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Contents

1 Introduction 8

2 Point processes 10

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Point processes with density function . . . . . . . . . . . . . . . . . . . . 13

3 Non–Poisson point processes 16

3.1 Functionals of non-Poisson point processes . . . . . . . . . . . . . . . . . 16

3.2 Explicit formulas for U−statistics . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Moments of U−statistics . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Functionals in logarithmic form . . . . . . . . . . . . . . . . . . . 28

4 Random union of interacting particles 30

4.1 Interacting discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Interacting line segments in R2 . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 The parametric space X . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Simulation of the process . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Moments of characteristics . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Interacting surfaces in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



4.3.1 Process of interacting surfaces . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Moments of characteristics . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Limit behavior in Poisson and non–Poisson case . . . . . . . . . . . . . . 43

5 Space–time models 51

5.1 Sequential Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 Particle marginal Metropolis–Hastings algorithm . . . . . . . . . . 54

5.2 Simulation of space–time model of random union of interacting particles . 56

5.3 Statistics of the model with interacting particles . . . . . . . . . . . . . . 60

5.3.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Independent time extension . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.3 Some selected results for model with four parameters . . . . . . . 64

6 Conclusion 70

Appendix–Program comments 72

Simulation of interacting line segments . . . . . . . . . . . . . . . . . . . . . . 72

Particle Marginal Metropolis Hastings estimation . . . . . . . . . . . . . . . . 73

List of Abbreviations 75

4



List of Tables 75

List of Figures 78

Bibliography 79

5
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Supervisor’s e-mail address: benesv@karlin.mff.cuni.cz
Consultant: RNDr. Kateřina Helisová, Ph.D.
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Chapter 1

Introduction

Spatio-temporal modeling in stochastic geometry is of great interest in both theory and
applications. A large group of various models is based on spatio-temporal point processes,
see e.g. [29] with applications in statistical seismology, [5] in modeling weeds, [4] in
modeling a plant disease, [11], [13] in neurophysiology, [10] in urban development, [33],
[25] in modeling forest fires, etc. Classical assumption of stationarity is relaxed in finite
point process models, tools such as stochastic differential equations or sequential Monte
Carlo help to deal with the temporal dynamics. More general models of spatio-temporal
random sets appear e.g. in [37] with applications in geophysics, [12] in image analysis,
[36] in turbulence, [30], [19] in tumour growth dynamics, etc.

While most frequently in the literature the temporal development concerns the volume
of a set, we try to consider also other integral-geometrical characteristics, especially
U−statistics which are fully given by all k−tuples of points.

This work addresses two main topics. One of them is theoretical part regarding the
U−statistics and the second one is a simulation study in space–time. Both parts are
linked to the choice of a class of random sets. In the theoretical probabilistic part the
problem of analytical expression of moments is solved originally in the case of point
processes with density with respect to a Poisson process, [3]. It presents an alternative
derivation technique based on L2−expansion of a functional of a Poisson process, [22], in
comparison with [7], who use Georgii-Nguyen-Zessin formula. The central limit theorem
when the intensity of the reference point process tends to infinity is discussed.

A second contribution is the development of MCMC and sequentional Monte Carlo to
the case of space-time processes of interacting particles. The particle filter approach was
published in [40], while particle marginal Metropolis–Hastings algorithm and comparison
of all three parameter estimation procedures (including maximum likelihood method)
is presented in [41]. Large simulation studies and long-run of numerical solutions were
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extremely computationaly demanding.

Chapter 2 summarizes some basic facts from point process theory. The next chapter is
dedicated to U−statistics of a point process with a density function. The first moment of
U−statistics is introduced (Theorem 3.5) and further the second and the second mixed
moment are computed (Theorem 3.7). The general formula for product of U−statistics
is formulated in Theorem 3.8 and Theorem 3.10 solves its moment evaluation using di-
agrams [31]. In Chapter 4 there is specified the model of interacting particles and its
properties. Three particular cases are studied - process of interacting discs in R2, process
of interacting line segments on R2 and interacting surfaces in R3. For segment process
and process of interacting surfaces the first, second and mixed moments of characteris-
tics are introduced (Propositions 4.3, 4.5 and 4.6). At the end of this chapter the limit
behavior of Poisson process with increasing intensity of reference points is discussed. For
process with density with respect to such Poisson process the first and second moments
of standardized characteristics are deduced. One particular example with analytically
derived expectation of Papangelou conditional intensity is computed. Chapter 5 involves
the space-time part. Section 5.1 creates preliminaries for simulation study - it summa-
rizes particle filtering and finally the last two sections deal with simulation study. All
results are discussed in Chapter 6 and the work is provided with an appendix where the
simulation and computation programs are described.
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Chapter 2

Point processes

Since the whole thesis deals with spatial point processes, their properties and applications,
this chapter provides the readers with some basic facts and definitions from the theory
of point processes. For more details on point procesess see [6] and [39]. For the basics of
finite point procesess see [2] and [28].

2.1 Basic definitions

Definition 2.1 Let E be separable, locally compact complete metric space equipped with
Borel σ-field B = B(E). Locally finite measure on E is a measure which is finite on
all bounded Borel sets of E. We will denote M the set of all locally finite measures on
(E,B(E)).

Definition 2.2 On the space (E,B(E)) define a set N of all locally finite measures taking
the non-negative integer values or infinity

N ≡ {µ ∈ M; µ(B) ∈ N ∪ {0,∞} for all B ∈ B}.

On spaces M,N define σ-fields

M = σ{µ 7→ µ(B) measurable, B ∈ B},
N = {M ∩N : M ∈ M}.

M is the smallest σ-field onM for which the mappingM −→ R, µ 7→ µ(B) is measurable
for all B ∈ B.

In the thesis we deal with (Ω,A,P) a probability space.
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Definition 2.3 Point process on E is a measurable mapping µ : (Ω,A,P) −→ (N ,N).
Distribution of a point process µ is a probability measure Pµ given by

Pµ(B) = P(µ ∈ B), B ∈ N.

We say that point process is simple if P(µ ∈ N ∗) = 1, where

N ∗ = {γ ∈ N : γ({y}) ≤ 1; ∀ y ∈ E}.

Remark 2.1 Each y ∈ N can be represented as a sum of at most countable number of
Dirac measures, y =

∑
i δyi . Thus if µ is a simple point process on E then there exists a

sequence of measurable mappings Yi : Ω −→ E such that

µ =

µ(E)∑
i=1

δYi
, (2.1)

where µ(E) denotes the total number of points Yi in (2.1) which is at most countable due
to local finiteness.

Further we assume that a point process is simple. Thus we can consider a point process
alternatively as a locally finite set of random points Yi, we write Yi ∈ µ. In the following
both approaches are used, i.e. y ∈ N means either a counting measure or a locally finite
set of points.

Definition 2.4 Point process µ on Rd is stationary if its distribution is invariant under
the translation, i.e. if the process µ⊕ u = {y + u; y ∈ µ} has the same distribution as µ
for all u ∈ Rd.
µ is called isotropic if its distribution is invariant under the rotations.

Definition 2.5 A locally finite measure Γ on B satisfying Γ(B) = Eµ(B) for all B ∈ B
is called the intensity measure.

Definition 2.6 Let Λ ∈ M be diffuse and let η be a point process on E such that
for all n ∈ N and bounded B1, . . . , Bn ∈ B pairwise disjoint the random variables
η(B1), . . . , η(Bn) are independent and for all i ∈ N η(Bi) has Poisson distribution
Poiss(Λ(Bi)) with parameter Λ(Bi). Then η is called a Poisson point process on E with
intensity measure Λ.
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Theorem 2.1 Campbell’s Theorem. For a point process µ on E with intensity mea-
sure Γ and nonnegative measurable function h we have

E
∑
y∈µ

h(y) =

∫
E

h(y)Γ(dy). (2.2)

Definition 2.7 Let Γ be the intensity measure of a point process such that there exists its
density with respect to Lebesgue measure, i.e. Γ(A) =

∫
A
γ(y)dy, A ∈ B, then nonnegative

function γ is called intensity function.

Remark 2.2 Since Lebesgue measure is the only one (up to a multiplicative constant)
locally finite measure invariant under the translation, the intensity function for any ar-
bitrary stationary process in E = Rd is a constant called intensity.

Definition 2.8 A homogeneous Poisson process is a Poisson process with constant in-
tensity function.

Definition 2.9 A marked point process on a space B with marks in a measurable space
(Z,Z) is a point process µ on E = B × Z such that µ(K × Z) < ∞ a.s. for all compact
K ⊂ B. That is, the corresponding projected process (of points without marks) is locally
finite.

Definition 2.10 Let C be a system of all closed sets in E and

C = σ{CK : K is a compact subset of E},

where CK = {C ∈ C : C ∩ K ̸= ∅}. Then a random closed set Ξ in E is a measurable
mapping from (Ω,A) to (C,C).

Example 2.1 Boolean model in Rd. Suppose η = {y1, y2, . . . } is a stationary Poisson
process in Rd with intensity λ. Let Ξ1,Ξ2 . . . be a sequence of i.i.d. random compact sets
in Rd independent of the process η. Then the random set

Ξ =
∞∪
i=1

(yi + Ξi)

is called a Boolean model.
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2.2 Point processes with density function

Since all models considered in this work are given by a density function with respect to
Poisson point process we introduce here theory of finite point processes.

Definition 2.11 Point process µ on E is finite if µ(E) < ∞ almost surely.

Recall that N denotes a set of locally finite counting measures on E. By N ∗ we will
denote a space of finite, simple counting measures on E. This space can be decomposed
according to the total number of points, i.e.

N ∗ = N0 ∪N1 ∪ . . . ,

where
Nk = {y ∈ N ∗; y(E) = k}, k = 0, 1, . . . .

In fact we decompose the system of all locally finite sets of points into sets of all confi-
gurations of k points. This can be represented by ordered spaces (see [2])

E!k = {(y1, . . . , yk) : yi ∈ E, yi ̸= yj for i ̸= j}.

Further if we define mapping Ik : E
!k −→ Nk by

Ik(y1, . . . , yk) = δy1 + · · ·+ δyk ,

we get factorization of the space E!k to Nk. In the other words,

Nk ≡ E!k/ ∼
where ∼ is relation given by

(u1, . . . , uk) ∼ (y1, . . . , yk) ⇐⇒ {u1, . . . , uk} = {y1, . . . , yk}.

Example 2.2 Poisson point process. For fixed n ∈ N a point process of n i.i.d. points
with distribution Q in E is called binomial process. Let η be the Poisson point process on
E with totally finite intensity measure Λ, i.e. Λ(E) < ∞. Then η(E) ∼ Poiss(Λ(E)).
Given η(E) = n we can consider η = (Y1, . . . , Yn) as a binomial process with Q(B) =
Λ(B)/Λ(E), B ∈ B. Thus for each A ∈ N we have

Pη(A) =
∞∑
n=0

P(η(E) = n)P(In(Y1, . . . , Yn) ∈ A)

=
∞∑
n=0

e−Λ(E)Λ(E)n

n!

∫
E

. . .

∫
E

I[In(y1,...,yn)∈A]Q(dy1) . . . Q(dyn)

= e−Λ(E)

∞∑
n=0

1

n!

∫
E

. . .

∫
E

I[In(y1,...,yn)∈A] Λ(dy1) . . .Λ(dyn).
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Definition 2.12 Let η be the Poisson point process with an intensity measure Λ. Let
p : N −→ R+,

∫
N p(y)Pη(dy) = 1. A point process µ is given by a density with respect

to the Poisson point process η if

Pµ(B) = P(µ ∈ B) =

∫
B

p(y)Pη(dy), B ∈ N.

For the remaining text we use notation Λ(dy1) . . .Λ(dyn) = Λ(d(y1, . . . , yn)), n ∈ N, the
multiplicity of Λ can be seen from the number of variables.

The following lemma is a straightforward consequence.

Lemma 2.2 For a point process µ with probability density p with respect to a Poisson
process η we have

P(µ ∈A) =

= e−Λ(E)

∞∑
n=0

1

n!

∫
E

. . .

∫
E

I[In(y1,...,yn)∈A] p(In(y1, . . . , yn)) Λ(d(y1, . . . , yn)),

for all A ∈ N, and

E[g(µ)] = e−Λ(E)

∞∑
n=0

1

n!

∫
E

. . .

∫
E

g(In(y1, . . . , yn)) p(In(y1, . . . , yn)) Λ(d(y1, . . . , yn)),

(2.3)
for any function g : N −→ R+ integrable with respect to a product measure Λn.

Remark 2.3 We may write (2.3) shortly as

E[g(µ)] = E[g(η)p(η)]. (2.4)

Definition 2.13 A function f : N −→ R is called hereditary if for all finite configura-
tions y, ỹ ∈ N such that ỹ ⊂ y, it holds that f(ỹ) > 0 whenever f(y) > 0.

Definition 2.14 Let µ be a point process with a hereditary density p with respect to a
Poisson point process η then

λ∗(u;y) =
p(y ∪ {u})

p(y)
, y ∈ N , u ∈ E \ y, (2.5)

= 0 otherwise (2.6)

is called a Papangelou conditional intensity of the point process µ. We take 0
0
= 0.

14



For n > 1 analogously

λ∗
n(u1, . . . , un;y) =

p(y ∪ {u1, . . . , un})
p(y)

, u1, . . . , un ∈ E \ y disjoint points, (2.7)

= 0 otherwise (2.8)

is the Papangelou conditional intensity of n-th order, we define λ∗
0 = 1.

Remark 2.4 The event when some of fixed u1, . . . , un ∈ E are points of µ has probabil-
ity equal to zero. Therefore the random variable λ∗

n(u1, . . . , un;µ) is almost surely well
defined.

Also note that λ∗
n is a symmetric function in variables u1, . . . , un, that means invariant

w.r.t. permutations of variables.
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Chapter 3

Non–Poisson point processes

This chapter focuses on U–statistics of point processes with density function with respect
to a Poisson process. The appeal of this theory is that moments of functionals of such
processes can be expressed through moments of functionals of Poisson processes as sug-
gested in (2.4). There was developed a lot of theory in the field of functionals of Poisson
processes using Wiener–Itô chaos expansion, see [22], [34] and [23]. We use these tools as
first in a broader field of point processes with density.

3.1 Functionals of non-Poisson point processes

Consider finite point processes in a bounded measurable set E ⊂ Rd with |E| > 0, where
| . | is the Lebesgue measure of a set in Rd. Let η be a Poisson point process on E with
intensity measure Λ and distribution Pη, which is a probability measure on the measurable
space (N ,N) of integer-valued finite measures. Assume that a point process µ on E is
given by a hereditary density p w.r.t. Pη, i.e.

dPµ(y) = p(y)dPη(y), y ∈ N .

Denote Lm(Pµ) = {F : N → R measurable,E[|F (µ)|m] < ∞}, 1 ≤ m < ∞.

Lemma 3.1 For F ∈ Lm(Pµ) set Gm = Fmp, m = 1, 2, . . . .
Then

EFm(µ) = EGm(η), m = 1, 2, . . . ,

especially
EF (µ) = EG1(η), varF (µ) = EG2(η)− [EG1(η)]

2.
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Proof. EFm(µ) =
∫
Fm(y)dPµ(y) =

∫
Fm(y)p(y)dPη(y) = EGm(η), hence EF (µ) =

EG1(η).

varF (µ) = EF 2(µ)− (EF (µ))2 =

∫
F 2(y)p(y)dPη(y)− [EG1(η)]

2.

Definition 3.1 For a measurable function F : N −→ R and u ∈ E we define the
difference operator as

DuF (y) = F (y ∪ {u})− F (y).

The i -th order difference operator is given by

Du1,...,ui
F = Du1Du2,...,ui

F, u1, . . . ui ∈ E.

For this iterated operator the following equality holds, cf. [22]

Du1,...,unF (y) =
∑

J⊂{1,...,n}

(−1)n−|J |F (y ∪ {uj, j ∈ J}) , (3.1)

where |J | is the cardinality of J.

Operator Du1,...,un is symmetric in u1, . . . , un and symmetric functions TnF on En are
defined as

T µ
nF (u1, . . . , un) = EDu1,...,unF (µ),

T µ
0 F = EF (µ).

We write TnF for T η
nF.

For the functionals of a Poisson process Theorem 1.1 in [22] says that for given F, F̃ ∈
L2(Pη) it holds

E[F (η)F̃ (η)] = EF (η)EF̃ (η) +
∞∑
n=1

1

n!
⟨TnF, TnF̃ ⟩n, (3.2)

where ⟨ . , .⟩n is the scalar product in L2(Λn), i.e.

⟨f, g⟩n =

∫
En

f(x1, . . . , xn)g(x1, . . . , xn)Λ(d(x1, . . . , xn)).

The formula (3.2) is our main tool in the following.
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3.2 Explicit formulas for U−statistics

Symbol Lp
s(Λ

k) denotes the subset of symmetric functions in Lp(Λk), 1 ≤ p < ∞.

Now for a fixed function f ∈ L1
s(Λ

k) we can define U−statistic F . Recall that
λ∗
j(u1, . . . , uj;µ) denotes the Papangelou conditional intensity of order j of the point

process µ and denote

ϱn(u1, . . . , un) = Eλ∗
n(u1, . . . , un;µ), u1, . . . , un ∈ E, (3.3)

where E is the expectation with respect to the distribution Pµ.

Definition 3.2 Let µ be a finite point process and k ∈ N. Then a random variable F (µ)
defined as

F (µ) =
∑

(y1,....yk)∈µk
̸=

f(y1, . . . , yk), (3.4)

where f ∈ L1
s(Λ

k), is called U−statistic of order k. Symbol µk
̸= denotes k−tuples of

pairwise different points from realization of µ. We say that F is driven by function f.

Note that by the Campbell’s theorem we have

EF (η) =

∫
E

. . .

∫
E

f(y1, . . . , yk)Λ(d(y1, . . . , yk)).

Following [34] we state some basic equalities for the difference operator of U−statistic F
which hold for a finite point process µ.

Lemma 3.2 Let F ∈ L2(Pµ) be a U−statistic of order k driven by f . Then

Du1F (µ) = k
∑

(y1,...,yk−1)∈µk−1
̸=

f(u1, y1, . . . , yk−1), (3.5)

Du1,...,unF (µ) =
k!

(k − n)!

∑
(y1,...,yk−n)∈µk−n

̸=

f(u1, . . . , un, y1, . . . , yk−n), n ≤ k, (3.6)

Du1,...,unF (µ) = 0, n > k. (3.7)

Proof. This follows from the symmetry of the function f . For illustration we will prove
the first equality. For the difference of order 1 we have

18



Du1F (µ) = F (µ ∪ {u1})− F (µ) =

=
∑

(y1,...,yk)∈(µ∪{u1})k̸=

f(y1, . . . , yk)−
∑

(y1,...,yk)∈µk
̸=

f(u1, y1, . . . , yk)

=
∑

(y1,...,yk−1)∈µk−1
̸=

(f(u1, y1, . . . , yk−1) + · · ·+ f(y1, . . . , yk−1, u1))

= k
∑

(y1,...,yk−1)∈µk−1
̸=

f(u1, y1, . . . , yk−1).

From the Campbell’s theorem we have for the Poisson process η :

TnF (u1, . . . , un) =

(
k

n

)∫
Ek−n

f(u1, . . . , un, y1, . . . , yk−n)Λ(d(y1, . . . , yk−n)), (3.8)

n ≤ k, TnF (u1, . . . , un) = 0, n > k.

Lemma 3.3 For p ∈ L2(Pη) it holds

Tnp(u1, . . . , un) =
∑

J⊂{1,...,n}

(−1)n−|J |ϱ|J |({uj, j ∈ J};µ). (3.9)

Proof. From (3.1) Du1,...,unp(η) =
∑

J⊂{1,...,n}(−1)n−|J |p(η ∪ {uj, j ∈ J}). Then

Tnp(u1, . . . , un) = EDu1,...,unp(η)

=

∫ ∑
J⊂{1,...,n}

(−1)n−|J |p(y ∪ {uj, j ∈ J})dPη(y)

=

∫ ∑
J⊂{1,...,n}

(−1)n−|J |p(y ∪ {uj, j ∈ J})dPµ(y)

p(y)

and (3.9) follows.

Theorem 3.4 For m ∈ N, the U−statistics F of order k driven by f such that Fm ∈
L2(Pη) and µ a point process with density p ∈ L2(Pη) we have

EFm(µ) = EFm(η) +
mk∑
n=1

1

n!
⟨TnF

m, Tnp⟩n, (3.10)

where Tnp are given by (3.9).
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Proof. For m = 1 we have from (3.2) and Lemma 3.2 (since Ep(η) = 1)

EF (µ) = EF (η)p(η) = EF (η) +
k∑

n=1

1

n!
⟨TnF, Tnp⟩n.

For m = 2 we have

DuF
2(η) =

 ∑
(y1,...,yk)∈(η ∪{u})k̸=

f(y1, . . . , yk)

2

−

 ∑
(y1,...,yk)∈ηk̸=

f(y1, . . . , yk)

2

=
∑

(y1,...,yk)∈(η ∪{u})k̸=

∑
(z1,...,zk)∈(η ∪{z})k̸=

f(y1, . . . , yk)f(z1, . . . , zk)

−
∑

(y1,...,yk)∈ηk̸=

∑
(z1,...,zk)∈ηk̸=

f(y1, . . . , yk)f(z1, . . . , zk),

here all terms cancel with the exception of those where among the variables in the left
double sum there is u (either in one sum or in both). That means that idea of the proof of
(3.5) applies here, so that D2k

u1,...,u2k
F 2(η) is constant and D2k+1

u1,...,u2k
F 2(η) = 0. Analogously

for general m we get the result.

Example 3.1 Consider k = 1 and U−statistic

F (µ) = µ(C), C ⊂ E, f(y) = I[y∈C].

To show that F ∈ L2(Pη) we need to compute

EF 2(η) =
∞∑
n=0

e−Λ(E)Λ
n(E)

n!

∫
E

. . .

∫
E

F 2({u1, . . . , un})Λ(d(u1, . . . , un))

≤
∞∑
n=0

e−Λ(E)Λ
n(E)

n!
n2

= e−Λ(E)Λ(E) +
∞∑
n=2

e−Λ(E) Λn(E)

(n− 2)!

n

n− 1

n

n

< e−Λ(E)Λ(E) + 2
∞∑
n=2

e−Λ(E) Λn(E)

(n− 2)!
< ∞.

Using Lemma 3.3 we have

⟨T1F, T1p⟩ =
∫

f(y)(ϱ1(y;µ)− 1)Λ(dy),
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EF (µ) = Λ(C) +

∫
C

(ϱ1(y;µ)− 1)Λ(dy) =

∫
C

ϱ1(y;µ)Λ(dy).

Next we evaluate the second moment.

DuF
2(η) = 2f(u)

∑
z∈η

f(z) + f 2(u) = I[u∈C]

(
2 ·
∑
z∈η

I[z∈C] + 1
)
,

Du2u1F
2(η) = 2 · I[{u1,u2}∈C].

Thus T1F
2 = I[u∈C](1 + 2Λ(C)) and T2F

2 = 2 · I[{u1,u2}∈C].
Further

⟨T1p, T1F
2⟩ = (2Λ(C) + 1)

(∫
C

ϱ1(y;µ)Λ(dy)− Λ(C)

)
⟨T2p, T2F

2⟩ = 2

∫
C×C

ϱ2(y1, y2;µ)Λ(d(y1, y2))− 4Λ(C)

∫
c

ϱ1(y;µ)Λ(dy) + 2Λ2(C).

Since F (η) has Poisson distribution with parameter Λ(C) we have

EF 2(η) = Λ(C) + Λ2(C).

A combination of these formulas gives us

EF 2(µ) =

∫
C×C

ϱ2(y1, y2;µ)Λ(d(y1, y2)) +

∫
C

ϱ1(y;µ)Λ(dy).

Let µ be a Strauss point process on E ⊂ Rd bounded, parameters β > 0, 0 ≤ γ ≤ 1, r > 0
with density

p(y) = αβn(y)γs(y), s(y) =
∑

(y,z)∈y2
̸=

I[||z−y||≤r],

w.r.t. a Poisson point process with Lebesgue intensity measure Λ, α is a normalising
constant. Here the conditional intensity is

λ∗(u;y) = βγt(u,y), t(u,y) =
∑
y∈y

I[||u−y||≤r].

For density function p it holds∫
p2(y)Λ(dy) =

∫
α2β2n(y)γ2s(y)Λ(dy) ≤

∞∑
n=0

e−Λ(E)Λ
n(E)

n!
α2β2nγ

= α2γ

∞∑
n=0

e−Λ(E) (Λ(E)β2)n

n!
< ∞,

and thus p ∈ L2(Pη). For the Strauss process

Eµ(C) = β

∫
C

E[γt(y,µ)]dy,
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Eµ2(C) = β

∫
C

E[γt(y,µ)]dy+

+β

∫
C

∫
C

E[βγs(µ∪{y1,y2})−s(x) − γt(y1,µ) − γt(y2,µ)]Λ(d(y1, y2)).

3.2.1 Moments of U−statistics

In this section we derive general formulas for computing the moments of U−statistics.
Note that moments of functionals of point processes could be studied also by means of
Georgii–Nguyen–Zessin formula, cf.[7], which for processes with Papangelou conditional
intensity λ∗ can be expressed in its simplest form as

E

[∑
y∈µ

h(y, µ \ {y})

]
= E

[∫
E

h(y, µ)λ∗(y;µ)dy

]
, (3.11)

for any nonnegative measurable function h on E × N . We developed an alternative ap-
proach directed to U−statistics and their application in stochastic geometry.

Theorem 3.5 Let F ∈ L2(Pη) be a U−statistic of order k driven by f, p ∈ L2(Pη), it
holds

EF (µ) =

∫
Ek

f(y1, . . . , yk)ϱk(y1, . . . , yk;µ)Λ(d(y1, . . . , yk)).

Proof. From (3.8), (3.9) and (3.10) we have

EF (µ) =
k∑

n=0

1

n!
⟨TnF, Tnp⟩n

=
k∑

n=0

1

n!

∫
En

k!

(k − n)!

∫
Ek−n

f(u1, . . . , un, y1, . . . , yk−n)Λ(d(y1, . . . , yk−n))

×
n∑

j=0

(−1)n−j

(
n

j

)
ϱj(y1, . . . , yj;µ)Λ(d(u1, . . . , uj))

=
k∑

n=0

n∑
j=0

(
k

n

)(
n

j

)
(−1)n−j

∫
Ek

f(u1, . . . , un, y1, . . . , yk−n)

×ϱj(y1, . . . , yj;µ)Λ(d(u1, . . . , uj, y1, . . . , yk−n))
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=
k∑

j=0

k∑
n=j

(
k

n

)(
n

j

)
(−1)n−j

∫
Ek

f(u1, . . . , un, y1, . . . , yk−n)

×ϱj(y1, . . . , yj;µ)Λ(d(u1, . . . , uj, y1, . . . , yk−n)).

=
k∑

j=0

k∑
n=j

(
k

n

)(
n

j

)
(−1)n−j

∫
Ek

f(y1, . . . , yk)ϱj(y1, . . . , yj;µ)Λ(d(y1, . . . , yk)).

Now from ”symmetry” of variables in the integral and the equality

k∑
n=j

(−1)n−j

(
k

n

)(
n

j

)
= 0, j < k,

see [20], p.39, identity 11, we obtain the only nonzero term for j = k, which is∫
Ek

f(y1, . . . , yk)ϱk(y1, . . . , yk;µ)Λ(d(y1, . . . , yk)).

Lemma 3.6 Let F be a U−statistics of order k driven by f and G be a U−statistic of
order l driven by g, l ≥ k, F,G ∈ L2(Pη). Then

FG(µ) =
k∑

j=0

(
k

j

)
l!

(l − k + j)!

∑
(y1,...,yl+j)∈µl+j

̸=

f(y1, . . . , yk)g(y1, . . . , yk−j, yk+1, . . . , yl+j).

(3.12)
Especially

F 2(µ) =
k∑

j=0

(
k

j

)
k!

j!

∑
(y1,...,yk+j)∈µk+j

̸=

f(y1, . . . , yk)f(y1, . . . , yk−j, yk+1, . . . , yk+j). (3.13)

Proof. Since FG(µ) =
(∑

(y1,...,yk)∈µk
̸=
f(y1, . . . , yk)

)(∑
(z1,...,zl)∈µl

̸=
g(z1, . . . , zl)

)
we can

consider product of F and G as a sum whose members are double sums of product of
functions f and g with k − j, j = 0, . . . , k equal variables. Each of this double sum can
be rewritten as a single sum over (l + j) tuples:∑

(y1,...,yl+j)∈µl+j
̸=

f(y1, . . . , yk)g(y1, . . . , yk−j, yk+1, . . . , yl+j),

where for j = k we understand g(y1, . . . , yk−j, yk+1, . . . , yl+j) = g(yk+1, . . . , yk+l). We have(
k

k−j

)
=
(
k
j

)
options how to choose these k − j variables. Their order in the first factor

is given through the argument of sum (sum is over all (k + j)−tuples so it determines
different order of variables) but in the second factor we have l!

(l−k+j)!
options to locate

them. The choice g = f and k = l gives us a formula for the second power of F.
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Theorem 3.7 Let F,G be U−statistics of order k, l driven by f, g respectively, l ≥ k.
For j = 0, 1, . . . , k denote

h(y1, . . . , yl+j) = f(y1, . . . , yk)g(y1, . . . , yk−j, yk+1, . . . , yl+j).

Then if FG ∈ L2(Pη), p ∈ L2(Pη) we have

EFG(µ) =

=
k∑

j=0

(
k

j

)
l!

(l − k + j)!

∫
El+j

h(y1, . . . , yl+j)ϱl+j(y1, . . . , yl+j;µ)Λ(d(y1, . . . , yl+j)).

Especially

EF 2(µ) =
k∑

j=0

(
k

j

)
k!

j!

∫
Ek+j

h(y1, . . . , yk+j)ϱk+j(y1, . . . , yk+j;µ)Λ(d(y1, . . . , yk+j)).

(3.14)

Proof. Consider the symmetrization of the function h : El+j −→ R given by

h(y1, . . . , yl+j) =
1

(l + j)!

∑
π∈Πl+j

h(yπ(1), . . . , yπ(l+j)),

where Πl+j denotes all permutations of the set {1, . . . , l + j}. Then the functional

Hl+j(µ) =
∑

(y1,...,yl+j)∈µl+j
̸=

h(y1, . . . , yl+j) (3.15)

is a U−statistic of order l + j and according to Lemma 3.6 and Theorem 3.5 we have
EFG(µ) =

∑k
j=0

(
k
j

)
l!

(l−k+j)!
EHl+j(µ), since

EHl+j(µ)

=

∫
El+j

h(y1, . . . , yl+j)ϱl+j(y1, . . . , yl+j;µ)Λ(d(y1, . . . , yl+j))

=

∫
El+j

1

(l + j)!

∑
π∈Πl+j

h(yπ(1), . . . , yπ(l+j))ϱl+j(y1, . . . , yl+j;µ)Λ(d(y1, . . . , yl+j))

=
1

(l + j)!

∑
π∈Πl+j

∫
El+j

h(yπ(1), . . . , yπ(l+j))ϱl+j(y1, . . . , yl+j;µ)Λ(d(y1, . . . , yl+j))

=

∫
El+j

h(y1, . . . , yl+j)ϱl+j(y1, . . . , yl+j;µ)Λ(d(y1, . . . , yl+j)).

The second equality is a special case of the first one.

Using techniques from Lemma 3.6, Theorems 3.5 and 3.7 we can generalize Theorem 3.4.
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Theorem 3.8 Let
∏m

i=1 Fi ∈ L2(Pη),m ∈ N, p ∈ L2(Pη), where Fi are U−statistics of
orders ki, driven by nonnegative functions fi, i = 1, . . . ,m. Denote q =

∑m
i=1 ki, then

E
[ m∏
i=1

Fi(µ)

]
= E

[ m∏
i=1

Fi(η)

]
+

q∑
n=1

1

n!

⟨
Tn

m∏
i=1

Fi, Tnp

⟩
n

. (3.16)

Assume that k1 ≥ k2 ≥ · · · ≥ km. Then furthermore the product
∏m

i=1 Fi(µ) is a finite
linear combination of U−statistics with orders k1, k1 + 1, . . . , q.

Proof. In detail we will analyze the proof for m = 2, 3. For m > 3 the procedure is
similar and we will just show how to express the product in a proper way.

Consider U−statistics F, G of orders k, l, driven by f, g, respectively, k ≤ l. Denote

FG(µ) =
k∑

j=0

(
k

j

)
l!

(l − k + j)!
Hl+j(µ),

where Hl+j =
∑

(y1,...,yl+j)∈µl+j
̸=

h̄(y1, . . . , yl+j), h̄ ∈ L1
s(Λ

l+j), is a U−statistic from (3.15).

One can easily see that FG = FG. It follows from symmetry of the functions f and
g, respectively, and from the fact, that FG is a sum over all configurations of points
{x1, . . . , xl+j}. Using linearity of Tn, (3.8) and Theorem 3.4 with m = 1

l+k∑
n=0

1

n!
⟨TnFG, Tnp⟩n =

l+k∑
n=0

1

n!

⟨
Tn

k∑
j=0

(
k

j

)
l!

(l − k + j)!
Hl+j, Tnp

⟩
n

=
l+k∑
n=0

1

n!

k∑
j=0

(
k

j

)
l!

(l − k + j)!
⟨TnHl+j, Tnp⟩n

=
l+k∑
n=0

k∑
j=0

1

n!

(
k

j

)
l!

(l − k + j)!
⟨TnHl+j, Tnp⟩n

=
k∑

j=0

(
k

j

)
l!

(l − k + j)!

l+k∑
n=0

1

n!
⟨TnHl+j, Tnp⟩n

=
k∑

j=0

(
k

j

)
l!

(l − k + j)!

l+j∑
n=0

1

n!
⟨TnHl+j, Tnp⟩n

=
k∑

j=0

(
k

j

)
l!

(l − k + j)!
EHl+j(µ)

= E
k∑

j=0

(
k

j

)
l!

(l − k + j)!
Hl+j(µ) = EFG(µ).
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Here we use the fact that Hl+j is U−statistic of order l+ j and TnHl+j = 0 for n > l+ j
and the statement for m = 2 holds.
For m = 3 and Fi driven by fi, i = 1, 2, 3 take F1F2 and consider (F1F2) · F3. We have

(F1F2)F3(µ) =

( k2∑
j2=0

(
k2
j2

)
k1!

(k1 − k2 + j2)!
Hk1+j2(µ)

) ∑
(y1,...,yk3 )∈µ

k3
̸=

f3(y1, . . . , yk3)

=

k2∑
j2=0

(
k2
j2

)
k1!

(k1 − k2 + j2)!

(
Hk1+j2(µ)

∑
(y1,...,yk3 )∈µ

k3
̸=

f3(y1, . . . , yk3)

)
, (3.17)

where Hk1+j2 =
∑

(y1,...,yk1+j2
)∈µk1+j2

̸=
h̄(y1, . . . , yk1+j2), h̄ ∈ L1

s(Λ
k1+j2) is U−statistic of

order k1 + j2 ≥ k3 and thus from Lemma 3.6 the last expression in brackets is a product
of two U−statistics and is equal to

k3∑
j3=0

(
k3
j3

)
(k1 + j2)!

(k1 + j2 + j3 − k3)!

∑
(y1,...,yk1+j2+j3

)∈µk1+j2+j3
̸=

hk1+j2+j3(y1, . . . , yk1+j2+j3),

where

hk1+j2+j3(y1, . . . , yk1+j2+j3) = f3(y1, . . . , yk3)h̄k1+j2(y1, . . . , yk3−j3 , yk3+1, . . . , yk1+j2+j3),

for a function hk1+j2+j3 : Rk1+j2+j3 −→ [0,∞) derived from f1, f2 and f3. Taking the
symmetrization of the functions hk1+j2+j3 and performing the same calculation to the
expectation of (3.17) with U−statistic Hk1+j2+j3 driven by hk1+j2+j3 as for m = 2 we get
the proposition for m = 3.
For general m ∈ N consider that the scheme holds for m− 1. Then(

m−1∏
i=1

Fi

)
·Fm(µ) =

=
∑

j2,...,jm

A(j2 : jm)
∑

(y1,...,yk1+
∑m

i=2
ji
)∈µ

k1+
∑m

i=2
ji

̸=

hk1+
∑m

i=2 ji
(y1, . . . , yk1+

∑m
i=2 ji

),

where ji = 0, . . . , ki, hk1+
∑m

i=2 ji
: Rk1+

∑m
i=2 ji −→ [0,∞) are nonnegative (but not neces-

sarily symmetric) functions

hk1+
∑m

i=2 ji
(y1, . . . , yk1+

∑m
i=2 ji

)

= fm(y1, . . . , ykm)h̄k1+
∑m−1

i=2 ji
(y1, . . . , ykm−jm , ykm+1, . . . , yk1+

∑m
i=2 ji

)

and

A(j2 :jm) = (3.18)

=

(
k2
j2

)
. . .

(
km
jm

)
k1!(k1 + j2)! . . . (k1 +

∑m−1
i=2 ji)!

(k1 + j2 − k2)!(k1 + j2 + j3 − k3)! . . . (k1 +
∑m

i=2 ji − km)!
.

(3.19)
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Again taking the symmetrization of hk1+
∑m

i=2 ji
we can compute the expectation. The L2

integrability of sub-products
∏j

i=1, j < m can be shown as in the proof of Theorem 3.10.

A more condensed form of functions hk1+
∑

ji can be derived by using techniques in [31].
Consider a set [q] = {1, . . . , q}, q ∈ N and denote Πq the set of all partitions {Ji}, where
Ji are disjoint blocks and

∪
Ji = [q]. |Ji| denotes the cardinality of a block.

Definition 3.3 Define q = k1 + · · ·+ kl and

Ji = {j : k1 + · · ·+ ki−1 < j ≤ k1 + · · ·+ ki}, i = 1, . . . ,m.

Let π = {Ji, 1 ≤ i ≤ m} be a partition of [q], we define Πk1,...,km ⊂ Πq the set of all
partitions σ ∈ Πq such that |J ∩ J ′| ≤ 1 for all J ∈ π and all J ′ ∈ σ.

Let fi : Eki −→ R, ki ∈ N, i = 1, . . . ,m. The tensor product ⊗m
j=1fj : Eq −→ R is

defined as(
⊗m

j=1fj
)
(y1, . . . , yk1 , yk1+1, . . . , yq)

= f1(y1, . . . , yk1)f2(yk1+1, . . . , yk1+k2) . . . fm(yk1+···+km−1+1, . . . , yq). (3.20)

Definition 3.4 Let fi : E
ki −→ R, i = 1, . . . ,m. For a partition σ ∈ Πk1,...,km we define

the function (⊗m
j=1fj)σ : E|σ| → R by replacing all variables of the tensor product ⊗m

j=1fj
that belong to the same block of σ by a new common variable, |σ| is the number of blocks
in the partition σ.

Proposition 3.9 For the U−statistics Fi, i = 1, . . . ,m from Theorem 3.8 it holds

m∏
i=1

Fi(µ) =
∑

σ∈Πk1,...,km

∑
(y1,...,y|σ|)∈µ

|σ|
̸=

(⊗m
i=1fi)σ(y1, . . . , y|σ|). (3.21)

Proof. We show that the sum of coefficients A(j2 : jm) from the proof of Theorem 3.8
sets the total number of partitions in Πk1,...,km , i.e.∑

j2,...,jm

A(j2 : jm) = cardΠk1,...,km .

For m = 1 the equality holds since Πk1 = 1. Consider that it holds for m − 1. Let Jm
be the m−th block of partition π in Definition 3.3. For 0 ≤ jm ≤ km the factor

(
km
jm

)
gives the number of combinations of jm blocks J of partitions σ ∈ Πk1,...,km with |J | = 1
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(subsets of |Jm|) and the factor
(k1+

∑m−1
i=2 ji)!

(k1+
∑m

i=2 ji−km)!
contributes to the number of partitions

σ ∈ Πk1,...,km when the rest km − jm items in Jm participate in blocks with |J | ≥ 2.

Combining the Theorem 3.5 and Proposition 3.9 we obtain the following theorem.

Theorem 3.10 Let
∏m

i=1 Fi ∈ L2(Pη), m ∈ N, p ∈ L2(Pη), where Fi are U−statistics of
orders ki driven by nonnegative functions fi, respectively, i = 1, . . . ,m. Then

E
m∏
i=1

Fi(µ) =
∑

σ∈Πk1,...,km

∫
E|σ|

(⊗m
i=1fi)σ(y1, . . . , y|σ|)ϱ|σ|(y1, . . . , y|σ|;µ)Λ(d(y1, . . . , y|σ|)).

(3.22)

Proof. Each inner sum in (3.21) is a U−statistic of order |σ| by symmetrization. To show
that it is in L2(Pη) we square the formula (3.21) with η instead of µ. On the right hand side

all terms are nonnegative so the expectation of
(∑

(y1,...,y|σ|)∈η
|σ|
̸=
(⊗m

i=1fi)σ(y1, . . . , y|σ|)
)2

is

finite for all σ ∈ Πk1,...,km . The assumptions of Theorem 3.5 are fulfilled and (3.22) follows.

3.2.2 Functionals in logarithmic form

In the previous section we used the relation

EFm(µ) = E[Fm(η)p(η)], m = 1, 2, . . . ,

where η is a Poisson process and µ a point process with probability density p w.r.t. η. In
the following we investigate the functional

Hm = log(Fmp) = m logF + log p, m = 1, 2, . . . (3.23)

under the assumption Hm(η) ∈ Lm(Pη). From Jensen inequality we have

logEFm(µ) ≥ EHm(η).

According to Theorem 4.3 in [2] λ∗(u;y), y ∈ N , u ∈ E, is a conditional intensity of a
finite point process µ if and only if it can be expressed in the form

λ∗(u;y) = exp

V1(u) +
∑
y∈y

V2(u, y) +
∑

(y1,y2)⊂y2
̸=

V3(u, y1, y2) + . . .

 , (3.24)
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where Vk : Ek → R ∪ {−∞} is called the potential of order k. Then the density is that
of a Gibbs process

p(y) = exp

V0 +
∑
y∈y

V1(y) +
∑

(y1,y2)⊂y2
̸=

V2(y1, y2) + . . .

 . (3.25)

Consequently

log p(y) = V0 +
∑
y∈y

V1(y) +
∑

(y1,y2)⊂y2
̸=

V2(y1, y2) + . . .

is a sum of a constant and U−statistics.

Assume that there is only a finite number l of terms V1, . . . , Vl on the right of (3.24) and
further that

F (η) = exp

 ∑
(y1,...,yk)∈ηk̸=

f(y1, . . . , yk)

 . (3.26)

Then logF is a U−statistics of order k. Using (3.2) we can evaluate variance of Hm.

Example 3.2 Consider again the Strauss process with parameters β, γ and density p as
in the Example 3.1, here

V1(u) = log β, V2(u, v) = log γI[||u−v||≤r],

λ∗(u;y) = βγt(u,y),

log p(y) = logα + n(y) log β + s(y) log γ.

We have
T0(log p) = E log p(η) = logα + log βEn(η) + log γEs(η),

T1(log p) = log β + log γEt(y, η),
T2(log p) = log γ I[||y−z||≤r].

Then from the formula (3.2)

var [log p(η)] =

∫
E

T1(log p)
2Λ(dy) +

1

2

∫ ∫
||y−z||≤r

Λ(dy)Λ(dz).

Put F (y) = exp(y(C)), y ∈ N , C ⊂ E. We have

T0(logF ) = Λ(C), T1(logF ) = I[y∈C],

var [logF (η)] = Λ(C),

cov(logF, log p) = Λ(C) log β + log γ

∫
C

Et(y, η)Λ(dy).

Thus
EHm(η) = mΛ(C) + logα + log βEn(η) + log γEs(η),

varHm(η) = m2Λ(C) + 2m cov(logF (η), log p(η)) + var [log p(η)].

29



Chapter 4

Random union of interacting
particles

In this chapter we will consider E = B×Z, where B ⊂ R2 or R3 is bounded and Z ⊂ Rl,
B, Z are Borel sets. Let η be a Poisson point process on E with intensity measure Λ.
Let µ be a point process on E having a density px(y), y ∈ N w.r.t. η, here x ∈ Rd is a
parameter vector. In the sense of Definition 2.9 both µ and η are marked point processes
and we assume that each mark defines a particle, i.e. a random closed set. Typically the
shape of the particle is prescribed and given (o, z) ∈ µ the particle is centered in o and its
random size and orientation is determined by the mark. For configuration y ∈ N denote
Uy the union of all particles in y. Assume that the density is in the exponential form

px(y) = cx exp{x ·G(y)} (4.1)

where G(y) is a vector of some geometrical statistics of Uy, x ·G(y) is the inner product
and cx a normalising constant.

According to [28]

X = {x ∈ Rd : E[exp(x ·G(η))] < ∞} (4.2)

is the largest set of such x that the exponential family density (4.1) is well defined.

For a vector of geometrical characteristics G(y) = (G1(y), . . . , Gd(y)), d ∈ N, denote

Dm
u1,...,um

G(y) = (Dm
u1,...,um

G1(y), . . . , D
m
u1,...,um

Gd(y))
T

the vector of m−th differences, see Definition 3.1.
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Theorem 4.1 For the density px(y) in (4.1), y ∈ N the Papangelou conditional inten-
sity λ∗

m of order m of the point process µ is

λ∗
m(um, . . . , u1;y) = ex·QmG(y), u1, . . . , um ∈ E \ y, (4.3)

with

QmG(y) = Dm
um,...,u1

G(y)

+
∑

i1,...,im−1∈{1,...,m}

Dm−1
uim−1

,...,ui1
G(y) + · · ·+

∑
1≤i≤m

Dui
G(y),

where the indices in the sums must be different.

Proof. For configuration y ∈ N of the process µ according to the definition we have

λ∗
m(um, . . . , u1;y) =

px(y ∪ {um, . . . , u1})
px(y)

= ex·G(y∪{um,...,u1})−x·G(y).

We need to prove that

QmG(y) = G(y ∪ {um, . . . , u1})−G(y).

For m = 1 we have

λ∗
1(y;y) =

ex·G(y∪y)

ex·G(y)
= ex·(G(y∪y)−G(y)) = ex·D

1
yG(y) = ex·Q1G(y).

Now assume that the proposition holds for m− 1 and we shall prove it for m. Then

QmG(y) = D1
um

G(y)

+
m−1∑
j=1

D2
um,uj

G(y) +
∑

1≤i<j≤m−1

D3
um,uj ,ui

G(y) + · · ·+Dm
um,...,u1

G(y)

+
m−1∑
j=1

D1
uj
G(y) +

∑
1≤i<j≤m−1

D2
uj ,ui

G(y) + · · ·+Dm−1
um−1,...,u1

G(y).

From the assumption the second line is equal to Qm−1G and further

QmG(y) = D1
um

G(y)

+D1
um

(m−1∑
j=1

D1
uj
G(y) +

∑
1≤i<j≤m−1

D2
uj ,ui

G(y) + · · ·+Dm−1
um−1,...,u1

G(y)

)
+G(y ∪ {um−1, . . . , u1})−G(y)

= D1
um

G(y) +D1
um

(
G(y ∪ {um−1, . . . , u1})−G(y)

)
+G(y ∪ {um−1, . . . , u1})−G(y)

= D1
um

G(y) +G(y ∪ {um, . . . , u1})−G(y ∪ {um−1, . . . , u1})−D1
um

G(y)

+G(y ∪ {um−1, . . . , u1})−G(y)
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= G(y ∪ {um, . . . , u1})−G(y).

Recall
ϱn(u1, . . . , un) = Eλ∗

n(u1, . . . , un;µ), u1, . . . , un ∈ E. (4.4)

4.1 Interacting discs

Consider a bounded region B ⊂ R2 and a finite marked point process µ with points oi
in B and marks ri > 0, i = 1, . . . ,m. Each (oi, ri) ∈ µ defines a circular particle (disc)
b(oi, ri) with centre oi and radius ri. We assume that µ has the probability density

px(y) = cx exp{x ·G(y)}, y ∈ N , x ∈ Rd (4.5)

w.r.t. a given reference Poisson point process of discs η, i.e. a Poisson point process on
E = B × [0,∞) with intensity measure

Λ(d(o, r)) = ρ(o)doQ(dr). (4.6)

Here ρ is an intensity function of centres of discs and Q is the distribution of radii. Here
x ∈ Rd is an unknown parameter and cx a normalizing constant.

The model, simulations and maximum likelihood estimation of x for statistics

G1(y) = (A(y), L(y), Ncc(y), Nh(y)) (4.7)

G2(y) = (A(y), L(y), χ(y)), (4.8)

where A(.) is the total area, L(.) the perimeter, Ncc the number of connected components,
Nh number of holes and χ(.) Euler–Poincare characteristic, were well described in [26]
and [27]. We will discuss this topic in the time developing case in Chapter 5.4.

Note that condition (4.2) is equivalent (see [26]) to

X = {x ∈ Rd :

∫ ∞

0

exp(πx1r
2 + 2πx2r)Q(dr) < ∞}, d = 3, 4,

x = (x1, . . . , xd). This condition is satisfied e.g. for Q with a bounded support.

4.2 Interacting line segments in R2

Let E = B × Z, B ⊂ R2 bounded, |B| > 0 and Z = (0, D0) × [−π/2, π/2), D0 ∈ R+,
where R is extended real line. A marked point process µ has points oi and marks (ri, ϕi),
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where oi are lexicographical minima of segments (later oi will alternatively be centres
of segments) of length ri and direction ϕi. Let us consider a Poisson segment process η
which can be identified with the Poisson point process on

E = B × (0, D0)× [−π/2, π/2) (4.9)

with intensity measure Λ(d(o, r, ϕ)) = ρ(o)doD(dr)ν(dϕ), where ρ is an intensity function
of Poisson process of lexicographical minima of segments, D and ν the distribution of
lengths and directions, respectively. The process µ has a density (4.1) w.r.t. η with vector
G(y) of geometrical characteristics in the form

G(y) = (L(y), N(y), Nis(y)), (4.10)

where

L(y). . . total length of the union of segments configuration y

N(y). . . the number of intersections

Nis(y). . . the number of isolated segments.

Then (4.1) with the vector of statistics given by (4.10) and x ∈ X is a density function.

Analogously define random variables

L(η), L(µ). . . total length of the segments in η and µ, respectively

N(η), N(µ). . . the total number of intersections

Nis(η), Nis(µ). . . the number of isolated segments.

4.2.1 The parametric space X

Proposition 4.2 Let
X = R× (−∞, 0]× R. (4.11)

Then if length distribution has bounded support, i.e. D0 < ∞, we have

(i) px ∈ L2(Pη), x ∈ X ,

(ii) LpN qN r
is(·) ∈ L2(Pη), p, q, r ∈ N0.
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Proof. Due to (2.3)

E[exp2(x ·G(η))] =
∞∑
n=0

e−Λ(E)Λ
n(E)

n!

∫
E

. . .

∫
E

e2x·G({u1,...,un})Λ(d(u1, . . . , un)).

Statistics L,N,Nis have upper bounds

L({u1, . . . , un}) ≤ nDo

N({u1, . . . , un}) ≤
(
n

2

)
≤ n2

Nis({u1, . . . , un}) ≤ n

and thus

E[exp(2x ·G(µ))] ≤
∞∑
n=0

e−Λ(E)Λ
n(E)

n!
e2(x1nDo+x2n2+x3n).

According to D’Alembert ratio criterion this serie converges for x1, x3 ∈ R and x2 ≤ 0.

The second part of the proposition will be shown as follows.

E(LpN qN r
is)

2(η) =
∞∑
n=0

e−Λ(E)Λ
n(E)

n!

∫
E

. . .

∫
E

(LpN qN r
is)

2({u1, . . . , un})Λ(d(u1, . . . , un))

<
∞∑
n=0

e−Λ(E)Λ
n(E)

n!
n2(p+2q+r) < ∞.

4.2.2 Simulation of the process

The realization of union of interacting particles can by simulated according to the Metro-
polis–Hastings birth and death algorithm ([28]). Denote UY the random set which is
given by the union of interacting segments with the density (4.5) and Uy the realization
of such random set. For segment v = (o, r, ϕ) and configuration y define the Hastings
ratio by

Hx(y, v) = λ∗
1(v;y)

∫
B
ρ(l) dl

ρ(o)(n(y) + 1)
, (4.12)

where n(y) is a number of segments in y. If y(iter) is the state at iteration iter, we
generate a proposal which is either a ”birth” y(iter) ∪ {v} of a new segment v with the
reference point o, length r and direction ϕ or a ”death” y(iter) \ {vi} of an old segment
vi = (oi, ri, ϕi) ∈ y(iter). In the case of a birth proposal, o, r, and ϕ are independent, s has
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a density proportional to the intensity function ρ(o), r and ϕ follows the distributionsD(r)
and ν(ϕ), respectively. In the case of a death proposal, vi is a uniformly randomly selected
point from y(iter), and each of these two proposals may arrive with fixed probability α.
Their acceptance depends on the Hastings ratios Hx(y

(iter), v), Hx(y
(iter) \ {vi}, vi),

respectively. The scheme of algorithm runs as follows.

1. Let y(0) be the empty configuration.

2. Suppose that y(iter) is a configuration in the iter-th iteration.

3. With probability α, we propose adding a segment v and with probability

min(1, Hx(y
(iter), v))

this proposal is accepted,
else we set y(iter+1) = y(iter),

4. else we propose deleting a segment yi and with probability

min(1, 1/Hx(y
(iter) \ {yi}, yi))

the proposal is accepted, else we set y(iter+1) = y(iter).

5. After a given number of iterations ITER, we set y = y(ITER).

Figure 4.1 draws realizations of process of interacting line segments with various choices
of parameter vector x. The observation window is a square of size 10 × 10, the distri-
bution of directions is uniform on [−π/2, π/2) and the length distribution is log-normal
distribution with parameters (−0.5, 0.5) restricted to the interval [0, 15]. The intensity of
lexicographical minima is a constant equal to 1.5.

4.2.3 Moments of characteristics

Statistics L(µ) and N(µ) can be expressed as follows:

L(µ) =
∑
y∈µ

l(y)

N(µ) =
1

2

∑
(y1,y2)∈µ2

̸=

I[y1∩y2 ̸=∅]

and they present U−statistics of orders 1 and 2, respectively. On the other hand the
statistic Nis cannot be expressed as a sum of finite k−tuples and it is not U−statistic.
Using Theorems 3.5 and 3.7 we have following equalities.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Simulated models with interacting line segments with various parameters x,
the observation window S is a square of size 10× 10. Here D is log-normal distribution
with parameters (−0.5, 0.5) restricted to the interval [0, 15], the ditribution of directions is
uniform on [−π/2, π/2) and ρ = 1.5 is constant. Number of iterations ITER = 100 000.
The parameter vector (a): x = (0,−1, 0), (b): x = (3, 0, 0), (c): x = (0, 0,−10), (d):
x = (3, 0,−10), (e): x = (3, 0, 1), (f): x = (3,−1,−3).
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Proposition 4.3 For the density (4.1) with X as in (4.11) and the condition D0 < ∞
we have

EL(µ) =

∫
E

l(y)ϱ1(y;µ)Λ(dy)

EL2(µ) =

∫
E

l2(y)ϱ1(y;µ)Λ(dy) +

∫
E2

l(y1)l(y2)ϱ2(y1, y2;µ)Λ(d(y1, y2))

EN(µ) =
1

2

∫
E2

I[y1∩y2 ̸=∅]ϱ2(y1, y2;µ)Λ(d(y1, y2))

EN2(µ) =
1

2

∫
E2

I[y1∩y2 ̸=∅]ϱ2(y1, y2;µ)Λ(d(y1, y2))

+

∫
E3

I[y1∩y2 ̸=∅]I[y1∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

+
1

4

∫
E4

I[y1∩y2 ̸=∅]I[y3∩y4 ̸=∅]ϱ4(y1, y2, y3, y4;µ)Λ(d(y1, y2, y3, y4))

ELN(µ) =

∫
E2

l(y1)I[y1∩y2 ̸=∅]ϱ2(y1, y2;µ)Λ(d(y1, y2))

+
1

2

∫
E3

l(y1)I[y2∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3)).

4.3 Interacting surfaces in R3

In this section we introduce two dimensional circular surfaces in R3. Symbol S2 denotes
the unit hemisphere in R3. Let E = B × Z, B ⊂ R3 bounded, |B| > 0, Z = (0, R0]× S2,
R0 < ∞. A marked point process µ has points oi and marks (ri, vi), where oi are centres
of circular surfaces, ri the radii and vi normal orientations.

4.3.1 Process of interacting surfaces

Consider a Poisson surface process η which is identified with Poisson point process on E
with intensity measure

Λ(d(o, v, r)) = ρ(o)do V (dv)R(dr),

where ρ(o) is an intensity of centers o, V (dv) distribution of normal vectors and R(dr)
distribution of radii.

Further denote µ process of interacting surfaces with density (4.1)

px(y) = cx exp(x ·G(y)) (4.13)
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with respect to η. Vector G of characteristics of the union Uy of configuration y of
interacting surfaces is

G(y) = (S(y), L(y), N(y)),

where

S(y). . . total area of all surfaces

L(y). . . total length of (one dimensional) intersection of all pairs of surfaces

N(y). . . number of intersection points of all triples of surfaces.

Again, as in case of interacting line segments, define random variables

S(η), S(µ). . . total area of all points in η and µ, respectively

L(η), L(µ). . . total length of (one dimensional) intersection of all pairs of points

N(η), N(µ). . . number of intersections of all triples of points.

As in the case of line segments we need to find out the parametric space X .

Proposition 4.4 Let
X = R× (−∞, 0]× (−∞, 0]. (4.14)

We have

(i) px ∈ L2(Pη), x ∈ X ,

(ii) SpLqN r(·) ∈ L2(Pη), p, q, r ∈ N0.

Proof. For the vector of characteristicsG({u1, . . . , un}) of given configuration {u1, . . . , un}
we can estimate

S({u1, . . . , un}) ≤ nπR2
0

L({u1, . . . , un}) ≤
(
n

2

)
2R0 ≤ 2R0n

2

N({u1, . . . , un}) ≤
(
n

3

)
≤ n3

and

E[exp(2x ·G(µ))] ≤
∞∑
n=0

e−Λ(E)Λ
n(E)

n!
e2x1nπR2

o+x24Ron2+2x3n3

.
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Similar to segments process according to D’Alembert criterion this serie converges for
x1 ∈ R, x2 ≤ 0, x3 ≤ 0 and X = R× (−∞, 0]× (−∞, 0]. For x ∈ X is px ∈ L2(Pη). The
second part of proof is analogous to Proposition 4.2.

4.3.2 Moments of characteristics

For the statistics from the previous Subsection it holds

S(µ) =
∑
y∈µ

s(y)

L(µ) =
1

2

∑
(y1,y2)∈µ2

̸=

l(y1 ∩ y2) (4.15)

N(µ) =
1

6

∑
(y1,y2,y3)∈µ3

̸=

I[y1∩y2∩y3 ̸=∅],

where s(y) is an area of a surface y and l(y1 ∩ y2) a length of intersection of two surfaces
y1 and y2 and I[y1∩y2∩y3 ̸=∅] is the indicator of an event that surfaces y1, y2, y3 intersect in a
single point. One can see that all of these characteristic are U−statistics of orders 1, 2, 3
respectively.

Recall a functional

Hm(η) = m logF (η) + log p(η), m = 1, 2, . . .

in (3.23) having in mind that the process µ with density px w.r.t. η is related by means
of logEFm(µ) ≥ EHm(η). Now consider the density (4.13) where

log px(y) = − log cx + x1S(y) + x2L(y) + x3N(y)

which is a finite Gibbsian form, cf. (3.25) with l = 3 non-constant terms. For F (y)
consider one of the three choices: F (y) = eS(y), eL(y), eN(y), accordingly we write
H1

m, H
2
m, H

3
m, respectively:

H1
m(η) = − log cx + (m+ x1)S(η) + x2L(η) + x3N(η)

H2
m(η) = − log cx + x1S(η) + (m+ x2)L(η) + x3N(η)

H3
m(η) = − log cx + x1S(η) + x2L(η) + (m+ x3)N(η)

In order to study the statistics Hp
m we need to investigate multivariate behavior of a

vector of U−statistics, i.e. for the process of surfaces in R3

(S(η), L(η), N(η)).

Using results from Section 3.2.1 we obtain the following proposition.
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Proposition 4.5 For the density (4.13) with parametric space (4.14) we have

ES(µ) =

∫
E

s(y)ϱ1(y;µ)Λ(dy)

ES2(µ) =

∫
E

s2(y)ϱ1(y;µ)Λ(dy) +

∫
E2

s(y1)s(y2)ϱ2(y1, y2;µ)Λ(d(y1, y2))

EL(µ) =
1

2

∫
E2

l(y1 ∩ y2)ϱ2(y1, y2;µ)Λ(d(y1, y2))

EL2(µ) =
1

2

∫
E2

l2(y1 ∩ y2)ϱ2(y1, y2;µ)Λ(d(y1, y2))

+

∫
E3

l(y1 ∩ y2)l(y1 ∩ y3)ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

+
1

4

∫
E4

l(y1 ∩ y2)l(y3 ∩ y4)ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

EN(µ) =
1

6

∫
E3

I[y1∩y2∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

EN2(µ) =
1

6

∫
E3

I[y1∩y2∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

+
1

2

∫
E4

I[y1∩y2∩y3 ̸=∅]I[y1∩y2∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+
1

4

∫
E5

I[y1∩y2∩y3 ̸=∅]I[y1∩y4∩y5 ̸=∅]ϱ5(y1, . . . , y5;µ)Λ(d(y1, . . . , y5))

+
1

36

∫
E6

I[y1∩y2∩y3 ̸=∅]I[y4∩y5∩y6 ̸=∅]ϱ6(y1, . . . , y6;µ)Λ(d(y1, . . . , y6))

ESL(µ) =

∫
E2

s(y1)l(y1 ∩ y2)ϱ2(y1, y2;µ)Λ(d(y1, y2))

+
1

2

∫
E3

s(y1)l(y2 ∩ y3)ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

ESN(µ) =
1

2

∫
E3

s(y1)I[y1∩y2∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

+
1

6

∫
E4

s(y1)I[y2∩y3∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

ELN(µ) =
1

2

∫
E3

l(y1 ∩ y2)I[y1∩y2∩y3 ̸=∅]ϱ3(y1, y2, y3;µ)Λ(d(y1, y2, y3))

+
1

2

∫
E4

l(y1 ∩ y2)I[y1∩y3∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+
1

2

∫
E5

l(y1 ∩ y2)I[y3∩y4∩y5 ̸=∅]ϱ5(y1, . . . , y5;µ)Λ(d(y1, . . . , y5))

Proof. Formulas for mean values follow from Theorem 3.5, formulas for second mo-
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ments from Theorem 3.7.

Proposition 4.6 Under the conditions of Proposition 4.5 we have

[ELNS(µ)] =
1

12

∫
E6

s(y1)l(y2 ∩ y3)I[y4∩y5∩y6 ̸=∅]ϱ6(y1, . . . , y6;µ)Λ(d(y1, . . . , y6))

+
1

6

∫
E5

s(y1)l(y1 ∩ y2)I[y3∩y4∩y5 ̸=∅]ϱ5(y1, . . . , y5;µ)Λ(d(y1, . . . , y5))

+
1

4

∫
E5

s(y1)l(y2 ∩ y3)I[y1∩y4∩y5 ̸=∅]ϱ5(y1, . . . , y5;µ)Λ(d(y1, . . . , y5))

+
1

2

∫
E5

s(y1)l(y2 ∩ y3)I[y2∩y4∩y5 ̸=∅]ϱ5(y1, . . . , y5;µ)Λ(d(y1, . . . , y5))

+
1

2

∫
E4

s(y1)l(y1 ∩ y2)I[y1∩y3∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+
1

2

∫
E4

s(y1)l(y1 ∩ y2)I[y2∩y3∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+

∫
E4

s(y1)l(y2 ∩ y3)I[y1∩y2∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+
1

2

∫
E4

s(y1)l(y2 ∩ y3)I[y2∩y3∩y4 ̸=∅]ϱ4(y1, . . . , y4;µ)Λ(d(y1, . . . , y4))

+

∫
E3

s(y1)l(y1 ∩ y2)I[y1∩y2∩y3 ̸=∅]ϱ3(y1, . . . , y3;µ)Λ(d(y1, . . . , y3))

+
1

2

∫
E3

s(y1)l(y2 ∩ y3)I[y1∩y2∩y3 ̸=∅]ϱ3(y1, . . . , y3;µ)Λ(d(y1, . . . , y3)).

Proof. Using Lemma 3.6 we can compute

12LNS(µ) = 12(LN)S =

 ∑
(u1,u2)∈µ2

̸=

l(u1 ∩ u2)
∑

(y1,y2,y3)∈µ3
̸=

I[y1∩y2∩y3 ̸=∅]

∑
z1∈µ

s(z1)

=

( ∑
(y1,...,y5)∈µ5

̸=

l(y1 ∩ y2)I[y3∩y4∩y5 ̸=∅] + 6
∑

(y1,...,y4)∈µ4
̸=

l(y1 ∩ y2)I[y1∩y3∩y4 ̸=∅]

+6
∑

(y1,y2,y3)∈µ3
̸=

l(y1 ∩ y2)I[y1∩y2∩y3 ̸=∅]

)∑
z1∈µ

s(z1).
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Now using the same consideration as in proof of Lemma 3.6 we obtain

12LNS(µ) =
∑

(y1,...,y6)∈µ6
̸=

s(y1)l(y2 ∩ y3)I[y4∩y5∩y6 ̸=∅]

+2
∑

(y1,...,y5)∈µ5
̸=

s(y1)l(y1 ∩ y2)I[y3∩y4∩y5 ̸=∅]

+3
∑

(y1,...,y5)∈µ5
̸=

s(y1)l(y2 ∩ y3)I[y1∩y4∩y5 ̸=∅]

+6
∑

(y1,...,y4)∈µ4
̸=

s(y1)l(y1 ∩ y2)I[y1∩y3∩y4 ̸=∅]

+6
∑

(y1,...,y4)∈µ4
̸=

s(y1)l(y1 ∩ y2)I[y2∩y3∩y4 ̸=∅]

+12
∑

(y1,...,y4)∈µ4
̸=

s(y1)l(y2 ∩ y3)I[y1∩y2∩y4 ̸=∅]

+6
∑

(y1,...,y5)∈µ5
̸=

s(y1)l(y2 ∩ y3)I[y2∩y4∩y5 ̸=∅]

+6
∑

(y1,...,y4)∈µ4
̸=

s(y1)l(y2 ∩ y3)I[y2∩y3∩y4 ̸=∅]

+12
∑

(y1,y2,y3)∈µ3
̸=

s(y1)l(y1 ∩ y2)I[y1∩y2∩y3 ̸=∅]

+6
∑

(y1,y2,y3)∈µ3
̸=

s(y1)l(y2 ∩ y3)I[y1∩y2∩y3 ̸=∅].

From Theorem 3.8 the statement follows.

Remark 4.1 Higher–order moments can be expressed by means of partitions rather than
in full detail. The product LNS in the sense of Proposition 3.9 corresponds to

12LNS(µ) =
∑

σ∈Π1,2,3

∑
(y1,...,y|σ|)

(l ⊗ I⊗ s)σ(y1, . . . , y|σ|)

and thus

12[ELNS(µ)] =
∑

σ∈Π1,2,3

∫
E|σ|

(l⊗ I⊗ s)σ(y1, . . . , y|σ|)ϱ|σ|(y1, . . . , y|σ|;µ)Λ
|σ|d((y1, . . . , y|σ|)),

where l ⊗ I⊗ s involves functions s(·), l(· ∩ ·), I[·∩·∩·̸=∅].

42



4.4 Limit behavior in Poisson and non–Poisson case

Let E ⊂ Rk and Λ as in Section 3.1. For l ≥ 1 and i = 1, . . . , l let ki ∈ N, f (i) ∈ L1(Λ
ki)

be symmetric nonnegative functions,

F (i)(η) =
∑

(y1,...,yki )∈η
ki
̸=

f (i)(y1, . . . , yki).

Consider Poisson processes ηa with intensity measures Λa = aΛ, a > 0. Following [23]
U−statistics

F (i)
a (ηa) =

∑
(y1,...,yki )∈η

ki
a ̸=

f (i)(y1, . . . , yki)

are transformed to
F̂ (i)
a = a−(ki− 1

2
)(F (i)

a − EF (i)
a ). (4.16)

The asymptotic covariances are

Cij = lim
a→∞

cov(F̂ (i)
a , F̂ (j)

a ) =

∫
T1F

(i)(x)T1F
(j)(x)Λ(dx), i, j ∈ {1, . . . , l}. (4.17)

The convergence under the distance between l-dimensional random vectors X, Y

d3(X, Y ) = sup
g∈H

|Eg(X)− Eg(Y )|,

where H is the system of functions h ∈ C3(Rl) with

max
1≤i1≤i2≤l

sup
x∈Rl

∣∣ ∂2h(x)

∂xi1∂xi2

∣∣ ≤ 1, max
1≤i1≤i2≤i3≤l

sup
x∈Rl

| ∂3h(x)

∂xi1∂xi2∂xi3

| ≤ 1

implies convergence in distribution. Based on the multi-dimensional Malliavin-Stein in-
equality derived in [32] for the distance d3 of a random vector from a centered Gaussian
random vector X with covariance matrix C = (Cij)i,j=1,...,l, [23] show that under the
assumption ∫

|T1F
(i)|3dΛ < ∞, i = 1, . . . , l, (4.18)

there exists a constant c such that

d3((F̂
(1)
a , . . . , F̂ (l)

a ), X) ≤ ca−
1
2 , a ≥ 1. (4.19)

Example 4.1 Consider the Poisson segment process on E introduced in Section 4.2. In
(4.17)

C11 =

∫
E

l(s)2Λ(ds), C22 =

∫
E

Λ({s : s ∩ t ̸= ∅})2Λ(dt),
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C12 = 2

∫
E

l(y)Λ({s : s ∩ y ̸= ∅})Λ(dy).

The assumption (4.18) transforms to conditions:∫
E

l(s)3Λ(ds) < ∞,

∫
E

Λ({s; s ∩ y ̸= ∅})3Λ(dy) < ∞.

The finiteness of the intensity measure Λ and the assumption D0 < ∞ in (4.9) guarantee

that all integrals are finite. Thus in this case for the random vector (F̂
(1)
a , F̂

(2)
a ) obtained

by transform (4.16) of
(L(ηa), N(ηa))

both the central limit theorem and the Berry-Esseen type inequality (4.19) hold.

Next we consider segment processes from Section 4.2 with D0 < ∞ and oi being centres
of segments. Let us focus on the process µa with density

px,a(y) = cx,ae
x1L(y)+x2N(y), y ∈ N (4.20)

with respect to the Poisson segment processes ηa with intensity aΛ. For illustration we
will derive second moments of U−statistics of segment point processes µa with x3 = 0.
From Proposition 4.3 we have

varL(µa) = a

∫
E

l2(y)ϱ1(y;µa)Λ(dy)

+ a2
∫
E2

l(y1)l(y2)
(
ϱ2(y1, y2;µa)− ϱ1(y1;µa)ϱ1(y2;µa)

)
Λ(d(y1, y2)),

(4.21)

varN(µa) =
1

2
a2
∫
E2

I[y1∩y2 ̸=∅]ϱ2(y1, y2;µa)Λ(d(y1, y2))

+ a3
∫
E3

I[y1∩y2 ̸=∅]I[y1∩y3 ̸=∅]ϱ3(y1, y2, y3;µa)Λ(d(y1, y2, y3))

+
1

4
a4
∫
E4

I[y1∩y2 ̸=∅]I[y3∩y4 ̸=∅]×

×
(
ϱ4(y1, . . . , y4;µa)− ϱ2(y1, y2;µa)ϱ(y3, y4;µa)

)
Λ(d(y1, . . . , y4))

(4.22)

and

cov(L(µa), N(µa)) = a2
∫
E2

l(y1)I[y1∩y2 ̸=∅]ϱ(y1, y2;µa)Λ(d(y1, y2))

+
a3

2

∫
E3

l(y1)I[y2∩y3 ̸=∅]

(
ϱ3(y1, y2, y3;µa)− ϱ1(y1;µa)ϱ2(y2, y3;µa))

)
Λ(d(y1, y2, y3)).

(4.23)
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We will also investigate

E(L(µa)− EL(µa))
3 (4.24)

= EL3(µa)− 3EL(µa)EL2(µa) + 2(EL(µa))
3

= a3
∫
E3

l(y1)l(y2)l(y3)
(
ϱ3(y1, y2, y3;µa)− 3ϱ2(y1, y2;µa)ϱ1(y3;µa)+

+ 2ϱ1(y1;µa)ϱ1(y2;µa)ϱ1(y3;µa)
)
Λ(d(y1, y2, y3))

+ 3a2
∫
E2

l2(y1)l(y2)
(
ϱ2(y1, y2;µa)− ϱ1(y1;µa)ϱ1(y2;µa)

)
Λ(d(y1, y2))

+ a

∫
E

l3(y)Λ(dy). (4.25)

Recall that

ϱ1(y1;µa) = Eλ∗
1(y1;µa) = Eex1(L(µa∪{y1})−L(µa))+x2(N(µa∪{y1})−N(µa))

= ex1l(y1)Eex2(N(µa∪{y1})−N(µa))

ϱ2(y1, y2;µa) = Eλ∗
2(y1, y2;µa) = Eex1(L(µa∪{y1,y2})−L(µa))+x2(N(µa∪{y1,y2})−N(µa))

= ex1(l(y1)+l(y2))Eex2(N(µa∪{y1,y2})−N(µa))

ϱ3(y1, y2, y3;µa) = Eλ∗
3(y1, y2, y3;µa) = Eex1(L(µa∪{y1,y2,y3})−L(µa))+x2(N(µa∪{y1,y2,y3})−N(µa))

= ex1(l(y1)+l(y2)+l(y3))Eex2(N(µa∪{y1,y2,y3})−N(µa)).

We assume x2 < 0, then ϱi are bounded nonincreasing in variable a for each yi, i = 1, 2, 3.
Let us define following random variables:

X1(µa) = N(µa ∪ {y1})−N(µa)

X2,3(µa) = N(µa ∪ {y2, y3})−N(µa)

X1,2,3(µa) = N(µa ∪ {y1, y2, y3})−N(µa).

We have

ϱ3(y1, y2, y3;µa) = ex1(l(y1)+l(y2)+l(y3))Eex2X1,2,3

ϱ1(y1;µa)ϱ2(y2, y3;µa) = ex1(l(y1)+l(y2)+l(y3))Eex2X1Eex2X2,3 .

The randomness of all variables X1(µa), X2,3(µa), X1,2,3(µa) is given through the process
µa and thus they are correlated and the only possibility of the equality

ϱ3(y1, y2, y3;µa) = ϱ1(y1;µa)ϱ2(y2, y3;µa)

is if x2 is equal to zero and the process µa is Poisson.

From the formulas of varL, varN and cov(L,N) we choose the standardized characteristics

L̂(µa) =
1

a
(L(µa)− EL(µa)) (4.26)

N̂(µa) =
1

a2
(N(µa)− EN(µa)). (4.27)
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We denote leading terms of variances, covariance and the third moment corresponding
to (4.21)-(4.25) for standardized characteristics

Ĉ11 =

∫
E2

l(y1)l(y2)
(
ϱ2(y1, y2;µa)− ϱ1(y1;µa)ϱ1(y2;µa)

)
Λ(d(y1, y2))

Ĉ22 =
1

4

∫
E4

I[y1∩y2 ̸=∅]I[y3∩y4 ̸=∅] ×

×
(
ϱ4(y1, . . . , y4;µa)− ϱ2(y1, y2;µa)ϱ(y3, y4;µa)

)
Λ(d(y1, . . . , y4))

Ĉ12 =
1

2

∫
E3

l(y1)I[y2∩y3 ̸=∅]

(
ϱ3(y1, y2, y3;µa)− ϱ1(y1;µa)ϱ2(y2, y3;µa))

)
Λ(d(y1, y2, y3)).

ML
3 =

∫
E3

l(y1)l(y2)l(y3)
(
ϱ3(y1, y2, y3;µa)− 3ϱ2(y1, y2;µa)ϱ1(y3;µa) +

+2ϱ1(y1;µa)ϱ1(y2;µa)ϱ1(y3;µa)
)
Λ(d(y1, y2, y3)).

Example 4.2 Let

E = [0, 1]2 × {2} ×
{
0,

π

2

}
, (4.28)

Λ(d(o, ϕ)) = do
1

2
(δ0 + δπ

2
)(dϕ), (4.29)

where o denotes the centre of the segment. The space E is constructed such that all
orthogonal segments have an intersection. We will compute Ĉ12 and ML

3 . Using the
variables X1, X2,3, X1,2,3, Lemma 2.2 and Lemma 3.1 for y ∈ E we have

Eµe
x2X1 = Eηe

x2X1p(η) =

cx,ae
−aΛ(E)

∞∑
n=0

an

n!

∫
E

. . .

∫
E

ex2(#{y∩{u1,...,un}})ex1L({u1,...,un})ex2N({u1,...,un})Λ(d(u1, . . . , un)).

(4.30)

The integration does not depend on locations of the fibres, for ui = (oi, ϕi) it holds in
(4.30)

Λ(d(u1, . . . , un)) =
1

2n

n∑
j=0

(
n

j

)
δ⊗j
0 ⊗ δ

⊗(n−j)
π
2

(dϕ1, . . . , dϕn), (4.31)

here ⊗ means the product or a power of measures. If y1 has an orientation π
2
then

Eµe
x2X1 = cx,ae

−a

∞∑
n=0

ane2nx1

2n

n∑
j=0

ex2(j+j(n−j))

j!(n− j)!
, (4.32)
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where j represents the number of segments perpendicular to the segment y1. From the
symmetry of the second sum one can see that the expectation does not depend on the
orientation of y1. Define S(k, z), z = {zj}kj=0, k ∈ N, as

S(k, z) =
k∑

j=0

ex2(j(k−j)+zj)

j!(k − j)!
. (4.33)

In the following we write briefly S(k, z) = S(k, zj). Here if zj does not depend on j, then
z is a constant vector. We have

Eµe
x2X1 = cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, j). (4.34)

For computing Eµe
x2X1,2 , y1, y2 ∈ E, we need to distinguish between two following situa-

tions

1. y1 ∩ y2 ̸= ∅. Then

Eµe
x2X1,2 = cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, n+ 1). (4.35)

2. y1 ∩ y2 = ∅. Then

Eµe
x2X1,2 = cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, 2j). (4.36)

Both of these situations occur with probability 1
2
.

Finally, for each triple (the case when some segments overlap has probability zero) of
points y1, y2, y3 ∈ E we have two different situations.

1. All three segments are parallel. Then

Eµe
x2X1,2,3 = cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, 3j). (4.37)

The second argument in S(n, 3j) represents the number of intersections with seg-
ments orthogonal to the segments y1, y2, y3. This situation has probability equal to
1
4
.
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2. Two of segments y1, y2, y3 are parallel and the third one is perpendicular. Then

Eµe
x2X1,2,3 = cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, n+ j + 2), (4.38)

where n+ j + 2 = n− j + j + j + 2 represents the number of intersections with the
segments y1, y2, y3. This has probability equal to 3

4
.

Using Cauchy product of two series we have

ϱ1(y1)ϱ1(y2)ϱ1(y3) = (4.39)

= c3x,ae
6x1−3a

(
∞∑
n=0

ane2nx1

2n
S(n, j)

)3

= c3x,ae
6x1−3a

(
∞∑
n=0

ane2nx1

2n

n∑
k=0

S(k, j)S(n− k, j)

)(
∞∑
n=0

ane2nx1

2n
S(n, j)

)

= c3x,ae
6x1−3a

∞∑
n=0

ane2nx1

2n

n∑
k=0

( k∑
m=0

S(m, j)S(k −m, j)

)
S(n− k, j). (4.40)

Analogously

ϱ1(y3)ϱ2(y1, y2) =
1

2
c2x,ae

6x1−2a

∞∑
n=0

ane2nx1

2n
×

×
( n∑

m=0

S(m,m+ 1)S(n−m, j) + S(m, 2j)S(n−m, j)

)
ϱ3(y1, y2, y3) =

1

4
cx,ae

6x1−a

∞∑
n=0

ane2nx1

2n

(
S(n, 3j) + 3S(n, n+ j + 2)

)
. (4.41)

In order to compare the terms we need to have the same power of the unknown constant
cx,a. Therefore we use the equality

1 = Ep(η) = cx,ae
−a

∞∑
n=0

ane2nx1

2n

n∑
j=0

ex2j(n−j)

j!(n− j)!
= cx,ae

−a

∞∑
n=0

ane2nx1

2n
S(n, 0)
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and we can express

ϱ1(y3)ϱ2(y1, y2) =
1

2
c3x,ae

6x1−3a

∞∑
n=0

ane2nx1

2n

n∑
k=0

( k∑
m=0

S(m, 2j)S(k −m, j)

+S(m,m+ 1)S(k −m, j)

)
S(n− k, 0)

ϱ3(y1, y2, y3) =
1

4
c3x,ae

6x1−3a

∞∑
n=0

ane2nx1

2n

n∑
k=0

k∑
m=0

(
S(m, 3j) +

+3S(m,m+ j + 2)

)
S(k −m, 0)S(n− k, 0). (4.42)

For the leading terms then it holds

Ĉ12 = c2x,ae
6x1−2a

∞∑
n=0

ane2nx1

2n

n∑
k=0

(
S(k, k + j + 2)S(n− k, 0)− S(k, k + 1)S(n− k, j)

)

ML
3 = 8c3x,ae

6x1−3a

∞∑
n=0

ane2nx1

2n

n∑
k=0

k∑
m=0

(
1

4
S(m, 3j)S(k −m, 0)S(n− k, 0)

+
3

4
S(m,m+ j + 2)S(k −m, 0)S(n− k, 0)

−3

2
S(m,m+ 1)S(k −m, j)S(n− k, 0)

−3

2
S(m, 2j)S(k −m, j)S(n− k, 0) + 2S(m, j)S(k −m, j)S(n− k, j)

)
.

Denote

bn =
n∑

k=0

(
S(k, k + j + 2)S(n− k, 0)− S(k, k + 1)S(n− k, j)

)
,

cn =
n∑

k=0

k∑
m=0

(
1

4
S(m, 3j)S(k −m, 0)S(n− k, 0)

+
3

4
S(m,m+ j + 2)S(k −m, 0)S(n− k, 0)

−3

2
S(m,m+ 1)S(k −m, j)S(n− k, 0)

−3

2
S(m, 2j)S(k −m, j)S(n− k, 0) + 2S(m, j)S(k −m, j)S(n− k, j)

)
,

dn =
n∑

k=0

S(k, 0)S(n− k, 0),

en =
n∑

k=0

k∑
m=0

S(m, 0)S(k −m, 0)S(n− k, 0).
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Evaluating cx,a and rating a variable

x(a) =
ae2x1

2

we obtain the desired quantities as ratios of two power series:

Ĉ12 = e6x1

∑∞
n=0 bnx

n(a)∑∞
n=0 dnx

n(a)
, ML

3 = 8e6x1

∑∞
n=0 cnx

n(a)∑∞
n=0 enx

n(a)
,

which can be expressed as single power series. Their coefficients can be evaluated nume-
rically. If the limit of Ĉ12 when a → ∞ is finite nonzero, then the standardization (4.26),
(4.27) is proper for a limit theorem, but when moreover the limit of ML

3 is nonzero for
some x1, x2, then the limit in distribution of (L̂(µa), N̂(µa)) for a → ∞ would not be
Gaussian.
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Chapter 5

Space–time models

In the next part of the thesis we return to random processes of interacting discs in
R2, see Subsection 4.1. Since the analytical treatment analogous to line segments and
circular surfaces is not available because of overlappings, we turn to the analysis based
on simulations. Moreover we involve temporal dynamics in the modeling, that means
space–time systems are investigated. To this purpose we apply some known algorithms
in an original way. Their descriptions follow in Section 5.1.

5.1 Sequential Monte Carlo methods

Sequential Monte Carlo methods are attractive class of simulation algorithms. They
serve to draw from the posterior distribution recursively and thus to evaluate long time
data. These methods are very flexible, easy to implement and applicable. Among these
methods we will use the particle filter (PF) which is described below as Algorithm I
and particle marginal Metropolis–Hastings algorithm (PMMH) described in Algorithm
II. More details, e.g. convergence theorems, generalisations of the model and applications
one can find in [9] and [24].

5.1.1 State space model

Consider a state space model (also known as Hidden Markov model) with

X = {Xt, t ∈ N0} (5.1)

being a Markov process in the state space Rd, having initial distribution with density
p(x0) and transition probability density p(xt|xt−1). The index t is interpreted as time.
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Assume that instead ofX we observe random variables {Yt, t ∈ N} which are conditionally
independent given {Xt, t ∈ N0} with conditional density g(·|x). The aim is to draw from
the posterior distribution p(x0:t|y1:t), and to evaluate expectations of a function ft on
Rd(t+1) :

E(ft) =
∫

ft(x0:t)p(x0:t|y1:t)dx0:t.

The notation X0:t = {X0, . . . , Xt}, Y1:t = {Y1, . . . , Yt} for the processes will be used and
analogously x0:t = {x0, . . . , xt}, y1:t = {y1, . . . , yt} for their realizations.

From the Bayes theorem we have

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)p(x0:t)dx0:t

.

Using this formula and Chapman–Kolmogorov theorem for Markov processes we obtain
that the so called filtering distribution p(xt|y1:t) satisfies recursion equations

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (5.2)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

,

since we have p(x0:t|yt, y1:t−1) ∝ p(yt|x0:t)p(x0:t|y1:t−1) from the conditional independence.

Analytical evaluation of the system (5.2) for large t is hardly possible. Therefore Monte
Carlo methods were developed. Among them the importance sampling (see [1]) is the
basic tool. Let q(x0:t|y1:t) be a proposal distribution such that for the supports it holds
that supp p(x0:t|y1:t) ⊂ supp q(x0:t|y1:t). Then

E(ft) =
∫
ft(x0:t)w(x0:t)q(x0:t|y1:t)dx0:t∫

w(x0:t)q(x0:t|y1:t)dx0:t

,

where

w(x0:t) =
p(x0:t|y1:t)
q(x0:t|y1:t)

is the importance weight. Simulating N independent identically distributed particles
{Xk

0:t, i = 1, . . . , N} according to q(x0:t|y1:t), we obtain a Monte Carlo estimate

ÊN(ft) =
N∑
i=1

ft(X
k
0:t)w̃

k
t , t = 1, . . . , T, (5.3)

with normalized importance weights

w̃k
t =

w(Xk
0:t)∑N

j=1w(X
k
0:t)

, i = 1, . . . , N.
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The convention is that whenever the index k is used, we mean for all k = 1, . . . , N, where
N is the number of particles (iid samples). Further w̃t = (w̃1

t , . . . , w̃
N
t ) are normalized

importance weights at time t, F(.|w̃t) is a discrete probability distribution with atoms
proportional to the weights and Ak

t−1 represents the index of the parent of the particle
Xk

1:t at time t− 1 for t = 2, . . . , T .

5.1.2 Particle filter

Unlike classical importance sampling, in sequential case the distribution of weights is
more and more skewed with increasing time t. The reason is that in common importance
sampling used for generating Xk

0:t at each time t we obtain a brand new sample, but in
case of sequential method we generate only according to transition kernel and this new
simulation is dependent on history of a given particle. That is why particles with higher
weights are favored and after a few times we have only one particle with non-zero weight.
This can be corrected by additional step. At the end of importance sampling all particles
are resampled according to their weights. In the other words we make a new sample from
existing particles according to the distribution given by the importance weights. It means
that some particles with lower weights can disappear and the other with high weights
will be replicated. Note that there are more methods used for resampling.

Algorithm I (PF):

1. Sample x0 ∼ p(x).

2. At time t = 1:

(a) sample Xk
1 ∼ qθ(.|y1),

(b) compute and normalize weights

w1(X
k
1 ) =

pθ(X
k
1 |x0)p(y1|Xk

1 )

qθ(Xk
1 |y1)

,

w̃k
1 =

w1(X
k
1 )∑N

m=1w1(Xm
1 )

.

3. At times t = 2, . . . , T :

(a) sample Ak
t−1 ∼ F(.|w̃t−1),

(b) sample Xk
t ∼ qθ(.|yt, X

Ak
t−1

t−1 ) and set Xk
1:t = (X

Ak
t−1

1:t−1, X
k
t ),
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(c) compute and normalize weights

wt(X
k
1:t) =

pθ(X
k
t |X

Ak
t−1

t−1 )p(yt|Xk
t )

qθ(Xk
t |yt, X

Ak
t−1

t−1 )
, (5.4)

w̃k
t =

wt(X
k
1:t)∑N

m=1wt(Xm
1:t)

.

5.1.3 Particle marginal Metropolis–Hastings algorithm

The previous algorithm is useful in case of the auxiliary (multidimensional) parameter θ
known or if we are able to estimate it properly. Specifically in our simulation study in
Chapter 5.4 we use maximum likelihood estimator for auxiliary parameters (this method
was described in [27]). Using the combination of particle filter and Markov chain Monte
Carlo algorithms (e.g. Metropolis–Hasting algorithm or Gibbs sampler plan) we can
estimate auxiliary parameter and the process Xt simultaneously. The properties and
applications of particle marginal Metropolis–Hastings algorithm one can find in [1].

Algorithm II (PMMH):

1. Initialization: i = 0,

(a) set θ(0) arbitrarily,

(b) run a sequential Monte Carlo (SMC) algorithm I targeting pθ(0)(x1:T |y1:T ),
sample X1:T ∼ p̂θ(0)(.|y1:T ) and let p̂θ(0)(y1:T ) denote marginal likelihood esti-
mate.

2. For iteration i ≥ 1:

(a) sample θ∗ ∼ q(.|θ(i− 1)),

(b) run a sequential Monte Carlo (SMC) algorithm I targeting pθ∗(x1:T |y1:T ),
(c) sample X∗

1:T ∼ p̂θ∗(.|y1:T ) and let p̂θ∗(y1:T ) denote marginal likelihood estimate,

(d) with probability

1 ∧ p̂θ∗(y1:T )p(θ
∗)

p̂θ(i−1)(y1:T )p(θ(i− 1))

q(θ(i− 1)|θ∗)
q(θ∗|θ(i− 1))

set θ(i) = θ∗, X1:T (i) = X∗
1:T and p̂θ(i)(y1:T ) = p̂θ∗(y1:T ), otherwise set

θ(i) = θ(i− 1), X1:T (i) = X1:T (i− 1) and p̂θ(i)(y1:T ) = p̂θ(i−1)(y1:T ).
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The estimation p̂(y1:n) of marginal likelihood p(y1:n) follows from the description of algo-
rithm. For all n ≤ T

pθ(x1:n, y1:n) = pθ(x1) ·
n∏

j=2

pθ(xj|xj−1) ·
n∏

j=1

gθ(yj|xj)

= pθ(x1:n−1, y1:n−1) · pθ(xn|xn−1) · gθ(yn|xn)

and

p(yj|y1:j−1) =

∫
p(x1:j, yj|y1:j−1) dx1:j =

=

∫
p(x1:j, y1:j)

p(y1:j−1)
dx1:j =

=

∫
p(x1:j, y1:j) ·

p(x1:j−1|y1:j−1)

p(x1:j−1, y1:j−1)
dx1:j =

=

∫
pθ(xj|xj−1)gθ(yj|xj)p(x1:j−1|y1:j−1) dx1:j,

where
pθ(xj|xj−1)gθ(yj|xj) = wj(x1:j)qθ(xj|yj, xj−1)p(x1:j−1|y1:j−1).

So finally we have

p(yj|y1:j−1) =

∫
wn(x1:j)qθ(xj|yj, xj−1)p(x1:j−1|y1:j−1) dx1:j.

Since particles in time j = 1 are obtained from the importance density qθ(x1|y1) and in
time j ≥ 2 approximately according to pθ(x1:j−1|y1:j−1)qθ(xj|yj, xj−1) (see [1], p. 272) it
is clear to see the MCMC estimation of pθ(yj|yj−1) as

p̂θ(yj|yj−1) =
1

N

N∑
k=1

wj(X
k
1:j)

An estimate of the marginal likelihood pθ(y1:T ) is given by

p̂θ(y1:T ) = p̂θ(y1)
T∏
t=2

p̂θ(yt|y1:t−1).
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5.2 Simulation of space–time model of random union

of interacting particles

For the union of interacting particles we developed a space–time generalization. The
realization of such union of particles in time t is both spatially dependent on the previous
configuration and also temporally dependent on the previous value of parameter xt−1.
Since our original motivation was to use particle filter to estimate parameters of such
union, the notation of the model is in compliance with Section 5.1. The simulation
algorithm is described for the union of interacting discs with statistics given by (4.7), but
it can be easily implemented for the other models. This research was published in [40].

Consider a process Y of interacting discs given by density (4.5) and vector of geometrical
characteristics (4.7). The generalization of Y to a space-time random set Y = {Yt, t =
0, 1, . . . , T} is based on state equations for the parameter vector. Let the parameter
x ∈ R4 develop in discrete time (upper index) as

x(t) = x(t−1) + γ(t), t = 1, 2 . . . , T, (5.5)

where x(0) fixed is given, γ(t) are i.i.d. Gaussian N (a, σ2I), random vectors with a ∈
R4, σ > 0.

Our basic assumption for the simulation study in Subsection 5.4.1 is the conditional
independence of Yt given x(t), c.f. Subsection 5.1.1. However it is possible to involve
more space-time dependence in the model within its simulation procedure. This partly
heuristic approach is described in this subsection.

The temporal dependence in the random set is defined within its simulation algorithm as
follows. We start the simulation of the time evolution of the process Y so that we choose
a fixed x(0) and according to (5.5) we simulate parameter vectors x(t), t = 1, 2, . . . , T.

Define Hastings ratio as in (4.12). Using the birth-death Metropolis-Hastings algorithm
MCMC, we simulate a realization y0 of the random set Y0 which is given by the density
(4.5) where x = x(0). In this part of the simulation, if y

(iter)
0 is the state at iteration iter,

we generate a proposal which is either a ”birth” y
(iter)
0 ∪ {v} of a new disc v with the

centre s and radius r or a ”death” y
(iter)
0 \ {vi} of an old disc vi = (oi, ri) ∈ y

(t)
0 . In the

case of a birth proposal, o and r are independent, o has a density proportional to the
intensity function ρ(o) and r follows the distribution Q(r) of the reference process. In

the case of a death proposal, vi is a uniformly randomly selected disc from y
(iter)
0 , and

each of these two proposals may arrive with probability α. Their acceptance depends on
the Hastings ratios Hx(y

(iter)
0 , v) and Hx(y

(iter)
0 \ {vi}, vi), respectively (the details of the

algorithm are described in [26]).

Then we simulate realizations yt, t = 1, 2 . . . , T, of the random sets Yt which have the
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density (4.5) with x = x(t). The algorithm described in the previous paragraph is used
again with a different way of adding a disc. Since Yt, t = 0, . . . , T, are aimed to be
dependent, the choice of a newly added disc v cannot depend on ρ and Q only, but also
on the previously simulated configuration yt−1. This dependence is ensured so that the
proposal distribution Propt at time t is a mixture

Propt = (1− β) · Prop(RP ) + β · Prop
(emp)
t−1 , β ∈ (0, 1),

where Prop(RP ) is a distribution of the reference process and Prop
(emp)
t−1 is the empirical

distribution obtained from the configuration yt−1. It means that (β×100)% of the added
discs are taken from the previous configuration and the remaining discs are simulated as
described for Y0, therefore the time dependence is stronger when β is bigger.

This method evokes a question how to determine the probability α of adding a disc
for t = 1, . . . , T. With probability β an added disc is taken from a finite set of discs
and it may happen that it is already involved in the configuration y

(iter)
t for the iter-th

iteration. Thus adding such a disc does not change the configuration and the death-part
of the algorithm is dominating.

Proposition 5.1 The choice of α so that the probabilities of deleting a disc and that of
adding a disc are the same is

α(iter) =
1

2− (β · n
(iter)
useddiscs

nyt−1
)
, (5.6)

where on the right side, n
(iter)
useddiscs is the number of discs from the configuration yt−1 which

are already obtained in the configuration y
(iter)
t in the iter-th iteration and nyt−1 is the

total number of discs in the configuration yt−1.

Proof. It is obvious that in order to fulfill the condition, α is changing with increasing
iterations iter depending on how many discs from the configuration yt−1 have been al-
ready added. We get α(iter), i.e. the parameter α for the iter-th iteration, by solving the
equation

1− α(iter) = α(iter)[(1− β) + β(1− n
(iter)
useddiscs

nxt−1

)].

Its solution yields (5.6).

The scheme of the simulating algorithm is then the following:

1. Choose a fixed x(0).
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2. Parameter vectors x(t), t = 1, 2, . . . , T, are simulated according to (5.5).

3. A realization y0 of Y0 is simulated.

4. For t = 1, . . . , T , use the following steps:

(a) Let y
(0)
t be the empty configuration.

(b) Suppose that y
(iter)
t is a configuration in the iter-th iteration.

(c) Calculate α(iter) according to (5.6).

(d) With probability α(iter), we propose adding a disc v so that

i. with probability β, v is chosen from the configuration yt−1, i.e. from the

distribution Prop
(emp)
t−1 ,

ii. else v is simulated from the distribution Prop(RP )

and with probability
min(1, Hx(y

(iter)
t , v))

this proposal is accepted, i.e. y
(iter+1)
t = y

(iter)
t ∪ {v}, else we set y

(iter+1)
t =

y
(iter)
t ,

(e) else we propose deleting a disc yi and with probability

min(1, 1/Hx(y
(iter)
t \ {yi}, yi))

the proposal is accepted, i.e. y
(iter+1)
t = y

(iter)
t \ {yi}, else we set y

(iter+1)
t =

y
(iter)
t .

(f) After a given number of simulations ITER, we set yt = y
(ITER)
t .

Analogously to [14] we obtain that the generated Markov chain is for each t aperiodic
and positive Harris recurrent and converges to the distribution of Yt.

A simple characteristics of the temporal evolution given by this algorithm consists in the
evaluation of the ratio of discs which remain at their place during some time interval.
For this purpose define

ρt =
2ns

t∑n−t
i=0 (ni + ni+t)

, t = 1, . . . , T,

where ns
t is the total number of the same circles present at times i and i + t (for all i)

and nj is the total number of circles observed at time j.

Figure 5.1 draws one realization of the process Y = {Yt, t = 0, . . . , 25} with x0 =
(1,−0.5,−1), a = (−0.07, 0.035, 0.07) and σ2 = 0.001. The window is a square of size
10 × 10. The distribution of radii Q is uniform on [0.2, 0.7] and the intensity function
ρ = 1 is a constant and the probability β = 0.5. The decrease of ρt for this simulated
model is shown in Table 5.1.
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Figure 5.1: Simulated model with time–dependent interacting discs, evolution in the
time t = 0, 5, 10, 15, 20, 25, x0 = (1,−0.5,−1), a = (−0.07, 0.035, 0.07), σ2 = 0.001, S is a
square of size 10× 10. Here Q is uniform distribution on [0.2, 0.7] and ρ = 1 is constant.

k 1 2 3 4 5 6
ρk 0.38 0.15 0.06 0.02 0.01 0.00

Table 5.1: The characteristics ρt of the temporal evolution of the simulated germ-grain
model from Fig.5.1.
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5.3 Statistics of the model with interacting particles

5.3.1 Maximum likelihood

The MLE method using MCMC simulations (MCMC MLE) is based on finding x̂ =
argmaxx∈Rd p(y|x), where the data y (i.e. realization of a planar random set Ỹ ) are rep-
resented by the vector G(Uy). However, since cx has no explicit expression, p(y|x)/p(y|x0)
for fixed x0 ∈ Rd is maximized instead, because in that case, we can use importance sam-
pling for approximatio ratio of normalizing constants. Log-likelihood ratio is then given
by

lx0(x) = log
p(y|x)
p(y|x0)

= (x− x0) ·G(y)− log
cx
cx0

≈ (x− x0) ·G(y)− log
1

n

n∑
i=1

exp{(x− x0) ·G(zi)}, (5.7)

where zi, i = 1, . . . , n, for a given n are realizations from p(.|x0) obtained by MCMC
simulations. The function (5.7) has simple analytical form, so the maximum likelihood
estimate is obtained as

x̂ = argmax lx0(x). (5.8)

5.3.2 Model checking

A discussion on the model fit is based on spherical contact distribution function. Given
a compact convex set B ⊂ R2 and a stationary planar random set Ỹ define

D = inf{r ≥ 0 : Ỹ ∩ rB ̸= ∅}.

Assuming P (D > 0) > 0 and that B is the unit disc, the spherical contact distribution
function is defined as

HB(r) = P (D ≤ r|D > 0), r ≥ 0.

A non-parametric estimator of HB for stationary Ỹ including edge-effect correction is

ĤB(r) =

∑
u∈L I[u∈/ Ỹ , u+rB⊂S, (u+rB)∩Ỹ ̸=∅]∑

u∈L I[u∈/ Ỹ , u+rB⊂S]

, (5.9)

where L is a regular lattice of test points.
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5.3.3 Envelopes

Consider a control function (statistic) M(r), e.g. the spherical contact distribution func-
tion, of the process Ỹ . According to [28] we introduce a graphical interpretation of a non-
parametric estimate of M(r). For each value r a confidence interval is constructed in the
following way. Consider a simple hypothesisH0 that the data correspond to the process Y .
For a given r > 0, letM0(r) = M(Y, r) denote M̂(r) obtained from the point process Ỹ ob-
served within the observation window S. Let M1(r) = M(Ỹ 1, r), . . . ,Mn(r) = M(Ỹ n, r)
be obtained from i.i.d. simulations of the process Ỹ 1, . . . , Ỹ n under hypothesis H0. Let

Mmin(r) = min{M1(r), . . . ,Mn(r)}, Mmax(r) = max{M1(r), . . . ,Mn(r)}. (5.10)

Under H0, for each r holds

P(M0(r) < Mmin(r)) = P(M0(r) > Mmax(r)) ≤
1

(n+ 1)

with equality if M0(r),M1(r), . . . ,Mn(r) are all different. The bounds Mmin(r) and
Mmax(r) are called the 100/(n + 1)%-lower and the 100/(n + 1)%-upper envelope at the
distance r > 0. For example, if we let n = 39, we obtain a 2.5% lower and a 97.5% upper
envelope, or we can also say we have 95% envelopes for the value M̂(r). The same tech-
niques are often used when instead of a simple hypothesis the fit of an estimated model
is checked. This is the so–called local test, recently in [15] global tests were developed.
The tests are not used in the thesis.

5.4 Simulation study

5.4.1 Independent time extension

Recall a generalization of Y to a space-time random set in discrete time is

Y = {Y0:T}, (5.11)

where Yt, 0 ≤ t ≤ T, are models with interacting particles having densities (4.5) with
vector of geometrical characteristics G = G2 in (4.8) and with the state vectors

xt = (x
(1)
t , . . . , x

(d)
t )

developing in time as realizations of a Markov process X0:T in Rd, d = 3. More precisely,
let Xt develop as a random walk

Xt = Xt−1 + γt, t = 1, . . . , T, (5.12)
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Figure 5.2: Simulated time–independent model with interacting discs, evolution in the
time t = 0, 5, 10, 15, 20, 25, x0 = (1,−0.5,−1), a = (−0.07, 0.035, 0.07), σ2 = 0.001, B is
a square of size 10×10. Here Q is uniform distribution on [0.2, 0.7] and ρ = 1 is constant.

where γt are i.i.d. Gaussian N (a, σ2Id) random variables, Id is the unit matrix of size d.
Here we consider θ = (x0, a, σ) ∈ R2d+1 as an unknown auxiliary parameter. Note that
since for any t = 1, . . . , T , Xt may acquire an arbitrary value from Rd, the distribution
of radii Q, see (4.6), must be chosen so that it fulfills the condition (4.2).

In this situation the only time dependence is given through the Markov chain (5.12), i.e.
given {Xt}, t = 1, . . . , T, the random sets Yt are conditionally independent.

As a criterion for quality of any estimator x̂1:t of x1:t, we will use the mean integrated
square error

MISE =
1

l

l∑
j=1

T∑
t=0

(x̂
(i)
t,j − x

(i)
t,true)

2, i = 1, 2, 3, (5.13)

where xt,true is the true value at time t and l is the number of simulated realizations of
Y, cf. (5.11).

5.4.2 Numerical results

We consider 19 simulated realizations of the process {Y0:25} as data for the statistical
analysis. At each time t we used the classical Metropolis-Hastings birth-death algorithm
(see e.g. [26]) to simulate the realizations from the true distribution (4.5). In this
simulation study, B is a square window of size 10 × 10, ρ = 1 and the distribution Q is
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uniform on [0.2, 0.7]. The parameter x0:25 is the same for all realizations generated as a
Gaussian random walk with x0 = (1,−0.5,−1), a = (−0.07, 0.035, 0.07) and σ2 = 0.001.
One selected simulation is drawn in Fig. 5.2 and the evolutions of its characteristics are in
Fig. 5.6. The characteristics of all 19 simulated realizations were used to the computing of
maximum likelihood estimator according to (5.8) and throughout as an input to PMMH
and PF.

Using the linear regression on MLE of xt, cf. [27], we obtained estimations xMLE
0 and

aMLE of x0 and a, respectively (see Table 5.3). The estimation σMLE is then obtained
from differences of MLE estimations as an empirical variance

s2 =
1

3T − 4

3∑
i=1

(
T∑
t=1

(
x̃
(i)
t

)2
− (T − 1)

(
x̄
(i)
t

)2)
(5.14)

of the sample of differences x̃
(i)
t = x

(i)
t − x

(i)
t−1, i = 1, 2, 3, see [40]. The denominator

responds to 3 × (T − 1) differences. The proposal density for PMMH is a Gaussian
random walk

q(·|θ) ∼ N (θ; 0.001)

and the prior distribution of θ is uniform with independent components on intervals with
endpoints given by 0 and double size of xMLE

0 , aMLE respectively. The total number
of iterations was 100 000, basic graphical diagnostics shows that this number is enough
for approaching the target distribution. The means and variances of estimated auxiliary
parameters are in Table 5.3.

In this section we review the PMMH estimator in two different ways. The first one is
numerical comparing given by MISE (5.13) where also the results for the PF method and
MLE are given (see Table 5.2). Here it is obvious that the best results are obtained by
PMMH which gives the lowest MISE for all parameters x(1), x(2) and x(3).

The second way is graphical (plots of estimates, spherical distribution function described
in Subsection 5.3.2 etc.). For simplicity denote R the realization from Fig. 5.2. The
comparison of true parameters x0:25 and ˆx0:25 computed for R are in Fig. 5.3, where we
can see that these two evolutions are very similar. The envelopes of all estimators based
on 19 realizations are in Fig. 5.4, where we observe that except for a few cases (x(2) in
later times), all the envelopes cover the true evolution of parameters and the envelopes
given by PMMH are the narrowest. It means again that this method gives the best results
in the sense of estimation variance.

In order to check the model we used the PMMH estimation of x0:25 for R to simulate a
set Rnew of 19 new realizations of {Y0:25}. One of these realizations is in Fig. 5.5. For R
the estimator ĤB(r) of spherical contact distribution function was computed in times t =
0, 5, 10, 15, 20 and 25. We avoided edge-effects by using subwindow [0.7, 9.3] × [0.7, 9.3].
The envelopes of ĤB(r), obtained from Rnew, given by pointwise maximum and minimum
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are presented in Fig. 5.7. Until time t = 15 the envelopes cover ĤB(r) for R while in later
times ĤB(r) for R lies on the lower envelope or slightly under the envelope. This small
misfit in spherical contact distribution function correspond with Fig. 5.2 and Fig. 5.5
where it can be seen that the intensity of discs in the simulated model is a little bit
higher than in the data in later times.

x(1) x(2) x(3)

MLE 2.645685 1.086167 1.550637
PF 4.010112 2.530336 2.503888

PMMH 1.0807717 0.9361609 0.5929558

Table 5.2: Square root of MISE obtained for all three methods used. The estimations
are based on 19 characteristics obtained from simulated realizations.

true MLE PMMH
mean s2 mean s2

1 1.08015 0.17412 1.07455 0.02527
x0 -0.5 -0.52289 0.06559 -0.57967 0.01067

-1 -0.98794 0.09270 -0.99238 0.01490
-0.07 -0.08049 0.01445 -0.07106 0.00183

a 0.035 0.05043 0.00544 0.06170 0.00066
0.07 0.06751 0.00714 0.06446 0.00111

σ2 0.001 0.09669 0.00366 0.01034 0.00015

Table 5.3: Mean and sample variance of estimations of auxiliary parameter θ = (x0, a, σ
2)

based on 19 realizations.

5.4.3 Some selected results for model with four parameters

At the beginning of our study of this topic we focused on a four parametric model of the
union of interacting discs with vector of characteristics G = G1 in (4.7), see [40]. We
compared maximum likelihood estimator and particle filter. Since from the results of the
section 5.4.2 a PF seems to be the worst estimator, we introduce here some results from
this older study just to show that it is not a general fact.

Consider again the model from Section 5.4.1 with d = 4. The reference process is a
Boolean model with intensity of the germs ρ = 1 and with radii of discs uniformly
distributed in the interval [0.2, 0.7]. We simulated discrete time realizations for t =
0, . . . , T = 11 with given x0 = (0.5,−0.25,−0.5, 0.5), a = (−0.1, 0.05, 0.1,−0.1), σ2 =
0.001, number of MCMC iterations ITER = 30 000 and a square window S of size 10×10.
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Figure 5.3: Comparison of true parameter x0:25 (full line) and the estimation x̂0:25 (dashed
line) obtained from the realization R using the PMMHmethod. The first plot corresponds
to the parameter x(1), the second one to x(2) and the last one to x(3).
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Figure 5.5: Simulated model with time–independent interacting discs, evolution at times
t = 0, 5, 10, 15, 20, 25 with parameter x̂0:25 obtained from PMMH for the realization R.
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Figure 5.6: Comparison of averaged geometrical characteristics of original 19 realiza-
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the spherical contact distribution function obtained from R.

The edge effects are not considered, the disc centres lie in S and the whole discs are
drawn and evaluated. We simulated a varying number of simulations l = 1, 5, 10, 39, 100,
where in each case the data of all simulations are summed. The estimation of auxiliary
parameters is the same as for Quermass model in section 5.4.2. The evolution of estimated
parameters for varying number of simluation are in Fig. 5.8, in Fig. 5.9 one can see
envelopes based on l = 39 simulations for MLE and PF respectively and finally the
results for MISE (5.13) with i = 1, . . . , 4 are given in table 5.4.

no. of simul. l = 5 l = 39
parameter PF MLE PF MLE

x
(1)
t 3.031 3.735 11.47 30.16

x
(2)
t 3.892 1.529 32.10 6.439

x
(3)
t 3.524 3.733 14.97 19.41

x
(4)
t 5.132 7.424 31.76 74.72

Table 5.4: A comparison of MISE for the estimation of parameter x using the methods
PF (particle filter) and MLE. Results for the number of simulations l = 5 and l = 39 are
presented.
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Figure 5.8: Comparison of true evolution of the parameter xt (full line) at times t =
0, 1, . . . , 11 with the estimations obtained from data added up of l = 1 (dashed), l = 10
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The plots correspond to the parameters x
(1)
t assigned to the area, x

(2)
t assigned to the

perimeter, x
(3)
t assigned to the number of connected components and x

(4)
t assigned to the

number of holes.
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Figure 5.9: Comparison of true evolution of the parameter xt (full line) at times t =
0, 1, . . . , 11 with its estimations obtained from the l = 39 simulations (dashed line as
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to the parameters x
(1)
t assigned to the area, x

(2)
t assigned to the perimeter, x

(3)
t assigned

to the number of connected components and x
(4)
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Chapter 6

Conclusion

In the theoretical part of the work we introduced U−statistics for point processes with
probability density function with respect to a Poisson point process. We derived equalities
for the first and the second moments and also for higher moments. Moreover formulas
for mixed moments of two and more different U−statistics were proved. These results
were aimed at explicit formulas for characteristics of union of interacting discs. Note that
since Papangelou conditional intensity has complicated expression even in case of density
in form (4.1) we are not able to compute it without using numerical methods.

The aim of the simulation study was to compare PMMH estimator of parameters of a
given space-time model with interacting discs, see (5.11) and (5.12), with the particle
filter estimator suggested in [40] and MLE studied in [27].

First note that in Section 5.4.3 we observed better performance of PF than of MLE (in
the sense of the variance), while the results for Quermass model are different. The proba-
ble reason is that the four-parametric model was investigated in [40] considering number
of components and number of holes separately instead of Euler-Poincare characteristic.
Simulations in four-parametric model then often worked with realizations with only one
component or zero holes, respectively, i.e. with the lowest possible values of those char-
acteristics, which lead to the undervaluation of the estimates of parameters from the
reasons described in [38].

Concerning PMMH estimator, it has smaller variability than both PF and MLE. Also the
values of MISE show advantage of the PMMH estimator. We can observe that the tangent
of PMMH estimators of x̂

(2)
0:25 slightly differs from the true evolution of the parameters,

so there is a small misfit in PMMH estimators at later times. Consequently, also the
realizations simulated from estimated parameters may differ a little bit from the original
ones. In order to quantify the presence of such a bias we used the spherical contact
distribution functions provide a difference between simulations with true and estimated
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parameters, especially at later times, but the misfit is again very small.

So the conclusion is that in the real data analysis when a single realization of a space-time
random set is available, PMMH may be recommendable.

There still remain some open questions like how to choose the right estimation method
in general or whether the properties of the introduced methods can be improved by using
some additional method, e.g. Takacs–Fiksel estimator ([8]). These questions are going
to be solve in further research.
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Appendix–Program comments

This thesis includes simulation and computation programs. Both programs were produced
in language C++.

Simulation of interacting line segments

The program (file segment interaction.cpp) generates the union of interacting line
segments with vector of geometrical characteristics (4.10). The intensity of the reference
points of Poisson process is a constant ρ, the distribution of lengths is uniform on [ex, var].

Inputs

Line 17 : maxs. . .maximum number of line segments (350 default)
Line 21 : IT. . . number of iteration of birth and death algorithm (100000 default).
Line 22 : ex. . . lower boundary of the uniform distribution of lengths (0 default).
Line 23 : var. . . upper boundary of the uniform distribution of lengths (0 default).
Line 314 : ρ. . . intensity of reference points (1.5 default).
Lines 315,316 : the side lengths of rectangle observation window (10, 10 default).
Lines 323− 325 : the parameter x.

Outputs

The outputs of programs are the text files including:

”lexmin.txt”. . . the coordinates of the reference points.
”length.txt”. . . the lengths of simulated segments.
”characteristics.txt”. . . the geometrical characteristics of the simulated union.

72



Remark 6.1 For the other choice of length distribution it is sufficient to change the
generating function (uniform default) in lines 194,213,352.

Particle Marginal Metropolis Hastings estimation

This program (file PMMH.cpp) was produced for Quermass interaction model of the
union of interacting discs in R2, but its construction allows us to use this program for
any three dimensional parametric model with intensity given by (4.1). The only problem
is a normalising constant cx, which is needed for computing the weights. Since this
normalising constant is, exept for the Poisson process, unknown we use the estimation of
ratio of normalising constants of two processes of discs (or other particles)

cx
cx0

with fixed process {X0}. The weights in step 2(b) of Algorithm I are normalized and thus
the ratios can be used instead of unknown normalizing constants. The auxiliary process
X0 was simulated using program from the page

http://math.feld.cvut.cz/helisova/02progr.html,

one realization is enclosed in CD. Note that suitable choice of auxiliary process has an
essential importance for quality of the estimation. It should be as close to real distribution
of the process as possible. In the remaining text of this section the inputs and outputs
of the program are described.

Inputs

Line 15 : Kpart. . . number of particles (1024 default).
Line 17 : ITERATION. . . number of iterations of Metropolis–Hastings (100000 default).
Line 18 : MTime. . . time development (default 25, time 0 is not included, it is considered
in auxiliary parameter).
Line 20 : Nint. . . the length of auxiliary chain X0 (75000 default).
Lines 27− 33 : p1. . . p7. . . boundaries of the prior distribution obtained from MLE.
Line 36 : prum. . . default 200, that means that the output is the average from each 200-
th estimation.
Lines 143− 156 : reading of input data: the realization of auxiliary process X0. The
files should have names ”area.txt”, ”length.txt” and ”ep.txt”, respectively.
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Lines 159− 173 : the observed geometrical characteristics of the estimated process. The
files should have names ”data1.txt”,”data2.txt” and ”data3.txt”, respectively.
Lines 177− 257 : the true values of parameter x. The program computes the integrated
square error.
Lines 276− 282 : the initial adjustment of auxuliary parameter θ. Based on MLE.

Outputs

The outputs of programs are the text files including:

”parameters mean200.txt” . . . the mean of estimations of auxiliary parameter.
”parameters deviation200.txt”. . . the deviation of the estimations of auxiliary parameter.
”ISE200.txt”. . . writes ISE for each 200−th iteration of the algorithm.
”ISEmean.txt”. . .mean of ISE.
”final.txt”. . . final estimation is a mean of all iteration.

Remark 6.2 To perform the common PF estimation it is sufficient to break (command
”break”) the process before the for-loop

for (IT = 1; IT < ITERATION; IT + +)

begins (line 477), i.e. after finishing the initialisation of PMMH.
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List of Abbreviations

η Poisson point process
µ point process, usually with density with respect to η
Λ the intensity measure of process η
λ∗
i the Papangelou conditional intensity of order i

B(E) the Borel σ-field on E
Dm

u1,...,um
difference operator of order m

E separable, locally compact space
G(Uy) vector of geometrical characteristics of Uy

L2(·) set of L2-integrable functions with respect to a measure ·
MCMC Markov Chain Monte Carlo
MISE mean integrated square error
MLE maximum likelihood estimator
Pη distribution of the process η
PF particle filter
PMMH particle marginal Metropolis–Hastings algorithm
Rd d-dimensional Euclidean space
TmF (u1, . . . , um) the expectation of Dm

u1,...,um
F with respect to η

T µ
mF (u1, . . . , um) the expectation of Dm

u1,...,um
F with respect to µ

Uy the union of all particles of configuration y
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