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I also wish to thank all my friends for their support at any stage of my life and
studies. To Michael, Dany, JF, Val, and many others. But I cannot mention my friends
without mentioning Ana. Of all the things I thought I would gain during this PhD, I
certainly didn’t think I’d gain the most amazing friendship. To this date, I still don’t
know if they put us in the same dorm room on purpose, but I am so glad they did. I
don’t think finishing this PhD would have been possible without her and her support,
the endless discussions in the middle of the night, and the billion coffees we drank
while listening to each other’s problems. Thank you, Ana, for being the best friend I
could ask for. I look forward to calling you Doctor.

Finally, and most importantly, I am incredibly grateful for my partner, Anthony.
I owe them this thesis, as they were the one to push me to take this position despite
knowing we would have to live apart for four years. I owe them the little confidence
I have, always cheering me on and forcing me to listen to the things I don’t want to
hear. I owe them the person and scientist I am becoming, thanks to their unconditional
acceptance while being unapologetically themself. I dedicate this work to you, my
stellar companion. I owe everything to your love and support.

iv



Title: Theory and observations of two stars undergoing strong interaction

Author: Camille Landri

Department: Institute of Theoretical Physics
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1. Introduction
Contrary to the common perception of stellar evolution, stars do not necessarily

evolve in isolation. Many stars are found in clusters or associations, in which they are
gravitationally bound to one or more companions. Alternatively, a large fraction of
stars evolve within “multiple systems”, which can range from binary systems containing
two stars to triple or more complex hierarchical arrangements. Such systems can either
form through the fragmentation of the same molecular cloud during star formation,
yielding tightly bound multiple systems, or through gravitational capture in relatively
dense stellar environments.

Several decades of observation show that stars commonly evolve in binary systems
(Moe & Di Stefano, 2017). In particular, close binary systems with separation ≲ 1 AU
often undergo evolutionary phases during which the two stars interact through tidal
forces or mass transfer. Such interactions are expected to significantly affect the
evolution of both the binary system and the stars and appear to be especially frequent
in binaries composed of one or more massive stars (e.g., Abt et al., 1990; Sana et al.,
2012). By altering stellar evolution, binary interactions produce a wide variety of
exotic stellar objects, such as stripped stars (Shenar et al., 2020; Drout et al., 2023)
or merger products (Schneider et al., 2019; Hirai et al., 2021). They may also result
in degenerate binaries containing at least one compact object (white dwarf, neutron
star, or black hole), which can produce various astrophysical transients due to accretion
processes (e.g., cataclysmic variables, X-ray binaries), exotic supernovae (Chevalier,
2012; Metzger, 2022), or gravitational waves in the case of double degenerate binaries
Tauris et al. (2017). Thus, close binaries follow different evolutionary paths that lead to
many well-documented astrophysical phenomena, and the study of stellar interactions
is extremely important to understand the conditions under which these transients arise.

1.1 Binary system
A binary system consists of two stars orbiting around their common centre of mass.
The most straightforward approach to describing a binary orbit is to consider the two
stars as point masses that only interact through the gravitational force. The motion of
the two stars then obeys Kepler’s first law and can be described with two ellipses of
semi-major axes 𝑎1 and 𝑎2, the same eccentricity 𝑒 and a common focal point centred
around the centre of mass of the binary, the so-called barycentre. In the rest frame of
one of the stars, the companion’s motion draws an ellipse of eccentricity 𝑎 = 𝑎1 + 𝑎2,
eccentricity 𝑒, and one focus centred around the static star. The distance 𝑟 between the
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two stars is given by:

𝑟 (𝜃) = 𝑎(1 − 𝑒2)
1 + 𝑒 cos 𝜃

, (1.1)

where 𝜃 is the true anomaly, the angle between the position of the star and its position of
closest approach (the periastron). The orbital period of the system 𝑃orb is then related
to 𝑎 and the mass of the stars 𝑀1 and 𝑀2 according to Kepler’s third law:

𝑎3

𝑃2
orb

=
𝐺 (𝑀1 + 𝑀2)

4𝜋2 , (1.2)

where𝐺 is the gravitational constant. Thus, the dynamics of binaries are tightly related
to the mass of their components, and it is possible to constrain the nature of the two
stars using their orbital parameters.

Figure 1.1: Illustration of the orbital motion of a pair of stars with masses 𝑀1 and 𝑀2.
Left: Binary orbit in the reference frame of the observer, the centre of mass is indicated
with a cross. Right: Binary orbit in the rest frame of the star of mass 𝑀1.

To determine the orbital and stellar parameters of a binary, it is necessary to resolve
the time evolution of the system through repeated observations. Since binary systems
exist in a broad range of configurations, different observational methods may be more
or less adapted to each specific case, which leads to a natural classification of binaries
based on their observability:

1. Visual binary: the orbital motion of the two stars is sufficiently wide to be
spatially resolved by a telescope. After enough measurements, one can obtain
the projection of the stars’ orbits onto the celestial sphere, from which one can
deduce the masses of the stars.

2. Astrometric binary: a special case of visual binaries where one of the stars is too
faint to be observed or outshined by its companion. The brighter star appears to
orbit empty space, but the motion of the two stars can be derived using precise
astrometric measurements.

3. Spectroscopic binary: the orbit is too small to be resolved visually, but the high
orbital velocities of the stars are measurable in their spectra. Except in cases
where the orbital plane is perpendicular to the observer’s line of sight, the motion
of each star has a radial component, which translates into periodic Doppler shifts
in their spectral lines.
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4. Eclipsing binary: the system inclination is such that the two stars obscure one
another during their orbit. The periodic decreases in brightness due to the eclipses
can be observed through photometric measurements, and allow to constrain the
orbital properties of the binary. In particular, the shape of the eclipse in the light
curve also yields constraints on the relative size of the two stars and the ratio of
their surface brightness.

Of course, some binary systems can be observed using multiple methods, in which case
the orbital parameters of the system can be more accurately derived. It is, for example,
relatively frequent for spectroscopic binaries to also show eclipses.

While most stars in wide binaries are expected to evolve in similar ways to isolated
stars, this is not necessarily true for stars in close binary systems, which have separation
≲ 1 AU. For stars with stellar radii of magnitude comparable to the binary separation,
Kepler’s laws (equation 2.3) do not hold anymore. For instance, the significant tidal
forces in such systems may cause the precession of the axis defined by the periastron
and apastron (apsidal precession), or of the spin axis of a star if it is misaligned with
the orbital rotation (axial precession). Close binaries are also expected to experience
phases of mass transfer, which drastically influence the stars. Thus, the point mass
approximation does not hold for close binary stars: they can no longer be estimated
as spherically symmetric, and the whole geometry and structure of the stars must be
accounted for.

1.1.1 Tidal interactions
Since the gravitational force varies with the distance to the attracting body, the gravi-
tational pull on a star exerted by its companion does not have the same strength across
the body of the star. This is particularly important for stars in close orbits, as the
tidal force from this gravitational gradient can significantly deform the stellar surface.
The part of the star that is closest to the companion experiences the strongest pull, so
the star elongates along the star-companion axis to reach its gravitational equilibrium
shape and forms so-called “tidal bulges”. Since the star is distorted along one direction
only, the phase lag between the bulge and the rotation of the star results in variations
in the observed shape according to the orbital phase of the binary. When the elongated
star has its longest axis perpendicular to the line of sight, it has a larger projected
area, and the received photometric flux from the star is higher. On the other hand, the
star appears smaller and dimmer when its elongation is aligned with the line of sight.
Therefore, the photometric flux of the binary is at its maximum when the elongated
star is observed “side on”, while it shows minima when it is observed “face on”. This
effect, which we illustrate in Fig. 1.2, is called “ellipsoidal variability” and results in
sinusoidal modulations of the observed flux of the binary.

The deformation of the star has several other effects. The gravitational equilibrium
shape of the distorted star constantly changes as it progresses in its orbits, and the star
must continuously rearrange. This adjustment cannot be instantaneous since the star
is not fully elastic, resulting in frequent misalignment between the tidal bulge and the
star-companion axis. The companion then exerts a net torque on the displaced bulges,
causing the rotational angular velocity of the star to slowly increase (or decrease if the
star was rotating faster than it was orbiting its companion) until it matches the orbital
angular velocity of the binary. The star then orbits its companion with the same side
facing the barycentre, and the tidal bulge remains aligned with the star-companion axis.
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Figure 1.2: Illustration of the effect of tidal distortion of a star in a binary system. Left:
Shape of the tidally distorted secondary depending on the orbital phase of the system.
The elongation of the star is apparent when observed side-on but inconsequential when
viewed from the front or back. Right: Ellipsoidal variations in the system’s flux due
to the distortion of the star. The minima corresponds to when the distorted star is seen
from its front or back, and the maxima when it is observed side-on.

Additionally, the orbit of the binary has to widen or shrink according to the loss or
gain of rotational angular momentum of the distorted star to conserve the system’s total
angular momentum.

If the binary system has an eccentric orbit, the orbital and rotational velocities of the
star can only be synchronised on average. Due to this eccentricity, the orbital angular
velocity of the system is not constant: it is slower at the apastron of the orbit (point of
furthest binary separation) and gets faster as it approaches the periastron. Therefore,
stellar rotation cannot be continuously synchronous with the orbit, leading to frequent
lags between the orbital and rotational velocities of the star. Around the apastron, the
torque on the non-spherical star will slow down its rotation but increase its orbital
angular velocity, which reduces the eccentricity but widens the periastron distance.
The opposite effect applies when the binary is at periastron, effectively decreasing the
apastron distance and further circularising the orbit. Similarly, a deformed star with a
misalignment between its spin axis and orbital rotation axis experiences gravitational
torques that may bring it to co-planar rotation.

The timescales of tidal effects are strongly dependent on the ratio between the size of
the orbit and the stellar radii, as well as the nature of the stellar envelope of the two stars
(Zahn, 1977). Turbulent friction in convective regions of stars is by far the most efficient
source of tidal friction and thus drives the tidal interaction in close binaries. For stars
with significantly convective envelopes, such as low-mass main sequence (MS) stars
or post-MS stars (e.g., red giants, AGB stars, and red supergiants), the circularisation
timescale of the binary is highly dependent on the ratio of the semi-major axis to the
stellar radius:

𝜏circ ≃
1

1.7 𝑓

(︃
𝑇1,eff

4500 K

)︃−4/3 (︃
𝑀1,env

𝑀⊙

)︃−2/3
𝑀1
𝑀⊙

𝑀1
𝑀2

𝑀1
𝑀1 + 𝑀2

(︃
𝑎

𝑅1

)︃8
yr, (1.3)

where 𝑇eff is the effective temperature of the distorted star of mass 𝑀1 and radius 𝑅1,
𝑀1,env is its envelope mass, 𝑀2 is the mass of the companion, 𝑎 is the separation of
the binary, and 𝑓 is a dimensionless parameter that depends on the convective and
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viscous processes and is of the order of unity. On the other hand, some stars have a
radiative envelope and convection only occurs in their core, such as massive MS stars.
In this case, the radius dependence of the circularisation timescale increases and can
be approximated with:

𝜏circ ∝ (𝑎/𝑅1)13/2(𝑅1/𝑅core)7, (1.4)

where 𝑅core is the radius of the core.

1.1.2 Mass transfer
Let’s consider a test particle orbiting a binary system composed of two stars of masses
𝑀1 and 𝑀2 separated by a distance 𝑎. Assuming the binary has reached circular
and synchronous rotation, and neglecting the Coriolis force, the forces exerted on
the particle can be estimated in the co-rotating frame of the binary using the Roche
potential:

Φ𝑅 (𝑟) = − 𝐺𝑀1

|𝑟 − 𝑟1⃗ |
− 𝐺𝑀2

|𝑟 − 𝑟2⃗ |
− |�⃗� × 𝑟 |2

2
, (1.5)

where the first two terms are the gravitational potential from the two stars, and the third
term is due to the centrifugal force appearing in the rotating frame. Here, 𝑟1⃗ and 𝑟2⃗
describe the position of the centres of mass of the stars, 𝑟 is the distance between the
particle and the rotation axis of the binary, and 𝜔 is its orbital angular velocity of the
binary:

�⃗� ≡ 2𝜋
𝑃orb

�̂� =

√︂
𝐺 (𝑀1 + 𝑀2)

𝑎3 �̂�, (1.6)

where �̂� is a unit vector perpendicular to the orbital plane. To determine how the test
particle behaves around the binary, one can find the surfaces of constant Φ𝑅 by scaling
all the variables in equation 1.5 in terms of total mass 𝑀1 + 𝑀2 and separation 𝑎.
The shape of the Roche equipotentials only depends on the mass ratio of the binary
𝑞 = 𝑀1/𝑀2, but their scale relative to the size of the stars is determined by the binary
separation. We show an example of the Roche geometry for 𝑞 = 3 in Fig 1.3, where we
can distinguish different equipotential shapes depending on the distance to the binary.
Far from the system, the equipotentials draw a simple closed surface encompassing both
stars. Closer to the binary, the equipotentials become more complicated and draw two
regions of maximum potential on each side of the binary, while the potential describes
a peanut-shaped region when the particle gets closer to the two stars. At a critical value
of Φ𝑅, the equipotential draws two tear-drop lobes centred around each star, called
Roche lobes, which connect through one point along the axis connecting the two stars.
Inside these two regions, the equipotentials draw closed surfaces around each star.

The Roche geometry also describes five points of null Roche potential gradient, the
Lagrange points, which are saddle points where the gravitational forces balance the
centrifugal force. The first Lagrange point, L1, is found at the intersection of the two
Roche lobes, L2 and L3 are positioned along the axis connecting the two stars, on each
side of the binary, and L4 and L5 are found on each side of the axis connecting the two
stars.

For binary systems, the regions of greatest interest in the Roche geometry are
those described by the Roche lobes. The motion of the gas inside each Roche lobe is
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Figure 1.3: Roche equipotential in the orbital plane of a binary system with stars of
mass 𝑀1 and 𝑀2 such that the mass ratio is 𝑞 = 3. The colour gradient represents
different values of the Roche potential Φ𝑅, from small values (Φ𝑅 ≫ 0) in dark purple
to values close to 0 (Φ𝑅 ≲ 0) in light blue.

dominated by the gravitational potential of the star at the centre of the lobe, but if a
parcel of gas approaches the critical surface, it may leave its Roche lobe. In particular,
matter approaching the L1 point may flow from one lobe to the other instead of leaving
the inner region. Therefore, if matter from a star in a binary somehow reaches the
surface of the Roche lobe, it is generally predicted that the system will undergo a phase
of mass transfer.

Roche lobe overflow

A star can overfill its Roche lobe when it expands during its evolution or if the orbit
of the binary shrinks as it loses angular momentum. Stars generally evolve while
maintaining their hydrostatic equilibrium: the inward gravitational force is balanced by
the outward pressure gradient, such that surfaces of constant potential match surfaces of
constant pressure and the stellar surface always coincides with an equipotential surface.
Similarly, a star in hydrostatic equilibrium in a binary system has a stellar surface
coinciding with a Roche equipotential. However, hydrostatic equilibrium cannot be
maintained once the stellar surface reaches the equipotential defining its Roche lobe,
as the equipotential surface around L1 allows matter to leave its current lobe and flow
to the adjacent one. At this point, matter from the overflowing star (the donor) flows
through the L1 point to the second Roche lobe and may be accreted by the second
star (the accretor). This mechanism of mass transfer is known as Roche lobe overflow
(RLOF).

To estimate whether a star is under or overfilling its Roche lobe, one can compare
the volume of the star and its Roche lobe. For simplicity, the volume of the Roche
lobe is often estimated using a sphere of equivalent volume defined by a Roche lobe
radius 𝑅𝐿 , which can be empirically fitted to the real Roche lobe volume. There exist
several methods to determine 𝑅𝐿 depending on the mass ratio of the system, though the
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most common, and the one used in this thesis, was derived by Eggleton (1983a) and is
accurate to a least 1% for any mass ratio:

𝑅𝐿,1 =
0.49𝑎

0.6 + 𝑞−2/3 ln
(︁
1 + 𝑞1/3)︁ or 𝑞 ≡ 𝑀1

𝑀2
. (1.7)

Thus, mass transfer through RLOF is mostly relevant for close binaries where the size
of the Roche Lobe and the stellar radii are comparable. One can classify binaries
according to their tendency to undergo RLOF, distinguishing three types of systems
(Kuiper, 1941; Kopal, 1955):

• Detached binaries: Both stars underfill their Roche
lobes (𝑅1 ≪ 𝑅𝐿,1, 𝑅2 ≪ 𝑅𝐿,2)

• Semi-detached binaries: One star fills its Roche
lobe while its companion remains inside its Roche
Lobe (𝑅1 ≳ 𝑅𝐿,1, 𝑅2 ≪ 𝑅𝐿,2)

• Contact binaries: Both stars fill their Roche lobe
and share an envelope (𝑅1 ≳ 𝑅𝐿,1, 𝑅2 ≳ 𝑅𝐿,2)

As it was derived here, mass transfer through RLOF is a fairly idealised process: it
can conserve mass and momentum and requires that the orbit has been tidally synchro-
nised and circularised. In reality, it is unlikely to be an exactly conservative process,
and one should expect mass and angular momentum loss during mass transfer. For
instance, it is possible for the transferred mass to not be fully accreted by the second star
and leave the second Roche lobe (e.g., Lu et al., 2023): it may be re-emitted through
isotropic winds or a spiral stream flowing out of the system through the vicinity of the
L2 point.

The donor might also exhibit stellar winds, which can drive the mass transfer
process. If the winds are fast enough to escape the potential of the binary, part of these
winds can be accreted by the companion through wind-fed accretion (Bondi-Hoyle-
Lyttleton accretion). This process is generally inefficient at transferring mass: much of
the wind escapes the system without being accreted by the secondary star, also leading
to considerable losses of angular momentum. On the other hand, some stellar winds
are not fast enough to escape the potential of the binary and stay mostly confined within
the Roche lobe of the donor. In such cases, the wind is focused towards the orbital plane
of the binary and beamed towards the companion (Mohamed & Podsiadlowski, 2007),
transferring matter to the secondary through the L1 point. This mechanism, which
we illustrate along with regular RLOF in Fig 1.4, is called wind-RLOF and is mostly
relevant for binaries containing AGB stars, which drive slow and dense dusty winds,
especially when the binary separation is too large for regular RLOF to be efficient.

1.2 Evolution of close binaries
Tidal interactions and phases of mass transfer both have a significant impact on the
evolution of close binaries. Tidal interactions mostly affect the orbital evolution of the
system, as they tend to synchronise the stellar rotation with the orbit and circularise
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Figure 1.4: Main processes through which mass can be transferred from one Roche
lobe to the other through the L1 point. Left: RLOF, the donor star fills its Roche lobe
through evolutionary processes. Right: Wind-RLOF, the slow winds of the donor fill
its Roche lobe and are focused on the orbital plane and beamed towards the accreting
star.

eccentric orbits. However, tidal synchronisation may impose high stellar rotation,
which can mix the envelope layers and reduce the chemical gradient inside the rotating
star, thus impacting its evolution. In cases of extreme mixing, the star may evolve
as approximately chemically homogeneous, with no distinction between the core and
the envelope, and contract as it burns Hydrogen across its whole interior. Such stars
experience a different evolution than a single star of the same mass and are more
compact, hotter, and more luminous (Maeder, 1987). On the other hand, mass transfer
is known to strongly impact both the orbital and stellar evolution of the binary. The
effect of mass transfer strongly depends on the stability of the process as well as the
phase of stellar evolution of the affected stars. Additionally, the ensuing accretion by
the companion star is expected to affect the structure of the accretor and often involve
accretion discs, which are common sources of astrophysical transients.

1.2.1 Mass transfer stability
The stability of mass transfer through RLOF depends on the evolution of the radius of
the donor 𝑅𝑑 and its Roche lobe radius 𝑅𝐿 throughout the phase. While it becomes
much more complicated for non-conservative mass transfer, one can derive standard
stability criteria for RLOF by comparing the change in 𝑅𝑑 and 𝑅𝐿 during mass transfer.
We can parameterise the reaction of 𝑅𝐿 to the mass loss through:

𝜁L ≡ 𝑑 log 𝑅L
𝑑 log𝑀𝑑

, (1.8)

so that 𝜁L is positive for a shrinking Roche lobe. 𝜁L is only dependent on changes in
the binary separation 𝑎 and mass ratio 𝑞, which are described by the orbital evolution
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of the system:

2
�̇�

𝐽
=
�̇�

𝑎
+ 2

�̇�1
𝑀1

+ 2
�̇�2
𝑀2

− �̇�1 + �̇�2
𝑀1 + 𝑀2

− 2𝑒�̇�
1 − 𝑒2 , (1.9)

here 𝐽 is the angular momentum of the binary, and we have neglected the spin of the
stars. In the case of conservative mass transfer, we set �̇� = 0 and �̇�𝑎 = −�̇�𝑑 , and the
orbital evolution is described with:

�̇�

𝑎
= 2

(︃
𝑀d
𝑀a

− 1
)︃
�̇�d
𝑀d

. (1.10)

Using a simplified formulation of equation 2.4 we can derive:

𝜁L = 2.13𝑞 − 1.67, for 𝑅L ≈ 0.44𝑎
𝑞0.33

(1 + 𝑞)0.2 (1.11)

for 𝑞 = 𝑀d/𝑀a < 10. Therefore, the change in 𝑅𝐿 during RLOF can be reduced to
a mass ratio dependence, and the Roche lobe generally shrinks for mass ratios above
unity. Of course, this simplification does not apply to non-conservative mass transfer,
where equation 1.9 and 𝜁L become more complicated functions of the mechanisms of
mass and angular momentum loss. Estimating the change in donor radius 𝑅𝑑 requires
a more careful approach because it is dictated by the response of the donor to the
perturbation of its equilibrium. The mass loss during RLOF perturbs the hydrostatic
equilibrium (HE) of the donor, which then adjusts its structure over its dynamical
timescale 𝜏dyn. This timescale is generally much shorter than the timescale over
which the star undergoes thermal readjustments, so the donor should recover its HE
without significantly changing its thermal structure. The response of the donor to the
perturbation of its HE can thus be approximated as adiabatic (e.g., Soberman et al.,
1997) and be defined as:

𝜁ad ≡
(︃
𝑑 log 𝑅
𝑑 log𝑀

)︃
ad
. (1.12)

𝜁ad mostly depends on the structure of the donor, particularly on the dominant mecha-
nism of energy transport in the envelope. As mass transfer suddenly removes the outer
layers of the envelope, the layers underneath are decompressed and expand adiabatically
to reach HE. Convective envelopes, by definition, have a nearly adiabatic structure, so
the expansion of the uncovered layer is expected to increase the radius of the donor
(Hjellming & Webbink, 1987), yielding 𝜁ad ≲ 0. On the other hand, radiative envelopes
have steeper density gradients at the surface, and the uncovered layers are relatively
denser than for convective envelopes. As a result, the adiabatic response of a radiative
envelope leads to a more compact structure and a smaller radius, and 𝜁ad ≫ 0. We
note that these simple estimations rest on the assumption that the donor will respond
adiabatically to mass loss, which is not necessarily true and can lead to unnecessarily
restrictive conditions for stable mass transfer (e.g., Passy et al., 2012; Pavlovskii &
Ivanova, 2015a; Temmink et al., 2023). Using the assumption of adiabatic response for
the donor, one determines the stability of the mass transfer by simply comparing 𝜁ad
and 𝜁L:

• 𝜁ad ≳ 𝜁L: the donor either shrinks faster or expands slower than the Roche lobe
does, and the mass transfer phase is considered to be dynamically stable. The
mass transfer can then be driven by the slow expansion of the donor on its nuclear
timescale or be regulated by thermal readjustments of the star.
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• 𝜁ad < 𝜁L: the donor is unable to stay inside its Roche lobe, starting a phase
of runaway mass transfer. This can happen in binaries with very large mass
ratios or when the donor has a deep convective envelope (e.g., red giants and red
supergiants). Dynamically unstable phases of mass transfer are generally thought
to result in a phase of common envelope evolution, during which the accretor
plunges into the donor’s envelope.

Common envelope evolution

Common envelope evolution (CEE) is a phase of binary evolution where one of the
stars is engulfed and spirals into the envelope of its companion (Paczynski, 1976). It
can be broadly divided into four stages, from the initial loss of orbital stability to the
formation of the post-CEE system.

CEE starts with a steepening decay of the orbit, which is generally triggered by a
dynamically unstable phase of mass transfer where the donor cannot stay contained in
its Roche lobe. This is most common for donors expanding in the giant phase, with a
convective envelope, but can also happen for donors with radiative envelopes in high
mass ratio binaries, where the Roche lobe shrinks faster than the donor. CEE can also
arise in asynchronous binaries where the Darwin instability occurs and tidal forces
dramatically shrink the orbit. This instability is relevant for binaries where the rotation
angular momentum of the more massive star is greater than one-third of the orbital
angular momentum of the system (Darwin, 1879a; Hut, 1980b), which generally occur
in binaries with very large mass ratios.

As the orbit tightens, the companion eventually plunges into the envelope of the
donor star and orbit its core. The drag between the companion and the gas in the
envelope decreases the orbital angular momentum of the companion, which further
tightens the orbit and causes the companion to spiral in the envelope. The release
of gravitational energy heats the surrounding envelope which then expands and can
become fully or partly unbound from the system. The inspiral phase is therefore driven
by a mechanical transfer of energy and essentially occurs on the dynamical timescale
of the envelope. Depending on the nature of the system, this phase can eject the whole
envelope of the donor and result in a tight binary composed of the companion and the
core of the donor, or the inspiral phase can transition to a slower inspiral or a merger.
In case of a merger, the mass ejection during the inspiral appears to cause an increase
in luminosity of the system, which is commonly called luminous red nova (e.g., Soker
& Tylenda, 2006; Ivanova et al., 2013a; Pejcha et al., 2016a; Ivanova et al., 2013b)

If the rapid inspiral does not eject the whole envelope of the donor, it is possible
that the envelope is sufficiently expanded to slow down the inspiral, and the envelope
close to the binary might start co-rotating with the binary, further reducing the orbital
energy dissipation. Then, the non-ejected envelope has time to thermally adjust to
a new equilibrium, so that energy is radiated away at its surface at the same rate as
orbital energy is released by the inspiral. The slower inspiral is then kept stable by
the equilibrium between the heat released by the orbital decay and the energy loss at
the surface. This phase, called “self-regulated inspiral” (Meyer & Meyer-Hofmeister,
1979), occurs on the thermal timescale of the common envelope, and is therefore much
slower than the previous phases of CEE. It is expected to end either in a merger, if the
quasi-steady state of the inspiral is perturbed, or in a short-period binary if the system
was able to eject the rest of the envelope, e.g. through pulsations and winds (Clayton
et al., 2017a; Glanz & Perets, 2018a).
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Figure 1.5: Illustration of a system undergoing common envelope evolution starting
from unstable mass transfer. The accretor plunges into the envelope of the companion,
starting a phase of dynamical inspiral, until the orbit stabilises. The outcome of the
ensuing slow inspiral phase depends on the amount of envelope ejected during the
process, it should generally result in a merger or a close binary.

CEE is not always expected to follow these phases specifically, e.g. a second phase
of dynamical inspiral might happen after the self-regulated inspiral or the self-regulated
phase might not occur at all. But overall, CEE has two possible outcomes, which we
summarise in Fig 1.5: the donor core and companion can merge, or the envelope is
fully ejected and leaves a short-period binary behind. Thus, CEE can produce a wide
variety of tight binary systems, which can later produce transients (e.g., cataclysmic
variables, X-ray binaries), become gravitational waves sources (e.g., Klencki et al.,
2021a; Marchant et al., 2021a) or produce exotic supernovae (e.g., Chevalier, 2012).
As such, CEE is an important process of binary evolution, and large efforts have been
put into constraining its outcomes and the envelope ejection efficiency.

The outcome of CEE is often approximated through simple formalisms, for instance
by parametrising the efficiency of the transfer of orbital energy to unbind the envelope
(“𝛼-formalism”, van den Heuvel 1976; Webbink 1984) or the difference of angular mo-
mentum due to mass loss between pre- and post-CEE states (“𝛾-formalism”, Nelemans
et al. 2000). While these approximations of CEE are useful for quick binary evolution
estimates, e.g. for population models, it is clear that they widely neglect the details of
the physical interaction between the two stars, which are still fairly unconstrained and
strongly dependent on the initial conditions of the CEE. CEE is therefore best studied
through 1D and 3D numerical simulations. However, due to the enormous range of
time and length scales involved, numerical studies of CEE are always restrained to
specific phases of the CEE process and often involve considerable assumptions.

In particular, it is still unclear which physical processes play a significant role
in the envelope ejection and tightening of the orbit. For instance, the contribution
of recombination energy to the unbinding of the envelope is still an open question
(Ivanova, 2018; Soker et al., 2018, e.g.,), and the relevance of dust formation for the
ejection of the envelope and the ensuing transient is uncertain (González-Bolı́var et al.,
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2022; Bermúdez-Bustamante et al., 2024). Similarly, the evolution of the binary and
ejected envelope after the dynamical inspiral is fairly unconstrained (Gagnier & Pejcha,
2023, 2024). Thus, despite considerable effort in constraining the initial conditions
and the relevant physical processes involved in the envelope ejection, the evolution of
the ejecta and the associated transient, CEE is far from being understood (e.g., Röpke
& De Marco, 2023).

1.2.2 Impact on stellar evolution
Interacting binaries do not necessarily follow a well-defined evolutionary path, as the
effect of mass transfer and tidal interactions depends on a variety of parameters and
physical processes (e.g., metallicity, rotation, convection). We can, however, estimate
the effect of the different phases of mass transfer on both stellar components separately
from relatively simple assumptions on stellar structure and evolution.

Since stars can expand and fill their Roche lobe on multiple occasions during their
lifetime, mass transfer can occur at different stages of stellar evolution. The structure
of the donor changes as it evolves, which affects its response to mass loss, therefore we
can distinguish three cases of mass transfer depending on the phase of stellar evolution
they disturb. Case A mass transfer corresponds to when the donor undergoes RLOF
during its MS, Case B occurs when the Hydrogen in its core is depleted, and Case C
after the end of core Helium burning. A binary system can undergo several phases of
mass transfer at different stages of their stellar evolution, e.g., stars can undergo Case B
mass transfer after Case A mass transfer. Additionally, the accretor of the mass transfer
phase may later evolve and overfill its Roche lobe, becoming the donor of a new phase
of mass transfer.

The convective processes in the envelope of the donor play a significant role in
determining its response to mass loss, so Case B is generally separated into early Case
B and late Case B to distinguish evolutionary phases where the star is only starting to
develop its convective envelope from phases where the envelope is fully convective.
During late Case B and Case C mass transfer, the donor has a deep convective envelope
that expands in response to mass loss (Hjellming & Webbink, 1987). Conservative
mass transfer is therefore expected to be unstable according to the criteria derived in
Section 1.2.1 and commonly lead to CEE. On the other hand, Case A and early Case B
occur when the donor has a significantly radiative envelope, and the binary is expected
to undergo stable thermal timescale mass transfer that can be assumed to be broadly
conservative.

Case A mass transfer is generally expected to first occur rapidly on the thermal
timescale of the donor, during which the radiative envelope of the donor contracts and
its luminosity decreases in response to the mass loss. This fast phase of mass transfer
continues until the donor becomes less massive than the accretor, and can then relax
into TE and fit within its Roche lobe. Afterwards, the binary transitions to a slower
phase of mass transfer driven by the expansion of the donor on its nuclear timescale,
until the end of the MS phase of the donor. Due to its much longer evolution timescale,
most detached binaries are expected to be observed in the slow phase of Case A mass
transfer, in which case they are referred to as Algol-type systems. After experiencing
Case A mass transfer, the donor is expected to appear more luminous and expanded
than an isolated star of the same mass.

Early Case B mass transfer generally starts when the donor leaves the MS phase and
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expands to regain the TE lost when the core stopped burning Helium. The expansion
of the envelope substantially decreases its thermal timescale, yielding a rapid thermal
mass transfer phase that is faster than during Case A mass transfer. Furthermore, the
donor expands on timescales much faster than the nuclear timescale, so Case B mass
transfer does not show a second slower phase and instead continues after the mass ratio
has been reversed at a high rate until most of the donor’s envelope has been transferred.
At this point, the fast stripping of the radiative envelope drastically reduces the radius
of the star, which severely perturbs its TE. The donor needs to re-expand to regain TE,
so the energy produced by the H-burning shells is used in the expansion rather than
being radiated away at the surface, which results in a dramatic decrease in luminosity.
The mass transfer continues stripping the donor of its envelope until it is reduced to
a Helium core surrounded by a thin H-rich layer, He-burning starts in the core and
the star contracts, detaching from its Roche lobe and effectively stopping the mass
transfer phase. Case B mass transfer is therefore expected to produce stripped Helium
stars (Drout et al., 2023; Götberg et al., 2023), which is mostly relevant for massive
stars of initial masses ≤ 25𝑀⊙, in which case stellar winds are not efficient enough
to strip the star of its envelope. Such stars are of high importance since they are high
ionisation sources and the best progenitors for H-poor core-collapse supernovae (e.g.,
Eldridge et al., 2013). Case B mass transfer is very short-lived and thus less likely to
be observed than Case A mass transfer. However, it produces systems that are expected
to be long-lived and observable (e.g., Shenar et al., 2020), because the conservative
mass transfer should widen the orbit once the mass ratio is reversed, and the stars are
not expected to interact anymore.

Conservative stable mass transfer thus significantly impacts the stellar structure
of the donor, and its long-term evolution strongly diverges from single-star evolution.
We illustrate these effects in Fig 1.6, where we sketch the evolution of binary stars
undergoing different phases of mass transfer. Naturally, the evolution of systems
undergoing mass transfer becomes much more complicated when considering non-
conservative processes, e.g. stellar winds or a Roche lobe overflowing accretor, or
effects arising from different properties of stellar evolution, such as stellar rotation and
mixing (Maeder, 1987) or metallicity (Klencki et al., 2022).

Response of the accretor

Mass transfer also affects the secondary star, as it gains mass and angular momentum
when accreting matter from the donor star, impacting both its structure and evolution.

As the accretor gains mass, its envelope is compressed by the newly added layers.
This compression can bring the star out of TE if it occurs on timescales shorter than
the thermal timescale of the star because the release of gravitational energy due to
the compression is out of balance with the energy radiated away at the surface of the
accretor. Similarly to the response of the donor to mass loss, the rearrangements of
the accretor to regain TE are dependent on the nature of the envelope: a convective
envelope contracts in response to mass gain, while a radiative envelope expands. The
luminosity of the accretor will also increase due to the mass gain and deviate from the
value appropriate for its mass and age according to single-star evolution. Furthermore,
if a MS accretor has a high enough mass accretion rate, it might substantially expand
and overfill its own Roche lobe, resulting in the formation of a contact binary and
potential mass loss through the L2 point.

Besides gaining mass, the accretor also gains angular momentum from the accreted
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Figure 1.6: Illustration of the evolution of donor stars in two binary systems composed
of massive stars (𝑀 ≳ 8𝑀⊙): a system with an initial period of the order of days
undergoing Case A then early Case B mass transfer (blue line), and a system with a
period of the order of 10 days undergoing early Case B mass transfer (red line). The
donor evolution starts from the zero-age main sequence (ZAMS, dotted line), and the
evolution of an isolated star of the same initial mass is shown as a grey dashed line.
Phases of fast and slow Case A mass transfer are denoted by thick purple and green
lines respectively, and early Case B is shown as thick orange lines.

material, which can bring the star close to critical rotation (e.g., Packet, 1981). There-
fore, there needs to be a mechanism that regulates the spin of the accretor to prevent
it from reaching break-up rotation. This can generally be achieved through tidal inter-
actions, which transfer some spin angular momentum into orbital angular momentum,
or through stellar winds, which can be significantly enhanced when the star is close
to critical rotation. The spin-up of the star can also strongly affect its structure, for
instance by giving rise to strong convective motion that alters the density profile of the
envelope (e.g., Renzo & Götberg, 2021). Mass transfer is therefore thought to be an
important mechanism through which rapidly rotating massive stars such as Be stars are
produced (e.g., de Mink et al., 2013; Shenar et al., 2020).

Depending on when the mass transfer is taking place, the gas accreted by the
companion star might not be only composed of H. In the case of relatively evolved
donors, the convective motion in their envelope has brought up material from the
deeper layers of the star, which has been processed by H-burning cycles (CNO or p-p
processes) in the core and H-burning shells. Thus, if a system undergoes case B or C
mass transfer, it is likely that a fraction of the transferred mass is chemically enriched,
and the surface composition of the accretor can be altered by the accretion process
(e.g., Renzo & Götberg, 2021; El-Badry et al., 2022).

Finally, in the case of MS accretors with convective cores, the large increase in mass
has a strong consequence for their long-term evolution. In such stars, the convective
core grows in mass and radius as the star gains mass and gets access to new hydrogen
layers that have not been previously processed by H-burning (Neo et al., 1977). While
the H-content of the core increases, it also has to burn Hydrogen faster to maintain the
TE of the accretor, since an increase in mass results in an increase in energy radiated

16



away. However, the effect of the increased H-content dominates, and this process,
called “rejuvenation”, effectively increases the lifetime of the MS phase of the accretor.

1.3 Accretion discs
In the case of wind-fed mass transfer, the mass accretion can be described using Bondi-
Hoyle-Lyttleton accretion(Bondi & Hoyle, 1944). However, during phases of stable
mass transfer through RLOF and possibly wind-RLOF (e.g., El Mellah et al., 2019),
the material flowing through the L1 point has significant angular momentum due to
the orbital motion, and thus cannot flow radially towards the secondary star. Instead,
it should start orbiting the companion. If the accretor has a radius larger than the
periastron distance of the orbit, the gas will form a direct accretion flow to the star.
However, for smaller accretors the stream flows around the star and eventually collides
with itself as it completes one orbit. The shocked gas cannot efficiently dissipate
angular momentum, and the infalling matter piles up and starts forming an accretion
disc. The gas in the disc slowly falls in and is either accreted when it reaches the stellar
surface or when it interacts with the magnetic field of the star and is accreted trough
the poles.

1.3.1 Evolution of the disc
Matter in an accretion disc approximately follows circular Keplerian orbits, so that
its velocity 𝑣 and angular momentum ℓ both depend on the distance to the accretor
according to:

𝑣(𝑟) =
√︂
𝐺𝑀2
𝑟

, ℓ(𝑟) =
√︁
𝐺𝑀2𝑟, (1.13)

where 𝑀2 is the mass of the accretor and 𝑟 is the distance between the parcel of gas
and the accretor. This is mostly accurate for the innermost sections of the disc, where
the potential of the accretor is the strongest influence by far, however in outer regions,
the potential of the companion and the self-gravity of the disc also contribute and the
Keplerian approximation is less adequate. The Keplerian rotation causes a tangential
velocity gradient along the radial direction of the disc, and the velocity difference
between fluid parcels in the disc drives viscous processes, which transport angular
momentum outwards. According to equation 1.13, the decrease of angular momentum
of the innermost regions of the disc brings them closer to the central star, which in
turn increases their velocity, and conversely, its outer regions spread further away from
the accretor when gaining angular momentum. The transport of angular momentum
through viscous processes allows matter from the disc to eventually reach the star to be
accreted and thus drives the evolution of the accretion disc.

The origin of viscosity in accretion discs is not well understood. The usual dynami-
cal viscosity due to collisions between microscopic components of the gas is inefficient
in accretion discs because they are too dense (∼ 1015 cm−3) and the stream velocity
is much greater than the thermal velocity of the gas. Instead, flows in accretion discs
are thought to be very turbulent, which can drive an effective viscosity that allows the
transport of angular momentum. The source of this turbulent viscosity is unknown,
but the best candidate is the magneto-rotational instability (MRI) (Balbus & Hawley,
1991) resulting from weak magnetic fields and differential rotation. If we consider two
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parcels of fluid in the disc on the same magnetic field line, the Keplerian motion of
the disc causes the parcel closest to the accretor to move faster than the one further
away, which stretches the field line connecting the two parcels. Magnetic tension acts
to restore the field line by slowing down the inner parcel and accelerating the outer
parcel, effectively transporting angular momentum outward. If the magnetic field is
weak, it cannot balance the loss/gain of angular momentum of the inner/outer parcels,
leading to further acceleration/deceleration and the growth of the instability. On the
other hand, strong magnetic fields can bring the parcels back onto similar orbits and
keep the disc stable against MRI.

While the mechanism for angular momentum transport in discs is still an open ques-
tion, accretion disc simulations can be performed by making several key assumptions,
such as axisymmetry, stationarity, hydrostatic equilibrium, and Keplerian rotation. The
most utilised formalism for accretion disc models is the 𝛼-disc, introduced by Shakura
& Sunyaev (1973), which assumes a geometrically thin disc in which the viscosity is de-
scribed with a simple parameter 𝛼 according to 𝜈 = 𝛼𝐻𝑐𝑠, where 𝑐𝑠 is the sound speed,
and the heat generated by viscous processes is immediately radiated away. This model
can be further complicated by including relativistic effects (Novikov & Thorne, 1973),
cooling via advection Ichimaru (1977), or different assumptions on disc geometry such
as thick discs Abramowicz et al. (1978).

1.3.2 Transients from accreting binaries
As matter is transferred through the accretion disc and then accreted by the central
object, part of its energy is dissipated as heat, which can be partly radiated away. The
bolometric accretion luminosity of the system can be estimated as:

𝐿acc ≃ 𝐺𝑀2
𝑀2̇
𝑅2
, (1.14)

for an accretor of mass 𝑀2 and radius 𝑅2 accreting at a rate of 𝑀2̇ . In total, half of
𝐿acc should be radiated away by the accretion disc and the other half by the accretion
onto the star itself. Since smaller accretors cause a much stronger release of potential
energy when matter gets closer to the stellar surface, the luminosity of the accretion
process is determined by the mass accretion rate and the accretors’ radius. In reality,
the efficiency of the radiative processes during accretion is more complicated than
equation 1.14: it relies on the opacity and thermal structure of the disc, as well as the
nature of the accretor. For instance, it is necessary to account for relativistic effects
in systems with black holes and neutron star accretors. The most radiatively efficient
disc models generally assume geometrically thin discs with high optical depth (e.g.,
𝛼-discs) and can predict that up to 42% of the rest mass of the gas accreted by a rapidly
rotating black hole is radiated away (Thorne, 1974).

Overall, the observability of a disc in an accreting binary strongly depends on the
nature of the system. For instance, systems undergoing Case A mass transfer (Algol
binaries) may form an accretion disc, but the MS accretor generally has a large enough
radius that the accretion luminosity is relatively low and thus not always distinguishable
from the other components of the system. On the other hand, very evolved interacting
binaries in which the accretor is a compact object are more likely to have observable
accretion luminosities. Binary systems containing at least one massive star may undergo
more phases of mass transfer after the massive star collapses as a neutron star (NS) or
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black hole (BH) if the binary was not unbound by the natal kick of the compact object.
In such cases, the companion may transfer mass through RLOF, wind-RLOf or direct
wind-fed mass transfer, and the compact object accretes through an accretion disc. Due
to the small size of the accreting compact object, the disc emits strong X-ray radiation,
such systems are thus called X-ray binaries (e.g., Tauris & van den Heuvel, 2006).

Cataclysmic Variables

Cataclysmic variables (CVs) are a relatively common type of close binaries of periods
𝑃 ≤ 0.5 days composed of a white dwarf (WD) accreting matter from a low-mass MS
star overfilling its Roche lobe (Warner, 2003a). The WD generally accretes through
an accretion disc, the matter can either be directly transferred to the surface of the
WD through the disc or be accreted through the magnetic poles of the WD if it has a
significant magnetic field (𝐵 ≥ 105 G, polar and intermediate polar CVs, e.g., Cropper,
1990). The mass of the WD is generally slightly larger than that of the companion,
and mass transfer proceeds stably at very low accretion rates (�̇� ∼ 10−10𝑀⊙/yr).
Beyond the usual variability attributed to close binaries, these systems undergo one or
several sudden increases in brightenings, called outbursts, hence their classification as
“cataclysmic” variables. The nature and properties of these outbursts vary, giving rise
to various sub-classes of CVs, although they are always a consequence of accretion
processes. For instance, classical novae are bright outbursts of amplitude 6 − 19 mag
caused by the flash ignition of Hydrogen on the surface of the accreting WD. H-rich
matter accumulates on the surface layers of the WD until the pressure and temperature
conditions are suitable for H-burning, resulting in a thermonuclear runaway reaction
that ejects material and results in a strong brightening of the system (Starrfield et al.,
2016). Beyond removing the accreted H-layer, the outbursts do not perturb the system
much and mass can start to accumulate again on the WD surface until the next outburst.
Considering the slow accretion rates of CVs, classical novae are generally expected
to recur over very long time scales, beyond 104 years (Shara et al., 2018). Several
systems do show more frequent nova outbursts, on timescales of tens of years, with
lower amplitude than classic novae (≤ 9 mag), in which case the outbursts are called
recurrent novae Schaefer (2010).

Another common class of CV is the dwarf nova type (DN), which exhibits fainter
outbursts of amplitude ≤ 9 mag recurring semi-periodically over 10−100 days periods
originating from thermal instabilities in the accretion disc. DNe outbursts are commonly
described using the disc instability model (DIM, e.g. Meyer & Meyer-Hofmeister, 1981;
Smak, 1982; Cannizzo et al., 1982; Faulkner et al., 1983; Mineshige & Osaki, 1983),
describing a non-stationary 𝛼-disc oscillating between cold and hot thermal equilibria
linked by a thermally unstable region. The left panel of Fig. 1.7 shows the S-curve of
such a disc, which describes the evolution of surface density and effective temperature
in the disc. During quiescence, the accretion disc is cold and can be described with a
low viscosity parameter 𝛼cold ∼ 0.02 − 0.04. As mass accumulates, the local densities
and temperatures gradually increase until a local critical value is reached somewhere in
the disc to trigger the thermal instability. This critical value is defined by the ionisation
temperature of Hydrogen (104 K), as the change in H− abundance strongly impacts the
local opacities, and the vertical structure suddenly shifts from being convective in the
cold state to being radiative in the hot state. Once the critical point is reached, any
increase in density brings the local disc into its hot radiative state, triggering the outburst,
greatly increasing the local mass transfer rate and the viscosity to 𝛼hot ∼ 0.1− 0.2, and
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Figure 1.7: Illustration of the evolution of a DN through disc thermal instabilities.
Left: Simplified plot of effective temperature vs surface density (S-diagram) of a DN
accretion disc described by a disc with two 𝛼 values depending on the local temperature.
Solid lines show the actual S-curve of the disc, while dotted lines show the S-curve
described by one value of 𝛼. The gradient in line colour shows the distance from the
region in the disc described by the S-curve to the WD accretor, with the bluer line
being the closest to the accretor and the purple lines the farthest. The branches with a
positive slope describe thermal equilibrium, while the branches with negative slopes are
thermally unstable. The orange lines show the evolution through the instability, starting
from the quiescent disc (a) with a convective vertical structure until a region in the disc
reaches the critical mass transfer rate (b). The disc is then brought to a hot viscous state
by the outburst (c), after which the mass transfer rate decreases again until it reaches a
minimum value (d) and can transition back to its cold state (a). Upper right: Optical
light curve of a typical DN, U Gem, showing two outbursts separated by ∼ 100 days
(credit: AAVSO). Lower right: Illustration of a synthetic light curve obtained from the
disc models described by the S-curves on the left. The optical brightness of the system
is shown in blue, while the corresponding phases of evolution of the unstable disc are
shown in orange.

hence propagating the instability throughout the disc. From this point, the enhanced
mass transfer rate starts decreasing until most of the mass within the disc has been
transferred to the accreting WD, and the disc eventually returns to its cold convective
state. This cycle occurs on the timescales of days and is generally expected to repeat
almost periodically every 10 − 100 days. The photometric signature of the DIM is
illustrated in the lower right panel of Fig 1.7 and is compared with observations of
U Gem, a typical DN. The DIM successfully reproduces the frequency and amplitude
of DN outbursts, but there are still inconsistencies. A particularly problematic issue
arises during the quiescent phase, where the DIM predicts a slow but significant rise
in luminosity as mass accumulates in the disc and the temperature increases before the
outburst is triggered. This feature is completely absent from observed light curves of
DNe, which instead remain completely quiescent until the outburst suddenly appears
(Smak, 2000). Furthermore, the DIM is a relatively simple mechanism, so current
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models are often accompanied by additional physical processes relevant to accretion
disc evolution, such as disc irradiation by the WD and the secondary, self-irradiation,
disc winds, and tidal instabilities. These improvements, which are reviewed in great
detail by Hameury (2020), also allow to better model sub-types of DNe that exhibit
additional features, such as the superoutbursts of SU UMa-type DNe or the long
standstills interrupting the outbursts of Z Cam-type DNe. Overall, DNe outbursts
strongly depend on viscous processes in the disc, so they are important probes of
angular momentum transport in accretion discs. Thus, their observations are very
valuable and provide great tests for accretion disc models. Currently, the DIM is
based on the assumption of 𝛼 disc, which relies on an empirical parametrisation of
viscosity rather than physical estimations. Therefore, progress on constraining angular
momentum transport in accretion discs, such as MRI, is necessary to improve the
predictions of the DIM.

1.4 Studying binary evolution
While observations of binary populations, exotic stellar objects, and transients provide a
strong test for the theories of binary evolution, they do not necessarily allow to constrain
the complex physical processes involved in binary interactions. Since it is not possible
to reproduce the details of binary evolution through experiments in a lab, we instead
rely on numerical simulations aiming to reproduce stellar interactions as accurately as
possible to obtain predictions that can be tested on observations. These simulations are
performed by evolving in time complex sets of differential equations across a whole
domain, which are defined by the various physical processes involved in the model.

The general accuracy of astrophysical models, not just in the case of binary evo-
lution, suffers from great limitations due to the spatial and temporal scales on which
the simulations must be performed. The former is very obvious when simply inves-
tigating the relevant length scales in stars: their envelopes generally extend beyond
several solar radii, while the atoms composing the star have a size of the order of an
Ångström. The timescale discrepancy arises from the different temporal scales of the
physical processes occurring in the simulation, for instance, stars evolve over their nu-
clear timescales, but their thermal and mechanical equilibria are regulated on thermal
and dynamical timescales, respectively. In the case of the Sun, the dynamical timescale
is around 1100 seconds, while its thermal timescale reaches 3× 107 years, and its main
sequence evolution lasts about 7×109 years. Thus, it is often necessary to compromise
by choosing to evolve the model over reduced ranges of length and time or to resolve
only a subset of the physical processes involved based on their relevance to the process
studied.

Numerical simulations are an important tool to investigate and constrain astrophys-
ical processes, but the assumptions made to perform the simulations do not necessarily
yield the most accurate predictions. It is thus necessary to understand the details of the
numerical methods used and determine how the results could be impacted under differ-
ent assumptions. In this thesis, we performed different 3D hydrodynamics simulations
using the open source codes Phantom (Price et al., 2018) and Flash4.5 (Fryxell et al.,
2000; Dubey et al., 2008), and thus we need to elaborate on hydrodynamics methods.
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1.4.1 Hydrodynamics simulations
When simulating matter in stellar environments, one generally approximates it as a fluid
to ignore smaller-scale effects such as atomic or molecular interactions. This alleviates
part of the spacial scale issues, although the relevant scales to properly resolve the
motion and gradients of the fluid remain considerably smaller than the domain, and
further simplifications may be needed (e.g., reducing the number of dimensions). Using
the fluid approximation, one can model and evolve the system by solving the equations
of ideal hydrodynamics, given as:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑣) = 0

𝜕 (𝑣)
𝜕𝑡

+ 𝑣 · ∇ 𝑣 + ∇𝑃
𝜌

= 0

𝜕𝑒

𝜕𝑡
+ 𝑣 · ∇𝑒 + 𝑃

𝜌
∇ · 𝑣 = 0.

(1.15)

Here, 𝜌, 𝑝, 𝑒, and 𝑣 are the local density, pressure, specific energy, and velocity of
the fluid. The specific energy is given as the sum of the local internal and kinetic
energies of the fluid 𝑒 = 𝑢 + 𝑣2/2. These equations are derived from the conservation
of mass, momentum, and energy in their Eulerian form, i.e., as observed from a fixed
reference frame. Alternatively, one can derive these equations using a reference frame
that follows the flow of the fluid, simply by setting the convective derivative:

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑣 · ∇. (1.16)

Applying the convective derivative to equation 1.15 yields the Lagrangian hydro-
dynamics equations:

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · 𝑣 = 0

𝐷𝑣

𝐷𝑡
+ ∇𝑃
𝜌

= 0

𝐷𝑒

𝐷𝑡
+ P
𝜌
∇ · 𝑣 = 0.

(1.17)

Each form of the hydrodynamics equations can be used to perform hydrodynamics
simulations, but they have to be solved using different methods that each have upsides
and downsides. The best choice thus mainly depends on the nature of the problem at
hand.

The equations of hydrodynamics are a set of 2+D equations, with D the number of
dimensions of the problem, but they contain 3+D unknowns. Therefore, one needs an
additional equation to close the system of equations, guaranteeing a unique solution per
set of initial conditions. Generally, one adds an equation of state (EoS), which describes
how the system behaves thermodynamically by defining how the state variables 𝜌, 𝑝,
and 𝑒 depend on one another and other state quantities such as the temperature 𝑇 and
mean molecular weight 𝜇. Since there does not exist a single EoS that can describe
all substances under all conditions, the choice of EoS depends on the model and how
much microphysics one wants to include. One of the simplest options is the ideal gas
EoS, which in terms of 𝜌, 𝑝, and 𝑢 is given by:

𝑃 = (𝛾 − 1)𝜌𝑢, (1.18)
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where 𝛾 is the adiabatic index. This form of EoS is easily solved and thus a very
efficient option, though it greatly approximates the thermodynamics of the system.
For more precision, one generally complicates this equation of state by adding extra
terms; e.g., for stellar interiors, it is often useful to account for radiation pressure, ions,
and relativistic electrons and positrons. However, such complicated EoS require a lot
more time to solve and are instead often included in tabulated forms to maintain high
efficiency (e.g., Helmholtz EoS from Timmes & Swesty 2000, OPAL EoS from Rogers
et al. 1996). In such cases, the exact value describing a specific thermodynamic state
is derived by interpolating from the table instead of exactly solving the equation.

Discretisation

Once the system of equations to solve is determined, the fluid has to be discretised. The
sets of equations 1.15 and 1.17 are given in a continuous form, both in time and space,
however, due to the limitations of computational work, it is not possible to simulate a
system described by continuous functions. Instead, one has to represent these functions
through a set of points in space and solve the equations at regular time intervals.
This discretisation can be done in different ways, which can generally be defined as
grid-based and gridless methods. Gridless (or mesh-free) methods can be achieved
through different formalisms. In spectral methods, the solutions to the hydrodynamics
equations are expressed as a superposition of basis functions (e.g., Fourier series,
Jacobi polynomials). Although rarely used in computational astrophysics due to strong
geometry requirements and the complicated treatment of shock, they have been used,
for example, to model stellar evolution (e.g., Rieutord et al., 2016). Particle-based codes
are another, more common, type of mesh-free method which aims to discretise the fluid
as a set of point particles and then construct the continuous functions by integrating
the particle contributions according to a kernel function defined by a characteristic
smoothing length. The most commonly used particle scheme is called smoothed
particle hydrodynamics, which is a very popular formalism in astrophysics. We detail
this method in Section 1.4.2 and expand on its benefits as well as its disadvantages. In
grid-based methods, the fluid is discretised according to a grid according to a specific
scheme. The grid can be structured, where you can refer to the location of any cell
in the grid using integer indices in the spatial dimensions, or unstructured, defined
by a tessellation where the ordering of the elements in the grid is not straightforward
(e.g., triangular or tetrahedral cells). Such grids are very useful for representing
irregular domain geometries but require complicated data structures. These grids can
be Eulerian, by fixing the cells to specific points in space, or Lagrangian, e.g., following
the fluid by defining the cells according to non-spatial coordinates. The equations of
hydrodynamics can be discretised onto the grid according to different schemes, such as
the finite-difference, finite-volume, or finite-element methods, though the finite-volume
formalism is the most standard in computational astrophysics. We discuss finite-volume
methods further in Section 1.4.3. Once the fluid is discretised in space, it is evolved
through time at regular discrete intervals, often called timesteps. Time-stepping can
be achieved through different methods, broadly categorised into implicit and explicit
schemes. Implicit time integration methods determine the state of the system at the next
timestep from both the current state and the state at the next step, while explicit schemes
determine the next step from the current state only. Implicit time-stepping methods are
thus more expensive and their implementation is not necessarily straightforward, since
they require solving an additional equation through multiple iterations. However, these
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methods are more stable than explicit time integration schemes, which are restricted by
the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967), stating that the
scheme can only be stable if the timestep is smaller than the crossing time of the fastest
wave over the smallest resolvable length (e.g., cell size for grid-based codes, smoothing
length for particle methods). In some cases, the CFL condition may dramatically
decrease the length of a timestep, increasing the cost of the simulation to the point
where an implicit time-stepping scheme would be favourable. Nevertheless, explicit
time integrators are more common due to their speed and ease of implementation,
the most popular schemes being the 4th order Runge-Kutta integrators for grid-based
methods and leapfrog algorithms for particle-based methods.

1.4.2 Smoothed particle hydrodynamics
Smoothed particle hydrodynamics (SPH) is a formalism originally developed by Lucy
(1977) and Gingold & Monaghan (1977) for astrophysical purposes, which solves
the Lagrangian form of the equations of hydrodynamics (equation 1.17). Since then,
it has become a widely used technique in computational astrophysics with diverse
applications, and a great number of open-source codes are available nowadays (e.g.,
Phantom Price et al. 2018, Gadget-4 Springel et al. 2021, Gasoline-2 Wadsley et al.
2017). We used this technique and the code Phantom to perform the simulations
presented in Chapter 3.

Formalism

To solve the Lagrangian equations of hydrodynamics, SPH relies on a particle-based
discretisation scheme that approximates the density around a particle 𝑎 as the weighted
sum of the masses of the neighbouring particles 𝑚𝑏:

𝜌𝑎 =
∑︁
𝑏

𝑚𝑏𝑊 (𝑟𝑎 − 𝑟𝑏, ℎ𝑎) , (1.19)

where the weighting function 𝑊 is called the smoothing kernel and its strength falls
off with the distance to the central particle according to a characteristic length ℎ called
the smoothing length. The size of the neighbourhood of each particle is determined
by the smoothing kernel and the smoothing length, which thus define the accuracy of
the density estimate. The density estimate in equation 1.19 can be used to derive the
equations of hydrodynamics, which yield the SPH equations for each particle:

𝜌𝑎 =
∑︁
𝑏

𝑚𝑏𝑊 (𝑟𝑎 − 𝑟𝑏, ℎ𝑎) ; ℎ = ℎ(𝜌),

d𝑣𝑎
d𝑡

= −
∑︁
𝑏

𝑚𝑏

[︄
𝑃𝑎

Ω𝑎𝜌
2
𝑎

∇𝑎𝑊𝑎𝑏 (ℎ𝑎) +
𝑃𝑏

Ω𝑏𝜌
2
𝑏

∇𝑎𝑊𝑎𝑏 (ℎ𝑏)
]︄
,

d𝑢𝑎
d𝑡

=
𝑃𝑎

Ω𝑎𝜌
2
𝑎

∑︁
𝑏

𝑚𝑏 (𝑣𝑎 − 𝑣𝑏) · ∇𝑎𝑊𝑎𝑏 (ℎ𝑎) ,

(1.20)

where Ω𝑎 is a term accounting for the gradient of the smoothing length:

Ω𝑎 ≡
[︄
1 − 𝜕ℎ𝑎

𝜕𝜌𝑎

∑︁
𝑏

𝑚𝑏

𝜕𝑊𝑎𝑏 (ℎ𝑎)
𝜕ℎ𝑎

]︄
. (1.21)
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These equations have the very important property of exactly conserving energy and
linear and angular momentum. We note that equation 1.20 is for ideal hydrodynamics,
but additional terms may appear if one considers extra physical processes, such as
gravitational forces or magnetic fields. Additionally, one may want to add a form of
artificial viscosity to this system to treat discontinuities, for instance, in fluids with
high Mach numbers where shocks are common. It is thus common for SPH schemes
to introduce a shock-capturing term to keep stable solutions around shock waves, and
this is achieved by introducing artificial dissipative terms in the momentum equation
and a conductivity term in the energy equation. Since SPH solves a discrete form of
the equations of hydrodynamics, the fluid quantities need to be reconstructed from the
particle quantities so that they can be evaluated at any point in space. This is done by
interpolating the quantities of interest in the same way the density was estimated in
equation 1.19, such that the value of a scalar 𝐴(𝑟) is given by:

⟨𝐴(r)⟩ ≈
𝑁neigh∑︁
𝑏=1

𝑚𝑏

𝐴𝑏

𝜌𝑏
𝑊 (𝑟 − 𝑟𝑏, ℎ) . (1.22)

This interpolation also works for fields and gradients, although the interpolated gradi-
ents generally contain large errors and require a thorough error analysis to correct their
estimates (see section 4.3 of Price, 2012). Overall, the basic accuracy of SPH simu-
lations is affected by two choices: the number of particles, the smoothing length, and
the kernel. The impact of the number of particles is fairly evident, resolving the same
fluid with a larger amount of particles allows to resolve the smaller-scale motion of the
fluid, so ideally one wants a high number of particles. On the other hand, choosing the
proper smoothing length and smoothing kernel is less straightforward.

Smoothing kernels and smoothing length

The choice of smoothing kernel is, in principle, left at the discretion of the user.
However, good kernels should satisfy several conditions. First, they should have smooth
derivatives and be symmetric (i.e.,𝑊 (𝑟�⃗� − 𝑟 �⃗�), ℎ𝑎) = 𝑊 (𝑟 �⃗� − 𝑟�⃗�, ℎ𝑎)). They also need
to be relatively flat around their centres so that small position fluctuations in the close
neighbourhood do not strongly impact the fluid quantities estimate. Finally, these
kernels should have a “compact support”, i.e., they are truncated at a finite radius 𝑅kern
to limit the number of neighbours entering the density calculation. This is essential
to maintaining the efficiency of SPH calculations since the contribution from distant
particles is very insignificant, and including them in the density calculation increases
the cost of the interpolation calculations unnecessarily. There exist several functions
that are well-suited for smoothing kernels, such as B-splines (Schoenberg, 1946) and
Wendland functions (Wendland, 1995). The most commonly used kernel is the 𝑀4
spline, given by:

𝑤(𝑞) = 𝜎

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4 (2 − 𝑞)3 − (1 − 𝑞)3, 0 ⩽ 𝑞 < 1
1
4 (2 − 𝑞)3, 1 ⩽ 𝑞 < 2
0. 𝑞 ⩾ 2

, (1.23)

which is truncated at 𝑅kern = 2ℎ. Here, 𝜎 is a normalisation constant and we simplified
the notation so that 𝑊 ( |𝑟𝑎 − 𝑟𝑏 | , ℎ𝑎) ≡ 1

ℎ𝑑
𝑤(𝑞), and 𝑞 = |𝑟𝑎 − 𝑟𝑏 | /ℎ𝑎. An important

property of smoothing kernels is that their truncation radius is defined by the smoothing
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length, thus, the accuracy of the density calculation also depends on the choice of
smoothing length ℎ. In principle, the smoothing length can be chosen to be constant,
which was the case for early SPH simulations. However, it is preferable to be able
to resolve areas of both high and low density of particles evenly and thus allow the
smoothing length to vary according to the local number density of particles 𝑛𝑎:

ℎ𝑎 = ℎfact 𝑛
−1/3
𝑎 = ℎfact

(︃
𝑚𝑎

𝜌𝑎

)︃1/3
, (1.24)

where ℎfact establishes the proportionality between the mean particle separation and
the smoothing length. This is only valid for equal mass particles, however, using
unequal mass particles often yields problems when particles of different masses mix
(e.g., Monaghan & Price, 2006) so most SPH codes are restricted to equal masses. The
choice of ℎfact, or equivalently the smoothing length, is generally borne out of numerical
considerations. For instance, it has to remain below a certain threshold for B-spline
kernels to avoid pair instability, which arises at a high number of neighbours (e.g.,
Morris, 1996). For Wendland kernels, which are insensitive to pair instability, it has
to be sufficiently large because these functions generally show large density errors at a
low number of neighbours (Dehnen & Aly, 2012). Therefore, the choice of smoothing
length has to satisfy the stability and accuracy requirements of the smoothing kernel.
Using the formulation of the smoothing length in equation 1.24, one can find the average
number of neighbours around a particle depending on 𝑅kern:

�̄�neigh =
4
3
𝜋 (𝑅kernℎfact )3 . (1.25)

Thus, a kernel with larger compact support will naturally increase the average number
of neighbours, which can be further increased by the kernel restrictions on ℎfact. An
overall increase in the mean number of neighbours generally results in more accurate
but expensive fluid quantity estimates, thus, the choice of smoothing length and kernels
impacts the precision of SPH simulations as well as their computational expense. There
are many types of smoothing kernels, though it is difficult to find the best option: it is
often case-dependent, and the cost increase of more accurate kernels is not necessarily
matched by the difference in results. Thus, it is generally encouraged to test different
kernels in their simulations to establish the kernel bias and opt for a better, more
expensive kernel if the changes are significant.

Applications

SPH is a popular hydrodynamics method in computational astrophysics, mostly due to
its capacity to handle large ranges of spatial scales. The resolved domain in SPH is
defined by the particles, which means that any vacuum in SPH is a true vacuum, i.e.,
empty space has a density of exactly 0 g cm−3, and any vacuum is not resolved by the
code. Thus, SPH is particularly suited for simulation with clumps of fluid separated by
vacuum over large distances, or where the fluid has to travel across large distances during
the simulation since no amount of computation is going into resolving the empty space
separating groups of particles. With this naturally adaptive resolution and the ability to
cover broad length scales, SPH schemes are a prime choice for simulations of galaxy
formation and evolution, dynamical collisions of stars, and star formation. When
studying binary interactions, SPH is useful when considering large-scale problems,
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Figure 1.8: Top panel: Illustration of the SPH formalism, fluid quantities are computed
as the sum of particle contributions weighted by a smoothing kernel𝑊 . The smoothing
kernel falls off proportionally with the smoothing length ℎ𝑎 and is truncated at a radius
𝑅𝑡𝑟𝑢𝑛𝑐 (ℎ𝑎) defined by the nature of the kernel and smoothing length. Bottom left panel:
Example of a spherical distribution of SPH particles. Bottom right: Fluid density
snapshot resulting from the interpolation of the particle distribution on the left.

such as CEE with very large donors (i.e., red supergiants) or wind interactions. SPH
also has the advantage that the discretisation scheme exactly conserves energy and
linear and angular momentum (to machine precision), no matter the choice of kernel
and smoothing length. The time integration of the SPH equation itself is not exactly
conservative, though in the ideal fluid case, the conservation remains extremely good
(typically conserves to round-off error). Furthermore, the particle-based formalism
and the naturally ensuing advection mean that SPH is well-suited to treat multi-phase
fluids, e.g., different equations of state and/or chemical composition. The SPH method
also comes with many significant drawbacks, the most well-known being its poor
convergence rate (e.g., section 5 of Springel 2010). In the best-case scenario, with the
proper choice of kernel and smoothing length, SPH can theoretically reach second-order
convergence. However, the shock-capturing scheme used to treat discontinuities in the
fluid tends to cause unnecessary dissipation in regions far away from discontinuities,
which lengthens the convergence rate of the simulations, typically lowering it to first-
order convergence. This artificial viscosity term is also the cause of another important
disadvantage of the SPH methods: it tends to cause dynamical instabilities in the
fluid, and the way it is parameterised is not borne out of physical considerations and
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thus often results in excessive smearing of shocks. Another issue with SPH is that
adaptive particle resolution (i.e., unequal particle masses) leads to instabilities. This is
problematic for simulations with steep density gradients, such as the one at the surface
of stars, in which case one has to dramatically increase the number of particles in
the simulation to properly resolve such gradients. Moreover, the resolution cannot be
dynamically adapted during the simulation, which means regions in the fluid with a low
particle count will remain badly resolved until there is a significant inflow of particles,
even if it is a region of interest. Efforts to add adaptive refinement in SPH are ongoing,
e.g., Vacondio et al. (2016) developed a method where large mother particles split into
smaller daughter particles to increase the local resolution.

1.4.3 Grid-based methods
In hydrodynamics methods based on structured grids, the discretisation of the hydrody-
namics equations may be done through different schemes, such as the finite-difference
or the finite-volume methods. The finite-difference method discretises the data as spe-
cific points in space (e.g., the edge or the centre of each cell) and solves the differential
form of the hydrodynamics equations to obtain changes in cell quantities. On the other
hand, the finite-volume scheme discretises the data as averages over the cell volume
and calculates fluxes over cell surfaces by solving the integral form of the hydrody-
namics equations instead of directly computing the change in cell quantities. The
integral formulation of finite-volume methods has the advantage of being conservative
by construction, while finite-difference methods are not locally conservative and require
smooth solutions due to their differential formulations, meaning they tend to smooth
out discontinuities even at very high resolutions. Since discontinuities are common
in astrophysical fluids, finite-volume schemes are a better choice for hydrodynamics
simulations of stellar environments and numerous open-source finite-volume codes
have been developed for astrophysical purposes (e.g., Athena++ Stone et al. 2020,
Pluto (Mignone et al., 2007), Ramses Teyssier (2002)). In Chapter 4 of this thesis,
we performed 3D hydrodynamics simulations with the finite-volume code Flash4.5
(Fryxell et al., 2000).

Finite-volume method

Let’s examine, for simplicity, a finite-volume grid in one dimension with 𝑁𝑥 cells of
size Δ𝑥. Functions are discretised in time through timesteps of Δ𝑡 and in space by
their average value over the interval [𝑥𝑖−1/2, 𝑥𝑖+1/2], where 𝑖 goes from [0, 𝑁𝑥 − 1], and
integer indices indicate the centre of a cell while half-integers define the cell edges.
Thus, spatial coordinates are defined as:

𝑥𝑖 =

(︃
𝑖 + 1

2

)︃
Δ𝑥 (1.26)

and any fluid quantity 𝑞(𝑥, 𝑡𝑛) is discretised in space as 𝑞𝑛
𝑖

according to:

𝑞𝑛𝑖 =
1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝑞(𝑥, 𝑡𝑛)𝑑𝑥. (1.27)

In 1D, the Euler equations can be expressed as:
𝜕𝑞

𝜕𝑡
+ ∇ · 𝑭(𝑞, 𝑡) = 0 (1.28)
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where

𝑞 =

⎧⎪⎪⎨⎪⎪⎩
𝜌

𝜌𝑢𝑥
𝜌𝐸

(1.29)

and

𝑭(𝑞) =
⎧⎪⎪⎨⎪⎪⎩

𝜌𝑢𝑥
𝜌𝑢2

𝑥 + 𝑃
(𝜌𝐸 + 𝑃)𝑢𝑥

(1.30)

Integrating any of the Euler equations describes the time evolution of each cell as:

𝑞𝑛+1
𝑖 = 𝑞𝑛𝑖 −

Δ𝑡

Δ𝑥

(︂
𝐹𝑛
𝑖+1/2 − 𝐹

𝑛
𝑖−1/2

)︂
(1.31)

where 𝐹𝑖+1/2 is the average of the flux 𝑓 (𝑞) across 𝑥 = 𝑥𝑖+1/2:

𝐹𝑛
𝑖+1/2 =

1
Δ𝑡

∫ 𝑡𝑛+1

𝑡𝑛

𝑓
(︁
𝑞
(︁
𝑥𝑖+1/2, 𝑡

)︁ )︁
𝑑𝑡. (1.32)

Thus, fluid quantities are updated at every timestep according to the fluxes across the
cell boundaries. However, the fluid quantities are defined at the centre of the cells,
and it is thus necessary to extrapolate their central values to reconstruct the fluxes at
the edges of the cells. This extrapolation is generally done using a Godunov scheme
by attributing a polynomial for each cell, e.g., constant functions (Godunov’s method,
Godunov 1959) or higher-order polynomials, thus approximating the function 𝑞(𝑥, 𝑡𝑛)
as a set of 𝑁 piecewise polynomials. The extrapolation in each cell results in different
states at each side of the cell interfaces, e.g., in the case of a piecewise constant
approximation to 𝑞(𝑥, 𝑡𝑛) we can express the extrapolated value �̃�𝑛 (𝑥, 𝑡𝑛) as:

�̃�𝑛 (𝑥, 𝑡𝑛) =
{︄
𝑞𝑛
𝑖
, if 𝑥 < 𝑥𝑖+1/2

𝑞𝑛
𝑖+1, if 𝑥 ≥ 𝑥𝑖+1/2.

(1.33)

Since the extrapolated fluid quantities must be conserved according to:

𝜕

𝜕𝑡
�̃�𝑛 + 𝜕

𝜕𝑥
𝑓�̃�𝑛 = 0, (1.34)

the discontinuities at each cell interface define a Riemann problem. This Riemann
problem can be solved exactly, which then allows the construction of the flux across
the cell interface and provides a natural shock-capturing scheme. We illustrate the
piecewise extrapolation of fluid quantities and the ensuing Riemann problem in Fig 1.9.
Since it utilises piecewise constant extrapolation, Godunov’s method only yields first-
order accuracy, thus, higher-order schemes are often preferred, such as the piecewise
parabolic method (PPM, Colella & Woodward 1984). Additionally, the slopes of the
polynomials used to interpolate the fluid quantities are arbitrary and may introduce
oscillations, so the implementation of a slope-limiting scheme is often necessary for
first-order methods to avoid nonphysical effects. Once the fluxes are computed at the
cell interface, the new fluid quantities 𝑞𝑛+1

𝑖
are updated by inserting the new fluxes in

equation 1.31. Overall, the finite-volume method is divided into three steps: first, the
initial values of the fluid quantities at the cell boundaries are estimated as piecewise
polynomials, then the ensuing Riemann problem is solved to construct the fluxes across
each cell, which are then finally used to update the fluid quantities.
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Figure 1.9: Construction of the flux of a fluid quantity 𝑞 in the finite-volume method
on a grid of N cells using Godunov’s method. Grid cells are indicated as 𝑥𝑖 with
𝑖 ∈ [0, 𝑁 − 1], the continuous form of the quantity 𝑞(𝑥) is shown as a purple line, and
the piecewise constant extrapolation is shown as blue lines. Left: general view of the
extrapolation. Right: zoom in on a cell interface 𝑥𝑖+1/2 and the discontinuity formed
at the boundary. Solving the Riemann problem formed by the different values of the
discretised q(x) on each side of the boundary allows to compute the flux across the cell
interface.

Boundary conditions

An important specificity of grid-based discretisation schemes is that they require bound-
ary conditions at the edges of the grid. These conditions are typically imposed through
the use of ghost cells, which are set around the boundary of the domain to update the
cells at the edge of the grid, since otherwise they would have no neighbours in one
direction and could not be updated according to the discretisation scheme. The content
of these ghost cells is set at each timestep, independent of the integration scheme,
according to the physical type of boundary set for the problem at hand. There are many
types of boundary conditions relevant to different physical problems, the main ones
used in computational astrophysics are:

• Periodic boundary: the fluid solution is a periodic function of the domain. If we
consider the fluid quantities on the edge cells on the opposite sides of the grid,
𝑞𝑛0 and 𝑞𝑛

𝑁
, then the state of the ghost cell 𝑞𝑛−1 which is used to find 𝑞𝑛+1

0 is set to
the same value as 𝑞𝑛

𝑁
.

• Outflow boundary: allows material to flow out of the domain but prevents waves
from entering from this boundary. This is typically done by extrapolating fluid
quantities from edge cells to ghost cells and computing fluxes at the boundary.

• Inflow boundary: allows material to flow in by imposing velocities in the ghost
cells pointing towards the domain.

• Reflecting boundary: used to impose solid surfaces or symmetry axes by reflect-
ing the fluid quantities of edge cells into the ghost cells.
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Applications

Finite-volume methods are broadly used across all fields of astrophysics, mostly be-
cause they are more versatile than particle-based methods while having better energy
conservation than other grid-based methods. The grid discretisation is well-suited to
include most physical processes, and the natural presence of boundary conditions al-
lows to easily excise or approximate part of the physical domain to focus on specific
processes at a lower cost. These methods can also reach a high level of accuracy,
allowing the resolution of steep gradients, and the implicit numerical diffusion from
the reconstruction schemes allows for satisfactory treatment of discontinuities and tur-
bulence in the fluid. They are thus more appropriate to study small-scale instabilities
than particle-based methods, although it generally comes at a significant cost. The
high cost of grid-base simulations is typically alleviated through the refinement of the
grid, which allows for the study of the regions of interest at optimal resolution while
simulating the areas of low interest at a reasonable cost. In particular, schemes that
temporarily refine the mesh allow for major improvements in the accuracy-to-cost ra-
tio. This is commonly achieved by using adaptive mesh refinement (AMR, Berger &
Oliger 1984; Berger & Colella 1989), which locally and temporarily adapts the grid
spacing to finer cell sizes according to criteria set by the user. The ability to refine and
de-refine a mesh permits, for instance, to resolve with high accuracy a travelling shock
wave without needing a constant finer mesh along its predicted path. While AMR and
other refinement methods can significantly decrease the cost of grid-base simulations,
they also add a layer of complexity to the simulation structure, increasing the poten-
tial sources of error. Furthermore, the cost of adaptively refined simulations remains
high, which constitutes a major drawback when simulating fluids on large dynamical
ranges. In such cases, the grid resolves a considerable amount of empty or relatively
low-density space at a high cost, which can still be very costly despite using a coarser
mesh. Thus, grid-based methods are generally limited in domain-to-cell size ratio
and can become unreasonably expensive for simulations of stellar mergers or galaxy
formation. Other, maybe less significant, disadvantages of grid-based methods include
the potential kinks and artificial symmetries in the fluid due to the mesh. These grid
artefacts may significantly affect the fluid in non-physical ways and thus should be kept
under control. Finally, computational limitations mean that there will always be small
numerical errors, and thus it is simply impossible to simulate a real vacuum on a grid.
Grid-based methods therefore require setting up a pseudo vacuum, or “fluff”, based
on numerical or physical considerations in regions where a real vacuum is expected.
This requirement may be seen as an advantage, for instance, stars do not evolve in a
perfect vacuum and this pseudo-vacuum can be set to be physically closer to the reality
of stellar environments. Moreover, stellar interiors are often hard to keep in HE since
it is not possible to resolve the tail of the density and pressure gradients at the surface,
and thus the pseudo-vacuum may be used to help with hydrodynamic stability when
simulating stars.

1.4.4 Beyond hydrodynamics
Equations 1.15 and 1.17 describe only ideal hydrodynamics, but the ideal fluid ap-
proximation is often too far from the reality of stellar environments. It is thus often
necessary to improve the accuracy of astrophysical models to include more physical
processes that are relevant to stellar environments. Of course, this generally increases
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the complexity of the simulations and requires additional numerical schemes to solve
the new equations. A detailed review of these implementations is beyond the scope of
this work, instead, we broadly discuss the most relevant processes and the challenges
of their numerical treatments. Different changes to the ideal fluid approximations
can be made depending on the problem at hand. For instance, viscosity has to be
included in accretion disc simulations, in which case a viscous stress tensor is added to
the momentum and energy equations. It is also possible to extend the hydrodynamics
equations to special relativistic hydrodynamics in scenarios where parts of the fluid
are expected to move with velocities close to the speed of light (e.g., relativistic jets).
One may even wish to couple the Einstein equations to the hydrodynamics equations
to take into account general relativistic effects around compact objects, which is es-
pecially relevant for simulations of neutron star mergers. When investigating stellar
atmospheres and winds, chemical reactions can be accounted for by supplementing the
hydrodynamics equations with the relevant chemical reaction networks. In the case of
stellar interactions, the most relevant processes to include are gravitational forces, in-
teractions with radiation fields, and possibly electric and magnetic fields. Nowadays, it
is fairly common for hydrodynamics codes made for astrophysics to include a treatment
of Newtonian gravity. Gravitational forces appear as a source term in the momentum
equation of hydrodynamics, such that it becomes:

𝜕 (𝑣)
𝜕𝑡

+ 𝑣 · ∇ 𝑣 + ∇𝑝
𝜌

= ∇𝜙, (1.35)

in the Eulerian form, where 𝜙 is the gravitational potential. The specific energy of the
system is also modified to include gravitational energy and becomes 𝑒 = 𝑢 + 𝑣2/2 + 𝜙.
𝜙 can describe the potential of an external source excluded from the computational
domain or the self-gravity of the fluid, and it must satisfy the Poisson equation:

∇2𝜙(x) = 4𝜋𝐺𝜌(x). (1.36)

A natural approach to the calculation of 𝜙 for a fluid element (particle or cell) within
a self-gravitating fluid is to do a direct summation of the contributions of all the other
fluid elements, but this method requires𝑂 (𝑁2) operations for 𝑁 particles which makes
it extremely expensive. To speed up the calculation, one can group close fluid elements
(particles or cells) to treat them as one source. This can be achieved through the use
of tree algorithms (e.g., Barnes & Hut, 1986), which decompose the domain as a tree,
allowing to approximate the gravitational interaction as a combination of short and
long-range interactions and reduce the cost of the force calculation to 𝑂 (𝑁 log 𝑁).
Short-range interactions can then be computed as direct summations, while long-range
interactions are approximated using multipole expansions. Tree-based solvers are
particularly compatible with SPH methods because their neighbour search can be done
through the same algorithm. There are other types of Poisson solvers, for instance,
based on solving the continuous form of the Poisson equation by applying Fourier
transforms or multipole expansions, depending on the boundary conditions and matter
distribution. It is also common for grid-based codes to use multigrid solvers, which
are relaxation methods that achieve faster convergence by coarsening the grid. We note
that while it is important in astrophysics in general, self-gravity is not always the most
relevant process in astrophysical problems and the cost of computing self-gravity might
not be compensated by the higher realism. This is especially true in situations where
the self-gravity of the fluid is negligible compared to some external influence, e.g.,

32



accretion discs surrounding compact objects, in which case computational resources
are better spent on other issues such as magnetic fields or relativistic effects. Aside
from gravity, an important aspect of the evolution of gas in stellar environments is its
interaction with the surrounding radiation field: the absorption or emission of radiation
can increase or decrease the temperature and pressure of the gas, while the density
and temperature of the gas affect the transport of the radiation. This is particularly
important when modelling the radiation from accretion discs or energy transport inside
stars, which is relevant for thermal readjustments of the donor during stable mass
transfer and possibly CEE Ricker et al. (2018). Additionally, including a treatment
of radiation transport in a model allows to obtain theoretical predictions that can
be directly compared to observations, such as synthetic light curves or spectra. To
model the interactions between gas and radiation, one needs to couple the equations
of ideal fluid dynamics to the equations of radiation transfer to obtain the radiation
hydrodynamics (RHD) equations. The equations of radiative transport define how
photons are scattered, absorbed, and emitted by the gas, which drastically increases
the dimensionality of the problem by introducing many new quantities that strongly
depend on local densities and the wavelength of the radiation. RHD thus requires a lot
more computational resources than ideal hydrodynamics, both in terms of memory and
computational power, and is challenging to implement. The choice of implementation
depends on the problem at hand, for instance, low optical depth environments, such
as stellar winds (e.g., Townsend, 2009), may be well modelled by approximating the
coupling of radiation and matter with a radiative cooling term. On the other hand,
radiation transport in optically thick environments may be approximated as a diffusion
problem by taking the 0th moment of the radiative transfer equation. In such cases,
the most common RHD scheme is flux-limited diffusion (Levermore & Pomraning,
1981), which includes a limiter to prevent signals from propagating faster than the
speed of light. More complicated methods are required to accurately treat both high
and low optical depth regions in the same model, for instance, one may include higher-
order moments of the radiative transfer equation (e.g., Gnedin & Abel, 2001; Hayes
& Norman, 2003). Other possible methods include using Monte Carlo schemes to
discretise the radiation field in packets and propagate them stochastically through the
medium (e.g., Lucy, 2005), or using ray-tracing to solve the radiative transfer equation
along characteristic rays that cross the domain (e.g., Razoumov & Scott, 1999). Finally,
the fluid approximation also neglects the presence of electric and magnetic fields, which
are especially important for accretion discs and systems containing highly magnetised
stars. Adding a treatment of magnetic fields requires coupling the hydrodynamics
equations to Maxwell equations to obtain the equations of magnetohydrodynamics
(MHD), most often assuming perfect conductivity (i.e., no electrical resistance) to
describe ideal MHD. MHD schemes are based on regular hydrodynamics solvers,
with a few subtleties introduced by the magnetic field. One of the main difficulties
comes from the physical condition ∇ · �⃗� = 0 that arises from the induction equation
(solenoidality of the magnetic field). Since this is only an initial condition, solving
the MHD equations does not guarantee that the condition will remain true, potentially
yielding unrealistic effects such as the formation of magnetic monopoles. Thus, a
divergence-free magnetic field has to somehow be enforced after solving the MHD
equations. This can be achieved through different schemes, which depend on the type
of discretisation of the simulation. For grid-based codes, three main methods yield
satisfactory results. Constrained transport defines the magnetic field on the faces of the
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mesh, which is then calculated using the sum of the electric field on the edges of the
cell face while naturally retaining a divergence-free magnetic field down to machine
precision if it is introduced as an initial condition (e.g., Evans & Hawley, 1988). The
projection method solves a Poisson equation to project the magnetic field newly obtained
from the MHD solver onto the initial field satisfying ∇ · �⃗� = 0 (Brackbill & Barnes,
1980), and the 8-wave scheme adds extra source terms to the MHD equations (Powell,
1994). For particle-based methods, maintaining a divergence-free field is done through
divergence cleaning, which enforces ∇ · �⃗� = 0 by removing or dissipating energy (e.g.,
Tricco & Price, 2012).

1.5 Summary of the results
The goal of this thesis is to study various types of binary interactions to constrain
new and existing models by analysing photometric and spectroscopic observations as
well as performing hydrodynamics simulations. Each chapter of this thesis is centred
around a different type of binary interaction, aiming to explore known issues in binary
and stellar evolution.

Cataclysmic variables and thermally unstable accretion discs

Chapter 2 is dedicated to CVs, and more specifically the peculiar system OGLE-
BLG504.12.201843 (O-201843), which is a peculiar CV exhibiting year-long outbursts
with an average recurrence period of 973 days. This study aimed to characterise this
system and the origin of these outbursts by performing a thorough analysis of existing
optical photometry and new optical spectroscopy. After investigation of the orbital
variability of the system across the outburst cycle, we find that the outbursts likely
originate from a thermally unstable accretion disc, suggesting that O-201843 is a DN
with extreme properties. Additionally, the shape of the outbursts indicates that this
system is likely a U Gem type DN. Beyond the unusual length of the outburst cycles,
the photometry of O-201843 shows two uncommon features in DNe: a slow brightening
of 0.75 mag in the 𝐼 band over a period of 600 days preceding the outbursts, and small
flares with amplitude ≲ 0.2 mag in 𝐼 band detected during quiescence. We suggest
that the flares correspond to small outbursts that fail to propagate throughout the disc,
while we attribute the pre-outburst brightening to a slow rise in temperature, which is
predicted by the disc instability model despite being rarely observed. In the spectra
of the system, we find Balmer absorption lines that may either come from an early F
secondary or the accretion disc. We do not find any signatures of the accreting WD,
nor do we observe the usual features of a thermally unstable accretion disc: there are no
emission lines or cores in quiescence and no new Balmer absorption lines in outburst.
We interpret the lack of typical disc signatures as unusually low disc temperatures,
indicating weak or absent irradiation of the disc by the WD. During the outburst, the
spectra show emission lines, though they lack the double-peaked profile expected from
accretion discs, favouring a low inclination of the system. We found that the DN
V1129 Cen be similar to O-201843, as it has a similar orbital period and location in the
HR diagram, but significantly smaller outburst cycle length and amplitude. O-201843
might not be a DN and instead, be the prototype of a new type of CV that possesses
thermally unstable accretion discs like DNe. To further characterise this system, it
would be ideal to obtain time-resolved spectroscopy of the system. This would help
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to understand the lack of double-peaked signals from the disc and accurately constrain
the mass ratio and inclination of the system, and possibly get insights into the nature of
the primary and secondary stars. Due to its numerous peculiarities, O-201843 provides
important tests to our current knowledge on thermal-viscous instabilities and outbursts
in accretion discs and is a great target for studies of CVs and DNe.

Asymmetric winds in red supergiant stars

In Chapter 3, we investigate asymmetric winds around red supergiant (RSG) stars and
the potential role of binary interactions in driving such winds. This study introduces
a new scenario in which a companion on an eccentric orbit grazes the envelope of
a RSG at periastron. At each periastron passage, the companion ejects part of the
outer envelope, which radiatively cools, eventually reaching adequate conditions for
dust condensation and dust-driven winds. To study this scenario, we perform 3D
SPH simulations of a 2𝑀⊙ star on a highly elliptical orbit around a 20𝑀⊙ RSG with
an envelope extending to 1500 𝑅⊙ such that the companion grazes the surface of the
RSG at periastron. These simulations are performed with the code Phantom and are
meant as proof-of-concept, thus, we use simple treatments for radiative cooling and
dust-driven winds to maintain reasonable computational expenses. Our models show
that each periastron passage ejects gas from the outermost envelope, which later results
in a dense semi-circular outflow. Furthermore, each consecutive grazing interaction
decreases the orbital period by ∼ 3 − 4 years, resulting in a smaller periastron distance
which enhances the mass loss during subsequent interactions. Thus, the density and
frequency of the outflows increase as the system evolves, and the mass of the outflows
grows from 3×10−4 𝑀⊙ during the first orbit to∼ 10−2 𝑀⊙ when the system enters CEE
after 13 orbits (∼200 years). We stop our simulations after 14 orbits, at which point the
total ejecta mass is about 0.185𝑀⊙ spreading beyond 𝑟 ≳ 1000 au from the system,
with 80% of this mass situated in the innermost region (𝑟 ≲ 100 au). The final ejecta is
strongly asymmetrical, with a clear shell-like structure born from the shocks driven by
the grazing interaction. We cannot resolve the evolution of our system beyond this point,
and thus the outcome of the CEE phase is uncertain: it may result in either a merger or a
short-period binary. The initial conditions of our system may seem rather uncommon,
especially with such high eccentricity, but we find that there are several evolutionary
pathways leading to this scenario. The binary may be composed of a massive MS star
and a low-mass MS companion on a relatively large and eccentric orbit that started
interacting when the massive star stopped burning Hydrogen. Alternatively, we find
that the typical evolution channel for double NS binaries allows for the formation of an
eccentric binary with an evolved RSG and a NS companion. This grazing interaction
should produce several observable signatures, for instance, the dusty ejecta should
be observable at millimetre/sub-millimetre wavelengths, and the rich chemistry in the
outflows should yield observable molecular lines. Furthermore, the accretion from the
companion is expected to yield X-ray emission or highly ionised lines, especially in the
case of a NS companion. We compared our simulations with observations of the ejecta
surrounding the RSG VY CMa and found that the grazing interaction may be the cause
of an increase in mass loss that occurred about 1000 years ago, or it may be the origin
of recent 100 year-old ejections. In particular, some of these recent outflows resemble
the results of our simulations, however, the grazing interaction is insufficient to explain
the complex morphology of the surrounding outflows, which require the interplay of
multiple processes such as magnetic activity, convection, and pulsations. Since our
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simulations were only meant as a proof of concept and were performed using simple
implementations of radiative cooling and winds in the outflows, we plan to incorporate
more accurate prescriptions in follow-up studies. By increasing the accuracy of our
simulations, we will be able to study the morphology of the outflows in greater detail
and produce synthetic observables that will provide a strong test for our hypothetical
scenario. We can also add more physical processes, such as convection, to study the
interplay between the grazing interaction and other relevant outflow mechanisms.

Accounting for previous binary evolution in common envelope evolution

Finally, Chapter 4 is centred around common envelope evolution and how it may be
impacted by previous phases of binary evolution. In particular, we study the effect
of a previous phase of mass transfer where the accretor later becomes the donor of
a common envelope phase. Such an accretor undergoes several changes to its stellar
structure: new material is added to its outer layers, increasing the steepness of the
density profile in the envelope, and its core undergoes a rejuvenation process. The
rejuvenation process is particularly interesting because it lowers the binding energy
of the layers surrounding the stellar core, which may then ease the unbinding of the
envelope during common envelope evolution. We aim to study this effect through 3D
hydrodynamics simulations where we investigate the dynamical inspiral of the common
envelope evolution of an 18 𝑀⊙ red supergiant and a 1.4 𝑀⊙ companion. We perform
two sets of simulations with rejuvenated and non-rejuvenated donors with the AMR
grid-based code Flash4.5, and compare the results to characterise the effect of the
rejuvenation on the outcome of the common envelope phase. We find that the past
phase of mass transfer does impact the speed of the inspiral, the amount of unbound
mass, and the shape of the ejecta. The main consequence of the previous phase of
mass transfer is a decrease in the duration of the inspiral phase by a factor of two due
to the denser outer layers of the rejuvenated donor, which increases the gravitational
drag exerted on the companion. We also found that the orbit of the binary does not
stabilise in both rejuvenated and non-rejuvenated cases, though this result is bound
to the resolution of our simulations and may change with a resolution increase. The
impact of rejuvenation on the mass loss of the system is less evident, mostly because
the unbinding efficiency of the system is overall very low, with up to 6% and 8% of the
envelope mass ejected in the rejuvenated and non-rejuvenated cases, respectively. We
still found a difference in ejection efficiency, though different unbinding criteria yield
very different results: there is a 50% increase in unbound mass with the rejuvenation
when considering only the gravitational and kinetic energy of the gas, but a 25%
decrease when including the internal energy of the gas. Finally, the two sets of
simulations show a significant difference in the final morphology of the ejecta. We
found that the rejuvenated ejecta is more concentrated around the equatorial plane,
and overall more spherically asymmetric than its non-rejuvenated counterpart. This
change mostly impacts observations of future transients arising from the merger of the
binary, for instance, the luminous red nova arising from the merger or a later supernova
explosion of the merger product will interact with the circumstellar medium, thus their
light curve will likely change with the mass distribution of the ejecta.
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Issue 2, December 2022, Pages 2746–2756

Abstract
We present the analysis of existing optical photometry and new optical spectroscopy

of the candidate cataclysmic variable star OGLE-BLG504.12.201843. As was shown
previously, this object has an orbital period of 0.523419 days and exhibits year-long
outbursts with a mean period of 973 days. Using digitized photographic archives, we
show that the earliest recorded outburst occurred in 1910. We propose that this object
is a U Gem-type dwarf nova with extreme properties. The orbital variability of the
system in outburst shows clear signs of an accretion disc, from which the outburst
likely originates. During quiescence, the object slowly brightens by up to 0.75 mag in
the 𝐼 band over 600 days before the outburst and exhibits small flares with amplitude
≲ 0.2 mag in the 𝐼 band. We interpret the gradual brightening as an increase in the
luminosity and temperature of the accretion disc, which is theoretically predicted but
only rarely seen in DNe. The origin of small flares remains unexplained. The spectra
shows Balmer absorption lines both in quiescence and outburst, which can be associated
with a bright secondary star or a cold accretion disc. During outbursts, emission lines
with FWHM of about 450 km s−1 appear, but they lack typical double-peaked profiles.
We suggest that either these lines originate in the disc winds or the orbital inclination is
low, the latter being consistent with constrains obtained from the orbital variability of
the system. Due to its extreme properties and peculiarities, OGLE-BLG504.12.201843
is an excellent object for further follow-up studies.

1This chapter is a pre-copyedited, author-produced version of an article accepted for publication in
Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Camille
Landri, Ondřej Pejcha, Michal Pawlak, Andrzej Udalski, Jose L. Prieto, Manuel Barrientos, Jay Strader
and Subo Dong. OGLE-BLG504.12.201843: a possible extreme dwarf nova. MNRAS Volume 517,
Issue 2, December 2022, Pages 2746–2756] is available online at https://doi.org/10.1093/mnras/stac2864
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2.1 Introduction
OGLE-BLG504.12.201843 (hereafter O-201843) is a candidate cataclysmic variable
discovered by Mróz et al. (2015) with the Optical Gravitational Lensing Experiment
(OGLE, Udalski et al. 2015) in the field BLG504.12 and is located at RA=17:57:19.65,
Dec.=-28:08:15.7 (J2000). Mróz et al. (2015) found that O-201843 undergoes 300-days
long outbursts that repeat every 950 to 1020 days. The outburst amplitude is 1.75 mag
in the 𝐼 band. Mróz et al. (2015) also detected a photometric variability with a period
of 0.523419 days, which they interpret as the orbital period. In quiescence, the orbital
light curve has a double-hump profile, but as the system gets brighter the minima
change shape and depth. At maximum brightness, the orbital light curve shows a single
hump. Additionally, Mróz et al. (2015) noticed an initially very slow brightening to the
maximum, which abruptly accelerates. They speculated that the long cycles are caused
by interactions with a tertiary star, but no sign of tertiary orbit was detected in the O-C
analysis. Overall the photometry of the system is reminiscent of dwarf novae (DN),
albeit with extreme properties. Motivated by these intriguing features and especially
the slow rise from the quiescence, we selected O-201843 for more detailed analysis.
If O-201843 indeed is a DNe, studying its extreme properties could lead to a better
understanding of the mechanisms responsible for DN outbursts.

DNe are a type of CVs that undergo semi-periodic outbursts (Warner, 2003b). These
systems are composed of a White Dwarf (WD) accreting matter from a secondary star,
typically located on the main sequence. The accreting material forms a disc, which can
become thermally unstable and develop outbursts. Some DNe only undergo regular
2-5 mag outbursts (U Gem type) while others display additional features. Examples of
these features are longer and less recurrent outbursts called superoutbursts (SU UMa
type) or standstills that interrupt a sequence of outbursts (Z Cam type).

The outbursts of DNe are currently best explained by the Disc Instability Model
(DIM, e.g. Meyer & Meyer-Hofmeister, 1981; Smak, 1982; Cannizzo et al., 1982;
Faulkner et al., 1983; Mineshige & Osaki, 1983). This model is based on a Shakura-
Sunyaev disc (Shakura & Sunyaev, 1973) supplemented with additional physical pro-
cesses, such as mass transfer variations, inner disc truncation, disc winds and irradiation
of the disc, which have been reviewed by Lasota (2001) and Hameury (2020). For such
a disc, the effective temperature as a function of the surface density (S-curve) describes
cold and a hot stable branches and a viscously and thermally unstable region between
them.

In DNe, the disc has local mass transfer rates that lie in the instability range. During
quiescence, matter accumulates until the mass transfer reaches the upper critical value
and heat fronts propagate both inwards and outwards. The temperature rises until the
peak of the outburst, then a cooling front starts propagating from the outside of the disc
and the disc goes back to quiescence. The radius at which the heating front starts has
an impact on the duration and shape of the outburst. If it starts far from the inner edge
of the disc (i.e. the disc is almost stable), the outburst is asymmetrical: the decline
is slow at first and then accelerates to reach values similar to the rise. This outside-in
outburst involves a large part of the mass of disc. Alternatively, the heating front can
develop close to the inner edge of the disc, which leads to more symmetric outburst
shapes. One prediction of the DIM is the critical mass transfer rate that separates DNe
and Nova-like CVs which seems to match the observations (Dubus et al., 2018).

DN outbursts are never strictly identical because there are differences in parameters
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that control the outburst, such as the radius at which the outburst is triggered, the
distribution of material after the last outburst, among others. However one can find
correlations between some of the characteristics of the outbursts. The two most probable
relations are the Kukarkin-Parenago relation between the amplitude and the average
recurrence time of outbursts (Kukarkin & Parenago, 1934) and the Bailey relation
between the rate of brightness decay and the orbital period (Bailey, 1975). Recently,
Otulakowska-Hypka et al. (2016) presented a statistical analysis of the measurable
properties of a large sample of DNe outbursts in order to find possible correlations
between the different characteristics. They were not able to verify the Kukarkin-
Parenago relation but confirmed the Bailey relation as well as other connections, e.g.
the correlation between outburst duration and orbital period.

In this paper, we aim to better constrain the nature of O-201843 by analyzing its
optical photometry and spectroscopy. In Section 2.2, we describe our photometric and
spectroscopic dataset. In Section 2.3, we discuss the different features of the system.
In Section 2.4, we speculate about the origins of these features, compare O-201843
to DNe and try to find similarities that would allow to characterise the system. In
Section 2.5, we summarize our results.

2.2 Observations

2.2.1 Photometry
In Figure 2.1, we show available optical time-series measurements of O-201843. We
use 𝐼 band observations from OGLE, which cover 2001–2021. The data up to year
2015 were published by Mróz et al. (2015), the later data are presented here for the first
time. As seen in Figure 2.1, the system was irregularly observed between 2001 and
2009 and then monitored from 2010 to 2019 at a roughly regular 1-day cadence with
several interruptions. A total of six bright outbursts were recorded, with a recurrence
timescale of roughly 1000 days. The system has a brightness of 𝐼 = 15 mag in
quiescence and peaks at 𝐼 = 13.25 mag during the outbursts; we discuss the outburst
properties in Section 2.3.1. From the photometric variability of the system, Mróz et al.
(2015) detected an orbital period of 0.523419 days, we discuss the orbital variability
in Section 2.3.2. We see in the left panel of Figure 2.1 that small Δ𝐼 = 0.2 mag flares
appear during quiescence, a feature that was not discussed by Mróz et al. (2015). We
provide more details on the flares in Section 2.3.3.

Additionally, we looked for archival data from the Digital Access to a Sky Century @
Harvard (DASCH) catalog (Laycock et al., 2010). The DASCH project digitizes plates
from the Astronomical Photographic Plate Collection and converts them to photometry,
allowing the study of the sky on 100 years timescales. Observations from photographic
plates roughly correspond to 𝐵 band photometric measurements. We found a total
of 154 detections made between 1903 and 1951 which are shown in the top panel of
Figure 2.1 along with the non-detections. The system displays five distinguishable
peaks in 1911, 1940, 1943, 1948 and 1950, showing that this system has gone through
these outbursts in the past. The time elapsed between the outbursts seems to roughly
match the periodicity of the recent observations. The peak magnitude of the outburst
averages around 14 mag but one peak goes up to 11 mag, however, we do not know if
this peak was extraordinary or if the other peaks were only partly recorded.
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Figure 2.1: Photometry of OGLE-BLG504.12.201843. The first panel shows data
from DASCH, with detections in blue and non-detections in grey. The middle panel
shows data from OGLE, we denote the cycles of interest as C1, C2, C3 and C4. The
right panel shows one outburst cycle with dates at which spectra were obtained, which
correspond to three out of the four phases of the light curve. The left panels show the
small flares appearing in OGLE data in more details. The data is shown in blue and
the phase-averaged brightness is shown in red. The latter was obtained by subtracting
a fit of the variability (made with with Fourier series) from the data and averaging the
result over bins of 2 days (in red).
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Figure 2.2: Evolution of the H𝛼 absorption line and the 6560 Å emission line at
different epochs. The spectrum taken on the 2017-10-24 corresponds to the quiescence
of the system while the three other spectra were taken during an outburst.

2.2.2 Spectroscopy
We obtained six spectra of O-201843 between March 12 2016 and August 14 2018.
To our knowledge, these are the first spectra of O-201843. Four spectra are Echelle
spectra and were taken with the MIKE Spectrograph on the Clay telescope at the Las
Companas Observatory (LCO). The two others were obtained with the Goodman High
Throughput Spectrograph at the Southern Astrophysical Research Telescope (SOAR)
(see Table 2.1). The bottom right panel of Figure 2.1 shows when the spectra were
taken in the context of the outbursts. Two spectra were taken during the quiescence
of the light curve, three during the rise and the last one during the decline. The data
were reduced using IRAF and after removal of the continuum we performed Gaussian
fits on the well-defined lines. The results are listed in Table 2.2 and the evolution of
the most prominent feature is shown in Figure 2.2. Larger portions of our spectra with
lines identified in Table 2.2 are shown in Appendix 2.5.
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2.3 Results
In this Section, we examine the photometric and spectroscopic features of O-201843.
We discuss the outburst shapes and periodicity in Section 2.3.1 and study the evolution
of the phased light curves during the outbursts in Section 2.3.2. In Section 2.3.3,
we look at the newly identified flares. Finally we investigate the spectroscopy and its
evolution during the outbursts in Section 2.3.4.

2.3.1 Outbursts
We first investigate the general shape of the outburst cycles. The middle panel of Figure
2.1 shows the six outbursts that were recorded during the 18 years of observation. They
are not strictly periodic but happen approximately every 1000 days and they display a
1.75 mag increase in the 𝐼 band. Looking at the right panel of Figure 2.1, we estimate
the outburst duration to be around 300 days. We also see an intermediate state where
the luminosity slowly increases by about 0.75 mag before the outburst starts, i.e. almost
half of the total luminosity increase of the system. We choose to consider it as a part
of the quiescence of the system, which makes the low state 700 days long. In order
to investigate the periodicity of the outbursts we performed an 𝑂 − 𝐶 analysis of the
light curve. The maxima of outbursts were obtained using spline fits of the light curve.
We improved the average period obtained from this analysis by correcting it with the
change in period and reapplying the 𝑂 − 𝐶 fit, until this change becomes negligible.
This yields an average recurrence time of 𝑃cycle = 973.16 days. We checked the timings
of maxima from OGLE data and we did not find any significant trend. Unfortunately,
the data from DASCH are too sparse to allow meaningful fits of maxima.

To check if the shape of the outburst evolves, we fold the light curve over the
recurrence time using

𝐽𝐷 = 2451601.62 + 973.16 × 𝐸, (2.1)

where 𝐸 is the epoch. We show the results in Figure 2.3 and we see that the shape of the
outburst does not change significantly from one cycle to another. This is emphasised by
the consistence of the rise and decline rates throughout the cycles. In fact, the outbursts
show slow and fast decline rates that remain around 0.006 and 0.014 mag/day, while
the quiescence and outburst rise vary between 0.0017 to 0.0019 mag/day and 0.016 to
0.021 mag/day, respectively.

2.3.2 Orbital variability
Following the orbital period found by Mróz et al. (2015) (0.523419 day), we show the
evolution of the orbital variability of the system in Figure 2.4. This was obtained by
fitting the general trend of the light curve using splines and subtracting the fit from the
data. The result is folded over the orbital period following

𝐽𝐷 = 2452141.23 + 0.523419 × 𝐸, (2.2)

and is repeated over two periods for readability purposes. We show the variability
of the light curve for 20 orbital periods around the time at which a specific phase of
the outburst is reached. These phases correspond to different values of brightness, i.e
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Figure 2.3: Light curve folded over the recurrence of the outburst (973.16 days) using
Equation (2.1). We show four cycles which are each denoted by a different colour.
We indicate the time at which the flares discussed in Section 2.3.3 were recorded with
black vertical lines. The average slopes of the different phases of the cycle are plotted
in black with the values (in mag.day−1) indicated next to each phase.

Figure 2.4: Photometry of OGLE-BLG504.12.201843 during cycles C1, C2, C3 and
C4 folded around its orbital period (0.523419 days) using Equation (2.2). We separated
the data in 4 magnitude bins (15, 14.5, 14 and 13.5 mag) and removed the effect of the
outburst on the photometry to single out the orbital variations of the system. We also
separate each bin in “rise” and “decline” phases of the outburst, shown in yellow and
blue respectively. For each bin, we plot a fit of the cycle with the clearest shape in grey
for comparison with the other cycles.
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13.5 mag is the peak of the outburst, 15 mag is the low quiescence, 14 and 14.5 mag
are intermediate states. The data are also split in rising and declining phases of the
light curve in order to evaluate differences in shape. We overplotted a fit of the cycle
with the most data for comparison purposes.

As shown by Mróz et al. (2015), the variability shape is different during quiescence
and outburst. During quiescence, an orbital period shows two maxima and two minima
due to the tidal distortion of the secondary. Additionally, the two minima of the
light curve are not equal, which can be caused by different mechanisms. A possible
explanation is the irradiation of the secondary by the primary, which brightens the
side of the secondary that faces the primary. An other possibility is gravity darkening:
the distortion of the secondary lowers the surface gravity on the side that faces the
primary, changing the temperature and pressure conditions for hydrostatic equilibrium
and darkening of the area (Lara & Rieutord, 2012). This results in the dimming of the
side of the secondary that is facing the primary. These ellipsoidal modulations also
mean that the secondary star contributes significantly to the observed flux.

During the outburst, the minimum at phase 0.5 becomes deeper and sharper while
the minimum at phase 0 is absorbed by the brightness of the outburst. The deeper
minima is likely caused by the secondary eclipsing the component of the system from
which the outburst originates. The eclipse at phase 0.5 means that the corresponding
minimum in quiescence occurs when the back of the secondary is observable and
the deeper minimum at phase 0 occurs when we observe the side facing the primary.
Therefore, the difference in minima during quiescence seems to be caused by gravity
darkening rather than irradiation.

We note that during the second part of the outburst decay, the shape of the variability
has already switched back to the quiet state, so the outbursting component is not
luminous enough to hide the tidal distortion of the secondary. We also look for changes
in the variability between the rise and the decline as well as between different outbursts.
We do not find significant differences and conclude that the brightness contribution of
the different components of the system does not change from one outburst to the other
or from rise to decline.

2.3.3 Flares
Another peculiar feature of O-201843 are the small flares with amplitudes up to Δ𝐼 =

0.2 mag appearing during the quiescence which were not discussed by Mróz et al.
(2015). They are often barely apparent due to their very small amplitude. The most
distinct ones appear in the last outburst recorded, shown in the bottom right panel of
Figure 2.1.

The flares last around ten days, and in some instances they recur every five to twenty
days in a 100-days interval. To distinguish the flares from the orbital variability, we
fitted the orbital variations using third order Fourier series and subtracted the fit from
the light curve. We averaged the result over bins of two days to remove the scatter
of the data around the fit. This method confirmed ten flares, which are indicated in
Figure 2.3, and some of the light curves are shown in detail in the bottom left panels of
Figure 2.1. Some flares are too hard to unambiguously identify because the observations
are too sparse and the flare amplitude is comparable to the variability of the system.
Additionally, they seem to only occur during quiescence, which is unfortunately never
fully covered due to occultation by the Sun. A significant amount of flares might have
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not been detected, but from the observations it seems the flares happen at any phase of
the quiescence.

2.3.4 Spectral analysis
For each spectrum of O-201843, we fitted the interesting lines of the system with simple
Doppler broadening in order to loosely quantify their evolution, we show the results in
Table 2.2.

During quiescence, the spectra are mostly featureless. They show a slightly blue
continuum with broad Balmer absorption, and Na and Ca II lines coming from the
interstellar medium. From comparison with other spectral types (see Fig. 2.8) we see
that the Balmer lines might come from a late A-type or early F-type star. We note that
the Balmer lines are relatively shallow compared to those of stellar spectra. Although
the photometry of the system shows two stars, we see no signatures of an other star,
which could be hidden by the brightness of its companion. The contribution of the
secondary to the brightness of the system is significant enough to cause ellipsoidal
modulations in the photometry (see Sec. 2.3.2). We therefore expect the brighter star
to be the secondary. Since it is not possible to conclude on the nature of the primary
star, we assume the usual primary of a CV, a WD, hidden by the bright secondary.

The three spectra obtained during outburst are Echelle spectra, from which we are
unable to recover the shape of the continuum. We can therefore only use spectral lines
to estimate the behaviour of the system in outburst. In these spectra, we find the same
Balmer absorption lines as the one observed in quiescence. Considering the differences
in resolution of the different spectra, the FWHM and equivalent width of these lines do
not appear to change significantly during the outburst. We also find a He II emission
line at 4680 Å and an emission line at 6555 Å that could correspond to either He II or
H𝛼. Due to the limited range of our spectra, we only detect the He II line at one epoch.
The evolution of the 6555 Å line presented in Figure 2.2 shows that it is the strongest
near the peak of the outburst and fades away during the decline.

2.4 Discussion
The origin of the outbursts of O-201843 is unclear and is examined in this Section. The
light curve of O-201843 is consistent with the predictions of the DIM, i.e. a thermally
unstable accretion disc, comparable to those of DNe.

The DIM predicts that the brightness of the system should rise slowly before the
outburst is triggered. This is a consequence of the gradual increase of the local mass
transfer rate and temperature before reaching the critical values for stability. We can also
use the DIM to explain the evolution of the orbital modulations. During quiescence,
the disc is very dim, and the variability detected is due to the secondary. Mass starts
to build up in the disc, it slowly brightens and starts to hide the effects of the distortion
of the secondary. The brighter fraction of the disc is small at first but its extent grows
as matter accumulates, affecting the two minima of the variability differently. One
becomes shallower as the disc outshines the secondary and the other becomes deeper
when the secondary obscure a small part of the disc. This effect is best seen when the
disc is at its brightest, at the peak of the outburst (see the right panel of Figure 2.4).
The shallow eclipse indicates that the inclination of the system is moderate, a higher
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Figure 2.5: Left: Phase-folded photometry of OGLE-BLG504.12.201843 during the
quiescent state compared with two Phoebe2 models. Data are shown in blue and
two different models are overplotted. The blue line shows an early F companion of
1.6𝑀⊙ with a WD of 1.4𝑀⊙ and 𝑖 = 45°, with gravity darkening and irradiation of the
secondary. The red line shows an early F companion of 1.6𝑀⊙ with a WD of 1.4𝑀⊙
and 𝑖 = 60°, with only irradiation of the secondary. In both models the primary has a
temperature of 3 × 104K. Right: Estimation of the Roche lobe radius of the secondary
𝑅𝐿,2 using Equation (2.4) with different primary masses 𝑀1 and a secondary mass
𝑀2 = 1.6±0.2𝑀⊙. The constraints on 𝑀1 obtained with Phoebe2 are shown as yellow
vertical dashed lines and the range of possible secondary radii 𝑅2 is indicated as red
horizontal dashed lines.

inclination would deepen the eclipse as seen in eclipsing systems like IP Peg (Bobinger
et al., 1999) or OY Car (Nicholson, 2009).

We note that if the outbursts can be explained by the DIM, then the high amplitude
of the outbursts translates into a high critical disc mass transfer rate �̇�crit. Since �̇�crit
increases with the disc radius (Smak, 1983), we expect the extent of the disc to be large,
which is consistent with the large dimensions of the system. The timescales of the
outbursts also suggests that the quiescent disc is likely cold. Since the disc is usually
expected to be irradiated by the WD, the low temperature of the disc would mean that
the WD is relatively cold as well.

While the DIM can account for most of the photometric features of O-201843,
the spectroscopy of the system differs from the spectra of thermally unstable accretion
disc. We discuss this issue in Section 2.4.1 and we constrain the system geometry in
Section 2.4.2. We consider the ensuing conditions on the mass transfer between the
secondary and the primary in Section 2.4.3. Finally, in order to contextualise the nature
of O-201843 we compare it with known DNe in Section 2.4.4.

2.4.1 Spectra of unstable accretion discs
The growth of emission lines observed in the outburst spectra (see Figure 2.2) could
be explained by an accretion disc: the lines grow in intensity as temperature increases
in the optically thin parts of the disc. However, these lines are not double-peaked,
which is generally expected from an accretion disc. This could be related to a moderate
inclination of the system or some other physical process. For instance some Nova-
like CVs show single-peaked disc emission that are well reproduced by disc winds
(Inight et al., 2021a). There are also high inclination Nova-like CVs, called SW Sex
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systems (Dhillon et al., 2013), that only show double-peaked signals for a small portion
of their orbital period.

Even though the accretion disc provides a crude explanation for the emission lines
in outbursts, we see strong differences between the spectra of O-201843 and those
of known systems with thermally unstable accretion discs. Efforts in identifying the
spectroscopic signatures of DNe show that one should generally expect Balmer emission
cores with absorption wings in quiescence and Balmer absorption lines in outburst.
This behaviour seems to be explained by a change in optical thickness as temperature
increases in the disc. Yet there seem to be a substantial amount of systems that deviate
from this rule, showing no or barely perceptible emission cores in quiescence and some
emission lines during the outburst (Han et al., 2020; Morales-Rueda & Marsh, 2002).
Thus, the lack of emission lines in the quiescence spectra of O-201843 is concerning
but does not invalidate the hypothesis of an outbursting disc.

The most straightforward explanation for the absence of emission cores is that
they might be undetectable in our spectra. Given the low signal-to-noise ratio and
resolution of the spectra, along with the brightness of the secondary, it is possible that
small emission cores are hidden. This might also account for the shallowness of the
stellar absorption lines. O-201843 could then have a bright secondary similarly to the
unusual CV V1129 Cen, which shows faint 0.6-0.8 mag outbursts in the 𝑉 band with a
recurrence timescale of roughly a year (Walter et al., 2006). This system does not show
the usual emission lines caused by the accretion disc and Bruch (2017) hypothesised
that this system could be a DN with a bright type F secondary star that outshines the
disc. The issue with this hypothesis lies in the lack of change in absorption line profiles
during the outburst, when the disc outshines the rest of the system. As stated before,
one expects to detect absorption lines originating from the disc during the outburst. In
the case of a bright secondary, these lines could blend with the stellar absorption lines,
but it is unclear why we do not observe any significant change in the profile of these
lines when the disc undergoes an outburst.

Another possible explanation for the lack of emission lines during quiescence is
given by Idan et al. (2010). They modelled the spectra of cold accretion discs using the
DIM and found an optically thick disc with Balmer absorption lines and no emission
lines. They argue that optically thin regions in quiescence should only appear in the
disc photosphere or in winds (Matthews et al., 2015), which would only appear during
outbursts or if there is significant irradiation of the disc by the WD. In the case of
O-201843, the long timescales of the outburst seem to suggest that the disc is initially
cold and the irradiation from the WD is minimal. So the quiescent spectra could be
dominated by absorption lines, and consequently the Balmer lines we observe would
be a blend of the lines from the disc and the secondary. As the temperature increases
during the outburst, some regions of the disc might become optically thin and cause
the emission lines.

Additionally, we tried to fit the outburst spectra taken by the MIKE spectrograph
with The Payne spectral models (Ting et al., 2019) to see if we could extract some
stellar parameters. No good fit was found because the spectra are too smooth and the
few absorption lines that were detected are uncharacteristically shallow. This could
mean that the profile of the absorption lines is indeed modified by the accretion disc,
either with undetectable emission cores or blends of absorption lines.

Altogether, the spectra of O-201843 do not exclude the presence of an accretion disc
despite not showing the expected features. Additional information could be obtained
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Figure 2.6: Comparison of the properties of OGLE-BLG504.12.201843 with the cata-
log of DNe compiled by Otulakowska-Hypka et al. (2016). The parameters of O-201843
are shown with a blue star, the catalog in DNe is separated in SU UMa (blue), Z Cam
(yellow) and U Gem (red) systems. We also indicate the properties of V1129 Cen and
RU Peg. Left panel: orbital period vs outburst length. Middle panel: average cycle
length vs outburst length. Right panel: outburst 𝑉 amplitude vs outburst length, the
outburst amplitude of O-201843 coming from DASCH (in the 𝐵 band) is denoted with
”B” and the one coming from OGLE (in the 𝐼 band) is denoted with ”I”. For SU UMa
systems, the parameters of regular cycles are denoted with full points while circles
indicate the properties of supercycles.

by examining the evolution of the continuum during the outburst, however, as stated in
Section 2.3.4, this is not possible with the current data. It is therefore important to get
more spectra of the system during outbursts.

2.4.2 Geometry of the system
The constraints on the nature of the secondary obtained with the spectra of O-201843
require an unusually bright companion for a CV. It is thus necessary to check whether
these configurations are consistent with the known parameters of the system.

First, we use the orbital variability in Figure 2.4 to estimate some of the properties
of the binary, specifically the mass ratio 𝑞 and inclination 𝑖. We try to reproduce the
ellipsoidal shape of the quiescent light curve using Phoebe2 (Prša et al., 2016). We set
up the system as a semi-detached binary with a period of 0.523419 days with an early F
secondary star (𝑀2 = 1.6𝑀⊙). We vary the mass of the WD primary 𝑀1 and inclination
of the system 𝑖, and set the radius of the WD to follow the relation 𝑅 ∝ 𝑀−1/3. We run
the models with either gravity darkening, secondary irradiation or both to see which
combination is able to reproduce the orbital variability.

We find that secondary irradiation alone fails to induce a difference in the two
minima observed in the quiescent variability of the system for primary temperature
below 3 × 104 K. The effect of irradiation is still small at higher temperatures, which
is likely due to the large separation between the secondary and the primary. The
insignificance of irradiation by the primary means that the observations are consistent
with a relatively cold primary. Conversely, gravity darkening manages to replicate both
the shape and minima difference of the variability. The only difference we observe
when changing 𝑀2 is a lower 𝑖 for a higher 𝑀2, which is likely due of the degeneracy
between 𝑖 and mass ratio 𝑞 =

𝑀2
𝑀1

. For an early F star, the most successful models
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have 𝑀1 between 0.7 and 1.4 𝑀⊙ (1.29 ≲ 𝑞 ≲ 2.57) with 𝑖 between 45° and 50°. We
show an example of a successful model in the left panel of Figure 2.5 for the case of
𝑀2 = 1.6𝑀⊙, as well as an example of the contribution of secondary irradiation. The
moderate inclination is consistent with the lack of eclipse in quiescence, and might
contribute to the lack of double-peaked signals in the disc spectra.

An early F secondary is unusually young and large for a CV. We check how such a
secondary fits within the orbit parameters by calculating the semi-major axis 𝑎 of the
system:

𝑎3 =
𝐺𝑀𝑃2

orb
4π2 , (2.3)

where 𝑀 = 𝑀1 + 𝑀2. Under the early F secondary assumption (𝑀2 ≃ 1.6𝑀⊙), this
equation yields 𝑎 = 3.7𝑅⊙ for 𝑀1 = 0.7𝑀⊙ and 𝑎 = 3.9𝑅⊙ for 𝑀1 = 1.4𝑀⊙. Thus
an early F secondary with 𝑅2 ≃ 1.7𝑅⊙ would fit within the system orbit. A study of
population synthesis of CVs by Goliasch & Nelson (2015) shows that CVs can form
with companions of spectral type earlier than K. Using MIST isochrones (Dotter, 2016;
Choi et al., 2016), we estimate that the maximum main-sequence age of a 1.6𝑀⊙ star
is around 1.8 × 109 years. According to the WD cooling tracks from Fontaine et al.
(2001), this leaves enough time for a WD primary to cool to temperatures as low as
10000 K. We note however that accretion onto the WD primary should increase its
temperature. Therefore, depending on the mass transfer rate of the system, the WD
temperature might significantly diverge from the low temperatures mentioned above.

Overall, an early F secondary seems to fit within the observed parameters of the
system. The next step is to establish whether such a companion is consistent with the
observed outbursts, especially the long timescales and the corresponding mass transfer
rates.

2.4.3 Mass transfer
If the outbursts of O-201843 originate from a thermally unstable accretion disc, then
the mass transfer from the secondary and in the disc should fulfill certain criteria.

Firstly, an accretion disc requires that the secondary overfills its Roche lobe. Using
the Roche lobe radius approximation from Eggleton (1983a):

𝑅𝐿

𝑎
=

0.49𝑞2/3

0.6𝑞2/3 + ln(1 + 𝑞1/3)
, (2.4)

together with Equation (2.3) allows to estimate the Roche lobe radius of the secondary
𝑅𝐿,2 given a specific mass ratio. We evaluate 𝑅𝐿,2 over all possible primary masses in
the cases of an early F-type main sequence secondary with mass 𝑀2 = 1.6 ± 0.2𝑀⊙.
In the right panel of Figure 2.5, we compare 𝑅𝐿,2 to the range of possible secondary
radii 𝑅2 = 1.6 ± 0.15𝑅⊙ for an early F companion. We also indicate the constraints
on the primary mass 𝑀1 obtained with Phoebe2. According to these estimations, it
seems possible that an early F companion overflows its Roche lobe. We checked these
estimations for cases of smaller secondary stars and found that in this system, a main
sequence secondary of type later than late type F cannot overfill its Roche lobe. This
is to be expected since the dimensions of the system are quite large for a CV, and
thermally unstable accretion discs seem to mainly occur in binaries with much closer
orbits and smaller secondary stars. We therefore conclude that in the case of a main
sequence companion, the presence of an accretion disc requires the secondary star to be
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Figure 2.7: OGLE-BLG504.12.201843 in the HR diagram with a catalog of DNe
obtained by merging the “Gold” sample of CVs from Inight et al. (2021b) with the CV
sample from Abril et al. (2020). O-201843 is denoted with a blue star and DNe are
separated in SU UMa (yellow) and U Gem (red) systems. The black arrow shows the
effect of a reddening of 𝐸 (𝐵 − 𝑉) = 0.5 mag. Points in grey are data selected from
the Gaia Early Data Release 3 (EDR3, Gaia Collaboration 2021) by requiring that the
sources have parallax errors lower than 10% of their parallax. This criterion allows to
compute the absolute magnitudes with the distance as inverse of the parallax.

of type no later than F. We note however that in the case of a more evolved secondary,
the requirement derived above does not hold anymore.

Secondly, the recurrent outbursts in the disc should be explained by the DIM, in
which the stability of the disc depends on the local mass transfer rate. Kalomeni et al.
(2016) studied the evolution tracks of CVs, in particular they included the treatment
of unstable accretion discs using the critical mass transfer rates inferred by the DIM.
Their results show that for the orbital period of O-201843, an early F companion allows
for the formation of thermal-viscous instabilities in the disc. However, they also show
that the average mass transfer rate ⟨�̇�⟩ of such a system would be above 10−8.8M⊙/yr,
meaning the system would fall in the regime of super-soft X-ray sources. In this case, the
additional X-ray radiation may heat up the disc sufficiently to prevent the development
of thermal instabilities. Furthermore, according to Townsley & Gänsicke (2009), a
system with ⟨�̇�⟩ > 10−8M⊙/yr results in a WD primary temperature 𝑇1 > 25000 K
for 𝑀1 = 0.6𝑀⊙ or 𝑇1 > 50000 K for 𝑀1 = 0.9𝑀⊙, which is inconsistent with the
idea of a cool WD primary and disc. It is therefore unclear whether thermal-viscous
instabilities actually occur in O-201843.
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2.4.4 Comparison to DNe
Overall, the regular recurrence and shape of the outbursts of O-201843, along with
their asymmetry, are reminiscent of long outside-in outbursts of U Gem type DNe:
a fast rise followed by a decline that is slow at first and then accelerates. While the
long timescale of the outbursts is analogous to superoutbursts (Rivera Sandoval et al.,
2020), Mróz et al. (2015) did not find any secondary luminosity modulations that would
correspond to superhumps. Besides, the shape of the outbursts does not resemble those
of superoutbursts, they are more similar to normal DNe outbursts despite their long
timescales. We conclude this study by comparing the photometry O-201843 to that of
other known DNe in hope that it will help to draw a conclusion on the nature of the
system.

An obvious divergence from DNe occurs during the quiescent state, which shows
a slow 0.75 mag rise in brightness. Despite being a feature predicted by the DIM, we
could not find any mention of the observation of such brightenings in the literature,
although the SU UMa type DN V363 Lyr does show a small brightening before both
outbursts and superoutburst (Kato, 2021). Interestingly, Smak (2000) notes that this
transitional state is one of the weaknesses of the DIM since it has never been observed in
other DNe despite being essential to occurrence of the outburst. This could mean some
additional mechanism is involved in DNe outbursts that does not operate in O-201843.
The lack of such mechanism could be linked to the unusually long recurrence time of
the outbursts of O-201843.

Additionally, we do not find any records of the small recurring flares in quiescence
mentioned in Section 2.3.3 in other DNe. They could be much more short-lived and
harder to observe in the case of normal outburst cycle time. However consecutive
flares were observed after superoutbursts in WZ Sge systems (Kato, 2015), which were
successfully reproduced by Hameury & Lasota (2021) by adding several mechanisms to
the DIM, such as variation of the mass transfer from the secondary, disc truncation and
irradiation of the disc. In the case of O-201843, these flares could be small instabilities
that fail to propagate far in the disc. Their symmetric shape are reminiscent of inside-
out outbursts, which are triggered close to the inner edge of the disc and involve a much
smaller portion of the disc than outside-in outbursts. Overall these flares are a very
interesting feature and are most likely linked to disc instabilities.

In Figure 2.6, we compare the properties of O-201843 to the catalog of DNe
compiled by Otulakowska-Hypka et al. (2016). Here, the cycle length should be
interpreted carefully because the time elapsed between cycles can vary a lot for one
DN. Since we do not have 𝑉 band data for O-201843, we mark the outburst amplitude
with a range set by the photographic amplitude from DASCH and 𝐼 band data from
OGLE. Additionally, some DNe in this catalog also display superoutbursts (SU UMa
systems) and in this case we differentiate the parameters of cycles and supercycles
with different symbols. The cycle length is the time elapsed between two normal
outbursts and the length of supercycle is the time elapsed between two superoutbursts.
The recurrence time of O-201843 is unusually long compared to that of DNe, where
outbursts occur every few weeks or months. The length of the outburst itself is also
generally much shorter, around a couple of days or weeks instead of almost a year in
O-201843. From both left and middle panels in Figure 2.6 we can clearly see that O-
201843 is an outlier. As shown in the middle panel, Otulakowska-Hypka et al. (2016)
suggest there could exist a relation between the outburst length and the cycle length.
In this case, O-201843 would actually follow this relation despite having such extreme
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properties. The right panel shows that the amplitude of the outburst is relatively normal.
In Figure 2.7, we show the position of O-201843 in the Hertzprung-Russel (HR)

diagram alongside a catalog of DNe obtained by merging the ”Gold” sample of CVs
from Inight et al. (2021b) with the CVs sample from Abril et al. (2020). Both samples
were selected from Gaia DR2 (Gaia Collaboration, 2018) by considering objects with
accurate parallax that were cross-matched with various CVs catalogues. We plot the
HR diagram using similar criteria and compute distances as inverse parallax, which
gives 2.35 ± 0.29 kpc for O-201843. We estimated the reddening 𝐸 (𝐵 − 𝑉) of O-
201843 by measuring equivalent widths of Na I D lines in our high resolution spectra
and using the relations of Poznanski et al. (2012). We obtained values of 𝐸 (𝐵 − 𝑉)
between 0.1 and 0.45 mag and chose to indicate the effect of 𝐸 (𝐵 − 𝑉) = 0.5 mag
in the HR diagram. From Figure 2.7 we can see that the WD or accretion disc is
dominant in most DNe. Only a couple of systems (mainly U Gem DNe) and O-201843
appear closer to the main sequence, meaning they are likely dominated by a main
sequence secondary star. We also indicated the properties of two systems that are quite
close to O-201843 in Figure 2.6, namely RU Peg and V1129 Cen. While RU Peg is
quite ordinary, V1129 Cen has more extreme characteristics which were discussed in
Section 2.4.1. Nonetheless, V1129 Cen has much shorter outburst and cycle length
than O-201843. The similar luminosity and color between O-201843 and V1129 Cen
gives further support to our hypothesis of a bright early F secondary star. We note that
reddening corrections would make the secondary even brighter and bluer, as indicated
by the arrow in Figure 2.7.

Altogether, the photometry of O-201843 shows strong similarities with DNe but
also important differences. While these peculiarities have not been observed in other
DNe, it is possible that O-201843 is an extreme U Gem DN, or at least is somehow
linked to DNe.

2.5 Conclusion
To summarize, we have analysed optical photometry and spectroscopy of O-201843 and
suggest that O-201843 is a U Gem type DN with extreme properties. The photometry
shows clear features of an accretion disc from which the outbursts can originate. It also
display two unusual features that, to our knowledge, are only rarely observed in other
DNe. The slow brightening preceding the outbursts is a prediction of the DIM and its
absence in regular DNe could indicate that some physical process usually suppresses
it. The small flares with amplitude ≲ 0.2 mag in 𝐼 band detected during quiescence
are another peculiar feature. We suggest that they might be small outbursts that fail to
propagate far in the disc.

The analysis of the spectroscopy shows Balmer absorption that can either come
from an early F secondary or the accretion disc. We however do not see the features
of a WD and the usual features of an unstable accretion disc, i.e. no emission lines
or cores in quiescence and no additional Balmer absorption in outburst. A possible
explanation is that the disc is not or weakly irradiated by the primary WD, rendering
it unusually cold. Additionally, the emission lines appearing during the outburst lack
the double-peaked signal that one would expect from an accretion disc. As suggested
by the orbital variability of the system, the inclination might just be low enough for the
lines to be single-peaked. Obtaining time-resolved spectroscopy of this system could
help to understand the lack of double-peaked lines as well as accurately constrain some
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of the parameters of the system such as its mass ratio and inclination. It could also
provide insights on how the system changes during the small flares appearing during
quiescence. Additionally, such spectra would permit a similar analysis to what was
done by Kára et al. (2021), who used Doppler tomography (Marsh & Horne, 1988)
on the disc emission lines to obtain information on the velocity structure of the disc.
Moreover, new spectra, especially in UV, could also help elucidate the nature of the
primary and secondary.

Finally, the outburst duration and cycle length would be unprecedented among other
U Gem type DNe. One potentially similar object to O-201843 is V1129 Cen, which has
similar orbital period and location in the HR diagram, but its outburst and cycle length
and amplitude are still significantly smaller than those of O-201843. If O-201843 is
not a DN, it could be a new type of CVs that is tightly linked to DNe. Further study
of this system should help understanding thermal-viscous instabilities and outbursts
in accretion discs. Furthermore, the very long timescales of the system allows to see
features that might not be possible to observe otherwise (e.g. flares) and it will be of
great benefit to study them. The next outburst of O-201843 should begin in May 2023,
peak around July 2023 and end in February 2024. The end of this outburst will not be
visible due to conjunction with the Sun. The following outburst, starting in January
2026 and ending in October 2026 with a peak around March 2026, should be fully
visible.
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Appendix A: Spectra
In Figure 2.8, we show the full spectrum of O-201843 during quiescence, indicate
the interesting lines and compare it to the spectra of typical A0, G2 and F2 stars. In
Figure 2.9, we show wider portions of our spectra and identify of interesting lines.

Figure 2.8: Full Spectra of O-201843 in quiescence (taken on 2017-10-24) with identi-
fication of interesting lines and template spectra from PyHammer (Kesseli et al., 2017;
Roulston et al., 2020). Quantitative parameters of the lines are given in Table 2.2.

Figure 2.9: Portions of the spectrum of O-201843 during an outburst (taken on 2018-
03-06) with identification of interesting lines. Quantitative parameters of the lines are
given in Table 2.2.
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3. Driving asymmetric red supergiant
winds with binary interactions 1
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Abstract
Massive stars in the red supergiant (RSG) phase are known to undergo strong mass

loss through winds and observations indicate that a substantial part of this mass loss
could be driven by localised and episodic outflows. Various mechanisms have been
considered to explain this type of mass loss in RSGs, but these models often focus
on single-star evolution. However, massive stars commonly evolve in binary systems,
potentially interacting with their companions. Motivated by observations of the highly
asymmetric circumstellar ejecta around the RSG VY CMa, we investigate a scenario
where a companion on an eccentric orbit grazes the surface of a red supergiant at
periastron. The companion ejects part of the outer RSG envelope, which radiatively
cools, reaching the proper conditions for dust condensation and eventually giving rise to
dust-driven winds. Using simple treatments for radiative cooling and dust-driven winds,
we perform 3D smoothed particle hydrodynamics simulations of this scenario with a
20𝑀⊙ RSG and a 2𝑀⊙ companion. We follow the evolution of the binary throughout
a total of 14 orbits and observe that the orbit tightens after each interaction, in turn
enhancing the mass loss of subsequent interactions. We show that one such grazing
interaction yields outflows of 3×10−4 𝑀⊙, which later results in wide asymmetric dusty
ejecta, carrying a total mass of 0.185𝑀⊙ by the end of simulations. We discuss the
implications for the evolution of the binary, potential observational signatures, as well
as future improvements of the model required to provide sensible predictions for the
evolution of massive binaries.

1This chapter is a pre-copyedited, author-produced version of an article accepted for publica-
tion in Monthly Notices of the Royal Astronomical Society following peer review. The version
of record [Camille Landri, Ondřej Pejcha. Driving asymmetric red supergiants winds with binary
interactions. MNRAS, Volume 531, Issue 3, July 2024, Pages 3391–3405] is available online at
https://doi.org/10.1093/mnras/stae1379.
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3.1 Introduction
The red supergiant (RSG) phase is an important part of the evolution of massive stars
with initial masses between 8 and 25𝑀⊙ (e.g., Ekström et al., 2012), during which they
undergo substantial mass loss through winds. Observations show that a significant part
of this mass loss can be driven by episodic outflows localised on the stellar surface
(Humphreys et al., 2021), as is shown by the ejecta surrounding VY CMa. VY CMa is
a RSG located at 1.2 kpc (Zhang et al., 2012) and is one of the largest and most massive
RSGs observed to this date, with a current radius of 1420 ± 120𝑅⊙, a luminosity of
(2.7 ± 0.4) × 105𝐿⊙, and an initial mass at the upper range for RSGs (25 − 32𝑀⊙,
Wittkowski et al., 2012). Various observations of VY CMa show that it is embedded
in asymmetric circumstellar ejecta with distinct and complex structures such as arcs,
knots, and clumps (Smith et al., 2001; Humphreys et al., 2007; Jones et al., 2007;
Kamiński et al., 2013; Richards et al., 2014; O’Gorman et al., 2015; Decin et al., 2016;
Vlemmings et al., 2017; Gordon et al., 2019; Kaminski, 2019; Humphreys et al., 2021;
Quintana-Lacaci et al., 2023; Humphreys et al., 2024). The clumps, in particular, are
thought to be caused by highly localised mass-loss events that have been occurring for
the past 1200 yrs (Shenoy et al., 2016), but their origin so far remains unexplained.

Various mechanisms have been considered to explain episodic mass loss in single
RSGs, generally involving dust-driven winds launched by a disturbance of the stel-
lar surface by magnetic activity, convection, or pulsations (e.g., Smith et al. 2001;
Humphreys et al. 2007; O’Gorman et al. 2015; Vlemmings et al. 2017). However,
quantitative prescriptions of these processes are scarce and often ambiguous, and stel-
lar evolution models of cool supergiants continue to use time-averaged empirical mass
loss formulations that do not take into account the episodic nature of RSG mass loss
(e.g., de Jager et al., 1988; Nieuwenhuijzen & de Jager, 1990; van Loon et al., 2005).
Since these localised outflows can represent a large fraction of the mass lost by the
RSG, as is the case for VY CMa, our poor understanding of these mechanisms intro-
duces large uncertainties in current massive star evolution models (e.g., Smith, 2014a)
and serious discrepancies between theory and observations (e.g., Massey et al. 2023).
Furthermore, a lot of important astrophysical processes, such as gravitational wave
emission from compact binaries, chemical evolution of galaxies, and core-collapse
supernovae (SNe), strongly depend on massive star evolution. It is therefore crucial
to improve our understanding of episodic mass loss in RSGs and better constrain their
fate.

An important aspect of RSG evolution is multiplicity. A significant fraction of
massive stars are found in binary systems (e.g., Mason et al., 2009; Sana et al., 2012;
Moe & Di Stefano, 2017), with a large variety of possible configurations, including
some with short separation of the two stars which allow them to interact. A small but
significant part of these systems are expected to remain bound and interact throughout
their whole evolution, leading to the formation of objects such as X-ray binaries or
gravitational wave events. For instance, common formation channels for double neutron
star binaries show multiple evolution stages where one of the stars is a RSG interacting
with its companion (e.g., Tauris et al., 2017). Therefore, scenarios where binary
interaction and stellar winds interplay are likely to occur. While the impact of binarity
on stellar winds has been investigated in the case of stars on the Asymptotic Giant
Branch (AGB) (e.g., Chen et al., 2020; Bermúdez-Bustamante et al., 2020; Aydi &
Mohamed, 2022; Esseldeurs et al., 2023), it remains widely unexplored for RSG stars.
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In this paper, we investigate a scenario where binary interaction can drive anisotropic
mass loss episodes in RSGs that can later turn into dust-driven winds. More specifically,
we consider a RSG with a companion grazing the RSG envelope on a highly eccentric
orbit. We illustrate this scenario in Fig. 3.1: the companion grazes the outer envelope at
each periastron passage and the shocked gas is ejected from the envelope. As the ejected
gas spreads outward, it cools and eventually reaches temperatures that are low enough
to allow dust to condense. Radiative pressure then accelerates the newly formed dust
grains, dragging the gas along and effectively driving an asymmetric wind. Eventually,
the companion enters deep into the envelope of the RSG and commences a common
envelope evolution (e.g., Paczynski, 1976; Fragos et al., 2019; Röpke & De Marco,
2023; Lau et al., 2022; Gagnier & Pejcha, 2023, 2024). This scenario resembles the
grazing envelope evolution proposed by Soker (2015) except we do not involve accretion
disk and jets around the companion and the resulting outflow morphology is different
(Shiber et al., 2017). Our model makes use of radiation pressures on dust grains, which
was suggested as important in the late stages of common envelope evolution by Glanz
& Perets (2018b). Glanz & Perets (2021) also studied common envelope evolution in
eccentric binaries but did not address anisotropic outflows during periastron passages.

We explore the proposed scenario through 3D hydrodynamics simulations, where
we include a simplified treatment of dust formation and radiation pressure driving the
RSG outflows. We note that the aim of this proof-of-concept study is not to reproduce
the detailed properties and complicated morphology of the ejecta surrounding VY CMa
or other RSGs, where in reality they likely arise from an interplay of many different
processes. Instead, our goal is to illustrate that binary interactions can potentially
explain some of the observed features. A more sophisticated treatment of dust formation
and radiative processes can be added in follow-up studies to reach a better agreement
with the observations. In Section 3.2, we describe the methods used to model our
scenario, including how we simplified the different treatments of the physical processes
involved. In Section 3.3, we present our results, including the evolution of the orbit,
amounts of mass ejected, and the ejecta expansion. In Section 3.4, we discuss the
possible formation channels for our system, the implications of our model for binary
evolution, the possible observational signatures of such winds, and future improvements
for our models.

3.2 Methods
We use the Smoothed Particle Hydrodynamics (SPH) code Phantom (Price et al., 2018)
that solves the Lagrangian form of the equations of hydrodynamics by discretising the
fluid as particles with mass 𝑚 and local fluid velocity 𝑣 (e.g., Lucy, 1977; Gingold
& Monaghan, 1977; Price, 2012). Physical quantities are then computed by summing
particle contributions weighted by a smoothing kernel 𝑊 , for instance, the density
around particle 𝑎 is given by:

𝜌𝑎 =
∑︁
𝑏

𝑚𝑏𝑊 ( |𝑟𝑎 − 𝑟𝑏 |, ℎ𝑎) , (3.1)

where ℎ𝑎 is the smoothing length, which defines the neighbourhood of the particle
𝑎 and is proportional to the local particle number density ℎ𝑎 = ℎfact𝑛

−1/3
𝑎 , ℎfact is a

proportionality factor. The resolution of the simulations is therefore set by the total
number of particles used, the choice of smoothing kernel and ℎfact.
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Figure 3.1: Schematics of the scenario explored with our simulations. A companion
on an eccentric orbit grazes the envelope of the red supergiant and the resulting outflow
radiatively cools, eventually reaching temperatures that permit dust formation. Radi-
ation pressure then accelerates the dust grains, which drag the gas along, resulting in
asymmetric dust-driven winds.

For this work, we set up Phantom is set up to solve the equations of hydrodynamics
in the following form:

𝑑𝑣

𝑑𝑡
= − ∇𝑃

𝜌
+ Πshock + �⃗�selfgrav + �⃗�ext, (3.2)

𝑑𝑢

𝑑𝑡
= − 𝑃

𝜌
(∇ · 𝑣) + Ψshock −

Υcool
𝜌

, (3.3)

where 𝑃 is the pressure, 𝑢 is the internal energy, �⃗�selfgrav is the acceleration due to
self-gravity, �⃗�ext represents the acceleration due to external forces such as sink particles
or a radiative flux, Πshock and Ψshock are viscous dissipation terms, and Υcool is an
optional cooling term. For 𝑊 , we use the M4 cubic spline kernel with ℎfact = 1.2,
corresponding to an average of 58 neighbours.

Our scenario involves more than hydrodynamics and self-gravity. As shown in
Fig 3.1, our simulations require a treatment of radiative cooling as the shocked gas
is ejected from the RSG and a treatment of dust condensation and radiative pressure
to accelerate the outflow. Since this work is meant to be a proof-of-principle, these
treatments will remain simple, but we do plan on improving them in follow-up studies.
For this study, we run a set of 4 simulations which are summarised in Tab. 3.1. In
the rest of this section, we describe how we initialise the RSG and the binary system
(Sec. 3.2.1), as well as how we treat dust-driven winds (Sec. 3.2.3) and radiative cooling
(Sec. 3.2.2).
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Table 3.1: Summary of the simulations performed for this study, showing the number
of particles, minimum softening length ℎa, and processes involved in the run.

Number of particles min ℎa Physics involved
2.5 × 105 22 𝑅⊙ Hydro, self-gravity,

cooling, dust-driven
winds

1 × 106 14 𝑅⊙ Hydro, self-gravity,
cooling, dust-driven
winds

1 × 106 14 𝑅⊙ Hydro, self-gravity,
adiabatic, no wind

2 × 106 11 𝑅⊙ Hydro, self-gravity,
cooling, dust-driven
winds

3.2.1 Initialisation of the system
We consider a binary of mass ratio 𝑞 = 𝑀2/𝑀1 = 0.1 with a 𝑀1 = 20𝑀⊙ RSG similar
to VY CMa, and a companion of 𝑀2 = 2𝑀⊙, which could represent either a low-mass
non-degenerate star or a fairly massive neutron star (NS) (e.g., Özel & Freire, 2016).
We initialise this system in two steps, first, the 1D stellar profile of the RSG is mapped to
3D and relaxed in Phantom. During this phase, there are no external accelerations and
no cooling. Then, after ensuring the stability of the 3D model, we add the companion
and let the binary evolve for several orbital periods.

For the interior of the RSG, we create a 1D stellar profile with properties similar
to VY CMa, which has mass and radius estimated to be 17 ± 8𝑀⊙ and 1420 ± 120 𝑅⊙
respectively (Wittkowski et al., 2012). Since the companion mostly interacts with the
outer layers of the RSG, it is unnecessary and computationally expensive to resolve
the core and inner envelope of the giant. We therefore replace part of the stellar
interior with a sink particle, a point mass that interacts with other particles only
gravitationally through a potential smoothed with a cubic spline kernel. We excised
about half of the envelope, which increases the number of particles at the stellar surface
for a reasonable total number of particles as well as maintains a reasonable timestep
during the simulations. For the rest of the envelope, we choose to use an artificial
RSG profile that is convectively stable, since reproducing accurate convective motion
requires resolving the inner envelope and we wish to avoid the decrease in timestep
associated with these dense envelope layers. To create the model for the envelope, we
follow the method provided in Appendix A of Lau et al. (2022) and solve the equations
of hydrostatic equilibrium with an ideal gas equation of state assuming an adiabatic
index of 𝛾 = 5/3, constant entropy, and accounting for the softened potential of the
core. To solve these equations, we used boundary conditions from a realistic RSG
profile obtained with Mesa (Paxton et al., 2011; Paxton et al., 2013a, 2015b, 2018b,
2019b; Jermyn et al., 2023) made to match the properties of VY CMa (for a detailed
description of the process see Appendix 3.5).

Following this process, we created a 1D convectively stable profile of a 20𝑀⊙ and
1500 𝑅⊙ RSG that is shown in Fig. 3.2. We initialised it in Phantom with a sink particle
core of 13.75𝑀⊙ and a potential smoothed with a cubic spline kernel. We define the
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Figure 3.2: Density profile of the outer envelope of the RSG in our simulation at the
end of the relaxation and 10 𝜏dyn later. Top: Density profiles, purple shows the initial
profile and orange the profile after 10 𝜏dyn, the grey dashed line shows the softening
radius of the RSG numerical core. Bottom: Relative change in density computed as
(𝜌f − 𝜌i)/𝜌i. The envelope remains stable apart from a 25% increase in density at the
surface.

smoothing length of this potential to be 𝑅soft,1 = 375 𝑅⊙, yielding an effective radius
of 750 𝑅⊙ for the sink particle since the Newtonian potential is recovered at 2𝑟soft with
a cubic spline kernel. The 1D stellar profile of the RSG is mapped to a 3D distribution
and then relaxed using the procedure implemented in Phantom by Lau et al. (2022).
The giant is then evolved for 10 dynamical timescales (𝜏dyn = 241 𝑑) to ensure the
stability of the star. In Fig. 3.2, we show the density profile before and after relaxation:
while the RSG remains stable, the relaxation and subsequent evolution yield a small
change in stellar radius as the RSG has slightly expanded during the relaxation and
then contracted. For the highest resolution simulation (2 × 106 particles) the RSG has
expanded from 1500 𝑅⊙ to 1569 𝑅⊙.

Once the star is relaxed and stable, we add the neutron star companion by placing
it at the apoastron of the orbit. Since a neutron star is much smaller than the minimum
smoothing length in our simulations, we initialise it as a sink particle of mass𝑀2 = 2𝑀⊙
with smoothing length and accretion radius equal to the minimum resolved length,
which is 𝑅soft,2 = 11 𝑅⊙ for our highest resolution simulations with 2 × 106 particles.
The orbit of the system is set with a semi-major axis 𝐴 = 7500𝑅⊙ and eccentricity
𝑒 = 0.8, so that the secondary grazes the envelope of the RSG at each periastron
passage. We then evolve the system for several orbits until the companion has plunged
deeply into the RSG envelope and the smoothed potential of the two sink particles
overlap.
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Table 3.2: Initial conditions of the high-resolution simulations (2×106 particles). 𝑇cond
and 𝑝dust are the dust condensation parameters according to equations (3.4) and (3.5).

RSG primary 𝑀1 20.0 𝑀⊙
𝑅1 1569 𝑅⊙
𝑅soft,1 375 𝑅⊙
𝑀core 13.75 𝑀⊙
𝑀env 6.25 𝑀⊙
𝑇eff 3500 K

Companion 𝑀2 2.0 𝑀⊙
𝑅soft,2 11 𝑅⊙

Binary Eccentricity 0.8
Semi-major axis 7500 𝑅⊙
Period 43.91 yrs

Dust 𝑇cond 1100 K
𝑝dust -0.9

3.2.2 Cooling
As the companion goes through the envelope of the giant, the shocked gas that is ejected
becomes optically thin and cools radiatively to the local equilibrium temperature 𝑇eq,
where radiative cooling and irradiation from the RSG compensate each other. Under
the assumptions of spherical symmetry and that the RSG radiative intensity dominated
the local intensity, 𝑇eq is given by (Lamers & Cassinelli, 1999):

𝑇eq = 𝑇eff,1𝑊 (𝑟)1/(4+𝑝dust) ,𝑊 (𝑟) = 1
2
⎛⎜⎝1 −

√︄
1 −

(︃
𝑅1
𝑟

)︃2⎞⎟⎠ (3.4)

where𝑇eff,1 and 𝑅1 are the effective temperature and radius of the RSG, 𝑟 is the distance
from the centre of mass of the RSG, and 𝑊 (𝑟) is the so-called geometrical dilution
factor. Since we are primarily interested in situations where 𝑇eq decreases below the
dust condensation temperature𝑇cond, equation (3.4) includes dust correction through
the exponent 𝑝dust, which comes from approximating the wavelength-dependent part
of the dust opacity with a power law,

𝜅d = 𝜅0

(︃
𝜆

𝜆0

)︃−𝑝dust

. (3.5)

The dust properties are described in Section 3.2.3.
Since cooling impacts the kinematics of the ejected gas, it is important to take it

into account in our simulations. The most natural way to handle this process would
of course be to fully resolve radiative cooling and irradiation by imposing a cooling
timescale over which the gas relaxes to 𝑇eq.

The cooling timescale 𝑡cool over which a shocked gas radiates away its internal
energy 𝑈 = 3/2𝑘B𝑇 can be estimated from a radiative cooling function (e.g., Fig. 22
of Ferland et al. 2017),

𝑡cool =
𝑈𝑚p

𝜌Λ(𝑇) . (3.6)
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Here, 𝑚p is the proton mass, 𝜌 is the density of the gas, and Λ(𝑇) is the usual cooling
function. As the companion goes through the envelope of the giant, the shocked upper
layers of the envelope reach temperatures up to 35000 K, for which the cooling rate is
approximately 3.16 × 10−4 erg cm3 s−1. For a density of 10−10 g cm−3, equation (3.6)
yields 𝑡cool ≈ 3.2 × 10−4 s. Considering the hydrodynamical timestep 𝑡step of our
simulations is of the order of hours, it is impossible to resolve such fast cooling in our
simulations without making their cost unreasonably high.

We therefore have to resort to a simpler method to cool the ejected gas. Instead of
imposing a timescale for the cooling process, the ejected particles are cooled so that they
would exponentially reach 𝑇eq on a timescale equal to the hydrodynamical timestep.
This ensures that cooling does not become faster than the explicit timestep and should
prevent the development of cooling instabilities. To do so, the equilibrium temperature
at a particle location 𝑇eq,a is calculated using equation (3.4), and the corresponding
specific internal energy is obtained using the ideal gas equation of state:

𝑢eq,𝑎 =
𝑘b𝑇eq,𝑎

(𝛾 − 1)𝜇𝑚p
, (3.7)

where the adiabatic index is 𝛾 = 5/3 and the mean molecular weight is 𝜇 = 0.659. The
local cooling rate per unit volume is then calculated as:

Υcool,𝑎 = 𝜌
𝑢𝑎 − 𝑢eq,𝑎

𝑡step
, (3.8)

where 𝑢a is the specific internal energy of the particle before cooling is applied. This
cooling rate is applied in equation (3.3) for any particle that is considered “ejected”,
i.e. is outside of the RSG envelope,

Υcool =

{︄
Υcool,𝑎 if 𝑟𝑎 > 𝑅1,

0 if 𝑟𝑎 ≤ 𝑅1.
(3.9)

To avoid approaching too low temperatures, we apply an arbitrary floor temperature of
500 K. Overall, our treatment of the radiative cooling process is an oversimplification
and will require more accurate treatment in follow-up studies.

3.2.3 Dust-driven winds
In our scenario, the wind is driven by the radiation pressure on the dust condensing in the
ejecta lifted by the companion passage. As the dust grains are accelerated outward by
the radiative flux, they drag the gas along by transferring momentum through collisions.
Accurately reproducing the formation of such winds therefore requires resolving dust
formation (and destruction), the radiative acceleration of dust grains, and dust-gas
interactions. As this work aims to be a proof-of-concept, we will treat this problem
with simple methods that should yield qualitatively similar outcomes to more complete
physical treatments. We leave the improvement of the wind treatment for follow-up
studies.

The radiative acceleration of the dust grains due to the radiative flux of the RSG
is taken into account by setting �⃗�ext in equation (3.2) so that it depends on a local
Eddington factor Γ𝑎,

�⃗�ext,rad =
𝐺𝑀1

𝑟2
1

Γa𝑟𝑎, (3.10)
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where 𝑟𝑎 is the unit vector connecting particle 𝑎 to the RSG. The simplest treatment
of stellar winds is the so-called free wind approximation (Theuns & Jorissen, 1993),
which consists of setting Γ𝑎 = 1 so that all particles escape the gravitational pull of the
star. We apply this method to our simulations, adding the condition that only particles
with properties fulfilling dust condensation criteria are accelerated. To find out whether
dust can condense in a specific region, we compare the condensation temperature of
the dust 𝑇cond to the temperature of the particle 𝑇𝑎 and set the value of Γ𝑎 as

Γa =

{︄
1 if 𝑇𝑎 < 𝑇cond,

0 if 𝑇𝑎 > 𝑇cond.
(3.11)

We set the dust properties following Bladh & Höfner (2012) who parameterised dust-
driven winds for different types of dust grains to determine the main wind-drivers.
Based on their results and the low C/O ratio of RSG stars, we consider silicate grains
composed of Mg2SiO4, for which they derived 𝑇cond = 1100𝐾 and 𝑝dust = −0.9. The
dust parameters We note that with this formalism, we do not account for the interaction
between the dust and gas, which are effectively fully coupled.

Overall, our method is similar to the procedure devised by Bowen (1988), which
has been widely used to treat dust condensation in AGB stellar winds (e.g., Bermúdez-
Bustamante et al., 2020; Chen et al., 2020; Aydi & Mohamed, 2022; Esseldeurs et al.,
2023) and common envelope evolution (e.g., González-Bolı́var et al., 2022; Bermúdez-
Bustamante et al., 2024), but it differs in some aspects. Their simulations are always
adiabatic, so they compare the local equilibrium temperature (calculated using equa-
tion [3.4]) to the condensation temperature, whereas in our simulations the gas cools as
it is ejected, and we can directly use the gas temperature for the comparison. Addition-
ally, they use this comparison to calculate a local Eddington factor Γ that depends on
the temperature difference and assumptions on gas and dust opacities, while we simply
apply Γ = 1 wherever dust condensation conditions are met.

3.3 Results
We performed a total of 4 simulations: 3 runs with cooling, dust driving and varying
resolution (2.5 × 105, 1 × 106, and 2 × 106 particles), and one control adiabatic run
without cooling and dust-driven winds with 1 × 106 particles. The parameters of the
runs are summarised in Tables 3.1 and 3.2.

In Fig. 3.4, we show snapshots of the density cross-section in our highest-resolution
simulation during the first grazing of the RSG envelope. As the companion grazes
the outermost layers of the envelope, the shocked gas is ejected approximately perpen-
dicularly to the stellar surface. However, it is then dragged by the companion as it
leaves the vicinity of the RSG. Eventually, the outflow expands approximately radially
in the 𝑦 < 0 region while we observe no ejection of gas in the 𝑦 > 0 region. The
outflow expands and cools, reaching the dust condensation temperature 𝑇cond = 1100 K
for 𝑟 ≳ 4500 𝑅⊙, where the gas density is about 10−14 g cm−3. Radiative pressure
then starts to accelerate the dust grains, effectively supporting the radial expansion of
the gas. During the following orbit, the outflow continues expanding while the RSG,
which first expanded as a response to the perturbation from the companion, is restoring
its hydrostatic equilibrium. After one full orbit (around 40 years), the outflow has
extended to a rough semicircle of radius 𝑟 ∼ 400 au in the 𝑥𝑦 plane with a thickness of
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Figure 3.3: Comparison of the ejecta after one apastron passage of the companion for
the adiabatic run (right panels) and a run with radiative cooling and dust-driven winds
(left panels). The upper and lower panels show a cross-section of the density taken
along the 𝑧 = 0 and 𝑥 = 0 planes, respectively. Both simulations were performed with
1 × 106 particles.

𝑧 ∼ 200 au, reaching densities as low as 10−18 g cm−3 and terminal velocities of around
40 km s−1. Besides producing these asymmetric winds, we also expect the interaction
between the companion and the RSG envelope to impact the orbit of the system, which
in turn impacts the conditions of each subsequent grazing.

To assess the relevance of the cooling and the dust-driven winds in supporting the
asymmetric outflows, we performed a fully adiabatic simulation. In Fig. 3.3, we show
the outflow resulting from one grazing interaction after the companion has passed the
apastron in both the adiabatic and non-adiabatic simulations. We see that the ejecta in
the adiabatic simulation is much more extended: it reaches 𝑟 ≳ 500 au with a thickness
of ∼300 au, while the radiatively cooled ejecta has only spread to 𝑟 ∼ 200 au with
a thickness of ∼200 au. Additionally, the adiabatic outflow is denser, reaching up to
10−14 g cm−3 in the inner region, against 10−15 − 10−16 g cm−3 for the cooled outflow.
Finally, the asymmetry of the ejecta with respect to the centre of mass of the system is
much less pronounced in the adiabatic case: the adiabatic outflow broadly surrounds
the RSG, while the gas is only ejected in a roughly semi-circular slab in the simulations
with cooling and winds. This comparison shows that the cooling and wind prescriptions
are essential to produce strongly asymmetric outflows.
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Figure 3.5: Evolution of the binary separation. The high, medium, and low-resolution
runs are shown in purple, orange, and yellow, respectively. The upper and lower dashed
lines show the RSG surface (1500 𝑅⊙) and the sum of the effective radii of the two sink
particles for the high-resolution run (772 𝑅⊙).

3.3.1 Evolution of the orbit
As the companion grazes the RSG envelope, we expect the drag between the gas and
the companion to considerably affect the orbit of the binary. In Fig. 3.5, we show
the evolution of the separation of the binary. We see that during each subsequent
periastron passage, the companion reaches deeper layers of the outer envelope and the
orbit tightens while remaining eccentric. The binary starts with a ∼40 yr period, which
decreases on average by 3 − 4 years after each orbit, reaching a period of about 7 years
on the 10th orbit. At this point, the companion is more than 250 𝑅⊙ beneath the RSG
surface at periastron, driving more massive and less localised outflows, and decreasing
the orbital period even faster.

After 13 orbits, the companion is fully engulfed by the RSG and starts spiralling
in the envelope with a period of the order of one year, effectively starting a phase of
common envelope evolution (CEE) (e.g., Paczynski, 1976; Röpke & De Marco, 2023).
Unfortunately, we cannot resolve the inspiral of the companion in our simulations: the
potential of the RSG sink core is smoothed up to 750 𝑅⊙, so we barely observe one full
orbit of the inspiral before the smoothed potentials of the sink particles overlap, at the
end of the 13th orbit. We expect that more mass will be ejected during CEE, and the
outflow should retain some polar asymmetry until the CEE circularises the orbit. It is
however not possible to determine the outcome of the CEE with our simulations.

Overall, the orbit of the binary tightens drastically throughout the simulation due to
the grazing interaction, leading to CEE after only 200 years. We discuss implications
and possible modifications to this timescale in Sec. 3.4.

3.3.2 Mass loss
We estimate the mass lost by the system after each periastron passage using the usual
energy criteria: a particle is considered unbound if its kinetic energy is higher than its
gravitational energy,

𝐸gr + 𝐸kin > 0. (3.12)
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Figure 3.6: Evolution of the amount of unbound mass. The high, medium and low-
resolution runs are shown in purple, orange and yellow respectively. Plain lines show
the amount of unbound mass according to the energy criterion in equation (3.13),
which includes the gas’ internal energy, dashed lines show the amount of unbound
mass using the more conservative energy criterion in equation (3.12), which does not
include internal energy. The inner plot shows the mass loss during the first orbits.

Alternatively, a fraction of the internal energy of the gas, 𝛼𝐸int, can be converted into
kinetic energy, and the amount of unbound particles is then determined as

𝐸gr + 𝐸kin + 𝛼𝐸int > 0. (3.13)

Since 𝛼 is unconstrained, setting it to unity allows us to derive an upper limit on the
mass loss of the binary, while the more conservative criteria set by equation (3.12) can
serve as a lower limit. Using both criteria, we evaluate the evolution of the mass loss
throughout the simulations, which we show in Fig. 3.6.

During the first three orbits, the mass loss is very episodic, with a sharp rise in
the total unbound mass of ∼ 3 × 10−4𝑀⊙ right after each grazing interaction. Between
interactions, the amount of unbound mass stays essentially constant. Most of the ejected
particles have been cooled, radiatively accelerated, and unbound within a year from the
periastron passage of the companion. Then, from the fourth orbit onward, the sudden
rise in mass loss becomes stronger and the unbound mass is rising continuously. Both
of these features intensify after each subsequent interaction. Since the surface layers
of the RSG expand in response to the grazing interaction, and the companion reaches
deeper and denser layers of the envelope, it drives more massive episodic outflows at
periastron, but also a low-intensity continuous outflow until the next interaction. About
10−3 𝑀⊙ of mass is unbound 1 − 2 years after the interaction, and about 10−4 𝑀⊙ is
lost continuously in between each periastron passage. After the 10th orbit, the system
approaches CEE and episodically ejects ≳ 10−2 𝑀⊙ per interaction. The companion
is completely engulfed by the envelope after the 13th orbit and ejects about 0.1𝑀⊙ of
matter in a continuous way. At the end of the simulation, which corresponds to a total
of 14 orbits, the system has ejected a total of 0.185𝑀⊙, 80% of which was ejected in
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the last ten years of the evolution, during the onset of CEE.
We note that our estimation of the mass ejected during the late evolution of our

system is flawed due to our simplified treatments of cooling and dust condensation. Our
treatment of radiative cooling does not take gas opacities into account since it relies
on the approximation that the ejected gas is optically thin. However, this assumption
does not hold for the outflows launched when the system is close to the onset of CEE,
which should be optically thicker considering their high density. The opacity of these
outflows likely decreases as they expand, but they will become optically thin and start
to radiatively cool at much larger distances from the system than earlier outflows.
Therefore, our method underestimates the temperature of the late outflows, allowing
dust to condense and radiation pressure to drive winds in regions where it is not likely
to happen. This leads to an overestimation of the outflow velocities and possibly of the
amount of unbound mass at late times.

Fig. 3.6 also shows that the differences between the two mass loss criteria are
relatively insignificant, especially at early times when the two criteria yield practically
the same result. This is expected, since the internal energy of the gas at the stellar
surface is much lower than the kinetic energy imparted to the gas by the companion
during the interaction and any extra thermal energy from shock interaction is quickly
radiated. After five orbits, however, the companion starts to probe deeper layers of the
envelope, with increasingly higher internal energy and where our cooling prescription is
not active, so the two estimates deviate from one another. As the end of the simulation
approaches, the gap between the two values deepens and we expect the difference
between the two criteria to be similarly significant during the ensuing CEE phase.

3.3.3 Evolution of the ejecta
In Fig. 3.7, we track the evolution of the ejecta on longer timescales by showing density
snapshots of our highest resolution simulation during subsequent orbits at the moment
of apastron. Each successive periastron passage of the companion drives a new outflow,
which first increases the density of the inner ejecta, then expands and merges with the
less dense outer part of the ejecta. In this section, we use the term “ejecta” to qualify
the entire body of ejected gas and the term “outflow” for the gas ejected due to one
grazing interaction only.

The evolution of the ejecta can be broadly divided into two phases that mostly differ
by the time elapsed between subsequent grazing interactions. For the first five orbits,
the orbital period ranges from 40 to 20 years and the outflows can expand over large
scales before the binary is at periastron again, which causes the broad spiral pattern
in the ejecta appearing in the first row of Fig. 3.7. This slow evolution lasts for about
140 years, during which the ejecta expands to 𝑟 ≳ 1000 au as a roughly semi-circular
slab of vertical thickness ∼500 au, with densities ranging from 10−15 g cm−3 in the
innermost region to 10−19 g cm−3 in the outer ejecta.

As seen in Fig. 3.5, each interaction strengthens the orbital decay of the binary, which
starts to strongly affect the outflows after the fifth orbit of the binary. At this point,
the grazing interactions become more frequent, with a period 𝑃orb ≤ 20 yrs, causing
tighter spiral patterns in the inner ejecta while the ejecta continues spreading outwards.
The companion also starts to dig deeper into the envelope of the RSG, significantly
increasing the density of each subsequent outflow, reaching up to 10−13 g cm−3 in the
innermost part of the ejecta. As the system approaches the onset of CEE, we also see

69



Figure 3.7: Density snapshots of the simulation with 2 × 106 particles taken when the
companion is at apastron. The two upper rows show the density cross-section of the
equatorial plane (slice along 𝑧 = 0) and the two bottom rows show the meridional plane
(slices along 𝑥 = 0).
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Figure 3.8: Snapshot of the radial velocity of the ejecta taken after 14 orbits. The upper
and lower panels show radial velocities taken at 𝑥 = 0 and 𝑧 = 0 planes, respectively.

that matter is ejected more isotropically, and the densest part of the outflow spreads
around the binary with a shape similar to a disc. We expect that the outflows will
become even more isotropic as the system evolves through CEE since the orbit should
circularise, but the already ejected material should retain its overall asymmetry.

At the end of the simulation, the dusty ejecta broadly resembles a cone and we can
distinguish three main regions. First, the innermost region, directly surrounding the
binary, results from the late time evolution during which the binary was close to the
onset of CEE and the outflows are the most massive. With a total mass of about 0.15𝑀⊙
extending up to ∼100 au away from the binary in a roughly conical shape, it is by far the
densest region of the ejecta. Since the time elapsed between grazing interactions has
drastically decreased, the shell-like over-densities caused by the companion shocking
the gas are closer to each other, yielding a tighter spiral pattern than in earlier stages
of the simulation. Beyond the innermost ejecta, we identify a relatively dense region
of 10−15 − 10−17 g cm−3 spreading up to ∼500 au from the system, which we estimate
to carry ∼3 × 10−2 𝑀⊙. This region is more asymmetric than the inner ejecta, it
corresponds to where most of the outflows have merged and is thus made of the most
extended parts of the late evolution outflows and the slowest regions of earlier outflows.
Finally, a wide and less dense region extends to 𝑟 ≳ 2000 au, with densities reaching
very low values of 10−18 − 10−20 g cm−3. This region carries roughly 5 × 10−3 𝑀⊙,
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corresponding to the early outflows which have now spread far away from the binary.
In Fig. 3.8, we show the radial velocity of the gas at the end of the simulation. The

late outflows can be traced in the spiral pattern by sharp velocity fronts, while the early
outflows have softer velocity gradients as they merged a long time ago. The outermost
ejecta, arising from the first outflows and spreading beyond 𝑟 ≳ 500 au, show radial
velocities of 𝑣r ∼ 50 − 60 km s−1. The rest of the ejecta has not reached such high
velocities, the innermost part has on average 𝑣r ≲ 30 km s−1 while the intermediate
region reaches 𝑣r ≈ 40 km s−1. We, therefore, estimate the wind terminal velocity to
be 𝑣∞ ≈ 60 km s−1.

3.4 Discussions
Here, we discuss constraints on the evolutionary pathways that lead to the grazing by the
companion (Sec. 3.4.1), statistics of binarity of RSGs (Sec. 3.4.2), the duration of the
grazing phase (Sec. 3.4.3), what happens after the interaction (Sec. 3.4.4), observational
signatures (Sec. 3.4.5), and possible future improvements of our model (Sec. 3.4.6).

3.4.1 Formation of the system
The evolutionary pathways leading to our configuration depend on whether the RSG
companion is a compact object, such as a neutron star, or a low-mass non-degenerate
companion. From the point of view of our simulations, both options are indistinguish-
able, because the gravitational potential of the companion must be smoothed on scales
larger than its radius. If the companion is a low-mass main sequence (MS) star, the
binary could have simply been born on this orbit and began interacting when the more
massive star expanded to a RSG. Alternatively, the binary has such a low mass ratio that
it may have formed in a wider more circular orbit and was subject to the Darwin and/or
eccentric instability (e.g., Darwin, 1879b; Hut, 1980a; Eggleton & Kiseleva-Eggleton,
2001; Pešta & Pejcha, 2023), which would have reduced the binary separation and
potentially increased its eccentricity. Considering that VY CMa is associated with but
lies off of a cluster NGC 2362 (Lada & Reid, 1978; Mel’Nik & Dambis, 2009; Zhang
et al., 2012), it is interesting to speculate about a scenario where a massive star in a
binary explodes as a supernova, leaves behind a neutron star, and the explosion kick sets
the neutron star on an eccentric orbit and the binary on a trajectory away from its birth
cluster. While this scenario might not apply to VY CMa specifically, it is interesting to
discuss it more generically.

We consider a common scenario for the formation of double neutron star binaries
(Tauris et al., 2017), starting with two massive MS stars on a relatively close orbit.
The more massive star eventually evolves and expands, and the binary experiences a
phase of case B or C mass transfer. As the RSG transfers mass to its companion, it
is gradually stripped of its envelope and eventually undergoes core collapse (CC). The
collapsing star turns into a NS without fully disrupting the binary, which according
to Renzo et al. (2019) should happen in about 14% of massive binaries. While the
natal kick of the NS does not fully unbind the binary, it will increase its eccentricity
(Brandt & Podsiadlowski, 1995; Kalogera, 1996) and widen the orbit to up to 4 times
the pre-CC separation according to Kalogera (1996). The initially less massive star will
expand to a RSG, eventually reaching radii large enough for the compact companion to
graze the RSG envelope at periastron.
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The timescale of the post-CC evolution depends on how close the initial masses of
the two stars were and whether the accretion during the pre-CC mass transfer phase has
increased the main sequence lifetime of the accretor (Neo et al., 1977). It is, however,
strictly constrained by the tidal circularisation timescale of the binary (Zahn, 1977),
since the star should reach the RSG phase before the eccentricity of the binary decreases
significantly. If we consider that the initially less massive star is close to the onset of
the RSG phase at the birth of the NS, and therefore has a significantly convective
envelope, the circularisation timescale of the binary is highly dependent on the ratio of
semi-major axis to stellar radius 𝜏circ ∝ (𝐴/𝑅1)8. Using Eq. 2 of Verbunt & Phinney
(1995), the circularisation timescale reaches a maximum estimate of 𝜏circ ≃ 107yrs for
a 20𝑀⊙, 1500 𝑅⊙ RSG. The binary should thus circularise on longer timescales than
the timescale of the evolution and expansion of the future RSG, which should be at
most of the order of 106 yrs if the star is still on the MS at the start of the post-CC
evolution. Therefore, the binary should retain its large eccentricity by the time the
compact companion can graze the envelope of the RSG.

3.4.2 Statistics of RSG binarity
Statistics of RSG binarity can serve as a clue as to whether our scenario occurs fre-
quently. Neugent et al. (2018) devised some criteria to detect companions around RSGs
from their contribution in the spectra of the binaries, however, they are mostly efficient
for blue companions since their contamination is more easily distinguished from the
red light of the RSG. A complementary way of determining the binarity of a RSG is
to secure multi-epoch spectroscopy to look for periodic variations of radial velocities.
However, due to the large radii of RSGs the minimum orbital period of their companion
has to be of the order of hundreds of days, meaning that such spectroscopic studies
have to be performed on timescales of years. Furthermore, the amplitude and timescale
of these periodic variations are likely similar to the variability due to atmospheric
convective motion in RSGs (Schwarzschild, 1975), which further complicates RSG
multiplicity studies. Despite these difficulties, the binary fraction of cool supergiants
in the Milky Way has been estimated to be around 35% (Burki & Mayor, 1983), and
some X-ray binaries were found to have a RSG companion (e.g., Gottlieb et al., 2020;
Hinkle et al., 2020). RSG multiplicity studies targeting the Local Group (e.g., Neugent
et al. 2019; Patrick et al. 2019; Neugent et al. 2020; Dorda & Patrick 2021; Neugent
2021) generally find binary fractions around 30%, mostly with OB-type companions.
Patrick et al. (2022) found 6 candidates for RSG + compact companion in the Small
Milky Cloud, though they potentially are false positives, and Neugent (2021) estimated
the fraction of RSG + compact companion in M31 and M33 to be about 4.73% using
BPASS (Eldridge et al., 2017). While rates of binarity for RSGs inferred from obser-
vations are relatively low, especially for binaries with a compact companion, it is still
non-negligible and therefore our grazing scenario seems plausible.

3.4.3 Duration of the grazing encounters
Our simulations cover only about 200 years or 13 orbits before the binary enters the
CEE. Such a short duration would imply that our chances of finding a RSG undergoing
this type of evolution are very slim given the RSG lifetime. However, the duration
of our simulation is mostly driven by the constraints of available computing time and
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resolution. If both can be increased, we could simulate the evolution for many more
orbits before the CEE. This interaction is similar to a normal CEE, where Iaconi
et al. (2018) and Reichardt et al. (2019) found that increasing simulation resolution
leads to a longer duration of pre-CEE inspiral, mass transfer, and mass loss. The
long duration of the pre-dynamical CEE phase is also seen in 1D binary evolution
simulations (e.g., Klencki et al., 2021b; Marchant et al., 2021b). Observations of
transients accompanying stellar mergers, the luminous red novae, also indicate the
presence of pre-dynamical mass-loss lasting many hundreds and potentially thousands
of binary orbits (e.g., Tylenda et al., 2011; Pejcha et al., 2016a,b, 2017; Blagorodnova
et al., 2021).

Another aspect affecting the duration of the grazing phase is missing physics near the
surface layers of the star. Real stars exhibit a complex interplay of convection, diffusion,
and ionization in their surface layers, which affects the stability with respect to mass
removal (e.g., Pavlovskii & Ivanova, 2015b). In RSGs specifically, the additional
physical effects include the large size of convective cells, pulsations leading to in the
outer atmosphere shocks, dust and molecule formation in the gas lifted off the surface
by pulsations, and feedback from accretion onto the companion (e.g., Haubois et al.,
2009; Shiber & Soker, 2018; Goldberg et al., 2022; Freytag & Höfner, 2023).

All of these effects could extend the duration of the grazing phase by making the
conditions in the outer stellar layers different from what we assume in our adiabatic
simulations. Furthermore, the mass ejections could happen intermittently depending on
whether the periastron passage occurs during the maximum or minimum expansion of
the RSG pulsation. Finally, a longer duration of the grazing phase could also facilitate
precession and tilting of the companion orbit, for example, due to the action of tidal
forces. The mass ejections would then still be oriented in one direction during each
ejection or a series of subsequent ejections, but the orientation of the ejection could
gradually change. All of these aspects would be interesting to investigate in future
work.

3.4.4 Evolution and fate of the binary
Depending on the amount of envelope ejected during the CEE ensuing after the grazing
and the nature of the companion, the system could evolve to a close binary with two
compact objects (e.g., a double NS binary, Tauris et al. 2017), or the two stars could
merge, possibly resulting in a Thorne-Żytkow object (TZO) (Thorne & Zytkow, 1977)
if the companion is a NS, or an exotic supernova if the merger product explodes (e.g.,
Chevalier, 2012). It is, however, not possible to draw conclusions on the outcome of
this process from our simulations, since properly simulating this phase of the evolution
of the binary would require resolving the deep interior of the RSG.

We may broadly examine the outcome of the CEE using the energy formalism (e.g.,
Webbink, 1984):

−𝐺𝑀1𝑀1,e

𝜆𝑅1
= −𝛼C E𝐺

[︃
𝑀1,c𝑀2

2𝐴f
− 𝑀1𝑀2

2𝐴i

]︃
(3.14)

where 𝑀1,e and 𝑀1,c are the mass of the RSG envelope and core respectively, which
are about 13.5𝑀⊙ and 6.5𝑀⊙ according to the MESA model used to set up our RSG.
Parameter 𝜆 is defined by the mass distribution inside the star, 𝐴𝑖 and 𝐴 𝑓 and the initial
and final separation of the CEE. By setting 𝛼CE, the envelope ejection efficiency, and
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𝜆 ≲ 0.1 as appropriate for evolved red supergiants (Kruckow et al., 2016), we find that
the CEE can unbind the whole envelope for final separation of 𝐴 𝑓 ≲ 4 𝑅⊙. Thus, it
seems unlikely that the system ejects the whole envelope. This estimation is however
too simple to reflect the reality since the efficiency of envelope ejection in CEE and
the physical processes involved (e.g., recombination, dust formation) are still relatively
unconstrained in current CEE models (see Röpke & De Marco 2023 for a detailed
discussion). Therefore, we leave the fate of the binary as an open question.

We can, however, estimate the impact of our chosen initial conditions on the evolu-
tion of the system. We could consider a companion mass 𝑀2 lower than 2𝑀⊙, in which
case we expect less massive outflows due to the grazing interaction. In our simulations,
the efficiency of the radiative force to drive the winds would remain unchanged due
to the very simple formulation of radiative pressure on dust grains, therefore we do
not expect the wind velocities to change for a different companion mass. However,
we note that in a realistic scenario, the efficiency of dust condensation does depend on
the density of the gas, and since a lower mass companion yields less dense outflow, it
would also likely change the wind properties. The decrease in companion mass would
also cause the orbit to decay more slowly, as the dynamical friction between the outer
envelope and the companion is lower during each periastron passage, which will result
in a later plunge-in. We expect opposite effects for higher companion masses: more
massive outflows and a faster evolution.

The choice of orbital parameters of the system should also have a significant influ-
ence on the evolution of the binary and the outflows. In our simulations, 𝑎 is not freely
chosen, it is set so that the binary separation at periastron is exactly equal to the radius
of the RSG, 𝑎 = 𝑅1/(1 − 𝑒). For lower 𝑒, 𝑎 is smaller and the less eccentric orbit will
be overall closer to the RSG surface. As a result, the companion grazes a larger portion
of the stellar surface and encounters higher densities. This leads to less asymmetric
outflows, and the higher drag on the companion accelerates the orbital decay to CEE.

3.4.5 Observational signatures
Here, review various observations that can indicate that grazing encounters are ongoing
or happened relatively recently: outflow emission, changes of the RSG, accretion
onto companion, observable signatures of TZO, and supernova explosions. We also
specifically discuss VY CMa.

Outflow emission

The most evident signature of this interaction is the emission from the cool asymmetric
outflow, which we expect to be observable at millimetre/sub-millimetre and infrared
wavelengths. As shown in Fig. 3.7 the dusty outflow could be angularly resolved with
the ALMA interferometer if the distance to the system is small enough. Outside of the
continuum emissions from the dust, the ejecta should also be traceable with molecular
emissions, which arise from the various gas-phase chemistry across the outflow. Since
we do not model the various phenomena occurring at the RSG surface, the morphology
of the outflow in our simulations represents the simplest possible outcome. However,
any complicated morphological feature in the outflow would likely be unresolvable,
which includes the spiral features in the innermost ejecta, and traces of the common
envelope phase would likely be hard to detect.
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Changes of the RSG

Repeated close passages of a companion will affect the RSG by tidal dissipation. Our
simulations are inadequate to study these processes, but we can speculate about some
of the potential outcomes. First, the RSG could expand in response to the tidal heating.
For our choice of companion mass, the orbital energy of a grazing orbit is much smaller
than the RSG envelope binding energy (Klencki et al., 2021b) and no significant
overall expansion is expected. However, the dissipated energy could still strengthen the
processes that are already ongoing such as the more common dust-driven RSG wind,
potentially leading to a tidally-enhanced wind (e.g., Tout & Eggleton, 1988; Chen
et al., 2011). The intensity of this effect depends on the amount of tidal dissipation, the
depth of deposition, and the ability of the star to quickly remove this excess energy by
radiation.

Accretion onto companion

Before fully entering the envelope of the RSG, our system should also show X-ray
emission from the accretion on the companion. Since the companion moves superson-
ically through the outflow of the RSG, we can approximate the accretion rate �̇�2 of
the companion using the approximation of spherical accretion onto a moving object
(Bondi-Hoyle-Lyttleton accretion),

�̇�2 =
4𝜋𝜌(𝐺𝑀2)2

(𝑐2
s + 𝑣2

2)3/2
, (3.15)

where 𝜌 is the density of the surrounding outflow, 𝑐s is the sound speed, 𝑀2 the mass
of the companion, and 𝑣2 is the velocity of the companion relative to the surrounding
gas. In our simulations, the average relative velocity of the companion is 20 km s−1,
and the density of the surrounding ejecta is 10−15 g cm−3, resulting in an accretion
rate of 4 × 10−6 𝑀⊙. The corresponding accretion luminosity is 𝐿acc = 𝐺𝑀2�̇�2/𝑅2
where 𝑅2 is the radius of the companion. Inefficient accretion or radiative emission
will decrease 𝐿acc. When considering a low mass MS companion of 𝑅2 ≃ 2𝑅⊙, the
accretion luminosity becomes 𝐿acc ≃ 1035 erg s−1, making it similar to X-ray bright T
Tauri stars (Telleschi et al., 2007). For a NS companion of 𝑅2 = 10 km s−1, the accretion
rate yields a very high luminosity of 𝐿acc ≃ 1040 erg s−1, which is a factor of ∼50 higher
that the Eddington limit for a 2𝑀⊙ star. Given the super-Eddington accretion rate, the
NS might look like an ultra-luminous X-ray source displaying super-Eddington flux
only near the polar axis (e.g., King, 2009). If jets develop, our scenario reduces to the
grazing envelope evolution developed by Soker (2015), Shiber et al. (2017), and Shiber
& Soker (2018).

The high gas density in the vicinity of the RSG that gives rise to a high �̇�2 also
provides a large gas column that can absorb and scatter the X-rays. Considering
a spherical constant-velocity outflow from the RSG with 𝑟−2 density profile, �̇�1 =

10−5 𝑀⊙ yr−1, velocity 20 km s−1, and inner edge at 1500 𝑅⊙, we obtain density ≈
10−15 g cm−3 and hydrogen column of ∼ 1023. Depending on the emission temperature
and the detector properties, such a high gas column can reduce the expected flux by
many orders of magnitude (e.g., Montez et al., 2015). Even with inefficient accretion
and a high intervening gas column, we would still expect signatures of accretion such
as highly ionized gas or feedback on the surrounding medium.
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Observable signatures of TZO

The merger of the RSG core and the companion may also result in a supernova explosion,
which could produce a black hole remnant if the companion is a compact object. Many
Type IIn supernovae and other luminous transients show evidence for mass ejections
preceding the terminal supernova explosion (e.g., Ofek et al., 2014; Margutti et al., 2014;
Jacobson-Galán et al., 2022). It has been suggested that a strong binary interaction or
a CEE is responsible for pre-supernova mass ejections leading to a formation of dense
circumstellar medium (CSM, e.g., Smith, 2011; Chevalier, 2012; Metzger, 2022). This
has motivated theoretical works investigating interactions of supernova explosions with
various aspherical CSM distributions such as disks, oblate or prolate ellipsoids, and
colliding winds shells (e.g., Vlasis et al., 2016; Suzuki et al., 2019; Kurfürst et al.,
2020; Pejcha et al., 2022). Interestingly, none of these works has considered the type of
aspherical CSM that we are predicting here: subtending only a small fraction of a solid
angle with internal density variations corresponding to individual periastron passages.
However, based on analogous works on different aspherical CSM distributions, we
can predict that a supernova explosion colliding with the CSM predicted here would
lead to a radiative shock that is quite likely embedded in the optically thick supernova
ejecta and that initially reveals its presence only as an additional energy source. When
the supernova ejecta becomes optically thin, the CSM distribution could manifest in
profiles of nebular spectral lines.

Supernova explosions

Many Type IIn supernovae and other luminous transients show evidence for mass
ejections preceding the terminal supernova explosion (e.g., Ofek et al., 2014; Margutti
et al., 2014; Jacobson-Galán et al., 2022). It has been suggested that a strong binary
interaction or a CEE is responsible for pre-supernova mass ejections leading to a
formation of dense circumstellar medium (CSM, e.g., Smith, 2011; Chevalier, 2012;
Metzger, 2022). This has motivated theoretical works investigating interactions of
supernova explosions with various aspherical CSM distributions such as disks, oblate
or prolate ellipsoids, and colliding winds shells (e.g., Vlasis et al., 2016; Suzuki et al.,
2019; Kurfürst et al., 2020; Pejcha et al., 2022). Interestingly, none of these works
have considered the type of aspherical CSM that we are predicting here: subtending
only a small fraction of a solid angle with internal density variations corresponding
to individual periastron passages. However, based on analogous works on different
aspherical CSM distribution, we can predict that supernova explosion colliding with
the CSM predicted here would lead to a radiative shock that is quite likely embedded
in the optically-thick supernova ejecta and that initially reveals its presence only as an
additional energy source. When the supernova ejecta becomes optically-thin, the CSM
distribution could manifest in profiles of nebular spectral lines.

Application to VY CMa

We can compare these expected signatures to observations of VY CMa. We first
note that no companion has been directly observed around VY CMa, suggesting that
if our scenario was ever involved in the evolution of VY CMa, the companion is
now either fully engulfed in the envelope of the supergiant or is orbiting too close to
the stellar surface to be observable Decin et al. (2006) reconstructed the mass-loss
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history of VY CMa and found that it underwent a phase of increased mass loss rate of
≃ 3 × 10−4 𝑀⊙ .yr−1 about 1000 years ago. This phase lasted about 100 years and was
preceded by a phase with relatively low mass loss rate of ≃ 10−6 𝑀⊙ yr−1 for about 800
years and succeeded by a phase of increased mass loss of ≃ 10−4 𝑀⊙ yr−1 lasting until
today. It would be natural to identify this event of increased mass loss with grazing
interactions, which culminated with a stellar merger followed by an enhanced wind
phase due to the energy deposition in the RSG envelope by the inspiralling companion
(e.g., Clayton et al., 2017b; Glanz & Perets, 2018b).

Alternatively, the morphology of our asymmetric outflow seems to be consistent
with the dusty clumps observed in the immediate vicinity of VY CMa (e.g., Kaminski,
2019). The mass of these clumps was estimated to be of the order of 10−3 − 10−2 𝑀⊙
with velocities of 20 − 50 km s−1, and were likely ejected about 100 years ago
(Humphreys et al., 2024), which is consistent with the total mass of the extended
ejecta in our simulations and the velocities shown in Fig. 3.8. We note that our wind
terminal velocities only depend on the Eddington factor, which is a free parameter
set in equation (3.11), so they are a broad upper limit rather than a reliable estimate.
Kaminski (2019) estimated the size of the clumps with 3D radiative transfer models,
and found that the most elongated clump (clump B) could be up to 1000 au long, which
is compatible with the size of our ejecta.

Concerning the companion accretion, Montez et al. (2015) obtained non-detections
in X-rays that place an upper limit of 𝐿X < 1.6 × 1031 erg s−1, which is far below the
estimated 𝐿acc 1035 erg s−1 we derived. However, the upper limit is highly contingent
on the emission temperature and the sensitivity to softer radiation with 𝑇 ≲ 106 K is
much worse given the expected intervening absorption column. Still, VY CMa does
not prominently display highly ionized emission lines or other signs of an accretion
process. So if VY CMa had a companion, it was probably already deep within the RSG
envelope by the time the observations were made. If the companion is a NS then we
might expect VY CMa to be a TZO, spectroscopic studies of the object do show Ca
I and Rb I lines (Wallerstein, 1971; Dinh-V-Trung et al., 2022), however, no traces of
other heavy elements have been found. The use of different tracers, such as the ones
proposed by Farmer et al. (2023), could shed some light on this issue.

To summarize, VY CMa could have merged with a grazing companion about 1000
years ago, however, the complexity of its surrounding medium would require some
modification to our model or combination with other physical processes. Increasing
the realism of our model could allow to better determine whether this mechanism plays
a role in the formation of some of the asymmetric outflows around VY CMa.

3.4.6 Improvements of the model
Our simulations use approximations and simple treatments of the involved physical
processes to reduce their computational cost. Here, we discuss potential improvements
for follow-up studies.

Firstly, we have made several assumptions regarding the initial conditions of our
setup. We have assumed that when the simulations start, no interactions are taking
place between the RSG and the companion. Considering how close the two stars
are, there is a chance that the RSG overfills its Roche Lobe around the periastron of
one or more orbits preceding the start of the simulations, resulting in potential mass
transfer and/or outflows. However, any interaction during the previous orbits would
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simply lead to smaller, possibly negligible, mass ejections. To assess the relevance
of previous interactions, one could evolve the binary in 1D in MESA following the
methods of Marchant et al. (2021b), and possibly obtain better initial conditions for our
simulations.

Another approximation we made in this study is to model the RSG envelope as
convectively stable, which prevents us from investigating the interplay between surface
convection and the companion interaction, which would likely affect the morphology
of the ejecta. However, resolving convective motion requires modelling the entire
RSG envelope as well as including radiative transport in the envelope, to avoid a
strong overestimation of the convective flux (e.g., Ricker et al. 2018). Both choices
would dramatically increase the cost of the simulations, especially considering the long
timescale of our simulations, therefore, incorporating convection in our simulations
will likely be considered in later phases of improvements.

Furthermore, as mentioned in Sec. 3.2.2 and 3.2.3, our numerical treatment of
dust-driven winds has been simplified and can be improved to various degrees. Dust
formation and destruction can be more accurately treated by including a density and
composition dependence, for instance by using the moment method (Gail et al., 1984;
Gail & Sedlmayr, 1988; Gauger et al., 1990; Gail & Sedlmayr, 2013), which has
been implemented for carbonaceous dust grains in Phantom by Siess et al. (2022).
RSG stars have a low C/O ratio, so this method would need to be adapted to oxygen-
rich dust condensation, which is significantly harder to model than carbon-rich dust
formation. There are many more dust species to account for compared to the case of
carbon-rich dust, and it is not completely known which particles serve as seed nuclei
for oxygen dust growth (for more details, see Chapter 15.5.6 of Gail & Sedlmayr
2013). Implementing a complete condensation scheme for oxygen-rich dust in 3D
hydrodynamics codes is therefore a challenging but important step towards improving
dust treatment in simulations of evolved stars. It would also allow for a better estimation
of local opacities and Eddington factor, which are essential for the proper treatment of
radiation pressure on the dust-gas mixture.

We could further improve the realism by resolving the dust-gas interactions. Phan-
tom already has several formalisms for dust-gas mixtures, either with a two-fluid
approach (Laibe & Price, 2012) or a one-fluid method that keeps track of the compo-
sition of the mixture (Laibe & Price, 2014; Laibe, 2014; Price & Laibe, 2015). While
the outcome of simulations with accurate treatments of dust-driven winds might be
qualitatively similar to our results, it would also likely yield a more detailed structure
in the winds, and lower outflow velocity and densities since our dust condensation
criterion is relatively permissive.

Improvements regarding the formulation of the radiative force on dust grains would
also likely impact the morphology of the wind. Esseldeurs et al. (2023) shows the
difference in radiative pressure treatments for winds in binaries with an AGB star,
and it is clear that more accurate approximations (e.g, Lucy 1971, 1976) yield more
detailed wind structures than with a simple free-wind approximation, as well as better
estimations of the wind velocities. However, such methods require the calculation of
optical depth, which needs to be estimated along the line of sight of each particle and
severely complicates the simulations if one wants to calculate it on the fly during an
SPH simulation. This was implemented in Phantom by Esseldeurs et al. (2023) using
a ray tracer algorithm, so we leave the possibility of adapting their method to our setup
for follow-up studies.
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3.5 Conclusions
The goal of this work was to investigate whether a companion grazing the envelope of
a RSG can launch significant asymmetric episodic outflows that later expand through
dust-driven winds. To do so, we performed 3D hydrodynamics simulations of a 2𝑀⊙
star on a highly elliptical orbit around a 20𝑀⊙ RSG with an envelope extending to
1500 𝑅⊙ (Fig. 3.1, Sec. 3.2). In our models, we see the companion grazing the RSG
envelope at periastron and ejecting gas from the outermost envelope, which results in
a dense semi-circular outflow (Fig. 3.4). The ejected gas becomes optically thin and
cools, reaching conditions that are favourable for dust condensation. The radiative
pressure on dust grains then accelerates the outflow outwards, effectively launching
dust-driven winds that expand radially.

We investigated the evolution of the system through several successive grazing
interactions and found that the orbit drastically tightens after each interaction (Fig. 3.5).
The orbital period decreases by ∼ 3 − 4 years per orbit, decreasing the periastron
distance significantly and enhancing the mass loss during the grazing interaction. The
outflows therefore become denser and more frequent as the system evolves, effectively
altering the properties of the ejecta (Fig. 3.7). The mass ejected during each grazing
interaction goes from 3 × 10−4 𝑀⊙ during to first orbit to ∼ 10−2 𝑀⊙ before the onset
of CEE (Fig. 3.6).

After 13 orbits (∼200 years), the system enters CEE which dramatically enhances
the orbital evolution and mass loss rate of the binary. Due to the large softening length
of the numerical core of the RSG, we cannot resolve the CEE of the system with our
simulations, therefore the outcome of the CEE remains unconstrained and could result
in a short-period binary or a merger. Our simulations stop after 14 orbits, at which
point the binary has ejected a total of 0.185𝑀⊙ of gas spreading beyond 𝑟 ≳ 1000 au,
with 80% of this mass situated in the innermost part of the ejecta (𝑟 ≲ 100 au). The
final ejecta has a conical shape and shows a shell-like structure due to the shocks from
each grazing by the companion.

While the initial conditions of our simulation seem relatively exotic, mostly due to
the eccentricity of the system, we expect this grazing interaction to be relevant for the
evolution of massive binary systems. For instance, this scenario applies to binaries with
low mass MS companions with an orbit wide enough to retain a significant eccentricity,
in which the stars evolve as effectively single until the massive star expands as a RSG
or the orbit dramatically tightens due to the Darwin instability.

Although the duration of this phase is uncertain and depends on complicated physics
near the RSG surface, it should still produce observable signatures. The dusty ejecta
should be observable at millimetre/sub-millimetre wavelengths, as well as molecular
lines due to the rich chemistry expected in the outflow.

Additionally, the companion should accrete matter from the outflows, which we
expect to result in X-ray emission or highly ionized lines. However, their detectability
is highly affected by the large intervening absorption column expected in such situations.

Lastly, the binary could evolve to a TZO after CEE if the companion is a NS,
which is of interest since TZOs are hard to distinguish from RSG, and none have been
unambiguously identified yet.

By comparing our results with observations of the ejecta around VY CMa, we
speculate that such a grazing interaction could have been responsible for the increase in
mass loss occurring about 1000 years ago (Decin et al., 2006) or more recent ejections
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about 100 years ago (Humphreys et al., 2024). Some outflows around VY CMa resemble
the results of our simulations, however, the observed morphology is much more complex
and requires an interplay of multiple effects. Our simulations, which were only meant
as a proof of concept, were performed using simple treatments of radiative cooling
and winds in the outflows, and therefore require more accurate prescriptions in follow-
up studies. Improving the accuracy of our simulations will allow us to study the
morphology of the outflows in greater detail, as well as produce synthetic observables
that can used for a better comparison with observations of VY CMa, providing a strong
test for our hypothetical scenario.
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The output files from our simulations will be shared on reasonable request to the corresponding
author. The video of the snapshots of the first interaction is available at https://youtu.be/jcW0KyMayBE

Appendix A: Red supergiant profile
We need a realistic RSG profile to establish the boundary conditions (surface pressure
and radius) and core size of our simple RSG interior. To obtain this stellar model, we
use MESA v22.11.1 with the provided 20M pre ms to core collapse test case to
evolve a 20𝑀⊙ zero-age main sequence star with metallicity Z=0.02 to the RSG phase
without stellar winds. To produce a stellar model similar to VY CMa, we need to ensure
that the stellar radius is large enough to reach very low densities in the outer envelope.
As such, we looked for stellar evolution parameters for which the star expands as much
as possible during the RSG phase. Similarly to Goldberg et al. (2022), we found that
the largest envelopes result from a low mixing length coefficient in the H-rich envelope
𝛼𝐻 , i.e. less efficient convection. More specifically, we found that a model with 𝛼𝐻 = 1
reaches about 1150 𝑅⊙ in the RSG phase while models with 𝛼𝐻 = 3 only expand to
1000 𝑅⊙.

We therefore choose to work with the model with the lowest mixing length and
opt to analytically expand the stellar profile obtained to reach a radius of 1500 𝑅⊙.
This expansion is done following homology scaling relations, which are obtained by
estimating the equations of stellar structure by including the conservation of mass
distribution:

𝑟i(𝑚)
𝑅i

=
𝑟f(𝑚)
𝑅f

. (3.16)

The new surface pressure of the star 𝑃 𝑓 scales as follows:

𝑃f = 𝑃i

(︃
𝑀f
𝑀i

)︃2 (︃
𝑅i
𝑅f

)︃4
. (3.17)
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We take the effective radius of the excised core to be half of the total radius of the
star, which corresponds to a softening length of 𝑟soft,i = 287.5 𝑅⊙ and a core mass of
𝑀c = 13.75𝑀⊙ according to the MESA stellar profile. The radius of the core of the
extended giant 𝑟c,f is simply calculated using equation (3.16).

Following this procedure, we expand a 1150 𝑅⊙ star with 𝑃i = 212 dyn/cm2 and
𝑟soft,i = 287.5 𝑅⊙ to a 1500 𝑅⊙ star with 𝑃f = 73 dyn/cm2 and 𝑟c,f = 375 𝑅⊙. These
boundary conditions are then used to solve the equations of hydrostatic equilibrium
to obtain a convectively stable stellar interior model as explained in Appendix A of
Lau et al. (2022). To construct this model we use an ideal gas equation of state with
adiabatic index 𝛾 = 5/3 and a uniform mean molecular weight 𝜇 = 0.659 (obtained
from the average mean molecular weight in the envelope of the MESA model). In
Fig. 3.9, we compare the detailed MESA model to the simple profiles obtained using
initial conditions from MESA RSG and the extended initial conditions. Taken at face
value, the density in the upper layers of the envelope is underestimated, and the density
gradient is severely smoothed. This would lead to an underestimation of the outflow
density and the impact of the grazing on the companion trajectory. However, the
actual density profile near and above the photosphere is affected by pulsations and wind
launching and likely significantly differs from a simple 1D stellar model.

Figure 3.9: Comparison of the density profile of the RSG model obtained with MESA
(grey line) with our simplified stellar profiles. The orange line shows the simplified
profile calculated with the initial conditions from the MESA model, and the purple line
shows the profile calculated with the expanded initial conditions.
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Abstract
Common envelope evolution may appear as a late stage of the evolution of a binary,

potentially allowing different phases of stellar interactions to occur beforehand. In
particular, typical formation channels for double neutron star or black hole binaries
suggest that the donor of common envelope evolution was the accretor of a previous
phase stable of mass transfer, and the ensuing accretion and rejuvenation processes
have substantially altered its stellar structure. The aim of this work is to study the
common envelope evolution of a donor that underwent a previous phase of stable mass
transfer as the accretor, and thus has a rejuvenated structure. To do so, we perform 3D
hydrodynamics simulations of the common envelope evolution of a 18 𝑀⊙ supergiant
and a 1.4 𝑀⊙ companion using rejuvenated and non-rejuvenated stellar models for
the donor. We compare the two sets of simulations to characterise the effect of the
rejuvenation on the outcome of the common envelope phase as well the shape of the
ejecta. We find that accounting for a previous phase of mass transfer phase reduces
the duration of the inspiral phase by a factor of two, likely due to a steeper density
gradient in the outer layers of the donor. The simulations also show more equatorially
concentrated and asymmetric ejecta in the rejuvenated case. The impact of rejuvenation
on the unbinding of the envelope is unclear; we found that the change in unbound mass
in the rejuvenated models may go from a 100% increase to 25% decrease depending
on the energy criterion used.
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4.1 Introduction
An important fraction of stars is found in binary systems (Abt & Levy, 1976; Bonnell
et al., 2004; Duchêne & Kraus, 2013; Moe & Di Stefano, 2017), especially massive
stars (Mason et al., 2009; Sana & Evans, 2010). These binary systems show a large
variety of configurations, ranging from very wide systems with separation of thousands
of AUs to binaries with periods of a few minutes. In the case of close binaries, with
separation of ≲ 1 AU, the proximity of the stars generally gives rise to interactions
via mass transfer and their evolution will strongly diverge from that of a single star
(Podsiadlowski et al., 1992; Sana et al., 2012; Langer, 2012; Smith, 2014b; De Marco
& Izzard, 2017). In particular, close binaries commonly go through phases of stable
mass transfer through Roche Lobe overflow (RLOF). During this phase, the donor
star overfills its Roche Lobe, and material leaves the potential well of the donor to
be accreted by the companion, altering its structure in various ways (Packet, 1981;
Cantiello et al., 2007; Renzo & Götberg, 2021). In particular, A main sequence (MS)
star accretor with a convective core is expected to undergo a rejuvenation process during
which its core expands and increases its hydrogen content through convective mixing
(Hellings, 1983). Besides increasing the lifetime of the accretor, this process also alters
the structure of its core-envelope boundary (CEB) region. Recently, Renzo et al. (2023)
found that the rejuvenation process lowers the binding energy of the CEB, which is
of particular interest if the system later undergoes common envelope evolution (CEE)
with the rejuvenated star as the donor.

CEE is a phase of binary evolution during which the secondary star plunges in the
envelope of a giant primary and orbit its core (Paczynski, 1976; Ivanova et al., 2013a).
The drag exerted on the companion by the envelope causes the orbit to decay as
the companion transfers of energy and angular momentum to the envelope, potentially
unbinding it. The outcomes of CEE are depend on the envelope ejection: a successfully
ejected envelope should allow the orbit decay to slow down until the system stabilises
to a short period binary, which may become a source of transient phenomena such as
cataclysmic variables(Paczynski, 1976) or X-ray binaries(e.g., Kalogera & Webbink,
1998), or a double degenerate binary that may becomes a gravitational wave progenitors
(e.g., Klencki et al., 2021a; Marchant et al., 2021a). On the other hand, if part of the
envelope may remain bound the two stars should eventually merge. The merger may
be observed as luminous red novae (Soker & Tylenda, 2006; Ivanova et al., 2013c;
Pejcha et al., 2016a) or become a Thorne-Zẏtkow object Thorne & Zytkow (1977) if
the companion is a neutron star. Thus, CEE is an important process of binary evolution
that can form close binaries on relatively short timescales, and as such it has been
extensively studied. It is however still unclear which physical processes are relevant
during the inspiral phase of CEE (e.g. Nandez et al., 2015; Ohlmann et al., 2016;
MacLeod et al., 2018; Reichardt et al., 2020; Sand et al., 2020; Lau et al., 2022).

Since the outcome of CEE strongly depends on the unbinding of the envelope, the
fact that rejuvenation lowers the binding energy of the CEB is of particular interest
when studying the outcome of CEE. The CEB is the region where most of the binding
energy is stored, therefore a CEE with a rejuvenated donor might eject a larger part
of the envelope and significantly influence the outcome of the CEE. This scenario is
of interest for formation channels of binary black holes and neutron stars that expect a
first phase of stable mass transfer where the accretor will later become the donor of a
CEE phase (Tutukov & Yungelson, 1993; Belczynski et al., 2016; Tauris et al., 2017).
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In such cases, the rejuvenation of the MS accretor during the first mass transfer phase
could help unbinding its envelope when it takes the role of the donor during a later
CEE.

In this paper, we aim to investigate how a past phase of mass transfer and the
ensuing rejuvenation process of a CEE donor impacts the inspiral phase of CEE. To do
so, we perform 3D hydrodynamics simulations of the inspiral phase of the CEE with
rejuvenated and non-rejuvenated donor models of similar masses obtained by Renzo
et al. (2023). We briefly describe the stellar models for the donor star as well as the
setup of our hydrodynamics simulations in Section 4.2. We present the results of our
simulations in Section 4.3, and discuss their implication in Section 4.4.

4.2 Numerical methods
Our simulations make use of FLASH 4.5 (Fryxell et al., 2000; Dubey et al., 2008),
an adaptive mesh refinement (AMR) hydrodynamics code. We use the directionally
split piecewise parabolic method (PPM) solver supplied with FLASH together with
the Helmholtz equation of state, parallel FFT-based multigrid Poisson solver (Ricker,
2008; Daley et al., 2012), and a second-order leapfrog time integrator for particles.
Simulations take place within a 3D Cartesian volume 72 AU on a side, with “diode”
boundary conditions for hydrodynamics and isolated boundary conditions for the grav-
itational field.

To initialise each simulation, we begin with a 1D MESA model with mass 𝑀donor
and radius 𝑅donor for the donor (described below). Since the star’s actual core is very
difficult to resolve, we replace it with a numerical core following a procedure similar
to that described by Ohlmann et al. (2017). Given a choice of numerical core radius
𝑅core, to the MESA model at this radius we join a solution of the modified Lane-
Emden equation representing a gaseous polytrope in the potential of a uniform-density
spherical core of mass 𝑀core, which satisfies

𝑑

𝑑𝜉

(︃
𝜉2 𝑑𝜃

𝑑𝜉

)︃
+ 𝜉2(𝜃𝑛 + 𝜃𝑛𝑐) = 0 . (4.1)

Here we adopt the customary definitions for the density and radius variables 𝜃 and 𝜉
via

𝜌 ≡ 𝜌0𝜃
𝑛 , 𝑟 ≡ 𝛼𝜉 , (4.2)

where 𝜌0 is the central density, 𝑛 is the polytropic index, and 𝛼 is the scale height. This
equation differs from the normal Lane-Emden equation by one term involving

𝜃𝑛𝑐 ≡
𝑀core4𝜋𝑅3

core𝜌0
. (4.3)

The density 𝜌(𝑅core) and pressure 𝑃(𝑅core) are used to determine the polytrope’s
specific entropy 𝐾 ≡ 𝑃/𝜌𝛾 and thus also 𝛼2 =

𝐾 (𝑛+1)4𝜋𝐺
𝜌

1/𝑛−1

0
. The polytropic index 𝑛

is set using the adiabatic index reported by the equation of state at 𝑟 = 𝑅core via 𝑛 =

1/[𝛾(𝑅core) − 1]. Isotopic abundances are also matched and held constant throughout
the polytrope. The core mass 𝑀core and polytrope central density 𝜌0 are varied in a
nested pair of bisection loops until a solution that matches the density and enclosed
mass at 𝑅core is found. The part of the MESA model inside 𝑅core is replaced by the
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polytrope, and the derived core mass is used to initialise a collisionless particle at the
centre of the star. The companion star is also initialised as a particle, but with mass
1.4𝑀⊙.

The particles representing the numerical donor core and the companion interact
only gravitationally with the gas. The interaction is determined by computing the
acceleration due to the two cores in each mesh zone and storing it as an AMR variable
that is added to the finite-differenced gas potential found with the Poisson solver. The
acceleration of each core due to the gas is summed during this loop in such a way as
to ensure momentum conservation. The donor core and companion also experience
a mutual gravitational interaction. This method differs from the technique used in
previous FLASH common envelope simulations and yields greatly improved conserva-
tion properties, though because the gas gravitational acceleration is not conservatively
differenced, and the time centring of the gas and particle update steps is not the same,
we do not conserve momentum to within round-off error.

Once the core properties have been determined, we interpolate the modified MESA
model onto the centre of the AMR grid and allow it to relax for 10 dynamical times.
All the gas initialised on the grid, including the polytrope inside 𝑅core, is regarded as
“envelope” material with total mass 𝑀env = 𝑀donor − 𝑀core. Outside the giant, the gas
is initialised as a uniform “fluff” medium at rest with temperature and density set to
approximately balance any outflow due to unresolved pressure gradients at the stellar
boundary (25000 K and 10−12 g cm−3). During this period, we damp the velocity
field by multiplying all velocities by 0.9 at the end of each step. We then restart the
simulation from a checkpoint file, turn off damping, and add the companion star, placing
it on the 𝑥-axis at a separation 𝑎init for which the Roche lobe radius (computed using
the Eggleton (1983b) approximation) equals the MESA model’s stellar radius 𝑅donor.
These initial separations correspond to 843.9𝑅⊙ (period 654.6 d) and 838.5𝑅⊙ (period
641.1 d) for the rejuvenated and non-rejuvenated donors, respectively. The common
envelope simulation is then run from this initial condition until the orbit stabilises; the
core separation at this time (𝑡final) is denoted by 𝑎final.

While the donor is not quite in equilibrium with the binary potential to begin with,
because all runs begin with the same setup we expect the differences between them to
be mainly due to the differences in the donor model.

The AMR grid is refined by applying the default FLASH second-derivative criterion
to the density and pressure and by requiring refinement of blocks containing any zone
whose centre is within 4𝑅core of a stellar core. We allow all blocks that contain a
stellar core to refine to a higher maximum refinement level than those that do not.
Convergence testing showed that, for the donor models considered in this paper, we
required the numerical core radius to be at least 5 and preferably 10 times the smallest
zone spacing Δ𝑥min in order to stably relax the donor. To avoid excessive refinement
of the volume, we force derefinement of blocks whose maximum density is smaller
than 10−10 g cm−3 or which lie outside a distance of 18 AU from the centre of the
computational volume. Each AMR block contains 83 zones, and the coarsest level of
refinement contains 123 blocks.

The initial stellar profiles of the donor used in this study are part of the models
computed by Renzo et al. (2023) using Mesa (version 15140, Paxton et al. 2011;
Paxton et al. 2013b; Paxton et al. 2015a, 2018a, 2019a). We use their non-rotating
17.84 𝑀⊙ single star for the non-rejuvenated donor and their 15 𝑀⊙ accretor that
reaches 17.41 𝑀⊙ after case-B mass transfer for the rejuvenated donor. Both donors
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Figure 4.1: MESA stellar models for the rejuvenated (orange) and non-rejuvenated
(purple) stars, assuming 𝛼𝑡ℎ = 1. Top panel: Enclosed mass. Bottom panel: Ratio
of the cumulative binding energy of the rejuvenated star to that of the non-rejuvenated
star.

Table 4.1: Simulations performed for this study.
Donor 𝑅core Δ𝑥min 𝑀core 𝑀env

(𝑅⊙) (𝑅⊙) (𝑀⊙) (𝑀⊙)
Rej. 25 5.0 7.91 9.50

25 2.5 7.91 9.50
12 1.26 7.68 9.64

Non-rej. 25 5.0 10.26 7.58
25 2.5 10.26 7.58
12 1.26 9.68 8.06

have a radius of 500 𝑅⊙, a metallicity of 0.10 𝑍⊙, and have not started burning helium.
In Figure 4.1 we show how the cumulative binding energy profiles of the two stellar
models differ. The binding energy was calculated using

BE(𝑚, 𝛼th) = −
∫ 𝑀

𝑚

(︃
− 𝐺𝑚′

𝑟 (𝑚′) + 𝛼th𝑢(𝑚′)
)︃
𝑑𝑚′ , (4.4)

where 𝛼th is the fraction of internal energy that can be used to unbind the envelope.
For each stellar model, we performed runs at several different resolutions, varying

the maximum level of refinement and the number of finest-level zones per numerical
core radius. Table 4.2 summarizes the different simulations, and Figure 4.2 shows the
density profiles after the replacement of the core for different resolutions, as well as the
initial MESA density and composition profiles.
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Figure 4.2: Density profiles of the donor at the start of the CEE. Runs are labelled using
their numerical core radius and smallest cell size. Upper panel: rejuvenated donor.
Lower panel: non-rejuvenated donor. Coloured dots represent the density profile for
different resolutions, and black lines represent the initial MESA profile. The grey solid
and dashed lines show the fractions of H and He, respectively. The grey dotted line
shows the sum of the core radii 2𝑅𝑐𝑜𝑟𝑒 = 50𝑅⊙, 2𝑅𝑐𝑜𝑟𝑒 = 24𝑅⊙ and 2𝑅𝑐𝑜𝑟𝑒 = 12𝑅⊙.
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Model MK+P MK+P+Th Time final separation
(𝑀⊙) (𝑀⊙) (𝑡𝑑𝑦𝑛) (𝑅⊙)

Rej.(25,5.0) 0.051 0.53 13.7 ≤ 50
Rej.(25,2.5) 0.075 0.55 15.9 ≤ 50

Rej.(12,1.26) 0.087 0.61 16.3 ≤ 24
Non-rej.(25,5.0) 0.098 0.62 22.0 ≤ 50
Non-rej.(25,2.5) 0.001 0.66 32.9 ≤ 50

Non-Rej.(12,1.26) 0.001 0.71 31.8 ≤ 24

Table 4.2: Summary of the results of the simulations. MK+P and MK+P+Th indicate
the amount of unbound mass at the end of the simulations according to energy criteria
excluding and including internal energy respectively. 𝑡final is the time at which the sim-
ulation is stopped or when the cores coalesce if the orbit does not stabilise beforehand.
𝑎final is the final separation of the cores, which is an upper limit if they have coalesced.

4.3 Results
We ran a total of 6 simulations, 3 for each donor model, which we summarise in
three figures. First, an overview of the simulations is shown in Figure 4.3, where we
show density snapshots of the Rej.(12, 1.26) and Non-rej.(12, 1.63) models at different
phases of the evolution of the system. Then, we show the evolution of the binary orbit
in each simulation in Figure 4.4, and finally the corresponding mass loss in Figure 4.7.
In Table 4.3, we summarise the final state of each simulation at the time 𝑡final, which
corresponds to the time at which the orbit stabilises or the two cores coalesce.

4.3.1 Evolution of the orbit
We first examine the orbit of the binary during CEE by studying the evolution of the
separation of the numerical cores, which is shown in Fig 4.4 for both rejuvenated and
non-rejuvenated models. This evolution can be broadly divided into two phases. First,
the orbit slowly loses stability as the companion grazes the outer envelope of the donor,
and its eccentricity increases which gives rise to broad modulations of the separation
after ∼ 1 year. When the companion plunges into the envelope of the donor, the orbital
decay accelerates and the inspiral phase starts, yielding a much steeper evolution of the
binary separation until the orbit stabilises. As indicated by the tighter orbital variations
of the separation, the binary remains eccentric during the whole inspiral phase, even
after the orbit regains its stability.

While we observe the same overall evolution for the two donor models, we note a
change of pace in the inspiral between the two sets of simulations. The slow grazing
of the orbit lasts around two years for rejuvenated donors, but it takes six years for
the companion to start the fast inspiral in the envelope of the non-rejuvenated donor.
This can be seen from the third row of Figure 4.3, where the companion is already
inside the envelope of the rejuvenated donor and drives significant outflows, while the
non-rejuvenated system is still in the grazing phase, with less gas ejected. The speed
of the fast phase of inspiral is also slightly affected: it takes about two years for the
companion to reach a stable orbit in the rejuvenated donor, against almost three years in
the non-rejuvenated case. As a result, the binary with a rejuvenated donor reaches the
minimum separation between cores after 4.5 years, while the non-rejuvenated inspiral
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Figure 4.3: Snapshots of the Rej.(12, 1.26) and Non-rej.(12, 1.63) runs in the equatorial
plane (left) and in the meridional plane (right). Each panel shows a density slice at z=0
and is 20 by 20 A.U. The donor core and companion are denoted as grey points. Left
panels: run with non-rejuvenated donor Non-rej.(12, 1.26). Bottom panels: run with
rejuvenated donor Rej.(12, 1.26). First row: start of the run. Second and third row: first
grazing of the envelope of the donor by the companion. Fourth row: core-companion
separation is around 1 A.U. Fifth row: core-companion separation is 2 Rcore.
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Figure 4.4: Evolution of the separation of the cores during the CEE for both rejuvenated
(orange) and non-rejuvenated (purple) donors at different resolution. The black dashed
lines denote where the separation is equal to the sum of the core radii 2𝑅𝑐𝑜𝑟𝑒 = 50𝑅⊙,
and 2𝑅𝑐𝑜𝑟𝑒 = 24𝑅⊙.

takes almost 9 years.
Finally, we remark that while our simulations show stabilised orbits, the separation

of the binaries has reached 2𝑅core before the orbit has become stable. Considering the
density of the gas inside the domain delimited by the numerical cores is much lower
than the density in the stellar profiles, the gravitational drag and torques between the
companion and the gas are very likely underestimated. As such, we do not take any
results after the cores have coalesced as physically meaningful and consider that the
orbit of the cores did not manage to stabilise in any of our simulations. It is thus
impossible to conclude whether the stellar cores will merge or stabilise in a tight orbit
by the end of the inspiral phase, and we can only derive an upper limit on the final
separation of the binary.

4.3.2 Outflows
We show the evolution of the shape of the envelope during the simulation in Figure 4.3.
In the final snapshots, taken before the cores coalesce, we see the expected over-
densities due to the inspiral of the companion in both donor models, but the spirals
appear slightly tighter and more concentrated towards the centre of the binary in the
case of the rejuvenated donor. From the slices in both the equatorial and the meridional
planes, we see that the non-rejuvenated envelope has spread further by the end of the
simulation than the rejuvenated envelope. The outflow also appears more spherically
symmetric in the non-rejuvenated case. Additionally, the slices of the meridional plane
of the envelope show strong spherical asymmetries, with a large decrease in density
around the polar axis of both models. In particular, the matter distribution in the
rejuvenated envelope appears very asymmetric with respect to the z-axis of the grid.

We inspect the shape of the ejecta and the envelope at the end of the simulation
in Figure 4.6 and Figure 4.5, in particular, we are interested in the sphericity of the

91



Figure 4.5: Azimuthally averaged density of the (12, 1.26) models. The top and bottom
panels show the rejuvenated and non-rejuvenated models respectively.
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Figure 4.6: Mass distribution of the envelope at different radii when the cores coalesce
for Rej.(12, 1.26) (top panel) and Non-rej(12, 1.26) (bottom panel). We investigate the
mass distribution in spheres of different radii that are sectioned in bins of polar angle
𝜃. To remove the issues due to fewer cells around the poles, we calculate the ratio of its
mass fraction over its volume fraction for each section. The mass distribution within
a sphere is spherical if this ratio is one for all polar bins. Each line shows a different
polar angle bin and the radius of the spheres is the x-axis.
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outflow. Figure 4.5 shows the azimuthally averaged density of the gas right before the
cores coalesce in the case of the rejuvenated and non-rejuvenated (12, 1.26) models.
Both models have non-spherical outflow with substantial under-densities in the polar
regions, but the ejecta is much more equatorially concentrated in the case of the
rejuvenated donor. To quantify how spherical the mass distribution is at different radii,
we look at the ratio of enclosed mass in spheres of increasing radius to a spherical
mass distribution. To assess the polar distribution of the gas, we section these spheres
according to polar angle bins. Since our grid is cartesian, some polar bins will contain
more cells than others, which introduces errors when calculating the mass fraction
(mass of the sector over the total mass of the sphere) of a bin. To avoid this issue,
we divide the mass fraction of the bin by its volume fraction (the volume of the sector
over the total volume of the sphere). If this ratio is equal to one for all polar bins, then
the mass distribution in the sphere is spherical. The result of this analysis, shown in
Figure 4.6, indicates that most of the ejecta is concentrated in the range of polar angle
𝜃 = [−50◦, 50◦], leaving the polar regions mostly empty. In the case of the rejuvenated
envelope, the asphericity of the gas is strong even in the inner regions of the ejecta
(𝑅 < 50𝑅⊙), whereas the mass distribution of the inner non-rejuvenated envelope is
closer to a spherical distribution.

4.3.3 Mass loss
In Fig 4.7 we show the amount of envelope mass lost in our simulations until the
numerical cores coalesce. A parcel of gas is considered unbound if it exits the domain
or if its kinetic energy is greater than its potential energy:

𝐸gr + 𝐸kin > 0. (4.5)

Alternatively, we can assume that part of the internal energy of the gas𝛼𝐸int is converted
into kinetic energy, and the state of a gas element is determined by

𝐸gr + 𝐸kin + 𝛼th𝐸int > 0. (4.6)

𝛼th, the parameter describing how much internal energy is transferred, is generally
unconstrained, and setting it to unity allows to obtain an upper limit on the ejected
mass. Naturally, the more conservative criteria of equation (4.5) serves as a lower limit.
We note that since all the binaries reach their minimum separation of 2𝑅𝑐𝑜𝑟𝑒 in our
simulations, a part of the inspiral is not resolved. Therefore, we can only find a lower
limit to the total mass lost by the envelope during the CEE of our systems.

We first notice that the rejuvenation of the donor does affect the amount of mass
lost: the rejuvenated giant loses up to 0.06𝑀env while the non-rejuvenated one loses up
to 0.09𝑀env when considering the less conservative criterion (Equation 4.6) for mass
loss. Both donor models do not yield large mass loss, though the mass loss increases
by 50% when considering the non-rejuvenated case.

Interestingly, this trend reverses when considering the more conservative crite-
rion (Equation 4.5) for mass loss. The mass loss in the rejuvenated systems reaches
0.015𝑀env against 0.01𝑀env in the non-rejuvenated case, effectively showing a 50%
increase when taking rejuvenation into account, which is likely due to the faster orbital
decay and the overall lower binding energy of the inner layers of the envelope. The
strong difference between the two energy criteria remains during the whole simulation,
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Figure 4.7: Evolution of the amount of unbound mass during the CEE for different
resolutions and donor models. Orange lines show the unbound mass considering the
total energy is calculated using only the potential and kinetic energy of each cell.
Purple lines show the unbound mass considering the total energy is calculated using
the potential, kinetic and internal energy of each cell. Mass is considered unbound if
its total energy is positive or if it has left the domain. Left panel: Simulations with a
rejuvenated donor. Right panel: Simulations with a non-rejuvenated donor.

suggesting that the internal energy of the gas is inefficiently converted to kinetic energy,
but it is possible that this conversion of energy occurs later in the inspiral and we simply
do not reach this point in our simulations.

Overall, the total mass unbound by the CEE in our simulations is low, which is
consistent with the cores merging. However, the resolution of our simulation is too low
to resolve the late phase of the inspiral, which could lead to a higher mass loss rate and
potentially the stabilisation of the binary orbit.

4.4 Discussion

4.4.1 Orbital decay and unbinding efficiency
The main goal of this work was to investigate whether the significant difference in
binding energy across the envelope of rejuvenated and non-rejuvenated donors, as
shown in Figure 4.1, would affect the inspiral phase of CEE and change the outcome
of the CEE.

The most significant difference between the two CEE simulations is the speed of
the inspiral phase. As seen in Figure 4.4, the rejuvenated inspiral is about twice as fast
as in the non-rejuvenated case. This is likely due to the abrupt increase in density and
binding energy at the surface of the rejuvenated donor. The top panel of Figure 4.1
shows that a lot more mass is contained in the surface layers of the rejuvenated model
compared to the non-rejuvenated case, which is a result of past accretion phases. These
more massive outer layers exert a stronger gravitational drag on the companion as it
grazes the envelope of the donor, which causes a stronger orbital decay and thus a much
faster inspiral phase.
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On the other hand, the difference in unbinding efficiency between the two donor
models is less substantial. From Figure 4.7, we do find an increase in mass loss in
the rejuvenated models when considering the conservative energy criteria. However,
including the internal energy in the energy criteria of the models shows the opposite
results: the non-rejuvenated envelope is more efficiently unbound due to a higher
internal energy content of the non-rejuvenated models. Since the contribution of
internal energy to envelope unbinding is unconstrained, it is unclear whether the non-
rejuvenated CEE is actually more efficient than the rejuvenated case.

Overall, these results are severely limited by our resolution. Firstly, the largest
difference in binding energy profiles in the two stellar models is situated in the innermost
layers of the envelope (𝑟 ∼ 100−101 𝑅⊙, see Figure 4.1), which are not resolved with our
current best resolution. Thus, simulating the CEE with lower core radii and minimum
cell size is required to properly assess the impact of rejuvenation on envelope ejection.
Furthermore, increasing the resolution would also result in a longer inspiral phase
before the cores coalesce or stabilise, thus improving the prediction of the outcome of
the inspiral. Additionally, correctly resolving the CEE on longer timescales may lead
to an increase in mass loss due to a late conversion of internal energy to kinetic energy.
Finally, since the mass loss in the systems considered in this study is very low it may be
of interest to study the effect of rejuvenation in systems with binary parameters allowing
larger unbinding efficiencies. For instance, considering a donor with lower initial mass
can drastically increase the amount of mass lost during the inspiral, in which case the
effect of previous rejuvenation may be much stronger.

4.4.2 Morphology of the ejecta
As seen in Figures 4.3, 4.5, and 4.6, one of the strong differences between our rejuve-
nated and non-rejuvenated simulations is the shape of the ejecta. While the ejecta is far
from spherically symmetric in both cases, it is significantly more equatorially concen-
trated in the rejuvenated models. The differences in the symmetries and compactness
of the ejecta are likely due to the different speeds at which the companion spirals in.
In particular, a slower inspiral gives more time for the outflow to spread further out,
which explains why the non-rejuvenated envelope is much more extended at the end of
the simulation.

The ejecta asymmetries do not directly impact the CEE, however, they do have
observational consequences as the ejected envelope expands and cools to the proper
conditions for dust condensation. Thus, the resulting dusty CSM around the remnant
of the CEE, which should be observable at least in infrared, has a significantly different
geometry and mass distribution if rejuvenation is taken into account. This may also
impact the observational signatures of later interactions with the CSM.

Since the companion is a neutron star, the merger may produce a Thorne-Żytkow
object (TZO) (Thorne & Zytkow, 1977), or lead to collapse into a black hole accompa-
nied by a strong supernova (SN) explosion (Chevalier, 1996; Fryer & Woosley, 1998).
In the second case, the dense circumstellar medium resulting from the CEE ejection
will interact with the SN explosion (e.g., Smith, 2011; Chevalier, 2012; Metzger, 2022),
potentially yielding a type IIn SN or an ultraluminous SN. The different equatorial con-
centrations and asymmetries observed between the rejuvenated and non-rejuvenated
will impact the interaction between the circumstellar medium and a future SN, which
may in turn affect the observed properties of the interacting SN and the remnant.
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4.4.3 Including other phases of binary evolution
Our simulations indicate that considering one previous phase of mass transfer signif-
icantly impacts CEE. However, there are other phases of binary evolution that may
substantially impact the structure of a future CEE donor and thus the details of the CEE
process. In particular, we found that the change in the mass distribution in the outer
layers of the donor accelerated the inspiral phase, thus, any process that impacts these
regions could be relevant.

We considered a system that evolved through a typical double NS binary formation
channel (e.g., Tauris et al., 2017). This evolutionary process starts with two massive
MS stars in a close orbit, such that the system undergoes a phase of case B stable mass
transfer when the more massive star evolves out of its MS phase and expands. The
donor is gradually stripped of its mass while the MS accretor gains mass and undergoes
a rejuvenation process. Eventually, the stripped donor collapses and turns into a NS
without disrupting the binary Renzo et al. (2019). The initially less massive star later
expands when leaving its MS phase, eventually leading to a second phase of mass
transfer that becomes unstable and leads to CEE.

While the first phase of mass transfer is accounted for in the stellar models used in
this work (Renzo et al., 2023), the effects of the SN explosion and the second phase
of mass transfer have been neglected. In particular, the ejecta due to the SN explosion
may interact with the companion (e.g., Hirai et al., 2018; Ogata et al., 2021), injecting
energy into its outer envelope, which would cause an expansion and possibly ablating
part of the surface layers. Additionally, the phase of mass transfer directly preceding
the onset of CEE should also affect the donor, in particular through the removal of its
outer layers. These two processes may remove some of the dense outer layers of the
donor that formed through the first phase of mass transfer, thus mitigating the increase
in inspiral pace while maintaining a lower binding energy profile across the stellar
envelope. Including these two other phases of the evolution of the binary may therefore
yield different results than what we observed in our simulations.

4.5 Conclusion
In this work, we have performed 3D hydrodynamics simulations of CEE using donor
models that account for a previous phase of mass transfer. This mass transfer phase
induced a rejuvenation process in the future donor of the CEE phase, which greatly
lowers its binding energy in the innermost envelope. We compare the outcome of
the CEE process in our simulations by using rejuvenated and non-rejuvenated donor
models and found that rejuvenation does impact the speed of the inspiral, the shape of
the ejecta, and the amount of mass lost by the system during the inspiral.

The main difference observed when a past phase of mass transfer is accounted for
is a twice-faster inspiral phase. This is likely due to the denser outer layers of the donor
resulting from past accretion, which strengthens the drag on the companion when it
starts to plunge into the envelope. In both rejuvenated and non-rejuvenated cases, we
found that the orbit of the binary does not stabilise before the numerical cores coalesce,
though this may change when increasing the resolution of the simulations.

On the other hand, the impact of donor rejuvenation on the mass loss of the system
is less clear. We found a 100% increase in unbound mass with the rejuvenation when
using the conservative energy criteria, but a 33% decrease when including the internal
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energy of the gas. The unbinding efficiency of the system is overall very low, with up to
6% and 9% of the envelope mass ejected in the rejuvenated and non-rejuvenated case
respectively. Therefore, it is complicated to assess the full impact of rejuvenation on
mass ejection, and simulation of different mass ratios may help in that regard.

A side effect of using rejuvenated stellar models was a change in ejecta morphology:
the rejuvenated ejecta is more equatorially concentrated and less spherically symmet-
rical than in our non-rejuvenated models. This difference mostly has observational
consequences, especially if the inspiral ends in a merger. In particular, the ensuing
LRN and a potential later SN explosion of the merger product may have different prop-
erties if the mass distribution of the CEE ejecta is different.

We note that due to numerical limitations, our simulations have relatively large core
sizes that do not allow to resolve the innermost part of the inspiral, where the difference
in binding energy is supposed to be the strongest. Therefore, simulations with smaller
core sizes and higher resolution are needed to study the full impact of rejuvenation.

Our simulations only considered a specific phase of the typical binary evolution
channel for double NS binaries, but the results indicate that any significant structural
changes in the stars occurring during binary interactions are relevant for later CEE.
Thus, taking into account the whole binary evolution before the onset of CEE, in
particular a previous SN explosion and the mass transfer phase preceding CEE may
change these results.
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Conclusion
In this thesis, we showed that stars evolving in close binaries are often strongly impacted
by the stellar interactions they undergo. These interactions significantly affect stellar
evolution and are at the root of many interesting astrophysical phenomena, such as
mergers and cataclysmic variables. Furthermore, observations show that such interac-
tions occur in a diverse range of binary systems, from long-lived low-mass systems to
massive binaries evolving into gravitational wave sources. As such, binary interactions
are a key aspect of stellar astrophysics and time-domain astronomy. While our under-
standing of binary evolution has advanced since the first observation of binary stars, the
diversity of binary configurations and the ensuing evolutionary paths require detailed
investigations of specific types of close binaries and their interactions. In this thesis, we
carried out separate studies of different binary interactions to explore known issues in
binary and stellar evolution, aiming to constrain existing and new types of interactions
either by analysing observational data or carrying out hydrodynamics simulations.

We first investigated accreting binaries, specifically dwarf novae, a type of cat-
aclysmic variable with thermally unstable accretion discs. While it is well known
that these systems undergo periodic outbursts due to thermal instabilities propagating
through the disc, there are persistent discrepancies between observations and modes of
unstable accretion discs. In Chapter 2, we discussed the potential extreme dwarf nova
O-201843, which shows very long outbursts that resemble those of dwarf novae, albeit
on much longer timescales and with numerous peculiar features. Through the analysis
of photometric and spectroscopic observations, we show that the outbursts originate
from a relatively cold accretion disc undergoing thermal instabilities. Aside from the
unusually young companion observed in the spectra and the small recurring flares, this
system undergoes a slow brightening before each outburst, a feature predicted by disc
instability models but never observed. Since these models have always been considered
incomplete due to this discrepancy, O-201843 could help bridge the gap between cur-
rent models and observations of thermal instabilities in accretion discs. A first step in
this direction is to perform follow-up time-resolved spectroscopy and better constrain
the characteristics of the system, including the primary and secondary, and possibly
use Doppler tomography to characterise the velocity structure of the disc.

Another important issue we explored in this work is the mass loss phases experi-
enced by red supergiants, of which the origin is still very unconstrained, resulting in
large uncertainties in massive star evolution and many unexplained features in obser-
vations of red supergiants. While different processes, such as convection or magnetic
activity, have been considered to explain asymmetric mass ejection in red supergiant
stars, little attention has been given to the potential role of binarity and stellar inter-
actions in driving these outflows. In Chapter 3, we performed 3D hydrodynamics
simulations to investigate whether a 2𝑀⊙ companion grazing the envelope of a 20𝑀⊙
RSG at periastron can launch significant asymmetric episodic outflows that later ex-
pand through dust-driven winds. Our simulations show that each periastron passage
decreases the orbital separation and increases the mass loss rate, yielding a broad
asymmetric ejecta of 0.185𝑀⊙ before the system enters common envelope evolution.
The dusty ejecta should be observable at millimetre and sub-millimetre wavelengths,

99



and the similarities between our simulations and some of the outflows observed around
the red supergiant VY CMa show that this grazing interaction may be relevant for
the evolution of massive stars. This scenario applies to binaries with low-mass MS
companions as well as systems that may become double neutron star binaries and thus
require further investigation to constrain its impact on binary and stellar evolution.
Our simulations are meant as proof-of-concept, and improving the treatment of the
physical processes included will allow us to make more accurate predictions. Another
necessary follow-up will be to study the interplay between this interaction and other
potential outflow mechanisms, such as convective motion in the envelope, magnetic
surface activity, and pulsations.

Finally, we studied common envelope evolution, a key phase of binary evolution
where the binary orbit drastically tightens due to the drag of the shared envelope on
the inspiralling companion. There remain many unknowns concerning this process,
such as the physical processes relevant to the unbinding of the envelope, the initial
conditions of the common envelope, or the conditions allowing for the total ejection of
the envelope. In particular, an important aspect that is often neglected in simulations is
the history of binary evolution, in particular its impact on the structure of the donor and
thus on the outcome of common envelope evolution. In Chapter 4, we have performed
3D hydrodynamics simulations of the common envelope evolution of a 18𝑀⊙ giant
donor with a 1.4𝑀⊙ companion, a system binary that has supposedly undergone at
least one previous phase of mass transfer and may later result in a double neutron star
system. We used a donor model that accounts for a previous phase of mass transfer
and specifically the effect of the rejuvenation process. By comparing the results with a
second set of simulations performed with a single star profile for the donor, we found
that past rejuvenation increases the speed of the inspiral and the ejecta asymmetries
and does impact the amount of mass lost during the inspiral. We mostly attribute this
change to the larger density at the surface of rejuvenated stellar models due to previous
accretion, which strengthens the drag on the companion during the early inspiral.
While simulations of higher resolution are necessary to fully assess the impact of
rejuvenation on the outcome of common envelope evolution, it is clear that the effect
is not negligible. It will be interesting to study how other phases of binary evolution
may alter this result, for instance, the phase of unstable mass transfer triggering the
common envelope evolution or the supernova explosion of the companion. Moreover,
it is of high importance to study this process for different binary parameters, e.g., stellar
masses, to provide more accurate initial conditions for common envelope simulations.
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Telleschi A., Güdel M., Briggs K. R., Audard M., Palla F., 2007, A&A, 468, 425

Temmink K. D., Pols O. R., Justham S., Istrate A. G., Toonen S., 2023, A&A, 669,
A45

Teyssier R., 2002, A&A, 385, 337

Theuns T., Jorissen A., 1993, MNRAS, 265, 946

Thorne K. S., 1974, ApJ, 191, 507

Thorne K. S., Zytkow A. N., 1977, ApJ, 212, 832

111

http://dx.doi.org/10.1093/mnras/sty843
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.2584S
http://dx.doi.org/10.1093/mnrasl/slw208
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465L..54S
http://dx.doi.org/10.1051/0004-6361/202243540
https://ui.adsabs.harvard.edu/abs/1982AcA....32..199S
http://dx.doi.org/10.1086/161284
https://ui.adsabs.harvard.edu/abs/1983ApJ...272..234S
http://dx.doi.org/10.1016/S1387-6473(00)00033-6
https://ui.adsabs.harvard.edu/abs/2000NewAR..44..171S
http://dx.doi.org/10.1111/j.1365-2966.2011.18607.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.2020S
http://dx.doi.org/10.1146/annurev-astro-081913-040025
https://ui.adsabs.harvard.edu/abs/2014ARA&A..52..487S
http://dx.doi.org/10.1146/annurev-astro-081913-040025
http://dx.doi.org/10.1086/318748
http://dx.doi.org/10.48550/arXiv.astro-ph/9703016
https://ui.adsabs.harvard.edu/abs/1997A&A...327..620S
http://dx.doi.org/10.1088/0004-637X/800/2/114
http://dx.doi.org/10.1111/j.1365-2966.2006.11056.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.373..733S
http://dx.doi.org/10.3847/2041-8213/aad736
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..14S
http://dx.doi.org/10.1146/annurev-astro-081309-130914
https://ui.adsabs.harvard.edu/abs/2010ARA&A..48..391S
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://dx.doi.org/10.1088/1538-3873/128/963/051001
https://ui.adsabs.harvard.edu/abs/2016PASP..128e1001S
http://dx.doi.org/10.3847/1538-4365/ab929b
https://ui.adsabs.harvard.edu/abs/2020ApJS..249....4S
http://dx.doi.org/10.3847/1538-4357/ab5a83
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..249S
http://dx.doi.org/10.48550/arXiv.astro-ph/0303456
http://dx.doi.org/10.3847/1538-4357/aa7e89
http://dx.doi.org/10.1051/0004-6361:20066565
https://ui.adsabs.harvard.edu/abs/2007A&A...468..425T
http://dx.doi.org/10.1051/0004-6361/202244137
https://ui.adsabs.harvard.edu/abs/2023A&A...669A..45T
https://ui.adsabs.harvard.edu/abs/2023A&A...669A..45T
http://dx.doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T
http://dx.doi.org/10.1093/mnras/265.4.946
http://dx.doi.org/10.1086/152991
https://ui.adsabs.harvard.edu/abs/1974ApJ...191..507T
http://dx.doi.org/10.1086/155109


Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501

Ting Y.-S., Conroy C., Rix H.-W., Cargile P., 2019, ApJ, 879, 69

Tout C. A., Eggleton P. P., 1988, MNRAS, 231, 823

Townsend R. H. D., 2009, ApJS, 181, 391
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2.1 Photometry of OGLE-BLG504.12.201843. The first panel shows data
from DASCH, with detections in blue and non-detections in grey. The
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appearing in OGLE data in more details. The data is shown in blue and
the phase-averaged brightness is shown in red. The latter was obtained
by subtracting a fit of the variability (made with with Fourier series)
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bin in “rise” and “decline” phases of the outburst, shown in yellow
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clearest shape in grey for comparison with the other cycles. . . . . . . 44

2.5 Left: Phase-folded photometry of OGLE-BLG504.12.201843 during
the quiescent state compared with two Phoebe2 models. Data are
shown in blue and two different models are overplotted. The blue
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𝑖 = 45°, with gravity darkening and irradiation of the secondary. The
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primary has a temperature of 3×104K. Right: Estimation of the Roche
lobe radius of the secondary 𝑅𝐿,2 using Equation (2.4) with different
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116



2.6 Comparison of the properties of OGLE-BLG504.12.201843 with the
catalog of DNe compiled by Otulakowska-Hypka et al. (2016). The
parameters of O-201843 are shown with a blue star, the catalog in
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by requiring that the sources have parallax errors lower than 10% of
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2.8 Full Spectra of O-201843 in quiescence (taken on 2017-10-24) with
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