrano et al. [2022] (see appendix A.2)

θµ [δ] =2
(︄√

−g

ω

)︄ 2
n

Eσνρµ∇̃σδg̃νρ +Kµνρδg̃νρ +
p∑︂
i=2

Mµα2...αi νρσ
λ δ∇̃(α2 ...∇̃αi)R̃

λ

νρσ

+
q∑︂
i=2

Nµα2...αiδ∇̃(α2 ...∇̃αi)ψ. (1.168)

The WTDiff-invariant tensors E νρσ
µ , Kα1µν , Mα1α2...αi νρσ

µ , and Nα1α2...αi are de-
fined so that they have the same symmetries as the terms contracted with them.
The precise form of these tensors does not matter for the application of the co-
variant phase space formalism to black hole spacetimes. All that we need is that
they are constructed from g̃µν , ∇̃µ, R̃µ

νρσ, and ψ. The only exception is E νρσ
µ ,

which possesses the same symmetries as the Riemann tensor and reads

E νρσ
µ =

p∑︂
i=0

(−1)i ∇̃α1 ...∇̃αi

⎛⎝ ∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

⎞⎠ . (1.169)

By construction, the symplectic potential is WTDiff-invariant. In the unimodular
gauge and for variations that do not affect the metric determinant, δg = 0, equa-
tion (1.168) agrees with the symplectic potential of local, Diff-invariant theories
of gravity Iyer and Wald [1994].

53



From the symplectic potential θµ [δ] we directly obtain the symplectic current
using its definition (1.45). However, we are again interested in expressing the
symplectic current Ω [£ξ, δ]14 in terms of the conserved Noether charges. Thence,
we now introduce the Noether currents corresponding to the local symmetries of
the action.

We begin by deriving the Noether current for local infinitesimal Weyl transfor-
mations, δWgµν = 2σgµν (by definition, δWψ = 0). The variation of action (1.32)
vanishes by construction, δWL = 0. Consequently, vector αµ [δW] in the general
definition of the Noether current (1.53) equals zero, since δWL = ∇̃µα

µ [δW] = 0.
Furthermore, symplectic potential (1.168) also vanishes as δWg̃µν = 0. Therefore,
the Noether current corresponding to local, infinitesimal Weyl transformation
vanishes in any local, WTDiff-invariant theory, jµ [δW] = 0. This result gener-
alises both our conclusion for Weyl transverse gravity in the previous section and
a recent proof valid for an arbitrary WTDiff-invariant theory in four spacetime
dimensions Oda [2022]. In the context of Weyl transverse gravity, it has been
argued that vanishing jµ [δW] is closely related to the radiative stability of the
cosmological constant and to the absence of an anomaly corresponding to the
local Weyl symmetry Oda [2017]. Then, our finding that jµ [δW] = 0 suggests
that both properties apply even to arbitrary local, WTDiff-invariant theories of
gravity.

Next, we consider infinitesimal transverse diffeomorphisms generated by some
vector field ξµ, such that ∇̃µξ

µ = 0 and, therefore, δξ = £ξ, δξgµν = 2∇(µξν),
δξψ = £ξψ. Lagrangian (1.32) changes under a transverse diffeomorphism as
£ξL = ξµ∇̃µL, and we have αµ [£ξ] = Lξµ. Thus, the Noether current reads

jµξ = θµ [£ξ] − Lξµ. (1.170)

Evaluating the WTDiff-invariant divergence of jµξ , we obtain, after some work,

∇̃µj
µ
ξ = − 1

16π

⎡⎣ (︂√−g/ω
)︂−2/n

⎛⎝Åµν − (Φ + J ) g̃µν

+ 8π
(︄√

−g

ω

)︄2 k+1
n

T µν

⎞⎠⎤⎦£ξgµν − ∇̃µ (ψ · Aψ · ξ)µ , (1.171)

where we recall that Åµν − (Φ + J ) g̃µν + 8π (√−g/ω)2(k+1)/n
T µν = Λg̃µν are the

divergence-less gravitational equations of motion. Using the generalised Bianchi
identities (1.35) and the transversality condition ∇̃µξ

µ = 0, we can show that
∇̃µj

µ
ξ vanishes on shell as required of a Noether current. Thence, the Noether

14Let us point out a subtle issue. In general, a variation with respect to a vector field ξµ, δξ,
applied to a WTDiff-invariant expression does not act like a Lie derivative. On the one hand,
the background volume form ω is non-dynamical. Therefore, its variation by definition vanishes,
δξω = 0. On the other hand, ω is an n-form and its Lie derivative equals £ξω = ω∇̃µξ

µ ̸= 0.
Instead, δξ should probably correspond to a suitably defined Lie-gauge derivative Jacobson
and Mohd [2015], Aneesh et al. [2020], Elgood et al. [2020], Meessen et al. [2022], Ort́ın and
Pereñ́ıguez [2022], Ballesteros et al. [2023] respecting the WTDiff symmetry. We plan to address
this issue in a future work. In any case, for transverse diffeomorphisms, on which we focus here,
∇̃µξ

µ = 0, and we have that δξ = £ξ. We return to the general case ∇̃µξ
µ ̸= 0 in section 1.4.3.
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current must obey Wald [1990]

jµξ = −

⎡⎣ 1
8π

(︄√
−g

ω

)︄− 2
n

⎛⎝Å µ

ν + 8π
(︄√

−g

ω

)︄2 k+1
n

T µν

⎞⎠
− 1

8π (Φ + J ) δµν

⎤⎦ξν − (Aψ · ψ · ξ)µ + ∇̃νQ
νµ
ξ , (1.172)

where the antisymmetric tensor density Qνµ
ξ denotes the Noether charge corre-

sponding to the transverse diffeomorphism generated by the vector field ξµ.
Much like in Weyl transverse gravity, the Noether current on shell reduces to

jµξ = − 1
8πΛξµ + ∇̃νQ

νµ
ξ , (1.173)

and again, unlike in the Diff-invariant case, it contains a term proportional to the
on-shell value of the cosmological constant.

Let us now take a closer look at the Noether charge. Even without specifying
the theory, the structure of Qνµ

ξ can be partially read off from the symplectic
potential (1.74) particularised for the case θµ [£ξ]. A Lie derivative £ξ depends
at most on the first derivatives of ξµ. Therefore, only the term 2Eσνρµ∇̃σ

(︂
£ξg̃νρ

)︂
contains second derivatives of ξµ, as it represents the only contribution including
a derivative of a variation. Thus, Qνµ

ξ has the following structure for any local,
WTDiff-invariant theory

Qνµ
ξ = 2Eνµρ

σ∇̃ρξ
σ +W νµ

ρ ξρ, (1.174)

where W νµ
ρ = W [νµ]

ρ stands for some WTDiff-invariant tensor, which we cannot
further specify without choosing a particular theory.

Lastly, we note that definitions of θµ, Ωµ, jµξ , and Qνµ
ξ contain the same

ambiguities we mentioned for Weyl transverse gravity in the previous subsection.
The discussion of the physical impact of these ambiguities again proceeds along
the same lines as in Weyl transverse gravity. The upshot is that they do not
matter for the physical setups we consider in the following.

1.4.1 Hamiltonian for transverse diffeomorphisms
Following the same strategy as in Weyl transverse gravity, we now find the per-
turbation of a Hamiltonian generating the evolution along a transverse diffeo-
morphism generator ξµ. We do so for the case when both the original an the
perturbed spacetime solve the equations of motion (off-shell results can be found
in our paper Alonso-Serrano et al. [2022]). The key point is to equate two on-
shell expression for a perturbation of the Noether current, one starting from the
general expression (1.170),

δjµξ = δθµ [£ξ] − ξµ∇̃νθ
ν [δ] , (1.175)

and the other from equation (1.173)

δjµξ = − 1
8πξ

µδΛ + ∇̃νδQ
νµ
ξ . (1.176)
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The equivalence of both expressions yields, after some straightforward manipu-
lations, an equation for the symplectic current corresponding to the transverse
diffeomorphism £ξ and the small perturbation δ

Ωµ [£ξ, δ] = ∇̃ν

(︂
δQνµ

ξ − 2ξ[νθµ] [δ]
)︂

− 1
8πξ

µδΛ. (1.177)

By integrating Ωµ [£ξ, δ] over a suitable Cauchy surface C in the unperturbed
spacetime, we obtain the symplectic form, Ω [£ξ, δ]. Lastly, the Hamilton equa-
tions of motion equate the symplectic form with the Hamiltonian perturbation
δHξ (assuming condition (1.50) is fulfilled and the Hamiltonian exists), and we
have

δHξ =
∫︂
∂C

(︂
δQνµ

ξ − 2ξνθµ [δ]
)︂

dCµν −
∫︂

C

1
8πδΛξ

µdCµ, (1.178)

where we used the Gauss theorem to convert an integral over C to an integral
over its boundary ∂C. The perturbation of the Hamiltonian has the same basic
structure as in Weyl transverse gravity. It consists of a boundary integral of the
Noether charge and the symplectic potential, familiar from Diff-invariant theo-
ries, and of a volume term proportional to the perturbation of the cosmological
constant. As in the particular case of Weyl transverse gravity, we now apply
equation (1.178) to derive the first law of black hole mechanics.

1.4.2 The first law of black hole mechanics
First, we consider the same stationary, asymptotically flat black hole spacetime
setup in vacuum as in subsection 1.3.2. In this spacetime, we define the pertur-
bation of the canonical energy

δE =
∫︂
∂C∞

(δQµν
t − 2tνθµ [δ]) dCµν , (1.179)

as the time translational Hamiltonian perturbation contribution at the asymp-
totic infinity. Similarly, with respect to rotational symmetries, we have (n− 1) /2
canonical angular momenta

δJ = −
∫︂
∂C∞

δQµν
φ dCµν . (1.180)

Evaluating also the horizon contribution (using the same simplifications as in the
Weyl transverse gravity case), we obtain the first law of black hole mechanics in
any local, WTDiff-invariant gravitational theory

δE −
(n−1)/2∑︂
i=1

Ω(i)
H δJ(i) − 2κ

∫︂
∂CH

δ (Eνµρσϵρσ) dCµν = 0. (1.181)

Let us recall that Eνµρσ is defined by equation (1.169). As expected, if we select
the unimodular gauge and consider only perturbations that do not change the
metric determinant, δg = 0, we recover the first law in local, Diff-invariant theo-
ries of gravity Wald [1993], Iyer and Wald [1994]. Therefore, the physical content
of the first law is equivalent in both cases.
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If we identify the (WTDiff-invariant) Hawking temperature TH = κ/2π, we
can heuristically define Wald entropy for an arbitrary local, WTDiff-invariant
theory of gravity

S = −4π
∫︂
∂CH

EµνρσϵρσdCµν . (1.182)

In the unimodular gauge, we of course get the Wald entropy prescription valid in
Diff-invariant theories Wald [1993], Iyer and Wald [1994]. The first law of black
hole mechanics then becomes the genuine first law of thermodynamics

δE −
n−3∑︂
i=1

Ω(i)
H δJ(i) − THδS = 0. (1.183)

We note that all the relevant features of the cosmological constant contribu-
tions to the first law are captured in the Weyl transverse gravity case, which we
discussed in some detail. More on the first law in this setting can be found in our
paper Alonso-Serrano et al. [2022].

To conclude our discussion of the first law, we address the case of a stationary,
asymptotically flat black hole spacetime in the presence of a perfect fluid. The
derivation proceeds exactly in the same way as for Weyl transverse gravity, and
we obtain

δE −
n−3∑︂
i=1

Ω(i)
H δJ

(i)
H + 2κ

∫︂
∂CH

δ (Eνµρσϵρσ) dCµν

−
∫︂

C

(︂√
−g/ω

)︂−1/n
|U |µδIµdCµ −

∫︂
C

(︂√
−g/ω

)︂−1/n
|U |T δS̃µdCµ

−
∫︂

C

n−3∑︂
i=1

Ω(i)δJ̃
µ

(i)dCµ = 0, (1.184)

where the fluid contributions (second and third lines) are the same as in Weyl
transverse gravity. This form of the first law represents a WTDiff-invariant equiv-
alent of an earlier Diff-invariant result Iyer [1997] and has the same physical con-
tent (naturally, as we fixed Λ = δΛ = 0). Thence, we clearly see the equivalence
between Diff- and WTDiff-invariant formulations of gravitational theories, ex-
actly in the spirit of our discussion in section 1.1 (see also Carballo-Rubio et al.
[2022]).

1.4.3 The first law of causal diamonds
To conclude, we want to repeat our analysis of the first law of causal diamonds we
performed in Weyl transverse gravity. However, as the first law must be derived
by brute force in this case, it becomes prohibitively difficult to study the gen-
eral case. Instead, we focus on the class of Lagrangians given as L

(︂
g̃µν , R̃

µ

νρσ

)︂
(without any derivatives of the auxiliary Riemann tensor) together with an ar-
bitrary minimally coupled matter Lagrangian (1.21). As in the Weyl transverse
gravity case, we first find an expression for the perturbation of the Hamiltonian
corresponding to an arbitrary vector field ζµ. Since, as explained in subsec-
tion 1.3.5, we cannot define background independent conserved Noether currents
corresponding to such vector fields, we instead proceed directly from the general
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definition of the symplectic form 1.46. The derivation is very technical and we
leave the details for appendix A.3. The final result reads

δHζ =
∫︂
∂C

[︂
2δEνµρ

σ∇̃ρζ
σ − 4ζσδ

(︂
∇̃ρE

νµρ
σ

)︂
+ ∇̃νδQ

νµ
ψ,ζ − 2ζνθµ [δ]

]︂
dCµν

−
∫︂

C

1
8πδΛζ

µdCµ +
∫︂

C

⎛⎝Πµ [ζ, δ] − ζµ∇̃νθ
ν [δ] + 4

n
δEµνρ

ν∇̃ρ∇̃λζ
λ

− 4
n
δ
(︂
∇̃ρE

µνρ
ν

)︂
∇̃λζ

λ

⎞⎠dCµ, (1.185)

where we have E νρσ
µ = ∂L/∂R̃

µ

νρσ for the class of the theories we consider, and
Πµ [ζ, δ] corresponds to a lengthy expression (A.19) given in appendix A.3. Lastly,
Qνµ
ψ,ζ is an antisymmetric tensor depending on the matter variables ψ and their,

at most, first derivatives, the auxiliary metric g̃µν and the vector field ζµ (with
no derivatives of ζµ). If ζµ generates a transverse diffeomorphism, i.e., ∇̃µζ

µ = 0,
the the last integral in equation (1.185) vanishes and we recover the transverse
diffeomorphism Hamiltonian perturbation (1.95) (for the class of Lagrangians
we work with). Then, the terms 2Eνµρ

σ∇̃ρζ
σ − 4ζσ∇̃ρE

νµρ
σ and Qνµ

ψ,ζ are the
gravitational and matter Noether charges.

Our aim is to obtain the first law of causal diamonds. To this end, we
particularise the Hamiltonian perturbation (1.185) to the Hamiltonian gener-
ating evolution along the conformal Killing vector of the causal diamond (see
equation (1.164)). Our Cauchy surface is the geodesic ball Σ0 which forms the
base of the causal diamond. Let us now simplify the Hamiltonian perturbation.
First, we use that ζµ vanishes on ∂Σ0, and its derivatives obey ∇̃µζ

µ = 0, and
∇̃ν∇̃µζ

µ = −2nCδtν , with all the higher order derivatives of ∇̃µζ
µ vanishing iden-

tically. Second, we have ∇̃ρ
ζσ = κϵρσ, with ϵρσ being the bi-normal to ∂Σ0.

Third, any terms proportional to the Riemann tensor vanish in flat spacetime we
consider. In total, we eventually obtain

δHζ =
∫︂
∂Σ0

2κϵλσg̃λρδEνµρ
σdCµν −

∫︂
Σ0

1
8πδΛζ

µdCµ

+
∫︂

Σ0

κ

l
δtσ

(︃ 1
8πδg̃

σµ − 4δEµνσ
ν

)︃
dCµ. (1.186)

The Hamiltonian perturbation δHζ consists of two contributions, the gravita-
tional one δHg,ζ and the matter one, δHψ,ζ . The former vanishes since δζ g̃µν = 0.
To evaluate the latter (generically non-vanishing Iyer [1997], Jacobson and Visser
[2019a]), we follow the same procedure as in subsection 1.3.4 and use that the
background energy-momentum tensor vanishes. After some straightforward ma-
nipulations, we arrive at

δHζ = δHψ,ζ =
∫︂

Σ0

[︃(︂√
−g/ω

)︂2k/n
δT µ

ν − δJ δµν
]︃
ζνdCµ. (1.187)

Altogether, the WTDiff-invariant first law of causal diamonds reads∫︂
Σ0

[︃(︂√
−g/ω

)︂2k/n
δT µ

ν − δJ δµν
]︃
ζνdCµ =

∫︂
∂Σ0

2κϵλσg̃λρδEνµρ
σdCµν

−
∫︂

Σ0

1
8πδΛζ

µdCµ +
∫︂

Σ0

κ

l
δtσ

(︃ 1
8πδg̃

σµ − 4δEµνσ
ν

)︃
dCµ. (1.188)
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Let us discuss the various terms in this equation. The left hand side simply
corresponds to the perturbation of the matter fields (including the contribution
δJ corresponding to the possible local energy non-conservation). The first term
on the right hand side has the (heuristic) interpretation of the TδS term, where
T = κ/2π is the diamond’s temperature and S its Wald entropy (1.182). The
second term gives the cosmological constant contribution, which, as we discussed,
occurs generically in WTDiff-invariant gravity. The last term gives us the per-
turbation of the so called (WTDiff-invariant) generalised volume W̃ of Σ0 Bueno
et al. [2017], Svesko [2019]

δW̃ = − 8π
n− 2

∫︂
Σ0
δtσ

(︃ 1
8πδg̃

σµ − 4δEµνρ
ν

)︃
dCµ. (1.189)

As in Weyl transverse gravity, the generalised volume perturbation comes from
the volume term in the Hamiltonian perturbation (1.185). By contrast, in the
Diff-invariant case, the generalised volume contribution comes from the non-
vanishing symplectic current Ωµ [δζ , δ] Bueno et al. [2017].

In the unimodular gauge and for metric perturbations preserving the de-
terminant, δg = 0, we, of course, recover the first law of causal diamond in
Diff-invariant gravity Bueno et al. [2017] (barring the cosmological constant per-
turbation, which must be added ad hoc in the Diff-invariant case Jacobson and
Visser [2019a]). In summary, the first law of causal diamonds (1.165) for WTDiff-
invariant gravity has the same physical content as the Diff-invariant version, ex-
cept for the generically appearing cosmological constant contribution. These re-
sults support the notion that the only physical difference between corresponding
WTDiff- and Diff-invariant theories of gravity is the status of the cosmological
constant.
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2. Semiclassical thermodynamics
of spacetime and Weyl transverse
gravity
The covariant phase space formalism we have focused on so far clearly exposes how
the gravitational dynamics determines the thermodynamic behaviour of causal
horizons. This observation applies to a number of different notions of a horizon,
including the ones associated with black holes, cosmological ones, and even the
observer-dependent ones, such as acceleration (Rindler) horizons or boundaries
of causal diamonds1. Notably, entropy of the horizon is in each case fully spec-
ified by the gravitational Lagrangian. As we showed in chapter 1, this relation
between the entropy and the Lagrangian holds not only for Diff-invariant theories
of gravity, but also for arbitrary local, WTDiff-invariant theories. In the present
chapter, we focus on the so called thermodynamics of spacetime which turns this
argument around, showing that the entropy prescription contains enough informa-
tion to recover the gravitational dynamics. In particular, we review how the local
equilibrium conditions applied in every spacetime point encode the (semi)classical
equations governing gravitational dynamics. Moreover, we argue that the result-
ing dynamics is in fact consistent with WTDiff-invariant rather than Diff-invariant
gravity. More precisely, we show that if one assumes that the local equilibrium
conditions together with the strong equivalence principle encode all the informa-
tion for reconstructing the classical gravitational dynamics, they lead to Weyl
transverse gravity.

The seminal works on thermodynamics of spacetime realised the local causal
horizons in terms of the local Rindler wedges Jacobson [1995], Padmanabhan
[2010], Chirco and Liberati [2010]. However, these are not the best tool for the
derivation of the equations governing the gravitational dynamics. The construc-
tion of a local Rindler wedge requires to rather arbitrarily “cut” a small enough
part of the null congruence forming the horizon. While the cut causes no prob-
lems in the case of deriving the Einstein equations, its edges yield unwanted
(and not easily handled) contributions to the Clausius relation for more general
gravitational dynamics Guedens et al. [2012], Parikh and Svesko [2018]. Further-
more, the Rindler wedge does not have a finite interior region. Then, it becomes
difficult to associate to it quantum von Neumann entropy of the matter fields
(in fact, it has been argued that the Einstein equations cannot be recovered in
this way Carroll and Remmen [2016]). Introducing instead spherical local causal
horizons with a well defined finite interior region resolves both issues Parikh and
Svesko [2018]. They can be realised as the null boundaries either of local approx-
imate light cones Parikh and Svesko [2018], or of local causal diamonds Jacobson
[2015], Svesko [2019]. While both options lead to equivalent results and may
be used essentially interchangeably Svesko [2019], we find causal diamonds more

1Of course, the notion of radiation and, hence, temperature associated with horizons comes
from quantum field theory on curved background. However, the expressions for temperature
are very robust, determined just by the kinematic features of the spacetime (the surface gravity
of the horizon or the observer’s acceleration).
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convenient to work with given their finite extension in time. Hence, for the re-
mainder of this and the next chapter, we always realise local causal horizons as
the approximate conformal Killing horizons of the causal diamonds.

In the following, we first introduce the construction of causal diamonds and
the essential ingredients of their thermodynamics description. Then, we derive
the equations for gravitational dynamics from the local equilibrium conditions for
causal diamonds and show that the result is consistent with Weyl transverse grav-
ity. To strengthen our argument in favour of Weyl transverse gravity, we analyse
two independent derivations; one based on tracking the physical entropy fluxes,
the other on considering a small perturbation away from the equilibrium state.
Lastly, we show that the correspondence of the local equilibrium conditions with
WTDiff-invariant gravitational dynamics holds even beyond the simplest case of
Weyl transverse gravity. Namely, we show that the equations of motion for a
class of WTDiff-invariant gravitational theories are encoded in the corresponding
Wald entropy prescription we obtained in chapter 1.

2.1 Thermodynamics of causal diamonds
Local causal diamonds represent a natural arena for thermodynamic derivations
of the equations governing gravitational dynamics, being a finite spacetime re-
gion enclosed by a spherical horizon. The causal diamonds also offer remarkable
simplicity, being fully described by the position of their centre, a single length
scale and a choice of the local direction of time.

From here onward, we always consider local causal diamonds whose size pa-
rameter l is much smaller than the local curvature length scale. Otherwise, the
construction of a causal diamond detailed in subsection 1.3.5 simply fails as it re-
lies on locally approximating the spacetime by a flat one, up to sufficiently small
curvature-dependent corrections. Moreover, we require that the spacetime is well
approximated by a smooth Lorentzian manifold. It is generally expected that
such an approximation breaks down due to quantum effects at very small length
scale. Very general arguments (some based only on the combination of the New-
tonian gravity and quantum mechanics) suggests that this breakdown occurs at
the length scale of the order of the Planck length, lP =

√
Gℏ ≈ 1.6 ·10−35 m Mead

[1964], Garay [1995], Hossenfelder [2013]2. Therefore, we also demand that l must
be much larger than lP.

In subsection 2.1.1, we first introduce two distinct generalisations of causal di-
amonds to curved spacetimes, light-cone cut local causal diamonds and geodesic
local causal diamonds. Both constructions play an important role in thermody-
namics of spacetime. Then, we discuss several ways to associate thermodynamic
properties to causal diamonds. We discuss their temperature in subsection 2.1.2.
Subsection 2.1.3 comments on entropy associated with the conformal Killing hori-
zon of the causal diamond. Finally, subsection 2.1.4 considers entropy of the
matter fields present inside the causal diamond. Given the vast literature avail-
able on the subject, we cannot explore all the topics we comment on in depth.
Nevertheless, we want to convey the idea that, in the last decade, thermody-

2These arguments in principle do not exclude the possibility that the breakdown happens
already at much larger length scales.
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Figure 2.1: A sketch of a causal diamond centred in a spacetime point P . We
suppress n − 3 angular coordinates. The unit, future-directed timelike vector
nµ specifies the local direction of time. Diamond’s base is a (n− 1)-dimensional
spatial ball Σ0 of radius l, whose boundary B is an approximate (n− 2)-sphere.
The tilted lines starting in the diamond’s past apex Ap (t = −l/c) and ending
in the future apex Af (t = l/c) demonstrate the null generators of the diamond’s
boundary. One can see that Σ0 is the intersection of the future domain of depen-
dence of Ap and the past domain of dependence of Af.

namics of causal diamonds has matured into a well established discipline. In
fact, essentially all the standard techniques applied to understanding the black
hole thermodynamics have also been considered for the case of causal diamonds,
yielding very similar results.

2.1.1 Two constructions of a causal diamond in a curved
spacetime

Before going to the thermodynamic properties of causal diamonds, we introduce
two different ways to define them in curved spacetimes, the light-cone cut local
causal diamond and the geodesic local causal diamond. The former turns out
to be the natural causal diamond to consider in the physical process version of
the derivation, the latter in the equilibrium one. The notation we use and the
basic structure of a causal diamond are shown in figure 2.1 (the same figure has
originally been displayed in chapter 1, but we also reproduce it here for reader’s
convenience).

Light-cone cut local causal diamond

The construction of a light-cone cut local causal diamond starts from the past
apex Ap. Taking the unit timelike vector nµ as the local direction of time, we
choose a future directed null vector field kµ± at Ap normalised so that nµkµ± =
−1. The boundary of the causal diamond is then a congruence of null wordlines
tangent to kµ±. The cross-section of this congruence at the parameter length l
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along kµ± is an approximate (n− 2)-sphere B, whose interior, an approximate
(n− 1)-dimensional spacelike ball Σ0, represents the base of the light-cone cut
local causal diamond.

Geodesic local causal diamond

To construct a geodesic local causal diamond, select any regular spacetime point
P . In the tangent vector space associated with P , choose an arbitrary unit
timelike vector nµ. In every direction orthogonal to nµ, send out geodesics of
some parameter length l. If we set l to be much smaller than the local curvature
length scale (an inverse of the square root of the largest eigenvalue of Riemann
tensor), these geodesics are unique and form an (n− 1)-dimensional spacelike
geodesic ball Σ0 whose boundary is an approximate (n− 2)-sphere B. The region
causally determined by Σ0 forms the causal diamond.

2.1.2 Temperature
There exist three non-equivalent proposals for assigning a finite temperature to
a causal diamond. Since all of them have been considered in various discussions
of thermodynamics of spacetime, we review them in the following.

Surface gravity proposal

The first proposal relies on the presence of the conformal Killing horizon and ar-
gues that, like the Killing horizons of black holes, it should possess a temperature
corresponding to its surface gravity Jacobson and Visser [2019a]

Tκ = ℏκ
2π = ℏlC

π
, (2.1)

where C is an arbitrary constant which corresponds to the normalisation of the
conformal Killing vector ζµ. Two choices for C have been put forward. First, set-
ting C = 1/2l has the advantage of having the surface gravity equal to unity Ja-
cobson [2015]. However, the surface gravity (and, hence, temperature) then has
incorrect dimensions, making this choice untenable in our view. Second, selecting
C = 1/l2 leads to temperature Tκ = ℏ/πl which is dimensionally correct Svesko
[2019].

To fully understand the freedom we have in choosing C, it is instructive to
look at the much better explored case of black hole Killing horizons. For an
asymptotically flat, stationary black hole spacetime, the same arbitrariness in the
Killing vector normal to the horizon exists. It is fixed by requiring that the Killing
vector at the asymptotic infinity reduces to a spacetime velocity of an inertial
observer. However, we are in principle free to choose any other reference observer
with whose velocity we set the Killing vector to agree. Then, the temperature
given by the surface gravity of the appropriately normalised Killing horizon yields
the temperature measured by this observer3. Likewise, the surface gravity itself,

3For a generic observer (assuming they even perceive a thermal state with a well defined
temperature), this temperature will be sourced by a combination of the Hawking effect (suitably
red-shifted) caused by the gravitational pull of the black hole and the Unruh effect occurring
due to the observer’s acceleration Barbado et al. [2016].
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rather than quantifying the force required to hold a unit test mass at rest at
the horizon from the asymptotic infinity, becomes the force required to hold
such a test mass by the chosen observer. The mass of the black hole is also
modified to be the one measured by the observer (while the black hole entropy
remains unchanged), ensuring that the first law of black hole thermodynamics
continues to hold. A nice way to study the observer-dependent temperature
and mass is offered by the Euclidean canonical ensemble construction relying on
introducing an artificial York boundary at a finite distance from the black hole
horizon. Then, the procedure yields expressions for the temperature and mass
measured by an inertial observer at the finite distance boundary and, hence,
including the corresponding red-shift factors Braden et al. [1990]. We would
get the same result by the covariant phase space approach in the Lorentzian
signature by choosing a normalisation of the Killing vector adapted to a finite
distance boundary.

The choice of the normalisation of the conformal Killing vector for the causal
diamond works in the same way. In particular, taking C = 1/l2 normalises the
Killing vector so that, at the origin of the causal diamond it coincides with the
velocity of the inertial observer there. For any C > 1/l2, ζµ corresponds to the
velocity of some accelerating observer moving inside the causal diamond, with
C → ∞ representing the limit of the infinite acceleration. Values C < 1/l2 do
not have a clear interpretation in terms of observer velocities. It is tempting
to interpret the temperatures Tκ corresponding to different values of C as those
measured by the various accelerating observers. However, our treatment up to this
point disregards the question of whether the local approximate Minkowski vacuum
is actually perceived as thermal by the various accelerating observers. To answer
this question, it is better to leave the Hawking-like definition of the temperature
as being proportional to the surface gravity, and instead study observers moving
along accelerated trajectories inside the causal diamond.

Finite time Unruh effect

Consider a uniformly accelerating observer moving inside the causal diamond
in the (local approximate) Minkowski vacuum and carrying an Unruh-de Witt
particle detector. We show the wordlines of several such observers in figure 2.2.
If the Minkowski vacuum were exact and the observer were accelerating for an
infinite time, the detector would measure a thermal bath of particles at the Unruh
temperature TU = ℏa/2π Fulling [1973], Bisognano and Wichmann [1976], Unruh
[1976]. In our case, the vacuum is only approximate due to curvature effects and
the observer only accelerates for a finite time of the order of the diamond’s size
parameter l. The Unruh effect under such conditions has been analysed in the
literature with the result that the detector measures a state well approximated
by a thermal bath of particles at the Unruh temperature TU provided that the
acceleration a is large enough Barbado and Visser [2012], Rick Perche [2021, 2022].
More precisely, we require a ≫ 1/l (the curvature length scale is by assumption
very large compared to l and can be neglected altogether). Hence, while the
surface gravity dependent temperature Tκ is in principle defined for any constantly
accelerating observer inside the causal diamond (for different normalisations of the
conformal Killing vector), the corresponding thermal states are apparently only
perceived by some of these observers; the ones with sufficiently large accelerations.
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Figure 2.2: Several worldlines of uniformly accelerating observers moving inside
a causal diamond are depicted in blue. If their acceleration a is sufficiently large,
these observers perform the local Minkowski vacuum as a thermal state at the
Unruh temperature TU = ℏa/2π. The vertical red line represents the inertial
observer with a finite lifetime, 2l.

We stress that, in our view, this proposal is the only fully physically justified
one, as it connects the temperature with a detector response. In subsections 2.2.2
and 2.3.2, we also work with the surface gravity-dependent temperature Tκ. How-
ever, we always implicitly assume that κ is sufficiently large so that we can iden-
tify Tκ with the temperature TU measured by an Unruh-de Witt detector moving
along some uniformly accelerated trajectory inside the causal diamond.

Inertial finite lifetime observers

We have seen that the temperature Tκ remains non-zero even for the normali-
sation C = 1/l2 corresponding to an inertial observer moving inside the causal
diamond. At the first glance, assigning an Unruh temperature to an observer
without any acceleration appears rather bizarre. Nevertheless, a finite lifetime
observer, being unable to measure the entire spacetime, does perceive a horizon
(the future horizon of the causal diamond). Then, the observer cannot access
the entire Minkowski vacuum state and it might make sense that their natural
notion of vacuum would be distinct from it. That being said, there presently
exists no satisfactory connection between the inertial finite lifetime observer’s
temperature Tin = ℏ/πl and any detector response. The only evidence avail-
able is the existence of a conformal transformation (a combination of a scaling
transformation and a special conformal transformation) from an infinite Rindler
wedge to a causal diamond, which maps an accelerating trajectory corresponding
to an Unruh temperature equal to ℏ/πl in the wedge to the inertial one in the
diamond Martinetti and Rovelli [2003]. Such a transformation does not affect the
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Minkowski vacuum of conformal fields. There are three distinct arguments claim-
ing that the transformation should also not change the temperature. The first
proposal relies on the thermal time hypothesis Martinetti and Rovelli [2003]. Sec-
ond, it has been argued that the conformal Killing vector of the causal diamond
can be associated with a Hamiltonian operator in conformal quantum mechanics
(0 + 1-dimensional conformal field theory). The eigenstates of this Hamiltonian
are then thermal states with temperature Tin Arzano [2020, 2021]. Third, the
conformal transformation between the Rindler wedge and the diamond has been
used to construct a thermofield double state for the diamond’s inertial observer
with the temperature Tin Chakraborty et al..

While the diamond temperature Tin is as of yet rather speculative, it does have
one attractive feature. Unlike the well established Unruh temperature for the
highly accelerated observers or the (also speculative) temperature proportional
to the surface gravity, it has a unique value, Tin = ℏ/πl, fully specified by the size
of the causal diamond. As an aside, Bekenstein entropy associated with the causal
diamond’s horizon equals S = πl2/l2P. Similarly, for a Schwarzschild black hole, its
entropy is S = πr2

+/l
2
P (r+ being the radius of the event horizon) and its Hawking

temperature is TH = 1/4πr+. Then, the entropy and the temperature of the
causal diamond would depend on l in the same way as those of the Schwarzschild
black hole on r+ (up to a factor 1/4).

2.1.3 Vacuum entropy
We have seen in the previous chapter that Wald entropy density of the conformal
Killing horizon of the causal diamond has the same form as for the event horizon
of a black hole. To obtain this result, one simply has to evaluate the Hamiltonian
for the region of spacetime bounded by the local causal horizon. A restriction
to this region is rather natural from the point of view of the observer perceiving
the horizon, as they cannot access the rest of the spacetime. Constructing a
(grand)canonical ensemble for the causal diamond (at fixed volume of the spatial
ball Σ0) in the Euclidean signature also leads to the same entropy prescription
as one obtains for black holes Jacobson and Visser [2023a,b]. Moreover, the dif-
feomorphism symmetries of a wide class of null surfaces (including black hole
horizons and causal diamond boundaries) form a Virasoro algebra with a central
charge Carlip [1999], Chakraborty et al. [2016]. Then, one can compute the en-
tropy from the central charge via the Cardy formula for 2-dimensional conformal
field theory. The resulting entropy takes the same form for any type of a horizon.
Unfortunately, all of these approaches rely on the knowledge of the gravitational
action. Then, invoking them in the process of deriving the equations governing
the gravitational dynamics leads to a circular argument.

Nevertheless, a way to define entropy of a local causal horizon independently
of the gravitational action exists. The vacuum fluctuations on both sides of the
horizon are mutually entangled. This fact follows from the Reeh-Schlieder theo-
rem Reeh and Schlieder [1961] for quantum field theory in a flat spacetime, which
asserts that operators defined in an arbitrary (n− 1)-dimensional spatial subre-
gion acting on the vacuum state can approximate any state defined in the entire
(n− 1)-dimensional spatial slice with arbitrary precision. Hence, there must be
quantum entanglement between any subregion and the rest of the spacetime.
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Since an observer on one side of the horizon cannot probe the other side, they are
unable to access the information present in the entanglement between both sides.
Consequently, such an observer perceives a non-zero entanglement entropy. A
very simple argument exists for the general form of this entropy Srednicki [1993].
Consider an (n− 1)-dimensional spatial surface Σ in a flat spacetime that is in
vacuum. The vacuum state is by definition pure and its entanglement entropy
equals zero. Now consider a separation of Σ into two subregions, Σ1 and Σ2. The
density operators for these subregions are defined simply as partial traces of the
vacuum density operator over the other subregion, i.e., ρΣ1 = TrΣ2ρvac and vice
versa Preskill [2018]. By applying the von Neumann entropy formula

SvN = −Tr (ρ ln ρ) , (2.2)

we easily find that both subregions have the same entanglement entropy4, even
in the case in which one subregion is infinite and the other finite. Therefore,
entanglement entropy certainly cannot scale with volume. Since the only feature
shared by both subregions is their boundary, it is natural to expect that entan-
glement entropy is a function of the boundary’s area (although other features of
the boundary, such as its Euler characteristic, also apparently play a role in the
subleading corrections to entropy Solodukhin [2011]). In fact, calculations of en-
tanglement entropy for various quantum fields show it to be directly proportional
to its area to the leading order, Se = ηA Bombelli et al. [1986], Srednicki [1993],
Solodukhin [2011], with η being the proportionality constant. Intuitively, this
result holds because only the particles very close to the boundary (on different
sides of it) become strongly entangled. It follows that the amount of entanglement
between both regions simply increases linearly with the size of the boundary.

A naive calculation of the entanglement entropy yields an infinite result. If one
introduces some regularisation, the proportionality constant η acquires a finite
value which depends both on the quantum fields present and on the regularisation
procedure. Most often, a UV cut-off given by some length scale ϵ is introduced.
Then, η becomes proportional to the inverse of its square, i.e., η ∝ 1/ϵ2. If we take
ϵ to be of the order of the Planck length, lP, entanglement entropy is of the same
order of magnitude as Bekenstein entropy, SB = A/4l2P. For this reason, quantum
entanglement has been put forward as a possible microscopic explanation for
black hole entropy Bombelli et al. [1986], Srednicki [1993]. Since entanglement
entropy takes the same value for any boundary (to the leading order), it would
imply that local causal horizons also possess Bekenstein entropy, as suggested by
the gravitational action-dependent approaches we discussed previously. However,
some criticism of this interpretation exists as well.

First, entanglement entropy depends on the number of quantum fields of var-
ious types present in the spacetime. To address this issue, one may consider
approaches that make the cutoff ε (or the Planck length) also sensitive to the
matter content of the theory. Then, the dependence completely cancels out in

4Von Neumann entropy is a more general concept than entanglement entropy. Whereas
entanglement entropy is non-zero only in quantum physics and has no meaningful classical
counterpart, von Neumann entropy generalises the classical definitions of both Shannon in-
formation entropy and Boltzmann statistical entropy (for deeper insights into the relations of
the various entropy concepts, see e.g. Preskill [2018]). However, von Neumann entropy of the
vacuum state of some quantum field indeed reduces to entanglement entropy.
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entanglement entropy, yielding a universal value Susskind and Uglum [1994], Ja-
cobson [1994], Solodukhin [2011].

Second, while one can motivate the choice of Planck length as the UV cut-
off Mead [1964], Garay [1995], Hossenfelder [2013], it lacks a clear justification.
Moreover, any explicit UV cutoff breaks the local Lorentz invariance of the the-
ory. However, one can rephrase the calculation with a covariant Pauli-Villars
regulator, conforming the cutoff-dependent results Susskind and Uglum [1994].

Third, it has been suggested that, for the entanglement entropy to account
for the leading order term in black hole entropy, the vacuum fluctuations must
also significantly alter the black hole energy, breaking the self-consistency of the
approach ’t Hooft [1985], Belgiorno and Liberati [1996], Liberati [1997]. Never-
theless, counter-arguments to this viewpoint were put forward as well Susskind
and Uglum [1994], Jacobson [1994], Demers et al. [1995], Banks et al. [2024].

Fourth, a number of approaches to quantum gravity employs some discretisa-
tion of the spacetime. In a discrete spacetime, a finite subregion of it can have
only finitely many degrees of freedom. At the same time, the Reeh-Schlieder the-
orem, providing the theoretical justification of quantum entanglement between
arbitrary spacelike separated subregions, applies only to systems with infinitely
many degrees of freedom. For systems with finitely many degrees of freedom
quantum entanglement does not generically occur Agullo et al. [2023]. This ob-
servation undermines the entanglement interpretation of Bekenstein entropy if
spacetime is discretised. We are aware of no way to refute this objection.

In any case, although the entanglement interpretation of horizon entropy is
often assumed in derivations of gravitational dynamics from local equilibrium
conditions, the derivation is in fact independent of it. All that we really need
is the following. Since the observer perceiving a local causal horizon does not
have experimental access to information from the other side, they should mea-
sure some Shannon entropy Shannon [1948], Preskill [2018] corresponding to this
lack of information. While observer-dependence of entropy seems like an uncom-
fortable concept, we find it natural. The Unruh effect teaches us that temperature
most definitely is an observer-dependent concept. The Unruh temperature also
allows us to easily define observer-dependent matter entropy Baccetti and Visser
[2014], Carroll and Remmen [2016], Arias et al. [2017]. Moreover, the density op-
erators in quantum field theory are themselves observer-dependent Polo-Gómez
et al. [2022], and it follows that the same is true von Neumann entropy (2.2). In
view of these insights, we see the observer-dependence of entropy in relativistic
physics as a well-established fact. Thus, the local causal horizon should possess
entropy. It appears natural that it is determined by the characteristics of the
boundary, as it represents the only feature of the “other side” accessible to the
observer. Following the logic of the original proposal for the form of black hole
entropy Bekenstein [1973], entropy proportional to the area to the leading or-
der is the simplest possibility. Henceforth, we assume that entropy of any local
causal horizon obeys S = ηA, where η is an arbitrary universal constant with
dimensions of m−2. For the time being, we need not worry about the microscopic
interpretation of this entropy.
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2.1.4 Entropy of matter
We miss one last ingredient for the thermodynamic description of causal dia-
monds; entropy of the matter fields. Herein, we discuss how to compute it.
There are two basic ways to define matter entropy. The first one is the semiclas-
sical expression for Clausius entropy, SC = δQ/TU, the second one the quantum
von Neumann entropy. In any case, both definitions of entropy lead to equivalent
gravitational dynamics Svesko [2019], Alonso-Serrano and Lǐska [2020a, 2022].
Moreover, for conformally invariant matter fields, their equivalence can be ex-
plicitly shown Alonso-Serrano and Lǐska [2020a].

Let us start with the Clausius entropy flux construction. We follow the pro-
cedure introduced in Baccetti and Visser [2014]. Consider a congruence S of
timelike, uniformly accelerating observers with acceleration a who move inside
the causal diamond. We choose them so that S approaches the (null) horizon Σ
of the causal diamond. The proper time τ of the uniformly accelerating observers
obeys

dt = cosh (aτ) dτ, (2.3)

where t is the inertial time coordinate inside the diamond (measured along the
vector nµ = (∂/∂t)µ) and we only consider t ∈ (−l, l), as the wordlines of the
observers collide at t = −l and t = l (the apices of the diamond). The observers’
velocity V µ and the (spacelike) normal Nµ to S read

V µ = (cosh (aτ) ,− sinh (aτ) , 0, . . . ) (2.4)
Nµ = (− sinh (aτ) , cosh (aτ) , 0, . . . ) . (2.5)

Then, we have for the total heat flux across S

δQ = −
∫︂

S
TµνV

νNµdn−1S. (2.6)

Since the causal diamond is chosen to be small, we can safely approximate the
energy-momentum tensor by its value at the diamond’s origin P . As we ar-
gued in the previous subsection, the observers measure the Unruh temperature
TU = ℏa/2π, provided that a ≫ 1/l. Thence, the Clausius entropy equals

SC = δQ

T
= −2π

ℏa
Tµν (P )

∫︂
S
V νNµdn−1S +O

(︂
ln+2

)︂
. (2.7)

We are interested in the limit of infinite a, where S coincides with the horizon
Σ. In this limit, the heat flux diverges since the integrand grows as e2aτ . How-
ever, the coordinate time derivative of the Clausius entropy remains finite and
equals Baccetti and Visser [2014]

dSC (t)
dt = 2π

ℏ
t
∫︂

Bt

Tµν (P ) kµ±kν±dn−2A +O
(︂
ln+2

)︂
, (2.8)

where Bt denotes a spatial cross-section of Σ at time t (an approximate (n− 2)-
sphere) and kµ± = (1,∓1, 0, . . . ) are the future pointing null normals to the future
(past) horizon of the causal diamond. This expression applies to any sufficiently
small causal diamond.
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We can also consider quantum von Neumann entropy of matter fields inside
the causal diamond. As a consequence of the Lorentz invariance, the density
operator of the (n− 1)-dimensional spatial ball Σ0 obeys ρ = e−K/Tκ/Tre−K/Tκ ,
where Tκ = ℏκ/2π is the temperature of the causal diamond (see the discussion
in subsection 2.1.2 for a connection of this temperature with a detector response).
The operator K is known as the modular Hamiltonian and equals the boost gener-
ator for Σ0 Bisognano and Wichmann [1976], Jacobson [2015], Arias et al. [2017].
Since Σ0 is small compared to the local curvature length scale, we can safely use
this flat spacetime expression. The modular Hamiltonian K is in general a com-
plicated non-local operator. However, for conformally invariant matter fields, it
simply reads

K =
∫︂

Σ0
⟨T µν⟩ζµdΣν , (2.9)

where ⟨T µν⟩ denotes the quantum expectation value of the energy-momentum
tensor operator. Let us now focus on the case of a small perturbation of the vac-
uum state and linearise in the expectation value of the energy-momentum tensor
δ⟨T µν⟩. In this case, we can easily apply the von Neumann entropy formula (2.2)
to the density operator ρ = e−K/Tκ/Tre−K/Tκ , as the exponential can be simply
expanded to the linear order in δ⟨T µν⟩. We obtain

SvN = 2π
κ

∫︂
Σ0
δ⟨T µν⟩ζµdΣν +O

(︂
ln+2

)︂
, (2.10)

where the O (l6) terms are the curvature-dependent corrections.
One cannot obtain a similarly simple result for general non-conformal quan-

tum field theories. Nevertheless, if the theory has a fixed UV point (around which
it is approximately conformal) and Σ0 is much smaller than all the relevant length
scales of the quantum field theory (e.g. the Compton lengths), a local expres-
sion for the von Neumann entropy exists Jacobson [2015], Speranza [2016], Casini
et al. [2016]. It reads

SvN = 2π
κ

∫︂
Σ0
δ⟨T µν⟩ζµdΣν + δX +O

(︂
ln+2

)︂
, (2.11)

where the new term δX is a rather complicated spacetime scalar that depends
on the diamond’s size parameter l Speranza [2016], Casini et al. [2016].

2.2 Thermodynamics and Weyl transverse grav-
ity

We have noted in the introduction that the standard derivation of the Einstein
equations from thermodynamics of spacetime has a peculiar feature. The local en-
ergy conservation needs to be imposed as an additional condition. Consequently,
the cosmological constant appears as an arbitrary integration constant that in
principle takes different values for different spacetimes. However, the equations
of motion of general relativity contain the cosmological constant as a fixed param-
eter universal for all the solutions of the theory. The equations we obtain from
thermodynamics have instead more in common with the divergenceless form of
the equations of motion of Weyl transverse gravity (1.26). Herein, we build on
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our previous works on the subject Alonso-Serrano and Lǐska [2020a, 2022] as well
as on observations of other authors Tiwari [2006], Padmanabhan [2008, 2010].
The results we present follow our most recent paper Alonso-Serrano et al. [2024]
and complete the argument for the emergence of Weyl transverse gravity from the
local equilibrium conditions. We show that, the local equilibrium conditions and
the strong equivalence principle lead to Weyl transverse gravity, provided that
they encode all the information about the (semi)classical gravitational dynamics.

There is a very simple kinematic reason why one should expect this out-
come. The local causal horizons (either of causal diamonds or any other type)
constructed in every spacetime point essentially give us the information about
the causal structure of the spacetime. It is well known that the causal struc-
ture allows one a local kinematic reconstruction of the metric up to an overall
conformal factor Hawking and Ellis [1973]. In other words, it is just enough to
find the auxiliary metric g̃µν (1.10). To completely specify the dynamical met-
ric gµν including the conformal factor, both the metric reconstruction from the
causal structure and the thermodynamics of spacetime require an extra piece of
information. Usually, one demands the local energy conservation Hawking and
Ellis [1973], Jacobson [1995]. However, there is in principle no need to add any
extra condition. Then, it becomes clear that we either need to consider a fixed
unimodular gauge √

−g = ω, or we have to adapt a Weyl invariant description of
the spacetime, insensitive to the overall conformal factor of the metric. The idea
of the kinematic metric reconstruction from the causal structure can be made
sharper with the notion of observers equipped with Unruh-de Witt detectors
probing the metric Rick Perche and Mart́ın-Mart́ınez [2022]. We plan to study
whether this approach also favours WTDiff invariance in a future work.

Herein, we show that a similar argument can be made on the level of the grav-
itational dynamics. Specifically, we analyse how Weyl transverse gravity arises
in two independent derivations of gravitational dynamics from thermodynamics.
The first one is based on a physical process interpretation of the first law and
builds on the method presented in Parikh and Svesko [2018], Svesko [2019]. The
second one uses the equilibrium interpretation of the first law and follows Jacob-
son [2015]. In both cases, our starting point is a local causal diamond. However,
different constructions of causal diamonds are required in each case (see subsec-
tion 2.1.1). A geodesic local causal diamond is considered for the equilibrium
approach Jacobson [2015]. It remains unclear whether a different definition of a
causal diamond could be used, but it would certainly require significant modifi-
cations to the derivation Wang [2019].

In the case of the physical process approach, the type of the causal diamond
has not been specified in the seminal work Svesko [2019]. Herein, we rectify this
omission. The derivation relies on comparing the entropy of two spatial cross-
sections of the diamond’s horizon at different times. Therefore, it relies on having
the horizon completely determined at any time. However, the geodesic local
causal diamond construction fixes the spatial ball at t = 0, which forms the base
of the causal diamond, leaving the horizon underdetermined. The light-cone cut
construction instead defines the diamond by specifying the horizon. Therefore,
to our best knowledge, it offers the only definition of a causal diamond usable for
the physical process derivation.

Our goal in both approaches is to decide whether the resulting gravitational
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Figure 2.3: The slice of the causal diamond we work with. The spatial cross-
sections at times t = −ϵ and t = 0 are denoted by B−ϵ and B, respectively. The
red arrow shows the physical heat flux δQ across the slice’s null boundary Σ.

dynamics are consistent with general relativity or Weyl transverse gravity. Hence,
we remain agnostic to whether the causal diamond is defined with respect to the
dynamical metric gµν (as it would be for general relativity), or the auxiliary met-
ric g̃µν (for Weyl transverse gravity). To stress that both possibilities are taken
into account, we use hatted quantities such as ĝµν , Â, T̂ µν etc., throughout this
section. These can either mean the Diff-invariant expressions, or the correspond-
ing WTDiff-invariant ones. In this way, we avoid having to repeat the analysis
twice, once presupposing the Diff invariance and then the WTDiff invariance.

2.2.1 Physical process derivation
In the physical process approach, we study the physical change in entropy of a
light-cone cut causal diamond between times t = −ϵ and t = 0. We impose ϵ ≪ l,
so that we are able to disregard O (ϵ3/l3) contributions in the following. Hence,
we focus on a slice of the diamond’s past horizon bounded by the approximate
(n− 2)-sphere B−ϵ at t = −ϵ and by the approximate (n− 2)-sphere B at t = 0
(see figure 2.3).

On the one side, the total matter entropy inside the causal diamond changes
as the matter crosses the horizons. The total entropy flux can be easily computed
by integrating equation (2.8) for the time derivative of the Clausius entropy from
t = −ϵ to t = 0, i.e.,

∆SC = 2π
ℏ
T̂ µν (P )

∫︂ 0

−ϵ
dtt (l + t)2

∫︂
Bt

dΩn−2k̂
µ

−k̂
ν

−. (2.12)

Using that k̂µ− =
(︂
1, m̂i

)︂
and that

∫︂
m̂im̂jdΩn−2 = σn−2

δij

n− 1 , (2.13)

where σn−2 denotes the area of a unit (n− 2)-dimensional sphere in flat spacetime,
and the latin indices refer to the spatial directions, we obtain

∆SC = −ϵ2πσn−2l
n−2

ℏ (n− 1) T̂ µν (P ) (nn̂µn̂ν + ĝµν (P )) +O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
. (2.14)

We performed an expansion in the small parameter ϵ, discarding all but the
leading order terms. The O (ϵ2ln) corrections appear due to approximating the
energy-momentum tensor by its value in the diamond’s centre P and due to
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neglecting the curvature effects (captured by the Riemann normal coordinate
expansion of the metric (1.162)).

On the other side, the horizons expands, which increases its entropy S = ηÂ.
To compute this increase for a light-cone cut causal diamond, the easiest approach
is to consider the expansion θ = ∇µk̂

µ

− of the congruence of the null horizon
generators k̂µ−5. By the definition of the expansion, it holds for the change in area
between times t = −ϵ and t = 0 Jacobson [1995], Wang [2019]

∆Â =
∫︂ 0

−ϵ
dλ
∫︂

dn−2Â θ, (2.15)

where λ denotes the null parameter along the horizon generators. The evolution
of θ is governed by the Raychaudhuri equation Raychaudhuri [1955]

θ̇ = − 1
n− 2θ

2 − σ2 − R̂µν k̂
µ

−k̂
ν

−, (2.16)

where θ̇ = dθ/dλ and σ2 = σµνσ
µν , with σµν = ∇̂(µk̂−,ν)−∇̂ρk̂

ρ

−ĥµν/ (n− 2) being
the shear tensor and ĥµν the metric on the null congruence. Since the congruence
generates a surface, it follows that its twist must be vanishing and we do not even
write the corresponding term in the Raychaudhuri equation. For the shear, we
have the following evolution equation

σ̇µν = − 2
n− 2θσµν − Ĉλρστ k̂

λ

−k̂
σ

−ĥ
ρ

µĥ
τ

ν . (2.17)

In a flat spacetime, the shear of the horizon vanishes identically. However, the
horizon still expands, at the rate θflat (λ) = (n− 2) / (l + λ) Wang [2019]. Thence,
we can solve the equations for the expansion and the shear by expanding them
in powers of λ,

θ =n− 2
l + λ

+ θ(0) + λθ(1) +O
(︂
λ2
)︂
, (2.18)

σµν =σ(0),µν + λσ(1),µν +O
(︂
λ2
)︂
. (2.19)

We set θ(0) = σ(0),µν = 0 as these terms are not sourced by the spacetime curvature
and we expect them to take their flat spacetime values6. Then, we easily obtain

θ =n− 2
l + λ

− λR̂µν k̂
µ

−k̂
ν

− +O
(︂
λ2
)︂
, (2.20)

σµν = − λĈλρστ k̂
λ

−k̂
σ

−ĥ
ρ

µĥ
τ

ν +O
(︂
λ2
)︂
. (2.21)

5At this point, it becomes crucial to consider a light-cone cut causal diamond. Other con-
structions of a causal diamond do not specify its null boundary, making it difficult to compute
the evolution along it.

6This assumption is not innocuous. It actually represents a further constraint on the con-
struction of the causal diamond. The freedom in setting up a light-cone cut causal diamond
was examined (without using the name) in Parikh and Svesko [2018], Svesko [2019]. The papers
show how to fix n (n+ 1) /2 arbitrary functions that appear in the derivation, which is precisely
the number of independent functions represented by θ(0) and σ(0),µν . Therefore, translating the
results of this analysis to the language of the Rauchaudhuri equation suggests that we are in-
deed free to construct it so that θ(0) = σ(0),µν = 0. We expect to address the issue in more
detail in a future paper.
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Plugging θ into equation (2.15) yields

∆Â =
∫︂ 0

−ϵ
dλn− 2

l + λ

∫︂
dn−2Â −

∫︂ 0

−ϵ
dλλ

∫︂
dn−2ÂR̂µν k̂

µ

−k̂
ν

− +O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
.

(2.22)
The first integral is non-vanishing even for a flat spacetime diamond. In that
case, the entropy associated with the horizon increases without any corresponding
changes in the matter entropy (we are in vacuum). Therefore, this term cannot
correspond to a reversible process for which the total change in entropy must
vanish. Instead, we may see the expansion of the causal diamond as an irreversible
process, akin to a free expansion of a gas released from a container. In both cases,
the system produces entropy without any corresponding transfer of heat7 (in our
case proportional to the energy-momentum tensor). As an aside, it has been
argued that this term in fact corresponds to the change in the volume of the spatial
cross-section of the causal diamond Svesko [2019]. However, this volume is not
unambiguously defined for a light-cone cut causal diamond (unlike for a geodesic
local causal diamond), as we specify the diamond via its null boundary Wang
[2019]. It might be tempting to actually define the preferred choice of volume in
this way, i.e.,

∆V̂ =
∫︂ 0

−ϵ
dλn− 2
n− 1

∫︂
dn−2Â. (2.23)

However, we do not require such identification and, therefore, we do not pursue
this line of reasoning any further.

The reversible contribution ∆Ârev can be evaluated using essentially the same
procedure as for the Clausius entropy flux. We find

∆Ârev = −
∫︂ 0

−ϵ
dλλ

∫︂
dn−2ÂR̂µν k̂

µ

−k̂
ν

− +O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
= − ϵ2 σn−2l

n−2

2 (n− 1)R̂µν (P ) (nn̂µn̂ν + ĝµν (P )) +O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
. (2.24)

Therefore, the reversible change in the horizon entropy S = ηÂ equals

∆Srev = −ϵ2ησn−2l
n−2

2 (n− 1) R̂µν (P ) (nn̂µn̂ν + ĝµν (P )) +O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
. (2.25)

The total change in entropy for a reversible process must vanish, implying
∆Srev + ∆SC = 0. After some straightforward manipulations, this condition
becomes (︄

R̂µν (P ) − 2π
ηℏ
T̂ µν (P )

)︄
(nn̂µn̂ν + ĝµν (P )) = 0. (2.26)

For every unit, timelike vector field n̂µ defined in P , we can construct a light-cone
cut causal diamond and obtain equation (2.26). Therefore, the equation holds for
an arbitrary unit, timelike vector. As we prove in appendix A.4, the contractions
with n̂µ can then be removed and it must hold

R̂µν (P ) − 1
n
R̂ (P ) ĝµν (P ) = 2π

ηℏ

(︃
T̂ µν (P ) − 1

n
T̂ (P ) ĝµν (P )

)︃
. (2.27)

7If we were to keep non-zero σ0 and/or θ0 in equations (2.18) and (2.19), respectively,
these would presumably also correspond to entropy production in an irreversible process. This
interpretation has been shown in detail for Rindler wedges Chirco and Liberati [2010].

74



The strong equivalence principle guarantees that η is a universal constant8 and
that the same equation can be derived in any regular spacetime point. Finally,
using the Newtonian limit to define G = 1/4ℏη, we obtain the traceless equations
for gravitational dynamics

R̂µν − 1
n
R̂ĝµν = 8πG

(︃
T̂ µν − 1

n
T̂ ĝµν

)︃
. (2.28)

Taking the divergence of the equations and using the Bianchi identities, we find
that ∇̂

ν
T̂ µν = ∇̂µJ for some scalar J . Then, following the same steps as for

the case of Weyl transverse gravity (see subsection 1.1.1) we finally obtain the
divergenceless equations

R̂µν − 1
2R̂ĝµν + Λĝµν = 8πG

(︂
T̂ µν − J ĝµν

)︂
, (2.29)

where Λ is an arbitrary integration constant.
So far, we have been agnostic about the local symmetries of the gravitational

dynamics we derived. Equations (2.29) provide a purely metric description of
gravity. Hence, they can possess at most n (n+ 1) /2 local symmetries. As-
suming we do not introduce any gauge fixing, we have only two choices (see the
discussion at the beginning of section 1.1); the Diff and the WTDiff group. While
the thermodynamics of spacetime cannot directly probe the symmetry group, we
can nevertheless make a strong case for favouring the WTDiff symmetry. First,
only the traceless equations (2.28) can be directly derived from thermodynamics.
These do not suffice to recover all n (n+ 1) /2 components of the metric tensor
gµν . However, they suffice to fully specify the auxiliary WTDiff-invariant metric
g̃µν . Thence, the dynamical equations (2.28) are fully consistent just by them-
selves (together with the matter equations of motion, of course) only if we write
them in terms of the WTDiff-invariant auxiliary tensors, recovering the equations
of motion of Weyl transverse gravity (A.10). Second, our definition of G makes
the horizon entropy S = ηÂ coincide with Bekenstein entropy of a black hole
event horizon. At the same time, the gravitational equations are encoded in a
change of this entropy. Therefore, they are not affected if we shift the entropy by
a universal constant (while keeping all the other aspects of the theory unchanged).
In subsection 1.3.3 we have seen, on the example of de Sitter spacetime, that such
an arbitrary shift of entropy is incorporated into Weyl transverse gravity. How-
ever, there is no similar mechanism in Diff-invariant theories of gravity. Lastly,
the most striking argument for WTDiff-invariance appears if we demand to also
recover a gravitational action from which the traceless equations (2.28) are de-
rived. If we assume that gravity is a fundamental interaction, such an action
ought to exist and play an important role in the quantum theory (as it does in
loop quantum gravity or path integral quantum gravity). And even if we assume
gravity to be emergent, it is still reasonable to expect that some effective classical
action can be written. However, there exist no Diff-invariant gravitational action
with the metric tensor as the dynamical variable that recovers Λ as an integration
constant (although non-metric proposals have been put forward Padmanabhan
[2010], Montesinos and Gonzalez [2023]). At the same time, we have seen that this

8Otherwise, one could measure entropy to distinguish two test black holes at different space-
time points, breaking the equivalence principle for self-gravitating test particles.
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behaviour of Λ is natural for any WTDiff-invariant action principle. Therefore,
assuming that we can obtain equations (2.28) as the Euler-Lagrange equations of
some action, and that the relevant dynamical variable in the variational princi-
ple is the metric, we are uniquely led to Weyl transverse gravity. In conclusion,
thermodynamics of spacetime leads to the traceless equations of motion of Weyl
transverse gravity (1.22)

R̃µν − 1
n
R̃g̃µν = 8π

(︄√
−g

ω

)︄2 k−1
n (︃

Tµν − 1
n
Tgµν

)︃
.

Therefore, all the hatted quantities we used throughout the derivation ought to
be understood as the WTDiff-invariant ones, defined with respect to the auxiliary
metric tensor g̃µν = ĝµν . The causal structure of the diamond is likewise defined
with respect to g̃µν .

We, of course, have no a priori reason to expect that thermodynamics of
spacetime (together with the equivalence principle) suffices to recover all the in-
formation about gravitational dynamics. However, in our view, the apparently
very strong connection between gravity and thermodynamics makes the assump-
tion that they are indeed fully equivalent worth exploring. And once we take
the encoding of gravity in thermodynamics seriously, we are led to conclude that
the appropriate gravitational theory is Weyl transverse gravity. Remarkably,
arguments completely independent of thermodynamics also suggest this theory
as a serious competitor for general relativity. In particular, we have seen that
Weyl transverse gravity naturally arises in the field theoretical approach to grav-
ity Barceló et al. [2014], Carballo-Rubio et al. [2022] (as an alternative to general
relativity), and that it offers a robust solution to some of the problems related
to the value of the cosmological constant Carballo-Rubio [2015], Barceló et al.
[2018].

2.2.2 Entanglement equilibrium derivation
To further strengthen our case for Weyl transverse gravity, we also discuss its con-
sistency with the entanglement equilibrium derivation of gravitational dynamics.
This approach phrases the local equilibrium conditions entirely in terms of the
quantum von Neumann entropy Jacobson [2015]. In other words, it uses equa-
tion (2.11) for von Neumann entropy of matter fields and interprets the horizon
entropy S = ηÂ in terms of vacuum quantum entanglement. On the one side,
we need to rely on a specific interpretation of horizon entropy, and the deriva-
tion only applies to quantum field theories with a fixed UV point for which von
Neumann entropy is given by equation (2.11). On the other side, it has the ad-
vantage of using one definition of entropy for both the matter and the horizon.
This approach is particularly natural in the AdS/CFT paradigm Lashkari et al.
[2014], Faulkner et al. [2014, 2017], which guarantees that horizon entropy can be
completely explained in terms of quantum entanglement (via the Ryu-Takayanagi
formula Ryu and Takayanagi [2006]). However, here we apply it in a completely
general spacetime setting, following Jacobson [2015].

Our starting point is a geodesic local causal diamond in an equilibrium state.
It has been suggested that its equilibrium state corresponds to a vacuum, max-
imally symmetric spacetime with a cosmological constant λ that in principle
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depends both on the position of the causal diamond and on its size parameter
l Jacobson [2015]. Next, we introduce a small arbitrary perturbation of the met-
ric δĝµν and of the matter fields. The latter leads to a small non-zero expectation
value of the energy-momentum tensor, δ⟨T̂ µν⟩. Since WTDiff-invariant gravity
also allows for variations of the cosmological constant, we further consider a small
variation of it, δλ.

Since we perturb the causal diamond away from its equilibrium state, we
require that the entropy perturbation vanishes to the leading order, which trans-
lates into the condition δSvN + ηδÂ = 0. The matter von Neumann entropy obeys
equation (2.11). Regarding the entanglement entropy associated with the hori-
zon, a simple calculation using the Riemann normal coordinate expansion of the
metric (1.162) yields Jacobson [2015]

δÂB = − σn−2l
n

3 (n− 1)
(︂
δĜµνn̂

µn̂ν − λ
)︂

+ (n− 2)σn−2l
n−3δl +O

(︂
ln+2

)︂
, (2.30)

where we also allowed for variations of the size parameter l. In subsection 2.1.3,
we noted that the Euclidean canonical ensemble for a causal diamond is defined
at a fixed volume of the spatial ball Σ0 Jacobson and Visser [2023a,b]. Only then,
can one properly define the partition function of the causal diamond and, thence,
its entropy. Therefore, we expect that the equilibrium relation δSvN + ηδÂ = 0
holds only if the volume is held fixed. The volume perturbation equals

δV̂Σ0 = − σn−2l
n+1

3 (n2 − 1)
(︂
δĜµνn̂

µn̂ν − λ
)︂

+ σn−2l
n−2δl +O

(︂
ln+3

)︂
. (2.31)

Therefore, setting
δl = l3

3 (n2 − 1)
(︂
δĜµνn̂

µn̂ν − λ
)︂
, (2.32)

ensures δV̂Σ0 = 0. The area variation at constant volume equals

δÂB|V̂ = −σn−2l
n

n2 − 1
(︂
δĜµνn̂

µn̂ν − λ
)︂

+O
(︂
ln+2

)︂
. (2.33)

Furthermore, we have seen that the first law of causal diamonds (1.165) also
includes a term proportional to δΛ. Thence, for the equilibrium condition on
entropy to hold, we also need to impose the condition δΛ = 0. This addi-
tional requirement is necessary for the WTDiff-invariant setting, whereas the
Diff-invariant case automatically implies δΛ = 0.

We are now ready to evaluate the equilibrium condition δSvN + ηδÂ|V̂ = 0.
We find

2πσn−2l
n

ℏ (n2 − 1)
(︂
δ⟨T̂ µνn̂µn̂ν + δX̂⟩

)︂
−ησn−2l

n

n2 − 1
(︂
δĜµνn̂

µn̂ν − λ
)︂
+O

(︂
ln+2

)︂
= 0. (2.34)

Simplifying, we obtain

8πG
(︂
δ⟨T̂ µν⟩ − δX̂ĝµν

)︂
− δĜµν − λĝµν = 0, (2.35)

where we, again, defined the Newton constant G = 1/4ℏη and used the arbi-
trariness of the unit, timelike vector field n̂µ to remove the contractions (see
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appendix A.4 for the proof of this procedure). We have assumed that the local
cosmological constant λ is some function dependent on the spacetime position and
the diamond’s size. To determine λ, we take a trace of the equations, finding9

λ = 8πG
(︃ 1
n
δ⟨T̂ ⟩ − δX̂

)︃
+ n− 2

2n δR̂. (2.36)

Finally, the traceless gravitational equations read

δR̂µν − 1
n
δR̂ = 8πG

(︃
δ⟨T̂ µν⟩ − 1

n
δ⟨T̂ ⟩ĝµν

)︃
. (2.37)

By the virtue of the strong equivalence principle, these equations hold throughout
the spacetime. Since we ultimately obtain traceless equations of motion, the
entire argument for Weyl transverse gravity we provided in the physical process
case holds. Therefore, we should take ĝµν = g̃µν (and likewise for all the other
tensors) and we have recovered the semiclassical equations of Weyl transverse
gravity, relating the traceless part of the classical Ricci tensor with the traceless
part of the quantum expectation value of the energy-momentum tensor.

2.3 Thermodynamics of local causal diamonds
and WTDiff-invariant gravity

We have argued that thermodynamics of local causal diamonds encodes gravita-
tional equations equivalent to those of Weyl transverse gravity. However, ther-
modynamics of spacetime has been found to be even more powerful, allowing
one to derive the equations of motion of any purely metric gravitational theory
whose Lagrangian is a function of only the metric and the Riemann tensor. The
derivation relies on taking the appropriate Wald entropy as the entropy associated
with the horizon of the local causal diamond. It is not immediately obvious that
we can obtain a similar result for modified WTDiff-invariant theories of gravity,
since, as we discussed in subsection 1.3.5, the conformal Killing symmetry of the
causal diamond does not correspond to a local symmetry of an arbitrary metric in
a WTDiff-invariant theory (in contrast to the Diff-invariant case). Nevertheless,
in subsection 1.4.3, we derived the first law of causal diamonds for an arbitrary
local, WTDiff-invariant theory of gravity whose Lagrangian is a function of the
auxiliary metric g̃µν and the auxiliary Riemann tensor R̃µ

νρσ. We have also es-
tablished that entropy of the causal diamond is indeed Wald entropy of the given
WTDiff-invariant theory. Here, starting from Wald entropy prescription, we show
that thermodynamics of local causal diamonds indeed encodes the appropriate
equations of motion. We take WTDiff invariance as our starting assumption, as
we already discussed its naturalness in the previous section. We consider both
the physical process and the entanglement equilibrium derivations. As we discuss
in the following, both approaches are actually no longer completely equivalent in
the case of modified theories of gravity Bueno et al. [2017], Svesko [2019].

9For conformal matter fields with ⟨T̂ ⟩ = δX̂ = 0 that satisfy the local energy-momentum
conservation, we simply have λ = (n− 2) δR̂/n = Λ, where Λ denotes the spacetime cosmolog-
ical constant.
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Before going to the derivations, let us comment on some general features of
thermodynamics of spacetime applied to modified theories of gravity. Since the
Wald entropy expression is determined by the gravitational Lagrangian, using
it to derive the equations for gravitational dynamics represents a circular argu-
ment. This problem does not appear with entropy proportional to the horizon
area, S = ηÃ10, since we can provide robust, model independent arguments for
this form of the leading order entropy contribution (see the discussion in sub-
section 2.1.3). The derivation of the gravitational equations from Wald entropy
then essentially shows that the boundary contribution to the variation of the ac-
tion (from which one obtains Wald entropy) suffices to recover the gravitational
dynamics. This fact is of interest by itself and has been also previously noted in
a different context Padmanabhan [2008, 2010]. However, it does not allow us to
learn anything truly new about gravitational dynamics (compared to what one
learns from the S = ηÃ prescription, as we discussed in the previous section).

An improved version of the argument does not work directly with Wald en-
tropy. Instead, assuming that entropy of the horizon can be interpreted in terms
of quantum entanglement, it considers a scheme for renormalising this entropy.
The procedure then provides expressions both for the renormalised entanglement
entropy and for the effective gravitational action. It turns out that the renor-
malised entropy agrees with the Wald entropy of the effective action at each order
in the effective field theory. While this argument provides a justification for using
Wald entropy prescription without the need to a priori specify the gravitational
Lagrangian, it only works if we interpret horizon entropy completely in terms
of quantum entanglement. Herein, we tacitly assume that this is the case. In
the next chapter we then provide an alternative viewpoint on deriving modi-
fied gravitational dynamics from thermodynamics, one that relies neither on any
knowledge of the gravitational Lagrangian, nor on some specific interpretation of
entropy.

For Diff-invariant gravity, the Wald entropy approaches lead to another subtle
issue. Wald entropy does not depend on the cosmological constant term in the
gravitational Lagrangian in any way. Therefore, the equations one obtains from
thermodynamics fail to reproduce this term (being, as we have shown, traceless).
Instead, the cosmological constant appears as an on-shell integration constant in
the process of solving the equations. However, this failure to completely recon-
struct the information in the Lagrangian disappears in WTDiff-invariant gravity.
In that case, we have noted that any constant term in the Lagrangian has no
effect on the equations of motion derived by varying the Lagrangian. It also
has no effect on the equations derived from Wald entropy. Therefore, both the
variational and the thermodynamic derivation of the equations for gravitational
dynamics are perfectly consistent.

In subsection 2.3.1, we discuss the physical process derivation. The method
based on the Raychaudhuri equation we developed cannot be straightforwardly
generalised beyond the case of f (R) theories of gravity (for an explanation of
this limitation in the context of local Rindler wedges, see Guedens et al. [2012]).
Instead, we consider a different derivation based on thermodynamics of light-
cone cut causal diamonds, which is essentially a WTDiff-invariant version of

10Ã stands for the WTDiff-invariant area of the horizon measured with respect to the auxiliary
metric g̃µν .
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the approach introduced in Parikh and Svesko [2018], Svesko [2019]. Subsec-
tion 2.3.2 then builds on the entanglement equilibrium derivation originally de-
veloped in Bueno et al. [2017], modifying it to work in the WTDiff-invariant
setting.

2.3.1 Physical process derivation
We first discuss the physical process approach in which the gravitational equations
are encoded in the change of entropy along the horizon generators of a light-cone
cut causal diamond (constructed with respect to the auxiliary, WTDiff-invariant
metric g̃µν). The basic idea of the derivation follows Svesko [2019], although
we use a WTDiff-invariant setup and introduce some minor modifications of the
argument. Our geometric setup is the same as in subsection 2.2.1, i.e., a slice
of the causal diamond sketched in the figure 2.3. We again assume that we are
comparing the diamond’s entropy between the horizon’s spatial cross-sections B−ϵ
at t = −ϵ (with ϵ ≪ l) and B at t = 0. The change in matter Clausius entropy
is the same as in the previous case, i.e.,

∆SC = − ϵ2nπσn−2l
n−2

ℏ (n− 1)

(︄√
−g

ω

)︄2 k−1
n (︃

Tµν (P ) − 1
n
T g̃µν

)︃
ñµñν

+O
(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
, (2.38)

where the WTDiff-invariant timelike vector ñµ is normalised to g̃µνñµñν = −1.
The Wald entropy of a WTDiff-invariant theory whose Lagrangian is a func-

tion of g̃µν and R̃
µ

νρσ reads

SW (t) =2π
ℏκ

∫︂
Bt

Qνµ
ζ dBµν , (2.39)

Qνµ
ζ =2Eνµρ

σ∇̃ρζ
σ − 4∇̃ρE

νµρ
σζ

σ, (2.40)

where Eνµρ
σ = ∂L/∂R̃

νµρ

σ. Since entropy of a causal diamond is time-dependent,
even the ζσ-proportional contribution to the Noether charge, which vanishes for
stationary black holes, is non-zero in this case11. The change in Wald entropy
between the spatial spheres B−ϵ and B then equals

∆SW =
∫︂ 0

−ϵ
dt2π
κ

∫︂
Bt

dn−2Ãk̃µ−∇̃νQ
νµ
ζ , (2.41)

where k̃µ− denotes a future-pointing, WTDiff-invariant null normal to the hori-
zon. After some straightforward manipulations, and using the WTDiff-invariant
conformal Killing identity

∇̃ν∇̃ρζ
σ = R̃

σ

λνρ ζλ + 1
n
g̃ρσ∇̃ν∇̃λζ

λ + 1
n
g̃νσ∇̃ρ∇̃λζ

λ − 1
n
g̃νρ∇̃σ∇̃λζ

λ, (2.42)

we obtain

∆SW =
∫︂ 0

−ϵ
dt4π
ℏκ

∫︂
Bt

dn−2Ãk̃µ−

[︄
E λρσ
µ R̃

τ

νρσg̃τλζ
λ − 2∇̃ν∇̃σE

νρσ
µ g̃ρλζ

λ

+ 4
n

∇̃ρ∇̃λζ
λg̃νσE

νρσ
µ

]︄
+O

(︂
ϵ3
)︂
. (2.43)

11The presence of terms proportional to ζσ in entropy is in the same spirit as for the recent
proposal for entropy of dynamical black holes Hollands et al. [2024].
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Other contributions appear due to the approximate nature of our conformal
Killing vector which does not exactly satisfy the conformal Killing identity (2.42).
However, these can be cancelled out by adding suitable higher order terms to the
definition of the conformal Killing vector Svesko [2019] (the WTDiff-invariant
case proceeds exactly in the same way as the Diff-invariant one).

Unlike the rest of the contributions, which are proportional to the spacetime
curvature, the term in the second line of equation (2.43) leads to a change of
entropy even in a flat spacetime. Thence, just like in the special case of Weyl
transverse gravity (see equation 2.22 and the following discussion), we may inter-
pret it as the irreducible entropy production due to the expansion of the causal
diamond

∆Sirr =
∫︂ 0

−ϵ
dt4π
ℏκ

∫︂
Bt

dn−2Ã 4
n

∇̃ρ∇̃λζ
λg̃νσE

νρσ
µ . (2.44)

It has been suggested that this term corresponds to the change in the generalised
volume of the causal diamond Svesko [2019]. However, we have noted that the
volume (or generalised volume) of a light-cone cut causal diamond is not uniquely
defined. On the one hand, it would be rather natural to simply use equation (2.44)
as its definition, since it does give the correct result in a flat spacetime. On the
other hand, we do not need to define the generalised volume at all and simply
treat the contribution (2.44) as the non-equilibrium entropy production. The
role of the generalised volume becomes crucial in the entanglement equilibrium
derivation, as we discuss in the next subsection.

Integrating equation (2.43) and subtracting the entropy production (2.44), we
find for the reversible change in Wald entropy

∆SW = − ϵ2 8πn
ℏ (n− 1)σn−2l

n−2
(︄
E ρστ
µ R̃

λ

ρστ g̃λν − 1
n
E λρσ
τ R̃

τ

λρσg̃µν

− 2∇̃ν∇̃σE
νρσ
µ g̃ρλ + 2

n
∇̃ν∇̃σE

νρσ
µ g̃ρλ

)︄
ñµñν +O

(︂
ϵ3
)︂

+O
(︂
ϵ2ln

)︂
,

(2.45)

where the O (ϵ2ln) terms correspond to the higher order contributions in the
Riemann normal coordinate expansion. Equating the reversible change in Wald
entropy with the Clausius entropy flux, we arrive at the equilibrium condition⎡⎣E ρστ

µ R̃
λ

ρστ g̃λν − 1
n
E λρσ
τ R̃

τ

λρσg̃µν − 2∇̃ν∇̃σE
νρσ
µ g̃ρλ + 2

n
∇̃ν∇̃σE

νρσ
µ g̃ρλ

− 1
8π

(︄√
−g

ω

)︄2 k−1
n (︃

Tµν (P ) − 1
n
T g̃µν

)︃⎤⎦ñµñν = 0. (2.46)

As in the previous cases, we are free to remove the contractions with the arbitrary,
timelike, unit, WTDiff-invariant vector field ñµ (see the proof in appendix A.4).
The Einstein equivalence principle then guarantees the validity of the resulting
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equations for gravitational dynamics in every regular spacetime point12

E ρστ
µ R̃

λ

ρστ g̃λν − 1
n
E λρσ
τ R̃

τ

λρσg̃µν − 2∇̃ν∇̃σE
νρσ
µ g̃ρλ + 2

n
∇̃ν∇̃σE

νρσ
µ g̃ρλ

− 1
8π

(︄√
−g

ω

)︄2 k−1
n (︃

Tµν (P ) − 1
n
Tgµν

)︃
= 0. (2.47)

We have correctly reproduced the traceless equations of motion of any local,
WTDiff-invariant theory of gravity whose Lagrangian is any function of g̃µν and
R̃
µ

νρσ, given in equation (A.10) in appendix A.3. We stress that, as we argued in
the introduction to this section, both the thermodynamic derivation and the vari-
ational principle derivation lead to identical traceless equations for gravitational
dynamics and we lose no information in the thermodynamic approach.

2.3.2 Entanglement equilibrium derivation
The entanglement equilibrium approach we analysed in subsection 2.2.2 also al-
lows a generalisation to local, WTDiff-invariant theories of gravity whose La-
grangian is an arbitrary function of g̃µν and R̃µ

νρσ. Except for assuming WTDiff
invariance, the derivation we present here largely follows Bueno et al. [2017].

The renormalised entanglement entropy associated with the horizon of a causal
diamond is equal to Wald entropy of certain modified gravity theories. Therefore,
we have a well motivated entanglement equilibrium condition

δSW + δSvN = 0, (2.48)

where δSW is the Wald entropy perturbation and the matter von Neumann en-
tropy perturbation δSvN is given by equation (2.11). We again choose the equi-
librium state corresponding to a maximally symmetric spacetime, and allow the
value of the local cosmological constant λ to depend on the position in space-
time and on the size parameter of the causal diamond, i.e., λ = λ (P, l). In the
case of Weyl transverse gravity, we have seen that this equilibrium condition only
works for perturbations that leave the cosmological constant and the (WTDiff-
invariant) volume of the geodesic (n− 1)-dimensional ball Σ0 fixed. For modified
theories of gravity, the first law of causal diamonds does not contain a variation
of the geometric volume but rather of the so-called generalised volume δW̃ (see
equation (1.189)). Likewise, the generalised volume is the quantity one must hold
fixed to define a Euclidean canonical ensemble for a causal diamond in modified
theories of gravity Tavlayan and Tekin [2023]. Therefore, for the equilibrium
condition (2.48) to hold, we require δΛ = δW̃ = 0.

Let us explore the expression for the perturbation of Wald entropy of the
bifurcate (n− 2)-surface of the horizon B. Since the conformal Killing vector ζµ
vanishes on the horizon, it holds

δSW = 4π
ℏκ
δ
∫︂

B
Eνµρ

σ∇̃ρζ
σdBµν . (2.49)

12As we previously mentioned, the strong equivalence principle does not hold for modified
theories of gravity di Casola et al. [2014, 2015]. In thermodynamics of spacetime, it shows up
in the fact that Wald entropy is no longer proportional to the (WTDiff-invariant) horizon area
with a universal proportionality constant.
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Expanding Eνµρ
σ in powers of l around the diamond’s centre P , we obtain

δSW =4π
ℏκ
δ
∫︂

B

(︄
Eνµρ

σ (P ) + lm̃i∇̃iE
νµρ

σ (P )

+ 1
2 l

2m̃im̃j∇̃i∇̃jE
νµρ

σ (P )
)︄

∇̃ρζ
σdBµν , (2.50)

where m̃i denotes the WTDiff-invariant unit, spatial normal to B. For conve-
nience, we split E νρσ

µ into the part corresponding to general relativity and the
higher order corrections we denote by F νρσ

µ , i.e.,

E νρσ
µ = 1

32πG
(︂
δρµg̃

νσ − δσµ g̃
νρ + F νρσ

µ

)︂
. (2.51)

Then, integrating equation (2.50), and using that F νρσ
µ = 0 in a maximally

symmetric spacetime, yields

δSW =δÃB

4l2P
− σn−2l

n−2

4l2P (n− 1) g̃ρνñ
µñν

[︄
δF λρσ

µ g̃λσ + l2

2 (n+ 1)(︂
g̃λσg̃

αβ∇̃α∇̃βδF
λρσ

µ + g̃λσñ
αñβ∇̃α∇̃βδF

λρσ
µ + 2∇̃λ∇̃σδF

λρσ
µ

)︂ ]︄
. (2.52)

We have seen that the area variation equals

δÃB = − σn−2l
n

3 (n− 1)
(︂
δG̃µνñ

µñν − λ
)︂

+ (n− 2)σn−2l
n−3δl +O

(︂
ln+2

)︂
. (2.53)

For the generalised volume variation, we similarly find

δW̃Σ0 =δṼΣ0 + σn−2l
n−1

4l2P (n− 1) (n− 2) g̃λσg̃ρνñ
µñν

[︄
δF λρσ

µ + l2

2 (n+ 1)(︂
g̃αβ∇̃α∇̃βδF

λρσ
µ + ñαñβ∇̃α∇̃βδF

λρσ
µ

)︂ ]︄
, (2.54)

where

δṼΣ0 = − σn−2l
n+1

3 (n2 − 1)
(︂
δG̃µνñ

µñν − λ
)︂

+ σn−2l
n−2δl +O

(︂
ln+3

)︂
. (2.55)

To satisfy the constraint δW̃ = 0, we must set

δl = l3

3 (n2 − 1)
(︂
δG̃µνñ

µñν − λ
)︂

− l

4l2P (n− 1) (n− 2) g̃λσg̃ρνñ
µñν[︄

δF λρσ
µ + l2

2 (n+ 1)
(︂
g̃αβ∇̃α∇̃βδF

λρσ
µ + ñαñβ∇̃α∇̃βδF

λρσ
µ

)︂ ]︄
. (2.56)

Then, we finally obtain for the perturbation of Wald entropy at fixed generalised
volume

δSW = σn−2l
n

4l2P (n2 − 1) ñ
µñν

[︂
δG̃µν − λg̃µν − 2g̃ρν∇̃λ∇̃βδF

λρσ
µ

]︂
. (2.57)
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Now we are ready to derive the equations governing gravitational dynamics.
Expanding the entanglement equilibrium condition (2.48) and performing some
straightforward manipulations leads to⎡⎣δG̃µν − λg̃µν − 2g̃ρν∇̃λ∇̃βδF

λρσ
µ − 8πG

(︄√
−g

ω

)︄2 k−1
n

(δ⟨Tµν⟩ − δX)
⎤⎦ ñµñν = 0.

(2.58)
As always, the contractions with an arbitrary, unit timelike vector field ñµ can
be removed and the Einstein equivalence principle ensures the validity of the
equilibrium condition throughout the spacetime. Lastly, we take the trace of the
equations to determine the local cosmological constant λ

λ = 8πG
⎛⎝ 1
n

(︄√
−g

ω

)︄2 k−1
n

δ⟨T ⟩ − δX

⎞⎠+ n− 2
2n δR̂ + 2

n
∇̃λ∇̃βδF

λρσ
ρ . (2.59)

If we limit ourselves to conformal matter fields with δ⟨T̃ ⟩ = δX̂ = 0 and as-
sume that they satisfy the local energy-momentum conservation, we find that
λ = (n− 2) δR̂/n+ 2∇̃λ∇̃βδF

λρσ
ρ /n is a universal constant. Plugging λ back

into the entanglement equilibrium condition (2.58)

δR̃µν−
1
n
R̃g̃µν−2g̃ρν∇̃λ∇̃βδF

λρσ
µ −8πG

(︄√
−g

ω

)︄2 k−1
n (︃

δ⟨Tµν⟩ − 1
n
δ⟨T ⟩gµν

)︃
− = 0.

(2.60)
In total, we have recovered the linearised traceless equations of motion for a local,
WTDiff-invariant theory of gravity whose Lagrangian is an arbitrary function of
g̃µν and R̃µ

νρσ. The WTDiff-invariant thermodynamics of spacetime is thus fully
consistent both in the physical process and in the equilibrium approach.

2.3.3 Comparison of the derivations
At the first glance, the physical process approach may seem to be superior as
it succeeds in recovering the full, non-linearised equations of motion. However,
there is a price to pay. We have seen that the contributions to the Noether charge
proportional to the conformal Killing vector field do not vanish in this case. In
section 1.3 we discussed that these terms contain ambiguities that the covariant
phase space construction of entropy cannot straightforwardly fix. Therefore, the
physical process derivation requires that we fix these ambiguities somewhat ad
hoc. In contrast, the entanglement equilibrium approach, while being limited
to linearised equations, suffers from no such ambiguities. The physical process
derivation might be improved by employing the recently proposed dynamical
prescription for black hole entropy Hollands et al. [2024], which should be un-
ambiguous for the class of Lagrangians we consider. We intend to address this
possibility in a future work.
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3. Thermodynamics and
quantum phenomenological
gravitational dynamics
So far, we have been concerned with thermodynamics of spacetime in the semi-
classical setting. That is, we treated the spacetime itself as fully classical, while
we viewed the matter fields either as quantum (the entanglement equilibrium
approach), or even as classical (the physical process approach), invoking their
quantum properties only to introduce the Unruh effect. However, thermody-
namic methods in principle allow us to go even further, by including quantum
corrections to entropy of the local causal horizons. Then, the resulting equations
governing the gravitational dynamics contain genuine quantum corrections.

In the present chapter, we introduce a particular realisation of this program
we have proposed in Alonso-Serrano and Lǐska [2020b, 2023a,b]. The idea lies in
considering just the leading order quantum correction to entropy, which is a term
logarithmic in the horizon area A, i.e.,

Sq = A
4l2P

+ C ln A
A0

+O
(︃A0

A

)︃
, (3.1)

where C is a real number, A0 a constant with dimensions of area (presumably of
the order of l2P) and O (A0/A) stands for the subleading corrections that decrease
with the area. Remarkably, this expression for entropy in n = 4 spacetime di-
mensions arises independently in a number of distinct approaches. It is implied,
e.g. by loop quantum gravity Kaul and Majumdar [2000], Meissner [2004], string
theory Banerjee et al. [2011], Sen [2013], Karan and Punia [2023], AdS/CFT
correspondence Faulkner et al. [2013], entanglement entropy calculations Solo-
dukhin [2010, 2011], phenomenological approaches based on minimal length and
minimal area Adler et al. [2001], Medved and Vagenas [2004], Alonso-Serrano
and Lǐska [2021], quantisation of the horizon area Hod [2004], Davidson [2019],
nonlocal effective field theory Xiao and Tian [2022], and even by a model indepen-
dent analysis of statistical fluctuations Gour and Medved [2003], Medved [2005].
Thence, essentially all the candidate theories of quantum gravity incorporate the
logarithmic term in entropy as the leading order quantum correction. The only
difference between them lies in the value and sign of the coefficient C which are
theory-dependent.

The logarithmic term in entropy has further remarkable properties. First, the
coefficient C is dimensionless. This feature makes its value a universal number
once the theory in which we compute entropy is specified. For instance, in loop
quantum gravity, one has explicitly C = −3/2, whereas the leading order term in
entropy depends on the, in principle arbitrary, Barbero-Immirzi parameter Meiss-
ner [2004] (typically, the value of this parameter is fixed by requiring that one
recovers Bekenstein entropy). Similarly, while the leading order contribution to
vacuum entanglement entropy depends on the UV cut-off, the coefficient C is a
universal number independent of the cut-off and fully determined by the con-
formal anomaly Solodukhin [2011] (for conformally invariant quantum fields).
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Second, the leading order and the logarithmic terms are the only contributions
to entropy that grow with the horizon area. In other words, all the other terms
tend to 0 in the limit of lP → 0, leaving only the first two as being relevant for
relatively large horizons. This observation suggests that the logarithmic term can
significantly affect the low energy quantum gravitational dynamics, whereas the
subleading O (A0/A) contributions likely only play a role in the highly quantum
regime.

Herein, we analyse the local equilibrium conditions for causal diamonds with
entropy of the horizon obeying equation (3.1) and show that they encode mod-
ified equations governing the gravitational dynamics. The logarithmic term as
the leading order quantum correction to entropy is unique to the spacetime di-
mension n = 4. In higher dimensions, various subleading terms larger than the
logarithmic one appear, whereas the situation in the lower dimensions is rather
specific Solodukhin [2011]. As a result, a straightforward application of our ap-
proach in other dimensions fails. Hence, in the rest of the thesis, we always
work in n = 4 dimensions. In the previous chapter, we have argued that ther-
modynamics of spacetime leads to WTDiff-invariant description gravity. Since
we include the leading order quantum correction to Bekenstein entropy, the re-
sulting equations capture the low-energy quantum gravitational corrections to
Weyl transverse gravity. Given the universality of the logarithmic correction to
entropy, this procedure can be applied regardless of the final theory of quantum
gravity. For the sake of clarity, we focus here on the entanglement equilibrium ap-
proach to deriving the equations for gravitational dynamics and we consider only
conformally invariant matter fields. We have also applied the physical process
approach, obtaining equivalent results Alonso-Serrano and Lǐska [2020b]. In the
near future, we are going to provide a more refined and general physical process
derivation, applying the tools developed in Alonso-Serrano et al. [2024].

We discuss the derivation in two stages. First, in section 3.1, we focus on the
corrections to linearised gravitational equations. In this case, the result we find
corresponds to the equations of motion of WTDiff-invariant quadratic gravity.
Then, in section 3.2, we derive the nonlinear equations, while neglecting the
higher order Riemann normal coordinate corrections to the metric. We plan
to address the general analysis of the local equilibrium conditions without any
simplifying assumptions in a future work. We briefly comment on the technique
of such an analysis and its possible outcomes in conclusions.

Before going to the specifics of the derivations, let us briefly address the scale
at which we apply it. The properties of the logarithmic correction to entropy
allow us to easily determine it. We have seen that Bekenstein entropy, being of
the order O (1/l2P) yields the traceless equations corresponding to the equations
of motion of Weyl transverse gravity. Hence, we expect that the logarithmic
correction, being O (1), will introduce O (l2P) corrections to these equations. Such
terms only significantly affect the gravitational dynamics if the local curvature
length scale is not too large compared to lP. Furthermore, we have seen that, to
construct a causal diamond in a generic curved spacetime, its size parameter l
must be much smaller than the local curvature length scale. These requirements
together imply that l cannot be that much larger than lP. At the same time,
the very description of spacetime as a smooth Lorentzian manifold at length
scales comparable with lP appears to break down Mead [1964], Garay [1995],
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Hossenfelder [2013]. There should still be a sufficient range of acceptable values
of the diamond’s size parameter l satisfying these conditions and thus allowing
us to carry out the derivation. Nevertheless, going forward, we should be mindful
of this subtlety.

3.1 Linearised analysis
We begin by discussing the entanglement equilibrium conditions in the case of a
gravitational field sufficiently weak to disregard the terms of quadratic or higher
order in the curvature tensors. Under this assumption, we can only obtain the
linearised equations governing gravitational dynamics. However, it greatly sim-
plifies the derivation, allowing us to introduce its necessary ingredients without
being overwhelmed by the technical details, while already yielding interesting
results.

Our starting point is a geodesic local causal diamond (see subsection 2.1.1)
in entanglement equilibrium. We assume that all the matter fields present in the
spacetime are conformally invariant. In that case, we have seen in subsection 2.2.2
that the equilibrium state of the diamond corresponds to a maximally symmetric
spacetime described by the local cosmological constant λ = R̃/4. However, we
have also seen that, for non-conformal matter fields, λ is a more complicated
function of the position of the causal diamond and its length parameter, i.e.,
λ = λ (P, l). We do not know a priori whether the presence of low energy
quantum corrections to horizon entropy similarly makes λ a function of P and
l. However, we may assume that, since these corrections are suppressed by l2p,
the local cosmological constant will be equal to R̃/4 up to O

(︂
l2p
)︂

corrections.
Therefore, we adapt the following ansatz for λ

λ (P, l) = 1
4R̃ + l2Pλc (P, l) . (3.2)

Now we introduce a small simultaneous perturbation of the spacetime geom-
etry and of the conformal matter fields. Since we perturb an equilibrium state,
the corresponding perturbation of the total von Neumann entropy must vanish,
δSq + δSvN = 0, provided that there is no irreversible entropy production. In
section 2.3.2, we have seen that this condition holds for the perturbations that
do not affect the local cosmological constant λ and the (WTDiff-invariant) gen-
eralised volume W̃ of the geodesic ball Σ0, i.e., δλ = δW̃ = 0. The expression
for generalised volume W̃ follows from the gravitational Lagrangian (see equa-
tion (1.189)). As we make no a priori assumptions about the Lagrangian, we
cannot directly determine W̃ . Nevertheless, we know that W̃ reduces to the
geometric volume Ṽ of Σ0 (defined with respect to the auxiliary metric g̃µν) in
Weyl transverse gravity. Since the logarithmic term in entropy modifies the Weyl
transverse gravity only at the order O (l2P), we may impose the following ansatz
for W̃

W̃ = Ṽ + l2PW̃q (P, l, ñµ) , (3.3)
where W̃q (P, l, ñµ), the leading order quantum correction to the generalised vol-
ume, in general depends on the local direction of time ñµ.

Upon imposing the constraints δλ = δW̃ = 0, the equilibrium condition
δSq + δSvN = 0 applies, and we can proceed to study it. The perturbation of
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the matter von Neumann entropy δSvN for conformal fields obeys the WTDiff-
invariant form of equation (2.10), i.e.,

SvN = 8π2l4

15ℏ
(︂√

−g/ω
)︂(k−1)/4

δ⟨Tµν⟩ñµñν +O
(︂
l6
)︂
. (3.4)

To compute the perturbation of the entropy associated with the horizon δSq, we
start by perturbing equation (3.1)

δSq = δÃ
4l2P

+ C
(︄

ln Ãλ + δÃ
A0

− ln Ãλ

A0

)︄
, (3.5)

where Ãλ denotes the WTDiff-invariant area of the boundary B of Σ0 in a max-
imally symmetric spacetime described by the local cosmological constant λ, and
δÃ = Ã − Ãλ is the area perturbation. Since the Riemann normal coordinate
expansion has the leading order corrections to the metric proportional to the aux-
iliary Riemann tensor, δÃ is clearly linear in the spacetime curvature. Thence,
since we systematically neglect the terms quadratic in curvature, we can disregard
the O

(︂
δÃ2)︂ contributions to δSq, obtaining

δSq = δÃ
4l2P

+ C δÃ
Aλ

+O
(︂
δÃ2)︂

. (3.6)

To evaluate the area perturbation, we may again use the Riemann normal coor-
dinate expansion of the auxiliary metric

g̃µν (x) =η̃µν − 1
3x

αxβ η̃µλδR̃
λ

ανβ − 1
6x

αxβxλη̃µρ∇̃λδR̃
ρ

ανβ

xαxβxλxρ
(︃ 2

45 η̃στδR̃
σ

αµβδR̃
τ

λνρ − 1
20 η̃µσ∇̃α∇̃βδR̃

σ

λνρ

)︃
+O

(︂
x5
)︂
.

(3.7)

The term quadratic in the Riemann tensor can be neglected. Then, we expand
the area element on B using the Riemann normal coordinates, integrate, and
subtract the equilibrium area Ãλ. In total, this procedure gives us the following
expression for δÃ

δA = −4πl4
18 δR̄

ij

ij − 4πl6
600

(︂
δijδkl + δikδjl + δilδjk

)︂
∇i∇jδR̄

m

kml + 8πlδl, (3.8)

where
δR̄µανβ = δR̃µανβ + 1

3λ
(︂
η̃αν η̃βµ − η̃αβ η̃µν

)︂
, (3.9)

represents the difference between the Riemann tensor of the maximally symmetric
background and the Riemann tensor of the perturbed spacetime. Following our
experience in the semiclassical case (see subsection 2.2.2), we also included a
perturbation δl of the diamond’s size parameter in the area perturbation (3.8).

To fix δl, we evaluate the condition δW̃ = 0. Applying the same strategy as
for the area perturbation, we obtain

δW̃ =δṼ + l2PδW̃q = −4πl5
90 δR̄

ij

ij − 4πl7
4200

(︂
δijδkl + δikδjl + δilδjk

)︂
4∇i∇jδR̄

m

kml + l2PδW̃q + 4πl2δl. (3.10)
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Imposing δW̃ = 0 implies for δl

δl = l3

90δR̄
ij

ij + l5

4200
(︂
δijδkl + δikδjl + δilδjk

)︂
∇i∇jδR̄

m

kml − l2PδW̃q. (3.11)

Setting this value of δl in the area perturbation (3.8) and performing some
straightforward simplifications, we find

δÃ = −4πl4
30 δR̄

ij

ij−
4πl6
840

(︂
δijδkl + δikδjl + δilδjk

)︂
∇i∇jδR̄

m

kml−
2l2P
l
δW̃q. (3.12)

The local cosmological constant λ (3.2) is a universal constant in the semiclassical
case. Thence, its derivatives are O (l2P) and it holds

l2P∇i∇jδR̄
m

kml = l2P∇i∇jδR̄
m

kml +O
(︂
l4P
)︂
, (3.13)

where the O (l4P) corrections can be discarded. We may further simplify the area
variation (3.8) by replacing the tensors with spatial indices in a covariant way,
using contractions with the unit, WTDiff-invariant, timelike vector field ñµ. We
provided the details of the procedure in Alonso-Serrano and Lǐska [2023a]. The
final form of the area perturbation (3.8) then reads

δÃ =4πl4
15

⎧⎨⎩δ
(︃
R̃µν − 1

4R̃g̃µν
)︃
ñµñν − l2Pλc + l2

56

[︄
4∇̃µ∇̃νδR̃ρσñ

µñνñρñσ

+
(︂
2g̃λσ∇̃ρ∇̃σδR̃

ρ

µλν + 4g̃λρ∇̃µ∇̃ρδR̃λν + 2g̃λρ∇̃λ∇̃ρδR̃µν + ∇̃µ∇̃νδR̃
)︂
ñµñν

+ 2g̃λρg̃στ∇̃ρ∇̃σδR̃λτ + g̃λρ∇̃λ∇̃ρδR̃

]︄⎫⎬⎭− 2l2P
l
δW̃q. (3.14)

At this point, we have all the ingredients necessary to evaluate the equilibrium
condition δSq +δSvN = 0 valid for fixed generalised volume and local cosmological
constant. We find that

4πl4
15

(︃
δR̃µν − 1

4R̃g̃µν + l2Pλcg̃µν

)︃
ñµñν + Cl2l2P

15

⎧⎨⎩
(︃
δR̃µν − 1

4δR̃g̃µν
)︃
ñµñν

+ l2

56

[︄ (︂
2g̃λσ∇̃ρ∇̃σδR̃

ρ

µλν + 4g̃λρ∇̃µ∇̃ρδR̃λν + 2g̃λρ∇̃λ∇̃ρδR̃µν + ∇̃µ∇̃νδR̃
)︂
ñµñν

+ 4∇̃µ∇̃νδR̃ρσñ
µñνñρñσ + 2g̃λρg̃στ∇̃ρ∇̃σδR̃λτ + g̃λρ∇̃λ∇̃ρδR̃

]︄⎫⎬⎭− 2l2P
l
δW̃q

+O
(︂
l6
)︂

= 4πl4
15 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩ñµñν . (3.15)

This condition depends on an arbitrary length scale l and on a unit, timelike,
future-directed vector ñµ. The presence of either of them in the equations gov-
erning the gravitational dynamics would violate the equivalence principle and/or
the locality of the dynamics. Fortunately, these terms can be consistently re-
moved from the final equations. We now introduce a strategy for their removal,
which can also be applied in the nonlinear case we discuss in the next section.

First, we show the independence of the equilibrium condition (3.15) of l by the
following simple argument. We construct a sequence of M0 + 1 causal diamonds
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whose size parameters obey lm = l + mϵl, with ϵ being a small dimensionless
parameter and m ∈ [1,M0] a natural number. We pick M0 so that l (1 +M0ϵ) l is
much smaller than the local curvature length scale. Then, for every size parameter
lm we can construct a geodesic local causal diamond centred in the same point
P , with the local direction of time given by the same vector ñµ. For each such
diamond, we can derive a version of equation (3.15) with l replaced by lm, but
otherwise identical, as all the tensors are evaluated at P . Then, we obtain a set
of conditions ∞∑︂

p=1
(1 +mϵ)2p l2pE(p) = 0, (3.16)

where, for simplicity of notation, we write equation (3.15) schematically as
∞∑︂
p=1

l2pE(p) = 0, (3.17)

with all the E(p)’s being the same for every diamond we construct (as we approx-
imate the tensors be their value in the origin P ). We require that equation (3.16)
is satisfied for any m ∈ [1,M0]. Then, we must have E(p) = 0 for any natural
number p1. The important information is contained in the condition E(2) = 0,
which reads(︃

δR̃µν − 1
4R̃g̃µν + l2Pλcg̃µν

)︃
ñµñν + Cl2P

56

[︄
4∇̃µ∇̃νδR̃ρσñ

µñνñρñσ + g̃λρ∇̃λ∇̃ρδR̃

+
(︂
2g̃λσ∇̃ρ∇̃σδR̃

ρ

µλν + 4g̃λρ∇̃µ∇̃ρδR̃λν + 2g̃λρ∇̃λ∇̃ρδR̃µν + ∇̃µ∇̃νδR̃
)︂
ñµñν

+ 2g̃λρg̃στ∇̃ρ∇̃σδR̃λτ

]︄⎫⎬⎭− 30l2P
4πl5 δW̃

(5)
q = 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩ñµñν ,

(3.18)

where l2PδW̃
(5)
q denotes the part of the generalised volume perturbation propor-

tional to l5.
At this point, we have a condition independent of l, but still including an

arbitrary unit, timelike, future-directed vector ñµ. If we can rewrite the equation
in the form fµνñ

µñν = 0 where fµν is any tensor independent of ñµ, it follows
that fµν = 0 (see appendix A.4). Most of the terms in equation (3.18) have this
form (or can be easily rewritten using that g̃µνñµñν = −1), except for the one
proportional to ∇̃µ∇̃νδR̃ρσñ

µñνñρñσ. We also still have the remaining unspecified
piece of the generalised volume perturbation δW̃(5)

q that in principle depends on
ñµ. If this piece cancels out the term containing four contractions with ñµ, we get
the desired equation of the form fµνñ

µñν = 0. Generically, the generalised volume
takes the form W̃ = Dµνρσñ

µñσh̃
νρ Bueno et al. [2017], Alonso-Serrano et al.

[2022], Here, Dµνρσ denotes some curvature-dependent tensor and h̃νρ = g̃νρ+ñνñρ
the auxiliary spatial 3-metric on Σ0. Choosing in particular

δW̃(5)
q = −Cπl5

105 ∇(µ∇νδR̃ρσ)ñ
µñσh̃

νρ
, (3.19)

1The terms suppressed by sufficiently high power of l can be safely neglected, so we in fact
only need to set to zero finitely many E(p)’s.
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does indeed eliminate the four contraction term. The generalised volume sim-
ilarly eliminates problematic four contractions terms in the entanglement equi-
librium derivation using Wald entropy (see equations (2.52) and (2.54)). There-
fore, it is reasonable to expect that the same thing happens in our low-energy
quantum gravitational case. Of course, lacking an explicit expression for the
generalised volume, we cannot say with certainty that the term (3.19) is the
only relevant contribution to δW̃(5)

q . However, its generic form Dµνρσñ
µñσh̃

νρ is
rather restrictive due to containing four contractions with ñµ. The only other al-
lowed contributions are of the form g̃νρh̃

νρ
Dµσñ

µñσ or g̃µσñµñσDνρh̃
νρ, where Dµσ

must (for dimensional reasons) contain a second derivative of the auxiliary Rie-
mann tensor. The options read ∇̃µ∇̃σδR̃, g̃µσg̃αβ∇̃α∇̃βδR̃, g̃µσg̃αγ g̃βλ∇̃α∇̃βδR̃γλ,
g̃αβ∇̃α∇̃βδR̃µσ, and g̃αβ∇̃α∇̃µδR̃βσ. All these terms are already present in the
equilibrium condition (3.18). The generalised volume contributions can therefore
affect the numerical coefficient in front of them, but not the qualitative form of
the condition, in which we are interested.

To sum up, we now have the equilibrium condition (3.18) which takes the
form fµνñ

µñν = 0. Removing contractions with an arbitrary timelike vector ñµ,
we find

δR̃µν − 1
4R̃g̃µν + l2Pλcg̃µν + Cl2P

56

[︄ (︂
−2g̃λρg̃στ∇̃ρ∇̃σδR̃λτ − g̃λρ∇̃λ∇̃ρδR̃

)︂
g̃µν

+ 2g̃λσ∇̃ρ∇̃σδR̃
ρ

µλν + 4
3 g̃

λρ∇̃(µ|∇̃ρδR̃λ|ν) + 4
3 g̃

λρ∇̃λ∇̃ρδR̃µν + 1
3∇̃µ∇̃νδR̃

]︄⎫⎬⎭
= 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩. (3.20)

We may further simplify the equations using the definition of the auxiliary Weyl
tensor and the contracted Bianchi identities. We aim to rewrite the O (l2P) part of
the equations in terms of the auxiliary Weyl tensor, the auxiliary scalar curvature
and their derivatives, in order to compare it with the standard form of the equa-
tions of motion of the quadratic gravity. After some lengthy but straightforward
manipulations, we arrive at

δR̃µν − 1
4R̃g̃µν + l2Pλcg̃µν + Cl2P

56π

(︄
20
3 g̃

λσ∇̃ρ∇̃σδC̃
ρ

µλν + 10
9 ∇̃µ∇̃νδR̃

− 13
9 g̃µν g̃

ρσ∇̃ρ∇̃σδR̃

)︄
= 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩. (3.21)

Finally, we determine the quantum correction to the local cosmological constant
λc by taking the trace of the equations, obtaining (the energy-momentum tensor
for conformal fields is traceless)

λc = C
48π g̃

ρσ∇̃ρ∇̃σδR̃. (3.22)

Plugging the expression for λc back into equation (3.21), we finally arrive at

δR̃µν − 1
4R̃g̃µν + 5Cl2P

42π

(︄
g̃λσ∇̃ρ∇̃σδC̃

ρ

µλν + 1
6∇̃µ∇̃νδR̃

− 1
24 g̃µν g̃

ρσ∇̃ρ∇̃σδR̃

)︄
= 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩. (3.23)
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These equations have the form of the linearised, semiclassical equations of mo-
tion of WTDiff-invariant quadratic gravity coupled to conformal quantum mat-
ter fields Salvio [2018], Donoghue and Menezes [2021]. As expected, the higher
derivative corrections are suppressed by a factor Cl2P, where we recall that C de-
notes the proportionality constant of the logarithmic term in entropy (3.1). We
can actually write the effective WTDiff-invariant action whose linearised equa-
tions of motion are equations (3.23)

IQG = 1
16πG

∫︂ ⎡⎣R̃ + 5Cl2P
168π

⎛⎝−R̃
2

3 + g̃αλg̃
βρg̃γσg̃δτ C̃

α

βγδC̃
λ

ρστ

⎞⎠⎤⎦ωd4x+ Iψ,

(3.24)
where Iψ denotes the WTDiff-invariant matter action (1.21) for conformal fields.
In the quadratic gravity literature, it has been argued that only the sign C < 0
manages to avoid the tachyonic instabilities of the theory Salvio [2018], Donoghue
and Menezes [2021] (although to what extent such ambiguities matter to an ef-
fective theory is a subtle issue). The negative value of C is consistent with the
calculations of entanglement entropy of a flat spacetime sphere, that indeed yields
negative logarithmic corrections Mann and Solodukhin [1998], Solodukhin [2011].

The linearised equations we found ought to be primarily understood as a proof
of concept. We had no a priori guarantee that the local equilibrium conditions
with the logarithmic correction encode meaningful gravitational dynamics. Our
derivation shows that, at the linearised level, they lead to the linearised equations
of motion of quadratic gravity, a reasonable result consistent with an effective
field theory approach to gravity. In other words, we have shown that the local
equilibrium condition allow us to obtain nontrivial insights into gravitational
dynamics even with the logarithmic term present. Consequently, it is of interest
to also check the nonlinear case, which we report on, in a simplified setting, in
the next section.

At the same time, our findings are only qualitative. Their biggest limitation
is that we lack an explicit expression for the generalised volume of the causal
diamond. Moreover, the quantum expectation value of the energy-momentum
tensor is only defined up to higher order curvature terms that have the same form
as the quadratic gravity corrections we derived. Therefore, these corrections in
principle also depend on the choice of ⟨Tµν⟩. Lastly, our approach does not easily
generalise beyond the conformal matter fields due to the interplay between the
local value of the cosmological constant and the von Neumann entropy of the
non-conformal fields (see equation (2.36)). It should be possible to address all
these shortcomings in a physical process approach that would generalise the one
we introduced in subsection 2.2.1. We are going to develop this derivation in a
future work.

3.2 Nonlinear analysis
Upon introducing the necessary formalism and deriving the linearised equations
governing the gravitational dynamics, the natural next step lies in studying the
full, nonlinear effect of the logarithmic correction to entropy. However, a number
of conceptual issues arises. First and foremost, we allow for a perturbation in
the size parameter of the causal diamond, determined by the condition that the
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perturbation of the generalised volume of the causal diamond vanishes. It then
follows that we should also consider deformations of the shape of the geodesic
ball Σ0. These shape deformations do not affect the linearised analysis, but
become important in the nonlinear case Jacobson et al. [2017]. However, we have
no clear guidance for fixing the shape deformations in general. Moreover, the
undetermined generalised volume becomes an increasingly significant problem.

To avoid some of the conceptual issues, one can turn to certain simplified,
but physically interesting situations. First, the vacuum case has been studied
in the literature. It has been found that the results are indeed sensitive to the
shape deformations of Σ0. The upshot is that, either for a specific choice of
these deformations Jacobson et al. [2017] or for generic light-cone cut causal di-
amonds Wang [2019], the area perturbation is proportional to the Bell-Robinson
tensor (a certain combination of terms quadratic in Weyl tensor) contracted with
ñµ in all four indices. We are going to further explore this setup using our re-
cently developed physical process approach for light-cone cut causal diamonds
in an upcoming work (eventually, the same method should allow us to perform
the fully general derivation). Second, we have performed a simplified analysis in
which we disregard contributions from higher order terms in the Riemann normal
coordinates expansion of the metric Alonso-Serrano and Lǐska [2020b]. Formally,
this simplification can be understood as choosing the shape deformations in such
a way that they cancel out these higher order contributions. Physically, these
extra contributions all depend on the Weyl tensor and on the derivatives of the
scalar curvature. Hence, they play no role for Weyl flat spacetime filled with con-
formal matter fields, such as for a homogeneous, isotropic, radiation-dominated
universe. In such cases, the simplified equations we obtain already capture the
relevant features of the dynamics. Moreover, they may serve to build qualitative
intuition for the quantum phenomenological gravitational dynamics even in more
complicated situations, such as the Oppenheimer-Snyder gravitational collapse
model or homogeneous, anisotropic spacetimes. In the following, we introduce
this simplified derivation using the entanglement equilibrium approach we have
applied in the linearised setting. While we largely follow our original deriva-
tion Alonso-Serrano and Lǐska [2020b], we modify it to reflect the improvements
made in our later works on the subject Alonso-Serrano and Lǐska [2023a]. In
particular, we consider a perturbation at fixed generalised volume W̃ rather than
at fixed geometric WTDiff-invariant volume of the geodesic ball Σ0.

We start with a geodesic local causal diamond in an equilibrium state. For
simplicity, we again assume that only conformal matter fields are present, but the
derivation can be generalised to non-conformal ones Alonso-Serrano and Lǐska
[2020b]. Then, the local cosmological constant corresponding to the equilibrium
state obeys equation (3.2), i.e.,

λ (P, l) = 1
4R̃ + l2Pλc (P, l) .

A small perturbation of the geometry and the matter fields with δλ = δW̃ = 0
then obeys the equilibrium condition δSq + δSvN = 0. The perturbation of the
matter von Neumann entropy δSvN is given by equation (3.4). To evaluate the
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perturbation of the entropy of the horizon, δSq, we perturb equation (3.1), ob-
taining

δSq =δÃ
4l2P

+ C
(︄

ln Ãλ + δÃ
A0

− ln Ãλ

A0

)︄

=δÃ
4l2P

+ C δÃ
Ãλ

− C

(︂
δÃ
)︂2

2
(︂
Ãλ

)︂2 +O

⎛⎜⎝
(︂
δÃ
)︂3

(︂
Ãλ

)︂3

⎞⎟⎠ , (3.25)

where Ãλ denotes the equilibrium area of the horizon spatial cross-section B at
t = 0 and δÃ its perturbation. We compute δÃ via the Riemann normal coordi-
nate expansion of the metric (3.7), where we disregard all theO (x4) contributions.
Then, we find

δÃ = −4πl4
9

(︂
δS̃µν + l2Pλcg̃µν

)︂
ñµñν + 8πlδl +O

(︂
l6
)︂
, (3.26)

where we introduced the notation δS̃µν = δR̃µν − δR̃g̃µν/4 for the traceless part
of the Ricci tensor to simplify the upcoming expressions. As in the linearised
case, we determine δl by demanding that the generalised volume perturbation

δW̃ = − 4πl5
45

(︃
δS̃µν − 1

4δR̃g̃µν + l2Pλcg̃µν

)︃
ñµñν + l2PδW̃q

+ 4πl2δl +O
(︂
l7
)︂
, (3.27)

vanishes. The area perturbation at fixed generalised volume, δW̃ = 0, reads

δÃ = −4πl4
15

(︃
δR̃µν − 1

4δR̃g̃µν + l2Pλcg̃µν

)︃
ñµñν − 2l2P

l
δW̃q +O

(︂
l6
)︂
.

Now, we plug this expression for the area perturbation into equation (3.25),
computing the change in entropy of the horizon. At this point, we have everything
we need to expand the equilibrium condition δSq + δSvN = 0. The result contains
several terms proportional to various powers of the diamond’s size parameter l.
Following the same argument as in the linearised case (see equation (3.16) and
the accompanying discussion), we find that the contribution proportional to l4

must vanish separately, i.e.,
(︂
δS̃µν + l2Pλcg̃µν

)︂
ñµñν + 30l2P

4πl5 δW̃
(5)
q + Cl2P

36πδR̃δS̃µνñ
µñν

+ Cl2P
30πδS̃µνδS̃ρσñ

µñνñρñσ = 8πG
(︂√

−g/ω
)︂(k−1)/4

δ⟨Tµν⟩ñµñν . (3.28)

As in the linearised case, we need to remove the term containing four contractions
with ñµ. Since, the generalised volume generically reads Dµνρσñ

µñσh̃
νρ, where

Dµνρσ is some WTDiff-invariant tensor, we can use it to remove the problematic
term Cl2PδS̃µνδS̃ρσñµñνñρñσ/30π. Moreover, it is easy to realise that, perturba-
tively, the contribution Cl2PδR̃δS̃µνñµñν/36π depends on the vacuum energy. This
behaviour breaks one of the most important features of Weyl transverse gravity,
which we know to be the correct semiclassical theory implied by thermodynamics
of spacetime. Fortunately, this term can also be removed by choosing a suitable
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prescription for the generalised volume perturbation. In total, we need to set it
to

δW̃(5)
q = −Cl5

45

(︃1
5δS̃(µνδS̃ρσ) + 1

18δR̃g̃µνδS̃µν
)︃
ñµñν h̃

ρσ
. (3.29)

Then, equation (3.28) has the form fµνñ
µñν = 0, valid for an arbitrary, unit,

timelike, future-directed vector ñµ. Therefore, it must hold fµν = 0, i.e.,

δS̃µν + l2Pλcg̃µν − Cl2P
30π g̃

ρσδS̃µρδS̃νσ = 8πG
(︂√

−g/ω
)︂(k−1)/4

δ⟨Tµν⟩. (3.30)

Lastly, we determine the quantum correction to the local cosmological constant
λc by taking a trace of the equations

λc = C
120π

(︃
g̃λτ g̃ρσδR̃λρδR̃τσ − 1

4δR̃
2
)︃
. (3.31)

The final traceless equations governing the gravitational dynamics read

δS̃µν − Cl2P
30π

(︃
g̃ρσδS̃µρδS̃νσ − 1

4 g̃
λτ g̃ρσδR̃λρδR̃τσg̃µν + 1

16δR̃
2
g̃µν

)︃
= 8πG

(︂√
−g/ω

)︂(k−1)/4
δ⟨Tµν⟩. (3.32)

The derivation works along the same lines even for matter fields that are not
conformally invariant Alonso-Serrano and Lǐska [2020b], although it becomes
somewhat more involved. In this way, we obtain a more general form of the
equations valid for any matter fields. Moreover, to simplify the notation, we
do not write the right hand side as a quantum expectation value (although it
should be implicitly understood in this way), we remove the perturbation symbol
δ in front of the curvature tensors (as the equations apply to the regime of very
high curvatures), and introduce a new numerical coefficient D = C/30π. From
now on, we thus work with the following form of the equations for quantum
phenomenological gravitational dynamics

S̃µν −Dl2P

(︃
g̃ρσS̃µρS̃νσ − 1

4 g̃
λτ g̃ρσR̃λρR̃τσg̃µν + 1

16R̃
2
g̃µν

)︃
= 8πG

(︂√
−g/ω

)︂(k−1)/4
(︃
Tµν − 1

4Tgµν
)︃
. (3.33)

We briefly address the interpretation of these equation. The quantum correc-
tion terms are quadratic in the spacetime curvature, they contain at most second
derivatives of the metric and are suppressed by a factor Dl2P. Since D = C/30π,
where C denotes the proportionality factor in the logarithmic correction to en-
tropy (3.1) expected to be of the order of unity, the suppression factor Dl2P is
rather small. Hence, the correction terms likely becomes important only in the
regimes of very strong gravity. As expected, in the limit D → 0 (or, equivalently,
lP → 0) the equations reduce to the semiclassical equations of motion of Weyl
transverse gravity. Notably, since the corrections are determined by the Ricci
tensor, the equations imply no perturbative corrections to vacuum gravitational
dynamics. Vacuum solutions distinct from those of Weyl transverse gravity exist,
but have no meaningful semiclassical limit.
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The equations do not imply a divergenceless energy-momentum tensor, nor
even the weaker condition (1.25) valid in WTDiff-invariant gravity. Instead, it
holds

∇̃λ

(︃
8πG

(︂√
−g/ω

)︂(k+1)/4
g̃λνTµν

)︃
= −

(︃
2πG

(︂√
−g/ω

)︂(k−1)/4
T
)︃

+ 1
4∇̃µR̃

−Dl2P

[︃
∇̃λ

(︂
g̃λν g̃ρσS̃µρS̃νσ

)︂
+ ∇̃µ

(︃
−1

4 g̃
λτ g̃ρσR̃λρR̃τσ + 1

16R̃
2
)︃]︃
. (3.34)

Therefore, equations (3.33) cannot correspond to a local, WTDiff-invariant ac-
tion. The question of how to interpret them remains open. It is possible that
the quantum corrections we introduce do break the WTDiff invariance. Alter-
natively, we may notice that the logarithmic term in entropy is non-local, in the
sense that we cannot write a local expression for the entropy density (in contrast
to Wald entropy). It has even been proposed that entropy with the logarith-
mic term corresponds to a certain non-local gravitational theory Xiao and Tian
[2022]. The non-local nature of the logarithmic term may affect the equations
we derived, implying that they cannot be obtained from a local action. Another
possible interpretation is offered by the similarity of equations (3.33) with the
so called 4D Einstein-Gauss-Bonnet gravity Glavan and Lin [2020]. While this
theory apparently suffers from a number of inconsistencies Gurses et al. [2020], Ai
[2020], Shu [2020], Arrechea et al. [2021], a healthy scalar-tensor version of it has
been proposed Lu and Pang [2020], Hennigar et al. [2020]. Then, it is possible
that a correct interpretation of our equations (3.33) also requires an identification
of an additional gravitational degree of freedom, e.g. a scalar field.

The key advantage of our program of deriving the quantum phenomenologi-
cal gravitational dynamics from thermodynamics of causal diamonds lies in the
universality of the logarithmic correction to entropy. As we have pointed out at
the beginning of this chapter, the logarithmic term represents a nearly univer-
sal prediction of any theory of quantum gravity. Moreover, phenomenological,
model-independent approaches such as the generalised uncertainty principle also
support it. Therefore, the implications of the logarithmic term for low energy
quantum gravitational dynamics are in principle relevant regardless of the final
theory of quantum gravity, or of whether gravity is ultimately emergent or can
be canonically quantised. While equations (3.34) represent only the first step of
this program, they already lead to interesting physical predictions, as we briefly
discuss in the next chapter.
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4. Physical implications of the
quantum phenomenological
gravitational dynamics
In this chapter, following Alonso-Serrano et al. [2023b], we study the physics
implied by the quantum phenomenological gravitational dynamics (specifically,
by equations (3.33)). We focus on the case of homogeneous, isotropic cosmolog-
ical models. This case has the advantage of being simultaneously rather simple
and physically important, as it describes the dynamics of the early universe. A
number of methods for studying the quantum gravitational effects in the early
universe exist. A notable approach of this kind is loop quantum cosmology Bo-
jowald [2001], Ashtekar et al. [2007, 2006], Martin-Benito et al. [2009, 2010],
Wilson-Ewing [2010], Agullo and Singh [2016], Bojowald [2020]. It relies on loop
quantum gravity quantisation techniques applied to a symmetry reduced sector
of the theory (minisuperspace). The most significant prediction of loop quan-
tum cosmology is the replacement of the initial Big Bang singularity by a regular
bounce, at which the universe stops contracting and starts expanding again.

Compared to loop quantum cosmology, our approach lacks a direct connection
with a full candidate theory of quantum gravity and describes the spacetime as
a smooth, differentiable manifold rather than considering its quantum gravita-
tional nature. Nevertheless, the equations are not derived in a symmetry reduced
setting, allowing one more flexibility in applying them to various spacetimes.
Furthermore, the generality of the logarithmic correction to entropy allows us to
employ our approach regardless of whether the correct description of quantum
gravity is provided by loop quantum gravity or some other theory.

As we stressed in the previous chapter, equations (3.33) do not capture all
the features of the quantum phenomenological gravitational dynamics implied
by the logarithmic correction to entropy. That being said, they contain the
term quadratic in the traceless Ricci tensor, which does not correspond to a
local, WTDiff-invariant action. It appears very likely that the full equations
retain this term. Therefore, it is of interest to study the physical implications
of equations (3.33) as they already mark a departure from the standard effective
field theory approaches to gravity. Of course, the results we obtain should only
be understood as qualitative, capturing the key implications of the quantum
phenomenological gravitational dynamics, but not providing precise quantitative
predictions.

The general ansatz for the auxiliary metric g̃µν of a homogeneous, isotropic
cosmology reads

ds2 = −dt2 + a2(t)
(︄

dr2

1 − kr2 + r2
(︂
dθ2 + sin2 θdϕ2

)︂)︄
, (4.1)

where a (t) denotes the scale factor and k the spatial curvature of the universe.
We consider a universe filled with a perfect fluid of density ρ and pressure p.
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Plugging this ansatz into equations (3.33) yields one non-trivial condition

Ḣ − k

a2 −Dl2P

(︄
Ḣ − k

a2

)︄2

= −4πG (ρ+ p) , (4.2)

where we introduced the Hubble parameter H = ȧ/a and the overdot denotes
a time derivative. Equation (4.2) represents a direct generalisation of the clas-
sical Raychaudhuri equation for a cosmological spacetime. As it is characteris-
tic for WTDiff-invariant gravity, we only get one independent equation, while
a Diff-invariant theory would yield two of them. The second equation comes
from the divergence of the energy-momentum tensor. WTDiff-invariant gravity
does in principle allow non-vanishing divergence of the energy-momentum tensor
and the modified equations (3.33) are even more permissive in this regard, see
equation (3.34) and the accompanying discussion. However, we presently have
no physical motivation to introduce a non-vanishing divergence of the energy-
momentum tensor of the perfect fluid we consider. Therefore, for the purposes
of this chapter, we assume that its energy-momentum tensor is divergenceless,
implying

ρ̇+ 3H (ρ+ p) = 0. (4.3)

4.1 Vacuum solutions
To get some intuition for the behaviour of the solutions, we first analyse the
vacuum, spatially flat case described by the equation

Ḣ −Dl2PḢ
2 = 0. (4.4)

This quadratic equation for Ḣ has two roots

Ḣ1 = 0, (4.5)

Ḣ2 = 1
Dl2P

. (4.6)

The general solutions for the scale factor read

a1 (t) = exp
[︂
±

√
L (t+ t0)

]︂
, (4.7)

a2 (t) = exp
[︄
± 1

2Dl2P
(t+ t0)2 − Dl2P

2 L

]︄
, (4.8)

where t0 and L are arbitrary integration constants. The first solution a1 (t) simply
corresponds to a maximally symmetric spacetime with a cosmological constant
|Λ| = 3L. As expected in WTDiff-invariant gravity, Λ arises as an arbitrary
integration constant defined only on shell. This branch of the solutions contains
no quantum corrections. The second solution a2 (t) does not have a well defined
classical limit D → 0. While such non-perturbative solutions can be of interest,
they become relevant only in a regime in which equation (4.2) likely no longer
applies, as further O (l4P) corrections to it become relevant.

The lesson we can take from this simple example is that equation (4.2) gener-
ically has two solutions, but only one of them has a well defined classical limit.
In the following, we focus only on these solutions capturing quantum corrections
to the standard cosmology that become relevant only in the early times.
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4.2 Perturbative cosmological solutions
In this section, we look for perturbative solutions of the modified Raychaudhuri
equation (4.2). The idea is to treat the correction term suppressed by Dl2P as
a small correction to the classical dynamics. Then, we can expand the Hubble
parameter H around its classical value H(0)

H = H(0) +H(1)H
2
(0)l

2
P +O

(︂
H4

(0)l
4
P

)︂
. (4.9)

The O (l4P) terms were systematically discarded already in our derivation of the
quantum phenomenological gravitational equations (3.33). Therefore, it is con-
sistent to discard them here as well. However, we keep the leading order quantum
correction H(1). Within this perturbative approach, the correction term in equa-
tion (4.2) can be approximated using the standard Raychaudhuri equation, i.e.,

Dl2PḢ
2 = Dl2P

c2 Ḣ
2
(0) +O

(︂
l4P
)︂
. (4.10)

The resulting perturbative modified Raychaudhuri equation reads

Ḣ = −4πG (ρ+ p) + 16π2G2Dl2P (ρ+ p)2 + k

a2 . (4.11)

We apply it to a universe filled with a perfect fluid consisting of two components,
dust and radiation. This choice represents the usual description of the standard
matter content (without dark matter and dark energy) of the universe. The
corresponding equations of state read p = ωρ, where we have ωm = 0 for dust
and ωr = 1/3 for radiation. For a general multi-component perfect fluid with the
equations of state pi = ωiρi, the modified Raychaudhuri equation (4.11) becomes

Ḣ = − 4πG
∑︂
i

ρi (ωi + 1) + k

a2

+ 16π2G2Dl2P

⎛⎝∑︂
i

(ωi + 1)2 ρ2
i + 2

∑︂
i>j

(ωiωj + ωi + ωj + 1) ρiρj

⎞⎠ , (4.12)

where, in our two-component case, the indices i, j take values 1 for dust and 2 for
radiation. We further assume that matter and radiation interact only negligibly
and each component thus obeys the local energy conservation condition (4.3)
separately.

Combining the perturbative modified Raychaudhuri equation (4.12) with the
conservation condition (4.3) allows us to obtain the perturbative Friedmann equa-
tion. We simply multiply equation (4.12) by 2H and integrate, obtaining

H2 =
∑︂
i

8πG
3 ρi − k

a2 −
∑︂
i

16π2G2

3 Dl2P (ωi + 1) ρ2
i

− 32π2G2

3 Dl2P
∑︂
i>j

(ωiωj + ωi + ωj + 1)
ωi + ωj + 2 ρiρj + Λ̃, (4.13)

where the arbitrary integration constant Λ̃ corresponds to the cosmological con-
stant, Λ̃ = Λ/3. Note that, as we discussed in chapter 1, the appearance of the
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cosmological constant as an arbitrary integration constant is characteristic for
WTDiff-invariant gravitational theories.

For our case of the two component fluid, we have the following perturbative
modified Friedmann equation

H2 = 8πG
3 (ρm + ρr) − k

a2 − 16π2G2Dl2P
3

(︃4
3ρ

2
r + ρ2

m + 7
5ρmρr

)︃
+ Λ

3 , (4.14)

where ρm = ρm,0/a
3 and ρr = ρr,0/a

4, with ρm,0, ρr,0 being constants with dimen-
sions of energy density. Taking the limit D → 0 of course recovers the classical
Friedmann equation.

To further study equation (4.14), it is convenient to introduce new dimen-
sionless variables. We define Ωi = (8πG/3H2

0 ) ρi,0 for dust (i = m) and radiation
(i = r), Ωk = −k/ (a2

0H
2
0 ) for the spatial curvature and ΩΛ = Λ/ (3H2

0 ) for the
cosmological constant. The constants a0, H0, and ρi,0 denote some reference val-
ues of a, H, and ρi at a given time, often taken to correspond to the present day
universe. In terms of these variables, the modified Friedmann equation (4.14)
reads

Ωr + Ωm + Ωk + ΩΛ − Dl2P
12 H2

0

(︃4
3Ω2

r + Ω2
m + 7

5ΩrΩm

)︃
= 1. (4.15)

This equation conveniently showcases the quantum corrections to the relation be-
tween the dimensionless quantities Ωr, Ωm, Ωk and ΩΛ. Note that as the correction
term depends on a length scale lP, it introduces the dimensionful Hubble param-
eter H0 into equation (4.15), whose classical version contains only dimensionless
quantities. Of course, given the suppression factor Dl2PH2

0/12, the correction term
only becomes relevant in the early universe. The present day values of the pa-
rameters are Ωr = 2.47 × 10−5h−2 with h = 0.704 ± 0.025, Ωm = 0.3111 ± 0.0056,
ΩΛ = 0.6889 ± 0.0056, Ωk = 0.0007±0.0019 and H0 = 67.66 ± 0.42 km s−1Mpc−1

Aghanim et al. [2020], Workman et al. [2022]. They remain unaffected by the
modifications we introduced well within the precision with which they have been
measured.

For a spatially flat universe Ωk = 0, vanishing cosmological constant ΩΛ = 0,
and for a single component perfect fluid (either dust or radiation), equation (4.15)
can be analytically solved. For dust, we obtain

am(t) = a0

(︄
9
4ΩmH

2
0 t

2 + Dl2P
12 ΩmH

2
0

)︄1/3

, (4.16)

where the limit D → 0 recovers the classical result am ∝ t2/3. For radiation, we
find1

ar(t) = a0

(︄
4ΩrH

2
0 t

2 + Dl2P
9 ΩrH

2
0

)︄1/4

, (4.17)

1Notably, the radiation dominated universe represents an example of a Weyl flat spacetime
sourced by conformally invariant matter, for which equations (3.33) should, on the perturbative
level, apply without any further correction terms. The reason is that the higher derivative terms
discarded in the derivation of equations (3.33) vanish up to O

(︁
l4P
)︁
. Therefore, we can consider

equation (4.17) to be a prediction of the fully general quantum phenomenological gravitational
dynamics, although we are yet to derive the precise form of the corresponding equations.
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Figure 4.1: On the left: Analytical evolution of the scale factor corresponding
to the analytical solutions for the matter (4.16) and radiation (4.17) domination.
On the right: The corresponding evolution of the Hubble parameter (4.18). The
plot is done for D = 1 and a0 = 1.

where the limit D → 0 again yields the classical solution ar ∝ t1/2. Solution (4.17)
is relevant in the early universe, as it is characterised both by the radiation
dominance (given the faster fall-off of the radiation energy density) and by the
importance of the quantum corrections.

It is worth remarking that, for D > 0, both solutions (4.16) and (4.17) have
no singularity in the limit t → 0. Instead, the scale factor reaches some mini-
mum value proportional to Dl2P and dependent on the values of H0 and Ωi. The
corresponding Hubble parameters read

Hm = 2
3

t

t2 + Dl2P
27

and Hr = t

2t2 + Dl2P
18

. (4.18)

At t = 0, the Hubble parameter equals zero in both cases. Moreover, its deriva-
tive is positive at t = 0, allowing in principle a smooth bounce, i.e., a smooth
gluing of the current expanding universe to a past contracting universe for t < 0.
Nevertheless, the Big Bang curvature singularity is avoided. Interestingly, the
early time evolution of the scale factor shown in figure 4.1 is very rapid, giving
a short period of an inflation-like behaviour. The fastest change of the scale
factor occurs at time tmax =

√︂
Dl2P/36 corresponding to the Hubble parameter

Hmax =
√︂

9/4Dl2P.
For D ≤ 0, the Big Bang singularity does occur. In fact, the approach to it

is even faster than the classical gravitational dynamics implies. Since D has the
same sign as the logarithmic correction to entropy, it appears that positive quan-
tum corrections to horizon entropy are consistent with the singularity resolution,
whereas negative corrections are not. This result is qualitatively consistent with
other approaches that consider the impact of the quantum corrections to entropy
for cosmology Awad and Ali [2014], Salah et al. [2017], Hernández-Almada et al.
[2022]. These works also report a cosmic bounce for positive quantum corrections
to entropy.

Aside from the the analytical results, we have also carried out a numerical
study of some more realistic cases Alonso-Serrano et al. [2023b]. First, we stud-
ied the late time behaviour of the solution of equation (4.14) with different values
of the dimensionless parameters Ωr,Ωm,ΩΛ,Ωk. We show the result in figure 4.2.
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Figure 4.2: On the left: Evolution of the scale factor for different choices of the
parameters in equation (4.14). In each case, we set a0 = 1, D = 1. We choose
the time parameter τ so that τ = 0 corresponds to the present day universe, i.e.,
a (τ = 0) = a0 and so on. On the right: Evolution of the Hubble parameter for
the same choices of the dimensionless parameters.

Figure 4.3: On the left: Qualitative evolution of the scale factor in a cyclic
universe. On the right: The corresponding qualitative evolution of the Hubble
parameter.

As expected, the late time evolution almost precisely agrees with the classical
case as the quantum corrections become negligible. Second, we plotted the qual-
itative cyclic behaviour of the universe suggested by our analytical perturbative
solution. The resulting plot 4.3 should be understood only as an illustration,
since the bounces lie outside the regime of validity of our perturbative dynamics.
Nevertheless, it is noteworthy that the cyclic evolution we found qualitatively
agrees with that obtained in loop quantum cosmology.

Of course, our expressions for the scale factors are only consistent up to O (l2P),
as we systematically neglected all the O (l4P) terms in our derivation of the per-
turbative modified Friedmann equation (4.14). Therefore, the (apparent) bounce
lies outside the regime of applicability of equation (4.14) and we cannot consider
it a genuine prediction of our model. Nevertheless, one may ask about the impli-
cations of the modified Raychaudhuri equation (4.2) if we formally treat it as an
exact, non-perturbative description of the gravitational dynamics. In that case,
Ḣ is given by the following equation (we choose the sign of the square root so
that we reproduce the classical Raychaudhuri equation in the limit D → 0)

2Dl2P
c2

(︄
Ḣ − k

a2

)︄
= 1 −

√︂
1 + 16πGDl2P (ρ+ p). (4.19)
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For D > 0 we have Ḣ < 0 at all times and, hence, the Big Bang singularity
does occur. For D < 0, we again have Ḣ < 0, but the argument of the square
root goes to zero as the matter density reaches the Planck scale. At this point,
Ḣ attains a non-zero imaginary part and the further evolution of H becomes
ill-defined. Since Ḣ remains negative at this point, it cannot correspond to a
bounce. This breakdown strongly suggests that our equations should only be
trusted perturbatively, and all the O (l4P) corrections need to be disregarded.

We can use equation (4.19) to estimate the limit of applicability of our per-
turbative approach. If we expand it up to O (l4P), we get

Ḣ − k

a2 = −4πG (ρ+ p) + 16π2G2Dl2P (ρ+ p)2 − 128π3G3D2l4P (ρ+ p)3 +O
(︂
l6P
)︂
.

(4.20)
The O (l4P) and O (l2P) contributions have opposite signs. Their absolute values
become equal for

ρ+ p = 1
8πGDl2P

= ρP

8πD, (4.21)

where ρP = 1/ (Gl2P) denotes the Planck density. At this density, the perturbative
modified Friedmann equation (4.14), valid up to O (l4P) corrections, necessarily
fails. At the same time, the bounce corresponds to a density equal to

ρ+ p = ρP

4πD >
ρP

8πD, (4.22)

and indeed lies out of the realm of validity of equation (4.14). To confirm that
the bounce suggested by the perturbative approach really occurs, we would need
to include the O (l4P) (and higher) terms in our analysis. Doing so would in-
troduce additional undetermined numerical factors besides D in the quantum
phenomenological gravitational equations (3.33) and the singularity resolution
would be sensitive to their precise interplay, essentially destroying the predictive
power of our model. Therefore, it appears to be more fruitful to instead apply
equations (3.33) to phenomena lying inside their regime of validity, but already
significantly affected by the quantum corrections. An example of this approach
is the recently performed analysis of the primordial power spectrum Alonso-
Serrano et al. [2023c]. Nevertheless, the nonperturbative dynamics implied by
equation (4.2) in principle represents an interesting toy model for the early uni-
verse, and we are currently exploring its physical consequences.
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Conclusions
This thesis provides an overview of the main part of the research carried out
during my doctoral studies2 which concerns the relation between gravitational
dynamics and thermodynamics. We obtained novel results in four main directions
of research, all intertwined by the idea that equilibrium conditions applied to
locally constructed causal horizons encode the gravitational dynamics. To each
of these main directions of our research is devoted one chapter of the thesis. In
the following, we recall our main achievements in each of these research directions

• Covariant phase space formalism for WTDiff-invariant theories of gravity
(chapter 1)

– Inspired by the connection between thermodynamics of spacetime and
Weyl transverse gravity we found; we developed an extension of the
covariant phase space formalism, including the symplectic structure, to
arbitrary local, WTDiff-invariant gravitational theories. To the best
of our knowledge, this represents the first ever generalisation of the
formalism to a class of theories with non-dynamical structures.

– We employed this formalism to derive the first law of black hole me-
chanics for WTDiff-invariant gravity and (heuristically) identified the
corresponding Wald entropy. We also obtained the first law for a sta-
tionary, asymptotically flat black hole spacetime with a perfect fluid,
originally discussed (for general relativity) already in the seminal work
on the laws of black hole mechanics Bardeen et al. [1973].

– We showed that the WTDiff-invariant first law of thermodynamics
generically includes a varying cosmological constant (both for de Sitter
and anti-de Sitter asymptotics). In the asymptotically anti-de Sitter
case we obtained results equivalent to those found in the context of
the so-called black hole chemistry Kubiznak and Mann [2015], which
also introduces a varying cosmological constant (either ad hoc, or by
considering some specific dynamical origin of Λ).

– We further derived the first law of thermodynamics for local causal
diamonds and identified the corresponding Wald entropy and the gen-
eralised volume.

– As an aside, we provided a novel analysis of the various formulations
of the equivalence principle in WTDiff-invariant gravity, finding that
an arbitrary local, WTDiff-invariant theory incorporates the Einstein
equivalence principle. We also showed that Weyl transverse gravity
and general relativity are the only known metric theories of gravity
compatible with the equivalence principle for self-gravitating test par-
ticles.

2I have also co-authored three more papers not discussed here, one concerning a heuris-
tic approach to horizon thermodynamics and two discussing thermodynamics of scalar-tensor
Einstein-Gauss-Bonnet gravity in four spacetime dimensions. I decided against including these
topics as it would have make the text far less cohesive.
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– All the results we obtained for Weyl transverse gravity were found
to be physically equivalent to those valid for general relativity. The
only difference is the status of Λ as a global degree of freedom in
Weyl transverse gravity. This outcome is fully consistent with previous
analysis of the (non)equivalence of both theories Carballo-Rubio et al.
[2022].

• WTDiff-invariant gravity from thermodynamics of spacetime (chapter 2)

– We presented a complete, self-contained argument which shows that
the local equilibrium conditions together with the strong equivalence
principle imply (semi)classical gravitational dynamics equivalent to
Weyl transverse gravity.

– We also showed that the expressions for Wald entropy and generalised
volume of causal diamonds we derived in the previous chapter en-
code the gravitational equations of motion for any local, purely metric,
WTDiff-invariant theory of gravity, whose Lagrangian does not depend
on the derivatives of the Riemann tensor. The same result was pre-
viously obtained for Diff-invariant theories. However, in that case the
procedure fails to reconstruct the value of the cosmological constant
fixed in the Lagrangian. By contrast, in the WTDiff-invariant setting,
the local equilibrium conditions reproduce all the information present
in the gravitational Lagrangian, since Λ appears as an arbitrary inte-
gration constant.

– The arguments presented in this chapter complete the (semi)classical
branch of the thermodynamics of spacetime program outlined already
in the author’s master thesis Lǐska [2020].

• Quantum phenomenological gravitational dynamics from thermodynamics
of spacetime (chapter 3)

– In the master thesis Lǐska [2020] we also opened the exploration of
the impact of the quantum logarithmic correction to horizon entropy
on the gravitational dynamics derived from thermodynamics. In this
way, we were able to obtain equations 3.33 which incorporate quantum
gravitational corrections suppressed by the factor l2P.

– In the present thesis, we reviewed the derivation of equations3 (3.33)
in the entanglement equilibrium approach. The equations are derived
under certain simplifying assumptions and do not capture the full
quantum phenomenological gravitational dynamics implied by the lo-
cal equilibrium conditions. Nevertheless, they include a term quadratic
in the traceless Ricci tensor, which cannot be obtained from any local,
WTDiff-invariant (or Diff-invariant) and purely metric action. In this
way, our thermodynamic approach marks a departure from the usual
effective field theory results. The full understanding of this departure
remains an open issue.

3To be precise, the exact form of equations 3.33 only appeared in our subsequent pa-
per Alonso-Serrano and Lǐska [2020b], the version derived in the master thesis was very similar,
but suffered from a subtle error which we only identified afterwards Lǐska [2020].
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– Compared to the master thesis Lǐska [2020], we carried out a new
linearised analysis of the quantum phenomenological gravitational dy-
namics. We found a result equivalent to the linearised traceless equa-
tions of motion of quadratic gravity. This derivation serves as a consis-
tency check for our approach and also shows that the complete equa-
tions definitely include correction terms quartic in the derivatives of
the metric.

• Physical implications of the quantum phenomenological gravitational dy-
namics from thermodynamics (chapter 4)

– We applied equations (3.33) to a homogeneous, isotropic cosmological
spacetime. The analytical solutions we obtained are perturbatively
equivalent to the effective dynamics of the loop quantum cosmology.
Our perturbative results only significantly deviate from the classical
cosmology in the very early universe. In particular, they suggest the
replacement of the Big Bang singularity by a regular bounce, although
our approach unfortunately cannot be consistently extended all the
way to the bounce.

The results we obtained also open a number of new paths for research which
we expect to follow in the near future. We thus conclude by summarising these
future perspectives and their significance

• In regards to WTDiff-invariant covariant phase space formalism, we expect
to address the following open questions:

– Rephrase the formalism in terms of the gauge-invariant generalisation
of Lie derivatives. While this rephrasing represents only a technical
issue, it offers a different perspective and might lead to new important
insights.

– In principle the symplectic structures of Weyl transverse gravity and
general relativity with a dynamical source for the cosmological con-
stant (realised, e.g. as an n-form) should be equivalent on shell. It
would be interesting to see whether that is the indeed the case.

– The von Neumann algebras of symmetries of arbitrary null surfaces
have been recently extensively studied in the literature, yielding im-
portant insights into the nature of the corresponding entanglement
entropy Jensen et al. [2023]. Apparently, the Diff invariance plays a
key role in this approach. We plan to reproduce these results in the
WTDiff-invariant setting using our covariant phase space formalism.
Our aim is to look for possible physical differences between the Diff-
invariant and the WTDiff-invariant cases.

• We plan to further develop the quantum phenomenological gravitational
dynamics:

– We are going to include the logarithmic corrections to entropy in the
physical process derivation we recently developed (see Alonso-Serrano
et al. [2024] and chapter 2).
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– As the first part of this program, we analyse the vacuum case. Pre-
vious exploration of this case suggests the presence of the correction
terms quadratic in the Weyl tensor in the equations governing the
gravitational dynamics Jacobson et al. [2017], Wang [2019]. However,
the previous approaches were unable to derive the modified equations
in this context. Using our approach, we should be able to address this
case fairly straightforwardly. The result is going to tell us whether the
quantum phenomenological gravitational dynamics predict any modi-
fications to the classical gravitational dynamics in vacuum, or whether
nontrivial corrections only appear in the presence of matter fields.

– We plan to reproduce the linearised analysis leading to quadratic grav-
ity as well as the derivation of simplified nonlinearised equations (3.33)
in the physical process approach. While we do not expect any signif-
icant new insights, the new derivation should be more streamlined,
with fewer ad hoc steps.

– The above listed phases of the project are essentially aimed at devel-
oping a full control over the new approach. After they are concluded,
we are going to derive the quantum phenomenological gravitational
dynamics to the O (l2P) without any simplifying assumptions. The out-
come should give us new (and at the moment unforeseeable) insights
into the interpretation of the quantum phenomenological gravitational
dynamics and their relation to other approaches to modifying gravity.

• Lastly, we plan to study the implications of the quantum phenomenologi-
cal gravitational dynamics for certain more complicated physically relevant
spacetimes, in which novel aspects of the modified dynamics might manifest:

– We continue to explore the homogeneous isotropic setting, with the aim
to see whether the full, nonperturbative dynamics have any physically
interesting features. Of course, since equations (3.33) only work up
to the O (l2P) order, such nonperturbative results can only serve as a
toy model. Nevertheless, they might reveal a novel scenario for the
dynamics of the early universe.

– Another research group is studying the implications of the equations
for neutron star physics Prasetyo et al. [2022, 2023]. The homoge-
neous, isotropic cosmologies are also being analysed by other research
groups Alonso-Serrano et al. [2023c], de Cesare and Gubitosi [2024].
We are currently discussing a new joint project together with the latter
group.

– We plan to apply equations (3.33) to spacetimes with non-vanishing
Weyl tensor. Probably the most tractable such case is the Kantowski-
Sachs metric (a special form of Bianchi I metric), which is relevant both
as a simple homogeneous, anisotropic model for early universe and as
the metric describing the interior (dynamical) region of a Schwarzschild
black hole.

– More generally, we are interested in the homogeneous, anisotropic
Bianchi metrics, especially Bianchi I and Bianchi II. These are again
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relevant as anisotropic cosmological models. Even more importantly,
according to the Belinski-Khalatnikov-Lifshitz conjecture, these met-
rics combined represent a good local approximation of the spacetime
in the vicinity of a generic spacelike singularity (either a black hole or
a cosmological one).

– Another area to apply the quantum phenomenological gravitational
dynamics are black hole solutions. While our equations imply no
perturbative corrections for vacuum spacetime, they should in prin-
ciple lead to non-trivial corrections for electrovacuum black hole solu-
tions (e.g. Reissner-Nordström) and, especially, for the Oppenheimer-
Snyder model of a gravitational collapse.

In summary, we carried out a complex research program connecting ther-
modynamics of spacetime, the classical structure of gravity, and phenomenology
of quantum gravity. This program ranges from understanding the (semi)classical
physics involved (including a novel mathematical apparatus we developed for this
purpose), through a theoretical analysis of low-energy quantum gravitational ef-
fects, to the study of quantum corrections to physically relevant spacetimes. No-
tably, the results we obtained offer an interesting perspective on several open
questions, most notably the cosmological constant problems, the symmetries of
the equations governing the gravitational dynamics (both on the semiclassical
and on the quantum level), and the possible singularity resolution. Of course,
it remains unclear whether and how thermodynamics of spacetime fits into our
fundamental understanding of gravity, but it certainly offers an original and in-
tellectually stimulating perspective. We hope the thesis does this subject justice.
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E. Álvarez, J. Anero, and I. Sanchez-Ruiz. Physical charges versus conformal
invariance in unimodular gravity. IJMPA, 38:2350132, 2023. doi: 10.1142/
S0217751X23501324.

P. B. Aneesh, S. J. Hoque, and A. Virmani. Conserved charges in asymptotically
de Sitter spacetimes. Class. Quant. Grav., 36:205008, 2019. doi: 10.1088/
1361-6382/ab3be7.

P. B. Aneesh, S. Chakraborty, S. J. Hogue, and A. Virmani. First law of black
hole mechanics with fermions. Class. Quant. Grav., 37:205014, 2020. doi:
10.1088/1361-6382/aba5ab.

R. E. Arias, D. D. Blanco, H. Casini, and M. Huerta. Local temperatures and
local terms in modular Hamiltonians. Phys. Rev. D, 95:065005, 2017. doi:
10.1103/PhysRevD.95.065005.

J. Arrechea, A. Delhom, and A. Jiménez-Cano. Inconsistencies in four-
dimensional Einstein-Gauss-Bonnet gravity. Chinese Phys. C, 45:013107, 2021.
doi: 10.1088/1674-1137/abc1d4.

M. Arzano. Conformal quantum mechanics of causal diamonds. J. High Energ.
Phys., 72, 2020. doi: 10.1007/JHEP05(2020)072.

M. Arzano. Vacuum thermal effects in flat space-time from conformal quantum
mechanics. J. High Energ. Phys., 2021:3, 2021. doi: 10.1007/JHEP07(2021)
003.

A. Ashtekar, T. Pawlowski, and P. Singh. Quantum nature of the Big Bang:
Improved dynamics. Phys. Rev. D, 74:084003, 2006. doi: 10.1103/PhysRevD.
74.084003.

110



A. Ashtekar, T. Pawlowski, P. Singh, and K. Vandersloot. Loop quantum
cosmology of k=1 FRW models. Phys. Rev. D, 75:024035, 2007. doi:
10.1103/PhysRevD.75.024035.

A. Awad and A. F. Ali. Minimal length, Friedmann equations and maximum
density. J. High Energ. Phys., 2014(6), 2014. doi: 10.1007/jhep06(2014)093.

V. Baccetti and M. Visser. Clausius entropy for arbitrary bifurcate null surfaces.
Class. Quant. Grav, 31, 2014. doi: 10.1088/0264-9381/31/3/035009.
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(2) Ana Alonso-Serrano and Marek Lǐska, “Quantum Gravity Phenomenology
from the Thermodynamics of Spacetime”, Universe 8 (2022).

125



A. Appendices

A.1 Gravitational weak equivalence principle
Herein, we prove the key requirement for the validity of the gravitational weak
equivalence principle in Weyl transverse gravity. Expanded, the condition for the
principle to hold, ∇̄νEνµ = 0, reads

1
2 g̃

νρ∇̃ν

[︂
2g̃λσ∇̃λ∇̃(µγ̃ρ)σ − g̃λσ∇̃λ∇̃σγ̃µρ + g̃µρg̃

αλg̃βσ
(︂
−∇̃λ∇̃σγ̃αβ + R̃λσγ̃αβ

)︂
− R̃γ̃µρ + 2δΛg̃µρ + 2Λγ̃µρ

]︂
= 0, (A.1)

where γ̃µρ denotes a perturbation of the auxiliary metric1 and g̃µν , ∇̃µ, R̃µν are
to be understood as background quantities. Since the value of Λ generically
changes between solutions of Weyl transverse gravity, we must also consider its
perturbation δΛ. Expressing the derivative commutators in terms of the auxiliary
Riemann tensor and simplifying yields

g̃νρ
[︂
g̃λσ

(︂
2R̃µλ∇̃ν γ̃ρσ + 2γ̃ρσ∇̃νR̃µλ + R̃λρ∇̃µγ̃νσ

)︂
− ∇̃ν

(︂
R̃γ̃µρ

)︂
+ 2Λ∇̃ν γ̃µρ

]︂
= 0.
(A.2)

Finally, we use the vacuum equations (1.20) for the background to express the
Ricci tensor in terms of Λ, i.e. R̃µν = 2Λg̃µν/ (n− 2). Then, the left hand side of
equation (A.2) indeed vanishes. Therefore, Weyl transverse gravity incorporates
the gravitational weak equivalence principle.

A.2 Derivation of the symplectic potential for
WTDiff-invariant gravity

Herein, we derive in detail the symplectic potential presented for an arbitrary
local, WTDiff-invariant theory. We begin by varying Lagrangian (1.9) indepen-
dently with respect to gµν , R̃

µ

νρσ and ψ, obtaining,

δL = ∂L

∂gµν
δgµν +

p∑︂
i=0

∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

δ∇̃(α1 ...∇̃αi)R̃
µ

νρσ

+
q∑︂
i=0

∂L

∂∇̃(α1 ...∇̃αi)ψ
δ∇̃(α1 ...∇̃αi)ψ. (A.3)

1Of course, we actually perturb the dynamical metric, γ̃µρ is simply a convenient bookkeep-
ing device.
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We apply the following approach to modify the terms with variations of deriva-
tives of the auxiliary Riemann tensor

∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

δ∇̃(α1 ...∇̃αi)R̃
µ

νρσ

= ∂L

∂∇̃(α1 ...∇̃αi)R̃µνρσ

∇̃α1δ∇̃α2 ...∇̃αi
R̃µνρσ

+ “terms proportional to ∇̃δgµν and δgµν”

= ∇̃α1

⎛⎝ ∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

δ∇̃α2 ...∇̃αi
R̃
µ

νρσ

⎞⎠− ∇̃α1

⎛⎝ ∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

⎞⎠
δ∇̃α2 ...∇̃αi

R̃
µ

νρσ + ∇̃α1“terms proportional to δgµν”

+ “terms proportional to δgµν” = ∇̃α1

⎛⎝ ∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

δ∇̃α2 ...∇̃αi
R̃
µ

νρσ

⎞⎠
− ∇̃α1

⎛⎝ ∂L

∂∇̃(α1 ...∇̃αi)R̃
µ

νρσ

⎞⎠ δ∇̃α2 ...∇̃αi
R̃
µ

νρσ

+ ∇̃α1“terms proportional to δgµν” + “terms proportional to δgµν”. (A.4)

In total, we have a lower derivative term, some Weyl covariant divergences and
terms proportional to δgµν and contributing to the equations of motion. An
analogous procedure can be applied to terms containing variations of derivatives
of the matter fields. Using this algorithm repeatedly, we find

δL =Âµνδgµν + E νρσ
µ δR̃

µ

νρσ + Aψδψ

+ ∇̃α1

[︄ (︂
Kα1µν + 2g̃α1σ∇̃ρE

µνρ
σ

)︂
δg̃µν +

p∑︂
i=2

Mα1α2...αi νρσ
µ δ∇̃(α2 ...∇̃αi)R̃

µ

νρσ

+
q∑︂
i=2

Nα1α2...αkδ∇̃(α2 ...∇̃αi)ψ

]︄
. (A.5)

Tensor densities Kα1µν , Mα1α2...αi νρσ
µ , and Nα1α2...αk arise in the above introduced

process of rewriting the variations of derivatives of R̃µ

νρσ and ψ. The explicit form
of these tensors would be exceedingly complicated in the fully general case and
we do not require it for our purposes.

If we had R̃
µ

νρσ as an independent field, Âµν = 0 would have been the equa-
tions of motion for the metric. In fact, δR̃µ

νρσ of course depends on the variation
of the auxiliary metric,

δg̃µν =
(︄√

−g
ω

)︄− 2
n
(︄
δgµν − 1

n
gµν

δg

g

)︄
. (A.6)

Therefore, we have to re-express it in terms of δg̃µν and its derivatives, obtaining

E νρσ
µ R̃

µ

νρσ = 2E νρσ
µ g̃µλ∇̃λ∇̃σδg̃νρ + E νρσ

µ R̃
µ

νρλg̃
λτδg̃στ , (A.7)

where we used that E νρσ
µ is defined to have the same symmetries as the Riemann

127



tensor. Then, the variation of the Lagrangian finally reads

δL = 1
16π

(︄√
−g

ω

)︄− 2
n

⎡⎣Åµν + 8π
(︄√

−g

ω

)︄2 k+1
n (︃

Tµν − 1
n
Tgµν

)︃⎤⎦ δgµν + Aψδψ

+ ∇̃α1

⎡⎣2
(︄√

−g

ω

)︄ 2
n

Eµνρα1∇̃µδg̃νρ +Kα1µνδg̃µν

+
p∑︂
i=2

Mα1α2...αi νρσ
µ δ∇̂(α2 ...∇̃αi)R̃

µ

νρσ +
q∑︂
i=2

Nα1α2...αiδ∇̃(α2 ...∇̂αi)ψ

⎤⎦, (A.8)

and the traceless equations of motion are

Å
µν + 8π

(︄√
−g

ω

)︄2 k+1
n (︃

Tµν − 1
n
Tgµν

)︃
=8π

(︄√
−g
ω

)︄− 2
n
[︄
Â

(µν) + 2E ρσ(µ|
ι R̃

ι |ν)
ρσ

− 1
n
E ρσλ
ι R̃

ι

ρσλg
µν + 4∇̃σ∇̃ρ

E (µν)σ
ρ

− 4
n
gιλ

(︂
∇̃σ∇̃ρ

E ιλσ
ρ

)︂
gµν

]︄
= 0. (A.9)

A.3 Hamiltonians corresponding to general vec-
tor fields in WTDiff-gravity

In this appendix, we derive the perturbation (1.185) of the Hamiltonian corre-
sponding to an arbitrary vector field ζµ for a WTDiff-Lagrangian of the form
L
(︂
g̃µν , R̃

µ

νρσ

)︂
together with minimally coupled matter fields given by the ac-

tion (1.21). The corresponding traceless gravitational equations of motion are

0 =Åαβ + 8π
(︄√

−g

ω

)︄2 k+1
n (︃

Tµν − 1
n
Tgµν

)︃

= −
(︄√

−g

ω

)︄ 2
n

EµλρσR̃
ν

λρσ + 2∇̃ρ∇̃σ

⎡⎣(︄√
−g

ω

)︄ 2
n

Eµρσν

⎤⎦+ 1
n

(︄
Eλρστ R̃

λρστ

− 2∇̃ρ∇̃σE
ρσλ
λ

)︄
g̃µν + 8π

(︄√
−g

ω

)︄2 k+1
n (︃

Tµν − 1
n
Tgµν

)︃
, (A.10)

where E νρσ
µ reads

E νρσ
µ = ∂L

∂R̃
µ

νρσ

. (A.11)

The divergence-free equations (1.37) then become

0 = Aµν = −
(︄√

−g

ω

)︄ 2
n

EµλρσR̃
ν

λρσ + 2∇̃ρ∇̃σ

⎡⎣(︄√
−g

ω

)︄ 2
n

Eµρσν

⎤⎦+ 1
2Lg̃

µν

− Λg̃µν + 8π
(︄√

−g

ω

)︄ 2(k+1)
n

T µν − J g̃µν , (A.12)
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where J is defined by equation (1.1.5). As always in WTDiff-invariant theories,
Λ is an arbitrary integration constant.

We can straightforwardly work out the symplectic potential from the general
expression (1.74). As the Lagrangian does not contain derivatives of the auxiliary
Riemann tensor, we have Mµα2...αi νρσ = 0, Kµνρ = −2∇̃σ

[︂
(√−g/ω)2/n

Eµνρσ
]︂
.

The matter symplectic potential reads θµψ = [∂Lψ/∂ (∂µψ)] δψ. Altogether, we
have

θµ [δ] = 2
(︄√

−g

ω

)︄ 2
n

Eσνρµ∇̃σδg̃νρ − 2∇̃σ

⎡⎣(︄√
−g

ω

)︄ 2
n

Eµνρσ

⎤⎦ δg̃νρ + ∂Lψ
∂ (∂µψ)δψ.

(A.13)
For the symplectic current corresponding to a transformation generated by any
vector field ζµ and an arbitrary perturbation of the metric we have

Ωµ [δζ , δ] = δζθ
µ [δ] − δθµ [δζ ] . (A.14)

As we explained in subsection 1.3.5, δζ applied to a WTDiff-invariant expression
is not in general a Lie derivative. Differences between δζ and £ζ acting on the
building blocks of θµ [δ] yield

(δζ − £ζ)
√

−g

ω
=

√
−g

ω
∇̃µζ

µ, (A.15)

(δζ − £ζ) Γ̃µνρ = − 1
n

(︂
δµν δ

α
ρ + δµρ δ

α
ν − gνρg

µα
)︂

∇̃α∇̃λζ
λ, (A.16)

(δζ − £ζ) R̃
µ

νρσ = 2
n

(︂
δαν δ

µ
[ρδ

β
σ] − gµαgν[ρδ

β
σ]

)︂
∇̃α∇̃β∇̃λζ

λ, (A.17)

(δζ − £ζ) ∇̃τ R̃
µ

νρσ = 2
n

(︂
δαν δ

µ
[ρδ

β
σ] − gµαgν[ρδ

β
σ]

)︂
∇̃τ∇̃α∇̃β∇̃λζ

λ. (A.18)

Thence, after some straightforward manipulations, we get a somewhat lengthy
expression Πµ [ζ, δ] = (δζ − £ζ) θµ [δ],

Πµ [ζ, δ] = − 16
n

(︄√
−g

ω

)︄ 2
n

F σνρµ βαγ
α ∇̃σ∇̃β∇̃γ∇̃λζ

λδg̃νρ

+ 16
n

(︄√
−g

ω

)︄ 2
n

F σνρµ βαγ
α ∇̃β∇̃γ∇̃λζ

λ∇̃σδg̃νρ

− 16
n

(︄√
−g

ω

)︄ 2
n

Gσνρµ βαγ τϑω
α ξ ∇̃σR̃

ξ

τϑω∇̃β∇̃γ∇̃λζ
λδg̃νρ

− 4
n

(︄√
−g

ω

)︄ 2
n

Eσνρµ∇̃σ∇̃λζ
λδg̃νρ

+ 8
n

(︄√
−g

ω

)︄ 2
n

F σνρµ βγη
α R̃

α

τϑω∇̃κ∇̃λζ
λδg̃νρ(︂

δκβδ
τ
σδ

ϑ
γ δ

ω
η + δκη δ

τ
βδ

ϑ
γ δ

ω
σ + δκσδ

τ
βδ

ϑ
γ δ

ω
η − gσβg

κτδϑγ δ
ω
η − gσηg

κωδτβδ
ϑ
γ

)︂
+ 2k

n

∂Lψ
∂ (∂µψ)δψ∇̃λζ

λ, (A.19)
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where

F νρσ βγη
µ α =

∂E νρσ
µ

∂R̃
α

βγη

= ∂2L

∂R̃
α

βγη∂R̃
µ

νρσ

, (A.20)

G νρσ βγη τϑω
µ α ξ =

∂2E νρσ
µ

∂R̃
ξ

τϑω∂R̃
α

βγη

= ∂3L

∂R̃
ξ

τϑω∂R̃
α

βγη∂R̃
µ

νρσ

. (A.21)

Next, we use that δζθµ [δ] = £ζθ
µ [δ] + Πµ [ζ, δ] and expand £ζθ

µ [δ]

δζθ
µ [δ] =£ζθ

µ [δ] + Πµ [ζ, δ] = ζν∇̃νθ
µ [δ] − θν [δ] ∇̃νζ

ν + Πµ [ζ, δ]

= − 2∇̃ν

(︂
θ[ν [δ] ζµ]

)︂
+ ζµ

1
16π

(︄√
−g

ω

)︄ 2
n
[︄
Å
αβ + 8π

(︄√
−g

ω

)︄2 k+1
n

(︃
Tµν − 1

n
Tgµν

)︃ ]︄
+ ζµAψδψ − ζµδL− θµ [δ] ∇̃νζ

ν + Πµ [ζ, δ] . (A.22)

For the second term in Ωµ [δζ , δ] we directly obtain

−δθµ [δζ ] = − 1
8π

(︄√
−g

ω

)︄ 2
n

A µ
ν ζ

ν + ζµδL− δ (ζ · Aψ · ψ)µ

+ 4
n
δEµνρ

ν∇̃ρ∇̃λζ
λ − 4

n
δ
(︂
∇̃ρE

µνρ
ν

)︂
∇̃λζ

λ

+ ∇̃ν

[︂
2∇̃ρζ

σδEνµρ
σ − 4ζσδ

(︂
∇̃ρE

νµρ
σ

)︂]︂
+ ∇̃νδQ

νµ
ψ,ζ , (A.23)

where Qνµ
ψ,ζ is an antisymmetric tensor density appearing from the matter part

of θµ [δζ ]. It can be shown that Qνµ
ψ,ζ depends on ζµ (see subsection 1.3.4). If ζµ

generates a transverse diffeomorphism, the last line becomes the Weyl covariant
divergence of the corresponding Noether charge.

In total, the symplectic current Ωµ [δζ , δ] obeys

Ωµ [δζ , δ] =∇̃ν

[︂
2∇̃ρζ

σδEνµρ
σ − 4ζσδ

(︂
∇̃ρE

νµρ
σ

)︂]︂
− 2∇̃ν

(︂
θ[ν [δ] ζµ]

)︂
+ ∇̃νδQ

νµ
ψ,ζ

+ Πµ [ζ, δ] − θµ [δ] ∇̃νζ
ν + 4

n
δEµνρ

ν∇̃ρ∇̃λζ
λ − 4

n
δ
(︂
∇̃ρE

µνρ
ν

)︂
∇̃λζ

λζµ

+ 1
16π

(︄√
−g

ω

)︄ 2
n

⎡⎣Åαβ + 8π
(︄√

−g

ω

)︄2 k+1
n (︃

Tµν − 1
n
Tgµν

)︃⎤⎦ δgαβ
− 1

8π

(︄√
−g

ω

)︄ 2
n

A µ
ν ζ

ν + ζµAψδψ − δ (ζ · Aψ · ψ)µ . (A.24)

So far, all the expressions are off shell. We are mainly interested in the
setup in which both the original and the perturbed spacetime are solutions of the
equations of motion. Then, it holds

Ωµ [δζ , δ] = ∇̃ν

[︂
2∇̃ρζ

σδEνµρ
σ − 4ζσδ

(︂
∇̃ρE

νµρ
σ

)︂]︂
+ ∇̃νδQ

νµ
ψ,ζ − 2∇̃ν

(︂
θ[ν [δ] ζµ]

)︂
− 1

8πζ
µδΛ + Πµ [ζ, δ] − θµ [δ] ∇̃νζ

ν + 4
n
δEµνρ

ν∇̃ρ∇̃λζ
λ − 4

n
δ
(︂
∇̃ρE

µνρ
ν

)︂
∇̃λζ

λ.

(A.25)

Finally, integration over a suitable Cauchy surface C yields the symplectic form
Ω [δζ , δ] and, therefore, also the perturbation of the Hamiltonian corresponding
to the evolution along ζµ (1.185).
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A.4 Removing contractions with an arbitrary
timelike vector

In this appendix, we prove that the if the equation fµνn
µnν = 0 holds in a

spacetime with dimension n ≥ 2 for every timelike, unit, future-pointing vector,
it implies fµν = 0 (with no loss of generality, we assume fµν = fνµ). To that end,
we construct a local orthonormal coordinate system defined so that the metric
locally reduces to the Minkowski one, i.e., gµν = ηµν . We set the local direction
of time so that nµ = (∂/∂t)µ and we denote the spatial coordinate vectors by
ei = ∂/∂xi. We stress that, since fµν is a tensor, we are free to choose any
coordinate system without any loss of generality. We introduce the following set
of unit timelike vectors

tµij =
√︂

(1 + p2 + q2)nµ + peµi + qeµj , (A.26)

where i, j, are natural numbers such that 0 < i < j ≤ n−1, and p, q are arbitrary
real numbers. Since fµνtµijtνij = 0 for every tµij, we have

(︂
1 + p2 + q2

)︂
f00 + p2fii + q2fjj + 2p

√︂
(1 + p2 + q2)f0i

+ 2q
√︂

(1 + p2 + q2)f0j + 2pqfij = 0, (A.27)

which must hold for any real p, q. Thence, every coefficient in the expansion of
the left hand side in the powers of p, q must be zero. We only need the first few
conditions implied by this procedure

f00 =0, (A.28)
2pf0i =0, (A.29)
2qf0j =0, (A.30)

p2 (f00 + fii) =0, (A.31)
q2 (f00 + fjj) =0, (A.32)

2pqfij =0. (A.33)

To satisfy these equations for every i, j, it must hold fµν = 0.
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