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Abstract:

Language models based on neural networks have become the foundation for solving
diverse tasks, yet their inner workings remain opaque. This dissertation investigates
which components of language models are crucial for representing and processing
information from texts. We mainly focus on multilingual models that can reuse rep-
resentation for processing tasks in different languages. We hypothesize that under-
standing how models represent linguistic phenomena is necessary to control their
function and alleviate issues hinderingmodels’ performance. To this end, we propose
novel interpretability techniques to analyze specific components of language mod-
els. Our approaches enable the localization of the representation of distinct types
of signals within the language models. The localization allowed us to contain our
analysis to specific modules and apply precise interventions to mitigate gender bias
or improve cross-lingual transfer.
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Abstrakt:

Jazykové modely založené na neuronových sítích se staly základem pro řešení nej-
různějších úloh, jejich vnitřní fungování však zůstává nejasné. Tato disertační práce
zkoumá, které komponenty jazykových modelů jsou klíčové pro reprezentaci a zpra-
cování textových informací. Zaměřujeme se především na vícejazyčné modely, které
mohou využívat reprezentaci pro zpracování úloh napříč různými jazyky. Předpo-
kládáme, že pochopení toho, jak modely reprezentují jazykové jevy, je nezbytné pro
jejich následné přizpůsobování a zmírňování problémů, kterými tyto modely trpí.
Za tímto účelem navrhujeme nové techniky pro interpretaci jednotlivých kompo-
nent jazykových modelů. Naše metody umožňují lokalizovat reprezentaci různých
typů signálů v těchto modelech. Tato lokalizace nám umožňuje omezit naši analýzu
na konkrétní komponenty a aplikovat cílené opravy modelů ke zmírnění genderové
zaujatosti nebo zlepšení mezijazykového přenosu.

Klíčová slova: zpracování přirozeného jazyka, jazykové modely, vícejazyčnost,
interpretovatelné strojové učení
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1
Introduction

The recent success of neural networks in the field of natural language processing

(NLP) has brought about their wide adaptation in society. Applications relying on

language models based on neural networks are today ubiquitous, to name a few:

machine translation, text generators, chatbots, and information search. However,

the fact that the way these models process language is not understood is a cause of

concern (Rudin, 2019; Bender et al., 2021; Bommasani et al., 2021). The models can

be affected by the unwanted harmful information and biases stemming from the data

they were trained on (Caliskan et al., 2017; Bolukbasi et al., 2016; Van Der Wal et al.,

2022). To control unwanted functionality of themodels, we first need to identify their

extent and the components responsible for encoding them (Bau et al., 2019; Brandl

et al., 2023).

A major obstacle in pursuing the interpretation of NLP models is the fast-paced

development in NLP. Notably, the field has massively changed since the beginning

of my PhD studies four years ago. However, within the broad pool of ever-rising

metrics: terabytes of textual data, billions of model parameters, and scores across

diverse benchmarks, there are a few aspects that remain constant. First of them is

perhaps surprisingly the structure of neural networks, which are still based on the

Transformer architecture (Vaswani et al., 2017). The second is the training objective,

which is a prediction of the unseen tokens (or simply words) in a sentence (Bengio

et al., 2003). The objective is realized either by a prediction of the sentence completion

(autoregression, Radford and Narasimhan, 2018) or by recovering the masked tokens

inside the sentence (autoencoding, Devlin et al., 2019).
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My PhD research pursued the goal of understanding the astounding success of

the language models following these two principles. To simplify the task, we divide

the Dissertation into analyses of each component of the models. Our studies focus

on the following aspects, which we analyze for each of the components:

Linguistic Background We studied how neural networks learn language-

relevant information and represent it. We find it crucial to focus on linguistic phe-

nomena in language corpora and theways languagemodels apprehend them (Tenney

et al., 2019), such as understanding syntactic, semantic, and discourse cues. The un-

derstanding of linguistics properties serves as an intermediate step for resolving the

more complex tasks, that define the utility of the NLP models.

Multilinguality Another motivation for our research is the investigation of the

applicability of the models across multiple languages. It has been observed, that the

models can be adapted to tasks in unseen languages with a relatively small amount of

in-language data (Wu and Dredze, 2019; Pires et al., 2019). We particularly focused on

the cross-lingual transfer of knowledge, i.e. sharing of information across languages.

Methods for Improvement Lastly, we focus on the practical outcomes of the re-

search. Specifically, we propose to make precise interventions in the models to im-

prove their performance in specific domains and tasks. We focus on the applications

to low-resource languages and underrepresented domains that cannot be simply re-

solved by the increase of the model size or data amount.

1.1 Structure

The motivation of the research articulated above, is addressed step by step through

in-depth analysis and adaptions of the models. To structure the outcomes of our re-

search, we formulate the general guiding questions that are successively answered in

the following chapters. The first two questions help us define the scope of the models

and the tools we use throughout our experiments. To comprehensively answer them

we refer to the past literature:
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1. How are language models built? We go over the Transformer architecture

in detail and overview the design choices characteristic to recent language

models implementations. We take a closer look at the training objective of

language modeling: token prediction based on context (Bengio et al., 2003;

Mikolov, 2014). We delineate the two main types of neural language models

that realize this objective: autoregressive (Radford and Narasimhan, 2018) and

autoencoding models (Devlin et al., 2019; Liu et al., 2020b).

2. What do language models learn? We present the common evaluation

benchmark of information learned by the models. We introduce the bench-

marks gradually from the ones evaluating the presence of linguistic features:

syntax, lexicon, and entity recognition. We then move to the more complex

tasks involving semantics, and discourse, and finally, discuss language under-

standing challenges that require world knowledge and basic reasoning.

The following two chapters provide a thorough survey of the literature on lan-

guage models. To address the first question in Chapter 2 we described the typical

structure of Transformer model and how it changed in the recent implementations.

Subsequently, in Chapter 3 we turn our attention to the second question. To answer

this question, we survey language features that LMs learn and the benchmark used

to evaluate them. We then move to the open research questions that are addressed

by our novel methods and experiments. The answers to these questions make up the

core of the dissertation and a comprehensive summary of my PhD research:

3. How do language models learn? The main motivation of the dissertation

is to shed light on the learning process of the models. We specifically, focus

on disentangling and tracing the signals to identify the components respon-

sible for the model’s “understanding” of particular aspects of language. For

that purpose, we apply and develop methods for model interpretation: atten-

tion head heatmaps (Raganato and Tiedemann, 2018; Marecek and Rosa, 2019),

probing tasks (Hewitt and Manning, 2019; Vig and Belinkov, 2019; Belinkov,

2022b), and causal tracing and intervention (Vig et al., 2020; Meng et al., 2022).

We have further developed these methods to identify the signals with higher

resolution and accuracy. Throughout the thesis, we answer this question by

analyzing the components of the models and noting down the findings in the

following format:

Finding 0

The key observations of our research are spelled in red text boxes.
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4. How can we improve language models? We build upon the understanding

of the model components to propose the targeted improvement of the models.

As stated in the researchmotivations above, we focus on the specific artifacts of

the models that cannot be improved by the fitting-all approach, such as scaling

the model size or data amount. We aim to improve the multilingual capabilities

of the analyzed models. Another focus is knowledge modification, which has

an impactful aspect in the erasure of unwanted harmful or stereotypical signals

learned by the model, most importantly gender bias (Stanczak and Augenstein,

2021; Nangia et al., 2020b; De-Arteaga et al., 2019). In the following sections,

we present our contributions in the following format:

Innovation 0

Our methods and improvements are distinguished in green text boxes.

Starting from Chapter 4, we walk through each component and representation

of Transformer: latent embeddings (Chapter 4), feed-forwards (Chapter 5), attention

heads (Chapter 6), and input and output layers (Chapter 7). In each of these chapters,

we describe our methodologies for interpreting encoded information and its signifi-

cance to language model quality, addressing the third research question. In reference

to the fourth question, we propose model adaptation methods aimed at improving

their performance throughout diverse languages or mitigating biases.

Finally, in Chapter 8 we discuss our findings in the context of previous and sub-

sequent research outcomes in the field. Chapter 9 summarizes our contributions,

outlines the direction for future research, and lists the contribution of collaborators

in the experimental part of the thesis.

1.2 Contributions

The contribution of this work is organizing and synthesizing our research outcomes

presented in the array of research articles. We list them here in chronological order:

1. Head ensembling the method aggregating the attention heads into the sets

capturing specific syntactic phenomena in English and across languages (Lim-

isiewicz et al., 2020). The method is described in Chapter 6. The original paper

was published in ACL Findings 2020.

2. Orthogonal Probing in this method we propose to probe for structural lin-

guistic signals and show how their representations are distributed in latent

representation (Limisiewicz and Mareček, 2021b). Further, we use this method

to explore information sharing across languages (Limisiewicz and Mareček,

4



2021a) and the ability to erase unwanted signals without harming the models’

overall performance (Limisiewicz and Mareček, 2022). Chapter 4 summarizes

orthogonal probing and its applications. Thementioned papers were published

in ACL 2021, EMNLP 2021, and Gender Bias in NLP workshop respectively.

3. Multilingual Vocabulary Analysis we thoroughly studied the multilingual
vocabularies obtained by popular tokenizers (Kudo and Richardson, 2018; Sen-

nrich et al., 2016) Our findings highlight the importance of allocating tokens

across languages for better performance throughout end-tasks. We also show

that sharing vocabulary entries across languages has varied impacts on cross-

lingual transfer across different tasks (Limisiewicz et al., 2023a). The contribu-

tion is presented in Chapter 7, the mentioned work was published in Findings

of ACL 2023.

4. Causal tracing andmodel adaptation for debiasing the method for identi-
fying the components responsible for encoding gender bias with higher resolu-

tion and accuracy. We show that this observation allows us to surgically inter-

vene in the models’ feed-forward layers in order to erase the unwanted signals

(Limisiewicz et al., 2023b). We describe the analysis and debiasing method in

Chapter 5. The research article appeared at ICLR 2024.
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2
How Are Language Models Build?

In this chapter, we introduce the basic technical concepts and components of the

Transformer model (Vaswani et al., 2017), which is at the time of writing this thesis

the dominant architecture used for language models and other natural language pro-

cessing systems. We survey the key components of the model and describe how they

are combined in the model. Subsequently, we present some of the most popular im-

plementations of the Transformer models that vary in architecture and applications.

2.1 Terminology

In this section, we will denote input and output sequences of a language model (LM)

as x̨= (x1, x2, . . . , xn) and y̨= (y1, y2, . . . , ym), respectively.
We use h̨= (h1, h2 . . . , hn) to denote the sequence of latent embeddings. We

will refer to the embedding at position t as ht, and in some cases, we will use ht,i

to denote the i-th dimension of the hidden representation at position t. When we

consider a model layer with latent embeddings in input and output, we will use h̨
Õ
to

denote the output representation of the layer. We will denote linear transformation

matrices in a network, as W and biases as b, i.e., a dense layer is given by equation:

hÕ = W · h + b.
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2.2 Transformer

A Transformer is a deep neural network, i.e., composed of multiple layers. Simi-

larly to previous deep architecture, it consists of a series of linear matrix multiplica-

tion and non-linear activation functions between them. The most distinct feature of

Transformers is their reliance on the attention mechanism (Bahdanau et al., 2015a):

2.2.1 Attention

The role of the attention (Att.) is to efficiently disseminate the information across

the context in sequential input. Attention allows passing the information across the

representations further apart in a sequence and in a more efficient way than the re-

current neural networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014), which

are sequential.

In the attention layers, three types of representation are computed for each ele-

ment of the sequence’s latent representation h̨: query, key, and value.

qt = WQ · ht,

kt = WK · ht,

vt = WV · ht

(2.1)

The key and queries are used to compute the attention scores. The softmax is applied

row-wise to the dot product matrix of keys and queries to obtain the weights (that

sum to one) for averaging value vectors at each position of the sequence.

hÕ = Attention(Q, K, V )(h) = softmax
A

Q · KT

Ô
dmodel

B

· V (2.2)

In this equation, dmodel is the dimensionality of the hidden vectors. Matrices Q, K, V

are column concatenations of the query, key, and value vectors in Equation 2.1.

In each layer, the attention is applied n times in parallel, as so-called attention
heads. The outputs of all heads are concatenated into a single output vector:

hÕ = MultiHeadAttention(Q, K, V )(h) =
= Concat(Attention(Qi, Ki, Vi)(h) . . .Attention(Qn, Kn, Vn)(h))

(2.3)

Therefore, the whole Transformer contains H ◊ L attention heads, where L is the

number of layers and H is the number of heads.
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Due to the necessity to compute the attention value for each pair of sequence

elements the complexity of the attention is O(n2
· dmodel). The presence of the n2

term makes the attention computationally costly for longer sequences. However,

multiple solutions have been proposed to mitigate this issue, to name a few: caching,

flash attention (Dao et al., 2022), or linear approximations (Choromanski et al., 2021).

Cross-Attention In sequence-to-sequence models, cross-attention is used to pass

the representation from the encoder to the decoder. This is done by taking the query

from the decoder corresponding layer and the key and value from the encoder layer.

Self-Attention In other cases, all of the query, key, and value vectors are computed

based on the same hidden vector, i.e. output of the previous layer.

2.2.2 Feed Forward

Feed-forward (FF) are the most common type of layer applied in neural networks.

In Transformer, feed-forwards have wider inner activation dimension. Dimension

widening is realized by the following steps: first, the hidden vectors (h̨) are projected

into a higher dimension; second, a non-linear activation function is applied; and last,

the latent representation is projected back to the original dimensionality (h̨
Õ
). The

reason for such a design is to use more expressive use of the non-linear activations in

the more dimensional space. The mathematical formula for the feed-forward layers

is straightforward:

hÕ
t

= FF(ht) = Wout · ‡(Win · ht + b1) + b2 (2.4)

Where Win œ Rdmodel◊dff projects the hidden vector to a higher dimension, while

Wout œ Rdff◊dmodel restoes the original dimensionality. b1, b2 are bias vectors and ‡ is a

non-linear activation function, ReLU (Glorot et al., 2011) or other function depending

on the particular implementation of Transformer architecture.

In recent large language models, the feed-forward usually takes up most of the

model parameters. Past works have investigated feed-forward as potentially themost

capable of storing the world knowledge learned by models (Geva et al., 2021; Meng

et al., 2022).
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2.2.3 Layer Normalization

Layer normalization (LN) is a technique used to stabilize the training thanks to the

normalization of the output distribution in intermediate layers (Ba et al., 2016). Layer

normalization (LN) is among the basic components of the Transformer, applied after

each Att. and FF layer. Its coefficients are computed across the hidden dimension for

each latent embedding in a sequence ht:

µLN,t = 1
dmodel

dmodelÿ

i=1
ht,i

‡LN,t =
ı̂ıÙ 1

dmodel

dmodelÿ

i=1
(ht,i ≠ µLN,t)2

(2.5)

The normalization is then applied in each forward pass:

hÕ
t

= LayerNorm(ht) = ht ≠ µLN,t

‡LN,t

(2.6)

Unlike batch normalization, layer normalization is computed for each element and

can be applied in an online regime, i.e. one element at a time.

2.2.4 Vocabulary and Input Embeddings

Each of the tokens in the input sequence is looked up in the input embedding matrix

Wembedding. The embedding matrix maps each element of the a priori set vocabulary

to a fixed-dimensional vector, so Wembedding dimensionality is Rv◊dmodel . The lookup is

easily performed by multiplying one-hot vectors (with ones at the token index in the

vocabulary) by the embedding matrix:

wet = Embedding(xt) = Wembedding · i=index(xt) (2.7)

In Chapter 7, we will take a closer look at the methods for allocating constructing

vocabularies and allocating parameters in the embedding matrix.

Positional Embeddings The position of the token in the sequence is encoded by

adding a fixed positional embedding to the token embedding. The positional em-

beddings for each position are fixed (i.e., not changed during training) across all the

positions t up to the maximum sequence length, by the following formulas:
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pet,2i = sin
3

t

100002i/dmodel

4

pet,2i+1 = cos
3

t

100002i/dmodel

4 (2.8)

Please note how the values for odd (2i+1) and even (2i) dimensions of the embedding

are computed by distinct functions. The token embeddings and positional embedding

are summed together, we denote it as the first hidden layer of the model:

ht = Embedding(xt) + pet (2.9)

The usage of position encoding is crucial in the Transformer models, as it is the only

way to distinguish repeating instances of the same token in the attention mechanism

(e.g. this sentence would have four instances of the word the). The positional em-

beddings also allow identifying the order of the tokens in the input sequence. The

main drawback of positional embeddings is the inability to generalize their values

for sequences longer than the a priori set maximum sentence length.

2.2.5 Output Linear Layer

The last layer maps the hidden representation to the output spaces. In language

modeling tasks, the output space is the vocabulary, and we denote its size as v. The

computation is straightforward, a linear layer followed by a softmax (SM) activation

function.

lt = Wsoftmax · ht (2.10)

Where Wsoftmax œ Rdmodel◊v and l corresponds to the logits for each token in the vo-

cabulary. Usually, the softmax layer is the same as the token embedding layer, i.e.

Wsoftmax = Wembedding. This procedure called weight tying reduces the number of pa-
rameters in the model and was proven to be beneficial for the model’s performance

(Press and Wolf, 2017). Subsequently, the softmax function is applied to obtain the

probability distribution for the predicted token:

P (yt|y<t) = softmax(l) = elt,i

q
v

j=1 elt,j
(2.11)

when applying the language model to the classification task through fine-tuning, the

output layer is replaced with a linear layer mapping the hidden representation to the

number of classes.
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Figure 2.1: A schema showing the typical autoregressive Transformer layer. It con-
sists of a self-attention layer and a feed-forward layer. Each of those components
is followed by a layer normalization and a parallel residual connection. Such layer
repeats L times and makes up the core of Transformer models.

Figure 2.2: A schema showing the decoder of Transformer model trained for next
token prediction (we assume that each word is represented as one token). The colors
and shapes of the modules correspond to the ones in Figure 2.1. We also present
input embeddings and output linear layers as blue trapezoids.

2.2.6 Bringing it All Together

Figure 2.1 presents how the aforementioned components are combined into a single

layer of the Transformer model. The layers are stacked on top of each other, with

the output of the previous layer being the input to the next one. Each attention and

feed-forward is accompanied by a parallel residual connection, which adds the input

of the layer to its output. The composition of multiple layers is presented in summary

Figure 2.2. The figure also includes look-up layers, responsible for assigning input

embeddings to the input tokens and the output linear layer with softmax that projects

the hidden embeddings into the vocabulary domain.

The architecture of the Transformer layers can vary slightly across different mod-

els. For instance, in GPT-Neox (Black et al., 2022), attention and feed-forward are

combined in parallel instead of sequentially.
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2.3 Model Families

Wedistinguish threemain Transformermodel families based on the arrangement and

usage of dense layers: encoder-decoder models, autoregressive models, and autoen-

coding models. We now give a brief overview of the most popular implementations

for each of the presented model families.

2.3.1 Encoder-Decoder Models

The original Transformer introduced in (Vaswani et al., 2017) is an encoder-decoder
model. That means it is composed of two separate stacks of layers, one for encod-

ing input sequence and the other for predicting new sequence, which can be the

sentence continuation or translation to another language. Specifically, this type of

model employs cross-attention to pass information from the encoder to the decoder

(see Section 2.2.1) This method of operation is also known as sequence-to-sequence

processing because the model is fed a sequence of tokens and produces another se-

quence, allowing outputting texts of a different structure than the input.

Translation Models The original Transformer model was designed specifically

for machine translation. Initially, Transformers have gained considerable popularity

specifically in this task due to the attention mechanism capability of passing infor-

mation across the sequence in a non-sequential manner (Bahdanau et al., 2015b), as

opposed to recurrent neural networks (Bengio et al., 2003). This aspect of Trans-

formers models is especially practical in translating between languages with distinct

word order, e.g. English to German.

Since the Vaswani et al. (2017) work, there have been multiple implementations

of translation models based on the Transformer architecture, for instance, MarianMT

(Junczys-Dowmunt et al., 2018). They have not varied significantly in terms of the

architecture, but rather in the training corpora and coverage of the languages.

BART Bidirectional and Auto-Regressive Transformers (BART) (Lewis et al., 2020)

is the family of language models trained for the reconstruction of corrupted texts. In

this pre-training task, the spans of input text are replaced by special labels (it’s a simi-

lar process to token masking described in the following Section 2.3.2). Subsequently,

the model’s decoder is tasked to generate the spans hidden by specific labels. The

multilingual version: mBART (Liu et al., 2020a) was shown to be a strong base model

for translation in multiple directions and supporting up to 50 languages.
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T5s Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020) were also pre-

trained on the task of reconstructing corrupted texts. Because of the sequence-to-

sequence nature of pre-training, T5 models have been also widely applied as a foun-

dation for fine-tuning to various end-tasks: translation, question answering, parsing

etc. There have been multiple versions of T5 models differing by size, training cor-

pora, and input representation. To name a few: original: trained on English data

only T5 (Raffel et al., 2020), multilingual: trained for 100 languages mT5 (Xue et al.,

2021), T5 with byte-level input: byT5 (Xue et al., 2022). The author of the thesis is

also responsible for the development of morphologically enriched T5 model myT5

(Limisiewicz et al., 2024), yet this work is beyond the scope of the dissertation.

2.3.2 Encoder-only Models

Encoder (or autoencoding) models are composed of just a single stack of layers.

It is used to encode a sentence into a fixed-size representation. Encoder models are

used for masked language model (MLM), where the whole sentences are used with

some tokens masked out. The model is trained to predict the masked tokens based on

the context from the left and right contexts. This type of model is especially useful

for representation learning for sequences and as a basis for fine-tuning downstream

classification tasks.

BERT Bidirectional Encoder Representations from Transformers (BERT) (Devlin

et al., 2019) was the first Transformer model to introduce the masked language model

pre-training task. In the training 15% of the tokens were selected for prediction, with

80% of them being replaced with a special token [MASK], 10% were replaced with a

random token, and 10% were left unchanged. The model was trained to predict the

original token based on the context from the left and right sides. An additional pre-

training task was the next sentence prediction, where BERT was trained to predict if

the two presented sentences appear one after another in the training corpus.

BERT for a few years has been widely used in NLP research and application for

textual embedding learning and fine-tuning to various downstream tasks (Rogers

et al., 2020). Its popularity gradually fades with the introduction of larger models.

RoBERTa Robustly optimized BERT approach (RoBERTa) (Liu et al., 2019b) builds

upon BERT, keeping the same architecture but changing the training procedure.

Mainly, it removed the next sentence prediction loss and used larger training cor-

pora and batch sizes.

14



XLM and Multilingual Pack Cross-lingual Language Model (XLM) (Conneau

and Lample, 2019a) is a type of training and a family of models oriented on the im-

plementation of language models supporting multiple languages. In addition to the

regularmasked languagemodel task, XLM considers a translation languagemodeling

task, where the model predicts the masked tokens in a language based on providing

translated context in another language as a reference.

XLM design has inspired the design of the multilingual version of RoBERTa:

XLM-RoBERTa (XLM-R) (Conneau et al., 2020a).

2.3.3 Decoder-only Models

The last type are decoder (or autoregressive) models. Similarly to encoders, they
are composed of a single stack of layers. However, its purpose is different: to predict

the next token in the sequence based only on the previous tokens. The main appli-

cation of decoder models is generative language modeling. Such models can be also

adapted to solving other tasks that can be achieved through instruction tuning. In

this method, the model is given tasks in the form of textual prompts that guide it to

produce the desired output.

GPT Generative Pre-trained Transformer (GPT) (Radford and Narasimhan, 2018)

was the one of first models to introduce autoregressive training with the Transformer

architecture. In the generative models, the left-hand context is masked in the Att.

layer, and the model is trained just to predict the next tokens. GPT was released in

multiple versions, with gradually increasing parameter sizes and training data: GPT-

2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023). Unfortu-

nately, the weights and training details of the latest models have not been released

to the public.

Some GPT-based implementations have been open sourced. A distinct example

is Eluther’s GPT-Neox (Black et al., 2022), whose distinguishing architecture feature

is the parallel connection of attention and feed-forward layers.

BLOOM BLOOM (Workshop et al., 2023) deserves special mention as a multi-

lingual autoregressive model. The developers have closely followed the regular

Transformer architecture, the most significant difference is the usage of ALiBi Posi-

tional Embeddings (Press et al., 2022). ALiBi allows training for unlimited sequence

lengths and, as shown in the experiments, it smoothes the training loss and improves

BLOOM’s downstream performance. The author of the dissertation was involved in

BLOOM development in the Evaluation and Interpretability group.
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Chinchilla Chinchilla models (Hoffmann et al., 2022) focus on finding the optimal

relationship between the model size and the training data size (under set computa-

tional constraints). The authors conduct a series of experiments of models of different

parameter counts and training sizes, showing that many previous GPT models could

benefit from increasing training data size. They introduce a new Chinchilla scaling

rule, which suggests to use of around 20 training tokens per model parameter. It is

important to note that the Chinchilla rule does not fit all scenarios, and the actual ra-

tio can be affected by the quality of training data, language, and specific architectural

choices.

LLaMAs Large Language Model Meta AI (LLaMA) (Touvron et al., 2023) gained

popularity thanks to its high performance and (semi-)openly available weights. The

model was trained on a large, mostly English corpus, which based on the Chinchilla

rule, should enable better utilization of the models’ parameters. The main architec-

tural distinction of LLaMAs is the usage of rotary position embeddings (Su et al.,

2024). In this approach, the position is encoded by multiplying token embeddings

by a rotation matrix, instead of adding fixed positional embeddings (as described in

Section 2.2.4).
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3
What Do Language Models Learn?

In this chapter, we present an overview of the features that are central to our analysis

of information encoded in language models. The content of this chapter overlaps in

content with our previous survey of syntactic signals encoded in neural networks

(Limisiewicz and Marecek, 2020). In the thesis, we add the analysis to cover the

broader range of linguistic features: lexical, semantic, and social biases. We also

extend the overview to cover the latest developments in the field.

In the first Section 3.1, we describe basic evaluation metrics that are used across

multiple linguistic benchmarks. The subsequent sections are dedicated to specific

linguistic features: morphology and syntax (Section 3.3), lexicon (Section 3.4), se-

mantics (Section 3.5), coreference (Section 3.6), sentence- and document-level un-

derstanding (Section 3.7), and social biases (Section 3.8).

3.1 Introduction: Basic Metrics

We begin the overview by introducing or reminding the basic metrics that are widely

used in the definition of most of NLP benchmarks.

3.1.1 Accuracy

Accuracy is a common measure used for the correctness of categorical prediction.

In NLP predicted categories are usually tags (classes) t œ T of tokens (words) in a

sequence (e.g. a sentence or a document) S .

Acc = #correctt

|S|
(3.1)
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3.1.2 F1 Score: Classification

High accuracy might be relatively simple to achieve. For instance, in the case of a

low number of unique tags and low variability, it is possible to always predict the

most frequent tag. Therefore, accuracy is prone to saturation (i.e. always returning

high values) preventing reliable comparison across models. More faithful evaluation

is based on computing recall (Rt) and precision (Pt) of prediction of each tag t in the

tag set T . They are defined as follows:

Pt = #correctt

#predictedt

,

Rt = #correctt

#goldt

(3.2)

Then for each tag t, we compute the F1 score, which is a harmonic mean of precision
and recall.

F1t = 2 · Pt · Rt

Pt + Rt

(3.3)

Tagging is a multiclass classification problem, and the F1 can be computed either as
macro-average, i.e.

F1macro = 1
|T |

ÿ

tœT
F1t (3.4)

An alternative aggregation method is micro-average, where precision and recall are

first computed globally for all classes together:

Pmicro =
q

tœT #correcttq
tœT #predictedt

,

Rmicro =
q

tœT #correcttq
tœT #goldt

,

F1micro = 2 · Pmicro · Rmicro

Pmicro + Rmicro

(3.5)

The main difference between the two is that the micro-averages are more sensitive to

the scores for the more frequent classes, while the macro-average is an unweighted

average treating all classes equally.
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3.1.3 F1 Score: Retrieval

In some tasks, we do not have a sequence of tags covering all tokens, but a set of

entities that should be retrieved from the sequence. We can define the precision,

recall, and F1 for a set of retrieved entities Er and the gold set of entities that are

present in a sequence Eg:

P = |Er fl Eg|

|Er|
,

R = |Er fl Eg|

|Eg|
,

F1 = 2 · P · R

P + R

(3.6)

Similarly to the classification task, F1 can be averaged in twoways: micro andmacro.
Yet the definition in retrieval task is different: macro-average is computed as an av-

erage of per-sentence F1 scores, while micro-average involves global sets of entities:
Eg and Er obtained for the whole dataset.

3.2 Intrinsic Evaluation

The intrinsic metrics evaluate language models on the original pre-training task, i.e.

token prediction. The simplest metric is computing the accuracy of predicting the

token the same as in classification tasks. Other popular metrics are:

Mean reciprocal rank (MRR) is sensitive not only to the prediction with the

highest probability but also considers the case when the correct token is among the

top predictions.

MRR = 1
N

Nÿ

i=1

1
rank(xi, P̂ (·|X \ xi))

(3.7)

Perplexity is a measure of uncertainty in predicting the next token. Unlike MRR

and accuracy, it is computed in the exponential space.

Perplexity = exp
A

≠
1
N

Nÿ

i=1
log P̂ (xi|X \ xi)

B

(3.8)

where P̂ (·|X \ xi) is the probability over the vocabulary of predicting token xi by

the model given its context: X \ xi. In both metrics, the lower scores indicate better

performance.
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(a) Syntactic analogies (b) Semantic analogies

Figure 3.1: Visualization of assumed representation of syntactic (present – past par-
ticiple) and semantic (capital – country) analogies in word embeddings. (Inspiration
for visualization: Ashutosh Singh).

Intrinsicmetrics are often used due to the simplicity of computation and dropping

the need for annotated data. However, such metrics do not provide a comprehensive

picture of language model’ capabilities and cannot replace the extrinsic evaluation

on linguistic or language understanding tasks.

3.3 Morphology and Syntax

This section summarizes the methods of inquiring models for syntactic information.

3.3.1 Morphosyntactic Analogies

In the early works on word embeddings (Mikolov et al., 2013; Pennington et al., 2014),

a strong focus was put on discovering spatial shifts in vector spaces. Such shifts cor-

respond to syntactic or grammatical features of words. The idea behind thismethod is

that the shift vectors between the pairs of words that differ in one feature are close to

parallel. For example, we could identify the shift between the embeddings of English

present and past participle, as shown in Figure 3.1a. Such analogies in vector space

was observed for the pairs of words in different types of morphosyntactic relations:

adjective – adverb; singular – plural; adjective – comparative – superlative; verb –

present participle – past participle. Syntactic analogies of this type were signs that
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the representations learned by deep models capture linguistic features. The evalua-

tion set of such relations was introduced by (Mikolov et al., 2013) as Google Analogy

Test Set (GATS). Another Bigger Analogy Test Set (BATS) with 99,200 analogy ques-

tions was introduced by Drozd et al. (2016). 1

An evaluation example consists of word pairs represented by the embeddings:

(v1, v2), (u1, u2). We compute the analogy shift vector as the difference between

embeddings of the first pair s = v2 ≠ v1. The result is positive if the nearest word

embedding (in terms of cosine similarity) to the vector u1 + s is u2.

WA = |{(v1, v2, u1, u2) : u2 ¥ u1 + v2 ≠ v1}|

|{(v1, v2, u1, u2)}|
(3.9)

3.3.2 Morphosyntactic Tagging

The morphosyntactic signal can be probed through the prediction of morphological

features (e.g., adjective gradation) or coarse part of speech tags. POS tags are the cat-

egories of words sharing similar grammatical roles in the sentence, e.g.: noun, verb,

adjective, adverb, pronoun etc. The evaluation of morphosyntactic tagging is usu-

ally done using token-level accuracy of sequence tagging, as shown in Equation 3.1.

Alternatively, for an undiversified set of tags, the F1 score is a preferable metric to

avoid benchmark saturation.

Morphosyntactic tags were part of one of the first annotated corpora, such as

Brown Corpus (Francis, 1965) and commonly used Penn Treebank (Marcus et al.,

1993). POS datasets were also introduced for multiple other languages than English,

e.g. French (Abeillé et al., 2019), Czech (Hajič et al., 2020), or German (Brants et al.,

2004). Significant effort has been put into unifying the annotation schemes for mul-

tiple languages (Zeman, 2008; Petrov et al., 2012).

3.3.3 Supertagging or Almost Parsing

Supertagging (Bangalore and Joshi, 1999) is an extension of morphosyntactic tagset

to categories capturing multiple levels of syntactic structure. In addition to the POS

tags, the model is tasked to predict the labels (supertags) for longer chunks of tokens:

constituency phrases (e.g., noun phrases, verb phrases). The phrases are nested on

multiple levels, which increases the complexity of the classification task. Supertag-

ging is also called “almost parsing” because it can be seen as a slightly simplified

version of the syntactic parsing task, which is described in the following section.

1The test set is called syntactic by authors; nevertheless, it mostly focuses on morphological fea-
tures.
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3.3.4 Syntactic Structure

The unsupervised or semi-supervised inference of multi-word linguistic structures is

the more challenging task of testing the syntactic signal encoded in the models.

Dependency trees are evaluated using unlabeled attachment score (UAS) or its

simpler-to-predict undirected variant (UUAS):

UAS = #correctly_attached_words

#all_words
(3.10)

To increase the level of sophistication, we can consider also specific types of relations

in the tree, i.e., labels. The equation for the labeled attachment score (LAS) is the

same, but it requires predicting correct dependency labels for each edge.

For evaluating constituency trees, we compute the retrieval F1 score, comparing
predicted phrases (or constituents) with the annotated ones. Denoted as Er and Eg

respectively, in the formulation of Equation 3.3.

Currently, the most popular datasets for dependency structures are annotated

under the universal dependencies (UD) framework (de Marneffe et al., 2021). The

UD project is based on community contributions and contains over 200 treebanks

in more than a hundred languages. Constituency parses are sometimes available in

treebanks mentioned in POS tagging Section 3.3.2, e.g. Penn Treebank (Marcus et al.,

1993).

3.4 Lexicon

3.4.1 Lexical Analogies

These types of associations are similar to morphosyntactic analogies but focus on

the meaning of the words rather than their grammatical form. The aforementioned

GATS (Mikolov et al., 2013) contains the following types of semantic relations: capital

– country; currency – country; city in the US – state; male – female persone (e.g.

boy – girl), examples of such relations are shown in Figure 3.1b. The same as in

morphosyntactic analogies, the correctness of association is measured by the Word

Analogy score (WA) defined in Equation 3.9.
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3.4.2 Hypernymy Structure

A lexical analogy of syntactic structures hypernymy trees, which are annotated on

lexicon (a set of lexemes, i.e. uniquewords). An example of such a lexicon isWordNet

(Miller, 1992). WordNet contains annotations of semantic relations between lexemes:

hypernymy, meronymy, and synonymy. The definition is similar to syntactic parsing,

but the edges represent one of the relations between lexemes.

In addition to data in WordNet (Miller, 1992), the task is also defined for multi-

lingual corpora collected into Open Multilingual WordNets (Bond and Foster, 2013).

3.4.3 Derivational Tree

Another type of structure involving lexemes is the derivational tree (Vidra et al.,

2019). Similarly to WorDnet, the dataset is an annotated lexicon organized into a

tree structure. The root of each of the trees is a morphological lemma connected

to its derivational forms. The number of edges between lexemes corresponds to the

number of derivational steps. The evaluation of parses is defined in the same way as

in WordNet or dependency parsing.

3.5 Semantics

3.5.1 Semantic Tagging

Semantic features can be also evaluated with the classification task. A popular exam-

ple is (Palmer et al., 2005) involving tags, such as: agent, location, purpose, direction
There are various sets of tags belonging to this category differing in the granularity of

categories (Teichert et al., 2017; Rudinger et al., 2018b). Bjerva et al. (2016) proposes

semantic sequence tagging, which is a semantic extension of part of speech (POS)

tagging, for instance, distinguishing determiners into categories such as proximal
(“this”) and distal (“that”).

3.5.2 Named Entity Recognition

A particularly useful set of semantic roles are named entities, such as: person, organi-
zation, geographical entity. This type of benchmark is called named entity recognition

(NER) and is used in various NLP applications. The popular dataset for named entity

recognition areMUC-7 (Chinchor, 1998), CoNLL-2003 (Tjong Kim Sang andDeMeul-

der, 2003),and OntoNotes (Weischedel et al., 2017). There are also recent efforts to

unify annotation schemes across distinct languages into one standard: Universal NER

(Mayhew et al., 2023).
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3.5.3 Word Seneses

Distinction of word senses is another task involving semantic reasoning. It precludes

distinguishing between multiple senses of a single polysemous word (such as “train”

in “I came on a train.” versus “I train young children.”). Performing well in this

benchmark requires sensitivity to context in learned representation, which is an ad-

vantage of neural networks over static word embeddings. An example of the dataset

is SemCor 3.0 (Miller et al., 1993), a corpus with annotations of word senses.

3.6 Coreference

In the coreference resolution task (e.g. OntoNotes Weischedel et al. (2017)), we con-

sider the phenomenon of several entities (typically pronouns or noun phrases) refer-

ring to the same real-world entity. For example, “John told Mary he liked her, and

she let him kiss her on her cheek.”, where “John”, “he” and “him” refer to one entity

(John) and “Mary”, “her” and “she” to another entity (Mary).

Winograd Scheme Winograd Schema Challenge (WSC) (Levesque, 2011) is a type

of coreference resolution benchmark that requires from the model a higher level of

language understanding and common sense reasoningTheWinograd scheme focuses

on cases of coreference that are morphologically and syntactically ambiguous, for

example: “Characters entertain audiences because they want people to be happy.”

where determinaing based on semantic cues whether “they” could refer to “charac-

ters” or “audiences” is necessary to correctly solve the example.

The coreference resolution is evaluated by F1 for retrieval of coreference links

between words or phrases, defined in Equation 3.6.

3.7 Sentence and Document Level Understanding

In this section, we describe higher-level tasks that require comprehension of both

semantic, and syntactic cues, and sometimes also common world knowledge facts.

Such benchmarks are currently the most widely used due to their complexity con-

nected with a lower risk of saturation.
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3.7.1 Natural Language Inference

Natural language inference (NLI) is a sentence-level benchmark where the model is

tasked with determining the logical relationship between two sentences: hypothesis

and premise. The task is realized as a three-way classification problem, with the la-

bels: entailment, neutral, and contradiction. If the premise can be logically inferred

from the hypothesis, the example should be labeled as entailment. In case the premise
contradicts the information provided in the hypothesis, the label should be contra-
diction. For the remaining cases, the hypothesis and premise are logically unrelated
and labeled as neutral.

The models are evaluated using the accuracy (see Equation 3.1). Noticeable da-

tasets for NLI are Stanford Natural Language Inference (SNLI) (Bowman et al., 2015)

and Multi-Genre NLI (MNLI) (Williams et al., 2018). Conneau et al. (2018b) intro-

duced a cross-lingual natural language inference (XNLI) version covering 15 lan-

guages.

3.7.2 Question Answering: Open Book

In the task of question answering (QA), the NLP system is provided a reference text,

e.g. Wikipedia paragraph, and a question about the information contained in the text.

In a popular dataset OpenBookQA the task is evaluated as a retrieval task, where

the system should identify the specific span of input text containing the answer or

indicate that the answer is not given.

The evaluation is done with retrieval-style F1 metric (see Equation 3.6). In other

benchmarks, examples includemultiple-choice options and standard accuracy of cor-

rect answers is reported, an example of such a dataset is:

Natural Questions (NQ) (Kwiatkowski et al., 2019) that includes 307,373

anonymized questions from the Google search engine and adequate Wikipedia snip-

pets.

OpenBookQA (OBQA) (Mihaylov et al., 2018) that contains 5,957 multiple-choice

questions aimed at combining science facts with common knowledge.

3.7.3 Question Answering: Closed Book

In a more challenging closed book setting, the model is queried for answers without
providing the reference text. Due to a lack of reference text, the evaluation is done

via the accuracy of choosing the correct answer from the multiple-choice question.

Examples of closed book benchmarks involve:
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AI2ReasoningChallenge (ARC) (Clark et al., 2018) that contains natural science

questions authored for use on standardized tests. It is partitioned into a Challenge

Set (1,172 test questions) and an Easy Set (2,376 test questions).

Measuring Massive Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021) contains 14,042 questions on 57 topics, including math, law,

or social sciences. The common practice is providing five correctly solved questions

as a reference in each test example

3.8 Bias and Fairness

So far, we described the datasets measuring the models’ competency in understand-

ing and processing language. Another aim of evaluation is to identify the societal

cues that the models use to make predictions. It has been shown (Bolukbasi et al.,

2016) that the models often rely on stereotypes and harmful biases learned from the

training data.

The bias evaluation checks to what extent the model’s prediction is influenced

by stereotypes related to, e.g., gender, religion, ethnicity. Another aspect of bias

is checking the model’s uneven performance for test cases related to specific social

groups. Such test cases are collected into challange sets (Nadeem et al., 2021; Nangia

et al., 2020a; Zhao et al., 2018; Rudinger et al., 2018a; Stanovsky et al., 2019), for which

the models often perform worse than for the general population.

In this Section, we first present the important distinction between factual and

stereotypical gender signals (Subsection 3.8.1) as an example of a problematic issue

connected to bias evaluation, then we overview the popular metrics for measuring

differentmanifestations of bias: stereotypical associations (Subsection 3.8.2), unequal

performance, and bias in generation (Subsection 3.8.4).

3.8.1 Factual and Stereotypical Gender Signal

We consider two types of gender information encoded in text:

• Factual gender or definitional gender is the grammatical (pronouns “he”,
“she”, “her”, etc.) or semantic (“boy”, “girl”, “king”, “queen”, etc.) feature of

specific word. It can also be indicated by a coreference link. We will call words

with factual gender as gendered in contrast to gender-neutral words.
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• Sterotypical gender or Gender bias is the connection between a word and

a specific gender with which it is usually associated, regardless of the factual

premise. The association is solely based makon stereotypical cues.2 We will

refer to words with gender bias as biased in contrast to non-biased.

Figure 3.2: A schema presents the distinc-
tion between gender bias (stereotypical
gender) of nouns and factual (i.e., gram-
matical) gender in pronouns.

Please note that those definitions do

not preclude the existence of biased and

at the same time gender-neutral words.

In that case, we consider bias stereotypi-

cal and aim to mitigate it in our method.

On the other hand, we want to preserve

the factual gender signal in gendered

words.

3.8.2 Association Bias

The first set of presented benchmarks

tests the stereotyping and negative asso-

ciations about specific social groups that

are encoded in LMs representations. We

present metrics for assessing bias based

on both single words and whole sen-

tences.

Word Embedding Association Test (WEAT) In Section 3.3.1, we described the

Google Analogy Test Set (Mikolov et al., 2013) that tests the association betweenword

embeddings to indicate the language andworld knowledge encoded in the vector rep-

resentations. Furtherworks (Caliskan et al., 2017; Bolukbasi et al., 2016) observed that

such association may not be based on facts but rather on stereotypes. Caliskan et al.

(2017) introduces the Word Embedding Association Test (WEAT) that measures the

associations between embeddings of words connected to social groups and indepen-

dent attributes. For instance, they compare the association of typically European-

American and African-American names with pleasant and unpleasant words, and

male and female names with career and family-related words.

Similarly to the analogy test, they use the cosine similarity between the embed-

dings as a similarity measure s(u, v) = cos(u, v). For two sets of target words U , V

(e.g. male and female names), and two sets of attribute words A, B (e.g. career and

family-related words), the WEAT score is defined as follows:

2For instance, the words “nurse”, “housekeeper” are associated with women, and words “doctor”,
“mechanic” with men. None of those words has a grammatical gender marking in English.
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(3.11)

WEAT scores closer to zero indicate lower bias.

StereoSet (StereoS) Nadeem et al. (2021) propose a dataset for measuring stereo-

typical biases of sentences on four domains: gender, profession, race, and religion.

The dataset contains 16,995 context sentences for which the models should pre-

dict the most likely completion from the set of three options: stereotypical, anti-

stereotypical, and meaningless. For instance, a test example for the gender domain

includes the following context: “Girls tend to be more than boys.” and three pos-
sible completions: “soft” (sterotypical), “determined” (anti-stereotypical), and “fish”
(unrelated).

The evaluation metrics are computed similarly to classification tasks. Instead of

accuracy authors propose three aggregated scores:

1. Language Modeling Score (LMS) – the percentage of sentences where the

model prefers the meaningful (stereotypical or anti-stereotypical) over the

meaningless completion;

2. Sterotype Score (SS) – the percentage of sentences where the model prefers the

stereotypical over the anti-stereotypical completion;

3. Idealized Context Association Test (ICAT) score that combines the previous

two: icat = lms · min(ss, 100 ≠ ss)/50.

Please note that typically lower ss scores refer to less biased models since they

are closer to 50.

CrowS pairs In s similar attempt to StereoS, Nangia et al. (2020a) proposed another

association dataset for language models, for more stereotype types.3 Unlike StereoS,

the evaluation is not based on multiple-choice completion, but on estimating the

likelihood under the model of the sentences completed with stereotypical and anti-

stereotypical candidates. The difference in likelihood indicates the bias of the model.

3They consider the following aspects: race, gender, sexual orientation, religion, age, nationality,
disability, physical appearance, occupation
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3.8.3 Performance Bias

Another manifestation of bias is the difference in system performance that affects

specific social groups unequally. This type of bias often stems from the uneven fre-

quency of training examples that consider particular groups. Past works introduced

a challenge sets that focuses on quality evaluation for data considering underrepre-

sented groups to assess the prevalence of performance bias.

WinoBias (WB) Zhao et al. (2018) proposes using a dataset containing a Wino-

grad Schema Challenge (WSC) examples (Levesque, 2011). Each example contains

two gender-neutral profession names and gendered pronouns. The task is to iden-

tify the coreference link between the pronouns and the correct professional. The

dataset consists of two parts: pro-stereotypical, where coreference links to a pro-

fession name with stereotypical gender matching the gender of the pronoun; in

anti-stereotypical examples, the profession’s stereotypically assumed gender is dif-

ferent from the gender of the pronouns. The stereotype of the profession is based

on the gender statistics of the profession provided by the US Department of Labor

https://www.bls.gov/cps/cpsaat11.htm.

An example from the anti-stereotypical subset: “The nurse notified the patient that
his shift would be ending in an hour.” In this example, the coreferential link relies

on semantics, while in other instances, coreference can be resolved solely through

syntax.

The evaluation is computed by the F1 score of correctly predicting the corefer-

ence link between the pronoun and the profession name. The scores are computed

separately for pro-stereotypical vs. anti-stereotypical and male vs. female examples

and compared against each other. The difference in scores is an indicator of bias

presence in the model.

WinoGender (WG) (Rudinger et al., 2018a) proposed a similar dataset based on

the WSC for coreference resolution with gendered pronouns. The main difference

is that they also considered examples with neutral gender, denoted by the singular

they/them pronouns.

Gedner Bias in Machine Translation: WinoMT Based on the WinoBias

and WinoGender evaluation examples Stanovsky et al. (2019) proposed a dataset

WinoMT (WM) for evaluating bias in translation from English into eight languages

with morphological marking of gender (e.g., German, Spanish, Russian, Hebrew).
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In WinoMT, the correctness of the translation is computed by the F1 score of cor-

rectly generating gender inflection of profession words in the target language. The

authors propose two scores measuring the system’s preference for stereotypical vs.

anti-stereotypical and male vs. female translations.

Specifically, �G measures the difference in gender translation correctness (F1)

between masculine and feminine entities:

�G = F1m.trans. ≠ F1f.trans. (3.12)

Similarly, �S measures the difference in F1 between pro-stereotypical and anti-

stereotypical instances of gender role assignments.

�S = F1pro.trans. ≠ F1anti.trans. (3.13)

The author of this dissertation has also contributed to extending the MT Gender

dataset to Polish and Czech (Kocmi et al., 2020).

3.8.4 Bias in Natural Language Generation

To better understand gender bias in language generation, we construct our dataset

of prompts and an interpretable diagnostic measure.

We use the set of professions chosen and annotated by Bolukbasi et al. (2016).4

Each profession was assigned two scores: factual score xf (originally called defini-
tionality) and stereotypical score xs. By convention, scores range from≠1 for female-
associated words to 1 for male ones.5 We fill the proposed profession words in the

prompts of a structure:

“The lifeguard laughed because …”

where the lifeguard is by definition a gender-neutral word (xf = 0) and associ-

ated with the male gender by a stereotypical cue (xs = 0.6). We measure the prob-

abilities for gendered prediction for a given prompt PM(o|X). For that purpose,

we use pronouns o+ = “he” and o≠ = “she”, as they are probable continuations

for given prompts. Subsequently for each prompt, we can compute emprical score
ye = PM(o+|X) ≠ PM(o≠|X). To estimate the relationship between the observed

score and annotated ones xs and xf , we construct a linear model:

4The data is available at: https://github.com/tolga-b/debiaswe/blob/master/data/

professions.json

5We use positive values for male gender following the original paper. This is only an arbitrary
choice, and switching polarities wouldn’t affect this analysis. Importantly, we do not intend to ascribe
negative valuations to any of the genders.
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ye = as · xs + af · xf + b0 (3.14)

The linear fit coefficients have the following interpretations: as is an impact of

stereotypical signal on the model’s predictions; af is an impact of the factual (se-

mantic) gender of the word. Noticeably, ye, xs, and xf take the values in the same

range. The slope coefficients (as and af ) tell how the change in annotated scores

across professions impacts the difference in predicted probabilities of male and fe-

male pronouns. The intercept b0 measures how much more probable overall are the

male than the female pronouns, i.e., when we marginalize the subject.
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4
Latent Representation

In this Chapter, we describe works focused on identifying the information learned

by latent representations. Our motivation is to find out what kind of information

is encoded in latent embeddings h and what connects or differentiates the encoding

of distinct kinds of linguistic information throughout languages. In particular, we

summarize previous literature on probing which is a lightweight method for such

evaluations in Section 4.1. Subsequently, we describe the strengths of our novel or-
thogonal probe in Section 4.2, such as enabling the separation of the representations
of specific linguistic features, and higher robustness to memorization of randomly

generated structures. Further in Section 4.4, we extend the orthogonal probe to a

multilingual setting, testing the hypothesis of uniformity and orthogonality of rep-

resentation across diverse languages. Finally, Section 4.5 outlines the application of

orthogonal probe to filter unwanted information from the latent space.

4.1 Probing: FromTags to Structure

4.1.1 Probing For Tags

Probes are classification layers (see Section 2.2.5) trained on top of the model with

frozen parameters (i.e., not updated in training). A standard probe takes a vector rep-

resentation as an input and predicts the downstream task-specific labels, e.g. NER,

or POS tags. Due to weight freezing, the performance of the probe is an indicator

where the task-related classification is encoded in the model (Belinkov, 2022a). Se-

quence tagging is a common task used in probing due to its simplicity and context

dependence.
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The probes are often applied to the latent representation of the model, i.e. the

output of the intermediate instead of the last layer. Probing the intermediate layers

allows for identifying the parts of the models that encode the information in ques-

tion. Such experiments revealed that specific layers tend to “specialize” in encoding

different types of linguistic signals (Tenney et al., 2019).

Researchers have previously used various types of tagging to determine whether

the model encodes specific information. For instance, POS and super-tags were

probed for by (Liu et al., 2019a; Blevins et al., 2018) to evaluate the morphosyntactic

signal, SRL or NER to evaluate the semantic information (Conneau et al., 2018a), and

coreference was probed for by (Tenney et al., 2019).

4.1.2 Structural Probes

Probing for structure, typically syntactic trees is more sophisticated than tagging.

Structual task complexity makes it harder to memorize the labels in the added clas-

sification layer, and thus discern the models that actually learn the relevant signal in

pre-training (Hewitt and Liang, 2019). Moreover, structural tasks check the model’s

ability to encode information highly dependent on the context.

The work Hewitt and Manning (2019) introduced structural probe to examine the
encoding of syntactic dependency structure in latent embeddings of LM. They intro-

duced a linear transformation on top of the contextual word representations from a

pre-trained neural model (e.g. BERT Devlin et al. (2019), ELMo Peters et al. (2018)).

The transformationwas gradient optimized to approximate the distance in a syntactic

tree1 by squared L2 norm of the differences between transformed word vectors.

dB(hi, hj)2 = (B(hi ≠ hj))T (B(hi ≠ hj)), (4.1)

where B is the linear transformation matrix and hi, hj are the vector representations

of words at positions i and j. The probe is optimized to approximate the tree distance

(dT ) by gradient descent objective:

min
B

1
s2

ÿ

i,j

---dT (wi, wj) ≠ dB(hi, hj)2
---, (4.2)

1syntactic tree distance is defined as the number of edges on a path between two considered words.
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(a) Structural Probe

(b) Orthogonal Probes (ours)

Figure 4.1: Comparison of the Structural Probe of Hewitt and Manning (2019) and the
Orthogonal Probes proposed by us.

where s is the length of a sentence. Moreover, the same work introduced depth

probes, where vectors were linearly transformed so that the squared L2 length of the

mapping approximates the token’s depth in a dependency tree, which is equivalent

to the distance from the root of the tree:

||hi||
2
B

= (Bhi)T (Bhi)d (4.3)

Gradient descent objective is analogical:

min
B

1
s

ÿ

i

---ÎwiÎT ≠ ÎhiÎ
2
B

--- (4.4)
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4.2 Introducing Orthogonal Probing

In this section, we introduce our contribution to the field of probing: orthogonal
probe, originally introduced in Limisiewicz and Mareček (2021b). The motivation of

this method is to identify the specific components of the latent space that encode

specific signals. It also enables us to map the interaction between different kinds

of encoded signals (e.g. syntactic and lexical) and filter unwanted ones (e.g. gender

bias).

4.2.1 Methodology

We introduce orthogonality to the probes. For that purpose, we perform singular

value decomposition (SVD) of the matrix B

B = U · D · V T , (4.5)

where the U and V are orthogonal matrices, and D is a diagonal matrix. Notably,

when we substitute B with U · D · V T in Equation 4.1, the matrix U cancels out. It

can be easily shown by rearranging the variables in the equation:2

dB(hi, hj)2 = (UDV T (hi ≠ hj))T (UDV T (hi ≠ hj))
= (hi ≠ hj)T V DT UT UDV T (hi ≠ hj)
= (hi ≠ hj)T V DT DV T (hi ≠ hj)
= (DV T (hi ≠ hj))T (DV T (hi ≠ hj))

(4.6)

We can replace the diagonal matrix D with a vector d̄ and use an element-wise prod-

uct (we will call d̄ the scaling vector). Finally, we get the following equation for

distance orthogonal probe:

d
d̄V T (hi, hj)2 = (d̄ § V T (hi ≠ hj))T (d̄ § V T (hi ≠ hj)) (4.7)

The same reasoning can be applied to Equation 4.3 to obtain depth orthogonal probe:

||hi||
2
d̄V T = (d̄ § V T hi)T (d̄ § V T hi) (4.8)

Thus, we showed that orthogonal probe is mathematically equivalent to structural
probe.

2A complete derivation can be found in the appendix.
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4.2.2 Multitask Training

Orthogonal probe can be easily adapted to multitask probing for a set of objectives O.

We use one shared orthogonal transformation and different scaling vectors for each
task. In one batch, we compute a loss for a specific objective. For each batch (with

objective o œ O), a forward pass consists of multiplication by a shared orthogonal

matrix V T and product-wise multiplication by a vector d̄o designated for a specific

task o. All the batches are shuffled together in a training epoch.

4.2.3 Orthogonality Regularization

We use Double Soft Orthogonality Regularization (DSO) proposed by Bansal et al.

(2018) to coerce orthogonality of the matrix V during training:

⁄ODSO(V ) = ⁄O(||V T V ≠ I||2
F

+ ||V V T
≠ I||2

F
) (4.9)

where || · ||F stands for the Frobenius norm of a matrix.

4.2.4 Sparsity Regularization

In further experiments, we investigate the effects of sparsity in scaling vectors. For
that purpose, we compute the L1 norm and add it to the training loss. A similar reg-

ularization term, Lasso, was proved effective for coefficient selection in linear models

(Tibshirani, 1996).3

⁄SÎd̄Î1 (4.10)

4.2.5 Training Objective

Altogether, the loss equation of distance orthogonal probe for objective o œ O is the

following:

Lo,dist. = 1
s2

ÿ

i,j

---dT (wi, wj) ≠ d
dōV T (hi, hj)2

--- + ⁄ODSO(V ) + ⁄SÎdōÎ1 (4.11)

And in depth orthogonal probe:

Lo,depth = 1
s

ÿ

i

---ÎwiÎT ≠ ÎhiÎ
2
dōV T

--- + ⁄ODSO(V ) + ⁄SÎdōÎ1 (4.12)

The loss is normalized by the number of predictions in a sentence and averaged across

a batch.

3Sparsity regularization was used only in one experiment, see Table 4.2
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4.2.6 Orthogonal Filters

Orthogonal probe can be optimized for multiple objectives and identify the specific

dimension in the latent space to encode the signals. This property inspired us to

apply orthogonal probe to filtering information specific to one objective from the

latent space while preserving information related to another. In the algorithm, we

aim to filter out the latent vector’s dimensions that encode one kind of information

(denoted s) while keeping the dimensions encoding another signal (denoted f ). 4.

Thanks to orthogonal probe, we can diminish the information by masking the

dimensions with a corresponding scaling vector coefficient larger than small ‘. The

orthogonal s-filter is defined as:

F≠s = ≠æ[‘> abs (d̄s))], (4.13)

where abs(·) is element-wise absolute value and ≠æ
is element-wise indicator. We

apply this vector to the representations of hidden layers:

ĥ = V · (F≠s § (V T
· h)) (4.14)

To preserve signal f we train a separate probe for it, i.e., we share the same orthogo-

nal matrix V and use a different scaling vector d̄f . The latent dimension is kept when

its importance (measured by the absolute value of the scaling vector coefficient) is

higher in probing for f than in probing for bias. We define f preserving Orthogonal

s-filter as:

F≠s,+f = F≠f + ≠æ[‘ Æ abs(d̄s) < abs(d̄f )] (4.15)

4.3 Multitask Orthogonal Probes

We train probes on top of each of the 24 layers of the English BERT large-casedmodel

(Devlin et al., 2019) hosted at HuggingFace (Wolf et al., 2020). We optimize for the

approximation of depth and distance in four types of structures: syntactic depen-

dency, lexical hypernymy, absolute position in a sentence, and randomly generated

trees. In the following paragraphs, we describe them in more detail:

4The letters s and f are used to denote the sterotypical and factual signal, respectively. We use
this notation because, in our experiments, we will focus on filtering gender bias
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Dependency Syntax We probe for syntactic structure in universal dependencies

parse trees (de Marneffe et al., 2021). Specifically, we use the trees from the English

Web Treebank (Silveira et al., 2014a). We focus on distances between words in de-

pendency trees and their depths, i.e., distances from the syntactic root.

Lexical Hypernymy We introduce probing for lexical information. We optimize

probes to approximate the distance between pairs of words in the hypernymy tree

and the depth for each word. For that purpose, we use the tree fromWordNet (Miller,

1992). We consider lexical distances between pairs of nouns and pairs of verbs in

sentences and lexical depth for each noun and verb. We use gold POS information

and disambiguate the meaning of a lexeme for sets sharing the same orthographic

form (sysets).

Position in a Sentence Probing for the sentence index of a word and positional

difference between pairs of words.

Random Structures We probe for randomly generated trees. This control task

allows us to determine the extent to which our probes memorize the structures and

thus overfit to the training data.

4.3.1 Experiments

Weassess Spearman’s rank correlation between gold and predicted values. We report

the average correlations for the sentences with lengths from 5 to 50 in the same way

as Hewitt and Manning (2019).

Our orthogonal probes are trained jointly for multiple objectives. We evaluate

the effect of multitasking by checking different configurations: A) separate probing
for each objective; B) joint probing for distance and depth in the same structure

type; C) joint probing for distance in all structures; D) joint probing for depths in all
structures; E) probing for all objectives together. We compare the results with two

baselines: I) optimizing only scaling vector5; II) structural probes.

Dimensionality of Scaling Vector We hypothesize that the orthogonality regu-

larization allows us to find embedding subspace capable of representing a particular

linguistic structure. We examine the performance of lower-rank projections and ask

whether further restrictions of dimensionality affect the results. Subsequently, we

analyze interactions between subspaces related to a particular objective in a joint

probing setting.

5Optimizing only scaling vector equates to fixing U and V from Equation 4.5 as identity matrices.
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4.3.2 Results

We compare Spearman’s correlations of predicted values with gold tree depths and

distances in Table 4.1. The correlations obtained from orthogonal probes are high
for linguistic structures: from 0.803 for lexical distance to 0.882 for lexical depth.

Predicted positional depths and distances nearly match gold values.

Orthogonal probes are selective Correlation on training data for random struc-

tures is very weak, hinting that the probes do not memorize structures during train-

ing but extract them from the model’s representations. The correlation for distances

is higher than for depth. We hypothesize it is because the probes learn some basic

tree properties.6

Finding 1

Using orthogonal regularization in probing mitigates the risk of memorizing

the examples revealed in supervised training.

Orthogonal probes capture linguistic signals The results obtained by orthogo-
nal probes are close to those of structural probes. For dependency distance, the differ-
ence is not statistically significant. Notably, correlations, computed on the training

set, for randomly generated trees decreased. It suggests that orthogonal probes are
less vulnerable to memorization. In multitask probing, correlation evenly decreases

across all tasks, while selectivity (the difference between average correlation for de-

pendency, lexical, and positional objectives and random objectives) increases from

0.673 to 0.726. Optimizing only a scaling vector gives distinctly lower correlations.
These results emphasize the necessity of changing the coordinate system to iden-

tify the dimensions that correspond to linguistic information more than underlying

neurons.

In Figure 4.2 (upper), we observe that the performance varies throughout the

layers, confirming previous observations by Hewitt and Manning (2019) and Tenney

et al. (2019). The mid-upper layers tend to be more syntactic, and the mid-lower

ones are more lexical. Predicting word position is more accurate in the lower layers,

dropping significantly toward the last layers. This is because, in BERT, positional em-

beddings are added before the first layer. Random structure probes maintain steady

results across all the layers.

6For instance, when the distances between nodes X and Y, and Y and Z are both 1, then the distance
between X and Z needs to be 2
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I II A B C / D E

multitask orthogonal probing

Scaling
Vector
only

Structural
Probe

Orthogonal
Structural
Probe

distance
+ depth

all distances
or all depths

all tasks

DEP Depth .459 ±.001 .856 ±.001 .858 ±.001 .855 ±.001 .850 ±.002 .852 ±.001
Layer 17 18 17 16 16 16

DEP Dist. .513 ±.001 .843 ±.001 .842 ±.001 .838 ±.001 .833 ±.001 .832 ±.002
Layer 18 17 17 17 17 16

LEX Depth .572 ±.001 .892 ±.002 .882 ±.002 .869 ±.005 .885 ±.004 .873 ±.005
Layer 13 8 8 8 6 9

LEX Dist. .560 ±.001 .816 ±.008 .803 ±.005 .789 ±.004 .792 ±.010 .792 ±.005
Layer 13 6 6 7 6 6

POS Depth .232 ±.013 .989 ±.001 .983 ±.001 .986 ±.001 .976 ±.004 .982 ±0.001
Layer 5 1 6 1 2 3

POS Dist. .441 ±0.001 .980 ±.001 .979 ±.001 .977 ±.001 .978 ±.001 .976 ±0.001
Layer 1 4 4 4 5 4

RAND Depth .008 ±.002 .206 ±.010 .136 ±.007 .129 ±.010 .163 ±.023 .107 ±.019
Layer 6 17 18 18 18 19

RAND Dist. .149 ±.001 .242 ±.005 .220 ±.006 .206 ±.004 .209 ±.005 .208 ±.007
Layer 17 19 18 17 19 15

AVG. DEP, LEX, POS .463 .896 .891 .886 .886 .883
ABOVE - AVG. RAND .385 .673 .713 .718 .699 .726

Table 4.1: The highest Spearman’s correlations (across layers) between predicted val-
ues and gold annotations on a held out test set (for random structures computed on
a train set to test memorization). Each column represents another variant of train-
ing. The standard deviation was calculated for six runs. Each row’s optimal result is
underlined (except baseline I); results within 95% confidence interval based on
Student’s t-test Student (1908) are marked in bold.

Finding 2

Probing reveals that in BERT the most accurate representation of lexical struc-

tures is found in the mid-lower layers, while syntactic structures in the mid-

upper layers.

Signal is encoded in a low-rank subspace of the embedding space Weobserve

that orthogonality constraint is quite effective in restricting the probe’s rank. In

most of our experiments, the majority of scaling vector parameters converged to zero.
It allows the selection of sparse subspaces encoding particular linguistic features.

We want to answer whether such subspace has enough capacity for each probing

task. For that purpose, we zero out the dimensions with corresponding scaling vector
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Subspace Share of Dropped Sparsity Regularization

Dimensions ⁄S = 0.005 ⁄S = 0.05 ⁄S = 0.1
Dims Corr 25% 33% 50% Dims Corr Dims Corr Dims Corr

DEP Depth 137 .858 .783 .758 .700 26 .856 2 .832 1 .822
DEP Dist. 189 .842 .800 .781 .741 76 .835 21 .784 14 .746

LEX Depth 19 .884 .841 .822 .784 19 .875 11 .852 10 .836
LEX Dist. 263 .805 .768 .755 .722 92 .792 60 .756 52 .737

POS Depth 20 .983 .760 .686 .526 11 .982 6 .981 3 .981
POS Dist. 98 .979 .890 .859 .627 38 .978 14 .975 11 .970

RAND Depth 259 .128 .108 .101 .091 6 .037 1 .011 1 .010
RAND Dist. 399 .222 .215 .213 .208 116 .208 20 .163 13 .155

Table 4.2: The highest Spearman’s correlations (across layers) between predicted val-
ues and gold annotations on a held-out test set (for random structures computed on a
train set). In columns 2-3, results, when only dimensions with corresponding scaling
vector values closer to zero than ‘ = 10≠4 are kept. In columns 4-6, a random portion
of the selected dimensions is masked. In columns 7-12, sparsity regularization with
different ⁄S is applied. In each scenario, we probed for a single objective.
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Depth 20 18 0 4 1 5

Dist. 131 0 7 5 19
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S Depth 14 10 13 10

Dist. 70 33 50

R
A
N
D Depth 131 95

Dist. 262

Table 4.3: The number of shared dimensions selected by scaling vectors after the joint
training of probe on top of the 16th layer.
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Figure 4.2: Spearman’s correlations and number of non-zero Scaling Vector ’s dimen-
sions across layers for joint training.

weights closer to zero than ‘ = 10≠4. We observed that dimension selection is not

sensitive to the choice of low 10≠30 < ‘ < 10≠3. Their elimination does not affect

the results; correlations in Table 4.2 and Table 4.1 column A are practically equal.

The dimensionality reduction is the strongest for lexical and positional depth probes,

where subspaces with the rank of 19 and 20 respectively encode the structures as well

as the whole embedding space with 1024 dimensions (Figure 4.2, lower). The number

of selected dimensions is the highest in probing for random structures because a large

capacity is required for memorization.

Identified dimensions should not be further pruned to preserve the signal
Another question we pose is whether it would be adequate to shrink the subspace

even further. For each objective, we choose and drop a random portion of parameters

to examine how it would affect the predictions. We conduct a procedure similar to

cross-validation, i.e., we repeatedly drop disjoint and exhaustive sets of dimensions

and average results for each set at the end.7 Table 4.2 shows that dimension drop-

ping had the largest impact on positional probes: ≠0.458 for depth; the decrease is

low for lexical distance, only ≠0.083. It suggests that the information necessary for
predicting depth is less dispersed than for predicting distance.

Finding 3

Linguistic structures are encoded in sparse subspaces of latent embedding

space.

7E.g. when we drop 25% of dimensions, we randomly choose four sets. Each dimension is exactly
in one set, we average scores for four experiments.
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Figure 4.3: Histograms of dimensions
selected by dependency and lexical
Scaling Vector after joint training.
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Semantic and lexical signals are encoded in separable subspeces Another

outcome of joint training was the ability to examine relationships between subspaces

for each of the objectives. Figure 4.3 shows histograms of the dimensions selected

in lexical and dependency probes. Each bin of the histogram corresponds to 10 co-

ordinates. The height of a bar (in one color) represents how many were selected for

a specific task. The dimensions on the x-axis are ordered by the weighted absolute

values of scaling vectors. 8

We found that in layers 6 and 16 (which achieve the highest correlation in lexical

and dependency, respectively), the histograms are disjoint, indicating that the layers’

representations of dependency syntax and lexical hypernymy are orthogonal to each

other in the embedding space. The orthogonality of task subspaces is less visible

in the first layer and disappears almost entirely in the top one. In most layers, the

depth subspace is included in the distance subspace for the same structural type. This

behavior was expected as distance probing is more complex and therefore requires

more capacity.

Finding 4

Lexical and syntactic structures are encoded in distinct, mutually orthogonal

subspaces of the latent embedding space.

Finding 5

A space that encodes a simpler task (tree depth) is a subspace of space encoding

a more complex one (tree distance).

In Figure 4.4 we present histograms for additional tasks at the model’s 16th layer.

The positional subspace has a sizable intersection with the syntactic one, yet only a

few common dimensions with the lexical subspace. The connection can be attributed

to the fact that dependency edges can often be inferred from words’ relative posi-

tions. Probing for random structures is interlinked with other objectives. The sizes

of shared subspaces for each pair can be found in Table 4.3.

8We weigh the values before sorting to keep together non-zero dimensions of each scaling vector ,
i.e., dependency depth values are multiplied by 1000, dependency distance 100, and lexical depth by
10. The weighting is performed only for visualization; the separation of linguistic information can be
observed independently in Table 4.3.
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4.4 Multilingual Orthogonal Probes

We utilize the new joint optimization capability to analyze how the encoding of lin-

guistic phenomena is expressed across different languages in multilingual mBERT

representations. Specifically, we ask whether linguistic information is uniformly en-

coded in the representations of various languages. And if this assumption does not

hold: Is it possible to learn orthogonal transformation to align the embeddings?

4.4.1 Experiments

We evaluate three settings of multilingual orthogonal probe training. The approaches

are sorted by expressiveness; the most expressive one makes the weakest assumption

about the likeness of representations across languages:

In-Langno assumption We train a separate instance of orthogonal probe for each
language. Neither scaling vector nor orthogonal transformation is shared between

languages.

MappedLangs isomorphity assumption We train a shared scaling vector for
each probing task and a separate orthogonal transformation per language. If the em-
bedding subspaces are orthogonal across languages, the orthogonal mapping will be

learned during probe training, and the setting will achieve similar results as the pre-

vious one.

AllLangs: uniformity assumption Both the scaling vector and orthogonal
transformation are shared across languages. If the same embedding subspace en-

codes the probed information across languages, the results of this setting will be on

par with the first approach.

The first and the last approaches were proposed and analyzed for structural probes
by Chi et al. (2020). MappedLangs setting is possible thanks to our formulation

of orthogonal probes. For evaluation, we compute Spearman’s correlations between
predicted and gold depths and distances. Furthermore, we analyze the impact of two

language-specific features on the results: a) size of the mBERT training corpus in a

given language; b) typological similarity to English. The former is expressed in the

number of tokens in Wikipedia. The latter is a Hamming similarity between features

in WALS (Dryer and Haspelmath, 2013). 9

9In this work, we consider all the features in the areas: Nominal Categories, Verb Categories, and
Lexicon for computing a lexical typological similarity, and features in the areas: Nominal Syntax,
Word Order, Simple Clauses, and Complex Sentences as a syntactic typological similarity.
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Probed structures Similarly to the monolingual setting, we probe for semantic

and lexical structures. For the former, we use dependency trees from Universal De-

pendencies available for multiple languages (Nivre et al., 2020). For lexical structure,

we use a multilingual collection of WordNet (Miller, 1992) released as Open Multi-

lingual WordNet (Bond and Foster, 2013). In both cases, we jointly optimize probes

for depth and distance.

Choice of Layers We probe the representations of the 7th layer for dependency

information and representations of the 5th layer for lexical information. These layers

achieve the highest performance for the respective features.

4.4.2 Results

EN ES SL ID ZH FI AR FR EU

Dependency Distance Spearman’s Correlation

In-Lang .813 .859 .857 .856 .829 .791 .839 .856 .770
Chi et al. (2020) .817 .859 - .807 .777 .812 .822 .864 -

� MappedLangs -.001 -.002 .000 -.017 .001 -.001 -.002 -.003 .001

� AllLangs -.001 -.009 -.007 -.029 -.040 -.002 -.027 -.006 -.032
Chi et al. (2020) -.011 -.011 - -.018 -.060 -.010 -.037 -.011 -

Dependency Depth Spearman’s Correlation

In-Lang .844 .869 .869 .856 .843 .824 .868 .875 .796
� MappedLangs -.004 -.002 -.003 -.002 .003 -.003 -.002 -.002 .000
� AllLangs -.008 -.010 -.010 -.011 -.037 -.006 -.033 -.006 -.029

Lexical Distance Spearman’s Correlation

In-Lang .756 .840 .644 .722 .793 .646 .752 .791 .676
� MappedLangs .000 .002 -.025 -.003 .018 .022 .025 .000 -.001
� AllLangs -.036 -.021 -.045 -.061 -.003 -.022 .004 -.012 -.062

Lexical Depth Spearman’s Correlation

In-Lang .846 .883 .779 .859 .868 .778 .922 .854 .848
� MappedLangs .011 -.014 .010 -.014 .013 .027 -.011 -.001 .017
� AllLangs -.017 -.044 -.030 -.118 -.064 .002 -.311 -.031 -.017

Table 4.4: Spearman’s correlation between gold and predicted depths and distances.
We probe the representations of the 7th layer for dependency information and rep-
resentations of the 5th layer for lexical information. Correlations for dependency
distance are compared with structural probe reported by Chi et al. (2020).

Using In-Lang probes for each language gives high Spearman’s correlations

across the languages. The MappedLangs approach brings only a slight difference

for most of the configurations while imposing uniformity constraint (AllLangs) de-

teriorates the results for some of the languages, as shown in Table 4.4.
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Figure 4.5: Pearson’s correlation between results from Table 4.4 for each language
and two language-specific features: typological similarity to English and number
of tokens in Wikipedia. Correlations for dependency probes are in the upper-right
triangle and for lexical probes in the lower-left triangle.

In Figure 4.5, we present Pearson’s correlations between results from Table 4.4

and two language-specific features. The key observation is that topological similarity

to English is strongly correlated with �AllLangs. Hence, a shared probe achieves a

relatively good correlation for English, Spanish, and French. It shows that lexical and

dependency information is uniformly distributed in the embedding space for those

languages.

Finding 6

In multilingual BERT, representation of the same type of linguistic structure

is shared across similar languages.

Notably, European languages are over-represented in the mBERT’s pre-training

corpus. Nevertheless, the size of pre-training corpora is correlated to a lesser extent

with �AllLangs than WALS similarity. There is no significant correlation between

�MappedLangs and typological similarity; the embeddings of diverse languages can

be similarly well mapped into a shared space as these linguistically similar to English.

Notably, we observe that some languages with lower performance of In-Lang probes

can benefit from mapping (e.g., Chinese, Finnish, and Arabic when lexical distance

is considered). We interpret it as a benefit of cross-lingual transfer from more re-

sourceful languages.
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N ZH EU SL FI AR

Lauscher+*

0

51.41 50.31 - 65.66 44.46
Wang et al. - - 67.86 65.45 -
+CLBT** - - 69.04 67.96 -
+FT* ** - - 69.16 69.16 -
MappedL 34.44 39.10 35.44 37.33 40.95
AllL 52.92 58.77 70.76 64.60 57.47

Lauscher+*
10

57.73 57.23 - 65.13 71.00
MappedL 37.01 39.63 35.77 40.15 36.81
AllL 53.12 58.51 70.85 64.98 68.59

Lauscher+*
50

66.78 66.73 - 69.26 75.84
MappedL 45.07 50.02 55.09 49.32 57.77
AllLangs 53.63 59.07 70.43 65.02 68.81

Lauscher+*
100

69.91 65.70 - 70.25 78.50
MappedL 50.27 56.07 60.00 52.86 62.36
AllL 53.71 60.23 70.54 64.83 68.71

Lauscher+*
1000

80.12 74.75 - 78.00 83.85
MappedL 60.57 65.98 72.81 63.80 68.85
AllL 57.17 63.49 72.35 66.05 69.57

Table 4.5: UAS of extracted dependency trees. N is the number of in-language exam-
ples used for fine-tuning or probe optimization. Our two approaches are compared
to the previous works that use a biaffine parser (Lauscher et al., 2020; Wang et al.,
2019). We probed the representations of the 7th layer. *): fine-tuning of mBERT is
used. **): A multilingual dictionary is used to align the embeddings.

Finding 7

The shared representation of linguistic structure is observed for languages ty-

pologically similar to English. Representations for typologically distinct lan-

guages are encoded in mutually isomorphic subspaces, which can be aligned

by orthogonal transformation (i.e., rotation).

4.4.3 Application to Zero- and Few-shot Parsing

Our observation of considerable latent embeddings’ similarity across languages in-

spired us to apply orthogonal probes to parsing in zero- and few-shot scenarios. In

these settings, the probe is trained on a source language and then applied for pars-

ing of the target language with no (zero-shot) or minimal number of in-language

annotated examples (few-shot).
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We examine cross-lingual transfer for parsing sentences in Chinese, Basque,

Slovene, Finnish, and Arabic. For each of them, we train the probe in the remaining

eight languages. In a few-shot setting, we also optimize 10 to 1000 examples from the

target language. To get valid dependency parses, we first use theMaximum Spanning

Tree algorithm on the predicted distances to obtain the tree structure. Then we apply

the extension of the algorithm proposed by Kulmizev et al. (2020) to assign the direc-

tion to edges in the tree based on the predicted depths. We evaluate the correctness

of trees using the unlabeled attachment score (UAS) described in Section 3.3.4.

Parsing Effectivness For all languages (except Finnish) in zero-shot configura-

tion, our AllLangs approach is better than other works that utilize a biaffine parser

(Dozat andManning, 2017) on top of mBERT representations, as reported by Lauscher

et al. (2020);Wang et al. (2019) (see Table 4.5). Without any supervision, our Mapped-

Langs approach performs poorly because mapping cannot be learned effectively.

When some annotated data is added to the training, the difference between All-

Langs andMappedLangs decreases. We observe that between 100 and 1000 training

samples are needed to learn the orthogonal transformation. Also, with higher super-
vision, we observe that the results reported by Lauscher et al. (2020) notably outper-

form our approach. The outcome was anticipated because they fine-tuned mBERT

with a biaffine layer, which has a larger expressiveness than a probe. Therefore in

this approach, the introduction of supervision is more advantageous than in probing.

Innovation 1

We propose a competitive method for zero- and few-shot parsing based on

orthogonal probes.

4.5 Orthogonal Filters for Mitigating Gender Bias

We outline a method for disentangling the factual gender information and gender

bias encoded in the representations. Following the formulation in Section 3.2, we

aim to construct a filter that would preserve the factual gender information while

diminishing gender bias. For that purpose, we leverage orthogonal probe training for
factual and stereotypical gender to identify the distinct dimensions encoding each

of the signals. This method was introduced in our paper: Limisiewicz and Mareček

(2022), we outline it and present some of the key observations below.
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4.5.1 Methodology

We hypothesize that semantic gender information (from pronouns) is encoded in the

network distinctly from the stereotypical bias of gender-neutral words (Figure 3.2).

We focus on interactions of gender bias and factual gender information in coreference

cues of the following form:

[NOUN] examined the farmer for injuries because [PRONOUN] was caring.

In English, we can expect to obtain the factual gender from the pronoun. Revealing

one of the words in the coreference link should impact the prediction of the other.

Therefore, we can name two causal associations:

CI : biasnoun æ f. genderpronoun

CII : f. genderpronoun æ biasnoun

In our method, we will primarily focus on two ways bias and factual gender inter-

act. For gender-neutral nouns (in association with type CI ), the effect on predicting

masked pronouns would be primarily correlated with their gender bias. At the same

time, the second association is desirable, as it reveals factual gender information and

can improve the masked token prediction of a gendered word. We define two condi-

tional probability distributions corresponding to these causal associations:

PI(ypronoun|X, s)
PII(ynoun|X, f)

(4.16)

Where y is a token predicted in the position of pronoun and noun, respectively; X

is the context for masked language modeling. Variables s and f are bias and factual

gender factors, respectively. We model the bias factor by using a gender-neutral

biased noun. Below we present examples for introducing female and male bias: 10

Example 1:

bf The nurse examined the farmer for injuries because [PRONOUN] was caring.

bm The doctor examined the farmer for injuries because [PRONOUN] was caring

Similarly, the factual gender factor is modeled by introducing a pronoun with a spe-

cific gender in the sentence:

Example 2:

10We use [NOUN] and [PRONOUN] tokens for a better explanation, in practice, they both are
masked by the same mask token, e.g. [MASK] in BERT (Devlin et al., 2019).
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ff [NOUN] examined the farmer for injuries because she was caring.

fm [NOUN] examined the farmer for injuries because he was caring.

We aim to diminish the role of bias in the prediction of pronouns of a specific gender.

On the other hand, the gender indicated in pronouns can be useful in the prediction

of a gendered noun. Mathematically speaking, we want to drop the conditionality

on the bias factor in PI from Equation 4.16, while keeping the conditionality on the

gender factor in PII .

PI(ypronoun|X, b) æ PI(ypronoun|X)
PII(ynoun|X, f) ”æ PII(ynoun|X)

(4.17)

To decrease the effect of gender signals from words other than pronoun and noun,

we introduce a baseline, where both pronoun and noun tokens are masked:

Example 3:

? [NOUN] examined the farmer for injuries because [PRONOUN] was caring.

4.5.2 Filtering Gender Bias

To mitigate the influence of bias on the predictions Equation 4.17, we focus on the

latent representations of the language model. We aim to inspect contextual repre-

sentations of words and identify their parts that encode the causal associations CI

and CII .

We want to approximate gender information introduced by a gendered pronoun

f (factual) and a gender-neutral noun s (bias). The variable f takes the values ≠1 for
female pronouns, 1 for male ones, and 0 for gender-neutral “they”. The variable s is

the stereotype value associated with each of the words, for definition see Section 2.1

in Limisiewicz and Mareček (2022). We denote the element of orthogonal probe:

• V : orthogonal transformation, mapping representation to new coordinate sys-

tem.

• d: scaling vector , element-wise scaling of the dimensions in a new coordinate

system. We assume that dimensions that store probed information are associ-

ated with large scaling vector .

The probing losses are the following:

LI =
---||d̄s § (V · (hs,P ≠ h?,P ))||d ≠ s

---

LII =
---||d̄f § (V · (hf,N ≠ h?,N))||d ≠ f

---,
(4.18)
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where, hs,P is the vector representation of the masked pronoun in example 1; hf,N is

the vector representation of themasked noun in example 2; vectors h?,P and h?,N are

the representations of masked pronoun and noun respectively in baseline example

3. To account for negative values of target factors (s and f ) in Equation 4.18, we

generalize distance metric to negative values in the following way:

||
≠æv ||d = || max(≠æ0 , ≠æv )||2 ≠ || min(≠æ0 , ≠æv )||2 (4.19)

We jointly probe for both objectives (orthogonal transformation is shared). Sub-

sequently, we use filters described in Section 4.2.6 to marginalize the stereotypical

signal identified by dI while keeping gender information corresponding to dII .

4.5.3 Experiments

We construct orthogonal filters on top of from one up to four top layers of large BERT.

We examine two setting: filtering stereotypical gender F≠s (Equation 4.13), filtering

stereotypical gender while preserving factual signal F≠s,+f (Equation 4.15). As a

training set, we use sentences from WinoMT (Stanovsky et al., 2019). They denote

the position of the pronoun and noun in the sentence, making it straightforward to

use masking according to the pattern presented in Examples 1-3. To evaluate the

effect of filtering on model performance and gender signal, we evaluate the accuracy

of masked language model prediction in two settings: general and gendered.

General MLM We compute prediction accuracy for the masked tokens in the test

set fromEnglishWeb TreebankUD Silveira et al. (2014b) consisting of 2077 sentences.

GenderedMLM We evaluate the capability of the model to infer the personal pro-

noun based on the context. For that purpose, we use the GAP Coreference Dataset

Webster et al. (2019) with 8908 paragraphs. In each test case, we mask a pronoun

referring to a person usually mentioned by their name, while professional mentions

are the source of stereotype in the prediction.

4.5.4 Results

The results in Table 4.6 show that filtering out bias dimensions moderately decreases

MLM accuracy up to 0.037. Using factual gender-preserving filtering decreases the
drop in results.
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Setting FL
Gendered MLM General MLM

Overall Male Female

original - 0.799 0.816 0.781 0.516
-s 1 0.690 0.757 0.624 0.515

2 0.774 0.804 0.744 0.504
4 0.747 0.770 0.724 0.479

-s +f 1 0.754 0.782 0.726 0.515
2 0.785 0.801 0.769 0.510
4 0.801 0.807 0.794 0.489

Table 4.6: Top-1 accuracy for general domain MLM in EWT UD Silveira et al. (2014b)
and for gendered pronoun prediction in GAP dataset Webster et al. (2019). FT is the
number of the model’s top layers for which filtering was applied.

In gendered predictions, we observe a more significant drop in results when ap-

plying the F≠s filter. The deterioration can be alleviated by omitting factual gender

dimensions in the filter. This setting can even bring improvement over the original

model. Our explanation of this phenomenon is that filtering can decrease the con-

founding information from stereotypically biased words that affect the prediction of

correct gender.

Innovation 2

Filters based on orthogonal probes can disentangle factual and stereotypical

gender signals allowing to preserve the first while mitigating the former. We

obtain a less biased representation with a small change in the model’s general

performance.

4.6 Implementation Details

This section describes the implementation details of orthogonal probe that were

shared across all the settings described in this Chapter. Optimization is conducted

with Adam (Kingma and Ba, 2015) with an initial learning rate of 0.02, we use batches
of size 12 We use learning rate decay and early-stopping mechanism: if validation

loss does not achieve a new minimum after an epoch, the learning rate is divided by

10. After three consecutive learning rate updates not resulting in a new minimum,

the training is stopped.
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Orthogonality Regularization In our experiments, we took ⁄O equal to 0.05.11
The regularization converged early during the gradient optimization. Hence we can

assume that matrix V is orthogonal.

Sparsity Regularization By default, we set ⁄S = 0. Only for the experiments

summarized in Table 4.2, we add sparsity regularization by setting ⁄S to a positive

value (0.005, 0.05, or 0.1) when DSO drops below 1.5 during the training. This mech-

anism prevents weakening orthogonality constraints in early epochs.

4.7 Conclusions

The line of research on orthogonal probes provides new findings regarding the na-

ture of the information encoded in the hidden embeddings of the model. Firstly, we

show that many types of information can be disentangled from each other by using

orthogonal transformation in probing. In our results, we specifically focused on the

case of syntactic and lexical structures.

Although specific task-related dimensions are contained in orthogonal subspaces,

the representations are considerably similarly distributed across languages. Our ex-

periments with multilingual models show that the distribution is shared across lan-

guages with similar typological features.

We show two applications of orthogonal probes based on the presented findings.
The first is zero-shot cross-lingual parsing which is realized by constructing trees

based on the predictions of dependency and depth probes. The relatively high per-

formance of our approach is the result of a similar distribution of latent embeddings

across languages. The second application is filtering unwanted gender bias. For this

purpose, we introduce orthogonal filters that allow us first to disentangle important

gender-related signals from unwanted stereotypical bias. Subsequently, we construct

a filter based on scaling vectors coefficients to remove the stereotypical gender signal

while preserving the factual one (as defined in Section 4.5).

11We experimentally checked that ten times smaller and ten times larger values of ⁄O do not affect
the orthogonality of matrix V and lead to the same results.
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5
Feed Forward

In this Chapter, we further pursue decreasing gender bias in language models while

preserving their high performance in language understanding tasks. We turn our

attention to larger causal language models from LLaMA family (Touvron et al., 2023)

with 7 to 65 billion parameters. Due to recent advances in model scaling, feed-

forward overtook the embedding layers as the component with the largest share of

parameters in Transformermodels (Geva et al., 2021). Therefore, in work Limisiewicz

et al. (2023b) we posit the question of whether the parameter size of the feed-forwards

is reflected by their capability to store information learned during pre-training.

In particular, we study the encoding of the gender bias in the language models,

and we perform the analysis with the use of causal tracing (Vig et al., 2020), a method
inspired by causal mediation analysis which was previously established in causality
literature (Pearl, 2009). To explain the title of this chapter, we upfront reveal that

causal tracing identified mid-upper feed-forward layers as the most prone to encode
gender bias in the language models.

5.1 Causal Tracing

The causal tracing was inspired by the causality literature, in particular, causal me-
diation analysis (Pearl, 2001; VanderWeele, 2015). The work of Vig et al. (2020)

builds upon causal mediation analysis to identify the way the information flows from
the input to the output of a language model. They particularly focus on identify-

ing the model components crucial for passing the information through the model,

so-called mediators. They propose to use causal mediation analysis for that pur-
pose, which is the method of measuring the change in the model’s predictions
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upon intervention in the mediator (i.e., specific component). In causal tracing, di-
rect effect of the mediator h measures the change in output y resulting from in-

tervening in the input x while holding a mediator h fixed, while its indirect ef-
fect quantifies the change caused by setting h to a value it would have if we per-

formed intervention in the input x. The graph of the assumed causal relation be-

tween the input, mediator, and output is presented in the causal graph in Figure 5.1.

Figure 5.1: A causal structure assumed in
causal mediation analysis applied to LM. In
our experiments, we will measure the in-
direct effect on themodel’s output y by set-
ting latent representation h (mediator) to
the value it would take under intervention
in input x, while keeping the input x un-
changed.

We will specifically consider the

causal tracing formulation used by

Meng et al. (2022), who analyze the me-

diator’s effect on the LM output (i.e.

next token prediction) given an input

prompt stimulating specific behavior of

the model, e.g. biased prediction. In

causal tracing, we need to identify the

token stimulating the model to produce

the expected output. For instance, we

can consider the token connected with

world-knowledge query (e.g. “Vienna”
in prompt “Vienna is the capital of ”) and
its impact on predicting factual contin-

uation (“Austria”). For tracing, we need
to perform a corruption thatwould erase

the signal from the token, by adding

Gaussian noise to the corresponding in-

put embedding. The method is per-

formed in the following steps:

1. Perform a clean run (forward-pass without any corruption) and collect all the
activations at all layers and tokens.

2. Perform a corrupted run by adding noise to the tokens corresponding to a spe-
cific signal (e.g. common sense fact, or stereotype).

3. Perform corrupted runs with restoration: at each step, we restore the activa-

tions from the clean run of each module (e.g. attention head , MLP) at one par-

ticular layer and temporal position (ht). And check the effect on predictions.
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In each step, we compute the effect of adding the signal in question (e.g. input

with clean representation of word “Vienna”) to one module. Therefore we examine

modules’ inddirect effect. Alternatively, we can examine the impact of noising the

representation of the specific module representation, which would be its direct effect.
The overall change between clean and corrupted runs is called total effect. Please note
that in this formulation, clean run corresponds to performing intervention in model
input as it reveals information, e.g., from the word “Vienna”. Past results indicated
that investigating indirect effects is more informative in the search of mediators in

Transformer models (Meng et al., 2022).

5.1.1 Causal Tracing for Bias Location

To identify the components storing gendered associations, we perform causal tracing
for gender bias in text generation. As a stimulus of gendered prediction, we use

the prompts X consising the profession words introduced in Section 3.8.4, see an

example in Figure 5.3a. For each prompt, we compute the empirical gender score,

as ye(X) = PM(o+|X) ≠ PM(o≠|X), where o+ and o≠ are the probabilities of the

model predicting male and female pronouns, respectively. We then fit a linear model

(Equation 5.1) across all prompts X to obtain coefficients as and af measuring the

impact of the stereotypical and factual gender cues on the model’s output.

ye = as · xs + af · xf + b0 (5.1)

Then we conduct the causal tracing using as and af coefficients to identify the com-

ponents passing gender information (stereotypical and factual) to themodel’s output.

Specifically in step 2 of the procedure described in Section 5.1, we add noise to the

embeddings corresponding to the profession words. Then for step 3, we compute the

indirect effects by reintroducing the model’s activations from the clean run to each

module at temporal position ht. Following Meng et al. (2022), we aggregate token

positions into six groups shared across the whole dataset: first, middle; and last sub-

ject token; the first token following the subject; all the tokens following the subject;

and the last token.
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(b) attention
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(c) Layer

Figure 5.2: Causal tracing of modules’ indirect effect of factual and stereotypical sig-
nals in LLaMA 7B. Effects are measured by the linear coefficient as and af introduced
in the Equation 5.1. The indirect effect is calculated by reintroducing clean represen-
tation to the output of specific components (FF or Att. or whole layer) and token
position.
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5.1.2 Results

We show the coefficient of the linear model in Table 5.1. We see that the linear model

proposed by us is moderately well fitted for all sizes of LLaMAmodelsR2 > 0.35. For
all sizes, the factual coefficient is higher than the stereotypical one hinting that the

models aremore influenced by semantical than stereotypical cues (af > as). Also, we

observe a positive intercept b in all cases, showing that LLaMAmodels aremore likely

to predict male than female pronouns. Similarly, other metrics confirm that LLaMA

models are biased in coreference resolution and sentence likelihood estimation.
Finding 8

LLaMA models’ predictions show the presence of gender bias.

In Figure 5.2a, we observe the indirect effect of multi-layer perceptrons (MLPs)

(in feed-forwards) in each layer and token position of the 7B model. The best fit is

obtained for the representation in the lower layers (0-5) at the subject position and

mid-upper layers (18 -25) at the last position. In the search for stereotypically biased

components, we direct our attention to the mid-upper layers because they appear to

convey less signal about factual gender. We also expect that the information stored

in those FF layers is more likely to generalize to unseen subjects. Interestingly, the

last layers manifest weak negative slope coefficients, suggesting that these FFs tend

to counter the bias of the models.

We further see in the bottom part of Figure 5.2 the results of causal tracing for

attention and the whole layer. For those components, the high indirect effects are

distributed more extensively across both token positions and layers, indicating that

they primarily reflect bias from the FFs. For larger models, we observe analogous

patterns shifted according to the total layer count. The results are presented in Fig-

ures 5.5, 5.6, and 5.7.

Finding 9

The strongest encoding of gender-related information is observed in the mid-

upper feed-forward layers of LLaMA models.

5.2 Debiasing the Feed-Forward Layers with DAMA

We introduce the algorithm that decreases bias in language models by directly edit-

ing the model weights. This section describes our method based on projection-based

intervention in selected layers: Debiasing throughModel Adapatation (DAMA). Fur-

ther, we provide theoretical and empirical backing for the method’s effectiveness.
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X = “The lifeguard laughed because ___”
(a)

(b) (c) (d)

Figure 5.3: Schema (b) shows DAMA intervention in LLaMA layer. Even though I≠

Pc is depicted as a separate module, in practice, it is multiplied with the output matrix
of a feed-forward layer (WF F ). Therefore, DAMA is neutral to the model’s parameter
count and architecture. (a) We show the behavior of the model when presented with
a stereotypical prompt. Specifically, (c) shows the projections of the FF output latent
vector (ų) onto the output space. With DAMA (lower arrow), we nullify the gender
component of the representation. It results in balanced probabilities of gendered
tokens in the model’s output, as shown in (d).

5.2.1 Obtaining Stereotype Keys and GenderedValues

Following the convention from Geva et al. (2021), we treat MLP layers as memory

units mapping specific input key representations to value representations. Our focus

lies in understanding how these layers map stereotypical keys to gendered values.

As our choice of keys, we take prompts introduced in Section 3.8.4, which carry

stereotypical signals. The values are the output vectors corresponding to one of the

personal pronouns (male, female, or neutral).

To compute the stereotypical key at lth layer, we feed the stereotypical prompt

X up to l layer’s feed-forward MLP (FFl) to obtain its vector representation. We,

specifically, take the vector representation at the last token of the prompt. We denote

stereotypical keys as u œ RdF F following the convention from Figure 5.3c.1

5.2.2 Obtaining Projection on Stereotype Subspace with PLS

To identify the stereotype subspace, we concatenate value vectors for each pronoun

(male, neutral, and female) across all prompts to obtain gendered value matrices V+,

V0, and V≠. The gendered value matrices are normalized by subtracting the mean

calculated across all three pronouns for a given prompt. We also concatenate key

1Notably, for clearer distinction of MLP input and output vectors, we use u and v, instead of h and
hÕ used throughout the thesis.
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vectors for all prompts into one matrix U . Then, we multiply it by the feedforward’s

output matrix denoted WF F,out,l:

WF F,out,l · U æ Û (5.2)

We concatenate V+, V0, and V≠ together and concatenate Û three times. We use the

partial least squares (PLS) algorithm to identify the linear mapping B1 maximizing

correlation between stereotypical keys [Û , Û , Û ] and gendered values [V+, V0, V≠]:

[V+, V0, V≠] ¥PLS B1 · [Û , Û , Û ] + B0 (5.3)

By definition of PLS, B1 identifies the stereotypical directions most correlated with

gendered values.2 Therefore, we compute the matrix projecting representation on

subspace orthogonal to the one spanned by dc first columns of B1 to nullify the

stereotypical signal. For brevity, we denote the trimmed matrix as Bdc
1 = B1[:, : dc].

The projection is given by the equation:

P = I ≠ Pc = I ≠ Bdc
1 (BdcT

1 Bdc
1 )≠1BdcT

1 (5.4)

Finally, we perform the model editing by multiplying lth MLP feed-forward matrix

WF F,out,l by the projection matrix P , see Figure 5.3c. Our algorithm: DAMA is based

on iterative computation and applying projections to feed-forwards of multiple sub-

sequent MLP layers. It changes neither the model’s architecture nor parameter sizes,

as the result of matrix multiplication is of the same dimensionality as the original

feed-forward matrix.

5.2.3 Theoretical Perspective

We show theoretical guarantees that multiplying linear feed-forward matrix

WF F,out,l by projection matrix P will be the optimal mapping between keys (U ) and

values (V ), fulfilling that WF F,out,l · U is orthogonal to the guarded bias subspace C.

Theorem 1. Assume that we have a linear subspace C ™ Ro. Given a n-element key
matrix U œ Ri◊n a value matrix V œ Ro◊n, we search a mapping matrix W œ Ro◊i

minimizing the least squares and satisfying ’
n

i=1Wui ‹ C. Specifically, we solve:

Ŵ = argmin
W

||WU ≠ V ||
2
F

such that ’
n

i=1Wui ‹ C

2Matrix B0 can be used to normalize the value matrix. However, we have noticed that its values
become nearly zero due to the earlier normalization of [V+, V0, V≠].
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This equation is solved by:

Ŵ = (I ≠ Pc)V UT (UUT )≠1

Where Pc is a projection matrix on a subspace C.

Thus, the application of projections would break the correlation between stereo-

typical keys and gendered values without affecting other correlations stored by the

MLP layer. To prove the theorem, we present a theorem that will help prove Theo-

rem 1.

Theorem 2 (Ordinary Least Square Problem). Given a n-element key matrix U œ Ri

and a value matrix V œ Ro◊n, we search for a mapping matrix W œ Ro◊i minimizing
least squares. Specifically, we solve:

Ŵ = argmin ||WU ≠ V ||
2
F

This equation is solved by:

Ŵ = V UT (UUT )≠1

The theorem says that V UT (UUT )≠1 solves the regular mean square error prob-

lem of mapping prompt keys to values corresponding to the model’s output. Due

to gradient optimization in the model’s pre-training, we can assume that in general

case WF F,out,l = V UT (UUT )≠1. The proof can be found in the statistical literature,

e.g., in Goldberger et al. (1964). Equipped with Theorem 2 we can prove Theorem 1:

Proof. Without loss of generality, we consider a case where n = 1, i.e., U and V

are column vectors. For clarity, we will denote those vectors u œ Ri and v œ Ro

respectively. Therefore, we aim to solve an equation:

Ŵ = argmin
W

||Wu ≠ v||
2
F

such that Wu ‹ C (5.5)

Note that we can substitute the Frobenius norm with the Euclidean norm and de-

compose vector v into the sum of two orthogonal vectors.

||Wu ≠ v||
2
F

= ||Wu ≠ v||
2 = ||Wu ≠ (I ≠ P )v ≠ Pv||

2 (5.6)
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We infer that Wu ≠ (I ≠ P )v ‹ C from a) Wu ‹ C (5.5); and b) (I ≠ P ) ‹ C as

P is projection matrix on C. Moreover, from the properties of linear projection, we

have Pv œ C. We note thus that Wu ≠ (I ≠ P )v ‹ Pv. From Pythagoras Theorem

we can reweite 5.6 as: 3

||Wu ≠ (I ≠ P )v ≠ Pv||
2 = ||Wu ≠ (I ≠ P )v||

2 + ||Pv||
2 (5.7)

In argmin notation, we can omit the second part of the formula because it doesn’t

depend on W

Ŵ = argmin
W

||Wu ≠ v||
2 = argmin

W

||Wu ≠ (I ≠ P )v||
2 (5.8)

Now, we can apply the same steps to all the columns in U = [u1, . . . , un] and V =
[v1, . . . , vn], to obtain:

Ŵ = argmin
W

||WU ≠ (I ≠ P )V ||
2
F

(5.9)

Based onTheorem 2 it is solved by Ŵ = (I≠P )V UT (UUT )≠1. We can easily obtain

this result by substituting V by (I ≠ P )V in the theorem.

Lastly, it can be shown that for any vector x œ Ri we have Ŵx ‹ C from the

fact that applying P projection to Ŵx always produces a null vector:

PŴx = P (I ≠ P )V UT (UUT )≠1 = (P ≠ P )V UT (UUT )≠1 = 0̨ (5.10)

Finding 10

Linear layers can be adapted so to mitigate the presence of specific unwanted

correlations while keeping other correlations learned in training.

5.2.4 Empirical Perspective

After providing the theoretical guarantees, we proceed to investigate DAMA utility

in practice, by conducting a series of experiments on the LLaMA models.

3Pythagoras Theorem for vectors states that for a pair of orthogonal vectors: ≠æa ‹
≠æ
b , we have

||
≠æa ||

2 + ||
≠æ
b ||

2 = ||
≠æa + ≠æ

b ||
2. In 5.6, we substitute ≠æa with Wu ≠ (I ≠ P )v and

≠æ
b with Pv.

65



Effectivness We apply DAMA to FFs in approximately one-third of the model’s

upper layers (in LLaMA 7B layers 21 - 29 out of 32 with projection dimensionality

dc = 256). In Section 5.1.2, we have shown that those layers are the most prone

to stereotypical bias. We check the impact of DAMA on bias coefficients of the lin-

ear model and LM perplexity measured on Wikipedia texts (defined in Section 3.2).

Furthermore, we evaluate the modified model on a set of diverse downstream tasks

described in detail in Chapter 3. In the choice of tasks, we focused both on gen-

der bias (WinoBias, StereoSet) and language understanding evaluation (OBQA, ARC,

MMLU).

Baselines We compare the method with a similar model editing methodMEMIT
(Meng et al., 2023) and a parameter-efficient fine-tuning via LoRA (Hu et al., 2022).

In both baselines, we optimize the model to predict a randomly sampled pronoun

when presented with a biased prompt.

Choice of Layers and Dimensionality We analyze how the results vary depend-

ing on the number of layers selected for debiasing. Due to the iterative character of

intervention, we always start editing at the fixed layer (22 in LLaMA 7B) and gradu-

ally add subsequent layers. Further, we check the effect of the number of projection

dimensions (dc) in the power sequence from 32 to 1024.

Scaling Lastly, we examine the algorithm’s performance for larger scales of LLaMA

model: 13B, 30B, and 65B.

5.2.5 Results

Effectivness DAMA effectively decreases the gender bias of the model while pre-

serving its performance on other tasks, as seen in Table 5.1. Our algorithm effectively

decreased the bias manifested in language generation for a set of unseen professions.

Moreover, DAMA significantlymitigates bias in StereoSet andWinoBias. In the latter

task, general accuracy decreases, presumably due to the weakening of the stereotyp-

ical cue contributing to correct predictions in numerous test examples.

Innovation 3

We introduce an efficient method (DAMA) for significantly decreasing the

presence of various types of bias in language models.
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Bias in LM WinoBias StereoSet gender

¿ as ø af ¿ b ¿ R
2 ø Acc ¿ �S ¿ �G ø lms ¿ ss ø ICAT

LLaMA 7B 0.235 0.320 0.072 0.494 59.1% 40.3% 3.0% 95.2 71.9 53.7
DAMA -0.005 0.038 -0.006 0.208 57.3% 31.5% 2.3% 95.5 69.3 58.5
± (std) 0.004 0.004 0.004 0.026 0.5% 0.9% 0.7% 0.3 0.8 1.5
MEMIT 0.209 0.282 0.071 0.497 59.3% 40.5% 3.3% 95.6 72.0 53.6

LLaMA 13B 0.270 0.351 0.070 0.541 70.5% 35.7% -1.5% 95.2 71.4 54.4
DAMA 0.148 0.222 0.059 0.472 66.4% 31.1% -1.1% 94.4 68.6 59.4

LLaMA 30B 0.265 0.343 0.092 0.499 71.0% 36.0% -4.0% 94.7 68.4 59.9
DAMA 0.105 0.172 0.059 0.471 63.7% 26.7% -3.7% 94.8 65.7 65.0

LLaMA 65B 0.249 0.316 0.095 0.490 73.3% 35.7% 1.4% 94.9 69.5 57.9
DAMA 0.185 0.251 0.100 0.414 71.1% 27.2% 0.8% 92.8 67.1 61.1

Table 5.1: Bias evaluation for the LLaMAmodels and their debiased instances. Signif-
icance analysis for the 7B model was performed by running DAMAwith five random
seeds. We bold the score for the original model or DAMA, whichever is better if there
are more than two standard deviations apart. We underline the best value in each
column.

LM Downstream

¿ PPL ø ARC-C ø ARC-E ø OBQA ø MMLU

LLaMA 7B 26.1 42.2 69.1 57.2 30.3
DAMA 28.9 41.8 68.3 56.2 30.8
± (std) 0.2 0.4 0.2 0.5 0.5
MEMIT 26.1 42.7 68.9 57.0 30.2

LLaMA 13B 19.8 44.9 70.6 55.4 43.3
DAMA 21.0 44.7 70.3 56.2 43.5

LLaMA 30B 20.5 47.4 72.9 59.2 —
DAMA 19.6 45.2 71.6 58.2 —

LLaMA 65B 19.5 44.5 73.9 59.6 —
DAMA 20.1 40.5 67.7 57.2 —

Table 5.2: Performance evaluation for the LLaMA models and their debiased in-
stances. The significance analysis was performed as described in Table 5.1.

Our observations confirm that MLP layers contain stereotypical correlations re-

sponsible for multiple manifestations of bias. Furthermore, we observe in Table 5.2

that the algorithm causes a slight deterioration in general language modeling mea-

sured by perplexity. It has a minor reflection in performance for downstream tasks.

The altered model achieves a slightly lower score, yet differences are statistically sig-

nificant only for one task (ARC-E). Therefore, we can conclude that DAMA does not

impact the model’s ability in question-answering tasks.

Innovation 4

DAMA does not harm the models’ performance in language understanding

tasks.
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Figure 5.4: The effect of applying DAMA to LLaMA 7B model on performance and
bias in language modeling. We measured bias on gendered prompts by coefficients:
as and b from Equation 3.14, the causal language modeling capabilities are measured
by perplexity. Stars mark the performance of themodel picked for further evaluation.
The dashed line corresponds to the scores of the original LLaMA 7B model.

Baselines In contrast to DAMA, MEMIT has a minor effect on bias benchmarks.

We think it is because it is aimed to alter information specific to key-value pairs se-

lected for intervention. Therefore, the intervention performed on the training set of

professions does not generalize to unseen professions or other types of gender bias.

LoRA manifests stronger debiasing properties, coming close to the results of DAMA

in multiple bias metrics, and performs better in StereoSet ss and ICAT . Never-

theless, fine-tuning significantly deteriorates perplexity and the performance in lan-

guage understanding tasks.

Choice of Layers and Dimensionality In Figure 5.4, we observe that the choice

of the number of layers for debiasing and the dimensionality of projection affect both

parameters. Expanding the depth (number of layers) and width (dimensions) of the

intervention increases the intensity of debiasing, i.e., decreases as and b coefficients

and negatively impacts perplexity. Interestingly, we observe a negative impact on

both measured aspects when applying DAMA on the two last layers of the models.

As noted in Section 5.1, the MLPs in those layers tend to counter bias in the original

model.
Finding 11

The last layers of the models slightly decrease the stereotypical cues in the

predictions. Moreover, they should not be adapted to preserve high language

modeling performance.
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(a) feed-forward
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(b) attention
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Figure 5.5: Causal tracing analysis of gender signals in LLaMA 13B

Model size # layers layers adapted # dimensions projected dimensions

Llama 7B 32 21 – 29 4096 256
Llama 13B 40 26 – 36 5120 512
Llama 30B 60 39 – 55 6656 1024
Llama 65B 80 52 – 71 8192 2048

Table 5.3: Number of layers and latent dimensions of LLaMA models compared with
the number of DAMA adapted layers and the projected dimension dc.
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Figure 5.6: Causal tracing analysis of gender signals in LLaMA 30B
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Figure 5.7: Causal tracing analysis of gender signals in LLaMA 65B.
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Scaling We performed a coarse hyperparameter search for sensitive parameters

of DAMA: number of layers and dimensionalities of the projections. Our analysis

showed that the algorithm should be applied to the mid-top layers, starting from the

65th percentile to the 93rd percentile of layers ordered from input to output. Also the

dimensionality of the projection dc should be selected based on the dimensionality

of the latent representation. We present the best parameters for each of the model

sizes in Table 5.3.
Finding 12

Debiasing should be applied to the mid-upper layer of LLaMA models span-

ning from approximately the 65th to 93rd percentile of layers sorted from input

to output.

Finding 13

The dimension of projection used in debiasing adaptation depends on the di-

mensionality of the latent representation.

We have achieved a notable reduction in bias scores for all models. Noticeably,

althoughwe do not observe a common trend for different biasmetrics across different

model sizes, the improvements brought by DAMA are consistent. Moreover, the

perplexity and downstream performance of the original models do not deteriorate

and even slightly improve for some settings.

5.3 Conclusions

We have conducted an in-depth causal analysis of the gender signals encoded in the

LLaMA models. Causal tracing has revealed that the main culprit of storing bias in

the models are the mid-upper feed-forward layers. We also observe that stereotyp-
ical and factual signals are distributed similarly across the model’s modules. Inter-
estingly, the last layers tend to counteract the bias impact on the prediction, which

was indicated by the low negative value of coefficient as in these layers. Further

exploration of this phenomenon is an interesting direction for future research.

Based on the results of causal tracing, we have introduced a novel method for

debiasing language models, DAMA. We show that the method has theoretical guar-

antees in reducing specific signals encoded in the latent subspace of FF layers. We

confirm this observation in practice by applying DAMA to the LLaMA models in the

scales from 7B to 65B. The method effectively decreases multiple manifestations of

bias (even ones it wasn’t explicitly trained on) while preserving the model’s high

performance on downstream tasks. Furthermore, the method is less computation-
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ally demanding than fine-tuning methods. After DAMA optimization, the obtained

projection matrix is multiplied together with the feed-forward output matrix. There-

fore, the edited model has the same number of parameters and inference complexity

as the original LLaMAmodel. One limitation of our work is that it is data-dependent,

and its effectiveness can be affected by the choice of adequate prompts and tokens

stimulating the expected model’s output (in our case, gender prediction).

As a future work, we plan to apply DAMA to multilingual models to mitigate

bias in machine translation (ALMA-R, Xu et al., 2024). It is a crucial and challeng-

ing problem because biases as any other societal constructs are heavily dependent

on language and culture. Another potential research direction is extending DAMA

to other types of bias, e.g., racial or religious, which requires thoughtful design of

prompts and potential outputs for model editing.
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6
AttentionWeights

The motivation for this chapter is to gain a better understanding of syntactic struc-

tures emerging in language models without explicit supervision during pre-training.

Attention weights were shown to capture linguistic information (Voita et al., 2019;

Clark et al., 2019; Vig and Belinkov, 2019). To this end, this chapter (based on pub-

lication Limisiewicz et al. (2020)) describes a straightforward algorithm for under-

cover linguistic signals captured in the attention weight. We show that the attention

weights in BERT model (Devlin et al., 2019) convey the representation of syntactic

trees even without providing any annotated examples. Furthermore, our method

enables mapping syntactic relations whose representation is spread across multiple

attention heads, heads capturing multiple types of relations, and heads capturing the
same type of relation across languages in multilingual BERT.

6.1 Measuring Syntactic Structure in Attention
Weights

In Section 3.3.4, we describe parsing as the evaluation of syntactic structures, given

a specific annotation style. A 2-dimensional representation for pair of words (as in

attention heads) enables studying the correspondence between syntactic relations

and weights of the matrix. An example of such a method is dependency alignment

(DepAl) (Vig and Belinkov, 2019) which sums the attention weights at the positions

corresponding to the pairs of tokens forming a dependency edge in the tree.

DepAlA =
q

(i,j)œE Ai,j

q
n

i=1
q

n

j=1 Ai,j

(6.1)
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Dependency accuracy (DepAcc) is an alternative metric. For each dependency

label it measures how often the governor or dependent key token is themost attended

token by the dependent or governor query token (respectively).

DepAccl,d,A = |{(i, j) œ El,d : j = arg max Ai,·}|

|El,d|
(6.2)

E is a set of all dependency tree edges and El,d is a subset of the edges with the label l

and with direction d, i.e., in dependent-to-governor direction the first element of the

tuple i is dependent of the relation and the second element j is the governor; A is a

self-attention matrix and Ai,· denotes ith row of the matrix; n is the sequence length.

There were several attempts to retrieve the syntactic structure based on the

weight of attention layers. For example the works of Clark et al. (2019); Vig and

Belinkov (2019) looked into the alignment between the attention weights and the de-

pendency structure, while Kim et al. (2020); Mareček and Rosa (2019) investigated

the attention patterns aligned with the constituency phrases.

6.2 Methodology and Experimental Setting

Our analysis aims to uncover the syntactic structure represented in the attention

weights of BERT (both English and multilingual models). Following previous works

(Voita et al., 2019; Clark et al., 2019; Vig and Belinkov, 2019), we measure the align-

ment between attention weight matrices and dependency trees. Specifically, we use

dependency accuracy (DepAcc) to quantify the alignment.

6.2.1 Dependency Structure and Adaptations

We use dependency annotation for English (Karakanta et al., 2018) in EuroParl multi-

parallel sentences (Koehn, 2005). In a multilingual setting, we also use EuroParl for

other European languages (Czech, French, German, Finnish), Google Universal De-

pendency Treebank (GSD) for Indonesian, Korean, and Japanese (McDonald et al.,

2013); the UD Turkish Treebank (IMST-UD) (Sulubacak et al., 2016).

Since the explicit dependency structure is not used in BERT training, syntactic

dependencies captured in latent layers are expected to diverge from the annotation

guidelines introduced in universal dependencies. After initial experiments, we have

observed that some of the differences are systematic, as shown in Table 6.1. Based

on these observations, we modify the universal dependencies annotations in our ex-

periments to better fit the BERT syntax, using UDApi1 (Popel et al., 2017). All of the

modifications are presented with accompanying examples in Table 6.1.

1
https://udapi.github.io
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UD Modified Example

Copula attaches to a
noun

Copula is a root. cat is an animal

root

cop

nsubj

nsubj

root
obj

Expletive is not a
subject

Expletive is treated
as a subject

there is a spoon
expl

nsubj

nsubj
obj

In multiple coordi-
nation, all conjuncts
attach to the first
conjunct

Conjunct attaches to
a previous one apples , oranges and pears

conj
conj

conj conj

Table 6.1: Comparison of original universal dependencies annotations (edges above)
and our modification (edges below).

Themainmotivation of our approach is to get gold-standard trees similar to struc-

tures emerging from BERT, which we have observed in qualitative analysis of atten-

tion weights. We note that for copulas and coordinations, “BERT’s syntax” resembles

surface-syntactic universal dependencies (SUD) (Gerdes et al., 2018). Nevertheless,

we decided to use our custom modification, since some systematic divergences be-

tween SUD and the latent representation occur as well. It is not our intention to

compare two annotation guidelines.

Finding 14

We observe that attention weights in BERT align with syntactic structures,

yet there are systematic differences between these emergent structures and

the gold-standard annotations.

Innovation 5

We propose reversible modifications of gold-standard annotations to make

them more similar to patterns emerging in BERT attention weights.
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6.2.2 Method: Head Ensembles

We propose a method of ensembling multiple heads of BERT language model (Devlin

et al., 2019) by averaging their attention weights. The method contrasts with the

previous works that analyzed each head separately. Our objective is to find a set of

heads for each directed relation so that their averaged attention weights have a high

dependency accuracy. The algorithm can be described in the following steps:

1. We define the maximum number N of heads in the subset;

2. We sort the heads based on their DepAcc on the development set;

3. Starting from the most syntactic one we check whether including the head’s

attention matrix in the average would increase DepAcc;

4. If the score is improved, the head is added to the ensemble.

When there are already N heads in the ensemble, the newly added head may substi-

tute another added before, so tomaximize DepAcc of the averaged attentionmatrices.

In our experiments, we set N to be 4, as allowing larger ensembles does not improve

the results significantly.

Innovation 6

We propose amethod for selecting and averagingweights of multiple attention

heads to increase the alignment with specific syntactic relation types.

6.2.3 Method: Dependency Tree Construction

To extract dependency trees from self-attention weights, we use a method similar to

Raganato and Tiedemann (2018), which employs amaximum spanning tree algorithm

(Edmonds, 1966). It uses gold information about the root of the syntax tree. We use

the following steps to construct a labeled dependency tree:

1. For each non-clausal UD relation label, syntactic heads ensembles are selected

as described in the previous method. Attention matrices in the ensembles are

averaged. Hence, we obtain twomatrices for each label (one for each direction:

”dependent to parent” and ”parent to dependent”).

2. The ”dependent to parent” matrix is transposed and averaged with the ”parent

to dependent” matrix. We use a weighted geometric average with weights

corresponding to dependency accuracy values for each direction.
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3. We compute the final dependency matrix by max-pooling across individual

relation-label matrices from step 2. At the same time, we save the syntactic-

relation label that was used for each position in the final matrix.

4. In the final matrix, we set the row corresponding to the gold root to zero, to

ensure it will be the root in the final tree as well.

5. We use the Chu-Liu-Edmond’s algorithm (Edmonds, 1966) to find the maxi-

mum spanning tree. For each edge, we assign the label saved in step 3.

It is important to note that the total number of heads used for tree construction

can be at most 4 ◊ 12 ◊ 2 = 96, (number of heads per ensemble ◊ number of con-

sidered non-clausal labels ◊ two directions). However, the number of used heads is

typically much lower (see Table 6.3). That means our method uses at most 96 inte-

ger parameters (indices of the selected heads). It is considerably less than projection

layers in fine-tuning or probing (described in Section 4.1), which consist of thou-

sands of real number parameters. In the method, we only utilize the ensembles for

non-clausal relations, as dependency accuracy for clausal ones was relatively low.

Nevertheless, in the evaluation of obtained parses, we consider all the relations.

Innovation 7

We propose an effective algorithm enabling extracting labeled trees from at-

tention weights with minimal supervision.

6.3 Results

We describe the results of our methods in two steps. In Section 6.3.1, we evaluate

head ensembles based on their dependency accuracy. Subsequently in Section 6.3.2,
we investigate the utility of head ensembles by evaluating syntactic trees extracted
from them.

6.3.1 Head Ensembles

In Table 6.2, we present results for the dependency accuracy of a single-head and

four-head ensemble. We compare them with the positional baseline. This baseline

looks at the most frequent relative position for each dependency label. Noticeably,

a single attention head surpasses the baseline for every relation label in at least one

direction. The average of 4 heads surpasses the baseline by more than 10% for every

relation.
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Relation Base- 1 Head 4 Heads

line d2p p2d d2p p2d

label line d2p p2d d2p p2d

amod 78.3 90.6 77.5 93.8 79.5
advmod 48.7 53.3 62.0 62.1 63.6
aux 69.2 90.9 86.9 94.5 88.0
case 36.4 83.0 67.1 88.4 68.9
compound 75.8 83.2 75.8 87.0 79.1
conjunct 31.7 47.4 41.6 58.8 51.3
det 56.5 95.2 62.3 97.2 69.4
nmod 25.4 34.3 41.5 49.1 54.7
nummod 57.9 75.9 64.6 79.3 72.6
mark 53.7 66.2 54.7 73.5 65.9
obj 39.2 84.9 68.6 89.3 78.5
nsubj 45.8 56.2 62.7 57.8 76.0

« AVG.
NON-CLAUSAL 52.8 67.8 74.1

acl 27.9 41.5 36.5 50.5 43.8
advcl 9.3 26.3 26.7 40.7 26.3
csubj 20.0 20.7 31.0 24.1 31.0
x/ccomp 34.8 60.4 47.9 66.9 52.1
parataxis 10.4 17.6 12.1 23.1 24.2

« AVG. CLAUSAL 20.5 32.1 38.3

punct 9.4 21.1 40.3 28.4 44.0
dep 18.8 21.6 33.1 25.1 37.0

Table 6.2: Dependency accuracy for single heads, 4 heads ensembles, and positional
baselines. The evaluation was done using the pre-trained model BERT.The positional
baseline looks at the most frequent relative position for each dependency label (Voita
et al., 2019). The names of the relations are abbreviations used in universal dependen-
cies. We group some of them and present the average score: obj: objects also include
indirect objects (iobj), x/ccomp: open clausal complements and clausal complements;
dep: dep relations and all remaining relations not included in this table. The relations
are aggregated into two groups: clausal (relations connecting tokens across clauses)
and non-clausal (spanning inside a single clause).
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Setting Use labels Model Selection Heads per Heads UAS LAS
sentences ensemble used

Left branching baseline — — — — — 11.0 —
Right branching baseline — — — — — 35.5 —

Raganato+ (paper) no NMT 1000* — 1 38.9 —
Raganato+ no BERT 1000* — 1 37.2 —

Our method (ablation)

no BERT 1000 1 2 36.0 —
yes BERT 1000 1 15 37.4 9.5
yes BERT 20 4 36 43.6 14.5
no BERT 1000 4 8 51.2 —

Our method (best) yes BERT 1000 4 48 52.0 21.7

Table 6.3: Parsing evaluation for different settings of dependency tree extraction.
For a fair comparison with previous methods, we consider all types of dependency
relation (including clausal) and do not apply our modifications of UD trees presented
in Table 6.1. In Raganato and Tiedemann (2018) experiments, the trees were induced
from each encoder head, but we report only the results for the head with the highest
UAS on test set.

Ensembling brings themost considerable improvement for nominal subjects (p2d:

+13.3%) and noun modifiers (p2d: +13.2%). The relative change of accuracy is more

evident for clausal relations than non-clausal.2 Dependent-to-parent direction has

higher accuracy for modifiers (except adverbial modifiers), functional relations, and

objects. Whereas parent-to-dependent favors other nominal relations (nominal sub-

ject and nominal modifiers).

6.3.2 Dependency Trees

In Table 6.3, we report the evaluation results on the English PUD treebank using un-

labeled attachment score (UAS) and labeled attachment score (LAS). For comparison,

we also include the left- and right-branching baseline with gold root information.

Moreover, we compare to the best-performing head found by Raganato and Tiede-

mann (2018) They used a Transformer model trained for machine translation and ex-

tracted whole trees from a single attention head and did not average directions. The

results show that ensembling multiple attention heads for each relation label allows
the construction of better trees than the single-head approach.

The number of unique heads used in the process turned out to be two times lower

than the maximal possible number (96). This is because many heads appear in mul-

tiple ensembles. We examine the multipurpose heads (i.e. shared across multiple

ensembles) in Section 6.4.2.

2Clausal relations connect tokens across clauses, while non-clausal span inside a single clause.
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Lang- Features DepAcc UAS LAS

uage b-line Our b-line Our Our

EN SVO, AN 52.8 73.2 35.5 51.0 21.8
DE —*, AN 42.3 72.9 32.9 45.5 19.5
FR SVO, NA 50.6 72.8 34.7 48.3 18.0
CS SVO, AN 44.3 69.7 34.0 40.1 17.1
FI SVO, AN 55.6 77.0 35.5 45.8 15.9
ID SVO, NA 47.0 64.2 29.7 36.9 14.6
TR SOV, AN 60.0 68.0 38.8 29.3 7.9
KO SOV, AN 41.8 32.4 49.3 28.8 8.0
JA SOV, AN 56.9 69.5 35.9 39.0 14.3

Mean SVO 50.1 71.4 33.9 44.4 17.5
Mean SOV 52.8 56.7 34.1 32.4 13.9

Mean AN 50.6 66.1 34.3 39.9 16.6
Mean NA 48.8 68.5 32.2 42.6 16.3

Table 6.4: Average dependency accuracy for non-clausal relations (with UD modifi-
cation) compared with positional baseline. UAS, LAS of constructed trees (without
UD modification) compared with UAS of left or right-branching trees with gold root,
whichever is higher. mBERT was used for all languages. *: German does not have a
dominant order.

Furthermore, to the best of our knowledge, we are the first to produce labeled

trees from attention heads and report both UAS and LAS. For reference, the unsuper-
vised parser of Han et al. (2019) obtains 61.4% UAS. However, the results are not fully

comparable since their parser uses information about gold POS tags, and the results

were measured on different evaluation data (WSJ Treebank).

6.3.3 Ablation

We analyze how much the particular steps of our tree extraction method influenced

the quality of constructed trees. We also repeat the experimental setting proposed

by Raganato and Tiedemann (2018) (i.e. extracting trees from a single head) on the

enBERT model to see whether a language model is better suited to capture syntax

than a translation system. Additionally, we alter the procedure described in Sec-

tion 6.2.3 to analyze which decision influenced our results the most, i.e., we change:

1. Size of head ensembles.

2. Number of sentences used for head selection.
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3. Use the same head ensemble for all relation labels in each direction. Hence we
do not use synatactic labels and skip max-pooling described in Subection 6.2.3,

point 3.

In Table 6.3, we see that analyzing a single head in BERT (as Raganato and Tiede-

mann (2018)) produces slightly worse trees than the same method applied to neural

machine translation. If we do not use ensembles and only one head per each relation

label and direction is used, our pipeline offers only a 0.2% rise in UAS and poor LAS.

The introduction of head ensembles of size four has brought the most significant
improvement in our method of tree construction, which is roughly +15% for both

variants (with and without labels). Together with the findings of head ensembling,

this supports our claim that syntactic information is spread across many heads. In-

terestingly, max-pooling over attention weight matrices improves UAS only by 0.8%.

Nevertheless, this step is necessary to construct labeled trees. The performance is

competitive, even with as little as 20 sentences used for head selection.

6.3.4 Multilingual Model

In table 6.4 we present the results of our methods applied to mBERT and evaluated

on Parallel Universal Dependencies in nine languages. Comparison of the results for

English with table 6.3 shows that the dependency accuracy and UAS decreased only

slightly by changing the model from enBERT to mBERT, while LAS saw a 0.1% in-

crease. The model captures syntax comparably well in German, French, and Finnish.

We observe that results for languages following subject-object-verb (SOV) or-

der (Turkish, Korean, Japanese) are significantly lower than for subject-verb-object

(SVO) languages (English, French, Czech, Finnish, Indonesian) in both dependency

accuracy (14.7%) and the UAS (10.5%). Our methods outperform the baselines in the

latter group by 17.2% to 25.4% for dependency accuracy and from 6.1% to 15.5% for

UAS. The influence of Adjective and Noun order is less apparent. On average, the

NounAdj order languages results are higher than for the AdjNoun languages by 2.4%

in dependency accuracy and 2.7% in UAS.

The disparity in the results for SVO and SOV languages was previously observed

by Pires et al. (2019), who fine-tuned mBERT for part of speech tagging and eval-

uated zero-shot accuracy across typologically diverse languages. We hypothesize

that worse performance for SOV languages may be due to their lower prevalence in

mBERT’s pre-training corpus. In the following section, we provide further analysis

of emerging multilingual patterns in specific heads.
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Figure 6.1: Examples of two enBERT’s attention heads covering the same relation
label and their average. Gold relations are marked by red letters.

6.4 Analysis of UD in BERT: Both More Specific and
More General

In this section, we analyze the correspondence between attention heads and relation
types in the dependency structures. We present the most interesting finding of our

work, specifically that patterns emerging in attention can be both more granular

(check Section 6.4.1) or more general (see Section 6.4.2) than syntactic relation types

in UD. Additionally in Section 6.4.3, we show that the heads of multilingual BERT

can capture similar relation types across languages.

6.4.1 One Relation in Many Heads

We observe that a single head often captures only a specific aspect or subtype of one

UD relation type. Therefore in our approach, we averaged multiple heads to cover

different manifestations of one dependency relation type.

In Figure 6.1, we show examples of heads capturing the same type of syntactic

relation in English. The first column shows the average weights of the heads which

offer noticeably better alignment with the relation than single heads. In the top row

(purple), both heads identify the parent noun for an adjectival modifier: Head 9 in
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Figure 6.2: Syntactic BERT heads retrieving the parent for three relation labels:
Adjective modifiers, AuXiliaries, Determiners. UD relations are marked by A, X,
and D respectively.

Layer 3 if their distance is two positions or less, Head 10 in Layer 7 if they are further

away (as in “a stable, green economy”). Similarly, for an object to predicate relation

(blue bottom row), Head 9 in Layer 7 and Head 8 in Layer 3 capture pairs with shorter

and longer positional distances, respectively.

Finding 15

Syntactic relations are typically encoded by multiple heads, to increase the

alignment the weights of those heads should be averaged.

6.4.2 Many Relations in One Head

In Figure 6.2, we visualize a few examples of heads whose weights align with multi-

ple types of syntactic relations. We show that those shared relations typically span

within one type of constituency phrase. For instance, specific heads (e.g., 9th in layer

3 and 10th in layer 7) find both article-to-noun and adjective-to-noun relations. This

observation supports the previous findings that the attention heads contextualize in-
formation inside the constituency phrases (Mareček and Rosa, 2019).

Finding 16

Some attention heads encode multiple different syntactic relation types, that

have similar linguistic purposes.
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(a) French (b) German

(c) English (d) Czech

Figure 6.3: A single mBERT head which identifies noun heads of French adjective
modifiers. It also partially captures the relation in German, English, and Czech, al-
though these languages, unlike French, follow “Adjective Noun” order.
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(a) Nominal relations P2D
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(b) Modifiers D2P

Figure 6.4: Number of mBERT’s heads shared across head ensembles, both within and
across languages.

6.4.3 Multilingual Heads

In Figure 6.3, we show that specific heads can capture the same type of syntactic rela-

tion also across languages. Figure 6.4 presents the sizes of intersections between head
ensembles for different languages and dependency labels. Except for Japanese, we

observe an overlap of the heads pointing to the governor of adjective modifiers, aux-

iliaries, and determiners. Shared heads tend to find the root of the syntactic phrase.

Interestingly, common heads occur even for relations typically spanning within verb

and noun phrases, such as auxiliaries and adjective modifiers. Nevertheless, we have

not noticed that these heads would focus attention on any particular part of speech

tokens. Similarly, objects and noun modifiers share at least one head for all lan-

guages. They have a similar function in a sentence, with a distinction that objects

are dependents of predicates, while noun modifiers are dependents of nouns.

Finding 17

In multilingual BERT, weights in some attention heads align with similar syn-

tactic relation types in multiple languages.
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6.5 Conclusions

In this chapter, we have confirmed and extended the observations of correspondence

between attention weights and syntactic relations. We found out that the emerging

patterns correlate with the UD relations, yet there are also systematic differences.

Notably, we observe that there is no one-to-one correspondence between relations

and heads: some heads capture multiple types of relations, while some relations are

captured by multiple heads. Moreover, in a multilingual setting, we identify heads

capturing the same type of relations across diverse languages.

Finally, we show the practical implications of this work. One contribution is

the new method of head ensemble identification, which enables the construction of

dependency trees from attention heads, selected based on minimal supervision. Fur-
thermore, we note that the structures emerging in attention heads may be an inspi-
ration for modifying existing annotation guidelines.

Admittedly, finding a syntactic head requires small supervision for better perfor-

mance. Therefore, the method is still dependent on data, albeit to a lesser extent than

previously described probing. The extracted trees exhibit lower quality than the ones

obtained with the supervised parser, although the latter requires more annotated ex-

amples.
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7
Input Embeddings

In this chapter, we turn our focus on the input embedding layers of the language

models. The input embeddings were often overlooked in the analyses of the language

models, yet in many models, they make up a large portion of the model’s parameters,

e.g. 192M out of 270M parameters in XLM-RoBERTaBase(Conneau et al., 2020a) (70%).

The majority of recently deployed NLP models use subword tokenization as the

method of representing input and output sequences in a numerical way as embed-

dings (Mielke et al., 2021). Therefore to study the properties of the input embeddings,

we need to understand how they are allocated to input and output sequences by sub-

word tokenizers, and especially how the subword vocabulary is constructed. This

chapter presents the results of the work Limisiewicz et al. (2023a) and unlike previ-

ous chapters, it is solely devoted to the multilingual setting.

7.1 SubwordVocabulary and Tokenization

Text segmentation is an important step in the Transformer, as it maps discrete units:

word, character, or even bytes to continuous representation, i.e. word embedddings.

Recently the most dominant approach has been to split text into subword tokens. To-

kens are selected based on their frequency, enabling representing frequent words as

single tokens, while rare words are split into more subwords, which in the edge case

can be single characters or bytes. The sets of subwords are learned from the training

data with self-supervised vocabulary construction algorithms, e.g. Byte Pair Encod-

ing (BPE, Sennrich et al., 2016) or Unigram (Kudo, 2018). During model training and

inference, texts are tokenized into subwords, i.e. encoded left-to-right as subwords

(Devlin et al., 2019; Song et al., 2021) or by choosing the most probable subword seg-
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mentation for each word as in SentencePiece (Kudo and Richardson, 2018). While

subword tokenization has significant benefits over traditional rule-based tokeniza-

tion, e.g., by better treating of Out-of-vocabulary (OOV) words. It has been observed

that the choice of subword vocabulary has a significant impact on the performance

of the models.

We will discuss what subword vocabularies are adequate to process multilingual

texts and allow to encoding of necessary lexical information in the embedding rep-

resentation. We focus on the characteristics of subword tokenization methods in a

multilingual setting. To this length, we introducemethods for measuringwhether to-

kenizers effectively represent meaningful language-specific tokens in the vocabulary

(vocabulary allocation) and whether the units they learn are shared across languages
(vocabulary overlap). Our approach aims to answer: how do sub-word tokenizers

differ in vocabulary overlap and vocabulary allocation of learned vocabularies? and

which properties of multilingual tokenizers affect the LM’s representation quality?

7.2 Methodology and Experimental Setting

We train a set of multilingual RoBERTa-like models with different methods for vo-

cabulary construction and subword tokenization. We train four tokenizers for a set

of diverse 6 languages (English, Spanish, Turkish, Greek, Chinese, Arabic) using ex-

isting methods: Unigram, BPE, and our methods for monolingual tokenizer merging:

NoOverlap, TokMix (described in the subsequent section). We always set the size

of the vocabulary to V = 120, 000 tokens. Using these tokenizers, we then train four
models following the settings of XLM-R (Conneau et al., 2020a) which we then use

for the probing experiments.

Subsequently, we repeat the analysis for the broader set of 20 diverse languages

(including six mentioned earlier and: Hebrew, Georgian, Urdu, Hindi, Marathi, Thai,

Tamil, Telugu, Bulgarian, Russian, Swahili, Vietnamese, French, German) with three

tokenization methods used in three pre-trained models. In this setting, we do not use

NoOverlap tokenizer, which cannot be trained effectively given the chosen size of

the vocabulary.

7.2.1 Merging of Monolingual Tokenizers

Due to a significant imbalance of the data sizes for different languages in multilin-

gual corpora, the multilingual tokenizers tend to allocate a vast majority of vocab-

ulary units to the most frequent languages hindering models’ performance on low-

resource languages (Rust et al., 2021). To alleviate this issue, we suggest utilizing
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monolingual tokenizers for multilingual tokenization. First, the Unigram LM tok-

enizers are trained on separate monolingual corpora. The tokenizers are then com-

bined to create a tokenizer suitable for multilingual data. We propose two methods

for combining monolingual tokenizers:

Language-specific Tokenization NoOverlap: We train Unigram tokenizers

for each of L considered languages with the same vocabulary size for each of the

languages V

L
. In multilingual tokenization, we apply the tokenizer for a specific lan-

guage separately and produce a token with language identification.1 The vocabulary

consists of L segments of total size V . Naturally, the tokenized texts in different

languages will consist of tokens from distinct vocabulary segments. Noticeably, the

same character sequence in different languages can be assigned different token iden-

tities.

Language-MixedTokenizationTokMix: We train Unigram LM tokenizers for

each of L languages. Subsequently, we averaged vocabulary unit probabilities across

tokenizers, sorted them, and trimmed the vocabulary to the pre-set vocabulary size

V keeping the units with the highest probability.2

◊̂ =
Lÿ

i=1
wi◊i (7.1)

wi are weights assigned to each language. By default, we set the weights to be uni-

form and equal to 1
L
. Unlike NoOverlap, the same vocabulary units coming from

distinct monolingual tokenizers are merged into one unit with averaged probability.

7.2.2 Tokenizer and Model Training Setting

We download 10% of CommonCrwal corpus available atv https://data.statmt.

org/cc-100/. Following the methodology Conneau and Lample (2019b), we subsam-

ple each language’s data to ensure that the training corpus is well-balanced across

languages. An equation defines the sample size cl for language l:

cl,– = cmin ·

A
|Cl|

cmin

B–

(7.2)

1Only the special tokens are shared across languages, e.g., “<s>” – the beginning of a sentence
token.

2To account for possible overlaps between language-specific vocabularies, we set their sizes above
V

L
. It assures that joint vocabulary will have at least V tokens.
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Where cmin is the minimal sample size (defined by the smallest language), and Cl

is all data available for a language, – is the so-called balancing parameter. In our

experiments, we set cmin to 10 M characters, Cl is, e.g., 8.8 B characters for English.

We set – to 0.25, which corresponds to a balancing factor picked in XLM-R. The

training data for the tokenizer and the model are the same. The vocabulary size V

was set to 120,000.

7.2.3 Quantifying Tokenizer Properties

First, we introduce an analytical approach to evaluate different aspects of multilin-

gual tokenization. The measures are non-parametric and describe the key properties

of multilingual tokenizers: quality of vocabulary representation for particular lan-

guages and lexical overlap across languages.

We base our analysis on the empirical probability distribution of vocabulary units

v œ V computed on training corpus for each language l:

dl,V(v) = f(v, Cl)q
vœV f(v, Cl)

(7.3)

Function f(v, Cl) is the number of occurrences of a vocabulary unit v inmonolingual

training corpus Cl.

We aim to quantify howwell multilingual vocabulary represents meaningful lexi-

cal units of particular languages. Our intuition is that a good lexical representation is

obtained when: 1. It uses a vast portion of multilingual vocabulary, and thus a larger

part of the embedding layer is devoted to the language; 2. The text in the language

is split into longer and potentially more meaningful tokens.

Vocabulary allocation: Average Rank To measure the number of vocabulary

units available for modeling specific languages, we propose an estimation of the av-

erage rank (AR) of vocabulary units in distribution over a monolingual corpus.3 This

measure denotes how many tokens are typically considered by a language model

that has access to language identity information but no context (probabilistic uni-

gram model).

ARl,V =
ÿ

vœV
rank(v, dl,V)dl,V(v) (7.4)

3In this context, rank is the position of unit v in the vocabulary V sorted in descending order by
the probability distribution dl,V
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Our intuition is that the model will have better information about the language’s lex-

icon when vocabulary is distributed over a larger number of tokens as more param-

eters of the input embedding layer would be allocated to represent language-specific

features. Moreover, larger vocabularies tend to cover longer and more meaningful

units.

Vocabulary overlap: Character perToken In linewith previous intuition, longer

tokens should have a more meaningful representation. Therefore, we measure text

fragmentation by computing characters per token (CPT) the average number of char-

acters for a vocabulary unit in monolingual corpus Cl.:

CPTl,V = |Cl|

|TV(Cl)|
(7.5)

TV(Cl) is the tokenization of the corpus with vocabulary V ; |Cl| is the size of the

corpus measured as the number of characters. We choose the number of characters

as a base unit because it’s not susceptible to cross-lingual differences regarding word

boundaries and the average length of words. Still, the amount of information con-

veyed by a single character varies largely with the writing systems, e.g., texts written

in logographic scripts (e.g., Chinese, Japanese) tend to be shorter in the number of

characters than similarly informative texts in the alphabetic script (e.g., Latin, Perfetti

and Liu, 2005).

Vocabulary Overlap Another important property of multilingual vocabulary is

sharing lexical units across languages. Previous works claimed that vocabulary over-

lap improves cross-lingual transfer for learning downstream tasks (Pires et al., 2019;

Wu andDredze, 2019). Wemeasure overlap as the divergence between corpora distri-

butions dl (defined in equation 7.2.3). We use the Jensen-Shanon divergence (JSD).4,

because it is symmetric and applicable for distribution with different supports. The

latter is often the case when distributions are estimated for languages with distinct

writing systems.

JSD(dl1,V ||dl2,V) = 1
2

ÿ

vœV
dl1,V(v) log2

dl1,V(v)
ml1,l2,V(v) + 1

2
ÿ

vœV
dl2,V(v) log2

dl2,V(v)
ml1,l2,V(v)

(7.6)

where:

ml1,l2,V = 1
2dl1,V + 1

2dl2,V (7.7)

4In NLP literature, JSD is also known as “information radius” (Manning and Schütze, 2001).
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JSD is bounded in the range 0 to 1. The lower the value, the larger the overlap across

corpora. Another possibility to quantify overlap is to count unique vocabulary units

appearing in tokenized texts across languages. The advantage of divergence is that it

reflects the frequency of shared tokens across corpora. It is also less affected by the

choice of the data size used for estimating empirical probability distributions (dl).

Innovation 8

We introduce benchmarks for evaluating tokenizer properties: vocabulary al-
location and vocabulary overlap. These benchmarks are easy to compute and

do not require costly model training.

7.2.4 Impact on Language Modeling

In this section, we present the tasks and measures for the evaluation of multilingual

language models trained with different tokenizers.

Intristic Evaluation We evaluate the masked language modeling performance

with mean reciprocal rank (MRR) (defined in Section 3.2) on the test set from Com-

monCrawl corpus.

Probing for End-tasks To measure the models’ ability to encode linguistic infor-

mation, we probe them for a set of downstream classification tasks (for an extended

description of probing see Section 4.1). We group them based on the granularity of

examined representations: word-level and sentence-level tasks.

Word-levelTasks We test syntactic tasks: part of speech and dependency labeling

on universal dependencies de Marneffe et al. (2021) and named entity recognition on

Wikiann dataset (Pan et al., 2017).

Sentence-level Tasks In this set of tasks, we examine whether the model learns

sentence-level representations that capture its semantics and can be transferred

across languages. To obtain this sentence embedding, we average the model’s output

representation across all the tokens in the sentence. We evaluate cross-lingual nat-

ural language inference dataset (Conneau et al., 2018b) and cross-lingual sentence

retrieval on Tatoeba bitext corpus (Artetxe and Schwenk, 2019). Unlike previous

tasks, sentence retrieval is solved by an unsupervised algorithm matching sentences

based on their cosine similarity.
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Testing In-language vs. Cross-lingual Transfer For all the downstream tasks,

except sentence retrieval, we compute in-language performance by training the

probe and evaluating it on held-out test data in the same language. We quantify

cross-lingual transfer by training a probe on one language (source) and evaluating it

on the test set for another language (target).

7.3 Results

We present the results of the experiments in two sections: the evaluation of tokeniz-

ers’ properties and their impact on the performance of language models.

7.3.1 Evaluation of Tokenizers’ Properties

AR TR ZH EL ES EN

AR

Unigram 2129 2719 5919 2070 1439 1513
BPE 2972 3226 4294 2907 2220 2143
NoOverlap 2537 2653 2090 2065 1661 1597
TokMix 3485 4167 3961 2639 1999 1898

CPT

Unigram 3.16 4.01 1.84 3.5 3.88 3.91
BPE 3.7 4.19 2.03 3.97 4.34 4.22
NoOverlap 3.53 4.19 1.56 3.81 4.15 4.15
TokMix 3.7 4.45 1.73 3.9 4.24 4.18

Table 7.1: Values of vocabulary allocationmea-
sures for 4 tokenizers trained on the small lan-
guage set. The highest values for each lan-
guage are bolded.

Vocabulary allocation largely
varies throughout languages
and tokenization methods. Ta-

ble 7.1 shows that the average rank

noticeably differs across languages.

The highest AR is observed for

Chinese, which is explained by the

usage of logographic scripts, which

require an extensive vocabulary

capacity to encode all characters.

Multilingual vocabulary alloca-
tion is highly dependent on the tok-
enization method used. Vocabulary

learned with Unigram underperforms BPE and TokMix in both average rank and

characters per token. This trend holds throughout languages except for Chinese.

The observation suggests that our vanilla Unigram is a suboptimal multilingual vo-

cabulary learner.

It is important to note that NoOverlap scores lower than Unigram in the vocabu-
lary allocation measures due to the limited vocabulary size for each language caused
by prohibiting overlap. However, as shown in the next section, LM trained with this

tokenizer can achieve good results on some tasks.

The choice of tokenization method affects vocabulary overlap. Figure 7.1

shows Jensen-Shanon divergence values between the vocabularies of six languages.

We observe that the highest cross-lingual overlaps appear in the vocabulary obtained

by Unigram, followed by TokMix, and BPE. Expectedly, we do not observe overlaps
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Different Same All
Metric Tokenizer script script transfers

Overlap
(JSD)

Unigram 0.77 0.62 0.74
BPE 0.83 0.68 0.8
NoOverlap 1.0 1.0 1.0
TokMix 0.8 0.65 0.77

NER
(F1)

Unigram 31.3 ±0.4 55.4 ±0.2 36.1 ±0.4
BPE 33.5 ±0.5 59.9±0.2 38.7 ±0.4
NoOverlap 32.0 ±0.5 48.6 ±0.4 35.3 ±0.5
TokMix 31.8 ±0.4 58.0 ±0.3 37.0 ±0.4

POS
(F1)

Unigram 18.1 ±0.4 38.3 ±0.4 22.2 ±0.4
BPE 25.8 ±0.5 40.8 ±0.4 28.8 ±0.5
NoOverlap 20.1 ±0.5 41.9 ±0.5 24.5 ±0.5
TokMix 21.9 ±0.4 40.4 ±0.3 25.6 ±0.4

Dep. labeling
(F1)

Unigram 11.1 ±0.3 25.5 ±0.3 14.0 ±0.3
BPE 15.9 ±0.4 27.0 ±0.4 18.1 ±0.4
NoOverlap 12.8 ±0.4 27.8 ±0.5 15.8 ±0.4
TokMix 12.6 ±0.5 26.1 ±0.3 15.3 ±0.5

NLI
(Acc)

Unigram 42.2 ±0.7 43.7 ±0.7 42.5 ±0.7
BPE 42.4 ±0.7 45.2 ±0.8 43.0±0.7
NoOverlap 37.3 ±0.6 37.1 ±0.5 37.2 ±0.6
TokMix 41.2 ±0.7 42.7 ±0.5 41.5 ±0.7

Retrieval
(Acc)

Unigram 21.0 43.9 25.6
BPE 20.9 40.7 24.9
NoOverlap 12.3 28.0 15.4
TokMix 23.0 43.4 27.1

(a) 6 languages

Different Same All
Tokenizer script script transf

Unigram 0.75 0.58 0.73
BPE 0.83 0.67 0.81

TokMix 0.8 0.64 0.78

Unigram 33.2 ±0.5 50.7 ±0.6 35.4 ±0.5
BPE 36.6 ±0.6 54.3 ±0.3 38.8 ±0.5

TokMix 36.5 ±0.6 53.7 ±0.5 38.7 ±0.6
Unigram 23.4 ±0.5 32.9 ±0.3 24.6 ±0.5
BPE 30.5 ±0.6 40.7 ±0.4 31.8 ±0.6

TokMix 29.2 ±0.5 40.4 ±0.3 30.7 ±0.5
Unigram 13.0 ±0.6 15.6 ±0.5 13.4 ±0.6
BPE 16.5 ±0.6 19.2 ±0.5 16.9 ±0.5

TokMix 16.0 ±0.5 19.4 ±0.4 16.5 ±0.5

Unigram 37.3 ±0.5 37.5 ±0.4 37.4 ±0.5
BPE 36.2 ±0.5 38.7 ±0.5 36.7 ±0.5

TokMix 37.8 ±0.5 39.2 ±0.5 38.1 ±0.5
Unigram 44.1 44.4 44.2
BPE 44.1 49.1 45.1

TokMix 42.8 46.9 43.6

(b) 20 languages

Table 7.2: Averaged results of the evaluation for cross-language overlaps and trans-
fers. Each probing result is an average of 5 random seeds (for 6 languages) and 3
random seeds (for 20 languages). The best value in each metric is underlined, and
bolded results are closer than the sum of standard deviations from the optimal value.

for NoOverlap’s setting (JSD = 1). Jensen-Shanon divergence divergence is a good
predictor of whether the languages share the script. For all tokenization methods,

the divergence is significantly smaller in the bottom-right square grouping of the

languages using Latin script.

Finding 18

Popular tokenization methods produce vocabularies with significantly differ-

ent properties: Unigram is characterized by higher overlap and lower alloca-

tion than BPE.

Innovation 9

Our novel tokenizationmethod (TokMix) offers an increase in vocabulary allo-

cation while keeping high overlap across languages in comparison to a similar

Unigram tokenizer.
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BPE

Figure 7.1: Vocabulary overlapmeasure: Jensen-Shanon divergence for four tokeniza-
tion methods. The orange square in the bottom right groups the languages with the
same script (Latin).

7.3.2 Tokenizer Properties Impact LM Performance

High vocabulary allocation improves downstream results for word-level
tasks. In Table 7.3a, we observe that the choice of the tokenization method sig-

nificantly impacts the results for POS, dependency labeling, and NER. We presume it

results from learning good lexical representations throughout languages, e.g., by BPE

and TokMix. The higher vocabulary allocation is especially beneficial for word-level
tasks, whereas the influence on the sentence-level task NLI is minimal.

Notably, the model instance with NoOverlap tokenizer achieves the best F1 in

POS and dependency labeling despite underperforming in vocabulary allocation. It
is the result of learning language-specific representation for each token, which is

especially useful for syntactic tasks.
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Figure 7.2: Cross-lingual transfer for POS and NER tasks, the probes are trained on
data for languages on the y-axis and evaluated for languages on the x-axis. The ab-
solute values are presented for the Unigram tokenizer. For other tokenization meth-
ods, the color scheme shows a difference from the Unigram algorithm. In the case of
named entity recognition, we observe a drop in cross-lingual transfer for NoOver-
lap tokenization, especially for the same script pairs It suggests that lexical overlap
is an important aspect contributing to cross-lingual transfer for NER. We don’t see
similar drop in the case of part of speech tagging.

V. Allocation MLM NER POS Dep. labeling NLI

(AR) (CPT) (MRR) (F1) (F1) (F1) (Acc)

Unigram 2042 3.17 42.0 62.8 ±0.1 57.1 ±0.2 48.1 ±0.4 53.4 ±0.5
BPE 2193 4.47 35.6 70.4 ±0.1 68.9 ±0.2 58.7 ±0.4 53.3 ±0.3
NoOverlap 1829 3.16 42.7 69.4 ±0.1 69.2 ±0.2 58.8 ±0.3 53.0 ±0.4
TokMix 2198 3.34 38.7 70.2 ±0.1 67.3 ±0.1 57.3 ±0.4 53.3 ±0.4

(a) 6 languages

V. Allocation MLM NER POS Dep. labeling NLI

(AR) (CPT) (MRR) (F1) (F1) (F1) (Acc)

Unigram 623 2.89 52.6 58.9 ±0.2 54.0 ±0.4 43.7 ±0.4 53.2 ±0.3
BPE 809 3.43 40.5 66.3 ±0.2 67.3 ±0.4 54.5 ±0.5 53.5 ±0.3
TokMix 689 3.23 44.8 65.4 ±0.3 66.5 ±0.4 53.9 ±0.5 52.3 ±0.3

(b) 20 languages

Table 7.3: Avearged results of evaluation for in-language properties and tasks. Each
probing result is an average of 5 random seeds (for 6 languages) and 3 random seeds
(for 20 languages). The best value in each metric is underlined, and bolded results
are closer than the sum of standard deviations from the optimal value.
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Better Masked Language Modeling performance doesn’t bring improvement
to downstream tasks. In Table 7.3a, we observe that themodels performing better

on masked token prediction (MRR) tend to be worse on downstream tasks (POS and

NER). Average rank provides a possible explanation for this phenomenon. The higher

it is, the more vocabulary units a language model needs to consider for masked token

filling, making masked word prediction harder. At the same time, a high average

rank means that the vocabulary is broader and contains lexical units important for

downstream tasks. Again, this trend does not hold for the results for NoOverlap

setting, in which the search space for the masked-word problem is limited to the

language-specific tokens leading to the best performance in MLM and syntactic tasks

(POS and dependency label prediction).

Finding 19

Higher vocabulary allocation correlates with lower results in intrinsic language
modeling evaluation (MRR)while benefiting performance downstream evalua-

tion. The longer tokens are harder to predict in the masked language modeling

task, but they carry more information that is useful for end tasks.

Impact of vocabulary overlap on cross-lingual transfer varies across tasks.
We observed that NoOverlap approach obtains competitive results for POS tagging.

Surprisingly prohibiting sharing vocanulary units also improves cross-lingual trans-

fer in the task among languages with Latin script (shown in Figure 7.2b). We think

that the reason behind the strength of NoOverlap approach is that particular tokens

have different meanings across languages. For instance, the word “a” is an indefinite

article in English and a preposition in Spanish.

Nevertheless, vocabulary overlap is crucial to cross-lingual transfer in some tasks.

Especially NER within the same script languages (Figure 7.2a) and sentence-level

tasks. For these tasks, NoOverlap significantly underperforms other tokenization

methods. The drop within Latin script languages is in the range: 6.8 – 11.3% for NER

and 12.7 – 15.9% for sentence retrieval. In these cases, usage of the same tokens can

indicate that texts refer to the same entities across languages, e.g., names are usually

the same or similar strings in the languages sharing writing system.
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V. Overlap V. Allocation SRC V. Allocation TGT

(JSD) (AR) (CPT) (AR) (CPT)

NER -0.111 0.249 0.33 0.209 0.28
POS 0.395 0.365 0.547 0.489 0.653
Dep l. 0.463 0.19 0.425 0.249 0.44
NLI -0.516 0.421 0.203 0.297 0.103
Retrieval -0.648 0.235 0.082 0.238 0.085

Table 7.5: Spearman’s correlations between cross-lingual transfer results and tok-
enization measures. vocabulary overlap is measured by JSD, we also measure the
correlation with vocabulary allocation of source and target language of the transfer
directions. Statistically significant correlations (p < 0.01) are bolded. Computed for
six languages.

Finding 20

High vocabulary overlap is helpful for tasks that benefit from similar ortho-

graphic forms across languages, e.g. named entities, and bilingual sentence re-

trieval. Nevertheless, it can be detrimental in syntactic tasks (POS, UD) where

the same orthographic forms tend to have different morphosyntactic functions

across languages.

Results generalize to the larger set of languages. The key observation for six

language sets holds in the model trained for twenty languages. Table 7.3b shows

that BPE and TokMix obtain better vocabulary allocation than Unigram leading to

improved results for word-level downstream tasks (NER, POS, Dependency labeling).

Due to the smaller vocab size to the language ratio (V

L
), average ranks decrease for all

methods in comparison to the six language setting. We observe in Table 7.2b that the

cross-language vocabulary overlap is the highest for Unigram and lowest for BPE,

similar to the six languages settings. However, the association between vocabulary
allocation and the cross-lingual transfers is less pronounced.

7.3.3 Statistical Analysis

In this analysis, we check the statistical significance of the observed correlations

between the tokenizers’ properties and the intrinsic and end-task evaluation.

In Table 7.4, we show that the strong relationship between vocabulary allocation
(AR and CPT) and language model performance (MRR) is statistically supported. The

length of token units has a strong positive influence on POS, dependency labeling,

and NER results (r > 0.65) and a negative influence on MRR (r < ≠0.9), while it
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Figure 7.3: Mapping the impact of vocabulary allocation and vocabulary overlap on
language model performance. The location of points corresponds to Spearmnan’s
correlation between vocabulary measures and the task score (see the details in Ta-
bles 7.4 and 7.5). High vocabulary overlap benefits NER and sentence-level tasks (NLI,
sentence retrieval) and hinders POS and dependency labeling performance. High
vocabulary allocation improves word-level tasks but leads to a decrease in masked
language modeling scores. For exact values of correlation refer to Tables 7.4 and 7.5.
Masked language modeling is measured only in language. Thus it’s unaffected by
vocabulary overlap. Analogically, sentence retrieval is solely cross-lingual and unaf-
fected by vocabulary allocation.

does not significantly affect NLI results. The correlation between the average rank

and MRR, NER scores is weaker but still significant. Moreover, it is significantly

correlated with XNLI accuracy with a medium coefficient r = 0.56, even though the
changes in XNLI are low across tokenizers.

Table 7.5 presents the correlations for cross-lingual transfer scores with JSDmea-

suring vocabulary overlap. The coefficient supports our previous observation that

lower overlap (thus higher JSD) improves transfer for POS tagging and dependency

labeling and deteriorates it for other tasks. However, the correlation for NER is not

significant. The vocabulary allocation of source and target languages significantly

influence the cross-lingual transfers. Similarly to the in-language correlations, the
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influence of characters per token is more substantial on word-level tasks, while aver-

age rank affects sentence-level tasks to a larger extent. This observation underscores

the importance of allocating a sufficient portion of vocabulary for low-resource for

better cross-lingual transfer.

V. Allocation MLM

(AR) (CPT) (MRR)

CPT 0.790 - -

MRR -0.723 -0.913 -

NER 0.394 0.657 -0.745
POS 0.320 0.724 -0.754
Dep l. 0.266 0.675 -0.695
NLI 0.56 0.388 -0.437

Table 7.4: Spearman’s correlations be-
tween task coefficients for in-language re-
sults and tokenizer measures. Statistically
significant correlations (p < 0.01) are
bolded. Computed for 20 languages.

To summarize the results of cor-

relation analysis, we plot the coeffi-

cients in Figure 7.3, showing to what

extent vocabulary allocation impacts the
downstream performance and vocabu-
lary overlap affects cross-lingual trans-

fer.

7.4 Conclusions

In this chapter, we introduced a new

framework for the evaluation of multi-

lingual subword tokenizers. We made

notable observations regarding the im-

pact of vocabulary choice and the

model’s performance and cross-lingual

transfer across diverse languages and

end tasks:

1. Including longer and more diverse vocabulary units (higher vocabulary allo-
cation) improves in-language results and cross-lingual transfers for word-level
tasks.

2. Vocabulary overlap is beneficial for cross-lingual transfer in sentence-level

tasks.

3. Among languages with the same script, vocabulary overlap improves transfer
for NER and deteriorates it for POS and dependency labeling.
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8
Discusion and Related-Work

The section summarizes the findings of this thesis and discusses the results in the

broader context.

8.1 Distribution of Linguistic Information across
Layers

Thework of Tenney et al. (2019) showed the different layers of BERT specialize in en-

coding specific types of information. They drew an analogy between the information

flow in the Transformer and a sequential NLP pipeline, consisting of multiple inter-

mediate components responsible for different levels of linguistic comprehension, i.e.,

lexical, syntactic, and semantic.

Figure 8.1 (adapted from our work Limisiewicz and Marecek, 2020) summarizes

the evaluation of syntactic information across layers for different approaches. In

language models: BERT, mBERT, and GPT-2, the middle layers are the most syntac-

tic. In neural machine translation models, the top layers of the encoder are the most

syntactic. However, it is important to note that the MT Transformer encoder is only

the first half of the whole translation architecture, and therefore the most syntactic

layers are, in fact, in the middle of the process.

Analogously Figure 8.2 shows the distribution of semantic and lexical informa-

tion across layers. Contrasting to syntax we observe, that the lexical signal is bet-

ter captured by the lower layers, it is especially stark in the analysis methods that

do not involve probing (B and C). In both figures, we observe that the information

distribution across layers in probing (Hewitt and Manning, 2019; Chi et al., 2020)
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Figure 8.1: Distribution of syntactic information across layers in different Trans-
former models. The values are normalized so that the best layer for each method is
assigned 1.0. The columns A), B), C), and G) show undirected UAS trees extracted by
probing the n-th layer Limisiewicz andMareček (2021b); Hewitt andManning (2019);
Chi et al. (2020). Column D) shows the dependency alignment averaged across all
heads in each layer Vig and Belinkov (2019). The columns E) and F) show UAS of
trees induced from attention heads by the maximum spanning tree algorithm Ra-
ganato and Tiedemann (2018); Limisiewicz et al. (2020). The results for the best layer
(corresponding to value 1.0 in the plot) are: A) 84.2; B) 79.8; C) 80.1; D) 22.3; E) 24.3;
F) en2cs: 23.9, en2de: 20.9, en2et: 22.1, en2fi: 24.0, en2ru: 22.4, en2tr: 17.5, en2zh:
21.6; G) 77.0

is smoother than in unsupervised methods (Limisiewicz et al., 2020; Raganato and

Tiedemann, 2018). This observation hints that probing may be prone to producing a

false indication of the linguistic information encoded in the model, due to training

on supervised data.

Finding 21

Our survey of previous studies investigating linguistic features encoding in

language models shows that syntactic information tends to be encoded in mid-

upper layers while lexical is more prevalent in mid-lower ones.
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Figure 8.2: Distribution of semantic lexical information across layers in different
Transformermodels. The values are normalized so that the best layer for eachmethod
is assigned 1.0. Column A) shows results of probing in hypernymy structure (Lim-
isiewicz and Mareček, 2021b). Column B) presents accuracy on word analogy tasks
(BATS) and C) correlation with lexical annotations (LSIM) both reported in Vig and
Belinkov (2019). Columns D) show the results of probing for semantic tags from Ra-
ganato and Tiedemann (2018). The results for the best layer (corresponding to value
1.0 in the plot) are: A) 90.5; B) 29.3; C) 51.3; D) en2cs: 86.3, en2de: 85.9, en2et: 82.4,
en2fi: 83.0, en2ru: 84.6, en2tr: 78.7, en2zh: 86.0

8.2 Distribution of Linguistic Information across
Components

We can study the distribution of captured signals in the model not only across layers

but also in different modules, as described throughout this thesis: attention, feed-

forward, and latent embeddings.

Input and Output Embeddings In the first wave of popularity of Transformer

models, input and output embeddings were crucial to encode lexical information

(Musil, 2019). In encoder models, the parameters of the embedding layers constituted

often the majority of the model’s parameters: in BERT approximately 50% (Devlin

et al., 2019), XLM-R: 70% (Conneau et al., 2020a). For XLM-V(Liang et al., 2023),

which stands out with 1 million tokens vocabulary, the share of parameters in the
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embedding layer reaches 90%. Chapter 7 describes how vocabulary units, and by

extension the parameters of embedding layers, are allocated to specific languages in

the multilingual models. Vocabulary allocation has a strong impact on the model’s

end-task performance in particular languages.

Attention The attention mechanism in Transformers is crucial for efficient con-

textualization of the latent representations, i.e. enabling information flow between

positions of the input sequence. Analytical studies have shown that the patterns ob-

tained in attention weight matrices are often aligned with syntactic (Voita et al., 2019;

Clark et al., 2019; Vig and Belinkov, 2019) or semantic structures (Wu et al., 2020) as

annotated in linguistic corpora. Our results in Chapter 6 confirm this similarity for

dependency parses, but we also observe that there are systematic differences between

the linguistic theory and the emergent structures. In line with these findings, (Kul-

mizev et al., 2020) shows that some linguistic annotations (e.g., surface dependencies

Gerdes et al. (2018)) are easier to be predicted than from the latent vectors.

Feed-Forward In the LLMs, unlike their predecessor, the largest chunk of the

model’s parameters is stored in the feed-forward layers (Geva et al., 2021). This com-

ponent is also the one that is the most benefited in the scaling of the models (Kaplan

et al., 2020). Multiple recent works have focused on feed-forwards in the pursuit

of explaining the models’ functions. These studies identified the feed-forwards as a

crucial component for the model’s comprehension of the world knowledge and in-

formation (Meng et al., 2022; Dai et al., 2022; Merullo et al., 2023), e.g. as determined

by causal tracing (Pearl, 2009). Following this line of research in Chapter 5, we used
causal tracing to single out mid-upper feed-forward layers as responsible for encod-

ing gender bias. We also showed, similarly to (Meng et al., 2023), that oriented editing

of parameters in these modules can mitigate the specific signal from the model.

Based on this observation, we conclude that the distribution of the information

across modules varies across sizes and architectural choices. The recent tendency

of the rising model’s scales prioritizes the feed-forward parameters over previously

dominating embedding layers. This change has been reflected in the modules’ capac-

ity to encode information. It has been also observed that feed-forwards are respon-

sible for models’ learning capabilities (Pires et al., 2023).

8.3 Modules Crucial for Multilinguality

The most important direction of this work is the interpretability of the multilingual

models.
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Previous work studied the impact of architectural and training choices on the

multilinguality of the model, or in other words, how well the model is capable of

sharing knowledge across languages. The issue is especially interesting because the

models demonstrate the capability to transfer knowledge across languages, evenwith

minimal in-language signal. To this end, Conneau et al. (2020b) studied the impor-

tance of sharing different components of the models trained on data in various lan-

guages. They show the importance of sharing the parameters of top Transformer

layers and demonstrate the lower impact of shared vocabularies. Dufter and Schütze

(2020) performed an in-depth study of a similar phenomenon, showing the most in-

fluential factor enabling cross-lingual transfer is the depth of the model. The study of

K et al. (2020) does not indicate the necessity of same input embeddings across lan-

guages but identifies other aspects of the input representation as crucial: positional

embeddings and shared special tokens.

Our results in Chapter 7 show similar tendencies: the shared vocabulary is not

always necessary for the model to transfer knowledge. However, for some tasks, its

influence is significant, e.g. in named entities, where we expect similarities across

languages, this trend was also observed by Patil et al. (2022).

8.4 Sharing Representation Across Languages

Wealso investigate the shared representation of diverse languages in the latent space.

The previously mentioned observation of the benefit of shared dense layers across

languages in multilingual models (Conneau et al., 2020b) suggests that they learn

similar representations for different languages, which is beneficial for cross-lingual

transfer. Indeed, the empirical results of past research show that the per-language

distributions of embeddings are isomorphic given that they were obtained based on

data of similar quality and size (Vulić et al., 2020). Libovický et al. (2020) observed

that the embeddings of the multilingual masked language model (mBERT) are to a

large extent language-neutral. Furthermore, Wu and Dredze (2020) and Chi et al.

(2020) showed that syntactic information is encoded uniformly across languages and

retrievable with shared parser or probe (respectively). To this end, in Section 4.4, we

show the results confirming that linguistic signals are distributed uniformly in la-

tent space across typologically similar languages, while the representation of diverse

languages can be aligned with an orthogonal rotation based on minimal supervi-

sion. Aligning benefits cross-lingual transfer in syntactic parsing. The effectiveness

105



of orthogonal rotation for aligning similar concepts across languages, known also as

bilingual induction, has been a widely researched topic in multilingual NLP (Søgaard
et al., 2018; Artetxe et al., 2018; Vulić et al., 2020; Wang et al., 2019; Marchisio et al.,

2021).
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9
Conclusion

The main goal of this thesis is to offer a better understanding of language models

function. We focus on mapping signals and biases learned from the data in specific

models’ components and identifying the key factors affecting their mono- and cross-

lingual comprehension. To achieve this goal, we have proposed a new methodology

and also followed already established methods to study the local behavior of model

components. Namely:

1. We have introduced the new concept of orthogonal probes to study the distribu-
tion of linguistic signals in the model’s embeddings. Orthogonal probes allow
us also to disentangle various types of information, e.g. syntactic and semantic.

We have shown that the linguistic signals are distributed in embeddings across

diverse languages. We have proposed two practical applications of orthogonal
probes: zero-shot cross-lingual parsing and filtering out unwanted biases.

2. We have conducted a deeper analysis of the biases encoded in the models with

the use of causal tracing. Causal tracing identified mid-upper feed-forward

layers as the main culprit of models’ gender bias. Based on this observation,

we have proposed a novel debiasing method, DAMA.

3. We have analyzed the alignment between syntactic structures and patterns

emerging in the attention weights, showing its potential for parsing with lim-

ited supervision. This method has been shown to effectively reduce various

manifestations of gender bias in the LLaMAmodels while preserving their high

performance on downstream tasks.
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4. Finally, we have introduced a new framework for the evaluation of the impact

of multilingual subword vocabulary on the model’s performance in various

languages and in cross-lingual transfer. We notably observed the necessity of

allocating sufficient capacity of the embedding layer for a language to improve

in-language comprehension and the lower role of sharing vocabulary across

languages.

Overall, throughout the thesis, we have shown that the interpretability analysis

of language models can provide theoretical insights into the opaque neural models.

Moreover, such low-level observations of the model’s interiors enabled the develop-

ment of new methods for high-precision control of specific behaviors. Such an ap-

proach is crucial in practice, as biases and unwanted signals are not fully accounted

for in ever-growing training corpora and often slip through data filters (Navigli et al.,

2023). We have shown that effort in models’ interpretation is necessary and comple-

mentary to the other advances in the field of NLP, i.e., research on scaling, efficiency,

and new architectural design.

9.1 Limitation

Some of our results are based on probing experiments (see Section 4.1), in which we

kept a model intact and fine-tuned the shallow network (or probe) to estimate how

well the model represents specific linguistic phenomena. This approach has been

criticized due to its reliance on data and the associated risk of “squinting eyes on the

data”, which is a metaphor for interpreting the probe’s high results as the indicator of

the model’s comprehension while it might be just the results of memorization in the

probe (Rogers et al., 2020; Belinkov, 2022a). The memorization is highly likely when

using complex probes and simple tasks (e.g. POS tagging) (Pimentel et al., 2020; He-

witt and Liang, 2019). In Chapter 4, we compare probe results in retrieving linguistic

structures with the results for randomly sampled ones to control for memorization

and show that particularly orthogonal probes are less prone to this risk.
Another criticism is related to the fact that to estimate linguistic comprehension,

we base the evaluation on annotation schemes that are to some extent arbitrary.

To this end in Chapter 6, we show that the emergent structures observed in BERT

are systematically different from the syntactic annotation in UD. The subjectivity of

annotation is especially visible in the benchmarks related to social phenomena, e.g.

biases, that are highly affected by their creators’ and annotators’ social background

and personal beliefs. It has been observed that the results of bias estimations are often
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inconsistent, making it hard to compare the results of different studies and models

(Delobelle et al., 2022; van derWal et al., 2024). However, we still believe that reliance

on human annotation is necessary to interpret the model’s function, and can reveal

consistent trends when we intervene in specific components.

A few recent studies have proposed an alternative formulation of probing, focus-

ing on the interventions in the model’s representation e.g. by nullifying linguistic

signals (Elazar et al., 2021) or patching latent representation (Vig et al., 2020; Meng

et al., 2022; Hendel et al., 2023) to observe the effect on the model’s output. Such

approaches are more truthful to the base model function, as they do not involve ad-

ditional complexity as in the case of probing. However, similarly to probing, they

need to rely on limited supervision in designing the interventions.

9.2 Future Challenges

The field of NLP is going through a period of rapid advancement and changes, alter-

ing the architecture and scale of the models, which makes explaining the function of

languagemodels challenging. For instance in new larger models, feed-forward layers

tend to be more heavily scaled up than embedding and attention layers. There are

also differences in architectural approaches suggesting replacing some of the current

approaches with more efficient solutions, to name a few: replacing attention with

space-state models (Gu and Dao, 2023) or amending the structure of feed-forward

for better scaling (Liu et al., 2024). However, time and further empirical studies will

determine if and when this solution will be adopted, and potentially break Trans-

former domination in NLP.

The fast pace of newmodels’ introduction is also a challenge for developing anal-

ysis methods that stand the test of time. Notably, the pursuit of explanation is an

ongoing effort and it is unlikely to be solved in the foreseeable future. Neverthe-

less, some directions are more universal and more likely to generalize to the new

architectures. We think that such approaches should be independent of the specific

architectural choices, e.g. multi-head attention (as described in Chapter 6) and use

methods that consider universal types of representations, e.g. latent vectors (Chap-

ter 4). Alternatively, the robustness of an analytical method is determined bywhether

it can be applied to different types of modules to estimate their direct contribution

of a module or data to the model’s output, such as causal tracing (Chapter 5).

We also expect that multilingual and multimodal interpretability analysis can

gain more attention in the future. The upcoming studies could further explore the

interaction of signals coming from data in different languages and modalities, and

investigate the transfer across them.
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