
BACHELOR THESIS

Ogulhan Bozkir

Just Blade: A 3D melee combat game
in a medieval setting

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Filip Kliber
Study programme: Computer Science

Study branch: General Computer Science

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Mgr. Filip Kliber, who guided me through
the arduous process of writing this thesis; and my mother, without her unwavering
support, I wouldn’t even have the chance to be at this point in the first place.

ii

Title: Just Blade: A 3D melee combat game in a medieval setting

Author: Ogulhan Bozkir

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Filip Kliber, Department of Distributed and Dependable
Systems

Abstract: The goal of the thesis is to develop a 3D medieval melee combat game.
In the game, the player defends themselves against hordes of enemies coming
in waves. The player earns gold with every slain enemy, which can be used to
purchase better weapons and armor; or hire mercenaries to help fight against
the hordes. The player can choose to buy heavy armor which provides better
protection against incoming damage; or remain quick on their feet by wearing
lighter armor instead. The game features a four directional combat system (i.e.:
the ability to attack and defend in four directions).

Keywords: game, 3D, unity, melee, combat

iii

Contents

1 Introduction 3
1.1 Similar Games . 3

1.1.1 The Last Stand . 3
1.1.2 Mount & Blade: Warband 4
1.1.3 Mordhau . 5

1.2 Goals . 6

2 Analysis 8
2.1 Agent Movement . 8

2.1.1 Rigidbody . 8
2.1.2 CharacterController . 9
2.1.3 NavMeshAgent . 9

2.2 Animation . 10
2.2.1 Four Directional Combat 10
2.2.2 Keyframe Animation . 11
2.2.3 Physics Driven Combat . 11
2.2.4 Combat Coherency . 12
2.2.5 Separating the Upper and Lower Bodies 12
2.2.6 Making Movement and Look Directions Different 13

2.3 Items . 14
2.3.1 Weapon and Armor Values 14
2.3.2 Weapon Collision . 15
2.3.3 Weapon Specific Animations 15
2.3.4 Wearing Armor . 15
2.3.5 Movement Speed Penalty 16

2.4 Menus . 16
2.4.1 All in One Scene . 16
2.4.2 Using Multiple Scenes . 17
2.4.3 Managing Player Progress 17

2.5 Combat Scene . 17
2.6 Horde Difficulty Progression . 18
2.7 Sounds . 18

3 Implementation 20
3.1 Folder Structure . 20
3.2 Designing the Agent Entity . 22

3.2.1 Agent and Controllers . 22
3.2.2 Compound Agent Entity 23

3.3 Agents . 24
3.3.1 Movement of PlayerAgent 25
3.3.2 Movement of AiAgent . 26
3.3.3 Jumping . 27

3.4 Animation . 27
3.4.1 Source State Until Fully Transitioned Out 27
3.4.2 AnyState Does not Apply to Transitions 28

1

3.4.3 Transition Duration Cannot be Changed at Runtime . . . 29
3.4.4 Waist Warping . 30
3.4.5 Arm Going Backwards . 31

3.5 AgentAC . 31
3.5.1 Base Layer . 32
3.5.2 AtkAndDef Layer . 32
3.5.3 Idle Layer . 33
3.5.4 How the Layers Work Together 33
3.5.5 AgentAOC . 34
3.5.6 Combat Animations Logic 34
3.5.7 Blend Tree . 36

3.6 Combat Coherency Circle . 37
3.7 Scenes . 38

3.7.1 MainMenuScene . 39
3.7.2 InformationMenuScene . 39
3.7.3 GearSelectionMenuScene 39
3.7.4 ArenaScene . 40

3.8 Weapons . 42
3.9 Armor . 44
3.10 Horde Prefabs . 45

3.10.1 Horde Agent Data . 46
3.10.2 ArmorSets . 46
3.10.3 WeaponSets . 46
3.10.4 CharacteristicSets . 47
3.10.5 RewardData . 48
3.10.6 InvaderAgentData . 48
3.10.7 Adding a New Invader . 48
3.10.8 MercenaryAgentData . 49
3.10.9 Horde Difficulty Progression 49

3.11 Sounds . 49
3.12 Collision Layers . 50

4 User Guide 51
4.1 Installation . 51
4.2 Menus . 51

4.2.1 Main Menu . 51
4.2.2 Information Menu . 52
4.2.3 Gear Selection Menu . 52

4.3 Gameplay . 54
4.3.1 Combat . 54
4.3.2 Enemies . 55
4.3.3 Gameplay Strategies . 57

5 Conclusion 59
5.1 Future work . 59

Bibliography 61

2

1. Introduction
The objective of the thesis is to develop a 3D medieval melee combat game. In
the game, the player has to defend themselves against hordes of enemies coming
in waves. The player earns gold with each fallen enemy. After each time the
player survives the onslaught, they are taken to menus where they can use the
gold to purchase better weapons and armor; or hire mercenaries to help defend
against the next assault. The player can choose to wear light armor to remain
quick on their feet; or heavier armor which provides better protection against
incoming damage at the cost of movement speed. The implementation of the
game features a four directional combat system (i.e.: the ability to attack and
defend in four directions).

The resulting video game is called Just Blade. The name “Just Blade” is a
word play on Mount & Blade [1], in the sense that my game doesn’t have any
mounted combat, therefore it is “Just” (i.e.: “Only”) Blade. The development of
my game took inspiration from several games, which are explained in the next
sections.

1.1 Similar Games
There are many genres a video game can be associated with, and one of which is
called the horde game genre. In this genre, the player tries to play for as long as
possible without dying in an uninterrupted session while the game presents them
with increasingly difficult waves of challenges [2]. In video games such as The
Last Stand, the whole point of the game is the horde game mode itself. However,
in some other games, it is simply included as a mini-game mode as in the case
of Mount & Blade: Warband and Mordhau. The next sections briefly describe
what these games are like.

1.1.1 The Last Stand

Figure 1.1: A screenshot of The Last Stand browser game from my playthrough
on Armor Games. There are three survivors (including the player) who fight off
zombies in the second night of the game.

3

The Last Stand is a browser game [3] that was released on Armor Games in
2007 [4]. In this game, the player is positioned behind a barricade and fights off
zombies that attack at night. During the day, the player allocates time to find
better firearms, repair the barricade, or find survivors to help them fight in the
next nights. The goal is to survive for as many nights as possible until the game
ends where the survivors get rescued.

Just Blade is a 3D medieval combat game whereas The Last Stand is a 2D
shooter game, but the fact that the player fights off hordes of enemies in both
games is what makes them similar.

1.1.2 Mount & Blade: Warband
Mount & Blade: Warband (abbreviated “M&B:W”) is a video game that was
released in 2010. It’s a strategy action roleplaying game developed by
TaleWorlds Entertainment, and published by Paradox Interactive [5].
M&B:W features an invasion mode on multiplayer which was released on
December 20, 2016 [6]. It wasn’t around at the release of the game in 2010, so
the explanations that I provide below are based on the few minutes of
playthroughs that I had.

The game mode can be played by multiple players. Each player chooses
their equipment as they normally would on any multiplayer game mode.
However, in addition, the player has two computer controlled companions to
choose from. These companions are the same ones as you would find in the
single player campaign. Each companion has certain proficiencies, meaning
while one companion could be good at fighting with two handed weapons,
others may prefer one handed weapons. The player can also choose the class of
their companions, which are based on the factions that they sided with while
configuring the game mode. These classes are usually infantry, ranged or
cavalry.

Figure 1.2: An in-game screenshot that I took of M&B:W’s invasion game mode.

The invasion mode consists of enemies attacking in waves. The players are
given some time to prepare before the wave approaches, in which the player
chooses equipment for themselves and their companions. Once the time is up,
the wave of enemies begin their attack. Each enemy killed provides the player
gold. Sometimes, the enemies can drop loot chests, from which contain special

4

items that cannot be obtained by normal means (e.g.: boots that make you move
faster, knives that steal life from enemies, etc.). The players can choose to keep
these items for themselves, or assign them to one of their companions.

The gameplay is seamless, in the sense that there are no pause menus between
the waves. Each wave must be thwarted within a time frame such as 5 minutes,
or else the next wave will begin without finishing the current one. Some waves
are special, where they contain characters from the singleplayer campaign (i.e.:
lords, counts, boyars, etc.). The arrival of such enemies are announced by the in-
game text during the countdown. Every now and then, a “supply caravan icon”
appears in the game. This indicates that any fallen players and companions will
have a chance to respawn soon. However, if every player and companion dies, the
enemies win and the game is over.

Figure 1.3: A comparison of the visual similarities of models in Just Blade (left)
and M&B:W (right) from the in-game screenshots that I took.

Just Blade was heavily inspired by M&B:W’s four directional combat system,
as well as its visual aesthetics. While M&B:W’s invasion mode is similar to Just
Blade horde gameplay, there are also some differences. One of those differences
is the fact that M&B:W’s gameplay is seamless as explained above, whereas Just
Blade takes the player to menus after fights where they can make purchases.

1.1.3 Mordhau
Mordhau is a video game that came out in 2019. It’s a multiplayer medieval hack
and slash fighting game developed by Triternion [7]. It contains a game mode
called horde.

Mordhau’s horde mode is very similar to M&B:W’s invasion mode. In
Mordhau, the game mode is played with other players. The enemies come in
waves after a certain preparatory time period has passed. Unlike M&B:W, the
players do not have AI controlled companions. In addition, there is an objective
goal in Mordhau’s horde game mode, which is to protect the “Noble”. The
Noble is a computer controlled warrior, which wanders near the starting point.
If the enemies kill him, the game ends, regardless of how many players are still
alive. Luckily, the Noble is a tough warrior himself, and he can fend off enemies
as well. When a player dies, the other players can revive the player by holding a
button for some time.

5

Figure 1.4: An in-game screenshot that I took of Mordhau’s horde game mode.

For each enemy killed, the players earn gold; and with each wave beaten,
the players earn skill points. The gold is used to purchase weapons and armor;
while the skill points are used to specialize the player’s character in the following
skill trees: melee, tank, support, ranger. They contain skills which give passive
bonuses throughout the game. At the end of each skill tree, there are active skills
which give more useful effects, but suffer a cooldown period. For example, the
melee tree has an active skill that makes the player invulnerable to damage for a
few seconds.

Much like M&B:W, Mordhau’s horde mode is also seamless, in the sense that
there are no pause menus once the game has begun. Similar to M&B:W, the
purchases are done through an in-game menu. Even though Just Blade is not
seamless, it was inspired by Mordhau’s horde game mode, as well as its weapon
damage and armor system.

1.2 Goals
The implementation of the game is centered around a few key goals. The game
may contain features other than described below, simply because those features
are relatively minor and need not be mentioned. The goals are as follows:

1. All agents must have the ability to do the following:

(a) Attack while moving.
(b) Move in a direction which is different from their look direction.
(c) Look up/down while attacking in order to target different body parts

of their opponent.

2. Agents must be able to attack and defend in four directions (i.e.: up, down,
right, left). This should be done in a coherent manner. For example, the
agents should not be able to block an attack if their back is turned against
their opponent, even if the directions match.

3. The weapons must have varying features such as damage, length, and speed.
In addition, the animations must be suited according to the way a particular
class of weapon is held (e.g.: swords, spears).

6

4. There must be varying levels of armor, with each level providing more
protection against damage at the cost of movement speed. There must
be multiple armor pieces to cover different body parts (e.g.: head, torso,
legs).

5. The scene in which the agents fight is expected to have the following
properties:

(a) A mostly flat surface to move around, with some small slopes.
(b) Some impassable obstacles (e.g.: boulders, trees, fences) which the

agents must move around.
(c) A background landscape such as a mountain with trees or the

battlements of a fortress.
(d) The starting locations of the combatants on each side must be situated

at opposite ends of the scene.

6. The hordes of enemies must be harder to tackle as the game progresses,
yielding better rewards when beaten. There must be a difficulty slider to
further adjust the difficulty of the game.

7. There must be several menus that are seen before each fight, which are as
follows:

(a) An information menu where the player is given information about the
next fight.

(b) An item shop menu to buy weapons and armor.
(c) A mercenary menu to hire mercenaries to aid the player in combat.

7

2. Analysis
This chapter goes over some of the challenges that are expected in order to
implement the features that were described in section 1.2. It covers various ways
to address the issues that are described, and the one which is believed to be the
most suitable solution is selected.

Note that the text focuses on the Unity Engine [8] as a tool for analysing the
implementation of the game’s various aspects. While it is possible to use other
known engines to implement the game with some adjustments to accommodate
the needs of their tools, I decided to focus on Unity simply because I have some
prior experience in using it.

2.1 Agent Movement
The humanoid characters that move around and fight are called agents. An agent
that is controlled by the player is called a player agent (or PlayerAgent); and
one that is controlled by the computer is called an AI Agent (or AiAgent).

We’re going to have to design an Agent entity which allows the player and
the computer to control an agent in the game. There is one important aspect
that might prove rather challenging, and that is the movement of the agents. In
general, Unity offers three solutions to consider when implementing the movement
of any agent:

• Rigidbody

• CharacterController

• NavMeshAgent

These solutions are examined in the next sections.

2.1.1 Rigidbody
In order to let a GameObject [9] be affected by Unity’s physics engine, it is
necessary to attach a Rigidbody [10] and a Collider [11] Component [12] to it.
A collider is the physical representation of the game object in the scene. The
preferred shape of the collider is usually a capsule. This is so that the object
doesn’t get struck onto the edges and corners of scene geometry while moving
(e.g.: when climbing a staircase), which is something that can happen when using
a rectangular collider for movement. Once the components are set, the various
methods provided by the Rigidbody can be used to move the game object in the
scene.

In general, it is important for the game engines to update the physics
simulation at constant time intervals. This is in order to preserve the
correctness of the simulation. Therefore, it makes sense to use Unity’s
FixedUpdate method to apply the movements on the Rigidbody. However, in
the case of the player agent, reading the inputs in FixedUpdate would cause
input lag [13]. Therefore, it’s a good idea to read the inputs in Update, and
apply the effects in FixedUpdate.

8

I believe that moving the player agent in the scene using this approach is
reasonable. The only issue I can think of is related to camera jitter (i.e.: blurriness
when the camera is moved). Usually, it makes sense to move the camera in
LateUpdate, which is invoked after the Update method is used to receive inputs.
However, since the Rigidbody is moved in FixedUpdate, the player agent might
appear blurry to the user whenever the camera is moved. It’s possible to fix
this by moving the camera in FixedUpdate as well. The problem is, if the other
agents in the scene are moved in a different method (e.g.: Update), then they
will appear blurry when the camera is moved. If these issues occur, it might be
a good idea to use Unity’s CharacterController component instead (which is
explained in a later section).

Moving the AI agents using Rigidbody is trickier, because they need to be
able to avoid obstacles in the scene. It’s possible to write a pathfinding algorithm
[14], but I believe that would require too much work to get it right, especially
since Unity already offers a solution: NavMeshAgent. It is explained in a later
section.

2.1.2 CharacterController
Unity’s CharacterController component is another way to move an agent in
the scene. As Unity’s documentation page says, it allows “movement constrained
by collisions without having to deal with a rigidbody.” [15]. It is still affected
by collisions, but the upside is that we can implement the movement in Update
instead of FixedUpdate. This could fix any camera jittering issues mentioned in
section 2.1.1, should they actually occur.

Unlike movement using Rigidbody, it is not necessary to attach a collider to
a CharacterController GameObject, as the component already comes with its
own collider.

If the Rigidbody approach for movement causes problems, it’s reasonable to
use the CharacterController to implement the player agent’s movement.
However, it is still tricky to use this for AI agents, as we’re still lacking a
pathfinding solution for them in this case.

2.1.3 NavMeshAgent
Unity’s NavMeshAgent (NMA) component [16] is a movement solution which uses
Unity’s navigation system [17]. It allows game objects to move around in the
game scene with obstacle avoidance. This is achieved by baking the NavMesh [18]
of a scene using the tools in Unity Editor. The navigation system then uses this
NavMesh to determine which parts of the scene are moveable or not.

The NMAs do not get affected by physics colliders. Instead, we’re meant to
use a NavMeshObstacle component [19] if we want to create obstacles for the
agents to avoid. The NMA can be told where to go in the Update method with its
SetDestination method.

In the case of AI agents’ movement, the other methods require us to come up
with a custom pathfinding solution; whereas the NMA already solved this problem.
Therefore, I believe implementing the movement of the AI agents using this tool
is quite reasonable.

9

The NMA component can also be used to implement the movement of the player
agent, but I believe there would be some issues. The first problem is implied by
the SetDestination method, which accepts a position vector as an argument.
This type of movement is usually best suited for Real-time Strategy games
[20], where the user decides where to go by choosing a position in the game
world. Secondly, it is ultimately up to Unity’s pathfinding algorithm to move the
player, which may not be as precise as the user wishes. It is possible to disable
the pathfinding for the player agent, but that would make it pointless to use a NMA
in the first place. For these reasons, I believe the movement of the player agent
should be implemented with either a Rigidbody or the CharacterController.

2.2 Animation
In order to animate the agents, there are a few options:

• Unity’s Mecanim.

• Using C# script to animate the agents with Unity’s animation engine.

• A third party asset such as Animancer.

The animation system offered by Unity is called Mecanim [21]. It comes with a
graphical user interface to create a state machine for the animations to be played
as needed. This seems like a reasonable approach to set up the combat animation
logic of the game. Mecanim also comes with a Blend Tree tool, which allows
one to blend multiple animations [22]. It seems like an easy way to set up the
movement animations of our game, in a way that is also visually pleasing to the
eye.

The second option is to write a custom state machine using C# scripting
and Unity’s animation engine. Doing so would most likely offer the best control
to animate the agents compared to the other alternatives. Though, the time it
takes to implement and debug such a system from scratch may not be worth it,
as Unity’s Mecanim seems like it already offers a good solution for animations.

Another option is to use a third party asset that is made by other users of
the Unity engine. An example of this is Animancer [23], which seems to have
received a good rating in the Asset Store [24], but requires the user to pay a fee
to use the full features. These might act as a good alternative if Unity’s Mecanim
proves to be quite unusable.

Since Unity’s Mecanim seems like a good solution to set up the animations, I
plan to use it in my game, as I also had some experience using it in the past.

2.2.1 Four Directional Combat
There are four directions in which every agent can attack or defend: up, down,
left, right. For example, if an attacker performs a swing from the left, the defender
must look at the attacker and block from the left side in order to successfully
deflect the attack. I believe that being able to choose the correct directions in
the heat of the battle adds depth and challenge to the combat of the game.

Using a mouse and keyboard as the input mechanism is probably ideal for
this type of combat system. Because the left and right mouse buttons can be

10

used to send attack and defend signals respectively; while the combat directions
can be chosen by moving the mouse in the appropriate direction. The player’s
movement signals can be sent by pressing the “WASD” buttons on the keyboard,
which is a common practice in many video games. It’s possible to use other input
methods as well. For example, if it had to be implemented using a controller, the
user could use the right analog stick to control the camera and choose a combat
direction, and press the necessary buttons to perform the attack or defense. The
movement would be implemented by moving the left analog stick to accelerate in
the appropriate direction. However, for the purposes of this game, I believe the
main input method should be mouse and keyboard.

I know of two approaches to implement such a combat system, which are
explained in the next sections.

2.2.2 Keyframe Animation
The first approach is by using keyframe animations [25]. The idea is to save the
pose of the skeleton’s bones in certain key poses (called keyframes), and then let
the underlying software (in this case, Unity) interpolate between the keyframes
to generate a frame. These animations are then played when necessary. For
example, if we want the agent to attack from the right, we play the “attack_right”
animation when the user moves the mouse to the right and presses the attack
button.

This is probably the most common way to animate characters in most video
games. From the looks of it, other medieval combat games such as M&B:W and
Mordhau also use keyframe animations to animate their characters.

In my case, I plan to use the models and animations which I made in 2016
using Blender [26]. The animations are also keyframe based, and they are visually
similar to M&B:W, as I was inspired by that game at the time. If I didn’t have
these assets available at hand, I would have looked at Unity’s Asset Store to use
some third party assets, as it’s too time consuming to create such assets from
scratch in general. In that case, the third party assets would probably not have
looked as visually consistent, as it’s hard to find game-specific assets made by
other people, but still would have got the job done nonetheless.

2.2.3 Physics Driven Combat
The second approach is by driving the animations purely by a physics system.
In this case, no keyframe animations are used, and the skeleton of the agent is
controlled by applying physical forces. As far as I know, the only game that
does is Exanima, which is a game developed by Bare Mettle Entertainment
[27]. In Exanima, the characters can attack in four directions. Since the game
is driven by physics, it’s possible to do even more than that. They develop the
game using their in-house game engine, which most likely helps them optimize
the performance caused by physics related calculations.

For the purposes of our game, it would be too much work to write a physics
based combat system from scratch, as Unity is more of a general purpose tool, and
its built-in physics engine may not be efficient enough to handle such calculations.
Moreover, the keyframe animation approach is enough to cover the needs for our

11

game, as an ultra realistic combat simulation is not the main point of it. For
these reasons, I believe it’s reasonable to use the keyframe animation approach
instead.

2.2.4 Combat Coherency
As mentioned in Goal 2, the four directional combat should be done in a coherent
manner. This point is elaborated further with another example. Consider a
scenario with an attacker and a defender, and they’re both facing each other. If
the attacker is attacking from his right side, the defender has to defend from his
left side in order to block the attack. This is the expected combat dynamic.

Now, consider the case where the attacker is situated on the right side of
the defender. In this case, if the attacker attacks from his right side, then the
defender should not defend from his left side as explained above. This is because
the attacker is on the right side of the defender, which means that the defender
should defend from his right side instead. In fact, if the attacker decides to attack
from his right side in this situation, the defender should not be able to block at
all, as the attacker is too much on the right side of the defender. The correct
course of action is for the defender to look at the attacker and center his view on
him.

Achieving this degree of coherency can be done by comparing the positions
and look directions of the combatants. Once the attacker’s relative position to
the defender is determined, it can be decided whether or not the defender should
be able to block an attack.

2.2.5 Separating the Upper and Lower Bodies
In order to implement the features described in Goal 1, it is necessary to separate
the control of the upper and lower body of the skeleton. I had some experience
doing this in 2016 on a prototype I made for a similar combat system. There
were some issues that I expect to see again as I am making this game, which are
explained below.

In Unity, a child game object will follow its parent game object. That is, the
child will maintain its position and rotation relative to its parent. If the parent
object rotates, the child object will also rotate (in world space) to maintain its
relative rotation.

The agents use a skeleton rig which I made in Blender. This skeleton rig is
made out of “bones”, which are just transform objects in a hierarchical order.
Therefore, for example, if the shoulder bone is rotated, the arm bone and its
children will also be rotated.

When I first rigged the skeleton in 2016, the spine bone was a child of the
pelvis bone in the skeleton hierarchy. This meant that, in Unity, the pelvis bone
had full control of the spine bone, which made it impossible to separate the
control of the upper and lower bodies.

I needed the spine bone to inherit the position of the pelvis bone, while
disregarding the rotation of the pelvis bone, despite being the child of the pelvis
bone in the skeleton hierarchy. Therefore, I had made it so that the spine bone
was no longer a child of the pelvis bone. This allowed me to separate the

12

control of upper and lower bodies, and introduced a new problem. When the
agent was moving and attacking at the same time, his waist would get
stretched. This is because the spine bone is no longer attached to the pelvis.

Figure 2.1: On the left, the waist stretches downwards due to the pelvis not
being connected to the spine via code. On the right, the pelvis is connected to
the spine bone, and the problem is solved. This picture was taken after the game
was developed.

In order to fix this new problem, I wrote a C# code which manually connects
the spine bone to the pelvis bone. This is done as a post processing effect after
Unity plays the animations, so the code is invoked from a LateUpdate method.
The idea is the following: When an agent is instantiated on the scene, save the
initial spine and pelvis bone positions and rotations. Then, after animations are
played every frame, connect the spine to pelvis using the initial information.

Since the upper and lower bodies are separated, it is possible to attack while
moving. In addition, the agents are able to look up/down while attacking to
target different body parts of their opponents. This solution worked really well,
so I plan to use it again as I am making this game.

2.2.6 Making Movement and Look Directions Different
In some older games, it is usually the case that the characters can only move in
the direction they’re looking at. This is especially seen in computer controlled
characters. When they decide to move in a different direction, they must do a
full body turn, which doesn’t look visually appealing to the eye.

In my game, I plan to make it so that the agents can move in a direction
that is different from their look direction. Back in 2016, I had made my walking
and running animations specifically for this purpose. There are 8 variants of each
walking and running animations, which cover all of the cardinal and intermediate
directions. The plan is to plug these animations into a blend tree, and control
the blending via the user defined parameters in Mecanim.

13

The player’s movement direction is acquired from keyboard input which covers
the 8 directions mentioned above. The mouse controls the camera, which then
controls the look direction of the player agent. Hence, the player agent always
looks in the direction of the camera. However, if the player decides to run to the
side while looking ahead, the correct animation in the blend tree is played based
on the keyboard input. This separates the look and movement directions for the
player agent.

The AI agent’s velocity is driven by Unity’s NavMeshAgent. The AI agent’s
look direction is based on the position of the enemy agent. By transforming
the velocity vector to the AI agent’s local space, and feeding this information
to the blend tree in Mecanim, it is possible to make it so that the look and
movement directions of the AI agents appear separate. This allows them to
change movement directions without having to do full body turns.

2.3 Items
The items that the agents equip consist of a single weapon, and armor pieces that
protect specific parts of the body. The agents are to be instantiated in the game
with their selected items, and they won’t be able to change them until the next
battle.

2.3.1 Weapon and Armor Values
One of the key aspects of the game is how much raw damage the weapons deal,
how armor reduces the incoming damage, and what the underlying mechanic is
for determining the final damage output when an agent is struck with a weapon.

The first approach is to come up with a system like M&B:W, where each
weapon can deal different damage types (e.g.: slash, pierce, blunt). These are
then paired with a number which determines the potency of the damage type. In
this case, the armor would also be associated with a defense value which provides
damage reduction when the agent is struck. In most games, it’s usually the case
that slashing damage is effective against lightly armored enemies but falls off as
the armor value increases. In the case of heavily armored enemies, the piercing or
blunt damage types work better. The upside is that the formula which determines
the final damage output won’t be easily predictable, and it may add a feeling of
depth to the game. The downside is that getting the formula to feel right requires
a lot of fine tuning.

The second approach is one that is similar to Mordhau’s system. In this case,
the armor pieces are given non-numeric defense levels such as light, medium and
heavy. Then, the weapons are given specific damage values for each armor level.
For example, a sword could deal 100 damage to a light armor piece, while only 30
against heavy armor. The upside of this approach is that the fine tuning of the
damage values is easy, as you just write out how much damage is dealt against
each armor level. The downside is that the final damage output is relatively easy
to predict, and may detract from the game’s sense of depth.

14

2.3.2 Weapon Collision
Agents use weapons to attack other agents. The weapon needs to be able to
detect the defender agent’s hitboxes, which can be done by using Unity’s physics
system to detect collisions. Regarding the implementation, two approaches come
to mind.

The first approach is what I call the “cone method”. The idea is, whenever an
agent attacks, an invisible Unity collider is instantiated in front of the attacker
agent. The defender agent is deemed to be struck if the collider makes contact
with it. A cone shape for the collider would probably work better for this, as
it can be pointed out towards the enemy. There might be some issues. Firstly,
it might be difficult to reflect the visual length of the weapon using an invisible
collider. Secondly, since the weapon itself wouldn’t actually be making contact
with anything, the user may not get a feeling of impact when agents are struck.
For these reasons, perhaps this approach is better suited for a game with simpler
combat mechanics.

The second approach is to attach a collider to the weapon itself. This allows
the agents to manipulate their attacks to target specific body parts of their
opponent. The collider’s dimensions can easily be adjusted according to the
visuals of the weapon. There might be some issues if the agent attacks at a very
high speed. In that case, the weapon might end up being swung too quickly for
the physics engine to detect any collisions. Therefore, the attack speed values of
the weapons should be carefully considered.

2.3.3 Weapon Specific Animations
The game features different classes of weapons, such as Two Handed weapons and
Polearms. It doesn’t make sense to wield and use a polearm weapon like a spear as
if it was a big two handed sword. Since I am planning to use keyframe animations
in Unity’s Animator Controller [28] (i.e.: Mecanim) to implement the combat
of the game, I need a way to use different animations for each weapon class.
Luckily, Unity already offers a solution for this, which is called the Animator
Override Controller [29]. It allows swapping the animations in an Animator
Controller without changing the original structure of the state machine. It seems
like a good way to solve this problem, so I plan to use it when developing the
game.

2.3.4 Wearing Armor
In order to add depth to the game’s combat, there are several armor pieces to
protect each body part such as head, torso, and legs. The armor models are mesh
objects which are rigged with the same skeleton as the human model. Unity refers
to such objects as Skinned Mesh Renderers (SMR) [30]. In order to make the
agents wear an armor piece, the bones of the armor SMR has to be set equal to the
bones of the human skeleton. This is the planned approach to make the agents
wear armor in the game.

15

2.3.5 Movement Speed Penalty
As stated in Goal 4, the damage protection provided by wearing armor must come
with a penalty to the movement speed. Two approaches come to mind in order
to implement this feature.

The first approach is similar to what M&B:W does, which is to assign a
numerical weight value to each armor piece. Then, come up with a formula which
reduces the movement speed as the total weight from all armor slots increases.

The second approach is similar to what Mordhau does, which assigns
movement speed penalty values for each armor level (e.g.: light, medium and
heavy). In this case, the formula would probably have to take into account the
differences of armor slots. For example, a heavy torso armor should provide a
higher movement speed penalty than a heavy head armor.

2.4 Menus
The player needs to interact with some menus before each fight. These menus
are the following:

• Information Menu

• Item Shop Menu

• Mercenary Menu

The Information Menu mainly contains text which explains what the next
battle is going to look like. For example, if the next battle contains a boss wave
(i.e.: a more challenging enemy), then the player should be informed in this menu.

The Item Shop Menu should contain controls to inspect various weapons and
armor. It is in this menu that the player should purchase such items in exchange
for gold. Once purchased, the player spawns with the selected weapons and armor
in the next battle.

The Mercenary Menu is where the player can hire mercenaries to fight the
enemy hordes. The menu should contain controls to see the various mercenaries
that can be hired. For example, some mercenaries could have lighter armor, while
the others could be heavily armored. The player should be able to see their hire
costs and pick a mercenary accordingly.

In order to implement the menus, two approaches come to mind, which are
explained in the next sections.

2.4.1 All in One Scene
The first approach is to use a single scene for the entire game. In this case, all
of the menus would be implemented on the combat scene. The menus would
be made invisible during combat, and set to visible after the combat ends. The
upside of this approach is that we wouldn’t have to worry about managing the
player’s progress across multiple scenes, as there is only one scene. The downside
is that it requires us to show and hide the necessary user interface (UI) widgets
according to each situation, which would be very messy to do so in a single scene.
This approach is perhaps better suited for a much simpler game.

16

2.4.2 Using Multiple Scenes
The second approach is to use multiple scenes for each situation. In this case, all
of the menus would have their own scenes, and the combat area itself would be a
separate scene as well. Larger games most likely use this approach, as it becomes
easier to manage the UI widgets in each scene where they’re needed. I believe
this game is complex enough so I plan to use this approach in my game.

There is one downside of this approach which should be discussed. In Unity,
when the game transitions from one scene to another, the contents of the previous
scene are completely destroyed. In our case, it would mean that the player’s
progress would be lost during scene transition. For example, the information
that the player bought some items in the Item Shop scene would be lost once the
scene is destroyed. There are ways to tackle this problem, which are explained in
the next section.

2.4.3 Managing Player Progress
In Unity, it is possible to mark game objects so that they’re not destroyed during
scene transition [31]. This would allow us to maintain player progression data
(e.g.: items bought, mercenaries hired) across multiple scenes. It is necessary to
do this in every scene so that the data is preserved constantly. This might cause
us to accumulate a lot of “baggage” data for each scene, just because they are
needed eventually. This may not be desirable, which is why I can think of two
approaches to tackle this issue.

The first approach is to create a manager game object which systematically
gathers and stores data generated from each scene. It would act as a central
authority where each scene reports their portion of the player progression data to
the manager object. This is most likely the preferred approach in larger games,
as they probably have to track several data across multiple scenes (or similar
structures). It’s important that this system is carefully planned and debugged,
as we wouldn’t want some data to get lost during scene transition.

The second approach is to store the player data in the static memory. Since
this section of the memory is available throughout the entire lifetime of an
application, it is guaranteed that the data is preserved across multiple scenes.
The static memory is smaller compared to heap memory, which may cause
issues if the data becomes too large. In that case, the Singleton design pattern
[32] can be used to have static references to data objects in heap memory.
Another problem is that this approach is not well suited for a large game.
Because the management of data can become harder to control as the amount
of data increases. However, in the case of my game, there is only one player,
and the only data that must be tracked across scenes is the player’s progression.
Therefore, it wouldn’t be unreasonable to consider this approach for this game.

2.5 Combat Scene
The combat scene is where the actual fighting takes place among the agents.
Unity’s terrain tools [33] should be sufficient to generate a mostly flat surface
with some small slopes around which the agents can walk. In addition, it can be

17

used to raise mountainous scenery in the background, as well as brush tools to
paint the terrain with textures. The textures should probably be single colored
in order to keep it consistent with the rest of the game’s artstyle.

The obstacles should consist of boulders, trees and fences. They must be
impassable, and the agents must walk around them in order to continue. I plan
to use the scene props which I made in Blender back in 2016. Unity’s terrain tool
seems to offer a way to place 3D tree objects in a performance efficient manner,
which should come in handy.

The scene must be constrained with invisible barriers which bars the agents
from passing through. The player can be locked in this manner by surrounding
the intended gameplay zone with large box colliders which block the player. In
the case of the AI agents, their NavMesh needs to be baked in such a way that
they can only traverse the intended fighting area, which should not be a problem
using Unity’s navigation tools.

The spawn locations of each team should be based on some transform game
objects whose positions can be customized in Unity Editor. The C# script which
manages the horde game mode can use the position of these objects to spawn the
agents side by side on each team.

2.6 Horde Difficulty Progression
The difficulty of the game should increase as the game progresses. To achieve this,
several approaches come to mind. Note that we are not forced to pick only one
approach from below. It is possible to combine several approaches accordingly.

The first approach is to make the AI agents smarter in combat. In this
case, they would be able to block the attacks more often, and they could prefer
attack directions which are not defended by their enemies. They could also be
programmed to work together and eliminate their opponents as a group. This
approach heavily relies on programming and debugging the AI of the agents well.

The second approach is to improve the items and combat attributes of the
AI agents on higher difficulties. For example, the agents could start wearing
heavier armor, and use more lethal weapons. Moreover, their attributes such as
maximum health, damage resistance, attack speed, damage etc. can be increased
to make them more formidable.

The third option is to add a difficulty slider in a menu which determines
the overall difficulty of the game. On lower difficulty settings, the player’s team
could take reduced damage and earn more gold; and vice versa as the difficulty
increases.

2.7 Sounds
The sounds are to be implemented using the audio tools provided by Unity [34].
Some examples of the kinds of sound effects that should be in the game are:

• Metal/wood clanking

• Armor/flesh being struck

18

• Grunting

• Footsteps

There are two approaches to acquire these sound assets, as I do not have them
readily available. The first approach is to record them myself, which requires a
quiet environment and a decent quality microphone. While it might be easy to
record the clanking sound of metal objects, it is harder to record footsteps sounds
on grass due to background noise. Moreover, it might be necessary to use audio
editing software to reduce unwanted sounds.

The second approach is to look for sound effects on Unity’s Asset Store,
preferably ones that are free for general use. It’s unlikely to find a single source
which provides all of the sound effects that are needed, so I might have to listen
to sound effects from multiple asset bundles. As a result, I may end up with
sound effects with a bit less than ideal harmony. Still, I believe that this
approach would get the job done for the purposes of this game, which is why I
plan to go for it.

As a final note, I do not intend to add any music to the game because I think
playing music on loop would be too distracting for the user.

19

3. Implementation
In this chapter, I describe some of the technical aspects in the development of
the game. When it comes to C# scripting, most of the programming details
were already described within the code. One could create an auto generated
documentation with a tool such as Doxygen [35] to see these details. For this
reason, this section goes over the parts which I was not able to mention from
within the code. It also covers some of the non code related details, as well as
give a broad overview as to how different parts of the project are connected.

To make the game, Unity version 2021.3.6f1 was used. The models were made
using Blender version 2.76b. Note that while Unity supports multiple platforms,
the game was developed and deployed for Windows with mouse and keyboard as
the input method. The approaches and techniques described in this text would
work on other platforms as well, though there would have to be some adjustments
to accommodate the needs of each platform.

3.1 Folder Structure
There are two topmost folders in the project. These are called “Assets” and
“Packages”. I never used the Packages folder, as it’s mostly used by the Unity
engine itself. This section focuses on the Assets folder.

The Assets folder contains every other folder, which are as follows:

• Animator Controllers

• Avatar Masks

• Imported Assets

• Materials

• Models

• Prefabs

• Scenes

• Scripts

• StreamingAssets

• TextMesh Pro

The “Animator Controllers” folder contains the Animator Controllers (AC).
These are used to drive the animations of anything with an Animator component
attached. Currently, the only objects which use ACs are the agents who can
fight and move around the game scenes. It also contains Animator Override
Controller (AOC), which can be used to swap animations in a given AC. Finally,
it contains a text file that describes some of the details as well as numerical values
about how the AgentAC is set up.

20

The “Avatar Masks” folder contains the Avatar Masks [36] which are used by
the ACs. These are used to enable/disable the use of some bones in the skeleton
when animating the agents.

The “Imported Assets” folder contains the imported assets which were
downloaded from Unity’s Asset Store. Currently, the only third party assets
that were used are related to sound effects. Note that for any given third party
asset, the whole package was not downloaded. For the most part, only the
assets that were used in the project can be found in these folders.

The “Materials” folder contains materials which are used to give color to the
objects in the game. Most of the models were already imported with their own
materials, so this folder doesn’t contain much.

The “Models” folder contains the weapon, armor, scene props, and the human
agent model. This folder also contains the animation clips which are used by the
agents. An important thing to note is that every imported model has its Scale
Factor value set to 0.29. This is because I may have made the models a bit too
big in Blender back in 2016, and this was a way of making them look a reasonable
size. If you add new armor to the game, you’ll have to use the human’s skeleton
for it to be animated, which means that you’ll have to set the scale to 0.29 as
well. This is not strictly necessary for weapon models.

The “Prefabs” folder contains the prefabs which are used throughout the
game. These can be weapons, armor, agents, friendly and enemy agent data,
sound effects, and so on. This folder also contains several special folders with
the name “Resources”. The Resources folder is used to instantiate game objects
from within code, rather than dragging and dropping them onto the scene by
hand in the editor. The name of this folder must be “Resources” because it is
required by Unity. The prefabs which are instantiated by code are done so in the
PrefabManager.cs script.

The “Scenes” folder contains the scenes of the game. The scenes which are
actually used by the game are:

• MainMenuScene

• InformationMenuScene

• GearSelectionMenuScene

• ArenaScene

There is one more scene, which is called “DefaultScene”. It was the very first
scene that was added by the Unity Editor when the game project was created
for the first time. It can be duplicated to create a new clean scene if needed.

The “Scenes” folder also contains child folders with the same name as some
of the aforementioned scenes. These folders contain the lighting and NavMesh
data. The lighting data is used to bake lighting into a scene. The NavMesh data
contains the NavMesh which was generated by Unity for the AI agents to navigate
themselves around the scene.

The “Scripts” folder contains the C# scripts which were used to make the
game. It also contains a file name "DocumentationMainPage.md”, which was
used by Doxygen to create the main page of its auto generated documentation.

21

In this file, you can find a “Credits” section, which gives credit to the authors of
the sound effects that were used in the game.

The “StreamingAssets” folder is a folder created by Unity [37], and I never
used it myself. The “TextMesh Pro” folder contains the assets which are used by
the TextMesh Pro tool, which is a user interface text solution in Unity [38].

3.2 Designing the Agent Entity
The Agent entity that we have to design has some common components which
should be relatively straightforward to implement. An idea as to what these
components are can be seen as follows:

• EquipmentManager: Responsible for spawning and managing the
weapons and armor of an agent.

• HitboxManager: Manages the hitboxes of an agent so that weapons can
detect them and inflict damage when an agent’s hitbox is struck.

• AnimationManager: Determines when and which animations should be
played for a given agent.

In section 2.1, we concluded that it’d make sense to use NavMeshAgent to
implement the movement of the AI agents; and Rigidbody or
CharacterController for the player agent. This affects the design of the Agent
entity. This is because while the Agent entity has some common components,
the implementation of the movement is what truly differs the player agent and
the AI agent. I propose two approaches to achieve this goal:

• Agent and controllers

• A compound Agent entity

3.2.1 Agent and Controllers
In this approach, there are three key entities:

• Agent

• PlayerController

• AiController

In addition to the common components, the Agent contains an interface to
move the agent. Then, the “controller” entities use this interface to control the
movement of the agent.

For brevity, suppose that the player agent’s movement is controlled by a
Rigidbody instead of a CharacterController. The movement interface in the
Agent entity contains both the NavMeshAgent (NMA) and Rigidbody
components. It understands the details of how to move an NMA and a
Rigidbody. Then, it defines its own methods which unifies the understanding of
these components. For example, an NMA is moved with the SetDestination

22

method which accepts a position vector as an argument; whereas the Rigidbody
can be moved using the AddForce method which accepts a direction vector as
argument.

The controller entities then use the interface defined by the Agent entity to
move a player or an AI agent. For example, the AiController can decide where
to go in its Update method using some kind of finite state machine, and use the
interface to move the agent afterwards.

Figure 3.1: An Agent entity that is controlled by a PlayerController or an
AiController entity.

The upside of this approach is that the Agent entity only contains the
components which are necessary to control it. Meaning, it doesn’t know
anything about being a player or an AI agent, as it defines its own movement
interface which must be used by the controller entities. The downside is that it
needs to understand the details of how to move an NMA and Rigidbody
component at the same time, which may cause some bloating in its code.

An alternative approach is explained in the next section.

3.2.2 Compound Agent Entity
There are three key entities in this approach:

• Agent

• PlayerAgent

• AiAgent

The Agent entity is an entity which contains the common components that
every agent must have. The AiAgent and PlayerAgent entities are derived
entities which inherit from the base Agent entity. These entities add the
different parts required by each type of agent to become fully functional.

Again, for brevity, suppose that the player agent’s movement is controlled by
a Rigidbody. In this case, the AiAgent entity would contain a NavMeshAgent
component, and the PlayerAgent would contain a Rigidbody component. Each
entity would contain code that’s necessary to operate whatever movement method
they’re using. For example, the PlayerAgent would read inputs in Update to
control its Rigidbody in FixedUpdate; and the AiAgent would contain a finite
state machine which determines the combat and movement decisions, and apply
the movement in Update.

23

Figure 3.2: The inheritance diagram of an Agent entity and the derived
PlayerAgent and AiAgent entities.

The upside is that the derived entities only know what they’re responsible for.
For example, the AiAgent doesn’t need to know anything about a Rigidbody.
The downside is that the base Agent entity simply acts as a compound entity
and nothing more. Meaning, the code that is otherwise mostly similar may have
to be duplicated in each entity. For example, even though the movement of the
player and the AI agents have differences, the parts that might be similar could
possibly be duplicated when writing the code in the derived entities.

3.3 Agents
Agents are the human characters that are controlled by the player and the
computer. They are found in the “/Assets/Prefabs” directory. There are 3
types of agents:

• PlayerAgent

• AiAgent

• MannequinAgent

The PlayerAgent, AiAgent and MannequinAgent are controlled by the
PlayerAgent.cs, AiAgent.cs and MannequinAgent.cs scripts respectively. All
of the scripts inherit common data from the abstract base class Agent.cs.
Every agent comes with the following components, which are C# scripts:

• EquipmentManager.cs: Manages the weapon and armor pieces of the
agent.

• AnimationManager.cs: Drives the agent’s animations by changing the
states of the animator’s parameters.

• LimbManager.cs: Limbs are the hitbox colliders which are detected by
weapons to make combat related decisions. There are three Limbs: head,
torso, legs. The initialization and the dimensions of these are managed by
the this script component.

24

• CharacteristicsManager.cs: Acts as a way to group characteristics such
as health, extra damage multiplier, etc.

• AgentAudioManager.cs: Manages the sound effects generated by an
agent, such as footstep and grunting sounds.

• NavMeshAgent: This is a component provided by Unity. It is attached
to every agent, no matter how they’re controlled. This is mainly so that the
AI agents recognize the presence of the player agent. Because the player
agent uses CharacterController to move around, which is not detected
by the NavMeshAgent.

The Compound Agent Entity approach mentioned in section 3.2.2 was used
to implement the agents. This is because PlayerAgent is moved via Unity’s
CharacterController, and the AiAgent is moved by Unity’s NavMeshAgent.
Thus, it seemed reasonable to let each class handle the implementation details of
each movement solution.

On top of the above, the PlayerAgent is also attached a CameraManager
component. The camera movement must be done after the animation post
processing effects in LateUpdate, which is why the PlayerAgent controls it.
Still, the camera controls are contained compactly in the CameraManager.cs
script.

The AiAgent is controlled by the code written in the Update callback. The
fact that the upper and lower body of the agents are separated allows them to
move while attacking, as well as the ability to move in a direction which is different
from where they’re looking at. The code in the Update callback tries to mimic
a simple state machine that governs movement and combat separately, and the
basics of which are as follows:

• Movement: If the AiAgent doesn’t have an enemy, then it stops moving.
If it has an enemy, then it asks if the enemy is close enough. If the enemy is
too far, the agent moves towards the enemy. If the enemy is close enough,
the agent stands still. Finally, if the enemy is too close, the agent moves
backwards to maintain a certain distance, which depends on the weapon’s
length and the agent’s size in the world.

• Combat: If the AiAgent doesn’t have an enemy, or if the enemy is too
far, then the agent does not attack. If the enemy is close enough, the agent
attacks in random directions. If the agent has friends nearby, it prefers
vertical (i.e.: up and down) combat directions to avoid having the weapon
get stuck to the other agents. If the AiAgent gets struck, there’s a random
chance that it tries to defend itself for a short period of time, after which
the attacking continues.

The MannequinAgent is used in the GearSelectionMenuScene to show the
player how the selected weapon and armor pieces look. As its name suggests, it
is merely a mannequin, and it has no other purpose.

3.3.1 Movement of PlayerAgent
The very first movement related implementation that I ever did was the movement
of the PlayerAgent. To do this, I used Unity’s physics system (i.e.: Rigidbody)

25

at first. It worked really well, until I realized some screen jitter when I moved
the camera.

The camera follows the agent controlled by the player. The camera can still
be rotated to look around by moving the mouse. So, whenever I rotated the
camera while looking at other agents that were moving, I would notice some
screen jitter. I thought I just had to synchronize the movement of the camera
and the movement of the agents, so I moved the code responsible for camera
control into Update, LateUpdate and FixedUpdate. None of the methods fixed
the screen jitter problem.

At this point, I decided to re-implement the player agent’s movement using
Unity’s CharacterController, since it doesn’t make use of a Rigidbody [39].
The movement itself was good, similar to my Rigidbody implementation.
However, the camera jitter problem didn’t go away, because that problem was
actually related to input smoothing.

The camera’s movement is done by mouse input. At first, I was using raw
input data, which caused the screen jitter. Later on, I started to smooth my input
data using the SmoothDamp method [40], after which the camera jitter problem
was gone.

In the end, when it comes to player movement, I didn’t think there was
much difference between using Rigidbody or CharacterController. Though
the camera jitter problem was caused by lack of input smoothing, trying to
solve this issue was the main reason why I switched from using Rigidbody to
CharacterController, as I didn’t know the cause at the time.

3.3.2 Movement of AiAgent
The movement of the AiAgents are done using Unity’s NavMeshAgent (NMA)
component. Unity’s NavMesh system allows you to bake a NavMesh in your
scene, which the NMAs can use to navigate around. I believe it’s a fairly decent
tool that is easy to use, but I’ll mention a few problems I encountered.

Firstly, even though the PlayerAgent itself uses the CharacterController
component to move around, I still had to attach a NMA component to it. This
is because I needed the AiAgents to recognize the presence of the PlayerAgent,
which can only be done by attaching this component to it.

The second problem has to do with the movement and animations. The NMA
component moves the AiAgent around at a certain velocity. I use this velocity to
animate the agent. In other words, depending on the magnitude of the velocity
vector, the agent walks or runs. However, whenever the NMA reaches a given
destination, it tends to stop too abruptly, which causes the movement animation
to instantly go from walking/running to standing still. The NMA component has
options so that it slows down smoothly, but none of those options were enough
for me. In the end, I had to write some code which slows down the animation
to make it less visually jarring. The idea is, even if the agent stops, you use the
velocity data from the previous frame to smooth out the animation. I can’t say
the problem is completely solved, but I believe it looks better than before.

26

3.3.3 Jumping
Jumping was a feature which I wanted to implement for all agents. I wanted the
agents to be able to kick (also not implemented), and jumping would have been
one way to avoid getting kicked. I had to abandon both because of development
time restrictions, but also due to a quirk regarding the NavMeshAgent (NMA)
component.

The positions of the AiAgents are driven by the NMA. So, even if I made
them jump, it wouldn’t work, because the NMA has strict control of the agent’s
position, and it attaches the agent to the underlying NavMesh. One workaround
is to disable the control of the NMA when jumping [41]. This didn’t seem like
an elegant solution to me, so I just decided not to implement jumping at all for
AiAgents.

The jumping feature is still present on the PlayerAgent, despite having
attached an NMA component. It works because the NMA is permanently disabled
on the player agent, and it is only there so that the other NMAs recognize the
position of the player. I didn’t remove this feature, as I didn’t want to risk
breaking anything, and there’s no harm in keeping it.

3.4 Animation
Unity’s Mecanim was used to implement the combat and movement animations
of the agents. In order to separate the upper and lower bodies, the approach
explained in section 2.2.5 was done. The expected problems were addressed
using the solutions described in the same section. However, some additional
and unexpected problems occurred during development, which are detailed in
the next sections.

3.4.1 Source State Until Fully Transitioned Out
In Unity’s Mecanim, there are states and transitions. The states contain the
animations to be played, while transitions are used to transition from a source
state to a target state. When leaving a source state and entering a target state,
the transitions are there to make it so that this process is visually smooth. A
transition occurs if a set of conditions are satisfied, which are defined in Mecanim
by the developer.

As the title says, Mecanim considers the control flow to be in the source state
until it has been fully transitioned out from the source state to the target state.
This caused me two problems, and I explain one of them now.

For example, when an agent is performing an overhead swing, the “atk_u
p_release” animation is played. When the animation is complete, the control
switches from "atk_up_release" to “idle”, using a transition.

While the "atk_up_release" animation is played, the boolean
IsAttackingFromUp is true. When the animation is over, the control transitions
to the idle state. However, during the transition, the IsAttackingFromUp
boolean is still true, despite expecting it to be false. The reason for this is
explained in the second paragraph above.

27

This is a problem because I do not want to be considered attacking while I’m
transitioning to the idle state. The only solution that I was able to come up
with is to specifically check every single one of these transitions, in every single
scenario. Meaning, similar to attacking, if I stop defending and start transitioning
to the idle state, I don’t want to be considered “defending” during the transition
itself.

I became aware of this problem much later into the project, which is why the
code regarding the animations are kind of bloated. It’s because I have to make
sure every transition is checked specifically in order to avoid unintended behavior
(and there are a lot of transitions in this project).

3.4.2 AnyState Does not Apply to Transitions
AnyState is a special state defined in Mecanim. It exists for the situation where
you want to go to a specific state regardless of which state you are currently in.
As Unity’s documentation page says, “this is a shorthand way of adding the same
outward transition to all states in your machine.” [42].

There are two obvious cases where AnyState would be useful:

• The agent gets hurt.

• The agent dies.

In both of these cases, we’d like to play an animation. However, here is the
problem. AnyState is meant for states, and transitions are not states. They’re
transitions. Therefore, for example, if Agent A is in a transition while being
struck by Agent B, then the AnyState conditions are simply ignored, and Agent
A does not play the “getting_hurt” animation as intended. This is because
transitions are uninterruptible by default.

I could not come up with a satisfying enough solution. At first, I tried to put
the getting_hurt animations in a different layer in Mecanim, and play with the
weights of the layers whenever an agent gets hurt. The idea is to smoothly lower
the weight of the “combat animations layer” to 0%; while increasing the weight
of the newly added “getting hurt layer” to 100%. The end result was not visually
acceptable to me, but there was another problem. Since the control flow in the
combat animation layer was still doing whatever it was doing, the fact its weight
was temporarily reduced didn’t matter, as it just picked up where it was left as
soon as the layer’s weight was increased.

I solved this problem by going to every single transition in Mecanim, and
setting their Interruption Source: None property to Interruption
Source: Current State. This made it so that all the transitions are now
interruptible, which allowed the agents to transition from AnyState to the
getting_hurt animations. However, the fact that the transitions are
interruptible introduced yet a new problem.

Recall from the previous section that Mecanim considers the control to be in
the source state until it has been fully transitioned out. Now, since the transitions
are interruptible, the transition can actually be changed until one of them ends
up being lucky enough to “escape”. This depends on the order of the transitions
listed on a given state, which is because the Ordered Interruption property is

28

checked [43]. Unchecking it would have made things less predictable, which is
why I left it checked.

I’ll explain with an example. Suppose you have an agent in the idle state,
and you want to start attacking. The transitions are listed from top to bottom
as follows:

• atk_up

• atk_right

• atk_down

• atk_left

Note that when interrupting a transition from a source state, Mecanim
prioritizes the transitions in a descending order. That is, atk_up has the highest
priority; while atk_left has the lowest priority. This means that an atk_left
transition can be interrupted by anything above it; whereas an atk_up
transition cannot be interrupted by anything below it.

Now, let’s imagine that you wanted to attack from the right, so you move your
mouse to the right and do a left click on the mouse. The agent will begin the
transition from idle to atk_right. However, before the transition was completed,
let’s assume that you moved your mouse forward and did another left click. This
will interrupt the existing transition, and the agent will begin to start attacking
from up instead.

Normally, the intended behavior is to fully commit to an attack direction once
it was chosen. However, since transitions can now be interrupted, you can start
from the bottom-most transition and keep interrupting it until one of them lasts
long enough to reach its targeted state.

Since every transition was made interruptible, the behavior described above
may be experienced in other circumstances, and cause a “janky” feeling while
playing. Therefore, this is not really a solution, but merely a workaround with
its own downside. However, the alternative is to have the agents ignore being
struck, and continue what they were doing without flinching. That sounds worse
to me, so I decided to keep this workaround.

3.4.3 Transition Duration Cannot be Changed at
Runtime

Later in development, once I set up the animations, I decided to make it so that
some weapons are faster than others. For example, I wanted to make swords
attack faster than axes. Since my animation state machine in Mecanim makes
heavy use of transitions, the way to achieve this goal is to change the transition
duration of attack related transitions at runtime, based on the properties of the
weapon.

This is simply impossible, as the title suggests. Unity does not allow changing
the transition durations in Mecanim at runtime. Apparently, the reason is “simply
because it was not requested by our client.”, according to this Unity forum thread
[44]].

29

One idea is to include the UnityEditor namespace, which allows the transition
durations to be altered via code, as can be seen discussed in this forum thread
[45]. However, the problem is that the UnityEditor namespace is not included
in a final build [46], which is why this approach would not work.

Since the speed of animation states (not transitions) can be modified at
runtime with the use of animator parameters, another idea is to use handcrafted
animations in place of transitions. However, it’s not feasible to create enough
animations for every possible transition while still maintaining the visual
coherency of the movements. This is because transitions can be interrupted at
any moment, so one would require infinitely many animations, which is
impossible.

For these reasons, I had to settle with using hardcoded transition duration
values for every transition. This means that every weapon will have the same
attack speed, no matter what.

3.4.4 Waist Warping
One of the consequences of separating the control of the upper and lower body of
the agents is what I call “waist warping”. In extreme situations such as the one
which can be seen in figure 3.3, the agent’s waist is warped.

Figure 3.3: In the picture to the left, the agent is moving right while attacking
from the left. In the picture to the right, the agent is moving left while attacking
from the right.

One solution I can think of is the following. Use the blend tree as usual, but
create some states which are meant to be transitioned to whenever there is an
extreme situation which would cause the agent’s waist to be warped. When the
extreme situation is no longer the case, the control can switch back to using the
blend tree.

I had anticipated this problem in 2016, which is why I had created four
animations:

• run_e_backwards

• run_w_backwards

30

• walk_e_backwards

• walk_w_backwards

For example, if the agent decides to attack from the right while running to the
left, this could be recognized in the code, and let the animator know by changing
a parameter. In this case, the control would switch to run_w_backwards until
the extreme conditions are gone, in which case the control would return back to
using the blend tree as usual.

I did not have a chance to try this approach due to time restrictions, but I
think it would work. However, note that I only have these four animations readily
available, so even this solution may not be sufficient in some cases, which is why
it might be necessary to create more animations for other extreme cases.

3.4.5 Arm Going Backwards
The animations were done using keyframe animations. Due to the way the
keyframe animations are interpolated, there could be some issues. For example,
when interpolating the rotation of a bone between keyframes, it is often seen
that the software will prefer the shortest path available. This can sometimes
cause issues. For instance, if the rotations of a bone are not set properly
between two keyframes, then you could have a character whose arms twist in an
unnatural way, resulting in unrealistic visuals. One possible solution to such a
problem is to add yet a third intermediate keyframe that explicitly points out
which path the software should prefer when interpolating between the starting
and ending keyframes.

However, there are cases where you cannot simply add more keyframes. An
example of this would be the transitions in Mecanim. When a transition occurs
from a source state to a target state, I imagine that Mecanim uses a similar
interpolation method as the one I described above.

I encountered an issue like this in the following case: As can be seen from the
picture, when transitioning from idle_pole to atk_polearm_up, the left arm
of the agent would go from his back instead of the front. To my knowledge, I
cannot simply add keyframes on a transition. Firstly, the animation was made in
Blender, so Unity just launched Blender whenever I tried to edit the animation
from within Unity. Secondly, since the agent could decide to make this transition
in several different timings, I don’t even believe it makes sense to try something
like this.

I solved the problem with a very simple solution. I went into the idle_pole
animation, and changed the rotation of the left arm a little bit. As figure 3.4
shows, the change was enough to make it so that the interpolation causes the left
arm to go from the agent’s chest, and not behind his back.

3.5 AgentAC
The movement and combat animations of every agent are set up in Unity’s
animator state machine called Mecanim. Every agent has an Animator
component named attached. The Animator component is driven by an

31

Figure 3.4: In the left picture, the left arm of the agent goes from the back. In
the right picture, both arms go from the front as expected, thanks to the solution.

Animator Controller (AC). The name of the AC which the agents use is called
AgentAC. This section briefly explains what AgentAC looks like.

There are three animation related layers used in AgentAC:

• Base Layer

• AtkAndDef

• Idle

3.5.1 Base Layer
The name of this layer is “Base Layer”. I will not be calling it “Base Layer layer”.
Instead, I’ll just write Base Layer.

The Base Layer contains the blend tree which is responsible for the walking
and running animations. It also contains the death animation, as well as the jump
related animations. Note that the jumping feature was abandoned due reasons
explained in section 3.3.3, but the player agent can still jump.

The blend tree in the base layer is controlled by two animator parameters:
moveX and moveY. The parameters are controlled by the PlayerAgent.cs for
player’s movement animations. The AiAgent.cs uses the velocity vector obtained
from its NavMeshAgent component to modify the two parameters.

The base layer does not use an Avatar Mask. This means every bone of the
agent’s skeleton will be affected by any animation being played on this layer.

3.5.2 AtkAndDef Layer
The AtkAndDef layer contains the combat related animations. It uses the Avatar
Mask named AttackAndBlockMask. This mask marks the spine bone and all of

32

its children to be used by this layer. The unchosen bones in the avatar mask are
unaffected.

The AtkAndDef layer controls the upper body of an agent; while the lower
body is controlled by the Base Layer. This is done implicitly. To elaborate, the
Base Layer is listed higher above the AtkAndDef layer, which gives it a higher
priority over the control of the bones [47]. It is also a layer layer without an avatar
mask, which means that it affects all bones. The AtkAndDef layer is below the
Base Layer, but it uses an avatar mask which gives it control on the upper body
bones. Combining these, we get the conclusion that the Base Layer controls the
lower body whereas the AtkAndDef layer controls the upper body.

The combat logic in this layer is explained in the section 3.5.6.

3.5.3 Idle Layer
The final layer is called Idle. It uses the avatar mask named IdleMask. This
mask controls the left and right shoulder bones, and their children. This layer is
used to control the idle animation of the arms while the agent is not attacking.

3.5.4 How the Layers Work Together
When an agent is not attacking, the Base Layer and the Idle layer work together.
At first, the movement animation in the Base Layer controls every bone in the
agent’s skeleton. After that, the idle animation in the Idle layer kicks in. The
Idle layer only controls the left and right shoulder bones (and their children).
The final result is an agent which walks/runs while idling with the correct idle
animation. This is important. Without the Idle layer, the walking and running
animations by default makes the skeleton run and walk normally, waving his arms
around. Because that’s what the movement animation clips look like. When the
Idle layer kicks in, the agent doesn’t wave his arms around. Instead, he holds
his weapons in his hands.

The above is what happens when an agent is not attacking. This is achieved
by controlling the weights of the layers in AnimationManager.cs. The Base
Layer doesn’t use an avatar mask, so it doesn’t have a weight. However, the Idle
layer has an avatar mask, which is why its layer weight is set to 100% while the
agent is not attacking.

When the agent is attacking, the Base Layer and the AtkAndDef layer work
together. As explained above, the Base Layer controls every bone in the agent’s
skeleton. Then, the animations in the AtkAndDef layer kick in. The bones which
are affected are the spine bone and its children. This makes it so that the agent
can attack while moving in any direction. This is achieved by setting the weight
of the AtkAndDef layer to 100%.

The weights of the Idle layer and the AtkAndDef layer are changed whenever
an agent starts/stops attacking. For example, let’s assume that the agent is
running left without attacking. The Base Layer controls the movement, and
the Idle layer makes sure that the arms are holding the weapon correctly while
facing the direction of the movement. When the agent attacks, the weight of the
Idle layer is smoothly brought down to 0%; while the weight of the AtkAndDef
layer is brought up to 100%. This ensures that the upper body plays the combat

33

animation while the lower body continues to run to the left as usual.

3.5.5 AgentAOC
The AgentAC and AgentAOC are different things. AgentAOC is an Animator
Override Controller (AOC). It allows swapping some animations in a given
Animator Controller (AC).

The combat animations were excruciatingly set up once in the AtkAndDef
layer. The animations that were used are Two Handed weapon animations. They
resemble a person holding a large weapon with two hands, and performing combat
moves. However, the game also includes Polearm weapons. Polearms are melee
weapons such as spears and long axes. The animations for these are different, and
it’s necessary to use the correct animations for the appropriate weapon types.

Unity’s AOC comes to the rescue. It allows picking an AC (in this case,
AgentAC), and cherry picking which animations need to be replaced using an
AOC. This saves us from having to duplicate the logic of the animation states,
just because the animations are different.

The information regarding an agent’s weapon type can be found in the
EquipmentManager.cs script. When a weapon is equipped, it informs the
AnimationManager.cs script, and the appropriate animations are used with the
help of AgentAOC.

3.5.6 Combat Animations Logic
Just Blade uses a four directional combat system, where the agents can attack
and defend in four directions: up, right, down, left. The “down” attack is simply
a thrust, while the other attacks have a swinging motion. The agents can perform
these actions while moving or standing still. These are the core aspects which
were heavily inspired by M&B:W’s combat.

The player can attack using the left button of the mouse (i.e. “left click”);
and defend using the right button of the mouse (i.e. “right click”). The direction
is chosen via mouse movement. For example, if the player moves the mouse to
the right and does a left click, then the agent in the game will attack from the
right. Doing a right click instead will cause the agent to defend from the right.

The logic of the combat animations are placed in the AtkAndDef layer in
AgentAC. The names of the animations look like “atk_2h_up_hold” or
“def_2h_up_hold”. This is because, by default I used the Two Handed weapon
animations. The “up” direction is one of four, as described above.

In this section, I outline the basic logic of how the attack and defend
animations are set up in AgentAC. The combat is done with the use of states
and transitions in Mecanim. The weapon’s name and the combat’s direction
will be omitted from the explanations. For example, I will write “atk_hold”
instead of saying “atk_2h_up_hold”.

Attacking occurs over several stages, which are explained below:

• Windup: In this stage, the agent is preparing to attack from a chosen
direction. This is represented by a transition from a source state to an
atk_hold state in AgentAC.

34

• Hold: Once the windup stage is over, the agent is allowed to wait
indefinitely before releasing the attack. This is done by making the
atk_hold animation wait indefinitely (i.e., by not letting it loop).

• Release: This is the stage in which the attack is actually performed. The
agents are able to hurt other agents in this state. This is represented by an
atk_release state in AgentAC.

• Recovery: Occurs right after the release state. When the release state is
over, the agent smoothly returns to the idle state thanks to the recovery
state.

The attack recovery stage itself can come in two forms:

• Release recovery: This is when the released attack is not interrupted, i.e.
either the attack was missed or the opponent was unable to deflect it and
got hurt. This is represented by a transition from the atk_release state
to the idle state.

• Rebound recovery: This is when the released attack comes in contact
with an object in the scene or when the opponent successfully deflects the
attack. This is represented by a short transition from the atk_release state
to the atk_bounce state, followed by having to fully play the atk_bounce
state itself. After the atk_bounce state is played, the control transitions to
the idle state.

Similarly, defending also takes a few stages:

• Windup: In this stage, the agent is preparing to defend in a chosen
direction, and is unable to deflect attacks, even if the direction is correct.
This is represented by a transition from a source state to the def_hold
state in AgentAC.

• Hold: Once the windup stage is over, the agent is allowed to wait
indefinitely to deflect any attacks from the appropriate direction. This is
done by allowing the def_hold animation to hold indefinitely (i.e., by not
letting it loop).

• Blocking: This occurs when an attack was successfully deflected. In this
state, the agent is still allowed to defend against attacks from the
appropriate direction. This corresponds to the def_blocked states in
AgentAC.

• Recovery: This is the state where the agent stops defending and returns
to the idle state.

The defending recovery stage itself can also come in two forms:

• Hold recovery: This is when the agent decides to stop blocking and return
to the idle state after holding the defensive position for some time. It is
represented by a transition from def_hold to the idle state.

35

• Block recovery: This stage occurs when the agent decides to stop
blocking after having deflected an attack, and return to the idle state.
This is represented by playing the def_blocked animation, followed by a
transition to the idle state.

Both attacking and defending are usually performed from an idle state, i.e.
the state in which the agent is not doing anything at all. However, there are
exceptions. For example, an agent can transition to an Defend Windup
immediately after an Attack Recovery, without having to transition to the
Idle state at all. This was done so that defending is a bit easier compared to
performing an attacking.

All of these can be performed while moving or standing still. Moving the
agent does not prevent it from attacking or defending, since the upper and lower
bodies are separated. In some games (such as Dark Souls [48]), the agents can
either move or attack. Doing these together is not an option (with very minor
exceptions).

The transitions between the above combat states are controlled by the
following animator parameters: combatDir, isAtk, isDef, isAtkBounced,
isDefBounced. The isAtk and isDef parameters become true when the agent
wants to attack and block respectively. If an attack gets rebounded,
isAtkBounced is set to true. If an agent successfully blocks an attack,
isDefBounced is set to true.

The combatDir is an integer parameter used to specify the four combat
directions, which are as follows:

• Up is 0 (zero)

• Right is 1

• Down is 2

• Left is 3
These combat directions and their corresponding integer values are consistent

throughout the entire project.
The transition durations between the combat states were meticulously chosen

and written down in the AgentAC for each transition. These numerical values will
not be detailed here. For more information, refer to the text file named “AgentAC
Mechanics Notes.txt” under “/Assets/AnimatorControllers”.

3.5.7 Blend Tree
The movement animations are done using a blend tree, which can be found in the
Base Layer. This tool blends the walking and running animations of the agent
seamlessly.

I learnt how to use this feature back in 2016, which is the reason why the
movement animations were made specifically to be used in a blend tree.

There are walking and running animations for each cardinal and
intermediate direction. The blend tree is controlled with two parameters: moveX
and moveY. The idle animation is at the center, with (0, 0) coordinates. The
walking animations are placed away from the center, using a distance of 0.5;
and the running animations use a distance of 1.0 to be away from the center.

36

Figure 3.5: The box on the left represents the blend tree which I set up for the
agent’s movement. The box on the right is an example of the blend tree “in
action”, where moveX is set to 1, and moveY is set to 0.5.

3.6 Combat Coherency Circle
As mentioned in section 2.2.4, one of the goals was to implement the four
directional combat coherently. This is done by taking the attacker’s position
relative to the defender into account.

Figure 3.6: A visual representation of the combat circle. The borders are not
exact, as it’s merely meant to give an idea about the underlying mechanics.

There are parameters which determine the angles and borders of the combat
circle. There isn’t an actual circle in the game. They’re just values which are

37

taken into account when combat decisions are made.
For example, suppose that the attacker is in front of the defender. If the

attacker is attacking from his left, then the defender must block from the right.
However, if the attacker is on the right side of the defender, the situation is
different. In that case, the right side of the defender is exposed. Meaning, if the
attacker attacks from his left, then the defender is unable to defend his own right
side, as it is exposed. If the attacker is behind the defender, the defender is unable
to block any attacks, even if the combat directions match. The implementation
details are in the CombatMechanics.cs script.

3.7 Scenes
The game loop is achieved with the use of game scenes in Unity. There are four
main scenes:

• MainMenuScene

• InformationMenuScene

• GearSelectionMenuScene

• ArenaScene
As mentioned in section 2.4.3, the approach of using static memory is used to

track the player’s progress in the game. I didn’t think that exceeding the static
memory would be an issue, which is why the data are organized under static
classes with static fields rather than the Singleton approach. The important
static classes which play a role in tracking the player’s progression are as follows:

• PlayerCharacteristicProgressionTracker.cs: For each wave beaten,
the player gets bonuses such as increased health, damage, resistance, etc.
This class is responsible for tracking that information.

• PlayerInventoryManager.cs: Keeps track of the player’s gold, as well as
the indices of the player’s selected weapons and armor. The indices are used
by the HordeGameLogic.cs to spawn the player with the chosen equipment.

• PlayerPartyManager.cs: Tracks the number of mercenaries according to
their categories, as well as the maximum party size of the player as more
enemy waves are beaten.

• PlayerStatisticsTracker.cs: Stores information such as total enemies
beaten by player, total gold earned, etc. These numbers are presented in
the InformationMenuScene when the game is over.

• StaticVariables.cs: Stores information regarding the camera rotation
speed, graphics preset settings, etc.

• HordeGameLogic.cs: While this class is mainly responsible for driving
the logic of the horde game mode, it also contains some static fields such as
the number of waves beaten; whether the next wave contains a boss battle
or not, etc. These static fields can be used by other classes across other
scenes.

38

Since the game is relatively small in size, it was possible to implement the
tracking of player’s progression in static memory. It would have been more elegant
and scalable to implement an overarching manager class to track such information
as mentioned in section 2.4.3, but I was unable to do so due to time restrictions.

3.7.1 MainMenuScene
The MainMenuScene is the first scene the user sees when the game is launched.
From here, the user can navigate to view the key bindings, adjust the settings,
or start a new game.

The logic of the controls of the UI widgets are found in the MainMenuUI.cs
script. It is also responsible for starting a new game, which initializes the
necessary variables to start a clean game state. Some simple settings regarding
graphics and camera rotation sensitivity are also found here, under the
Settings submenu. The graphics preset settings can only be changed here, and
cannot be modified once the game is started. This is because I didn’t want
visual distortions and popping to appear in the game due to changing graphical
presets. Instead of detailed graphics settings, I offered a simple graphical preset
option, as it would have been too time consuming to create UI widgets that
change every little setting.

3.7.2 InformationMenuScene
The InformationMenuScene is loaded under the following conditions:

• When a new horde game is launched for the first time

• After a certain number of waves have been repelled

• When the game is over

This scene mainly contains text which conveys the player what to expect in
the future. After the first fight, it also provides information about the player’s
automatic “level up” system. The script which is responsible for this is called
InformationMenuUI.cs. When the game is over, a list of statistics about the
player is shown, which is tracked by the PlayerStatisticsTracker.cs.

3.7.3 GearSelectionMenuScene
This is yet another UI related scene. It is a simple scene, much like the other UI
scenes, but it has more effect over the game than the others. The logic of this
scene is managed by the GearSelectionUI.cs script.

This is where the player can buy items such as weapons and armor, and
the UI widgets necessary for this task are found on the top right corner of the
screen. The item shop acts both as a shop and as an inventory for the player.
For example, if a weapon hasn’t been bought yet, the widgets will act as a shop
for that item. Once it is bought, the item will be in the player’s inventory, and
the widgets can be used to navigate through the items that were bought.

39

There is no “shop” class. The items are loaded by the PrefabManager.cs,
and stored in C# Lists. When an item is bought, its isPurchasedByPlayer
private field under the EquippableItem.cs script is set to true.

The player’s “inventory” is managed by the PlayerInventoryMananger.cs
script. It doesn’t save which items were bought in memory. Instead, it contains
indices which point at the current index of a particular list in the
PrefabManager. For example, the weapons are loaded into the Weapons list
under the PrefabManager. The PlayerInventoryManager has a
PlayerChosenWeaponIndex field. This field is used to go through the weapons.
When the player starts the game, the weapon chosen with this indexer will be
equipped by the player. If the weapon was not bought, the UI logic will disallow
the player from starting the game. What I described here about weapons are
the same for armor purchases as well.

The reason for this is due to time restrictions. The user interface was made at
a much earlier time in the game’s development, when the overall concept of the
game was more vague. An object oriented approach in the code would necessitate
remaking the shop and inventory user interfaces from scratch, as it would be
rather difficult to forcefully use the current static memory based implementation
of the code on the new interface.

The scene contains a so-called MannequinAgent. It’s an agent which inherits
from the Agent.cs base class. As its name suggests, it is simply there to act as
a mannequin for the player. The currently selected weapons and armor will be
worn by this agent to demonstrate what they look like.

Due to time restrictions yet again, I was unable to implement a separate
UI scene to hire mercenaries. Therefore, the player can hire and upgrade their
mercenaries in the GearSelectionMenuScene as well. The information regarding
the hired troops are managed by the PlayerPartyManager.cs script. It contains
the number of mercenaries hired. There are simply four types of mercenaries
which are categorized by their armor level. These armor levels are basic, light,
medium and heavy. The basic armor level means that the mercenary is unarmored
(i.e.: no damage reduction from armor whatsoever); whereas the other categories
mean full suits of armor in their respective armor levels. Since there was very
little room left for more UI widgets, the player cannot see the appearances of
the mercenaries. Thus, they will have to guess what a mercenary might look like
judging by their names. Though, after the game begins, the player will be able
to see exactly what the mercenaries look like.

When the Fight button is pressed, the game will transition to the ArenaScene
where the combat gameplay actually happens. The player will be spawned with
whatever items were selected in the “shop” section of the user interface.

3.7.4 ArenaScene
The ArenaScene is where the actual gameplay occurs. The player fights against
the incoming waves of enemies, earning gold with each enemy felled. When the
wave is finished, the game transitions to the InformationMenuScene, and the
loop continues.

The spawning of all agents are managed by the HordeGameLogic.cs script.
In the scene, you can find a game object named HordeGameLogic to which the

40

aforementioned script is attached. This is where the game designers can customize
the properties of the invader enemies, as well as the horde waves. This is explained
in section 3.10.

The arena is a simple rectangular area where the agents fight. The spawn
locations can be chosen using the spawn point child objects under the
HordeGameLogic game object.

The game can be paused mid combat by pressing the M button. This shows a
pause menu where the player can customize some settings. The script responsible
for this is called InGameUI.cs. The same script also shows the player’s health
and gold on the screen.

The scene contains hidden box colliders to prevent the agents from escaping
the intended gameplay zone. The NavMesh that was baked defines the areas on
which the AiAgents can traverse. The player can move freely, so the invisible
box colliders are especially used to prevent the player from leaving the gameplay
area.

Figure 3.7: An in-editor screenshot of the arena which the game uses as the
combat scene.

The floor of the arena is made out of many little cubes in green color. There
is no terrain that is being used anywhere in the game, which means there aren’t
any small slopes as mentioned in section 2.5. At some point, I tried making a
mountainous map using Unity’s terrain tool, but it took way too much time, so
I decided to use an old arena scene which I had made during development.

One of the goals was to put obstacles in the game scene. I ended up not
adding any obstacles at all, as it didn’t feel right for this arena. If obstacles
need to be added, it would not be an issue. For the case of the AiAgents,
the NavMesh of the arena would have to be re-baked so that the AiAgents can
recognize and walk around the obstacles. In the case of the PlayerAgent, it is
necessary to attach a collider (preferably with an appropriate shape) so that the
CharacterController can detect collisions with them and prevent the player
from passing through. Finally, the static lighting of the overall scene would have
to be re-baked so that the shadows of the obstacles are cast properly [49].

The scene itself is organized under the Scene game object. The
SceneDecors child object contains towers, battlements and gatehouses around
the scene. These are scene props which are simply for show. They cannot be
climbed over by any agent. The second child object is called NavMeshGeometry.
It also contains a child object named Real Floors, which contains the walkable

41

Figure 3.8: An in-editor screenshot of the mountainous combat scene which was
discontinued due to time constraints. It lacks the textures and environmental
decors such as trees and boulders.

cubes as mentioned earlier. It is possible to use these game objects to re-bake
the NavMesh, if necessary.

3.8 Weapons
If you have a weapon model that you wish to add to the game, create an empty
game object in the Unity Editor on any open scene. Then, drag your weapon
model to be a child object of the empty game object. Add a Weapon.cs script
as a component to the empty game object. Enter its shown name, purchase cost,
and whether or not it’s a starter item which is available at the start of a new game
(i.e., does not need to be purchased with gold). Customize the sound options.
For example, it’d make sense for an axe with a wooden shaft to make a wooden
sound when it is used to block an attack. To fill the Weapon Visual field, select
your weapon model on the scene, and drag & drop onto the Weapon Visual field.

Figure 3.9: A screenshot of the Longsword weapon showing some of its properties
in the Unity Editor.

Next, add a box collider component to the empty game object. Use the
Weapon Length and Weapon Radius fields in the Weapon.cs script to adjust those
properties of the weapon. Use the Col Direction and IsInverseDirection
fields to further adjust the trigger collider of your weapon. In order to see the

42

changes in real time, check the EDIT_MODE checkbox defined in the component.
This will allow you to see the dimensions of the trigger collider of the weapon in
real time on the scene. Note that, when EDIT_MODE is enabled, you may receive
warnings in Unity’s Console window. Feel free to ignore these warnings, as they
are related to the Unity Editor itself. When you are satisfied with these fields,
make sure you uncheck the EDIT_MODE field, so that Unity doesn’t spam you with
any more warnings.

If your weapon is a two handed sword and want those animations to be played
by the agents, select the Two Handed option in the Weapon Type field. If the
weapon is more like a spear or a poleaxe, then it’d make sense to use Polearm as
the Weapon Type.

Figure 3.10: The PlayerAgent (on the left) is attacking an AiAgent. The
weapon’s trigger collider will detect one of the AiAgent’s limbs and inflict damage,
because the AiAgent is not defending.

Enter the damage values of your weapon. You’ll be entering the swing and
thrust damage values separately. The damage values against each body part and
armor type is entered one by one. For example, the SwingDmgHeadNaked field
represents the damage value of a swing which targets an unarmored head.

You may wish to rename the empty game object to something more
recognizable in the project folders. Once you are finished, drag and drop your
renamed game object under the “/Assets/Prefabs/Resources/Weapons”
folder. Your weapon will now be available to the player, thanks to the
PrefabManager.cs script. To make it available for the other agents, refer to
section 3.10.

For any given agent, it is the responsibility of the EquipmentManager.cs script
to instantiate a chosen weapon into the hands of the agent. More specifically, the
weapon game object becomes the child object of the item bone named item_R.

43

This is the item bone in the right hand of the agent’s skeleton. The weapon is
able to deal damage thanks to the trigger collider that is attached to it, which
is managed by the Weapon.cs script. When the weapon hits something in the
game, the decisions are made in Unty’s OnTriggerStay callback, which uses
helper methods that are in the CombatMechanics.cs script.

The design of the damage values are similar to that of Mordhau, as mentioned
in section 2.3.1. It was partly due to time restrictions, as it would have taken
too much time to come up with a custom damage formula and test that it works
as intended. Moreover, using set damage values for the weapons allows one to
carefully choose how much damage should be dealt in each situation. Note that
the damage values themselves in Just Blade were heavily inspired by the actual
damage numbers in Mordhau, though they can easily be customized by using the
process described above.

3.9 Armor
To add armor which can be worn by the agents in the game, you need to make
sure that your armor model is rigged with the same skeleton as the human model.
The human model is called "Human 2022 - v1.08", and it’s under the “/Assets
/Models” directory. The model and its skeleton was made and rigged using the
Blender software. While I’m not a professional artist, I’d recommend opening
the human model file, and creating an armor model which fits the agent’s body
dimensions while making sure that your armor mesh uses the same skeleton as
the human. For example, if you’re modelling a body armor, you can duplicate the
body mesh of the human model, and sculpt it to make it look like a body armor,
and so on. Once you’re done, save your work, and import it in Unity under the
“/Assets/Models/Armor” directory.

Once your armor model is imported, click on it once to see its properties in
the Inspector menu. Go under the Model tab, and set the Scale Factor to 0.29.
As noted earlier in section 3.1, the human model uses this scale factor when it
was imported into Unity. Save your work and proceed.

It’s not necessary (and perhaps not recommended) to create an empty game
object on the scene to add your armor. Simply drag your armor model into any
scene in the Unity Editor, and add an Armor.cs script to it. Enter its shown
name, purchase cost, and whether or not it’s a starter item which can be used
without purchasing by the player.

To fill the Skinned Mesh Renderer (SMR) field, inspect the child objects of
your armor model on the scene. You should see a transform game object which
represents the root bone of the skeleton. In the human model, this root bone is
called Armature, so your armor model probably uses the same name (unless you
changed it). You do not need to deal with this Armature child object. What you
need is the other child game object, which contains an SMR component (if you did
things right). Drag and drop the game object (with the SMR component) into the
SMR field of the Armor.cs script. This will make it so that your armor is wearable
by the agents in the game.

It makes sense to choose an Armor Type which suits your armor mesh. For
example, if you make a pair of boots, I wouldn’t recommend using Head as the
armor type. I never tried this, so you should also just choose Leg as expected. The

44

CoversTheEntireBodyPart field can be checked if you want the corresponding
body part to be invisible when the armor piece is worn.

Figure 3.11: A screenshot of the Gambeson torso armor showing its properties in
the Unity Editor.

Once you’re done, drag and drop your armor model under the “/Assets/Pr
efabs/Resources/Armors” directory to save it as a prefab. Your armor piece
will now be available for the player, which is loaded by the PrefabManager.cs
script. To make it available for the other agents, refer to section 3.10.

The EquipmentManager.cs script is responsible for the technical details of
making an armor worn by an agent. It does this by setting the bones of the
armor’s SMR equal to the bones of the agent’s bones. The same script also contains
the method which determines the movement speed penalty due to wearing armor.
The design of the armor system is similar to that of Mordhau, which was explained
in section 2.3.1. This decision was due to time restrictions mentioned in the
Weapons section earlier, and also the fact that I thought it complemented the
weapons’ damage system well.

3.10 Horde Prefabs
The horde game mode is made out of prefabs which are contained in this folder,
and its directory is “/Assets/Prefabs/HordePrefabs”. This section explains
how to add new waves and enemies to the horde game mode, by going over the
following subfolders:

• ArmorSets

• WeaponSets

• CharacteristicSets

• RewardData

• InvaderAgentData

• MercenaryAgentData

45

3.10.1 Horde Agent Data
Before the contents of each folder is explained, it might be helpful to go over the
basic class hierarchy of the horde agents.

The agents that can be seen in the horde game are called “horde agents”.
These are just regular agents which use one of the derived classes of the Agent.cs
script. However, in the context of the horde game mode, these agents get their
properties from the various horde agent data.

Every horde agent uses the following data (found in HordeAgentData.cs
script), whether it’s a friend or foe to the player:

• Armor set

• Weapon set

• Characteristic set

Horde agents which are hostile towards the player are called “invader agents”.
They use the InvaderAgentData.cs script, which inherits the above data from
HordeAgentData.cs. These agents, in addition to the above, contain reward data
when slain (in HordeRewardData.cs).

The friendly horde agents who fight by the player’s side are called
“mercenary agents”. They use the MercenaryAgentData.cs script, which
inherits from HordeAgentData.cs, but also contain several new fields.

The next sections describe how to put together a horde agent using various
pieces.

3.10.2 ArmorSets
To create an armor set, create an empty game object on any scene, and attach
the HordeArmorSet.cs component to it. For each armor list, add the appropriate
armor piece, as many as needed.

For example, let’s assume that you want a horde agent to have 5 helmets to
choose from. To do this, create 5 entries in the Head Armor Prefabs list in the
attached component. Then, navigate to the “/Assets/Prefabs/Resources/A
rmors/HeadArmors" directory, and drag and drop a helmet from this directory
into the appropriate entry in the list. Do this 5 times for 5 different helmets.
If you want to add torso, hand and leg armors, follow the same procedure, and
add them to their respective lists. Once your work is done, drag and drop the
game object from the scene to the “/Assets/Prefabs/HordePrefabs/ArmorSet
s” directory. After this, any horde agent which uses this armor set will randomly
choose an armor for each of the armor slots, as described in the lists that you
provided. If you don’t want the armor to be chosen randomly, then simply put
one armor piece in each slot.

3.10.3 WeaponSets
To create a weapon set, create an empty game object on any scene, and attach the
HordeWeaponSet.cs component to it. It contains a list which can be filled with
weapon prefabs found in the “/Assets/Prefabs/Resources/Weapons" folder.

46

If you add 3 weapons in the weapon list, then any agent who uses this weapon
set will choose one of the 3 weapons listed when spawned. The choice is done
randomly. If you don’t want the choice to be random, just make sure that you
only have one weapon in the list.

To save your work, simply drag and drop the game object from the scene into
the “/Assets/Prefabs/HordePrefabs/WeaponSets”.

3.10.4 CharacteristicSets
Each horde agent has the following characteristics:

• Health

• Model size multiplier

• Extra movement speed multiplier

• Extra damage infliction multiplier

• Damage taken multiplier

• Poise

To add a characteristic set, create an empty game object on any scene, and
add a CharacteristicSet.cs component to it. Configure the necessary fields,
and save your work by dragging and dropping the game object from the scene to
the “/Assets/Prefabs/HordePrefabs/CharacteristicSets” directory. Below
is a brief explanation about what each characteristic does.

Maximum Health determines the starting health of any horde agent. When
their current health value reaches zero, the agent dies.

Model Size Multiplier acts as a multiplier to the agent’s model size. For
example, if this value is 1.5, the agent will appear 50% bigger in scale, in every
dimension. The agent size affects various things, such as the size of equipped
weapon, artificial intelligence’s combat decisions, and so on. Note that the
movement speed does not depend on the agent’s model size.

Extra Movement Speed Multiplier acts as a secondary multiplier to an
agent’s movement speed. Normally, every agent’s movement speed is affected by
how heavy their overall armor is. However, this field acts as a way to multiply
the final movement speed value. It can be used to create special enemies with
high movement speed.

Extra Damage Infliction Multiplier is a secondary multiplier to an agent’s
damage. Normally, an attacker agent deals damage to a defender agent based on
the equipped weapon’s damage values; and the defender agent’s armor level.
However, this field acts as a way to further multiply the damage output.

Damage Taken Multiplier is a secondary multiplier which affects how much
damage an agent takes. For example, suppose that this value is set to 0.5. Then,
once the usual damage calculations are done, the final damage output will be
further multiplied by 50%, which effectively halves the damage taken. Note that
if this value is higher than 1, then the agent will take increased damage.

Maximum Poise determines the starting poise of an agent. Normally, when
an agent is struck, the agent flinches by playing a “getting hurt” animation. This

47

happens if they have zero poise. However, suppose that an agent has a poise
value of 3. When this agent is struck, he will not flinch. Each time he is struck,
he loses poise by 1. When poise reaches zero, the agent will flinch, and the poise
value will be reset back to the Maximum Poise. This characteristic can be useful
when creating boss enemies.

3.10.5 RewardData
When an invader agent is killed, the player gains gold based on the reward data.
To add reward data, create an empty game object on any scene, and add a
HordeRewardData.cs component to it. The gold reward data is chosen randomly
between the Min Gold Reward and the Max Gold Reward. To save your work,
drag and drop the game object from the scene to the “/Assets/Prefabs/Horde
Prefabs/RewardData/” folder.

3.10.6 InvaderAgentData
To create an invader agent data object by combining the pieces from the previous
sections, use the following steps. Create an empty game object on any scene,
and add an InvaderAgentData.cs component to it. Then, simply drag and
drop the data pieces crafted from the previous sections into the necessary fields.
Additionally, if the IsAggressive field is checked, then the invader agent who
uses this data will attack relentlessly, without ever thinking about defending. To
save your work, drag and drop the game object from the scene to the “/Assets
/Prefabs/HordePrefabs/InvaderAgentData” directory.

3.10.7 Adding a New Invader
The enemies in the horde game mode come in “wave sets”, which contain “waves”.
A wave set is completed by repelling all of the waves defined in it. Each wave is
repelled by killing all of the invader agents defined by the wave. When a wave
set is complete, the game switches to the gear selection scene, so that the player
can buy items or hire mercenaries.

The previous sections explained how to create a new enemy data. This section
explains how to actually add the enemy based on this data.

Open the ArenaScene in the editor, and find the game object named
HordeGameLogic in the scene. Click on it to view its properties in the inspector.
It contains a list named “Wave Sets”.

Click the + icon to add a new wave set. In this wave set, click the + icon
to add a new wave. You can add multiple waves in a single wave set. Check the
IsBossWaveSet field if this is a boss wave set, so that the player is informed
about it in the InformationMenuScene.

In a given wave, click the + icon to add a new invader data list. A single wave
can contain multiple types of invaders.

In a given invader data list, click the + icon to add a new invader data. Drag
and drop the invader data found in the "/Assets/Prefabs/HordePrefabs/Inv
aderAgentData" directory into the Invader Agent Data Prefab field. You can
use the Invader Count field to determine how many invaders of this type should
invade.

48

Using the description above, it is possible to add any number of wave sets,
waves, and invaders.

3.10.8 MercenaryAgentData
Mercenary agents help the player defeat the invaders. The user interface defined
in the GearSelectionMenuScene forces us to have only 4 possible mercenary
agents. In other words, there are only 4 button widgets on the user interface,
which means that the player can only hire Basic, Light, Medium and Heavy
mercenaries. Their data can be found under the “/Assets/Prefabs/HordePref
abs/Resources/MercenaryAgentData” directory.

The mercenary data are loaded via code in the PrefabManager.cs static class.
The loaded data is managed by the PlayerPartyManager.cs static class. During
gameplay, the HordeGameLogic.cs script uses the party manager class to spawn
the player’s mercenaries.

The way I set up the user interface so that there can only be 4 types of
mercenary agents to hire is due to my design decisions. Due to time restrictions,
I had to come up with a simpler design to hire mercenaries, and this is the
result. To add more variety to the player’s mercenaries, the user interface must
be changed. After that, the C# script files mentioned above, as well as the
GearSelectionUI.cs script will also have to be edited to accommodate the new
changes.

3.10.9 Horde Difficulty Progression
The difficulty progression of the game is done by giving better equipment and
characteristics to the enemies in later waves. As the waves progress, the enemy
AiAgents do not become smarter. In other words, they don’t form tactical
formations to better tackle the player’s team; nor do they fight smarter by
blocking in the correct direction. Instead, they get heavier armor, more lethal
weapons, and better characteristics. Finally, there is a difficulty slider which can
be found in the MainMenuScene that further adjusts the difficulty of the game.

3.11 Sounds
To add a sound effect which can be heard in the game, create an empty game
object on any scene, and add the PlayAndDestroy.cs component to it. When
done so, this will automatically add an Audio Source component [50] as well.

Navigate to the PlayAndDestroy.cs script and enter its Sound Name, which
will be important later on. Drag and drop the Audio Source component attached
to the game object in order to fill the Audio Source Component field. Find the
location of your own audio clip, and drag and drop it onto the Audio Clip field.
Customize the volume and the pitch of the sound effect to your needs. Once
you’re done, save your work by dragging and dropping the game object on the
scene to the “/Assets/Prefabs/Resources/SoundEffects” folder.

To actually play the sound effect in the game, it is necessary to do some C#
scripting. Open up the SoundEffectManager.cs file, and examine the source
code. If you’re just adding a variation to an existing sound effect (e.g., a new

49

grunting sound), then just enter the name of your sound effect (i.e., the important
one mentioned above) into the appropriate array, and it will be played at random
when needed. If your sound effect is entirely unique, then create a new array by
examining the source code, and insert the name of your sound effect to it. Note
that you will have to invoke the method which plays your sound effect in the new
array.

All of the sound effects in the game are free to use assets (at least, they were
free to use during the development of this game) acquired from Unity’s Asset
Store. The credits are given to their respective authors in the “Documentation
MainPage.md” file, which can be found under the “/Assets/Scripts” directory.

3.12 Collision Layers
The collision layers in Unity are used to fine tune which objects should detect or
ignore contact with one another. The collision matrix [51] can be viewed in the
editor. This section briefly explains the layers that are used, and their purpose:

• Default layer is a built-in layer added to every project by Unity. In this
game, it’s mainly used by the scene geometry objects (such as floors,
invisible walls, etc.). It is also assigned by default to any other game
object, but they may not necessarily be using it.

• Agent layer is mainly used by the agent prefabs that reside in the “/Asse
ts/Prefabs” directory. It is simply there to avoid using the Default layer
for the agents, so it doesn’t really have a special purpose.

• Weapon layer is used by the weapon prefabs found in the “/Assets/Pref
abs/Resources/Weapons” folder. This layer detects contact with the Limb
and Default layers.

• Limb layer is used by the three hitboxes (head, body, legs) that are on
the agents. The combat decisions are made when a Weapon object makes
contact with a game object which uses the Limb layer.

• NoCollision layer is used by the weapon prefabs. When an agent is
releasing an attack, the weapons are put into the Weapon layer at runtime,
so that it can detect collisions. At other times, weapons are put into the
NoCollision layer, so that they can ignore all collisions.

50

4. User Guide
This part of the text explains how the game itself is actually played. The reader
is assumed to be a regular player, and therefore the text does not contain any
technical details regarding the project.

4.1 Installation
To install the game, it is necessary to use a program which can extract an archive
file. Most machines nowadays come with operating systems which already include
such programs. However, in case you do not have a program which can work on an
archive file, I recommend installing 7zip first [52]. The installation instructions
written here assume that the user has 7zip installed.

After making sure you have means of working with an archived file, follow the
rest of the instructions below:

• Download the game’s archive file file.

• Extract the archive into a folder.

• Run Just Blade executable in the newly created folder.

4.2 Menus
This section explains the several menus that are encountered throughout the
game.

4.2.1 Main Menu
The main menu is the first screen that is seen when the game is launched. It
contains a few buttons whose functions are explained below.

The Start Game button starts the game. Once the game is started, there is no
way to return back to the main menu without quitting a playthrough altogether.
Keep in mind that the game doesn’t have a “save game” feature.

The Key Bindings button opens up the submenu which shows the key
bindings. This menu cannot be opened when the game is started, so be sure to
read the key bindings beforehand.

The Settings button opens up the settings submenu where the user can
customize some settings. Their functions are listed below:

• Camera Sensitivity: Changes the in-game camera’s rotation speed. If
the value is too low or high, the camera will rotate very slowly or quickly,
respectively.

• Sound: Controls the sound level (i.e. “volume”) of the game’s sound
effects. Setting the slider to zero mutes the game entirely.

51

• Field of View: Adjusts the field of view [53] of the in-game camera. Higher
values increase peripheral vision, but may cause so-called “fisheye effect”
[54].

• Difficulty: Adjusts the difficulty of the game. See section 4.3.3 section for
an explanation as to how the difficulty setting works.

• Quality Setting: Changes the graphics preset of the game. Lower settings
may increase performance.

Note that the first three of the aforementioned settings can be changed after
the game starts (by pressing M key and opening the in-game pause menu);
whereas the last two cannot.

The Exit Game button closes the game application.

4.2.2 Information Menu
The Information Menu is seen in the following cases:

• When a new game is started for the first time

• After repelling a set of waves

• When the game ends

This menu shows text as to what should be expected in the upcoming waves.
After the first combat encounter, it also shows values about the player’s
“automatic level up” progress, which depend on how many waves the player has
beaten. These values are increased health, extra damage, extra damage
resistance, extra movement speed and party size.

When the game ends, this menu shows statistics about the player, such as
how many enemies were killed, total gold earned and spent, and so on.

The user can click the Next button to navigate to the Gear Selection Menu.
Note that it is possible to return to the Information Menu before the combat
begins.

4.2.3 Gear Selection Menu
The Gear Selection Menu allows the player to buy weapons and armor, as well
as hire and upgrade mercenaries.

On the top right corner, the player can choose from a variety of weapons and
armor. If the player does not own a selected item, its price is shown on a button.
The player can double click on the purchase button to permanently buy the item
for the entire playthrough.

On the top left corner, there is information about the selected weapon. It
contains the name and the length of the weapon, as well as some damage values.
Every weapon can be swung and thrusted in combat. The average damage values
for swings and thrusts are written for the selected weapon. The shown value is
an “average”, because the actual damage depends on the body part by which the
weapon was struck; and the armor level of the said body part.

On the left side, the armor level of each armor slot is shown. There are four
armor slots:

52

• Head

• Torso

• Hands

• Legs
Each armor slot can be filled with an armor piece that protects the targeted

body part. In other words, head armor protects the head; torso armor protects
the torso; and leg armor protects the legs. Note that hand armor does not protect
the hands, but provides a general damage resistance to all body parts.

There are four armor levels:
• None

• Light

• Medium

• Heavy
The None armor level provides no damage resistance whatsoever, but the

character incurs no movement speed penalty. On the flip side, the Heavy armor
level provides the highest damage resistance with the highest penalty to the
movement speed. The movement speed penalty varies based on the armor slot.
For example, a heavy torso armor will yield a higher movement speed penalty
compared to a heavy head armor. Note that the movement speed multiplier which
is based on worn armor is different from the extra movement speed multiplier that
can be seen in the Information Menu. Both of these are separate values which
act multiplicatively.

On the bottom left corner, the information regarding the mercenaries hired
by the player is shown. There are four types of mercenaries:

• Basic

• Light

• Medium

• Heavy
The Basic mercenaries wear no armor and use simple weapons. The Heavy

mercenaries have the highest armor level in all armor slots, and use much more
lethal weapons. The Heavy mercenaries are also inherently stronger, as their
characteristics have increased health, damage and damage resistance. The
equipment and characteristics of the other mercenary types lie somewhere
between Basic and Heavy, as their names suggest.

The player can hire and upgrade mercenaries, with no way to disband them.
Note that the number of mercenaries that can be hired is capped by the player’s
party size, which is written at the end of the mercenary info section.

On the bottom right corner, the player’s gold is shown. It is necessary to have
enough gold to perform the monetary transactions which were described above.

The Back button can be pressed to return to the Information Menu. The
Fight! button starts the combat with no way to return to the menus until the
waves of enemies are beaten.

53

Figure 4.1: An in-game screenshot of the Gear Selection Menu.

4.3 Gameplay
The goal of the game is to beat the enemy hordes coming in waves. You earn
gold for every fallen enemy, which can be used to buy weapons and armor; hire
and upgrade mercenaries to help you fight in battle. The next sections explain
the parts about the game that are related to combat.

4.3.1 Combat
The combat consists of two primary moves: attacking and blocking. Attacking
can be performed by clicking the left mouse button (i.e.: “a left click”), and
blocking is done by clicking the right mouse button (i.e.: “a right click). There
are four directions in which any character can attack or defend: up, right, down,
left. The direction is chosen by mouse movement. For example, if the mouse
is moved to the right, the “right” direction is chosen. It is then possible to
perform an attack by doing a left click, or block by doing a right click. When a
character attacks from “down”, it is simply a thrusting maneuver; whereas the
other directions are swinging motions. The damage of the weapon depends on
whether it was swung or thrusted, as mentioned in the Gear Selection Menu.

Figure 4.2: An in-game screenshot of the the player defending against an overhead
attack by the enemy.

54

When a character is attacked, they can defend themselves by blocking in the
correct direction. For example, if an enemy is attacking you from above, you have
to face the enemy and start defending in the same direction. Note that it is not
possible to defend against attacks when your back is turned, even if the direction
and the timing is correct.

Blocking isn’t the only way to avoid getting damaged by enemies. It is possible
to strafe left or right to dodge the enemies’ attacks, depending on the direction.
Moving backwards is also an option. Note that the player character incurs a 50%
movement speed penalty while moving backwards, in order to prevent them from
kiting the enemies. This penalty is only applied if the movement speed penalty
from armor is greater or equal than 100%. The non-player characters (NPC) do
not suffer a movement speed penalty while moving backwards in any case.

The mercenaries hired in the Gear Selection Menu help the player fight
the hordes of enemies. By pressing the Q button, it is possible to order the
mercenaries to hold position at the player’s current location, or let them attack
enemies at will.

The player’s health bar is shown at the bottom right corner of the screen
during combat. If it reaches zero, the player character dies and the game will
end. The gold earned by the player is also shown at the bottom right corner,
which increases as each enemy is fallen.

4.3.2 Enemies
This section gives information about the various types of enemies which can be
found in the game.

There are two types of enemies in the game:

• Common enemies

• Boss enemies

There are four types/tiers of common enemies:

• Basic

• Light

• Medium

• Heavy

The enemies attack in the following pattern:

• Two waves of common enemies.

• A single wave of boss enemies.

For example, when the game starts, the first two waves consist of common
enemies. Once they’re repelled, the player is given a chance to take a break.
During which, it is possible to buy weapons and armor; and hire/upgrade more
mercenaries. When ready, the player can start the next battle, which consists of

55

a single wave of boss enemies. When this wave is also beaten, the game repeats
the pattern by sending two waves of common enemies, and so on.

The names of the types of common enemies might give a good idea as to
what they’re like. The basic enemies use basic weapons and armor, while heavy
enemies have lethal weaponry and wear heavy armor. The other tiers of enemies
lie somewhere between the two cases.

Figure 4.3: An in-game screenshot depicting a common enemy.

In the very first wave, the enemies are basic. As the waves progress, the basic
troops start to use better weapons and armor over time. After a few more waves,
enemies of higher tiers start showing up. Therefore, it’s a good idea to hire better
mercenaries to counter them. It is important to note that higher tiers of enemies
and mercenaries have better characteristics, such as increased health, damage,
resistance, movement speed, and so on.

There are seven boss waves in total:

• Tutorial boss

• Light armor unit

• The berserker and his bodyguards

• Medium armor unit

• Heavy armor unit

• The turtle knight and his bodyguards

• The berserker and the turtle knight, and their bodyguards

The light, medium and heavy armor units consist of several high level
enemies which use armor types as suggested by their names. They are better
than the common soldiers of their type, and wear the same suit of armor to
show off their unity. The tutorial boss wave contains one member from each of
the aforementioned units, as a way to introduce the player to the game.

The berserker is a unique boss who wears no armor (except for a helmet),
and wields a giant axe. He is much taller than most enemies, moves around very
quickly, and can inflict serious damage with his attacks. He hardly ever flinches

56

Figure 4.4: An in-game screenshot of the boss enemy "Turtle Knight" who stands
taller compared to others.

when struck, as he has 3 units of Poise (explained below). He is surrounded by
his followers who look similar to him, but aren’t as strong.

The turtle knight is another unique boss who wears full plate armor. Unlike
the berserker, he moves very slowly due to his armor, but is very much resistant
to damage. He has 5 units of Poise, thanks to his armor, so he won’t flinch too
many times when struck. His bodyguards who look like him also have 2 units of
Poise.

Poise is a mechanic that is exclusive to the enemies described above. It allows
the characters to withstand damage without flinching. Normally, enemies flinch
when they’re struck, causing them to stop what they’re doing and squirm briefly
in pain. However, for example, if an enemy has 2 units of Poise, they don’t flinch
for two hits. After being struck for the third time, the enemy flinches, and his
Poise resets back to 2 units.

4.3.3 Gameplay Strategies
This section gives a few strategies as to how the game can be played. The strategy
depends on the game’s difficulty, which is why they’re explained as such.

The game’s difficulty is based on a slider in the Settings section of the Main
Menu. The slider ranges between 25% and 150%, where the former is the easiest
difficulty setting and the latter is the hardest. When the difficulty is low, the
player’s team takes reduced damage from enemies, and the fallen enemies yield
more gold. On higher difficulty settings, the amount of gold earned becomes less,
but the player’s team does not take increased damage.

For the purposes of this section, the difficulty setting will be categorized in
the following way:

• Values less than 100% are considered easy

• 100% is considered normal

• Values above 100% are considered hard

57

On easier difficulty settings, the player earns more gold, which can be used to
hire a lot of heavily armored mercenaries. They will pretty much carry the player
to victory with barely any input from the player.

As the difficulty setting approaches normal, the player has to put some effort
to win the game. It is crucial that the player doesn’t spend all the gold on
buying items for themselves. Instead, it’s a better idea to hire and upgrade
mercenaries. Commanding the mercenaries (using the Q key) so that they stay
together becomes a useful strategy, though it’s important not to always keep them
in a straight line. This is because some mercenaries might have shorter weapons,
which means they may not be able to reach their enemies if they are ordered to
stay in a line. While the mercenaries are holding off most of the enemies, the
player should try to find opportunities to get behind the enemies, and get a few
clean hits in.

Figure 4.5: An in-game screenshot of the player’s mercenaries lining up to
anticipate the enemy onslaught.

On the harder difficulties, the reduced amount of gold earned poses a
significant challenge to the player, which is why it’s not recommended on a first
playthrough. The player will pretty much have to play alone in the earlier
waves. This is in order to save gold to hire mercenaries for the boss waves. The
importance of commanding the mercenaries effectively becomes more
pronounced, as there is less gold spare to hire them. Regarding combat,
blocking isn’t always the best choice. Strafing left and right to dodge attacks, as
well as keeping distance from the enemy in general becomes more useful. For
this reason, it might be necessary to use lighter armor for the entire game. This
is because while heavier armor gives better protection, the movement speed
penalty caused by it can become deadly in a mob.

58

5. Conclusion
In this chapter, I briefly go over the goals in section 1.2 to review how well they
were implemented in the actual game:

• Goal 1: This was accomplished. Though, after the development of the
game was finished, I found out that Unity seems to offer an alternate way
to address the issue described in section 2.2.5 in the form of Transform
Constraints [55].

• Goal 2: This was accomplished as well. Using keyframe animations as
described in section 2.2.2; as well as making the combat coherent as
described in section 2.2.4 and section 3.6 is definitely a viable approach to
implement this goal.

• Goal 3: This was accomplished with the exception of assigning different
attack speeds to each weapon. The reasons for this were described in section
3.4.3.

• Goal 4: This was accomplished by using the second approach described in
section 2.3.1.

• Goal 5: The sub-goal 5d was accomplished, but the other sub-goals proved
challenging due to time constraints, which were explained in section 3.7.4.
The game works fine with the arena scene it ended up having, as this goal
was mainly about the visual aspects of the game scene, and not having
obstacles in the scene doesn’t affect gameplay in a significant way. Despite
that, I think I could have done a better job predicting how much time it
takes to create a scene from scratch.

• Goal 6: This goal was accomplished as described in section 3.10.9.

• Goal 7: This was accomplished for the most part, with the exception of
sub-goal 7c. The reasons were explained in section 3.7.3.

5.1 Future work
I believe that the core of the game is implemented successfully, but no game is
perfect. Therefore, in this section, I offer some ideas about what might be added
or changed as future work:

• Animation: As described in section 3.4.1 to section 3.4.3, there were
some issues as a consequence of using Unity’s Mecanim to implement the
combat animations of the game. While the other methods to implement
the animations as described at the start of section 2.2 could be used to
mitigate these problems, I believe writing a custom state machine in C#
to drive the combat animations might be a better approach. Put simply,
the idea would be a “hybrid” approach, which is to use Mecanim for
movement animations, and use the State design pattern [56] to write a
custom C# script to implement the combat animations using Unity’s

59

CrossFade method [57] in its animation engine. I believe this approach
would grant the best control over the combat animations, but requires
some time to properly implement and debug it.

• Tracking Player Progression: As mentioned in section 3.7, the static
memory approach was used to track the player’s progression across scenes.
As a future work, it would be a better idea to implement an overarching
manager system which tracks such information across scenes, which was
briefly described in section 2.4.3.

• Game Difficulty: The game’s difficulty was implemented as described in
section 3.10.9. However, I believe this can be further improved by making
the AiAgents smarter, which was the first approach described in section
2.6.

• Combat Scene: Several new combat scenes could be made and put in a
new user interface where the user can select them before starting a new
game. This would help keep the game “fresh”, in the sense that the player
would not get tired of playing in the same scene over and over.

• User Interface: As mentioned in section 3.7.3, the menu to hire
mercenaries was combined with the menu to buy weapons and armor.
Therefore, creating several user interfaces with each of them having their
own purpose is another idea of some future work. Note that this might
require refactoring the underlying code in an object oriented manner
rather than the static memory approach, which was also briefly touched
upon in section 3.7.3.

• Items: As with any game, it might be a good idea to add more variety to the
weapons and armor. It’s not necessary to add entirely new models. Copying
the existing weapons and armor meshes and changing their dimensions and
colors respectively could also work.

• Enemies: More waves and enemy types could be added to the game. In
particular, if the implementation of the combat animations can be improved
(perhaps with the approach described above), it would be possible to change
the attack speeds of the agents based on the weapon and characteristics that
they have. This would allow adding new enemy types who can attack very
slowly or quickly.

60

Bibliography
[1] Mount & Blade - TaleWorlds Entertainment .

https://www.taleworlds.com/en/Games/MountAndBlade .
[Online; accessed 15-02-2024] .

[2] Survival Mode - Wikipedia .
https://en.wikipedia.org/wiki/Survival_mode .
[Online; accessed 13-02-2024]

[3] Browser Game - Wikipedia .
https://en.wikipedia.org/wiki/Browser_game .
[Online; accessed 13-02-2024]

[4] The Last Stand - Play on Armor Games .
https://armorgames.com/play/269/the-last-stand .
[Online; accessed 13-02-2024]

[5] Mount & Blade: Warband - Wikipedia .
https://en.wikipedia.org/wiki/Mount_%26_Blade:_Warband .
[Online; accessed 08-01-2024]

[6] Mount & Blade: Warband - Invasion Mode - Steam News .
https://store.steampowered.com/news/app/48700/view/29053409283
58501663 .
[Online; accessed 08-01-2024]

[7] Mordhau (video game) - Wikipedia .
https://en.wikipedia.org/wiki/Mordhau_(video_game) .
[Online; accessed 08-01-2024]

[8] Unity Engine - unity.com .
https://unity.com/ .
[Online; accessed 26-02-2024]

[9] Unity - Scripting API: GameObject .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
GameObject.html .
[Online; accessed 15-01-2024]

[10] Unity - Scripting API: Rigidbody .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Rigidbody.html .
[Online; accessed 12-01-2024]

61

https://www.taleworlds.com/en/Games/MountAndBlade
https://en.wikipedia.org/wiki/Survival_mode
https://en.wikipedia.org/wiki/Browser_game
https://armorgames.com/play/269/the-last-stand
https://en.wikipedia.org/wiki/Mount_%26_Blade:_Warband
https://store.steampowered.com/news/app/48700/view/2905340928358501663
https://store.steampowered.com/news/app/48700/view/2905340928358501663
https://en.wikipedia.org/wiki/Mordhau_(video_game)
https://unity.com/
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Rigidbody.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Rigidbody.html

[11] Unity - Scripting API: Collider .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Collider.html .
[Online; accessed 06-02-2024]

[12] Unity - Scripting API: Component .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Component.html .
[Online; 15-02-2024]

[13] Input lag - Wikipedia .
https://en.wikipedia.org/wiki/Input_lag .
[Online; accessed 06-02-2024]

[14] Pathfinding - Wikipedia .
https://en.wikipedia.org/wiki/Pathfinding .
[Online; accessed 06-02-2024]

[15] Unity - Scripting API: CharacterController .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
CharacterController.html .
[Online; accessed 12-01-2024]

[16] Unity - Scripting API: NavMeshAgent
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
AI.NavMeshAgent.html .
[Online; accessed 12-01-2024]

[17] Unity - Manual: Navigation and Pathfinding .
https://docs.unity3d.com/2021.3/Documentation/Manual/Navigatio
n.html .
[Online; accessed 06-02-2024]

[18] Unity - Scripting API: NavMesh .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
AI.NavMesh.html .
[Online; accessed 15-02-2024]

[19] Unity - Manual: Nav Mesh Obstacle .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Nav
MeshObstacle.html .
[Online; 06-02-2024]

62

https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Collider.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Collider.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Component.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Component.html
https://en.wikipedia.org/wiki/Input_lag
https://en.wikipedia.org/wiki/Pathfinding
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/CharacterController.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/CharacterController.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AI.NavMeshAgent.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AI.NavMeshAgent.html
https://docs.unity3d.com/2021.3/Documentation/Manual/Navigation.html
https://docs.unity3d.com/2021.3/Documentation/Manual/Navigation.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AI.NavMesh.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AI.NavMesh.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-NavMeshObstacle.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-NavMeshObstacle.html

[20] Real-time strategy - Wikipedia .
https://en.wikipedia.org/wiki/Real-time_strategy .
[Online; 06-02-2024]

[21] Unity - Manual: Animation system overview .
https://docs.unity3d.com/2021.3/Documentation/Manual/Animation
Overview.html .
[Online; accessed 07-02-2024]

[22] Unity - Manual: Blend trees .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Ble
ndTree.html .
[Online; accessed 07-02-2024]

[23] Animancer - Unity Asset Store .
https://assetstore.unity.com/packages/tools/animation/animance
r-pro-116514 .
[Online; 10-01-2024]

[24] Unity Asset Store .
https://assetstore.unity.com/ .
[Online; accessed 07-02-2024]

[25] What is a keyframe? - gamedesigning.org .
https://www.gamedesigning.org/animation/keyframe/ .
[Online; accessed 10-01-2024]

[26] Blender project - blender.org .
https://www.blender.org/ .
[Online; accessed 15-02-2024]

[27] Games - Bare Mettle Entertainment .
https://www.baremettle.com/games/ .
[Online; accessed 07-02-2024]

[28] Unity - Manual: Animator Controller .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Ani
matorController.html .
[Online; accessed 08-02-2024]

[29] Unity - Manual: Animator Override Controllers .
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimatorO
verrideController.html .
[Online; accessed 08-02-2024]

63

https://en.wikipedia.org/wiki/Real-time_strategy
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimationOverview.html
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimationOverview.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-BlendTree.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-BlendTree.html
https://assetstore.unity.com/packages/tools/animation/animancer-pro-116514
https://assetstore.unity.com/packages/tools/animation/animancer-pro-116514
https://assetstore.unity.com/
https://www.gamedesigning.org/animation/keyframe/
https://www.blender.org/
https://www.baremettle.com/games/
https://docs.unity3d.com/2021.3/Documentation/Manual/class-AnimatorController.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-AnimatorController.html
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimatorOverrideController.html
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimatorOverrideController.html

[30] Unity - Manual: Skinned Mesh Renderer .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Ski
nnedMeshRenderer.html .
[Online; accessed 08-02-2024]

[31] Unity - Scriping API: DontDestroyOnLoad .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Object.DontDestroyOnLoad.html .
[Online; 09-02-2024]

[32] Game Programming Patterns - Singleton .
https://gameprogrammingpatterns.com/singleton.html .
[Online; 09-02-2024]

[33] Unity - Manual: Terrain tools .
https://docs.unity3d.com/2021.3/Documentation/Manual/terrain-T
ools.html .
[Online; accessed 09-02-2024]

[34] Unity - Manual: Audio Source .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Aud
ioSource.html .
[Online; accessed 09-02-2024]

[35] Doxygen .
https://www.doxygen.nl/ .
[Online; accessed 13-01-2024]

[36] Unity - Manual: Mask .
https://docs.unity3d.com/2021.3/Documentation/Manual/Animation
MaskOnImportedClips.html .
[Online; accessed 12-02-2024]

[37] Unity - Manual: Streaming Assets .
https://docs.unity3d.com/2021.3/Documentation/Manual/Streaming
Assets.html .
[Online; accessed 14-01-2024]

[38] Unity - Manual: TextMeshPro .
https://docs.unity3d.com/2021.3/Documentation/Manual/com.unity
.textmeshpro.html .
[Online; accessed 14-01-2024]

64

https://docs.unity3d.com/2021.3/Documentation/Manual/class-SkinnedMeshRenderer.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-SkinnedMeshRenderer.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Object.DontDestroyOnLoad.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Object.DontDestroyOnLoad.html
https://gameprogrammingpatterns.com/singleton.html
https://docs.unity3d.com/2021.3/Documentation/Manual/terrain-Tools.html
https://docs.unity3d.com/2021.3/Documentation/Manual/terrain-Tools.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-AudioSource.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-AudioSource.html
https://www.doxygen.nl/
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimationMaskOnImportedClips.html
https://docs.unity3d.com/2021.3/Documentation/Manual/AnimationMaskOnImportedClips.html
https://docs.unity3d.com/2021.3/Documentation/Manual/StreamingAssets.html
https://docs.unity3d.com/2021.3/Documentation/Manual/StreamingAssets.html
https://docs.unity3d.com/2021.3/Documentation/Manual/com.unity.textmeshpro.html
https://docs.unity3d.com/2021.3/Documentation/Manual/com.unity.textmeshpro.html

[39] Unity - Manual: CharacterController .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Cha
racterController.html .
[Online; 12-01-2024]

[40] Unity - Scripting API: Mathf.SmoothDamp .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Mathf.SmoothDamp.html .
[Online; accessed 12-01-2024]

[41] Unity Forum - Player jumping on NavMeshAgent .
https://forum.unity.com/threads/player-jump-not-allowed-on-nav
meshagent.718364/ .
[Online; accessed 12-01-2024]

[42] Unity - Manual: Animation States .
https://docs.unity3d.com/2021.3/Documentation/Manual/class-Sta
te.html .
[Online; accessed 20-02-2024]

[43] State Machine Transition interruptions - blog.unity.com .
https://blog.unity.com/engine-platform/state-machine-transitio
n-interruptions .
[Online; accessed 14-01-2024]

[44] Unity Forum - Change transition settings at runtime .
https://forum.unity.com/threads/change-transition-settings-a
t-runtime-with-script.544062/ .
[Online; accessed 10-01-2024]

[45] Unity Forum - Change the transition duration between two animation by
scripting .
https://forum.unity.com/threads/change-the-transition-duratio
n-between-two-animation-by-scripting.397939/ .
[Online; accessed 10-01-2024]

[46] UnityEditor assembly in build - stackoverflow.com .
https://stackoverflow.com/questions/67298578/whats-the-point-o
f-using-unityeditor-assembly-if-you-cant-build-project .
[Online; accessed 10-01-2024]

[47] Unity - Manual: Animations FAQ .
https://docs.unity3d.com/2021.3/Documentation/Manual/MecanimFA
Q.html .
[Online; 14-01-2024]

65

https://docs.unity3d.com/2021.3/Documentation/Manual/class-CharacterController.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-CharacterController.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Mathf.SmoothDamp.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Mathf.SmoothDamp.html
https://forum.unity.com/threads/player-jump-not-allowed-on-navmeshagent.718364/
https://forum.unity.com/threads/player-jump-not-allowed-on-navmeshagent.718364/
https://docs.unity3d.com/2021.3/Documentation/Manual/class-State.html
https://docs.unity3d.com/2021.3/Documentation/Manual/class-State.html
https://blog.unity.com/engine-platform/state-machine-transition-interruptions
https://blog.unity.com/engine-platform/state-machine-transition-interruptions
https://forum.unity.com/threads/change-transition-settings-at-runtime-with-script.544062/
https://forum.unity.com/threads/change-transition-settings-at-runtime-with-script.544062/
https://forum.unity.com/threads/change-the-transition-duration-between-two-animation-by-scripting.397939/
https://forum.unity.com/threads/change-the-transition-duration-between-two-animation-by-scripting.397939/
https://stackoverflow.com/questions/67298578/whats-the-point-of-using-unityeditor-assembly-if-you-cant-build-project
https://stackoverflow.com/questions/67298578/whats-the-point-of-using-unityeditor-assembly-if-you-cant-build-project
https://docs.unity3d.com/2021.3/Documentation/Manual/MecanimFAQ.html
https://docs.unity3d.com/2021.3/Documentation/Manual/MecanimFAQ.html

[48] Dark Souls - Bandai Namco Entertainment .
https://en.bandainamcoent.eu/dark-souls .
[Online; accessed 12-02-2024]

[49] Unity - Manual: Generating lighting data .
https://docs.unity3d.com/2021.3/Documentation/Manual/UsingPrec
omputedLighting.html .
[Online; accessed 12-02-2024]

[50] Unity - Scripting API: AudioSource .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
AudioSource.html .
[Online; accessed 18-01-2024]

[51] Unity - Manual: Layer-based collision detection .
https://docs.unity3d.com/2021.3/Documentation/Manual/LayerBase
dCollision.html .
[Online; accessed 18-01-2024]

[52] 7zip.org .
https://www.7-zip.org/

[Online; accessed 22-01-2024]

[53] Field of view - Wikipedia .
https://en.wikipedia.org/wiki/Field_of_view .
[Online; accessed 22-01-2024]

[54] Fisheye lens - Wikipedia .
https://en.wikipedia.org/wiki/Fisheye_lens .
[Online; accessed]

[55] Unity - Manual: Constraints .
https://docs.unity3d.com/2021.3/Documentation/Manual/Constrain
ts.html .
[Online; accessed 07-02-2024]

[56] Game Programming Patterns - State .
https://gameprogrammingpatterns.com/state.html .
[Online; accessed 14-02-2024]

[57] Unity - Scripting API: Animator.CrossFade .
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/
Animator.CrossFade.html .
[Online; accessed 10-01-2024]

66

https://en.bandainamcoent.eu/dark-souls
https://docs.unity3d.com/2021.3/Documentation/Manual/UsingPrecomputedLighting.html
https://docs.unity3d.com/2021.3/Documentation/Manual/UsingPrecomputedLighting.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AudioSource.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/AudioSource.html
https://docs.unity3d.com/2021.3/Documentation/Manual/LayerBasedCollision.html
https://docs.unity3d.com/2021.3/Documentation/Manual/LayerBasedCollision.html
https://www.7-zip.org/
https://en.wikipedia.org/wiki/Field_of_view
https://en.wikipedia.org/wiki/Fisheye_lens
https://docs.unity3d.com/2021.3/Documentation/Manual/Constraints.html
https://docs.unity3d.com/2021.3/Documentation/Manual/Constraints.html
https://gameprogrammingpatterns.com/state.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Animator.CrossFade.html
https://docs.unity3d.com/2021.3/Documentation/ScriptReference/Animator.CrossFade.html

	Introduction
	Similar Games
	The Last Stand
	Mount & Blade: Warband
	Mordhau

	Goals

	Analysis
	Agent Movement
	Rigidbody
	CharacterController
	NavMeshAgent

	Animation
	Four Directional Combat
	Keyframe Animation
	Physics Driven Combat
	Combat Coherency
	Separating the Upper and Lower Bodies
	Making Movement and Look Directions Different

	Items
	Weapon and Armor Values
	Weapon Collision
	Weapon Specific Animations
	Wearing Armor
	Movement Speed Penalty

	Menus
	All in One Scene
	Using Multiple Scenes
	Managing Player Progress

	Combat Scene
	Horde Difficulty Progression
	Sounds

	Implementation
	Folder Structure
	Designing the Agent Entity
	Agent and Controllers
	Compound Agent Entity

	Agents
	Movement of PlayerAgent
	Movement of AiAgent
	Jumping

	Animation
	Source State Until Fully Transitioned Out
	AnyState Does not Apply to Transitions
	Transition Duration Cannot be Changed at Runtime
	Waist Warping
	Arm Going Backwards

	AgentAC
	Base Layer
	AtkAndDef Layer
	Idle Layer
	How the Layers Work Together
	AgentAOC
	Combat Animations Logic
	Blend Tree

	Combat Coherency Circle
	Scenes
	MainMenuScene
	InformationMenuScene
	GearSelectionMenuScene
	ArenaScene

	Weapons
	Armor
	Horde Prefabs
	Horde Agent Data
	ArmorSets
	WeaponSets
	CharacteristicSets
	RewardData
	InvaderAgentData
	Adding a New Invader
	MercenaryAgentData
	Horde Difficulty Progression

	Sounds
	Collision Layers

	User Guide
	Installation
	Menus
	Main Menu
	Information Menu
	Gear Selection Menu

	Gameplay
	Combat
	Enemies
	Gameplay Strategies

	Conclusion
	Future work

	Bibliography

