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Abstract: Network symmetry is a global characteristic of complex networks
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since MacArthur et al. showed that real-world networks contain surprisingly
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Introduction
Complex networks are graphs that model the inner structure of natural and

man-made systems such as the Internet [1], public transportation [2], the human
brain [3], and social networks [4]. Analyzing these networks’ local and global
characteristics gives insight into their organization and evolution. One notable
global property is network symmetry, which has gained significant attention since
MacArthur et al. [5, 6] showed that real-world networks exhibit surprisingly high
levels of symmetry. This property has proven useful in numerous research areas;
for example, network symmetries reveal patterns of synchronized node clusters,
helping understand various forms of collective behavior [7].

Most studies on network symmetry utilize automorphism groups to determine
symmetry levels [8]. This approach is very fragile in the sense that even small
changes to the network can drastically change the number of its automorphisms.
Addressing this issue, Liu (2020) [8] proposed a definition of symmetry using
approximate automorphisms, which allow imperfections.

Finding the best approximate automorphism for a given graph can be for-
mulated as a combinatorial optimization problem suitable for metaheuristic ap-
proaches. Given the factorial complexity of the solution space, exhaustive search
becomes computationally infeasible with growing graphs. Liu applied simulated
annealing to search for the best approximate automorphism. Simulated annealing
is an optimization probabilistic technique for approximating global minima that
uses the concept of temperature to escape local minima.

We hypothesize that an ideal approximate automorphism will map “simi-
lar” vertices onto each other. Graph centralities, such as eigenvector centrality,
PageRank, or betweenness, are numerical characteristics of vertices based on
their position in the graph. We use centralities to guide simulated annealing to
align similar vertices. We compare the performance of the original and guided
versions of simulated annealing on several random network models, building on
the experiments carried out by Straka [9] and Pidnebesna, Hartman et al. [10].
The primary aim of this thesis is to determine whether enhancing naive simulated
annealing with graph centrality guidance improves the search for optimal graph
symmetry.

Liu imposed a strict condition of no fixed points during the computation
of approximate automorphisms, significantly reducing the solution space and
potentially omitting promising candidates. Addressing this, Straka [9] proposed
a version of annealing with the maximal number of fixed points as a parameter,
which was further tested on random graphs by Pidnebesna, Hartman et al. [10].
However, it is unclear what the value of this parameter should be. We propose an
alternative approach to fixed points that incorporates penalization. Specifically,
we introduce an annealing variant that dynamically adjusts the number of fixed
points by penalizing them in the objective function.

The thesis structure is organized as follows: Chapter 1 introduces Liu’s notion
of approximate symmetry. Chapter 2 outlines a description of simulated annealing
and its implementation in the context of graph symmetries. Chapter 3 provides
an overview of graph centralities we use to guide the search. Chapter 4 introduces
several random network models, which serve as datasets for algorithm evaluation.
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Chapter 5 introduces improved versions of simulated annealing and compares their
performance on random network models. It also includes a comparison with a
simple, greedy approach and examines the ability of improved annealing versions
to find optimal symmetries when initialized close to a known solution.
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1 Definitions
This chapter introduces graph automorphisms and uses them to establish the

concept of approximate graph symmetry.
In the thesis, we extensively examine graphs, defined in discrete mathematics

by a set of vertices 𝑉 and edges 𝐸, denoted as 𝐺 = (𝑉 , 𝐸). All graphs considered
are undirected, without loops, and unweighted. The variables 𝑛 and 𝑚 represent
the number of vertices and edges of a given graph. To capture adjacencies, we
use an adjacency matrix denoted as 𝐴, where 𝑎𝑖𝑗 = 1 if {𝑣𝑖, 𝑣𝑗} ∈ 𝐸 and 𝑎𝑖𝑗 = 0
otherwise.

Network science involves the study of complex networks, which are modeled as
graphs. Vertices (nodes) represent the actors or elements of the system, and edges
(links) represent the connections between them. In network science, the terms
networks, nodes, and links are used interchangeably with graphs, vertices, and
edges, the only subtle difference being that the former usually refers to real-world
systems, whereas the latter relates commonly to mathematical structures [11].

1.1 Graph automorphism
Graph automorphism is a permutation of vertices preserving adjacency:

Definition 1. (Graph automorphism) An automorphism of a graph 𝐺 = (𝑉 , 𝐸)
is a permutation 𝜋 of 𝑉 such that:

{𝜋(𝑣𝑥), 𝜋(𝑣𝑦)} ∈ 𝐸 ⟺ {𝑣𝑥, 𝑣𝑦} ∈ 𝐸.

To represent automorphisms and permutations in general, we use matrices:

Definition 2. (Permutation matrix) Permutation matrix 𝑃 for a permutation 𝜋
on 𝑛 elements is an 𝑛 × 𝑛 matrix where:

𝑃𝑖𝑗 = {
1 if 𝑖 = 𝜋(𝑗),
0 otherwise.

.

Permutation matrices have one non-zero entry per row and column and rear-
range the vertices of the graph according to the given permutation when multiplied
with its adjacency matrix (Figure 1.1). 𝑃𝐴 permutes 𝐴’s rows and 𝐴𝑃 permutes
its columns according to 𝜋.

The preservation of adjacency can be expressed by the condition that 𝜋 is
an automorphism for graph 𝐺 with adj. matrix 𝐴 if and only if 𝑃𝐴 = 𝐴𝑃.
Considering the orthogonality of permutation matrices, which implies 𝑃 T = 𝑃 −1

and 𝑃𝑃 T = 𝐼, we obtain the following:

Lemma 1. (Characterization of automorphisms [12]) Let 𝐴 be the adjacency
matrix of a graph 𝐺 = (𝑉 , 𝐸) and 𝜋 a permutation on 𝑉 represented by 𝑃. Then
𝜋 is an automorphism of 𝐺 if and only if 𝐴 = 𝑃𝐴𝑃 T.

Proof : Let 𝑣ℎ = 𝜋(𝑣𝑖) and 𝑣𝑘 = 𝜋(𝑣𝑗). Then:

(𝑃𝐴)ℎ𝑗 =
𝑛

∑
ℓ=1

𝑝ℎℓ𝑎ℓ𝑗 = 𝑎𝑖𝑗,
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(𝐴𝑃)ℎ𝑗 =
𝑛

∑
ℓ=1

𝑎ℎℓ𝑝ℓ𝑗 = 𝑎ℎ𝑘.

As a result, 𝐴𝑃 = 𝑃𝐴 if and only if 𝑣𝑖 and 𝑣𝑗 are adjacent whenever 𝑣ℎ and 𝑣𝑘
are adjacent. Therefore, 𝐴𝑃 = 𝑃𝐴 if and only if 𝜋 is an automorphism of 𝐺 [12].
The form 𝐴 = 𝑃𝐴𝑃 T follows from the orthogonality of permutation matrices. □

Figure 1.1 A cycle of length five, a permutation matrix for a rotational automorphism,
and the cycle rotated along that automorphism. Black squares in the permutation
matrix subplot correspond to 1, white to 0.

Every graph has at least one trivial automorphism: the identity that fixes
every vertex onto itself and is represented by the identity matrix 𝐼.

Definition 3. (Fixed points, trivial and global permutations) Let 𝜋 be a permu-
tation on a set 𝑉. The element 𝑣 ∈ 𝑉 is a fixed point of 𝜋 if 𝑣 = 𝜋(𝑣). A trivial
permutation fixes all points (the identity), whereas a global permutation has no
fixed points.

The number of fixed points can be expressed by the trace of the permutation
matrix. A trace of a matrix 𝑃 is the sum of elements on the diagonal and is
denoted as 𝑡𝑟(𝑃 ).

The number of fixed points of a permutation provides a basic intuition of how
“valuable” the permutation is. If the trace is high, only a few vertices participate
in the permutation, and the rest remain fixed. Imposing limits on the trace is one
way of enforcing a certain “quality” of the automorphism.

The last piece of theory required to define approximate graph symmetry is a
norm measuring the magnitude of elements in a matrix:

Definition 4. (L1 Norm) The L1 norm of an 𝑛 × 𝑚 real matrix 𝐴 is:

‖𝐴‖1 =
𝑚

∑
𝑖

𝑛
∑

𝑗
|𝑎𝑖𝑗|2.

1.2 Approximate Symmetry
Most existing work on graph symmetry focuses heavily on global automor-

phisms and automorphism groups [8, 5, 6]. The issue with such symmetry
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definitions is that they are very “fragile” in the sense that even small changes to
the graph structure, such as edge deletions, can lead to complete asymmetry [8].

Consider the grid graph in Figure 1.2. It contains numerous symmetries, such
as rotations, reflections along the diagonal, etc. Now consider the same grid with
one edge removed. It is still somewhat symmetrical intuitively, yet has no global
automorphism.

Figure 1.2 A grid graph is highly symmetric considering the number of global
automorphisms. With just one edge removed, the graph loses all global automorphisms
and will be evaluated as having no symmetry under traditional symmetry definitions,
even though it still exhibits some intuitive non-zero level of symmetry [8].

Motivated by this fragility, Liu (2020) [8] introduced a new relaxed measure
that allows “mistakes” in the (approximate) automorphism.

Definition 5. (Approximate graph symmetry) The approximate symmetry of a
graph 𝐺 = (𝑉 , 𝐸) with an adjacency matrix 𝐴 is defined as 1:

𝐸(𝐴) = 1
4

min
𝑃

(∥𝐴 − 𝑃𝐴𝑃 T∥
1
).

𝐸(𝐴) minimizes the number of mismatches 𝐴 − 𝑃𝐴𝑃 T over permutation
matrices 𝑃, where 𝑡𝑟(𝑃 ) = 0. The higher the symmetry level, the lower 𝐸(𝐴)
will be. If 𝐴 = 𝑃𝐴𝑃 T, 𝑃 corresponds to an automorphism, rendering 𝐸(𝐴) zero.
𝐸(𝐴) also corresponds to the number of mismatched edges that differ after the
permutation: 𝐴𝑖𝑗 ≠ 𝐴𝜋(𝑖)𝜋(𝑗). For a visual representation, see Figure 1.3.

1Some literature also defines approximate symmetry using the Frobenius norm. The Frobenius
norm can be derived from the L1 norm via square rooting, and, therefore, the two norms are
interchangeable within the context of minimization problems.

11



Figure 1.3 A visualization of 𝐸(𝐴) [8]. a) A 4 by 4 grid graph 𝐺 with one missing edge.
b) Its adjacency matrix 𝐴. c) 𝐺 permuted along an optimal permutation 𝑃, a horizontal
reflection. d) The adjacency matrix of permuted 𝐺. Highlighted are the differences
from the original adjacency matrix 𝐴. Note that 𝐸(𝐴) = 1

4(∥𝐴 − 𝑃𝐴𝑃 T∥
1
) = 1

4 ⋅ 4 = 1,
corresponding to one mismatched edge.

Following Liu, we also define a parametrized symmetry version:

𝜖(𝐴, 𝑃 ) = 1
4

(∥𝐴 − 𝑃𝐴𝑃 T∥
1
),

yielding 𝐸(𝐴) = min𝑃 𝜖(𝐴, 𝑃 ). For comparability across graphs, Liu also
introduced normalized symmetry scaled between 0 and 1; 𝐸(𝐴) is normalized by
the maximal 𝜖(𝐴, 𝑃 ), which is achieved when the graph has exactly half of all
possible edges, that is 1

2(𝑛
2), and all of them are misplaced by 𝑃.

Definition 6. (Normalized approximate graph symmetry) The normalized ap-
proximate symmetry of a graph 𝐺 = (𝑉 , 𝐸) with an adjacency matrix 𝐴 is:

𝑆(𝐴) = 𝐸(𝐴)
1
2(𝑛

2)
=

min𝑃(∥𝐴 − 𝑃𝐴𝑃 T∥
1
)

𝑛(𝑛 − 1)
.

Two trivial examples of graphs with perfect symmetry are empty and complete
graphs, where every permutation yields 𝑆(𝐴) = 0.

Identifying the optimal approximate automorphism 𝑃 minimizing 𝜖(𝐴, 𝑃 ) is
computationally hard, given that the growth of the number of permutations is
factorial in the number of vertices. In the following chapters, we discuss simulated
annealing, a metaheuristic approach used to navigate extensive solution spaces
more efficiently.
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2 Simulated Annealing
When computing the approximate symmetry of a graph with 𝑛 vertices, evalu-

ating all 𝑛! permutations is computationally infeasible. We employ metaheuristics
to facilitate the search. Metaheuristics are high-level procedures that effectively
guide search in extensive solution spaces of hard optimization problems. Their
goal is to find or approximate the global optimum, but they generally do not
guarantee optimality. Confirming their correctness and efficiency can sometimes
be only done empirically.

Simulated annealing was selected as the metaheuristic approach in Liu’s paper.
It is a probabilistic optimization technique inspired by statistical mechanics,
specifically the annealing process in metallurgy [13]. The algorithm navigates the
solution space by transitioning from one state to another while decreasing energy,
which represents the optimization problem’s objective function. The process is
initialized at a random state and has high initial temperature, which allows the
algorithm to sometimes explore worse states and avoid getting stuck in local
optima. Temperature is gradually reduced according to a chosen cooling schedule.
As it declines, the likelihood of accepting higher-energy states decreases, leading
to eventual convergence to the final solution. The algorithm terminates if some
threshold temperature is reached or the final iteration is completed. See Figure
2.1 for a visual representation of the algorithm computing the NP-Hard Travelling
Salesman Problem (TSP).

Figure 2.1 Snapshots of simulated annealing computing a TSP with 400 cities grouped
into nine regions. TSP asks for the shortest route that visits each city once and returns
to the origin. The temperature 𝑇 decreases in each subplot: (a) 𝑇 = 1.2, (b) 𝑇 = 0.8,
(c) 𝑇 = 0.4, (d) 𝑇 = 0.0. The energy declines throughout the run, which corresponds to
the route becoming shorter [13].
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2.1 Detailed description and implementation for
optimizing S(A)

In the context of approximate graph symmetry, states correspond to permuta-
tions 𝑃, and the energy function to 𝜖(𝐴, 𝑃 ). Starting in a random permutation,
we move to a neighboring permutation in each step, where 𝑃 ′ is a neighbor of 𝑃
if swapping two images under the permutation suffices for transitioning to one
from another. We call this simple swap a transposition.

Below, we present the pseudocode of simulated annealing specifically adapted
for optimizing approximate symmetries as described in Straka’s thesis [9]:

Algorithm 1 Simulated annealing for approximate symmetry computation
1: 𝑃 ← random permutation matrix without fixed points
2: 𝑇1 ← 𝑡
3: for steps 𝑖 = 1, 2, … do
4: select 𝑃 ′ from Neighbors(𝑃 )
5: if 𝜖(𝐴, 𝑃 ′) ≤ 𝜖(𝐴, 𝑃 ) then
6: 𝑃 ← 𝑃 ′

7: else if exp ( 𝜖(𝐴,𝑃)−𝜖(𝐴,𝑃 ′)
𝑇𝑖

) ≤ uniform[0, 1] then
8: 𝑃 ← 𝑃 ′

9: end if
10: 𝑇𝑖+1 ← 𝑇1

ln(1+𝑘)
11: end for

A new state 𝑃 ′ is always accepted if it improves energy, i.e., 𝜖(𝐴, 𝑃 ′) ≤ 𝜖(𝐴, 𝑃 ).
If this inequality does not hold, the algorithm may still accept 𝑃 ′ with a probability
of 𝑒

𝑑𝐸
𝑇𝑖 , where 𝑑𝐸 represents the energy change 𝜖(𝐴, 𝑃 ′) − 𝜖(𝐴, 𝑃 ), and 𝑇𝑖 the

current temperature at step 𝑖. 𝑇𝑖 is adjusted at each step according to the cooling
schedule. Liu applied a logarithmic cooling schedule as it is defined in line 12 of
the pseudocode. Straka suggested it outperforms other cooling schedules, so we
continue using it [9].

2.2 Implementation optimizations
Evaluating the objective function 𝜖(𝐴, 𝑃 ) = 1

4(∥𝐴 − 𝑃𝐴𝑃 T∥
1
) involves two

matrix multiplications, a costly operation with time complexity 𝑂(𝑛𝜔), where
𝜔 = 3 for classic matrix multiplication, while modern algorithms achieve 𝜔 ≈ 2.37.

Straka introduced two significant optimizations. The first one is based on the
observation that evaluating the full objective function in each step is unnecessary;
rather, it suffices to compute its change. Since each transition corresponds to a
transposition affecting only two rows and columns in 𝑃𝐴𝑃 T, we only calculate
these differences. This reduces the time complexity to 𝑂(𝑛) per step instead of
𝑂(𝑛𝜔).

The second optimization builds on the fact that networks are often sparse
[11], implying 𝑑𝑒𝑔(𝑣) ≪ 𝑛. We evaluate the change in the energy function by
associating each vertex with a set of its neighbors and computing the symmetric
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difference of these sets upon transposition. This achieves 𝑂(𝑛 log 𝑛) per evaluation,
but for sparse networks, it is, in practice, much faster than iterating on large
matrices with many zeroes.

2.3 Moving between states
When transitioning from 𝑃, a neighbor is chosen uniformly randomly from

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑃 ), the set of permutations within one transposition from 𝑃. For
instance, consider 𝑃 representing the permutation 𝜋, where 𝜋(𝑖) = 𝑘 and 𝜋(𝑗) = ℓ.
A neighboring state 𝑃 ′ is then achieved by swapping the images of 𝑖 and 𝑗,
resulting in 𝜋(𝑖) = ℓ and 𝜋(𝑗) = 𝑘.

We hypothesize that guiding the search during the next state selection could
improve the results. In an automorphism or near-automorphism, “similar” nodes
will likely be mapped onto each other (aligned). Assuming we could identify such
similar nodes, we could choose swaps not randomly but in a way that aligns them.
With that intention, we introduce graph centralities, numerical characteristics of
nodes describing their position in the network.

15



3 Graph centralities
Thoroughly understanding a system often includes identifying its most impor-

tant elements. For instance, when aiming to transmit some information across
a social network effectively, it is crucial to identify influential individuals and
maximize information spread through them [14].

Graph centralities address this question and help identify logical centers within
a network. Developed in social sciences, the application of centralities has since
expanded to fields such as biology and computer science [15]. A property of graph
centralities that is especially interesting to us is that automorphisms preserve
centralities [14, 16]. Therefore, in a permutation with high approximate symmetry,
we expect vertices with similar centrality values to be aligned. In the description
of graph centralities, we draw from a book on networks by Newman [15].

3.1 Degree centrality
The degree of a node, i.e., its number of neighbors, is the simplest and most

intuitive measure of the node’s importance. While it may seem logical to assume a
node is significant whenever it has many connections, this approach fails to capture
the node’s broader position in the network beyond its imminent neighborhood. A
high-degree node can be situated far from the actual center of the graph. Despite
that, degree centrality in its naivety is still sometimes used. Consider the citation
count of an academic paper, which is its degree in the citation network and is
used to roughly determine its scientific impact [15].

3.2 Eigenvector centrality
Eigenvector centrality considers not only the number of a node’s direct con-

nections but also the “quality” of these connections. A node can thus become
significant even with few links if these are with highly “prestigious” nodes1.

For a network 𝐺 = (𝑉 , 𝐸) with an adjacency matrix 𝐴, eigenvector centrality
𝑥𝑖 of a node 𝑣𝑖 can be expressed as a sum of eigenvector centrality values of its
neighbors:

𝑥𝑖 =
𝑛

∑
𝑗=1

𝐴𝑖𝑗𝑥𝑗.

Eigenvector scores are computed iteratively. Initially, all nodes start with a
score of 1. In the second iteration, the score of each node becomes its degree. As
the number of iterations continues 𝑘 → ∞, it can be shown that:

𝑥𝑖 = 1
𝜆

∑
𝑗

𝐴𝑖𝑗 deg(𝑗),

where 𝜆 is the greatest eigenvector of 𝐴 [15]. See figure 3.1 for a visualization of
eigenvector centrality values on a random graph.

1An interesting remark is that the earliest use of eigenvector centrality dates to 1895 in a
paper about scoring chess tournaments [17].
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Figure 3.1 Eigenvector centrality values of vertices in a random graph

3.3 PageRank
PageRank is an algorithm introduced by Sergey Brin and Lawrence Page

in their 1998 Stanford Paper [18] aiming to improve the quality of Web search
engines. Like eigenvector centrality, PageRank evaluates the importance of a
page by considering both the quantity and quality of its incoming links. It can
be conceptualized as a model of a “random surfer” on the Internet who keeps
skipping from one page to another through links. The page rank of a page then
models the probability the surfer will visit it.

The formula includes a damping factor 𝛼, typically set to 0.85, representing
the probability that the surfer will get bored with a given topic and restart on
a random page. PageRank also adjusts by the number of outgoing links. This
ensures that if one node with high centrality points to many others, it will pass
on only a fraction of its importance. For instance, a link from Google will transfer
less weight if Google also references a million other pages, even though Google
has a high score itself [18].

Consider a network of pages (nodes) 𝐺 with an adjacency matrix 𝐴 containing
a 1 if page 𝑣𝑖 references page 𝑣𝑗. Let 𝑘𝑖 be the number of outgoing references
from page 𝑖 (if it is zero, let the score for that page also be zero). PageRank 𝑥𝑖 of
the node 𝑣𝑖, in its simplest form, is defined as:

𝑥𝑖 = 𝛼 ∑
𝑗

𝐴𝑖𝑗
𝑥𝑗

𝑘𝑗

While originally designed for directed graphs, PageRank is also applicable
in the undirected case, where it sometimes comes close to the simple degree
distribution but generally is not proportional to it [19].
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3.4 Betweenness centrality
Betweenness centrality assesses a node’s importance by counting the number

of shortest paths between all pairs of nodes passing through it. Unlike previous
centralities, it focuses less on how well-situated the node is and more on how
necessary it is in connecting different parts of the network. It can be useful for
identifying potential vulnerabilities of a network due to many critical paths passing
through a specific node [14].

Formally, the betweenness of a node 𝐵(𝑣𝑖) is:

𝐵(𝑣𝑖) = ∑
𝑥,𝑦∈𝑉 (𝐺)
𝑥≠𝑦≠𝑣𝑖

𝜎𝑥𝑦(𝑣𝑖)
𝜎𝑥𝑦

where 𝜎𝑥𝑦 denotes the number of shortest paths between nodes 𝑥 and 𝑦 and
𝜎𝑥𝑦(𝑣𝑖) is the number of shortest paths between 𝑥 and 𝑦 passing through 𝑣𝑖 [14].

3.5 Clustering coefficient
A cluster is a group of nodes more densely connected to each other than the

rest of the network [11, 14]. The clustering coefficient is a measure of how clustered
a neighborhood of a node is. The more interconnected a neighborhood of a node
is, the higher the node’s clustering coefficient. It can be considered a local variant
of betweenness [15].

Formally, consider a network 𝐺 = (𝑉 , 𝐸) and 𝑁𝑖 the neighbourhood 𝑁𝑖 of
node 𝑣𝑖: 𝑁𝑖 = {𝑣𝑗|{𝑣𝑖, 𝑣𝑗} ∈ 𝐸}. Let 𝐸(𝑁𝑖) denote the edges of 𝐺 induced by
𝑁𝑖. The clustering coefficient of a node 𝑣𝑖 equals the ratio between the number of
realized and possible links in 𝑁𝑖:

𝐶(𝑣𝑖) = 2|𝐸(𝑁𝑖)|
|𝑁𝑖||𝑁𝑖 − 1|

The clustering coefficient differs from previous centralities in that it does not
assign higher values to more important nodes. On the contrary, when it is small,
it implies a node is a critical connection for its neighbors [15].
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4 Random network models
Network models serve as abstractions of real-world systems, and they should

ideally reflect their inherent properties. Most real-world networks do not follow
the regular structure of grids but rather appear much more random [11]. However,
these networks are not entirely random without any recurring properties, and
the laws that govern them are reflected in their structure. For example, many
real-world networks exhibit the small-world phenomenon characterized by high
clustering and low distances [20].

This chapter introduces several network models, some of which are not random
or realistic and some of which more closely resemble real-world models. Following
the methodologies of Straka [9] and Pidnebesna [10], these models form the
primary dataset for comparing the improved (guided) and original versions of
simulated annealing.

4.1 Grid
A grid is a square type of a lattice graph. Although not a random network

model, we include it for comparison to highlight its extreme regularity against
some of the latter models. We already saw an example of a 2D grid when defining
approximate graph symmetry (Figure 1.2).

Formally, grids can be defined using graph products. 𝐺 × 𝐻 is the Carte-
sian product of graphs 𝐺 and 𝐻 if: 1) 𝑉 (𝐺 × 𝐻) = 𝑉 (𝐺) × 𝑉 (𝐻), and 2)
{(𝑢, 𝑢′), (𝑣, 𝑣′)} ∈ 𝐸(𝐺 × 𝐻) if 𝑢 = 𝑣 and {𝑢′, 𝑣′} ∈ 𝐸(𝐻) or 𝑢′ = 𝑣′ and
{𝑢, 𝑣} ∈ 𝐸(𝐺). A grid graph with 𝑑 dimensions and lengths 𝑛𝑖 in dimension 𝑖
is then denoted as 𝑅𝑛1,𝑛2,...,𝑛𝑑

and defined as a graph product of path graphs
𝑃𝑛1

× 𝑃𝑛2
× ... × 𝑃𝑛𝑑

making the number of vertices ∏𝑏
𝑖=1 𝑛𝑖 [10].

4.2 Erdős–Rényi model
Introduced in 1959 by famous mathematicians Paul Erdős and Alfréd Rényi,

the Erdős–Rényi model (ER) was the foundational piece in random graph theory
[21]. The original application of the ER model was to probabilistically answer
questions from extremal graph theory. When the term random graph is used
without further context, it often refers to the ER model.

The ER model has two related definitions:

• 𝐺(𝑛, 𝑚): A graph with 𝑛 vertices and 𝑚 randomly placed edges.

• 𝐺(𝑛, 𝑝): A graph where each pair of vertices is connected with probability
𝑝.

Note that the expected number of edges of a 𝐺(𝑛, 𝑝) is (𝑛
2)𝑝. By the law

of large numbers, with growing 𝑛, 𝐺(𝑛, 𝑝) will behave similarly as 𝐺(𝑛, 𝐸) for
𝐸 = (𝑛

2)𝑝. Similarly, 𝐺(𝑛, 𝑚) will with high probability approximate 𝐺(𝑛, 𝑝′) for
𝑝′ = 𝑚

(𝑛
2) . The parameter 𝑝 then approximates edge density. We have already seen

a 𝐺(20, 0.2) ER graph when visualizing eigenvector centrality (Figure 3.1).
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In Figure 4.1, we recreate Liu’s [8] results and analyze the approximate
symmetry 𝑆 of a 𝐺(100, 𝑚) ER graph as 𝑚 varies from zero to the maximal
number of edges. Interestingly, the 𝑆 versus 𝑚 curve is symmetric; initially, with
no edges, every permutation of isolated vertices constitutes a perfect automorphism,
rendering 𝑆 zero. With growing 𝑚, the symmetry diminishes, reaching a minimum
of approximately 0.35 when about half of the potential edges are present. It then
declines as 𝐺 becomes a fully connected graph, where any permutation again
represents an automorphism. Notably, instances with 𝑚 edges exhibit the same
symmetry as instances with (𝑛

2) − 𝑚 edges. This property is not coincidental and
relates to an interesting and more general property of approximate symmetry:

Lemma 2. (Approximate symmetry of complements) The approximate symmetry
of a graph 𝐺 = (𝑉 , 𝐸) with an adjacency matrix 𝐴 is the same as the approximate
symmetry of its complement 𝐺 = (𝑉 , 𝐸) with an adjacency matrix 𝐴′, i.e.:

𝑆(𝐴) = 𝑆(𝐴′).

The proof follows from the relation 𝐴′ = 𝟙 − 𝐴 − 𝐼, where 𝟙 is an all-one
matrix and 𝐼 is the identity matrix. See [8] for the full proof.

Figure 4.1 Approximate symmetry 𝑆 of a 𝐺(100, 𝑚) ER model for varying 𝑚. The
data points are interpolated by a degree 2 polynomial.

This property interests us for additional reasons. As demonstrated in measure-
ments by Liu [8] and Straka [9], even in some other types of random networks, it
holds that sparser instances are more symmetric than denser instances.

4.2.1 Critique of the ER model
ER graphs were not developed in the context of network science nor were

intended to replicate real-world networks. Unsurprisingly, they do not accurately
reflect the characteristics of most real-world networks, e.g., the degree distribution.
ER graphs have a binomial degree distribution that resembles a bell curve, meaning
most nodes have a similar number of connections, and extreme outliers are very
rare [11].
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To demonstrate why this is inaccurate, consider modeling a population of
𝑁 ≈ 7 × 109 individuals using an ER graph. The properties of the ER binomial
degree distribution will imply that [11]:

• Most individuals would have between 968 and 1032 connections.

• The most connected individual would likely have no more than around 1185
connections.

• The least connected individual would likely still have around 816 connections.

Such a model conflicts with reality, as social networks commonly contain
outliers with as many connections as 5000. The ER model assumes the number of
vertices to be fixed and does not undergo any form of growth. In reality, networks
dynamically expand as new nodes are introduced. Notably, these new nodes tend
to connect preferentially to already well-connected nodes [11]. For example, in a
citation network, a researcher is more likely to read and cite already frequently
cited papers.

4.3 Barabási-Albert model
The Barabási-Albert model (BA), with its preferential attachment mechanism,

provides an alternative that more accurately captures some of the real-world
network characteristics. It produces scale-free networks, which are characterized
by a degree distribution asymptotically following the power law with parameter 𝛾.
In the BA model, 𝛾 is typically set to 3. The probability a node will have degree 𝑘
is then 𝑘−𝛾. This distribution implies that while most nodes have few connections,
a small number of nodes become highly connected, and we call those hubs [11].

The BA model has two parameters: 𝑛, the target number of nodes, and 𝑘, the
number of links of a new node when it is added to the network. The generation
process is then described as follows:

• Start with a random connected graph on 𝑘 vertices.

• In each step, add a new node 𝑣 with 𝑘 connections. It links to an existing
node 𝑢 with probability 𝑝𝑢 proportional to the degree 𝑑𝑢 of 𝑢: 𝑝𝑢 = 𝑑𝑢

∑𝑛
𝑖=1 𝑑𝑖

.

• Repeat until the network contains 𝑛 nodes.

The BA model mimics network evolution, where already well-connected nodes
gain more connections, becoming hubs (for illustration, see Figure 4.2 depicting
three BA graphs on 20 nodes with varying numbers of attachments of the new
node. Dark nodes are hubs.). This description alone hints that BA graphs contain
some symmetric substructures, unlike the ER model. Refer to Straka [9] for more
detailed measurements confirming that the BA model really is more symmetric
than the ER model.
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Figure 4.2 Instances of the BA model with varying attachment numbers 𝑘. Darker
colors imply higher degrees.

4.4 Duplication-Divergence model
Protein-protein interaction (PPI) networks are graphs representing protein

contacts. These networks evolve by the mechanism of gene duplication, which
generates new proteins that are initially identical to pre-existing ones but gradually
change, with most of the added proteins not surviving. The duplication-divergence
(DD) model provides a simplified representation of this evolution and can be
characterized by its growth mechanism [22]:

• Duplication: A node is randomly selected and duplicated. The newly
created node inherits all links of the duplicated node.

• Divergence: Every link of the new node is retained with divergence prob-
ability 𝜎. If no links survive, the duplication is unsuccessful, and the new
node is discarded.

The process is initialized with a single node and grows until it reaches a target
size. See Figure 4.3 for instances of the model with varying divergence probability.

In an extreme case, when 𝜎 = 1, the network evolves into a complete bipartite
graph. When 𝜎 ≪ 1, only one connection is most likely retained, resulting in each
new node being a leaf and the graph resembling a tree. Studies of real-world PPI
networks suggest 𝜎 to often be around 0.4 [22].
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Figure 4.3 Three instances of the DD model on 300 nodes, where 𝑝 is the divergence
probability.
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5 Results
In the final chapter, we introduce our results, starting with an alternative

version of simulated annealing that dynamically determines fixed points by penal-
izing them in the objective function. After that, we present the most important
result of this thesis: the effects of guiding annealing by graph centralities.

5.1 Annealing with dynamic fixed points
In the original paper on approximate network symmetry [8], Liu considered

only permutations with no fixed points (FPs). This reduces the problem space at
the risk of excluding potentially promising solutions that allow some FPs. This
limitation motivated Straka [9] and later Pidnebesna et al. [10] to propose and
experiment with a modified annealing variant that allows up to 𝐾 FPs, where
𝐾 ∈ ℕ0 is a parameter. This variant, called Annealing with Fixed Points (AFP),
introduces the uncertainty of what 𝐾 is optimal.

Pidnebesna et al. experimented with 𝐾 = 𝑛
2 , allowing half the nodes to

be fixed. However, this choice may seem a bit arbitrary, and furthermore, it is
desirable to distinguish between near-global permutations and those involving
only half vertices, the former being more “valuable.” An alternative approach
to FPs could work with penalization mechanisms rather than an arbitrarily set
parameter. In this manner, we introduce an annealing variant that dynamically
determines the number of FPs by penalizing them in the objective function.

Recall the definition of normalized approximate symmetry 𝑆(𝐴), which is
essentially a ratio of mismatches 𝐴 − 𝑃𝐴𝑃 T to the number of maximum possible
mismatches. We observe that when two vertices are fixed in a permutation
𝑃, their adjacency will always be preserved, effectively reducing the mismatch
“opportunities.” Therefore, we reduce the denominator by subtracting pairs of all
fixed points and obtain the following form, which we denote as 𝑆𝐹(𝐴):

𝑆𝐹(𝐴) = 𝐸(𝐴)
1
2(𝑛

2) − (𝐹
2)

=
min𝑃(∥𝐴 − 𝑃𝐴𝑃 T∥

1
)

𝑛(𝑛 − 1) − 2𝐹(𝐹 − 1)
,

Where F is the number of FPs in 𝑃. This is a penalization mechanism because
increasing the number of FPs results in a smaller denominator, a higher value of
𝑆𝐹(𝐴), and, therefore, lower symmetry. It is still a valid measure in the sense
that it scales between 0 and 1 and expresses the ratio of mismatched edges but
only normalizes it by the actually relevant number of possible mismatches.

We propose a variant of simulated annealing with 𝑆𝐹 as its objective function.
This variant dynamically determines the number of FPs, and we call it DFP-SA.
The penalization aims to ensure that adding FPs actually improves the solution
rather than the algorithm arbitrarily reaching the 𝑛

2 limit (or whatever value the
parameter was set to in AFP).

5.1.1 DFP-SA on BA and introduction of methodology
In Figure 5.1, we present comparisons of approximate symmetry 𝑆 as initially

defined in Chapter 1, measured by DFP-SA and AFP (even though DFP-SA takes
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𝑆𝐹(𝐴) as its objective function, we evaluate the results in the original measure
𝑆(𝐴), so the comparison makes sense). We denote AFP with 𝐾 maximum fixed
points as KFP-SA and set 𝐾 to zero and half of the graph size, with the two
versions denoted as 0FP-SA and N/2FP-SA.

The dataset consists of instances of the BA model with 𝑛 = 50, 100, 150,
and 𝑘, the number of connections of a new node, equal to 3, 5, 7, following the
methodologies of Pidnebesna et al. [10] (we distinguish between 𝐾 in KFP-SA and
𝑘, the BA parameter). We present the measured symmetry for BA graphs on 50
nodes since the results on 100 and 150 nodes are similar (which can be verified in
the more robust statistical evaluation that follows). The number of measurements
carried out for every graph and annealing version is 50. The number of steps of
each annealing run is 30000, which Straka declared to offer the best combination
of performance versus time [9]. We will continue using this setting of annealing
steps and number of measurements in all later evaluations throughout the rest of
the thesis unless specified otherwise.

We use a violin plot to represent the distribution of measured approximate
symmetry, which visualizes the mean and quartiles similarly to box plots but
also includes the probability density of the data smoothed by a kernel density
estimator. Apart from approximate symmetry, the average number of FPs of the
given measurements is displayed above each corresponding plot.

Figure 5.1 Comparison of the performance of DFP-SA and KFP-SA (with 𝐾 set to
0 and N/2) on BA graphs with 50 nodes, where 𝑘 is the number of attachments of a
new node (we distinguish between 𝑘, the BA parameter, and 𝐾 in KFP-SA).

A closer look at the results, specifically the mean values of the violin plots,
suggests that 0FP-SA generally performed slightly worse than the two other
variants and found the lowest symmetry. This is expected, considering it is the
most restrictive version and disallows any FPs. When examining the average
number of FPs, we observe that for DFP-SA, it is generally similar to or lower
than that for N/2FP-SA. We also observe that sparser instances of the BA model,
i.e., those with lower 𝑘, exhibit higher approximate symmetry, which is a common
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trend, and we will later observe sparser instances having higher approximate
symmetry in all other models.

For a more precise evaluation of these results, we follow the methodologies
of Pidnebesna et al. [10] and use a paired two-sided 𝑡-test to determine whether
the average measured approximate symmetry of two selected versions is the same.
The null hypothesis, therefore, states that there is no significant difference in the
means of approximate symmetry measured by the different annealing versions.
Furthermore, if low 𝑝-values suggest the means are not the same, we use Cohen’s
𝑑 to measure the effect size. The results are visualized in Figure 5.2. We continue
using this methodology and visual representation throughout the rest of the thesis.
Therefore, we explain it now more thoroughly.

Figure 5.2 Statistical analysis of the performance of DFP-SA and KFP-SA (with 𝐾
set to 0 and N/2) on BA graphs. 𝑘 is the number of attachments of a new node.

The top-left subplot shows the 𝑡-test results assessing whether 0FP-SA and
DFP-SA compute results with the same mean. A black square indicates a 𝑝-
value lower than the standard significance level 𝛼 = 0.05. The top right subplot
measures effect size by Cohen’s 𝑑 and is relevant only when the corresponding
𝑝-value is below 𝛼. A positive Cohen’s 𝑑 value (red) implies the mean of the first
group is higher than the second group, while a negative value (blue) indicates the
opposite. Values around 0.2 suggest a small effect size, 0.5 a medium effect size,
and 0.8 a large effect size.

Assessing the top left sub-plot, we see 𝑝-values below 𝛼, with the exception of
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the BA graph on 150 nodes and 𝑘 equal to seven. We, therefore, cannot reject
the null hypothesis in full generality, but we can still study the effect sizes in
the cases when the 𝑝-value is below 𝛼. The predominantly red entries in the
top-right subplot suggest that in these cases, the mean of 0FP-SA results is higher
than DFP-SA results, implying that DFP-SA finds better symmetry, confirming
our initial observation. The bottom sub-plot depicts 𝑡-test results assessing the
equality of mean symmetry calculated by N/2FP-SA and DFP-SA. We cannot
reject the null hypothesis nor study the effect size, considering almost all 𝑝-values
are above 𝛼.

We replicate this comparison on other random models and larger graphs,
reaching similar results (see appendix A.1). Taking into account all measurements,
we cannot confidently and in full generality say that DFP-SA computes symmetry
better or worse than 0FP-SA or N/2FP-SA, although, in many instances, it
performs better than 0FP-SA, which is explained by 0FP-SA’s restrictive nature.
Also, DFP-SA includes a similar or lower average number of FPs than N/2FP-SA
but computes them dynamically, which solves the uncertainty about setting the
parameter K in KFP-SA. In conclusion, we introduced an annealing version with
an alternative approach to FPs that reaches similar results as AFP. From now
on, in all future measurements, we will continue using this dynamic approach to
FPs, and all annealing implementations will operate with 𝑆𝐹(𝐴) as their objective
function.
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5.2 Centralities in annealing
This thesis primarily aims to investigate the effects of guiding simulated anneal-

ing to align similar vertices rather than performing steps by random transpositions,
with the goal of improving symmetry detection. This approach is motivated by
the fact that characteristics such as betweenness or PageRank are preserved
by automorphisms, as discussed in Chapter 3; therefore, in an (approximate)
automorphism, we can expect vertices with similar centralities to be aligned.

We introduce a general procedure for incorporating a centrality into the
algorithm. We then plug in the centralities introduced in Chapter 3, but any
numerical vertex characteristic can be used in this way. We call this new improved
annealing version guided annealing and compare it with the original unguided
annealing version on network models introduced in Chapter 4. All annealing
versions, guided and unguided, determine the number of fixed points dynamically
by penalization and operate with 𝑆𝐹(𝐴) as their objective function, as described
in the previous section.

5.2.1 The move function
The important annealing function to be re-implemented is the move function,

which generates a new permutation 𝑃 ′ from the current permutation 𝑃. In the
original version, this function performs a transposition by randomly swapping the
images of two vertices under the current permutation (moving from 𝑎, 𝜋(𝑎) and
𝑏, 𝜋(𝑏) to 𝑎, 𝜋(𝑏) and 𝑏, 𝜋(𝑎)). In our improved, guided version, the transposition
is chosen with probability proportional to how similar pairs it leads to.

Similarity matrix and implementation description

We will use a similarity matrix 𝑀 to express the similarity of vertex pairs in a
chosen centrality Γ. 𝑀 is an 𝑛 × 𝑛 matrix indexed by vertices.

To construct 𝑀, we start by computing a difference matrix 𝐷, where each
element is defined as 𝑑𝑖𝑗 = |Γ(𝑖)−Γ(𝑗)|, i.e. the absolute difference of the centrality
of 𝑣𝑖 and 𝑣𝑗. To transform this into a similarity measure where higher values imply
higher similarity, we compute inverses over the elements of 𝐷. Specifically, the
entries of 𝑀 are defined as 𝑚𝑖𝑗 = (𝑑𝑖𝑗 + 𝛽)−1, where 𝛽 > 0 is a division constant
preventing the denominator from being zero and moderating the variance of the
matrix values; as 𝛽 increases, the entries of 𝑀 become more uniform, guiding the
annealing less aggressively.

Re-implementing the move function

We now describe the re-implemented move function. We start by randomly
choosing the first vertex 𝑎 1, where 𝜋(𝑎) is its image under the current per-
mutation and 𝑚𝑎𝜋(𝑎) their similarity. We evaluate a potential similarity in-
crease by considering swaps with each vertex 𝑏 and its image 𝜋(𝑏). The differ-

1We also experimented with a “one-step” approach, which does not select the first vertex
randomly but instead considers all possible transpositions. However, this requires 𝑂(𝑛2)
evaluations in each step or a one-time pre-computation for all pairs of pairs, which has a
complexity of 𝑂(𝑛4), both practically unusable for growing graphs.
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ence in the similarity of the original and proposed setting can be calculated as
Δ𝑀𝑏 = 𝑚𝑎𝜋(𝑏) + 𝑚𝑏𝜋(𝑎) − 𝑚𝑎𝜋(𝑎) − 𝑚𝑏𝜋(𝑏).

Before normalizing Δ𝑀 into a probability distribution over vertices, we again
introduce a smoothing parameter 𝜙 > 0, which we call the probability constant,
and set Δ𝐸𝑏 = 𝑚𝑎𝑥(Δ𝑀𝑏, 𝜙) for each 𝑏. Similarly to the division constant 𝛽,
higher values of 𝜙 imply all vertices (even dissimilar pairs) have higher chances
to be chosen, guiding the annealing less aggressively. We then draw 𝑏 randomly
from the created probability distribution.

For comprehension, we present the pseudocode of the re-implemented move
function, where we assume 𝜋 is the current permutation represented by 𝑃:

Algorithm 2 Move function in guided annealing.
1: 𝑎 ← random vertex
2: for every vertex 𝑏 do
3: Δ𝐸𝑏 = 𝑚𝑎𝑥(𝑚𝑎,𝜋(𝑏) + 𝑚𝑏,𝜋(𝑎) − 𝑚𝑎,𝜋(𝑎) − 𝑚𝑏,𝜋(𝑏), 𝜙)
4: end for
5: Π ← probability distribution computed by normalizing Δ𝐸
6: 𝑏 ← vertex randomly drawn from Π
7: 𝑃 ′ ← permutation generated from 𝑃 by transposing images of 𝑎, 𝑏
8: return 𝑃 ′

Time complexity of the new version

The re-implemented move function runs in time 𝑂(𝑛), as it involves iterating
over all vertices to select the setting producing the most similarity. Recall the two
optimizations from Chapter 2; the first one, stating that it suffices to compute
differences in energy instead of evaluating the whole energy function in each
step, remains valid. It also led to Complexity 𝑂(𝑛) per move (though better on
average). The second optimization, yielding 𝑂(𝑛 log 𝑛) but a much better average
by working with neighbor sets, is overshadowed by the complexity of choosing the
right swap.

The similarity matrix is computed only once at the beginning of a run for
each graph, and most of the complexity in this process lies in computing the
centralities themselves. Consider betweenness, which is in practice (e.g., in the
Python library NetworkX) computed by the Brandes Algorithm and has a time
complexity of 𝑂(𝑛𝑚) [23].

Optimization of parameters by grid search

When re-implementing the move function, we introduced two parameters, 𝛽
and 𝜙, i.e., the division and probability constants. To determine their (at least
approximately) optimal values for each type of centrality, we carried out a grid
search on about 400 random ER, BA, and Stochastic Block Model graphs with
varying sizes (50 to 150 vertices) and parameters, although we later excluded
Stochastic Block Model graphs from the analysis due to their structural similarity
to ER graphs. The evaluated values of 𝛽 and 𝜙 ranged from 0.001 to 10, and for
every combination of parameter and graph, 30 simulations were conducted. We
then selected the parameters with the best average results. When working with
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PageRank, we also conducted a grid search to optimize the damping factor 𝛼, but
without significant differences in results; therefore, we keep using the default value
of 𝛼 = 0.85.

Generally, the few top combinations of parameters performed similarly, whereas
the other combinations performed significantly worse. We do not claim the global
optimality of the parameters we selected and recognize that different datasets
could produce different parameters. However, the parameters we selected were
sufficient to answer our hypothesis about guided annealing’s improvement in
symmetry calculation.

5.2.2 Erdős–Rényi model
We now examine guided annealing’s improvements in detecting approximate

symmetry, starting with the ER model. We compare the symmetry found by
annealing variants on ER graphs with 𝑛 = 20, 50, 100 and edge densities 𝑝 =
0.1, 0.3, 0.5, loosely following the methodologies of Pidnebesna et al. [10].

As discussed in Chapter 4, the ER model is truly completely random; it
lacks any internal structure stemming from a generation process and has no
predictable substructures that can be reflected in each other. There are no nodes
that play distinct roles, as in the case of hubs in the BA model. Given this total
randomness, it is unsurprising that centrality-guided annealing resulted in no
significant improvements, as can be seen in Figure 5.3. There were no statistically
significant differences between results produced by the different annealing versions
(in terms of 𝑡-test results checking the equality of the mean values of computed
symmetry). This holds for all graph sizes, and so we present only results for ER
graphs on 50 nodes. The results are visualized in violin plots, where each color
represents a version of annealing guided by a different centrality.

Figure 5.3 Comparison of the performance of simulated annealing guided by different
centralities on ER graphs. For each configuration of parameters, we conduct 50 simula-
tions (as stated in section 5.1.1).
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5.2.3 Grid
In contrast with the ER model, grid graphs are highly regular. We evaluate

improved annealing on grid graphs with 50, 100, 150 vertices in 2 and 3 dimensions.
In 2D, the lengths of sides are always set to 5 × 𝑥 and in 3D to 2 × 5 × 𝑥 [10]. For
all grid parameters, guided versions significantly improved computed symmetry,
with betweenness yielding the highest improvements. Figure 5.4 presents the
results for grids on 100 vertices. The remaining measurements on other grid sizes
are included in the appendix A.5.

Looking at the results, we observe that annealing guided by the clustering co-
efficient underperforms and finds the lowest symmetry. Degree centrality performs
slightly better than the clustering coefficient. This underperformance is common
not only in grid graphs but also, to some extent, in the more sophisticated random
network models, where we will see clustering performing the worst and degree
centrality sometimes approaching the results of more complex centralities but
rarely being the best. We explain this by the local scope of these two centralities;
they focus only on a node’s neighborhood without describing its broader position
in the network and describe the node in less detail.

Looking again at Figure 5.4, we observe that betweenness improves symmetry
detection the most. One possible explanation stems from the fact that in a grid
graph, betweeenness has more unique values than other centralities. For instance,
the vertices of a 5 × 20 grid have 48, 68, and 77 unique PageRank, eigenvector
centrality, and betweenness values (compared to only 3 different degrees and a
constant zero value of clustering). Betweenness thus grants the most nuanced
differentiation of vertices and enables annealing to align vertices with higher
precision.

Figure 5.4 Comparison of the performance of simulated annealing guided by different
centralities on grid graphs.
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5.2.4 Barabási–Albert model
We now move to more realistic random network models, starting with the BA

model. We conduct measurements on instances with 50, 100, and 150 nodes and
𝑘 values of 3, 5, and 7.

We present the results for BA graphs on 150 nodes and 𝑘 of 5 in Figure
5.5. The measurements on BA graphs with other parameters are included in
the appendix A.6. Overall, the improvements are less pronounced than in the
grid, especially for smaller graph sizes with 𝑛 = 50. As graph size increases to
𝑛 = 100, 150, the improvements become more significant. Versions of annealing
guided by eigenvector centrality, betweenness, and PageRank yield some level of
improvement over original annealing, with degree centrality following closely and
clustering performing the worst.

Figure 5.5 Comparison of the performance of simulated annealing guided by different
centralities on BA graphs with 150 nodes and k equal to 5.

We select eigenvector centrality, which seems to perform similarly or better than
other centralities, and rigorously evaluate its improvements, applying statistical
methods outlined in Section 5.1. We compute paired 𝑡-tests to determine whether
the two algorithms (eigenvector-centrality-guided and original annealing) compute
symmetry values with the same mean, along with Cohen’s 𝑑 to measure the effect
size, if relevant.

We present the results in Figure 5.6 and observe that apart from one com-
bination of parameters, annealing guided by eigenvector centrality produces
significantly better outcomes compared to original annealing, leading to 𝑝-values
above 0.05. We also see that the larger and sparser the graph is, the greater the
improvement, as evident by decreasing Cohen’s 𝑑 values.
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Figure 5.6 Comparison of the performance of original simulated annealing and
simulated annealing guided by eigenvector centrality, BA model, where 𝑘 is the number
of links of a new node.

5.2.5 Duplication-Divergence model
Finally, we conduct measurements on the DD model. The dataset consists

of DD graphs with node counts 𝑛 = 50, 100, 150 and divergence probabilities
0.1, 0.3. The results for DD graphs on 150 nodes and divergence probability 0.1
are presented in Figure 5.7, and the full measurements on all graph parameters
are included in the appendix A.7. Our findings indicate that guided annealing
significantly outperforms original annealing. It also holds that instances with di-
vergence probability 0.3 are less symmetric than those with divergence probability
0.1, which we attribute to the fact that as 𝜎 decreases, the graph becomes sparser
and starts to resemble trees, which are intuitively somewhat regular (at least in
the sense of having many leaf nodes likely sharing similar properties).

We select PageRank for a more rigorous evaluation, which seems to perform
at least as well as other centralities. Calculating paired 𝑡-tests and Cohen’s 𝑑
reveals that for smaller graph sizes, we cannot reject the null hypothesis, which
states that the mean of symmetry values calculated by the two algorithms is
the same. If we move to larger graph sizes, however, we see PageRank-guided
annealing outperforming the original, unguided version, as evident in Figure 5.8.
The improvements are more significant in sparser DD instances with lower 𝜎 and
also become more pronounced with growing graph size.
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Figure 5.7 Comparison of the performance of simulated annealing guided by different
centralities on DD graphs with 150 nodes and Divergence Probability 0.1.

Figure 5.8 Comparison of the performance of original simulated annealing and
simulated annealing guided by eigenvector centrality, DD model.

5.2.6 Larger graphs
In the previous section, we observed a trend in both the BA and DD models;

improvements achieved by guided annealing became more pronounced with growing
graph size. To further explore this trend, we extend our analysis to graphs of
sizes 300 and 500. Specifically, we focus on the performance of PageRank-guided
annealing on larger DD graphs (Figure 5.9) and eigenvector-centrality-guided
annealing on larger BA graphs (Figure 5.10). In both of these settings, the 𝑡-test
results allow us to reject the null hypothesis, stating that the two measured
algorithms compute symmetry values with the same mean. Moreover, effect sizes
confirm that the results of the improved, guided version are indeed better.

The results for DD graphs confirm that PageRank’s improvements are more
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significant in larger graphs (as evident by the effect sizes). The violin plot depicts
improvements in found symmetry on DD graphs with 𝑛 = 500 and divergence
𝑝 = 0.1, and the two lower subplots provide data on effect sizes for other DD
instances.

The trend also holds for the BA model, where, in the case of the 𝑛 = 500,
𝑘 = 5 graph (where 𝑘 is the number of links of a new node), the guided version
consistently outperforms the original one, almost to the extent that the worst
results of the guided version surpass the best results of the original version.

It can be challenging to grasp the practical significance that improvements in
measured 𝑆(𝐴) imply. We recall that 𝑆(𝐴) (and also 𝑆𝐹(𝐴)) is proportional to
the ratio of mismatched edges between the original and permuted graph. A more
accessible way of presenting the improvements compares the average number of
mismatched edges. While this method is limited since the value is incomparable
across different graphs, it is useful when examining one specific instance. In a
BA graph on 500 nodes with 𝑘 = 5, which has 2475 edges, the average number
of mismatched edges of the original, unguided annealing is ≈ 1916. In contrast,
eigenvector-centrality-guided annealing achieves an average of ≈ 1845, translating
to an improvement of about 71 fewer mismatched edges.

In conclusion, we can with confidence say that in both of these larger graph
settings, guided annealing outperforms the original version. In the case of the BA
model, we hypothesize that a possible explanation for this increasing improvement
stems from the fact that sparsity increases along with size, assuming 𝑘 is fixed.
Sparsity also often leads to higher symmetry, and we have already seen that guided
annealing’s improvements are more significant in graphs that are symmetric rather
than random (an example is non-existent improvement in the asymmetric ER
graph). In the case of the DD model, where the probability of duplication is
relative to graph size, this explanation cannot be applied, and we do not know
exactly why improvements increase, although the fact that chance during the
generation process plays a higher role in small graphs may be significant. Future
work could analyze the trend of increasing improvement in even larger instances
of random network models and reveal whether the improvements will further
amplify.
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Figure 5.9 Original annealing vs. PageRank-guided annealing on large DD graphs
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Figure 5.10 Original annealing vs. eigenvector-centrality-guided annealing on large
BA graphs. 𝑘 is the number of links of a new node.
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5.3 A greedy approach
To evaluate centrality-guided annealing from another perspective, we compare

its performance against a straightforward greedy approach. We introduce a variant
of annealing called gradient descent, which loosely adheres to the core idea of
gradient descent in mathematical optimization, i.e., always moving in the direction
of the steepest improvement (this variant, therefore, is annealing only in name,
since temperature plays no significant role in it).

The gradient descent version is defined by its re-implemented move function;
based on the current permutation, we randomly select 𝑛

2 possible transpositions
and choose the one minimizing energy.

While evaluating the energy function 𝑛
2 times is unnecessary, and only eval-

uating the proposed change in energy suffices, the time complexity of the new
move function still increases by an order of 𝑂(𝑛). Altogether, combined with
the orchestration, the gradient descent version becomes practically unusable for
graphs of sizes above circa 100 vertices. Due to this limitation, we restrict our
tests to graphs with 40 vertices.

Figure 5.11 Comparison of 𝑆𝐹(𝐴) computed by Gradient descent, centrality-guided,
and original versions of annealing on grid graphs with 40 vertices.

Figure 5.11 compares 𝑆𝐹(𝐴) computed by gradient descent, centrality-guided,
and original versions on the grids. Similar comparisons on BA and DD graphs are
included in the attachment A.8. We observe that even though the greedy approach
did introduce some improvements, especially in the 2D case, centrality-guided
annealing performs best on grid graphs. In the case of BA graphs, gradient descent
performed marginally better than the original version, but its improvements were
again not greater than those of eigenvector-guided annealing. The DD was the only
model where gradient descent performed slightly better than guided annealing. We
recall, however, that improvements of guided annealing became more pronounced
for larger DD graphs, so we cannot say in full generality that gradient descent
computes symmetry better than guided annealing in the DD model.
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In conclusion, the gradient descent variant, characterized by higher compu-
tational demands and generally comparable or worse results, cannot be deemed
more effective than guided annealing variants.
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5.4 Initialized annealing

5.4.1 Lateral Random Model and reshuffled permutations
In previous sections, we analyzed the efficiency of new annealing implemen-

tations in detecting symmetry within some selected random models. A different
approach considers a symmetric structure where some optimal symmetry is a
priori known, initializes the algorithm at some selected distance from the optimum,
and analyzes its ability to return to that optimum.

With that intention, we introduce the Lateral Random Model (LRM), which is
essentially a union of two ER graphs and is motivated by the brain structure [10].
An LRM instance denoted as 𝐿𝑛,𝑝,𝑞 can be generated by the following procedure:

• Generate 𝐺(𝑛
2 , 𝑝) an ER graph with vertices 𝑉 (𝐺) = {𝑣1, 𝑣2, ..., 𝑣𝑛}

• Generate 𝐺′, a copy of 𝐺 with vertices {𝑣′
1, 𝑣′

2, ..., 𝑣′
𝑛}, where 𝑣′

𝑖 is a copy
of 𝑣𝑖 (including its edges).

• Let 𝐿 be a union of 𝐺 and 𝐺′.

• Connect each pair of the original vertex and its copy 𝑣𝑖, 𝑣′
𝑖 in 𝐿 with

probability 𝑞.

The resulting graph is an LRM denoted as 𝐿𝑛,𝑝,𝑞, and the automorphism
𝑓 ∶ 𝐺 ↦ 𝐺′ defined as 𝑓(𝑣𝑖) = 𝑣′

𝑖 represents the left-right symmetry (LR), which
is the optimal symmetry of the LRM. To introduce some irregularity, we introduce
a 𝑘-rewired LRM. One rewiring involves deleting a random edge and adding an
edge between two randomly selected unconnected vertices. A 𝑘-rewired LRM is
generated by rewiring an LRM instance 𝑘 times. For small values of 𝑘, LR is still
expected to be the dominant symmetry of the graph [10].

To analyze the ability of an annealing variant to return to optimal symmetry,
we initialize it in permutations that are close to the optimum. Considering some
permutation 𝑃, we alter it by selecting two random vertices and swapping their
images under 𝑃. Repeating this ℓ times, we obtain an ℓ-reshuffled 𝑃 [10].

5.4.2 Returning to LR
Figure 5.12 presents measurements comparing PageRank-guided annealing

and the original unguided annealing in their ability to return to the LR of an LRM
instance when initialized in an ℓ-reshuffled LR. Annealing guided by eigenvector
centrality and betweenness performed similarly to PageRank-guided annealing, so
we do not present them. The LRM instances are of size 200, and the number of
simulations carried out for each instance is 30 [10].

The upper two subplots display the difference of approximate symmetry com-
puted by the algorithm initialized in an ℓ-reshuffled permutation and approximate
symmetry corresponding to LR, that is, 𝑆𝐹(𝐴) − 𝑆𝐹(𝐿𝑅). The 𝑥-axis represents
the number of rewires, while the 𝑦-axis represents the number of shuffles ℓ in
the initial ℓ-reshuffled LR. The lower two subplots compare the two algorithms
by Hamming distance between LR and the computed permutation. An ideal
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algorithm would converge to LR, making both the difference 𝑆𝐹(𝐴) − 𝑆𝐹(𝐿𝑅)
and Hamming distance from LR zero [10].

The results indicate that the difference between computed symmetry and LR
symmetry primarily depends on the number of swaps in the initial permutation.
The effect of 𝑘 rewires is less significant and can be attributed to the fact that as
the instance becomes more random, the approximate symmetry corresponding to
LR decreases [10]. Guided annealing performs better than original annealing on
instances with 5, 50, and 100 swaps in the initial permutation, as signified by the
lighter colors in these columns.

Similarly, guided annealing achieves slightly better results in terms of the
Hamming distance from LR for some LRM instances. The improvements are
visible only in limited parameter combinations, and within the same evaluation
framework, guided annealing performs significantly worse than other algorithms
computing approximate symmetry, such as approaches formulating the problem
as a relaxation of a quadratic assignment problem [10].

Figure 5.12 Comparison of the performance of original and PageRank-guided an-
nealing when initialized at various distances from LR. The top two subplots depict the
difference between computed symmetry and LR symmetry. The bottom two subplots
depict the Hamming distance between computed symmetry and LR.
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Conclusion
This thesis explored complex networks and algorithms computing approximate

network symmetry. Specifically, we focused on the effects of enhancing simu-
lated annealing by graph centralities to improve the computation of approximate
network symmetry. We hypothesized that guiding annealing to align vertices
with similar centralities would yield better results in finding symmetries than
annealing randomly selecting the next state since graph centralities are preserved
by automorphisms.

We discussed various graph centralities, including degree centrality, eigenvector
centrality, PageRank, betweenness, and clustering coefficient. We later used them
to enhance and guide simulated annealing to align similar vertices.

To evaluate new annealing versions, we constructed a dataset consisting of
grids, the classic Erdős–Rényi model, the Barabási–Albert model with preferential
attachment, and the Duplication-divergence network that models protein-protein
interaction networks.

We proposed a variant of annealing dynamically determining the number of
fixed points by penalizing them in the objective function instead of receiving
the maximum number of fixed points as an arbitrarily set parameter. Our
measurements demonstrated that this dynamic version performs similarly to
parametrized annealing but eliminates the risk of arbitrarily fixing a large number
of vertices. We continued using this dynamic approach to fixed points in all other
measurements.

We re-implemented simulated annealing by guiding it to probabilistically align
vertices with similar centralities instead of performing random transpositions.
Our measurements showed that this enhancement of annealing with PageRank,
betweenness, eigenvector centrality, and degree centrality improved symmetry
calculation on some of the models in the dataset. The clustering coefficient
generally yielded no significant improvements.

Specifically, no centrality improved symmetry calculation on the purely random
Erdős–Rényi model, while betweenness provided substantial improvements on grid
graphs. In the case of the Barabási-Albert and Duplication-Divergence models,
which more closely resemble real-world networks, the improvements were less
substantial than in the grid but still statistically significant. Interestingly, in these
two models, improvements became more pronounced with growing graph size.

Comparisons with a simple greedy algorithm that always selects the next
best state revealed that this greedy method did not outperform centrality-guided
annealing and was computationally more demanding.

We measured guided annealing’s ability to return to the optimal solution when
initialized close to it. Its improvements were detectable for instances of the Lateral
Random Model with few rewires. However, they were marginal and outmatched
by approaches different from simulated annealing.

We confirmed that guiding annealing with graph centralities improves the
computation of approximate symmetry. It has been shown other algorithms are,
in some settings, more effective than simulated annealing, and future work could
examine how other metaheuristic approaches, such as evolutionary algorithms,
benefit from centrality-based enhancement. It also would be interesting to gain
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a deeper understanding of certain features of the solution, e.g., examine how
the orbits of the computed permutation differ on various network models and
how introducing centrality guidance affects the orbits. Furthermore, it would be
interesting to test how guided annealing performs on real-world datasets, such as
brain connectome networks.
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A Appendix
A.1 DFP-SA vs. KFP-SA

As an extension to section 5.1.1, we present further analysis of the performances
of DFP-SA and KFP-SA.

The results we reached are similar to those in section 5.1.1. We also compare
the two approaches to FPs in the improved annealing implementation guided
by centralities, meaning we compare the performance of guided annealing with
parametrized FPs and guided annealing with dynamic FPs. The results again sug-
gest similar performance of both versions, confirming that the dynamic approach
is also valid in guided annealing.
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Figure A.1 Comparison of the performance of DFP-SA and KFP-SA (with K set to
0 and N/2) on ER graphs.
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Figure A.2 Statistical analysis of the performance of DFP-SA and KFP-SA (with K
set to 0 and N/2) on ER graphs.
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Figure A.3 Comparison of the performance of DFP-SA and KFP-SA (with K set to
0 and N/2) on grid graphs. The differences between the performance of the versions
were not statistically significant.
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Figure A.4 Comparison of the performance of DFP-SA and KFP-SA (with K set to
0 and N/2) on larger BA and DD graphs. This is a comparison of improved annealing
versions guided by centralities (as introduced in Chapter 5). The results are similar
to previous measurements, meaning the dynamic approach performs similarly to the
original version. There was no statistically significant difference between the performance
of the two versions.

A.2 Comparison of annealing versions guided by
different centralities

This section presents the measurements shown in section 5.2 in their entirety.
These measurements compare approximate symmetry measured by annealing
versions guided by different centralities on grid graphs, BA graphs, and DD
graphs.
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Figure A.5 Comparison of the performance of simulated annealing guided by different
centralities on grid graphs.
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Figure A.6 Comparison of the performance of simulated annealing guided by different
centralities on BA graphs.
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Figure A.7 Comparison of the performance of simulated annealing guided by different
centralities on DD graphs.
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A.3 Comparison of gradient descent and guided
annealing

This section displays additional measurements comparing symmetry computed
by the gradient descent annealing version and guided annealing.

Figure A.8 Comparison of symmetry computed by gradient descent, centrality-guided,
and original versions of annealing on BA and DD graphs on 40 vertices.
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