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Introduction
Students of probability and statistics encounter the notion of data dependencies

early in their studies, usually beginning with the concept of independent random
events. Consider a probability space (Ω,A, P ). Recall that random events A,B ∈
A are called independent if and only if

P[A ∩B] = P[A] P[B].

This foundational idea is then extended to the independence of random variables
and, further, to the independence of σ-algebras. Regardless of the level of ab-
straction, the concept remains dichotomous: either independence holds, allowing
(under some additional assumptions) for the application of numerous theorems
and thus enabling us to tell quite a lot about the behaviour of the objects at hand;
or it does not, and then we end up stripped of the majority of our analytical tools.

The introduction of correlation coefficients or indices, such as Pearson’s r and
Spearman’s ρ, is the next step. Such indices to a certain extent quantify the
strength as well as its direction of dependence between random variables X and Y .
Although useful, these measures have their limitations. While providing certain
insights into the relationships between random variables, they fail to capture
the full complexity of their dependencies. For instance, it is well known that
uncorrelated random variables being are not necessarily independent. Unless strict
assumptions, such as bivariate normality, are imposed, correlation coefficients
do not suffice to reconstruct the joint cumulative distribution function from the
marginals.

In this thesis, we explore the so-called ‘copulae’ that allow us to capture
the entire dependency structure of a random vector (X, Y ). We demonstrate
that copulae contain the essential information required to reconstruct the joint
distribution function from its marginals. We then use copula theory to develop the
theory of population rank-based correlation coefficients, also known as measures
of concordance. The thesis is divided into four chapters and organised as follows.

In Part I, comprising the first two chapters, we focus on the special case of
bivariate distributions with non-atomic (continuous) marginals. This is a standard
and common setting for studying copulae used in the classic texts, such as [1]
or [2].

In Chapter 1, we introduce copula models and outline their basic properties. In
particular, Section 1.1 briefly sketches out the key topics explored and studied in
this thesis. We introduce the concept of a copula associated with a random vector;
we present Sklar’s theorem showing that under the non-atomicity assumption, the
associated copula is unique and we formally argue that it indeed captures the
random vector’s dependency structure in its entirety. We distinguish between the
so-called analytical and synthetic copula models. The concept of counter- and
co-monotonicity is introduced and its relation to copulae is pinpointed.

In Chapter 2, we apply copula theory in order to explore certain dependency
concepts. We begin with introducing the concordance partial ordering. We then
proceed by defining Scarcini’s abstract measures of concordance; one general tech-
nique for constructing such measures is described. We then use it to introduce the
population versions of Kendall’s τ and Spearman’s ρ. Certain more sophisticated
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dependency concepts that are mentioned in literature are briefly introduced. On
each step, we demonstrate that these concepts are fully captured and described
by the associated copula.

Part II addresses arbitrary distributions. The entry-level and overviewing
literature on copula models for arbitrary distributions is rather limited and these
models are not considered in classic literature; hence it is especially valuable that
the key facts are brought together.

Chapter 3 examines copula models for arbitrary distributions. The key dif-
ferences with the case of non-atomic marginals, which was covered in Chap. 1,
are highlighted and the challenges stemming from the presence of atoms in the
marginal distributions. In particular, we demonstrate that the associated copula
is no longer unique and outline the consequences to which ignoring this fact may
lead. We also introduce the standard extension copula and argue that, to a great
extent, it takes the role of the unique associated copula that we worked with
under the non-atomicity assumption. Finally, the properties of synthetic copula
models are summarised.

The first part of Chapter 4 mirrors Chap. 2, focusing on arbitrary distributions.
We use the standard extension copula theory in order to re-establish and generalise
the concepts of concordance partial order, concordance function and Scarsini
abstract measures of concordance as well as Spearman’s ρ and Kendall’s τ . In
the second part, we examine how the presence of atoms in the marginals affects
the population Spearman’s ρ and Kendall’s τ . We study various possible re-
normalisations for ρ and τ and outline their key properties.
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Part I

Distributions with Non-Atomic
Marginals
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1 Copulae for Distributions with
Non-Atomic Marginals

Over the course of this chapter, we consider (X, Y ) to be a random vector with
the joint cumulative distribution function (CDF) denoted by H. Unless explicitly
stated otherwise, the marginals X and Y are assumed to be non-atomic (in the
sense of Definition 40) and their CDFs are denoted as F and G, respectively. For
further details regarding the basic notation and conventions used in this work,
please refer to Appendix A.

This chapter is organised as follows. In Section 1.1, we derive the notion of
a copula naturally and with minimal effort using basic statistical concepts. We
briefly show how they can be used to capture the dependency structure and how
they are related to rank-based correlation coefficients. In Section 1.2, we formally
define copulae as a family of joint distribution functions whose marginals are
uniform on the interval (0; 1) and explore its basic properties. In Section 1.3, we
formally show that copulae indeed embody the multivariate structure of a random
vector. We also introduce various notions of co- and counter-monotonicity and
show how they are related to the so-called Fréchet-Hoeffding bounds copulae.

1.1 Setting the Stage
We begin by reviewing basic facts related to Pearson’s and Spearman’s cor-

relation coefficients. Subsequently, we present an alternative representation of
the sample Spearman’s rank correlation coefficient, which we use to define its
population counterpart. Examining the proposed definition, in a straightforward
and natural manner, we derive a structure that will be referred to as a ‘copula’ .
Additionally, in this section, we sketch out some key topics the thesis focuses on,
namely copulae, correlation coefficients (also known as measures of association or
concordance), as well as the relationships and connections between them. In this
section, our intention is to present the key ideas, so the rigorous proofs are left to
the subsequent part of the text.

1.1.1 Pearson’s r and Spearman’s ρ
We begin with defining population Pearson’s linear correlation coefficient r, also

known as product-moment correlation coefficient as well as its sample counterpart.

Definition 1 (Population Pearson’s r). Let X, Y ∈ L2
+. We define population

Pearson’s correlation coefficient as:

r(X, Y ) := r(HX,Y ) := E[(X − EX)(Y − EY )]√
varX varY

= cov(X, Y )√
varX varY

. (1.1)

Definition 2 (Sample Pearson’s r). Let {(Xi, Yi)}n
i=1 be a random sample.

The sample Pearson’s correlation coefficient is defined as follows:

ˆ︁rn(Xi, Yi) :=
∑︁n

i=1

[︂
(Xi −Xn)(Yi − Y n)

]︂
√︂∑︁n

i=1(Xi −Xn)2∑︁n
i=1(Yi − Y n)2

. (1.2)
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Pearson’s r is widely used as a measure of association between two random
variables, yet it possesses certain limitations. The population correlation is
defined only for X, Y ∈ L2

+. Additionally, its reliance on expected values renders
the sample correlation coefficient sensitive to outliers in the data. Another
unwilling property of Pearson’s r is that it is not invariant under strictly increasing
transformations of the marginals, and its possible values generally depend on the
marginals (see, for instance, [3, p. 12, Ex. 2]).

One of the attempts to address the issues is grounded in using rank methods,
which leads to Spearman’s rank correlation coefficient. The idea behind the sample
Spearman’s ρ is simple: instead of working with the raw observations, we apply
the known procedure to their ranks. In our case, we calculate sample Pearson’s r
from the ranks of the observations.

Definition 3 (Sample Spearman’s ρ).
Consider a random sample {(Xi, Yi)}n

i=1 from the distribution (X, Y ). Let Ri

denote the rank (Def. 49) of Xi in the sequence {Xi}n
i=1. Let Sj denote the rank

of Yj. We define the sample Spearman’s ρ as follows:

ˆ︁ρn(Xi, Yi) := ˆ︁rn(Ri, Si). (1.3)

Notice that since X and Y are assumed to be non-atomic, with probability one
there are no ties in the samples, and the ranks are defined uniquely.

While the definition of the sample Spearman’s ρ can be readily found in existing
literature, obtaining the definition of the population Spearman’s ρ presents certain
challenges. In the following we rewrite the sample ρ in a manner that provides
insights into the potential definition of the population ρ.

We begin by employing Theorem 58, which allows us to express the sample ρ
as follows:

ˆ︁ρn(Xi, Yi) := ˆ︁rn(Ri, Si) = ˆ︁rn

(︂
n · ˆ︁Fn(Xi), n · ˆ︁Gn(Yi)

)︂
. (1.4)

In order to proceed, we require the subsequent theorem, which states that
Pearson’s r is invariant up to the sign under non-trivial affine transformations of
random variables. We leverage the theorem to finish the calculations we started
above, formalising them as Theorem 2.

Theorem 1 (Invariance of Pearson’s r under affine transformations).
Let a, b ̸= 0, and c, d ∈ R. Then it holds that

r(aX + c, bY + d) = sgn(a) · sgn(b) · r(X, Y ). (1.5)

Similarly, on the sample level it holds that

ˆ︁rn(aXi + c, bYi + d) = sgn(a) · sgn(b) · ˆ︁rn(Xi, Yi). (1.6)

Theorem 2 (Alternative representation of sample Spearman’s ρ).
Consider a random sample {(Xi, Yi)}n

i=1 from the distribution (X, Y ). Assume X
and Y are non-atomic. Let ˆ︁Fn and ˆ︁Gn be the marginal empirical CDFs for the
samples {Xi} and {Yi}, respectively. Then the following holds:

ˆ︁ρn(Xi, Yi) = ˆ︁rn

(︂ ˆ︁Fn(Xi), ˆ︁Gn(Yi)
)︂
. (1.7)
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Proof. We start with the right-hand side:

ˆ︁rn

(︂ ˆ︁Fn(Xi), ˆ︁Gn(Yi)
)︂

= ˆ︁rn

(︃ 1
n

·Ri,
1
n

· Si

)︃
=

= sgn2
(︃ 1
n

)︃
· ˆ︁rn(Ri, Si) = ˆ︁rn(Ri, Si) =: ˆ︁ρn(Xi, Yi). (1.8)

Theorem 2 states that sample Spearman’s ρ is essentially the sample Spear-
man’s r calculated from the observations, after being transformed by their empirical
cumulative distribution functions (ECDFs). Given the consistency of the sample
estimator ˆ︁rn in estimating the population value r, along with the uniform consist-
ency of the ECDF as an estimator of the true cumulative distribution function
(Theorem 59), it is reasonable to hope that the population Spearman’s ρ could
be defined by simply ‘taking off the hats’ in the alternative representation of the
sample ρ. Based on this rationale, the following definition is proposed.

Definition 4 (Population Spearman’s ρ). We define population Spearman’s rank
correlation coefficient as follows:

ρ(X, Y ) : = ρ(HX,Y ) := r (F (X), G(Y ))

= E[(F (X) − EF (X))(G(Y ) − EG(Y ))]√︂
varF (X) varG(Y )

.
(1.9)

For proper reasoning why Definition 4 is valid and a deeper scrutiny of its
properties, please refer to Section 2.4.

The value FX(xi), where xi is an observation of a random variable X, is called
observations’s grade and is the population counter-part of its rank. Definition 4
hence explains why Spearman’s ρ is sometimes called grade correlation coefficient,
see [1, pp. 169–170].

1.1.2 Deriving a copula
Let us examine the population Spearman’s ρ closer. Notice that expression (1.9)

could be simplified employing the so-called probability integral transform (The-
orem 56). Exploiting the fact that FX(X), GY (Y ) ∼ Uni(0; 1), we obtain the
result formalised as the following theorem.

Theorem 3 (Alternative representation of population Spearman’s ρ).
Denote U := F (X) and V := G(Y ). Let CU,V be the joint CDF of the random
vector (U, V ). The following holds:

ρ(X, Y ) = 12 E [F (X)G(Y )] − 3 (1.10)

= 12
∫︂
R2
uv dCU,V (u, v) − 3 (1.11)

= 12 E [UV ] − 3. (1.12)

Theorem 3, specifically equation (1.11) is the touchstone of the whole section.
It demonstrates, that population Spearman’s ρ could be expressed solely as a
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functional of CU,V . It means, that the value of ρ does not depend on the marginal
distributions; specifically it is invariant under strictly increasing transformations.

In fact, the CU,V object we have just obtained is a so-called copula and the
whole thesis is dedicated to such objects. The following theorem formulates
and formalises several key properties of what copulas, at least for the case of
non-atomic marginals.

Theorem 4 (Key copula properties).
Let (X, Y ) be a random vector with the joint CDF H. Let F and G be the marginal
distribution functions of X and Y , respectively. Let X and Y be non-atomic.
Denote U := F (X) and V := G(Y ). Let CU,V be the joint CDF of the random
vector (U, V ). Then the following holds:

• Univariate marginals property: U, V ∼ Uni(0; 1). (1.13)

• Closed form expression: CU,V (u, v) = H (F−1(u), G−1(v)). (1.14)

• Coupling property: H(x, y) = CU,V (F (x), G(y)). (1.15)

Let us elaborate on the meaning of each point in Theorem 4. Equation (1.13)
stresses that CU,V has uniform marginals; this property is often used to define
copulae axiomatically (see Definition 5 and the corresponding remarks). Section 1.2
is dedicated to exploring that way of thinking about copulae.

Equation (1.14) once again highlights that (in case of the non-atomic marginals)
the object CU,V is derived in a closed form from the joint CDF HX,Y and thus
could be treated as a certain trait or property of random vector’s joint distribution;
i.e., we may write CX,Y , Theorem 9 justifies that notation.

Equation (1.15) is known as Sklar’s representation (see [4, p. 2]). It explicates
the mechanism how CU,V encompasses the dependence structure of HX,Y . It is
well known the joint distribution defines the marginals, yet it does not work the
other way around: the marginals generally do not allow to reconstruct the joint
distribution. In this context, CU,V is exactly the element that binds (or ‘couples’—
hence copula) the marginal distribution functions to produce the joint CDF. Hence
we can perceive CU,V as the embodiment of a particular way of how X and Y
depend on each other within the (X, Y ) random vector (as a ‘multivariate’ or
‘dependence’ structure, see [5, Sec. 1.6, first paragraph]). Section 1.3 focuses on
that side of copulae.

1.2 Copulae as Distribution Functions

1.2.1 Defining copulae
Definition 5 (2-copula). Consider a 2-CDF C. Let (U, V ) be a random vector
such that its joint distribution function is given by C. It is said that C is a 2-copula
(or simply copula) if and only if it holds that U, V ∼ Uni(0; 1).

Notice that our interest in copulae stems from the Sklar’s representation
(Equation (1.15)): we are interested in studying functions with the coupling
property. For a distribution function F , it holds that RanF ⊆ [0; 1]. Hence we
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are primarily interested in the unit square [0; 1]2, while the functions’ behaviour
outside the unit square is a nuisance and merely a question of standardisation.

The standardisation ‘a 2-CDF with uniform marginals’ that we chose in
Definition 5 is but one of many possible. Our approach follows the definition in [5,
p. 12, last paragraph] and is one of the most common ways to introduce copulae.
Another source using the same approach is [4, first sentence].

Another approach is taken by Nelsen; the main and only difference is the
domain. In [1, p. 10, Definitions 2.2.1–2.2.2], he defines copulae as functions
with the domain being equal to the unit square [0; 1]2 fulfilling certain additional
properties. The same approach is employed in [6, p. 347].

Definition 6 (Nelsen copula). A function C : [0; 1]2 → R is called a (Nelsen)
copula if and only if the following holds:

1. ∀u, v ∈ [0; 1] : C(0, v) = 0 = C(u, 0).

2. ∀ u1 < u2, v1 < v2 ∈ [0; 1] : C(u2, v2)−C(u1, v2)−C(u2, v1)+C(u1, v1) ≥ 0.

3. ∀u, v ∈ [0; 1] : C(u, 1) = 1;C(1, v) = 1.

Although strictly speaking Definitions 5 and 6 are not equivalent, it bears no
consequences for our purposes for the differences are merely technical. To clarify
this point, we first introduce the so-called ‘0-1 collar operator’.

Definition 7 (0-1 collar operator). Let x ∈ R. Define x̌ as follows:

x̌ :=

⎧⎪⎪⎨⎪⎪⎩
0, x < 0,
x, x ∈ [0; 1],
1, x > 1.

(1.16)

Notice that for a random variable U ∼ Uni(0; 1) it holds that FU(u) = ǔ.

Now, let C be a 2-copula in the sense of Definition 5. Then a restriction C|[0;1]2 is
a Nelsen copula. Conversely, consider a Nelsen copula C ′. The extension C(x, y) :=
C ′(x̌, y̌) is then a 2-copula. As we can see, the differences are merely technical. In
the rest of the text we shall rely solely on Definition 5.

1.2.2 Properties of copulae as a family of functions
A nice property of copulae that is useful in theoretical considerations is the

fact that copulae are uniformly continuous.

Theorem 5. Let C be a copula. Then C is uniformly continuous.

Proof. See [1, p. 1, Theorem 2.2.4]

It is also worth observing that convex combinations of copulae are again
copulae (see [1, p. 14, Ex. 2.3]).

Theorem 6. Let B and C be copulae. Then for α ∈ (0; 1), the convex combination
αB + (1 − α)C defined pointwisely is a copula, too.
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All cumulative distribution functions are trivially bounded by 0 from below
and by 1 from above (see Defs. 44 and 47). Since 2-copulae are CDFs by definition,
the same boundaries trivially hold for them as well. An important fact about
2-copulae is that the boundaries for them can be refined. Definition 8 introduces
functions that work as the bounds for 2-copulae, Theorems 7 and 8 then state that
the functions actually bound 2-copulae and that these boundaries are attainable.

Definition 8 (Upper and lower Fréchet-Hoeffding bounds).
Consider functions M,W : R2 → R, defined as

1. M(u, v) := min(ǔ, v̌);

2. W (u, v) := max(ǔ+ v̌ − 1, 0).

We call M and W the upper and lower FH-bounds, respectively.

Definition 8 corresponds to the definition from [1, p. 11] while accommodating
it to our definition of copulae. When considering u, v ∈ [0; 1]2, the collar operator
may be disregarded and we obtain exactly Nelsen’s definition. The collar operator is
then required to extend the function to the whole R2 consistently with Definition 5.

Theorem 7 (Fréchet-Hoeffding). Let C be a 2-copula. Then the following holds:

W (u, v) ≤ C(u, v) ≤ M(u, v).

Proof. For proof, see [1, p. 10, Theorem 2.2.3] or [2, p. 27, Th. 1.7.3].

Theorem 8 (Upper and lower FH-bounds are copulae).
Both M and W from Definition 8 are 2-copulae.

Proof. See [2, p. 11, Exs. 1.3.3 and 1.3.5].

Notice that both M and W induce distributions singular with respect to
Lebesgue measure. The upper FH bound corresponds to a random vector (U,U),
while the lower FH-bound is a 2-CDF of the random vector (U, 1 − U); in both
cases U ∼ Uni(0; 1). For both random vectors, the mass is concentrated in one of
the unit square’s diagonals.

Another example of copulae that is worth mentioning is the product copula.

Definition 9 (Product copula). Define a mapping Π : R2 → [0; 1] so that
Π(u, v) := ǔv̌. Π is then the product copula.

Observe that the product copula Π is the 2-CDF corresponding to a random
vector (U, V ) ∼ Uni(0; 1)2.

1.3 Copulae as Dependence Structures

1.3.1 Sklar’s theorem
As we have already stated, our interest in copulae is driven by the Sklar’s

representation (Equation (1.15)) and our consequent intent to interpret copulae
as (marginal-free) embodiments of dependence structure. This interest is two-fold.
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On the one hand, one might want to extract the copula from a random vector
or its 2-CDF in order to analyse solely the dependence structure; we may perceive
this is an analytic model. It is then convenient to introduce the definition of
copulae associated or compatible with a random vector and its 2-CDF (see [7,
p. 477, Definition 1.A]).

Definition 10 (Copulae associated with a joint CDF).
We say that a 2-copula C is associated or compatible with an arbitrary random
vector (X, Y ) and its 2-CDF H if and only if it holds that

H(x, y) = C (F (x), G(y)) . (1.17)

As we will see in this section, it turns out that for any random vector there
exists at least one compatible copula. Moreover, if the marginals are non-atomic,
the associated copula is unique; hence we can denote it as CX,Y or CH .

On the other hand, an analyst might be interested in finding a joint dis-
tribution with the pre-specified marginals and, at the same time, having some
desired dependency properties (which could be perceived as a synthetic model).
A laboratory example of such a task is, for instance, a problem often offered
to university students: finding a joint distribution such that the marginals are
normal, yet the joint distribution itself is not bivariate normal. In real-world
applications, the tasks might be similar in spirit, yet more complex in details.

The Sklar’s representation (Eq. (1.15)) seems to be a convenient tool for
solving problems like that: one may choose the marginals and then specify the
dependency structure separately via selecting a suitable copula. It turns out that
this approach is valid: substituting arbitrary marginal distribution functions and
copulae to the Sklar’s representation, we always obtain a valid 2-CDF.

These facts together are known as Sklar’s theorem (see, for instance, [1, p. 18,
Theorem 2.3.3]).

Theorem 9 (Sklar). Consider an arbitrary random vector (X, Y ) with the joint
distribution function HX,Y . Let FX and GY be the marginal distribution functions.
Then the following holds:

1. There exists at least one copula C associated with (X, Y ).

2. If X and Y are non-atomic, then the associated copula C is unique and thus
can be denoted as CX,Y or CH .

3. Conversely, if C is a copula and F and G are univariate CDFs, then
C(F (x), G(y)) defines a valid 2-CDF.

Proof. See Theorem 24.

A trivial yet important observation is that copulae are invariant under strictly
increasing transformations. As Durante and Sempi [2, p. 58, Rem. 2.4.2] point
out, this corresponds to the fact, that the change of physical units, conversion
to other currencies or considering a logarithm of the studied values (if it makes
sense) do not affect the dependency structure. This also suggests that copulae
and rank-based procedures are closely interrelated.
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Theorem 10 (Copula invariance under increasing transformations).
Consider a random vector (X, Y ) and its associated copula C. Let f, g be strictly
increasing transformations.
Then C is also compatible with (f(X), g(Y )).

Proof. The proof is straight-forward, see [1, p. 25, Theorem 2.4.3] or [2, pp. 57–
60].

1.3.2 FH-bound and co-monotonicity
We are now going to explore the dependency structures induced by FH-bounds.

In a nutshell, FH-bounds correspond to random variables almost surely being in a
strictly monotone (increasing or decreasing) dependence.

To clarify that, we introduce the concept of co-monotonicity. One of the earlier
attempts to introduce the notion was made in 1987 by Menahem Yaari [8, p. 103].

Definition 11 (Yaari co-monotonicity). Consider random variables X and Y
defined on the probability space (Ω,A, P ). We say, that X and Y are co-monotonic
if and only if the following holds:

∀ω, ω′ ∈ Ω : (X(ω) −X(ω′)) (Y (ω) − Y (ω′)) ≥ 0. (1.18)

Let us elaborate on the meaning of that definition. The definition may be
rewritten as follows:

∀ω, ω′ ∈ Ω : [X(ω) ≥ X(ω′) ∧ Y (ω) ≥ Y (ω′)] ∨
[X(ω) ≤ X(ω′) ∧ Y (ω) ≤ Y (ω′)] . (1.19)

If we reformulate it in terms of mappings from R to R, we will obtain something
like that. Let f, g : R → R. Then f and g are co-monotonic if and only if the
following holds:

∀a, b ∈ R, a < b :
[f(a) ≥ f(b) ∧ g(a) ≥ g(b)] ∨ [f(a) ≤ f(b) ∧ g(a) ≤ g(b)] . (1.20)

We utilised the fact that R is a well-ordered set; without loss of generality
we put a < b in the expression above. The fact that f and g are Yaari co-
monotonic is then equivalent to both f and g having the same type of monotonicity
(non-increasing or non-decreasing) on each given interval; it thus generalises the
definition of concordant functions introduced by Lehmann [9, p. 1138]. Since Ω is
usually not well-ordered, the more general approach reflected in Definition 11 is
required.

Yaari ([8, p. 104]) introduces the definition as a part of his economic theory of
risk, ascribing to it the economic interpretation of ‘bets on the same event’: ‘It is,
in fact, an analogue of perfect correlation for this distribution-free setting. When
two random variables are co-monotonic, then it can be said that neither of them is
a hedge against the other.’

Notice that Definition 11 is, as Yaari says, ‘distribution-free’ in the sense that
it does not rely in any way on the measure P ; it is therefore restrictive and clumsy
in our current approach to the probability theory and statistics. We hence will
explore other ways of thinking about co-monotonicity.
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Definition 12 (Weak co-monotonicity).
Consider an arbitrary random vector (X, Y ). We say that X and Y are weakly
co-monotonic if and only if there exists a random variable U ∼ Uni(0; 1) such
that X = f(U) and Y = g(U) almost surely, where f and g are functions
non-decreasing on (0; 1).

Definition 13 (Strong co-monotonicity).
Consider an arbitrary random vector (X, Y ). Let f be a transformation strictly
increasing on RanY . We say that X and Y are strongly co-monotonic if and only
if X = f(Y ) almost surely.

Both ways to define co-monotonicity can be found, for instance, in [4, p. 5]. It
is easy to observe that for X and Y non-atomic the definitions are equivalent.

Now we are in position to interpret the meaning the upper FH-bound in terms
of the dependency structure it imposes. The proof for the case of non-atomic
marginals is more or less obvious.

Theorem 11 (Upper FH-bound induces co-monotonicity). Consider a random
vector (X, Y ) with non-atomic marginals. Then the following statements are
equivalent:

1. X and Y are weakly co-monotonic;

2. (X, Y ) is strongly co-monotonic;

3. The upper FH-bound M is compatible with (X, Y ).

Proof. Follows from Theorems 10 and 56.

In the same manner we may construct the concept of random variables being
counter-monotonic; it then turns out that counter-monotonicity is induced by the
lower FH-bound W . The details are however out of the scope of this text.

Another way to characterise the dependency structure induced by M and W
is based on examining the support of the random vector (X, Y ). Details could be
found in [1, pp. 30–32].

1.3.3 Independence and product copula
Another particularly interesting instance of multivariate structures is inde-

pendence, which is induced by the product copula.

Theorem 12. Let Π be a copula associated with the random vector (X, Y ).
Then X and Y are independent.
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2 Measures of Concordance for
Distributions with Non-Atomic
Marginals

Over the course of this chapter, we consider (X, Y ) to be a random vector with
the joint cumulative distribution function (CDF) denoted by H. Unless explicitly
stated otherwise, the marginals X and Y are assumed to be non-atomic (in the
sense of Definition 40) and their CDFs are denoted as F and G, respectively. For
further details regarding the basic notation and conventions used in this work,
please refer to Appendix A.

2.1 Concordance Order

2.1.1 Intuition behind concordance
In the previous chapter, we studied the margin-free dependence structure of a

random vector embodied in the unique associated copula, and we focused on the
multivariate structure as a whole. In certain cases we were able to interpret the
structure in a meaningful way; e.g., the product copula corresponds to the random
variables being independent. Instead of describing the whole dependency structure
we might be interested in some narrower dependency properties. For instance, we
may focus on the concordance or, as it is often called nowadays, correlation of the
random vector’s elements.

As Scarsini [10, p. 201] puts it, the intuitive notion of concordance or correlation
between the random variables X and Y may be perceived as the tendency of
large values of X to go along with large values of Y. Following this idea, perfectly
concordant (discordant) random variables almost surely are strictly increasing
(decreasing) transformations of each other. In other words, perfectly concordant
(discordant) random variables are strongly co-monotonic (counter-monotonic). We
may thus perceive the notion of concordance as some generalisation of co- and
counter-monotonicity to a spectrum.

Pearson’s r discussed in Section 1.1 is one way to gauge the concordance, yet
as it was shown, among its other disadvantages, it is not invariant under strictly
increasing transformations, so generally X and Y being co-monotonic does not
imply that r(X, Y ) = 1. We thus need to develop other tools to capture the idea
of concordance that will respect the two poles: counter- and co-monotonicity. One
way to do that was suggested by Marco Scarsini in 1984 (see [10]).

Consider a fixed point (a, b) ∈ R2 dividing the R2 plain to four quadrants:
Q1(a, b) := {x, y ∈ R : x > a, y > b};
Q2(a, b) := {x, y ∈ R : x ≤ a, y > b};
Q3(a, b) := {x, y ∈ R : x ≤ a, y ≤ b};
Q4(a, b) := {x, y ∈ R : x > a, y ≤ b}. (2.1)

If we perceive large values as those being larger than a on the horizontal axis
and those larger than b for the vertical axis, we obtain the following picture.
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In Q1 (Q3), large (small) values of x go with large (small) values of y. Conversely,
the quadrant Q2 (Q4) contains the small (large) values of x paired with large
(small) values of y. The odd quadrants contain the values that are concordant,
while the even quadrants contain values that are discordant with respect to
the reference point (a, b).

2.1.2 Concordance partial order
Using this partitioning, we may compare the concordance of two random

vectors, assuming they share the same marginals. Before we proceed, it is useful
to introduce the concept of Fréchet classes. Although it is a broad notion (see, for
instance, [11, p. 1]), in our work the following simplified version that was used by
Scarsini [10, p. 202] will suffice:

Definition 14 (Fréchet class). Let F and G be univariate CDFs. Let Γ(F,G) be
the set of all 2-CDFs whose marginals equal to F and G, respectively. The set
is then called the Fréchet class defined by or corresponding to the marginals F
and G.

In other words, two-variate distributions are said to be in the same Fréchet
class if their corresponding marginal distributions coincide.
Remark 1. In line with Remark 11, we shall also write:

• (X, Y ) ∈ Γ(F,G), meaning that the joint CDF and the distribution of the
random vector (X, Y ) have the marginals F and G.

• H∗ ∈ Γ(X, Y ), meaning that the random vector (X, Y ) and the 2-CDF H∗

share the same marginals.

• (X∗, Y ∗) ∈ Γ(X, Y ), meaning X∗ ∼ X and Y ∗ ∼ Y .

• etc.

Although this is not entirely correct from the technical point and may be qualified
as notation abuse, it is convenient, accurate and transparent enough for our
purposes.

Scarsini [10, pp. 202–203, Definition 1] introduces the following definition:

Definition 15 (Concordance partial order on a given Fréchet class).
Consider two random vectors (X, Y ) and (X∗, Y ∗) belonging to the same Fréchet
class. We say that (X, Y ) is more concordant than (X∗, Y ∗) if and only if it holds
that:

∀a, b ∈ R : P [(X, Y ) ∈ Q1(a, b) ∪Q3(a, b)]
≥ P [(X∗, Y ∗) ∈ Q1(a, b) ∪Q3(a, b)] . (2.2)

We use the following notation to reflect that fact:

H ⪰ H∗, (X, Y ) ⪰ (X∗, Y ∗). (2.3)
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Remark 2. Notice that this definition works for arbitrary Fréchet classes. Spe-
cifically, it does not require the margins to be non-atomic. More on that in
Section 4.1.

It is easy to observe that the definition could be equivalently reformulated in
terms of the joint 2-CDFs.

Theorem 13 (Partial concordance order characterisation).
Consider an arbitrary 2-CDF H. Let H∗ ∈ Γ(H). The following statements are
then equivalent:

1. H ⪰ H∗;

2. ∀a, b ∈ R : H(a, b) ≥ H∗(a, b).

Notice that this establishes a partial order on the set of bivariate distributions
sharing the same marginals or, in other words, on the Fréchet class Γ(X, Y ).

The reason why we (for now) require the compared vectors to share the
marginal distributions is the following. Assume

(X, Y ) ∼ Uni([1; 2]2) and (X∗, Y ∗) ∼ Uni([0; 1]2). (2.4)

Then clearly H ≥ H∗ pointwisely, yet intuitively there seems to be no reason to
claim that H is more concordant than H∗. There are two ways to resolve this
problem.

The first approach is to limit ourselves to comparing only two-variate distribu-
tions belonging to the same Fréchet class. This approach is powerful enough to
satisfy one’s needs in many cases. If, say, an analyst has pre-specified marginals
and selects the proper dependence structure to produce the joint distribution,
then they naturally stick to comparing various random vectors sharing the very
same pre-specified marginals that were chosen at the beginning; there seems to be
no need to seek something more general: see, e.g., [12, p. 546].

Another approach is to demand that the strictly increasing transformations
do not affect the order. Indeed, in the example above (X − 1, Y − 1) ∼ (X∗, Y ∗),
so these two vectors should be equivalent in terms of concordance. In light
of the fact that it is exactly the associated copulae that are invariant under
such transformations (Theorem 10), this naturally leads us to using copulae to
generalise the concordance partial order to any bivariate distribution with non-
atomic marginals, at least in our current setting of the marginals being non-atomic.
Scarsini [10, p. 205, Def. 4] then proposes the following definition:

Definition 16 (Concordance order for distribution with non-atomic margins).
Consider two random vectors (X, Y ) and (X∗, Y ∗) with non-atomic marginals.
Let C and C∗, respectively, be their unique associated copulae.
We then say that (X, Y ) is more concordant than (X∗, Y ∗) if and only if the
following holds:

∀u, v ∈ R2 : C(u, v) ≥ C∗(u, v). (2.5)

Observe that the partial order introduced in Definition 16 indeed extends
the order introduced in Definition 15 which relies on the fact that the compared
distributions share the same marginals. We thus will use the same notation
H ⪰ H∗ to denote it.
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Some people refer to the concordance partial order that we have just introduced
as positive quadrant dependence ordering (see [6, p. 350] and [7, pp. 497–498]),
while in other sources it is called correlation order (see [13, p. 203, Def. 2 and
p. 204, Th. 1]). Nelsen also discusses concordance order, see [1, pp. 38–39].

The concordance partial ordering is indeed only a partial order on the set of
bivariate distributions with non-atomic marginals. For instance, it is easy to see
that the product copula Π and the copula produced as an average of FH-bounds
W +M

2 are not comparable.
Another important observation is that the concordance order extends the

order suggested by the Fréchet-Hoeffding theorem (Th. 7). Indeed, the theorem
implies that the upper FH-bound M is the largest and maximal element under
the concordance ordering, while the lower bound W is the smallest and minimal
element. This fact justifies the claim that the multivariate structure associated
with M (W ) is called perfect concordance (perfect discordance).

2.1.3 Positive and negative quadrant dependency
The concordance order defines the W–M axis, with the product copula Π

being an important point between the two poles. It seems natural to divide all
distributions according to their position with respect to the product copula Π.
The following definitions were proposed by Lehmann in 1966 [9, p. 1137], see also
[7, p. 496, Def. 5].

Definition 17 (Positive and negative quadrant dependency). We say that H is
positively quadrant dependent (PQD) if H ⪰ Π, or, in other words, if it holds that

∀x, y ∈ R : H(x, y) ≥ F (x)G(y). (2.6)

We denote this as DEP1(X, Y ) or DEP1(H).
We say that H is in negative quadrant dependency (NQD) if Π ⪰ H, or, in other
words, if it holds that

∀x, y ∈ R : H(x, y) ≤ F (x)G(y). (2.7)

These notions may be used by analysts as broad reference points when deciding
on the dependency structure suitable for their task. Besides that, distributions
in these classes have some interesting properties. For instance, the following
proposition is due to Lehmann [9, p. 1140, Lemma 3].

Theorem 14. Let X and Y be positively quadrant dependent. Provided the
expectations below exist, it holds that:

E[XY ] ≥ E[X] E[Y ], (2.8)

with equality holding if and only if X and Y are independent.

2.2 Abstract Measures of Concordance
In the previous section we established a partial ordering of the set of two-variate

distributions with non-atomic marginals. Naturally, the next step is to consistently
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extend the partial ordering to a complete one. One technique that could be used
to extend the partial ordering ⪯ on some set A is constructing a so-called measure:
a mapping m : A → R such that ∀a, b ∈ A : a ⪯ b =⇒ m(a) ≤ m(b). We then
use the order induced by the mapping m to compare the elements that are not
comparable by ⪯.

The established concordance ordering is based on the pointwise comparison
of the unique associated copulae, so without loss of generality we may limit our
debate to the set of copulae. To ensure that the extended order is meaningful and
of use, Scarsini [10, pp.205–206] proposes an axiomatic definition for the so-called
measures of concordance. We present the axioms as per Nešlehová [12, p. 546,
Def. 1].

Definition 18 (Scarsini’s abstract measure of concordance).
Consider a mapping κ : Γ → R where Γ stands for the set of all two-variate
random vectors with non-atomic marginals. We say κ is a measure of concordance
if and only if the following holds:

1. (Symmetry) κ(X, Y ) = κ(Y,X).

2. (Bounds) κ(X, Y ) ∈ [−1; 1].

3. (Normalisation) If X = f(Y ) a.s. with f strictly increasing on the range
of Y , then κ(X, Y ) = 1. If X = f(Y ) a.s. with f strictly decreasing on the
range of Y , then κ(X, Y ) = −1.

4. (Independence) If X and Y are independent, then κ(X, Y ) = 0.

5. (Change of sign) If f is strictly monotone on the range of X, then

κ(f(X), Y ) =
⎧⎨⎩κ(X, Y ), for f strictly increasing,

−κ(X, Y ), for f strictly decreasing.

6. (Continuity) Consider a sequence of random vectors (Xn, Yn) ∈ Γ such
that (Xn, Yn) D−→ (X, Y ) ∈ Γ. Then κ(Xn, Yn) −→

n→∞
κ(X, Y ).

7. (Coherence) For (X, Y ) ⪰ (X∗, Y ∗) it holds that κ(X, Y ) ≥ κ(X∗, Y ∗).

It is worth observing that the list of axioms is not minimal. Moreover, various
authors suggest slightly different, yet equivalent axioms. For instance, Nelsen
[1, pp. 168–169, Def. 5.1.7] formulates the Normalisation axiom as κ(X,X) = 1
and κ(X,−X) = −1.

Let us comment on the choice of the axioms. The Coherence axiom ensures
that the measure we construct to extend the ordering is in accordance with the
underlying partial ordering, namely the concordance ordering.

Symmetry seems to be a reasonable demand since there is no reason to believe
that the concordance of (X, Y ) is somehow different from (Y,X). The Symmetry
axiom thus guarantees that these two vectors are equivalent in terms of their
concordance.

Normalisation and Bounds axioms are consistent with the idea of the W–M
axis that we mentioned in Section 2.1.3; they in fact ensure that the lowest
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value that κ can attain is ascribed to W, while the largest corresponds to the
upper FH-bound M , which in our setting is equivalent to both weak and strong
co-monotonicity (Thm. 11). The Independence axiom then codifies the role of the
product copula Π as an important reference point between the poles, requiring that
κ(Π) = 0. It then immediately follows that (X, Y ) being in positively quadrant
dependence implies κ(X, Y ) ≥ 0, while κ(X, Y ) ≤ 0 is a necessary condition for
NQD.

Intuitively it seems that if X and Y are ‘highly concordant’, then X and −Y
should be ‘highly discordant’; this is in line with Pearson’s r behaviour, see The-
orem 1. This intuition is formalised as the Change of sign axiom.

Finally, the Continuity axiom requires that κ is continuous with respect to the
weak convergence of measures. It can be reformulated as that Pn

w−→ P implies
that κ(Pn) → κ(P ) whenever the latter expression makes sense. We may perceive
that as a requirement that if distributions P and P ∗ are ‘close’, then κ(P ) should
be ‘close’ to κ(P ∗).

2.3 Concordance Function
Now that we have introduced the concept of measures of concordance, it is

pertinent to ask whether the definition is productive. Do such measures exist? If
so, how can we construct one?

One generic technique for constructing measures of concordance relies on the
so-called concordance function, see [12, p. 547] and [1, p. 159, Th. 5.1.1]. We first
introduce the concept of a reference random vector.

Definition 19 (Reference random vector).
Consider an arbitrary random vector (X, Y ). A reference vector for (X, Y )
is a random vector (X∗, Y ∗) ∈ Γ(X, Y ) such that (X∗, Y ∗) ⊥⊥ (X, Y ). The
vector (X, Y ) is then called a gauged random vector.

In other words, the gauged and reference vectors share common marginals and
are independent from each other, yet their multivariate structure may differ. It
is also in place to observe, that the terms gauged and reference are symmetric:
if (X∗, Y ∗) is a reference for (X, Y ), then (X, Y ) is a reference for (X∗, Y ∗).

Definition 20 (Concordance function, probabilistic definition).
Let (X, Y ) be an arbitrary gauged random vector with joint CDF H. Consider a
reference random vector (X∗, Y ∗) with joint CDF H∗. The concordance function
is then defined as follows:

QX∗,Y ∗(X, Y ) := P [(X −X∗)(Y − Y ∗) > 0] − P [(X −X∗)(Y − Y ∗) < 0]. (2.9)

In line with Remark 11, we put

QH∗(H) := QX∗,Y ∗(X, Y ). (2.10)

Definition 20 may be interpreted as follows. We calculate the difference of
probabilities that the gauged vector is (sharply) concordant with the reference
one minus the probability of them being (sharply) discordant. Compare it with
Yaari’s definition of co-monotonicity (Def. 11).

24



We may also look at the concordance function in terms of the setting we ex-
plored in Section 2.1. The reference vector defines the reference point for the four
quadrants. Concordance functions then expresses the difference between the prob-
ability of the gauged vector falling in the interiors of Q1(X∗, Y ∗) and Q3(X∗, Y ∗),
minus the probability of it being in the interiors of the even quadrants.

In our current setting where (X, Y ) is assumed to have non-atomic marginals,
the concordance function can be expressed in terms of the associated copulae,
see [12, p. 547]. Besides that, Nešlehová [12, p. 553, Note 2] gives a stochastic
representation, which may be useful for computation purposes.

Theorem 15 (Q is a function of the associated copula).
Let (X, Y ) be a random vector with continuous marginals and joint distribution
function H. Let (X∗, Y ∗) be a reference vector. Let C and C∗ be the associated
copulae of the gauged and reference random vectors, respectively.
Let (U, V ) ∼ C and (U∗, V ∗) ∼ C∗. Then it holds that:

QX∗,Y ∗(X, Y ) = QU∗,V ∗(U, V ) = QC∗(C). (2.11)

Besides that, QC∗(C) can be expressed analytically, yielding:

QC∗(C) = 4
∫︂
R2
C(u, v) dC∗(u, v) − 1. (2.12)

Proof. See [1, p. 159, Th. 5.1.1].

Remark 3. The expression (2.12) is sometimes used to define the concordance
function. In contrast with the probabilistic definition presented in Def. 20, the
expression given in Eq. (2.12) is then called analytical definition of the concordance
function.

Theorem 16 (Stochastic representation of Q).
Assume the setting of Theorem 15 holds. Then the concordance function has a
stochastic representation:

QX∗,Y ∗(X, Y ) = 4 E[H(X∗, Y ∗)] − 1. (2.13)

Eq. (2.12) gives us a deeper understanding of the underlying mechanics of
the Q function. Specifying the reference copula C∗, we choose which parts of
the gauged copula C we want to focus on and what weights are put on them.
Setting C∗ := Π, we assess the whole C uniformly (recall that Π corresponds
to the distribution uniform on the unit square [0; 1]2). Putting C∗ := M , we
limit ourselves to studying the behaviour of C on the diagonal {(t, t) | t ∈ [0; 1]}
with weights spread uniformly along it (recall that M is a 2-CDF of a random
vector (U,U), where U ∼ Uni(0; 1)). Nelsen [1, Sec. 5.1, especially pp. 160–162]
scrutinises the consequences of choosing different C∗.

Besides that, it is also worth observing some other convenient properties of
the concordance function. For instance, it turns out that Q is symmetric in terms
of the gauged and reference distributions, see [1, p. 160, Cor. 5.1.2].

Theorem 17 (Properties of concordance function).

1. Symmetry. QC∗(C) = QC(C∗).
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2. Non-decreasing in reference. Let C∗ ⪰ C ′. Then QC∗(C) ≥ QC′(C).

3. Non-decreasing in the gauged vector. Let C ⪰ C ′. Then QC∗(C) ≥ QC∗(C ′).
The property of being non-decreasing in the gauged distribution hints that Q

can be used as a basis to construct Scarsini’s measures of concordance.

2.4 Examples of Measures of Concordance
Choosing different references for the concordance function Q and applying

suitable normalisations, we obtain different indices focusing on different aspects
of the gauged dependence structure C. Consider the following instances.

Spearman’s ρ

If we put C∗ := Π, which is equivalent to setting the elements of the reference
random vector independent, we obtain the probabilistic expression for Spear-
man’s ρ, see [7, p. 490], [12, p. 547] and [1, p. 167]. This measure gauges the
whole copula C uniformly.
Definition 21 (Population Spearman’s ρ, probabilistic definition).
Consider an arbitrary random vector (X, Y ). Let (X∗, Y ∗) be a reference vector
such that X∗ ⊥⊥ Y ∗. We define Spearman’s ρ as follows:

ρ(X, Y ) := 3Q(X∗,Y ∗)(X, Y ). (2.14)
Let H be the joint cumulative distribution function of the random vector (X, Y ).
In line with Remark 11, we put:

ρ(H) := ρ(X, Y ) (2.15)
Using Theorems 15 and 16 we obtain a stochastic representation and some

analytical expressions for Spearman’s ρ which may be useful for better under-
standing of its mechanics as well as for computational purposes. Regarding the
stochastic representation, see [7, p. 491, Prop. 9].
Theorem 18 (Stochastic representation of Spearman’s ρ).
Let (X, Y ) be a random vector with non-atomic marginals. Let H be the joint
CDF and assume F and G for the respective marginal distribution functions.
Let (X∗, Y ∗) be a reference vector such that X∗ ⊥⊥ Y ∗. Then it holds that

ρ(X, Y ) = 12 E[H(X∗, Y ∗)] − 3 = 12 E[F (X)G(Y )] − 3. (2.16)
Theorem 19 (Alternative forms of Spearman’s ρ).
Assume (X, Y ) has non-atomic marginals and let C be its unique associated copula.
Then it holds that:

ρ(X, Y ) = 3QΠ(C) (2.17)

= 12
∫︂

[0;1]2
C(u, v) du dv − 3 (2.18)

= 12
∫︂
R2
uv dC(u, v) − 3 (2.19)

= r (F (X), G(Y )) (2.20)

= 12
∫︂

[0;1]2
C(u, v) − Π(u, v) du dv. (2.21)
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Proof.

Eqs. (2.18) and (2.17). Using Theorem 15, we get:

ρ(X, Y ) = 3QΠ(C) = 12
∫︂
R2
C(u, v) dΠ(u, v) − 3

= 12
∫︂
R2
C(u, v) dǔ dv̌ − 3

= 12
∫︂

[0;1]2
C(u, v) du dv − 3.

Eq. (2.19). Theorem 17 ensures that QΠ(C) = QC(Π). Observing that C concen-
trates all mass inside the unit square [0; 1]2, we get:

ρ(X, Y ) = 3QΠ(C) = 3QC(Π) = 12
∫︂
R2

Π(u, v) dC(u, v) − 3

= 12
∫︂
R2
ǔ v̌ dC(u, v) − 3

= 12
∫︂
R2
uv dC(u, v) − 3.

Eq. (2.20) follow from the previous equality and Theorem 3.

Eq. (2.21). Using (2.19) and the linearity of integral, we get:

ρ(X, Y ) = 12
∫︂

[0;1]2
C(u, v) du dv − 3

= 12
∫︂

[0;1]2
C(u, v) du dv − 12

∫︂
[0;1]2

uv du dv

= 12
∫︂

[0;1]2
C(u, v) − uv du dv

= 12
∫︂

[0;1]2
C(u, v) − Π(u, v) du dv.

All of these alternative representations rely on the assumption of non-atomic
marginals. Notice that Eq. (2.20) establishes the connection with the observations
we made in Section 1.1 and justifies and generalises the population Spearman’s ρ
proposed in Definition 4. Eq. (2.21) is of interest as well; it suggests that Spear-
man’s ρ can be interpreted as rescaled average distance between the gauged
dependence structure C and independence. Finally, eq. (2.16) is of interest when
compared with a similar representation of Kendall’s τ , see eq. (2.28).

The sequence of equalities is sometimes used to define Spearman’s ρ analytically;
see, for instance [10, p. 208], [7, p. 480] or [12, p. 547]. Compare this distinction
with the distinction in case of the concordance function (Rem. 3).

Definition 22 (Population Spearman’s ρ, analytical definition).
Let (X, Y ) be a random vector with non-atomic marginals and let C be its unique
associated copula. The analytical definition of Spearman’s ρ is:

ρ(X, Y ) = ρ(C) = 3QΠ(C) = 12
∫︂

[0;1]2
C du dv − 3. (2.22)
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Kendall’s τ

Another option that naturally comes to mind is to use an independent copy
of (X, Y ) as a reference. This leads to the probabilistic definition of Kendall’s τ,
see [7, p. 490], [12, p. 547] and [1, pp. 158–160]. This measure again gauges the
whole copula C, yet the weights are defined by the copula itself.

Definition 23 (Population Kendall’s τ , probabilistic definition).
Consider an arbitrary random vector (X, Y ). Let (X∗, Y ∗) ∼ (X, Y ) be a reference
vector. We then define Kendall’s τ as follows:

τ(X, Y ) := QX∗,Y ∗(X, Y ). (2.23)

Let H be the joint cumulative distribution function of the random vector (X, Y ).
In line with Remark 11, we put:

τ(H) := ρ(X, Y ) (2.24)

For Kendall’s τ , we also present several alternative stochastic and analytical
representations. Regarding the stochastic representation, see [7, p. 491, Prop. 9].

Theorem 20 (Stochastic representation of Kendall’s τ).
Assume (X, Y ) has non-atomic marginals and let H be its joint distribution
function. Then it holds that:

τ(X, Y ) = 4 E[H(X, Y )] − 1. (2.25)

Theorem 21 (Alternative forms of Kendall’s τ).
Assume (X, Y ) has non-atomic marginals. Let H be its joint CDF and let C be
its unique associated copula. Let (U, V ) ∼ C and put W := C(U, V ). Let FW be
the CDF of W . It then holds that:

τ(X, Y ) = QC(C) (2.26)

= 4
∫︂
R2
C(u, v) dC(u, v) − 1 (2.27)

= 4 E [C (F (X), G(Y ))] − 1 (2.28)

= 4
∫︂
R
w dFW (w) − 1. (2.29)

Proof.

Eqs. (2.26) and (2.27) are immediate consequences of Theorem 17.

Eq. (2.28). Interpreting the previous equality as expectation under the distribution
induced by the 2-CDF C, we get:

τ(X, Y ) = 4
∫︂
R2
C(u, v) dC(u, v) − 1 = 4 E [C (F (X), G(Y ))] − 1.

Eq. (2.29). Since (F (X), G(Y )) ∼ C, we then get:

τ(X, Y ) = 4 E [C (F (X), G(Y ))] − 1 = 4 E[W ] − 1 = 4
∫︂
R
w dFW (w) − 1.
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The transformation H(X, Y ) is the two-variate analogue of probability integral
transform (Th. 56); in our setting it is equivalent to C (F (X), G(Y )). Because of
eq. (2.29), the distribution of the random variable obtained by such transformation
is called Kendall’s distribution (see [4, p. 7]). The transform is, for instance,
employed to develop diagnostic tools and goodness-of-fit tests used in copula
modelling, see also [6, p. 352] and [1, p. 163].

The sequence of equalities is sometimes used to define Kendall’s τ analytically;
see, for instance [10, pp. 208–209, Th. 5], [7, p. 480] or [12, p. 547]. Compare this
distinction with the distinction in the case of the concordance function (Rem. 3).

Definition 24 (Population Kendall’s τ , analytical definition).
Let (X, Y ) be a random vector with non-atomic marginals and let C be its unique
associated copula. The analytical definition of Kendall’s τ is:

τ(X, Y ) = τ(C) = QC(C) = 4
∫︂
R2
C(u, v) dC(u, v) − 1. (2.30)

Other examples

Choosing the FH-bounds as the reference multivariate structures we obtain
Corrado Gini’s correlation index. As we can see, it gauges the dependence
structure’s behaviour along the diagonals of the unit square [0; 1]2, see also [1,
pp.180–182].

Definition 25 (Gini’s γ).

γ(X, Y ) := QM(C) +QW (C). (2.31)

Denote the random variables median as mX . If we use the point (mX ,mY ) as
a reference to define the the quadrants, and then calculate the difference between
the probabilities of being concordant and discordant, we obtain Blomqvist’s medial
correlation coefficient. As we can see, it gauges the dependency structure at
the single point (1

2 ,
1
2), yet even this crude approach can be informative; see also

[1, p. 182].

Definition 26 (Blomqvist’s β).

β(X, Y ) := P[(X −mX)(Y −mY ) > 0] − P[(X −mX)(Y −mY ) < 0] (2.32)

= 4C
(︃1

2 ,
1
2

)︃
− 1. (2.33)

2.4.1 Measure of concordance
It turns out that the four aforementioned indices based on the concordance

function do fulfil Scarsini’s axioms and are measures of concordance in the sense
of Definition 18.

Theorem 22. Spearman’s ρ, Kendall’s τ , Gini’s γ and Blomqvist’s β are Scarsi-
ni’s measures of concordance.

Proof.
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Spearman’s ρ. See [10, pp. 207–208] or [1, p. 169, Th. 5.1.9].

Kendall’s τ . See [10, pp. 208–210, Th. 5] or [1, p. 169, Th. 5.1.9].

Gini’s γ. See [10, pp. 208–210, Th. 5].

Blomqvist’s β. See [10, pp. 207–208].

Recall that initially we introduced measures of concordance as a way of
extending the concordance partial ordering to a complete order. Needless to say
that different Scarsini measures κ yield different extensions. The discrepancies
in the values of two different measures of concordance can be informative; see,
for instance, [1, pp.174–180, Sec. 5.1.3] where Nelsen explores the relationship
between Spearman’s ρ and Kendall’s τ .

2.5 Further Dependency Concepts
Besides the positive and negative quadrant dependencies introduced in Defin-

ition 17, there are many more. We mention several of them for the sake of
completeness. The following list is based on [7, p. 496, Def. 5].

Definition 27. Consider an arbitrary random vector (X, Y ). Then

• Y is left-tail decreasing in X, denoted DEP2(X, Y ), if and only if for
each y ∈ R it holds that P[Y ≤ y|X ≤ x] is a non-increasing function of the
variable x.

• Y is said to be right-tail increasing in x, denoted DEP3(X, Y ), if and only
if for each y ∈ R it holds that P[Y ≤ y|X > x] is a non-decreasing function
of the real variable x.

• Y is stochastically increasing in X, denoted DEP4(X, Y ), if and only if for
each y ∈ R it holds that P[Y ≤ y|X = x] is a non-increasing function of x.

• X and Y are in positive likelihood ratio dependence, denoted DEP5(X, Y ),
if and only if the following holds:

∀x1 < x2 ∈ R, ∀y1 < y2 ∈ R :
h(x1, y1)h(x2, y2) ≥ h(x1, y2)h(x2, y1), (2.34)

where h(x, y) is the probability or density function of (X, Y ). The concept
only makes sense if the density function exists.

In line with Remark 11, we may also write DEPi(H), where H is the joint CDF.

In case of the non-atomic margins, all of these concepts are captured by the
unique associated copula.

Theorem 23. Let (X, Y ) be a random vector with non-atomic marginals. Let C
be its unique associated copula. Then for i ∈ {1, . . . , 5} the following statements
are equivalent:
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1. DEPi(X, Y ) holds,

2. DEPi(C) holds.

Proof. Refer to [7, p. 497, Prop. 11].
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Part II

Arbitrary Distributions
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3 Copulae for Arbitrary
Distributions

In Chapter 1, we established the foundations of the 2-copulae theory in the
case of distributions with non-atomic marginals. The non-atomic marginals
assumption is a popular setting, many classic books focus more or less exclusively
on it (e.g., Nelsen [1] or Durante and Sempi [2]). It is safe to say that the classical
copula theory is based on that assumption.

Although assuming the marginals are non-atomic is popular, it is rather
limiting. In this chapter, we shall study the properties of copulae for arbitrary
two-variate distributions. Apart from [7], there does not seem to be any review,
nor summary texts dealing with the copula models for arbitrary distributions.
One of the goals of this chapter is to collect in one place all the key facts about
probabilistic copula models for arbitrary distributions.

The chapter is organised as follows. In Section 3.1, we demonstrate why the
naive attempt to apply the methods we used previously to the case of arbitrary
distribution fails. Section 3.2 reformulates Sklar’s theorem for the case of atomic
distributions and shows that the associated copula is no longer unique; the section
demonstrates some consequences it has for the copula models and outlines different
ways of dealing with the problems that arise from the atoms being present in the
marginal distributions. Section 3.3 focuses on discrete distributions and showcases
how detrimental the consequences of the fact that the associated copula is longer
unique can be; it also presents several tools that allow us to assess the extent of
the problems in each particular case. In Section 3.4 we explore the techniques that
lead to deriving the so-called standard extension copula; we demonstrate that to a
great extent it plays the role of the unique associated copula we worked with in
the case of non-atomic marginals and hence can be considered as the embodiment
of the dependence structure of an arbitrary random vector. Finally, in Section 3.5,
we summarise the properties of synthetic copula models under the non-atomicity
assumption, explore their behaviour in the case of arbitrary distributions and
study how co-monotonicity and FH-bounds work when atoms are present in the
marginals.

3.1 Differences with the Non-Atomic Case
Recall how we initially motivated the study of copulae in Section 1.1. We

studied a random vector (X, Y ), H was its joint cumulative distribution function,
F and G were its marginal CDFs, which were assumed to be continuous. We then
exploited the probability integral transform (Th. 56) to obtain a new transformed
vector (U, V ) := (F (X), G(Y )). Due to Theorem 56, it held that U, V ∼ Uni(0; 1),
and the 2-CDF CU,V was the (unique) copula associated with the random vec-
tor (X, Y ) and its 2-CDF H. Can we do the same trick without assuming the
marginals to be non-atomic?

Alas, this approach does not work if there are atoms present in the marginal
distributions. Specifically, the problem is that F (X) is not distributed uniformly
if X is arbitrary. Moreover, the closed-form expression for the associated copula
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that we derived in Theorem 4 is not valid either. These facts are illustrated by
the example below which loosely follows [7, pp. 478–479, Ex. 1].
Example 1. Consider a random vector (X, Y ). Let the elements be independent
Bernoulli random variables with probabilities of success p and q, respectively.
Let H be its joint CDF, and let F and G be the marginal CDFs. It then holds
that:

F (x) := P[X ≤ x] =

⎧⎪⎪⎨⎪⎪⎩
0, x ∈ (−∞; 0);
1 − p, x ∈ [0; 1);
p, x ∈ [1; ∞).

(3.1)

It is easy to verify that F (X) is a discrete random variable that is equal to 1 − p
with probability 1 − p, and with probability p it equals 1; clearly, it is not
distributed uniformly. Hence the CDF of (F (X), G(Y )) by definition is not a
copula.
Consider the quantile function (Def. 45) for X:

F−1
X (u) := inf{x : F (x) ≥ ǔ} =

⎧⎨⎩0, u ∈ (−∞; 1 − p];
1, u ∈ (1 − p; ∞).

(3.2)

The expression x̌ in the equality above stands for the collar operator (Definition 7).
Clearly, H(F−1(u), G−1(v)) is not a copula.

More details could be found, for instance, in [7, pp. 477–480].

3.2 Analytical Models. Extracting Associated
Copulae from Joint CDF

As we have seen in the previous section, the first two out of three copula
properties we outlined in Theorem 4 fail if atoms are present in the marginal
distributions. The property we are left with is the coupling property, or Sklar’s
representation (Eq. (1.15)). Specifically, let H be an arbitrary two-variate CDF,
and F and G be its marginal CDFs. Sklar’s representation then goes as follows:

H(x, y) = C(F (x), G(y)), (3.3)

where C is (usually) taken to be a copula. Given H arbitrary, is it possible to
derive a copula that fulfils the Sklar’s representation? Is the copula unique? If
a copula is compatible with H, does it capture the dependence structure in a
margin-free fashion as it was in the case of the non-atomic margins?

Recall that Sklar’s theorem (Th. 9) as it was stated in Chapter 1 guarantees
there exists at least one copula C compatible with H; if the marginals have
atoms, it is however no longer guaranteed that the copula is unique. Consider the
following example from [7, p. 488, Ex. 5] illustrating the issue.
Example 2. Let X and Y be independent identically distributed Bernoulli random
variables with the probability of success equal to p. Clearly the product copula Π
is associated with the random vector (X, Y ). Yet the copula C := M+W

2 is also
compatible with it.
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This fact is explained by the ranges of F and G. Notice that Sklar’s represent-
ation implies that H is defined by the behaviour of C on the set RanF × RanG.

Indeed, if the marginals are non-atomic, then F and G are continuous functions.
Hence RanF,RanG ⊇ (0; 1), H thus depends on the behaviour of the copula C
at least on the interior of the unit square (0; 1)2. This fact allows us to restore the
whole C uniquely.

The presence of atoms in the marginals corresponds to ‘jumps’ in the marginal
CDFs. Hence the joint CDF H is determined by how an associated copula behaves
on RanF × RanG ⊂ [0; 1]. We thus have no information about C outside of the
marginals’ ranges product, which may be a problem when we try to reconstruct
the whole C.

This allows us to reformulate the Sklar’s theorem in a more general way.

Theorem 24 (General Sklar’s theorem). Consider an arbitrary random vec-
tor (X, Y ) with the joint CDF HX,Y . Let FX and GY be the marginal distribution
functions. Then the following holds:

1. There exists at least one copula C associated with (X, Y ).

2. C is determined uniquely on the set RanF × RanG. Specifically, if X
and Y are non-atomic, then the associated copula C is unique and thus can
be denoted as CX,Y or CH .

3. Conversely, if C is a copula and F and G are some arbitrary univariate
CDFs, then C(F (x), G(y)) defines a valid 2-CDF.

Proof. See, for instance, [1, p. 18, Theorem 2.3.3]. Various ways of proving the
theorem are also available in [2, pp. 48–57]. The original arguments by Sklar and
Schweizer are presented in [14] and [15].

Let us reiterate and summarise what these facts mean for probabilistic copula
models. First, there may be many copulae associated with an arbitrary 2-CDF H.
It means that the notation CH is not valid anymore as it is not clear to which of
the several compatible copulae we refer. We thus shall use it to denote the set of
all copulae associated with the joint CDF H.

Second, even if we manage to find a copula that is compatible with H, gen-
erally it does not capture the dependency properties. This fact has long-lasting
consequences that manifest in various ways. One such instance was given in
Example 2: a copula M+W

2 ̸= Π induced independence. Another example is that
analytical definitions of Spearman’s ρ and Kendall’s τ (Defs. 22 and 24) do not
coincide with the probabilistic ones (Defs. 21 and 23) anymore, the same goes
for the concordance function. This seemingly strips copula models of the vast
majority of their benefits.

Three ways to tackle this issue come to mind.
The first approach is to give up on insisting that we use copulae per se to

describe the dependency structure. Theorem 24 ensures that we can uniquely
reconstruct the restriction of an associated copula to the closure of RanF ×RanG
(such a restriction is often called a subcopula, see [1, p. 10, Def. 2.2.1] or [2, p. 49,
Def. 2.3.2]); it thus seems natural to consider these restrictions of copulae as the
embodiment of the dependency structure (at least for the given Fréchet class) and
focus on them. This way of thought however seems to be unpopular.
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The second approach is to put aside our mathematical rigour for a moment
and ‘call upon our internal engineer’: we may hope that although the associated
copula is not defined uniquely anymore, the set CH of all compatible copulae
would be reasonably ‘small’ with all its elements being ‘close’ to each other. Hence
considering various associated copulae would lead to differences that are negligible,
so taking some arbitrary compatible copula would make have no significant impact
on the analysis. As we will see in Section 3.3, this hope may be quite misleading;
it turns out that the copulae compatible with some given joint CDF may be quite
‘far apart’ from each other and represent rather different dependency structures,
which renders this approach non-viable in the general case.

Finally, the third approach is to try to find the ‘true’ copula among all
compatible copulae that would accurately represent the dependency structure.
Section 3.4 focuses on that approach. As we will see, this technique, although not
straight-forward, is rather productive.

3.3 Deeper Scrutiny of Associated Copulae Set
In this section, we are going to scrutinise the set CH of copulae associated with

a given joint cumulative distribution function H; we will however limit ourselves
to studying only discrete random vectors.

Consider a discrete random vector (X, Y ) with H being its joint CDF; let F
and G be its marginal distribution functions and assume they are discrete. The
first question that we may ask is how many copulae are compatible with H? There
are two ways to approach this question.

3.3.1 Carley bounds
If both X and Y are discrete, the set of copulae compatible with H can be

bounded pointwisely. The bounds were initially identified in 2002 by Carley [16]
under the assumption that X and Y take finitely many values. The construction
was generalised by Genest and Nešlehová [7, pp. 480–481] in 2007.

Theorem 25 (Carley bounds).
Let (X, Y ) be a discrete random vector with the joint CDF H. Without loss of
generality, we may assume that X and Y a.s. take values in N0. Put

hij := P[X = i, Y = j], i, j ∈ N0. (3.4)

Denote the marginal probabilities as

hi+ :=
∞∑︂

j=0
hij = P[X = i], h+j :=

∞∑︂
i=0

hij = P[Y = j]. (3.5)

Define the lower C−
H and upper C+

H Carley bounds as follows:

C−
H(u, v) :=

∞∑︂
i=0

∞∑︂
j=0

max{0, −hij + min(u− γij, hij) + min(v − δij, hij)}, (3.6)

C+
H(u, v) :=

∞∑︂
i=0

∞∑︂
j=0

max{0, min(u− αij, v − βij, hij)}, (3.7)
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where

αij :=
i−1∑︂

m=0
hm+ +

j−1∑︂
n=0

hin, βij :=
j−1∑︂
n=0

h+n +
i−1∑︂

m=0
hmj,

γij :=
i−1∑︂

m=0
hm+ +

∞∑︂
n=j+1

hin, δij :=
j−1∑︂
n=0

h+n +
∞∑︂

m=i+1
hmj. (3.8)

Let CH be a set of copulae associated with H. For any C ∈ CH , it then holds that:

∀u, v ∈ R : C−
H(u, v) ≤ C(u, v) ≤ C+

H(u, v). (3.9)

Besides that, it holds that C−
H , C

+
H ∈ CH .

Proof. See [16]. For more details, refer to [7, pp.480–486]; Example 2 in [7] is of
special interest.

Remark 4. Observe that if the joint distribution is discrete with values not in N2
0,

we may enumerate the atoms. Let xi, yj ∈ R for i, j ∈ N0 denote the atoms
of X and Y , respectively. Put hij := P[X = xi, Y = yj]. The constructions then
remains unchanged apart from the fact that instead of working with N2

0 we will
work with the grid defined by the location of atoms xi and yj.

The theorem essentially says that for a given discrete H, we can derive the
bounds for the set of compatible copulae CH . These bounds C−

H and C+
H are

copulae themselves. Although we cannot directly apply the theory of concordance
ordering developed in Chapter 2 to study discrete distributions, it is still valid for
the elements of CH . Together with Theorem 13, Equation 3.9 may be reinterpreted
as that for any C ∈ CH , the following holds:

C−
H ⪯ C ⪯ C+

H . (3.10)

Carley bounds C−
H and C+

H thus correspond, respectively, to the most discordant
and concordant dependency structures compatible with H (recall Def. 15).

Carley bounds allow us to answer several questions.

The set CH is uncountable

To begin with, recall Theorem 6: any convex combination of copulae is a
copula again. Besides that, all elements of CH coincide on RanF × RanG. Hence
∀α ∈ (0; 1) : αC−

H + (1 − α)C+
H ∈ CH . It means, that the set CH is uncountable.

So, at least when we are talking about discrete distributions, there exist many
associated copulae.

Gap between minimum and maximum τ and ρ

As we have said, Carley bounds represent the most discordant and concordant
dependency structures that are compatible with H. We thus may compare how
far apart these structures span along the W–M concordance axis. Genest and
Nešlehová [7, pp. 483–485] suggest the following.

Consider some abstract measure of concordance κ. From Scarsini axioms
(Def. 18), specifically from the axiom of Coherence, we get that for any C ∈ CH
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it holds that κ(C−
H) ≤ κ(C) ≤ κ(C+

H). Notice that these bounds are the best
possible, since both Carley bounds belong to CH . Moreover, considering various
convex combinations of Carley bounds, we get that:

∀κ ∈
[︂
κ(C−

H);κ(C+
H)
]︂

∃C ∈ CH : κ(C) = κ. (3.11)

Hence we may use the difference 0 ≤ κ(C+
H) − κ(C−

H) ≤ 2 to quantify how ‘large’
the set CH is.

Notice that all elements of CH have non-atomic margins, hence κ(C) is defined
for all elements of CH . Moreover, for instance, in case of Spearman’s ρ or
Kendall’s τ , the probabilistic definitions (Defs. 21 and 23) coincide with the
analytical ones (Defs. 22 and 24) and there is no ambiguity in writing τ(C). On
the other hand, it is worth noting that, thus far, we have not defined measures of
concordance for discrete distributions (see Def. 18) and the expression κ(H) may
not be well-defined. This is yet another illustration of how dependency properties
of a joint CDF H are detached from those of the compatible copulae.

The following theorems give closed-form expressions for Kendall’s τ and
Spearman’s ρ evaluated at the Carley bounds. The theorems are due to Genest
and Nešlehová [7, p. 484, Props. 4 and 5].
Theorem 26 (Kendall’s tau and Spearman’s ρ for Carley bounds). Consider a
discrete random vector (X, Y ) with its values in N2

0 and let H be the corresponding
joint CDF. Define hij, αij, βij, γij, δij as in Theorem 25.
For Kendall’s τ we then get:

τ(C−
H) = −1 + 4

∞∑︂
i=0

∞∑︂
j=0

i−1∑︂
m=0

j−1∑︂
n=0

hij hmn, (3.12)

τ(C+
H) = 1 − 4

∞∑︂
i=0

∞∑︂
j=0

i−1∑︂
m=0

∞∑︂
n=j+1

hij hmn. (3.13)

For Spearman’s ρ it holds that

ρ(C−
H) = 1 − 6

∞∑︂
i=0

∞∑︂
j=0

hij [δij + hij − (1 − γij)] [2(1 − γij) − hij] , (3.14)

ρ(C+
H) = 1 + 6

∞∑︂
i=0

∞∑︂
j=0

hij (βij − αij) (2αij + hij). (3.15)

Proof. See [7, pp. 508–510, Appendices B and C].

The following example follows Example 3 in [7, pp. 484–485] and illustrates
that the difference κ(C+

H) − κ(C−
H) can be rather large.

Example 3. Let X and Y be Bernoulli random variables with the probabilities of
success p and q, respectively. Put

r := P[X = 0, Y = 0] ∈ [max(0, 1 − p− q),min(1 − p, 1 − q)] . (3.16)
The joint distribution H is fully specified by p, q, r and a copula C is compatible
with H if and only if C(1 − p, 1 − q) = r. From Theorem 26 we then get:

τ(C−
H) = 4r(p+ q + r − 1) − 1, (3.17)

ρ(C+
H) = 1 − 6(1 − p− r)(1 − q − r)(2 − 2r − p− q), (3.18)

ρ(C−
H) = 6r(p+ q + r − 1)(p+ q + 2r − 1) − 1, (3.19)

τ(C+
H) = 1 − 4(1 − p− r)(1 − q − r). (3.20)
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Consider the special case of p = q. Depending on p and r, we get:

• Kendall’s τ for the lower Carley bound spans the interval [−1; 0], for the
upper bound it covers the interval [0; 1]. The difference τ(C+

H) − τ(C−
H)

attains values in the interval [1; 2].

• Spearman’s ρ for the lower bound varies in the interval [−1; 0.5], the upper
bound for ρ lies in the interval [−0.5; 1]. The difference ρ(C+

H) − ρ(C−
H)

covers the interval [0.5; 2].

As we can see, in terms of concordance indices, CH may potentially contain
dependence structures that differ a lot; copulae compatible with a given joint
cumulative distribution function H need not be ‘close’ to each other. Another point
that is illustrated by the example is that copulae do not capture the dependence
structure in a margin-free fashion: possible values of τ and ρ depend on the
marginal distributions.

3.3.2 Flatness of margins
Carley bounds explore possible dependence structures compatible with a given

element of some Fréchet class Γ(F,G) represented. Another approach is to explore
the whole set Γ(F,G) and the constraints its elements put on the associated
copulae.

As we know, for a non-atomic marginal CDF F it holds that RanF ⊇ (0; 1).
The presence of atoms in the distribution corresponds to discontinuities in F and
leads to the parts of RanF being ‘clipped out’, which subsequently limits our
ability to reconstruct the copula associated with the two-variate CDF. One may
hope though that if the atoms are not too large, a substantial part of RanF will
be intact and thus the constraint on the set of compatible copulae will be stringent
enough to allow the reconstruction of the associated copulae with substantial
precision.

Think of purely discrete random variables. If each atom is ‘small’, both RanF
and RanG define ‘fine’ and ‘dense’ grids on the interval [0; 1]. Hence their product
defines a ‘dense’ grid on the unit square [0; 1]2, hopefully limiting the set of
compatible copulae substantially. As it turns out, this idea does work; in 2007,
Genest and Nešlehová proved the following theorem.

Theorem 27 (Diameter of CH is given by the flatness of margins).
Consider a discrete random vector (X, Y ) with the joint CDF H. Without loss of
generality, assume it takes values in N2

0. Let C,D ∈ CH be two arbitrary copulae
compatible with H. Then it holds that:

∀u, v ∈ (0, 1) : |C(u, v) −D(u, v)| ≤ 2
(︃

max
i∈N

P[X = i] + max
j∈N

P[Y = j]
)︃
. (3.21)

Proof. See [7, pp. 486–487, Prop. 6].

Genest and Nešlehová refer to the right-hand side as ‘the flatness of margins’.
Indeed, the lower is the right-hand side, the smaller are the atoms in the margins.

The theorem hence may be reformulated as follows. Introduce the supremum
metric on the set of all copulae. Consider discrete CDFs F and G. The diameter of
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the set of all copulae compatible with distributions from Γ(F,G) is then bounded
by the ‘flatness’ of F and G.

This theorem thus can be used to find the upper bounds for the differences
between the properties of compatible copulae; if, for a given Fréchet class (Def. 14),
the differences are small enough, one may use an arbitrary compatible copula and
the error will be negligible.

3.4 Standard Extension Copula and Jittering
As we have discussed, atoms present in the marginal distributions correspond

to jumps in the marginal CDFs and lead to the fact that the probability integ-
ral transform (Th. 56) does not yield a uniformly distributed random variable.
Ultimately, it prevents us from reconstructing the unique associated copula.

On the sample level, atoms correspond to the presence of ties in a random
sample. Among other consequences, it means that observations’ ranks (Def. 49)
are not defined uniquely anymore.

It seems natural to try breaking the ties by ‘jittering’ them; i.e., adding to
them some (non-atomic) random noise. On the sample level, this technique is
usually discouraged since the result of the analysis depends on an additional source
of randomness which is undesirable for a variety of reasons. As it is shown below,
on the population level, the technique is fairly productive and its application leads
to interesting results.

In the following, we first outline the general jittering technique and the
corresponding generalisation of probability integral transform. We then consider a
special case of jittering which leads us to the so-called standard extension copula.

3.4.1 Jittered probability integral transform
The simplest instance of jittering can be illustrated as follows.

Example 4. Consider a discrete random variable X with values in N0. Consider
a ‘jittering’ random variable U ∼ Uni(0; 1) independent of X. The ‘jittered’
version of X is defined as X ′ := X + U − 1. Notice that X ′ is a continuous
random variable and thus it holds that FX′(X+U−1) ∼ Uni(0; 1). Nešlehová [12,
p. 550, Note 1] refers to X ′ as ‘continuous extension of X’. The jittered random
variable X ′ per se is of secondary interest; its distribution function is much more
important, since it could be perceived as a generalisation of the probability integral
transform (Th. 56).

In 2007, Nešlehová generalised the technique for the case of arbitrary random
variables, see [12, pp.549–553, Sec. 3].

Definition 28 (Jittered probability integral transform). Consider an arbitrary
random variable X and let F be the corresponding CDF. Let U ∼ Uni(0; 1) be
independent from X. Put ∆F (x) := F (x) − F (x−) = P[X = x].
Consider a mapping ψ : R × [0; 1] → [0; 1] defined as

ψ(x, u) := P[X < x] + u P[X = x] = F (x−) + u∆F (x). (3.22)

The jittered probability integral transform (JPIT) is then defined as ψ(X,U).
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Observe, that ψ(X,U) ∼ Uni(0; 1). This technique is easily generalised to
random vectors (see [12, p. 550]).

Definition 29 (Jittered probability integral transform for vectors).
Let Z := (X, Y ) be an arbitrary random vector. Consider a (jittering) random
vector U := (U1, U2) such that U1, U2 ∼ Uni(0; 1). Assume Z ⊥⊥ U. The jittered
probability integral transform is then defined element-wisely:

Ψ (Z,U) := (ψ(X,U1), ψ(Y, U2)) . (3.23)

Notice that we do not specify the dependency structure of the random vec-
tor (U1, U2). Besides that, since its marginals are distributed uniformly, its joint
distribution function is by definition a copula. Moreover, the transformed vec-
tor Ψ(Z,U) has uniformly distributed marginals; hence its 2-CDF is the unique
copula associated with it.

An important property of the jittered probability integral transform is that it
in certain sense preserves the dependency structure of the random vector (X, Y ).

Theorem 28 (JPIT preserves the dependency structure). Consider the setting as
in Definition 29. For any dependence structure of U, the unique copula C associ-
ated with the vector Ψ(Z,U) is also compatible with the original vector (X, Y ).

Proof. See [12, pp. 550–551, Prop. 4].

First of all, the theorem explains why jittering and JPIT are interesting for us
in the context of copulae. As we have said, a naive attempt to use the probability
integral transform to derive the associated copulae in the spirit of Section 1.1
fails when applied to arbitrary random vectors. Jittering allows us to generalise
the probability integral transform to the case when atoms are present in the
marginal distributions; Theorem 28 then states that JPIT indeed allows us to
reconstruct associated copulae pretty much in the same fashion we did it in
Section 1.1. Moreover, it allows us to describe the set CH from another point of
view: dependence structures of the jitter U correspond to the elements of CH and
provide a stochastic representation for them.

The copula corresponding to a jitter with independent elements is of particular
interest. The following subsection is focused on exploring its properties.

3.4.2 Standard extension copula
Consider an arbitrary 2-CDF H and let F and G be the marginal distribution

functions. Recall that Sklar’s theorem (Th. 24) guarantees there exists at least
one copula compatible with H and it is uniquely defined on the closure of RanF ×
RanG; denote that uniquely defined restriction as C ′

H . The elements of the set of
all compatible copulae CH may then be perceived as extensions of C ′

H . Among
other extensions, the so-called standard extension copula, also known as bilinear
interpolation copula, plays a special role. It was initially used to prove Sklar’s
theorem, see [15, pp.46–48], yet, as we will see, there are further reasons, beside
historical, why it is of interest.

Definition 30 (Standard extension copula). Consider an arbitrary random vec-
tor (X, Y ), let H be its joint CDF, and let F and G be the corresponding marginal
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distribution functions. Let C ′ be the uniquely defined restriction of the associated
copulae to the set RanF × RanG. Consider a point (u, v) ∈ [0; 1]2. Put

a1 := max{x ∈ RanF : x ≤ u}, b1 := max{y ∈ RanG : y ≤ v};
a2 := min{x ∈ RanF : x ≥ u}, b2 := min{y ∈ RanG : y ≥ v}. (3.24)

Define

λ(a) :=
⎧⎨⎩

u−a1
a2−a1

, a1 < a2,

1, a1 = a2;
µ(b) :=

⎧⎨⎩
v−b1
b2−b1

, b1 < b2,

1, b1 = b2.
(3.25)

The standard extension copula is then defined as follows:

Cs
H(u, v) := (1 − λ(ǔ)) (1 − µ(v̌))C ′(a1, b1) + (1 − λ(ǔ))µ(v̌)C ′(a1, b2)+

λ(ǔ) (1 − µ(v̌))C ′(a2, b1) + λ(ǔ)µ(v̌)C ′(a2, b2), (3.26)

where x̌ denotes the collar operator (Def. 7).

The standard extension copula Cs
H is defined uniquely and is indeed a copula

compatible with H, for proof see [1, pp.19–21, Lemma 2.3.5]. For a deeper
understanding of the mechanics inside Cs

H , see, for instance, [10, pp. 213–215].
See also example in Appendix B.1 which presents a step-by-step calculation of the
standard extension copula for a random vector whose marginals have Bernoulli
distributions.

The following theorem establishes the stochastic representation for the standard
extension copula using JPIT.

Theorem 29 (Standard extension copula corresponds to independent jitters).
Let Z := (X, Y ) be an arbitrary random vector. Consider a (jittering) random
vector U := (U1, U2) such that U1, U2 ∼ Uni(0; 1) and U1 ⊥⊥ U2. Assume Z ⊥⊥ U.
Let Cs

X,Y be the standard extension copula corresponding to the random vec-
tor (X, Y ). Let CΨ be the unique copula associated with the transformed random
vector Ψ(Z,U).
Then Cs

X,Y = CΨ.

Proof. See [12, pp. 550–551, Prop. 4].

In terms of capturing the dependence structure, in [12] Nešlehová establishes
several arguments in favour of considering the standard extension copula Cs

H as a
reasonable equivalent for the unique associated copula CH that was available in
the case of non-atomic marginals. For instance, Cs

H is invariant under continuous
strictly increasing transformations of the marginals, compare with Theorem 10.

Theorem 30 (Invariance of Cs under continuous increasing transformations).
Consider an arbitrary random vector (X, Y ) and its standard extension copula Cs.
Let f and g be continuous strictly increasing transformations defined on RanX
and RanY , respectively.
Then Cs is also the standard extension copula of the vector (f(X), g(Y )).

Proof. See [12, pp. 551, Cor. 6]

The standard extension copula captures independence.
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Theorem 31 (Cs captures independence). Consider an arbitrary random vec-
tor Z = (X, Y ) and let Cs be the corresponding standard extension copula. Then
it holds that X ⊥⊥ Y ⇐⇒ Cs = Π.

Proof.
=⇒ Assume X ⊥⊥ Y . Let U ∼ Uni(0; 1)2. Then from Theorem 29 we obtain
that Cs is the unique copula associated with the random vector V := Ψ(Z,U).
Yet the elements of V are independent, hence Cs = Π.

⇐= Assume Cs = Π. Let H be the joint CDF of (X, Y ), let F and G be
the marginal distribution functions. From Theorems 28 and 29 we know that Cs

is associated with H. From Sklar’s theorem (Th. 24) we then get:

H(x, y) = Cs(F (x), G(y)) = Π(F (x), G(y)) = F (x) ·G(y). (3.27)

It then follows that X and Y are independent.

In case of discrete distributions, the standard extension copula also preserves
the more sophisticated dependency concepts introduced in Definitions 27 and 17.
Compare the following theorem with Theorem 23.

Theorem 32. Consider a random vector (X, Y ) with values in N2. Let Cs be its
standard extension copula. Then for i ∈ {1, . . . , 5} the following holds:

DEPi(X, Y ) ⇐⇒ DEPi(Cs). (3.28)

Proof. See [7, p. 497, Prop. 11].

As we will see in Chapter 4, the standard extension copula preserves the con-
cordance partial order (Th. 39), concordance function (Th. 41), and Spearman’s ρ
and Kendall’s τ (Th. 43).

In light of Theorem 29, it is worth observing that all properties preserved or
captured by the standard extension copula Cs are also preserved by the JPIT
with independent jitters.

It is important to stress that the standard extension copula may not capture all
dependency concepts or indices that are reflected entirely by the unique associated
copula in case of the non-atomic marginals. For instance, if there are atoms present
in the marginals, the standard extension copula Cs cannot be equal to either of
the FH-bounds. This is what Nešlehová [12, p. 554] writes: ‘Another issue is that
though the standard extension copula coincides with the independence copula if
the marginals are independent, it is always different from the Fréchet–Hoeffding
bounds, even if the marginals are countermonotonic and comonotonic, respectively
(i.e. when the upper, respectively lower, Fréchet bound is a possible copula of X).
This is due to the fact that as soon as the closure of the product of the ranges of the
marginal distribution functions does not fill out the entire unit square, the standard
extension copula cannot be singular. Although the standard extension copula is
bounded from below and above by standard extension copulas corresponding to the
perfect monotonic case, these bounds are not simply related’

Another example is the so-called Joe’s tail dependency coefficients. As Genest
and Nešlehová [7, p. 497] point out, it is not entirely clear whether these indices
are preserved by Cs. Same goes for the so-called monotone regression dependence,
DEP2 and DEP3 (Def. 27), see [7, p. 498].
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3.5 Synthetic Models and Copula Adaptations
Up till now we focused our attention on the analytical copula models. In other

words, we considered a pre-specified arbitrary joint cumulative distribution H and
explored ways of analysing the dependence structure of H using its associated
copulae. In this section, we shall briefly explore synthetic models. Specifically, we
shall explore how copulae can be used to find H ∈ Γ(F,G) fulfilling some required
dependency properties (e.g., specified ρ, τ or having one of DEPi properties from
Def. 27) when F and G are arbitrary CDFs.

Non-atomic marginals

Assume both F and G are non-atomic. Then in light of Sklar’s theorem (Th. 9)
and Chapter 3 the task is almost trivial. As we know, in this setting, Sklar’s
theorem ensures there exists a bijection between the set of all copulae and the
elements of Γ(F,G). Besides that, Theorem 10 guarantees that any property
invariant under strictly increasing transformations is captured by copulae. Let us
formulate this as a theorem (bear Remark 11 in mind).

Theorem 33. Let F and G be non-atomic distribution functions. Consider a
copula C and put:

H(x, y) := C(F (x), G(y)), x, y ∈ R. (3.29)

Consider a property A such that A(X, Y ) holds if and only if A(f(X), g(Y )) holds,
where f and g are strictly increasing. Then we get:

A(C) ⇐⇒ A(H). (3.30)

Proof. Follows from Theorems 10, 56 and 57.

Constructing H ∈ Γ(F,G) such that A(H) holds is then reduced to finding
copulae for which A holds. Consider the following example. Suppose that one
seeks to construct H ∈ Γ(F,G) such that τ(H) = 0.42. We then get:

{H ∈ Γ(F,G) : τ(H) = 0.42} = {C(F,G) : τ(C) = 0.42, C is a copula}; (3.31)

a particular choice of C may be governed by further constraints and boundary
conditions.

Arbitrary marginals

Now let F and G be arbitrary. First of all, general Sklar’s theorem (Th. 24)
ensures that H(x, y) := C(F (x), G(y)) is a valid 2-CDF whenever C is a copula.
Moreover, it still holds that H ∈ Γ(F,G). The problem is that the correspondence
between Γ(F,G) and the set of all copulae is no longer one-to-one; several copulae
can yield the same joint distribution function H. This is the reason why gener-
ally τ(C) ̸= τ(H), same goes for ρ. Some properties though are still transferred
from the copula to the constructed H as they should.
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Theorem 34. Let C be a copula. Assume F and G are arbitrary distribution
functions. For x, y ∈ R put H(x, y) := C(F (x), G(y)). Then for i ∈ {1, . . . , 5}
the following implication holds:

DEPi(C) =⇒ DEPi(H), (3.32)

where DEPi are from Definitions 17 and 27.

Proof. See [7, p. 497, Prop. 11].

The theorem may be interpreted as follows; although the DEPi properties of
copula C are maintained, the ‘synthesised’ joint CDF H may have some additional
properties as a result of the associated copula no longer being unique.

Copula adaptations

In light of the facts that we explored in Section 3.4 and will study in depth in
Sections 4.1–4.4, it appears that it is not the copula C that is of primary interest,
but rather the standard extension copula corresponding to it.

Definition 31 (Copula adaptation to Γ(F,G)).
Consider arbitrary distribution functions F and G. Let C be a copula. Let C ′

be a restriction of C to the set RanF × RanG. Denote the standard extension
copula (Def. 30) corresponding to C ′ as Cs

F,G. We then call Cs
F,G the adaptation

of C to the Fréchet class Γ(F,G).

Observe that Theorem 29 ensures that any copula adaptation is a copula in
the sense of Definition 5.

When working with synthetic models for the Fréchet class Γ(F,G), it is in
fact the adaptations to Γ(F,G) that are of interest. Moreover, as a result of
adaptation to Γ(F,G) copula C may obtain some further properties (see Th. 34).
The new definition also allows us to reformulate Nešlehová’s words we quoted in
the previous section. See also example in Appendix B.1 demonstrating what W s

F G

may look like.

Theorem 35. Consider arbitrary distribution functions F and G. The following
statements are equivalent:

1. F and G are non-atomic.

2. W s
F,G = W .

3. M s
F,G = M .

Proof. Follows from Theorem 29 and Definition 28.

Theorem 36 (FH-bounds for copula adaptations). Let F and G be arbitrary
distribution functions. Then for any copula C it holds that:

W s
F,G ≤ Cs

F,G ≤ M s
F,G. (3.33)
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Theorem 37. Let C be a copula. Let M ′ and C ′ be the restrictions to the
set RanF × RanG. Recall the standard extension copula definition (Def.30):

Cs
F,G(u, v) := (1 − λ(ǔ)) (1 − µ(v̌))C ′(a1, b1) + (1 − λ(ǔ))µ(v̌)C ′(a1, b2)+

λ(ǔ) (1 − µ(v̌))C ′(a2, b1) + λ(ǔ)µ(v̌)C ′(a2, b2), (3.34)

where the coefficients λ and µ are determined by the Fréchet class Γ(F,G).
Compare the sums for Cs

F,G and M s
F,G. The coefficients in each summand are

non-negative and same in both sums. At the same time, Theorem 7 guarantees
that C ′ ≤ M ′. It then follows that Cs

F,G ≤ M s
F,G. Proof for W s

F,G is similar.

Co-monotonicities

Recall that under the assumption of non-atomic marginals, the notions of the
strong (Definition 13) and weak (Def. 12) co-monotonicities coincided and both of
them were induced by the upper FH-bound M (Thm. 11). The situation changes
when we consider arbitrary distributions.

When arbitrary distributions are considered, the notions of weak and strong
co-monotonicity do not coincide anymore, see examples in App. B.2 and B.1 .
As we can see, the upper FH-bound M now generally corresponds to the weak
co-monotonicity, rather than strong. The following theorem formalises that result,
see also [7, p. 489, Ex. 6 and Prop. 7].

Theorem 38 (Upper FH-bound and weak co-monotonicity).
Consider an arbitrary random vector (X, Y ). Let F and G be the correspond-
ing marginal distributions. Then M is compatible with (X, Y ) in the sense of
Definition 10 if and only if there exists a random variable U ∼ Uni(0; 1) such
that X = F−1(U) a.s. as well as Y = G−1(U) a.s., where F−1 and G−1 are the
respective quantile functions (Def. 45).

Proof. See [17, pp. 192–193, Th. 2].
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4 Measures of Concordance for
Arbitrary Distributions

4.1 Partial Concordance Order
In this section, we generalise the idea of partial concordance order we intro-

duced in Chapter 2 for the case of arbitrary distributions. Consider an arbitrary
random vector (X, Y ). Notice that Definition 15 introducing concordance partial
order on the Fréchet class Γ(X, Y ) is valid for arbitrary distributions. Moreover,
Theorem 13 establishing the relation between the concordance partial order and
the corresponding joint CDFs remains valid as well. As we have stated in Sec-
tion 2.1, this setting is rich enough for all of the constructions we are interested
in.

Extending the partial concordance order so that we can compare elements
of different Fréchet classes poses more challenges. Recall that in the case of
non-atomic marginals we required that the order remains unchanged under strictly
increasing transformations of the marginals. This led us to relying on the unique
associated copulae to generalise the concordance partial order to all random
vectors with non-atomic marginals, see Definition 16. Since in the case of arbitrary
distributions the associated copula is not defined uniquely anymore, we cannot
apply the same approach directly.

One approach to the generalisation was suggested by Scarsini in his original
paper [10, pp. 212–213, Def. 6], yet it is rather cumbersome. Following Nešle-
hová [12] and Genest [7], in this chapter we limit ourselves to always working with
some given Fréchet class Γ(F,G). Luckily, in this setting the concordance partial
order can be again reduced to studying copulae. Compare the following theorem
with Definition 16.

Theorem 39 (Cs and concordance partial order).
Consider an arbitrary random vector Z = (X, Y ). Let Z∗ = (X∗, Y ∗) ∈ Γ(X, Y ).
Let Cs

Z and Cs
Z∗ be the corresponding standard extension copulae. Then the

following statements are equivalent:

1. (X, Y ) ⪰ (X∗, Y ∗);

2. ∀u, v ∈ R : Cs
Z(u, v) ≥ Cs

Z∗(u, v).

Proof. See [12, p. 553, Cor. 6.1].

Notice that in light of Theorem 13, the theorem can be reformulated as

Z ⪰ Z∗ ⇐⇒ Cs
Z ⪰ Cs

Z∗ . (4.1)

To sum up, for the arbitrary distributions, the concordance partial order works
more or less in the same way as for the distributions with non-atomic marginals;
the role of the unique copula is taken by the unique standard extension copula.
The only major difference is that we have to limit ourselves to studying the
elements of the same Fréchet class, which is not a significant limitation.
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4.2 Concordance Function
In this section, we explore how the ideas we introduced in Section 2.3 generalise

to the arbitrary two-variate distributions. Recall that both the definition of a
reference random vector (Def. 19) as well as the probabilistic definition of the
concordance function (Def. 20) are general and hold for arbitrary random vectors.
It is worth observing though that the concordance function does not reflect the
possible ties in any way, it only accounts for the cases of strictly concordant and
strictly discordant pairs; this will have some consequences later on.

As in the previous section, the problem arises when we try to apply the
analytical expressions relying on the associated copula being unique, specifically
Theorem 15. In the case of arbitrary distributions, the associated copula generally
is not unique and evaluating Q at different elements of CH may yield different
values, see [12, pp. 547–548, Ex. 2]. Fortunately, the standard extension copula
solves that issue.

Theorem 40 (Some JPIT preserve concordance function).
Consider Z and U as in Theorem 29. Now let (Z∗,U∗) be an independent copy of
the four-element random vector (Z,U). The following holds:

QZ∗(Z) = QΨ(Z∗,U∗) (Ψ(Z,U)) . (4.2)

Proof. See [12, p. 552, Th. 5].

The theorem formulation seems convoluted, so it is worth elaborating on
what is going on. As in Definition 20, we have an arbitrary gauged random
vector Z = (X, Y ) and a reference Z∗ = (X∗, Y ∗) ∈ Γ(X, Y ) for which we want
to evaluate the concordance function. We now want to apply the ‘same’ jittered
probability integral transform (Def. 29) to both gauged and reference vector;
the jitters that we want to use for the JPIT are the ‘independent jitters’ from
Theorem 29. So, for the gauged vector we prepare the jitter U whose elements
are independent with Uni(0; 1) distribution, and the jitter itself is independent
from both Z and Z∗. For the reference vector, we prepare a jitter U∗, which is a
copy of U independent from all of the aforementioned objects.

Theorem 40 is formulated in terms of random variables and their transforma-
tions. We are however much more interested in its analytical consequences. The
following two theorems present analytical as well as stochastic representations
for the concordance function generalising Theorems 15 and 16. Proofs for both
theorems are presented in [12, p. 552, Th. 5].

Theorem 41 (Standard extension copula captures concordance function).
Consider an arbitrary gauged random vector Z = (X, Y ) and a reference vec-
tor Z∗ = (X∗, Y ∗). Let H and H∗ be the corresponding joint CDFs. Let Cs

and Cs∗ be the corresponding standard extension copulae. Then the following
chain of equalities holds.

QX∗,Y ∗(X, Y ) = QCs∗(Cs) = 4
∫︂
R2
Cs(u, v) dCs∗(u, v) − 1. (4.3)
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Theorem 42 (General stochastic representation of concordance function).
Assume the setting of Theorem 41 holds. Then we get:

QX∗,Y ∗(X, Y ) = E [H(X∗, Y ∗) +H(X∗−, Y ∗)] +
E [H(X∗, Y ∗−) +H(X∗−, Y ∗−)] − 1. (4.4)

Notice that Theorems 40–42 indeed do generalise Theorems 15 and 16. If we
assume that H has non-atomic marginals, the expressions will be reduced to those
in Th. 15 and 16.

4.3 Generalised Scarsini Measures
It is time now to reconsider Scarsini axioms. Recall that the abstract measures

of concordance were initially introduced as an auxiliary tool for extending the
concordance partial ordering to a complete order. The following ‘updated’ list of
axioms for Scarsini measures of concordance defined for arbitrary distributions is
suggested by Nešlehová [12, p. 554]. The differences with Def. 18 are typeset in
bold font.

Definition 32 (Generalised Scarsini measure of concordance).
Consider a mapping κ : Γ → R where Γ stands for the set of arbitrary two-variate
random vectors. We say κ is a (general) measure of concordance if and only if the
following holds:

1. (Symmetry) κ(X, Y ) = κ(Y,X).

2. (Bounds) κ(X, Y ) ∈ [−1; 1].

3. (Normalisation) If X = f(Y ) a.s. with f strictly increasing and continuous
on the range of Y , then κ(X, Y ) = 1. If X = f(Y ) a.s. with f strictly
decreasing and continuous on the range of Y , then κ(X, Y ) = −1.

4. (Independence) If X and Y are independent, then κ(X, Y ) = 0.

5. (Change of sign) If f is strictly monotone and continuous on the range of
X, then

κ(f(X), Y ) =
⎧⎨⎩κ(X, Y ), for f strictly increasing,

−κ(X, Y ), for f strictly decreasing.

6. (Continuity) Consider a sequence of random vectors (Xn, Yn) ∈ Γ such
that (Xn, Yn) D−→ (X, Y ) ∈ Γ. Then κ(Xn, Yn) −→

n→∞
κ(X, Y ).

7. (Coherence) For (X, Y ) ⪰ (X∗, Y ∗) it holds that κ(X, Y ) ≥ κ(X∗, Y ∗).

The reason for this update is the following. Theory behind Scarsini measures
of concordance introduced in Definition 18 relies heavily on the classic copula
theory. Recall that under the non-atomic marginals assumption, Theorem 10
ensured that the unique associated copula is invariant. Hence the Normalisation
and Change of sign axioms were formulated under the assumption of strictly
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monotone transformations. The situation changes when we consider arbitrary
distributions. In that setting, the standard extension copula Cs is the counterpart
of the unique associated copula we worked with under the non-atomic marginals
assumption. Theorem 30 however guarantees that Cs is invariant under strictly
increasing continuous transformations. Hence the change in axioms.

As we will see, the axiom of Continuity is somewhat problematic and ques-
tionable, it is rare that a concordance index fulfils it.

It is also in place to update the definition of strong co-monotonicity (Def. 13).

Definition 33 (Continuous strong co-monotonicity).
Consider an arbitrary random vector (X, Y ). Let f be a transformation continuous
and strictly increasing on RanY . We say that X and Y are continuously strong
co-monotonic if and only if X = f(Y ) almost surely.

The notion of continuous strong counter-monotonicity is then introduced in
the similar way.

The updated axiom of Normalisation thus requires that κ ascribes its boundary
values ±1 to the random vectors whose elements are continuously strongly co-
/counter-monotonic.

We are now going to explore whether there exist any mappings that fulfil
the general Scarsini axioms. In particular, we shall study the behaviour of
Spearman’s ρ and Kendall’s τ on the class of arbitrary two-variate distributions.

4.4 Spearman’s ρ and Kendall’s τ
In this section, we use the facts established above to explore the behaviour

of Spearman’s ρ and Kendall’s τ in the case of arbitrary distributions. First of
all, notice that the probabilistic versions of these two indices (Defs. 21 and 23)
are well-defined for arbitrary random vectors. As we have already stated, the
issue arises when it comes to the analytical expressions (Th. 19 and 21) since
they were derived under the assumption of marginals being non-atomic. These
theorems however are special instances of Theorem 15, which was generalised in
the previous section by Theorem 41.

We thus obtain that the standard extension copula properly captures Spear-
man’s ρ and Kendall’s τ . In other words, the probabilistic definitions (Defs. 21
and 23) coincide with the analytical expressions evaluated for Cs.

Theorem 43 (Cs captures Spearman’s ρ and Kendall’s τ). Consider an arbitrary
random vector (X, Y ) and its standard extension copula Cs. The following holds:

ρ(X, Y ) = ρ(Cs) = 12
∫︂

[0;1]2
Cs(u, v) du dv − 3, (4.5)

τ(X, Y ) = τ(Cs) = 4
∫︂
R2
Cs(u, v) dCs(u, v) − 1. (4.6)

Proof. A direct implication of Theorem 41 as well as Definitions 21 and 23.

Observe that in case of τ we may also integrate over the unit square [0; 1]2
since Cs assign no mass to the points outside of it. On the other hand, integration
over R2 highlights the fact that the integral is in fact expectation E with respect
to the distribution induced by Cs.
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Using Theorem 42, we also get the generalised stochastic representations for
Spearman’s ρ and Kendall’s τ , see [7, p. 491, Prop. 9]; compare with Ths. 18
and 20.

Theorem 44 (General stochastic representation for ρ and τ).
Consider an arbitrary random vector (X, Y ). Let H be the corresponding joint
distribution function. Let (X∗, Y ∗) be a reference vector such that X∗ ⊥⊥ Y ∗.
Then the following holds:

ρ(X, Y ) = 3 E [H(X∗, Y ∗) +H(X∗−, Y ∗)] +
E [H(X∗, Y ∗−) +H(X∗−, Y ∗−)] − 3, (4.7)

τ(X, Y ) = E [H(X, Y ) +H(X−, Y )] +
E [H(X, Y−) +H(X−, Y−)] − 1. (4.8)

See example in Appendix B.2 demonstrating the usage of these formulae.

4.4.1 Normalisation issues
Seemingly, the story unfolds positively; up till now, we were able to generalise

the ideas presented in Chapter 2 to the case of arbitrary distributions. Recall
that the constructions we scrutinised in Chapter 2 reached its peak in Theorem 22
which demonstrated that, for the class of distributions with non-atomic marginals,
Spearman’s ρ and Kendall’s τ indeed are measures of concordance in the sense of
Definition 18. Do Scarsini axioms hold for these indices if we consider arbitrary
distributions?

Alas, the answer is no, they do not. In particular, the Normalisation axiom
does not hold anymore. As Nešlehová [12, pp. 551–551, Ex. 2] shows, in case of
atoms being present in the marginals, it may happen that τ(X, Y ) ̸= 1 ̸= ρ(X, Y )
even when X and Y are strongly co-monotonic (Def. 13); same goes for −1 and
strong counter-monotonicity. Consider the following example by Genest and
Nešlehová [7].
Example 5. Consider two Bernoulli random variables X and Y with the same
probability of success equal to p ∈ (0; 1). Assume P[X = 0, Y = 0] = 1 − p.
Then X = Y a.s., hence they are continuously strongly co-monotonic (Def. 33).
Applying the stochastic representations (Th. 44), we get

τ(X, Y ) = ρ(X, Y ) = p(1 − p) < 1. (4.9)

Assume now P[X = 0] = 1 − p = P[Y = 1] and let P[X = 0, Y = 0] = 0.
Then X = 1 − Y a.s., hence they are continuously strongly counter-monotonic. It
also holds that τ(X, Y ) = ρ(X, Y ) = −p(1 − p) > −1.

See also example in Appendix B.2 demonstrating the extent of the issue in
the case of weak co-monotonicity.

As we know, both Spearman’s ρ and Kendall’s τ are based on the concordance
function (Defs. 21 and 23). Recall the concordance function’s (Def. 20) structure:

QX∗,Y ∗(X, Y ) := P [(X −X∗)(Y − Y ∗) > 0] − P[(X −X∗)(Y − Y ∗) < 0]. (4.10)
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It considers only the cases of sharply concordant pairs (the minuend) and sharply
discordant pairs (the subtrahend); the ties—cases when X = X∗ or Y = Y ∗—are
not accounted for. In case of the non-atomic marginals, it bears no consequences
since they occur with probability zero. The presence of atoms in the marginals
changes the situation.

This is also closely related to the fact that adapted copulae typically do not
reach FH-bounds. Indeed, let F and G be distribution functions such that at
least one of them is not non-atomic. Consider the adapted (Definition 31) upper
FH-bound M s

F,G. Recall that a copula adaptation is a copula (Th. 29), hence
Theorem 7 ensures that M s

F,G ≤ M and Th. 35 then ensures that M s
F,G < M ,

by which we mean ∃u, v ∈ [0; 1]2 : M s
F,G(u, v) < M(u, v). Observe that both M

and its adaptation are copulae, hence their marginals are non-atomic and thus
Theorem 22 holds; i.e., for these two objects, both τ and ρ fulfil Scarsini axioms
(Def. 18). It then could be shown that ρ(M s

F,G) < ρ(M).
To sum up, we have the following chain of inequalities going along the W–M

axis (Sec. 2.1):
W < W s

F,G ≤ Cs
F,G ≤ M s

F,G < M, (4.11)
where Cs

F,G is an arbitrary adapted copula. Any Scarsini measure of concordance κ
is normalised so that it ascribes the boundary values ±1 to the poles W and M .
Yet for the Fréchet class Γ(F,G) we are working with, the actual attainable
poles are W s

F,G and M s
F,G, and they differ from the FH-bounds. Thus the actual

values that κ can reach when working with Γ(F,G) are narrower than required by
Scarsini axioms. In order to fulfil the Normalisation Scarsini axiom, it is natural
then to consider some re-normalisations.

4.4.2 Sharp re-normalisations
In the rest of this section, we shall use κ as a placeholder for both Spearman’s ρ

or Kendall’s τ .
The first approach is to tailor τ or ρ to the Fréchet class at hand. A minor

nuisance is that generally |κ(W s
F,G)| ≠ |κ(M s

F,G)|, see [12, p. 555, Fig. 2]. Consider-
ing these facts, Genest and Nešlehová [7, p. 494–495, Def. 4] suggest the following
generalisation. Notice that it can be interpreted as a probabilistic (i.e., based on
Defs. 21 and 23), analytical (Thm. 43) or stochastic (Thm. 44) expression.

Definition 34 (Sharp re-normalisation of ρ and τ). Consider arbitrary distribution
functions F and G. For H ∈ Γ(F,G), put:

κF G(H) := κ(H)
dF G(H) , (4.12)

where dF G(H) is a normalising function defined as:

dF G(H) :=
⎧⎨⎩|κ(M s

F,G)|, κ(H) ≥ 0;
|κ(W s

F,G)|, κ(H) < 0.
(4.13)

The following fact about the mechanics of κF G is worth noticing. Observe that
Fréchet class fully specifies dF G; hence, for a given Γ(F,G), both dF G and κF G(H)
are functions of κ(H).

52



Observe that this re-normalisation indeed generalises κ, since under the non-
atomicity assumption Theorem 35 guarantees that κF G(H) = κ(H). Another nice
property is that κF G(H) = 1 whenever H is weakly co-monotonic (Def. 12), which
is ensured by Theorem 38.

There are, however, certain disadvantages of choosing in favour of such re-
normalisation. One of them is that the sharp bounds κ(W s

F G) and κ(M s
F G) may

not be easy to calculate analytically as Nešlehová shows [12, p. 555, Fig. 2].
Another issue stems from the fact that the normalising function jumps at

zero. Consider a fixed Fréchet class Γ(F,G). As we have already mentioned,
for H ∈ Γ(F,G) it holds that κF G(H) and dF G(H) are functions of k := κ(H). The
problem is that generally dF G(k) is discontinuous at k = 0. Hence, although κF G(k)
is continuous, it is not differentiable at zero. It poses no problem on the population
level, yet when it comes to estimating κF G, this fact may lead to instabilities,
especially when κ(H) is close to zero. Hence it may be reasonable to consider a
smooth version of the normaliser dF G.

Another problem is that, as Genest and Nešlehová [7, p. 495] admit, the
properties of such generalisations κF G are not clear. Specifically, it is not clear
whether the mappings κF G are generalised Scarsini measures of concordance in
the sense of Definition 32.

4.4.3 Alternative re-normalisations
Another approach suggested by Nešlehová [12] is based on a boundary for the

concordance function.

Theorem 45 (Concordance function boundary). Consider an arbitrary random
vector (X, Y ) and let (X∗, Y ∗) be a reference vector. Assume F and G are the
corresponding marginal CDFs. Put ∆F (x) := F (x) − F (x−) = P [X = x]. Then
the following holds:

|QX∗,Y ∗(X, Y )| ≤
√︂

(1 − E [∆F (X)]) (1 − E [∆G(Y )]). (4.14)

Proof. See [12, p. 555–556, Cor. 7].

Kendall’s τb

The following theorem states that if the reference vector has the same depend-
ence structure as the gauged one (or, in other words, if we are calculating τ), the
bounds are attained exactly when the random variables at hand are in continuous
strong co-/counter-monotonicity.

Theorem 46. Consider an arbitrary random vector (X, Y ) and let F and G be
the corresponding marginals. Assume X = f(Y ) for a transformation f on RanY
continuous strictly monotone. Then it holds that

τ(X, Y ) =
⎧⎨⎩1 − E[∆F (X)] for f increasing,

−1 + E[∆F (X)] for f decreasing.
(4.15)

Proof. See [12, p. 556, Prop. 8].
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Relying on the boundary we have just introduced, the following generalisation
of τ is suggested, see [12, p. 557, Def. 9].

Definition 35 (Kendall’s τb). Consider an arbitrary random vector (X, Y ) with
joint distribution function H. Let F and G be the corresponding marginals.
Define Kendall’s τb as follows:

τb(X, Y ) = τ(X, Y )√︂
(1 − E [∆F (X)]) (1 − E [∆G(Y )])

. (4.16)

There is a particularly nice probabilistic reformulation for τb which is easy to
obtain, see also [7, p. 492, Def. 3].

Theorem 47 (Probabilistic formulation for τb).
Consider an arbitrary random vector (X, Y ). Let (X∗, Y ∗) ∼ (X, Y ) be a reference
vector in the sense of Definition 19. It then holds that

τb(X, Y ) := τ(X, Y )√︂
P [X ̸= X∗] P [Y ̸= Y ∗]

. (4.17)

Proof. Recall that ∆F (x) := F (x) − F (x−) = P[X = x]. Let xi be the atoms
(i.e., the points where ∆F (xi) ̸= 0). Denote pi := P[X = xi]. ∆F (X) is then a
discrete random variable with values in {pi : i ∈ N} ∪ {0}. We then get that

E[∆F (X)] =
∑︂
i∈N

pi · pi = P[X = X∗]. (4.18)

It then follows that 1 − E[∆F (X)] = P[X ≠ X∗]. Repeating the similar construc-
tions for Y , we complete the proof.

Observe that τb indeed generalises Kendall’s τ introduced in Def. 23: under
the non-atomicity assumption, the denominator is equal to 1. Nešlehová [12,
p. 557] points out that τb is not a Scarsini measure of concordance in the sense of
Definition 32: it fulfils all axioms apart from the Continuity axiom.

The disadvantage of the approach compared to κF G renormalisation is that,
although compensating for possible ties, τb is not sensitive enough to detect weak
co-monotonicity, see example in Appendix B.2 and refer to [7, p. 493, Ex. 9].

Spearman’s ρ

We begin by observing the following facts about Spearman’s ρ.

Theorem 48. Consider an arbitrary random vector (X, Y ) with marginal distri-
bution functions F and G. Let (U, V ) ∼ Uni(0; 1)2. Then it holds that

ρ(X, Y ) = r(ψ(X,U), ψ(Y, V )), (4.19)

where r stands for Pearson’s r (Def. 1), and ψ is the JPIT (Def. 28).

Proof. From Theorem 43, we get ρ(X, Y ) = ρ(Cs
X,Y ). Theorem 29 then ensures

that ρ(Cs
X,Y ) = ρ(CΨ), where CΨ is the unique copula (as well as the joint CDF)

associated with the vector transformed with JPIT. Finally, from Equation (2.20)
we get ρ(CΨ) = r(CΨ). By Definition 1, r(CΨ) = r(ψ(X,U), ψ(Y, V )), which
completes the proof.
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Let us explore the expression E[ψ(X,U)] a bit closer. From the definition of
JPIT (Def. 28), we get:

E[ψ(X,U)] = E[F (X−) + U∆F (X)]
= E[F (X−)] + E[U ] E[∆F (X)]
= E[F (X−)] + 0.5 E[F (X) − F (X−)]

= E
(︄
F (X) + F (X−)

2

)︄
, (4.20)

where we used that U ∼ Uni(0; 1) is independent of X. This leads to the following
theorem.

Theorem 49. Let X be an arbitrary random variable. Let F be the corresponding
distribution function. Then it holds that:

E
[︄
F (X) + F (X−)

2

]︄
= 1

2 , (4.21)

var
[︄
F (X) + F (X−)

2

]︄
= 1

12
[︂
1 − E[∆F (X)]2

]︂
. (4.22)

Proof. See [12, pp. 550 and 558]

These results lead to the following conclusion:

Theorem 50. Consider an arbitrary random vector (X, Y ) with marginal distri-
bution functions F and G. Put

X := F (X) + F (X−)
2 , Y := G(Y ) +G(Y−)

2 . (4.23)

It then holds that
ρ(X, Y ) = 12 cov(X,Y ). (4.24)

Proof. See [12, p. 558].

The idea behind the re-normalisation of ρ is to put it equal to r(X,Y ), see [7,
pp. 492–493, Def. 3] and [12, p. 558, Def. 11].

Definition 36 (Spearman’s ρs).
Consider an arbitrary random vector (X, Y ) and let F and G be the corresponding
marginal distribution functions. We then put

ρs(X, Y ) := ρ(X, Y )√︂
var[X] var[Y ]

= ρ(X, Y )√︃(︂
1 − E [∆F (X)]2

)︂ (︂
1 − E [∆G(Y )]2

)︂ , (4.25)

where X and Y are defined as in Theorem 50.

Again, observe that ρs indeed generalises Spearman’s ρ as introduced in Defini-
tion 21; specifically, under the non-atomic marginals assumption, the denominator
turns to 1. Similarly to Kendall’s τb, it turns out that, strictly speaking, ρs is not
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a general Scarsini measure of concordance (Def. 32); it fulfils all of the axioms
apart from the Continuity axiom, see [12, p. 559].

Another disadvantage is that, as in the case of Kendall’s τb, the coefficient
generally fails to reveal weak co-monotonicities, see example in Appendix B.2 and
refer to [7, p. 493].

On the other hand, it may hint on the fact that the Continuity axiom is
ill-formulated since, as Nešlehová [12, p. 554] admits, it is rare that a concordance
index fulfils it.
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Conclusion
In this text, we examined probabilistic copula models and their applications

to measures of concordance and modelling dependence between random variables.
We began by studying the bivariate distributions with non-atomic marginals. We
summarised the basic facts of copula theory and demonstrated that it provides
a solid framework for studying dependencies between random variables. The
cornerstone of classic copula theory is the fact that the unique copula associated
with a given random vector preserves all ‘scale-invariant’ characteristics of the
vector and fully describes its dependency structure. On the one hand, this fact
could be used to analyse the dependencies between the elements of a given a random
vector, which corresponds to the so-called analytical models. In addition, it allows
us to construct joint distributions having pre-specified margins and dependency
properties, which is referred to as synthetic models. We also introduced the
notions of counter- and co-monotonicity.

We subsequently applied copula theory to develop the notion of concordance
ordering, which yielded the W–Π–M concordance axis. We introduced Scarsini
measures of concordance, which reflect the position of a dependence structure
on this axis. In particular, it allowed us to define the population versions for
Kendall’s τ and Spearman’s ρ. Additionally, copula theory provided deeper
insights into the inner mechanics and behaviour of these correlation coefficients.

We then proceeded by broadening our scope to arbitrary bivariate distributions.
We highlighted the differences from classic copula models and outlined the problems
that arise when considering arbitrary distributions. The major problem is that
the associated copula is no longer unique. We introduced the standard extension
copula, which resolves many issues arising from the presence of atoms in the
marginals, effectively generalising the unique associated copula available under
the non-atomicity assumption. In capturing important dependency properties,
specifically τ and ρ, the standard extension copula validates the use of copulae
for analytical models. Although synthetic copula models remain valid even when
atoms are present in the marginal distributions, the so-called copula adaptations
provide a more refined perspective, albeit with potential computational challenges.
We also demonstrated the need to differentiate between weak and strong counter-
/co-monotonicity in the case of arbitrary distributions.

Using the standard extension copula, we generalised the concordance ordering
and Scarsini measures of concordance. The presence of atoms in the marginals
means that while τ and ρ are well-defined for arbitrary distributions, they are
no longer properly normalised and fail to capture even strong co-monotonicity
adequately, not to mention the weak. Various re-normalisations seeking to adjust
for this were suggested and studied. Taking into account the fact that none
of them fulfilled Scarsini’s axiom of Continuity, a possible re-consideration of
Scarsini’s axioms may be necessary.

All theoretical concepts were illustrated using simple and understandable
examples.

Statistical inference for copulae and measures of concordance is out of the
scope of this text. It is thus pertinent to suggest texts that cover this topic. A
good introduction to copula model building, diagnostics and statistical inference
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under the non-atomicity assumption is available in [6]. Texts [7] and [3] focus
specifically on statistical copula models for arbitrary distributions; see also [18]
and [19]. Publication [20] is dedicated to the non-parametric estimator of the
associated copula known as empirical copula. Paper [21] illustrates the use of
copulae for tests of independence for arbitrary distributions.

Overall, this thesis provides a comprehensive overview of probabilistic copula
models and population measures of concordance, both under the common assump-
tion of non-atomic marginals and for arbitrary distributions. This text could
serve as a primer or introductory text for those interested in the behaviour of
Kendall’s τ or Spearman’s ρ at the population level. While being understandable
for any practitioner with the basic knowledge of statistics and probability, the
text provides an important mathematical background and theory standing behind
the inner mechanics of these indices. To the best of the author’s knowledge, there
is no publication that summarising these facts all in one place.
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A Recapitulating Basics of
Probability Theory and
Mathematical Statistics

In this section, we briefly summarise the basic definitions, facts, and conventions
from probability theory and mathematical statistics that are used throughout in
this text.

Definition 37 (Random element). Consider a probability space (Ω,F , P ) and
a measurable space (A,A). A measurable mapping X : (Ω,F) → (A,A) is a
random element.

Definition 38 (Distribution of a random element). Let X be a random element.
Consider the measure PX defined on the target measurable space of X as follows:

PX(A) := P
(︂
X−1[A]

)︂
:= P ({ω ∈ Ω : X(ω) ∈ A}) , A ∈ A.

We call the measure PX the distribution of the random element X, and we say
that PX is induced on (A,A) by the random element (or mapping) X.

Definition 39 (Discrete distributions and random elements). Let B ∈ A be
countable. Let PX(B) = 1. Then we say that PX is a discrete distribution, and X
is a discrete random element.

Definition 40 (Non-atomic distributions and random elements). We say that
distribution PX is non-atomic if and only if ∀a ∈ A : PX({a}) = 0.
We say that random element X is non-atomic if its distribution is non-atomic.

Remark 5. In literature, non-atomic distributions are often referred to as continu-
ous, e.g., [12, p. 545]. However, the term is ambiguous. On the one hand, it is in
the opposition to the discrete distributions, implying that continuous distributions
are those without atoms, which is in line with the notion of non-atomicity and
with how it is used by, e.g., Nešlehová [12, p. 545]. On the other hand, it is often
used to refer to the distributions (absolutely) continuous with respect to Lebesgue
measure. The term non-atomic is thus preferred.

Definition 41 (Random variable). Let B be the Borel σ-algebra of real numbers R.
Consider a random element X whose target space is (R,B). Such element is an
element real random variable.

Remark 6. To denote random variables, we will mainly use capital letters R, S,
U , V , X and Y , possibly with indices, typeset in plain font.

Definition 42 (Random vector). Consider a random element X, whose target
space is (Rn,Bn). Such an element is a real random vector.

Remark 7. We are mainly interested in two-element random vectors and we will
usually define them by elements: simply listing the random variables constituting
the elements of the vector. Sometimes we will also use bold letters to refer to a
random vector. For instance, U, Z := (X, Y ) or (X1, X2) are random vectors.
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Remark 8. We call real random variables and vectors simply random variables or
random vectors. We also assume that all random variables and vectors are defined
on the same probability space.

Definition 43 (Cumulative distribution function of a random variable). Consider
a random variable X. Function FX : R → [0; 1] defined as FX(x) := P[X ≤ x] is
called the cumulative distribution function (CDF) of X.

Definition 44 (Univariate cumulative distribution function).
We call function F : R → [0; 1] a cumulative distribution function if and only if
the following holds:

1. F is non-decreasing;

2. F is right-continuous;

3. lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

Theorem 51 (Characterization of univariate CDFs).

1. Consider a univariate cumulative distribution function F (as in Defini-
tion 44). Then there exists a random variable X such that FX = F .

2. Consider a random variable X. Its CDF FX is a univariate cumulative
distribution function, in other words it meets the requirements set it Defini-
tion 44.

Proof. See [22, pp. 8–9].

Definition 45 (Quantile function). Let F be a univariate CDF. The generalised
inverse or quantile function of F is a mapping F−1 : R → R ∪ {±∞} defined as

F−1(u) := inf{x : F (x) ≥ ǔ},

where ǔ stands for the collar operator (Def. 7).

Definition 46 (Joint cumulative distribution function of a random vector).
Consider a random n-vector X consisting of the elements (X1, . . . , Xn). Joint
cumulative distribution function of random vector X is a function HX : Rn → [0; 1]
defined as follows:

HX(x1, . . . , xn) := P[X1 ≤ x1, . . . , Xn ≤ xn].

Remark 9. For joint CDFs, we will typically use capital letters C or H typeset in
plain font, while letters F and G are reserved for CDFs of random variables.
In this work, we are mainly interested in random vectors consisting of two elements,
so the random variables constituting the vector at hand will be used as the index.
For instance, the joint CDF of random vector (X, Y ) will be typically referred to
as HX,Y , while its elements’ CDFs are FX and GY , respectively.

Definition 47 (Two-variate cumulative distribution function).
Let H : R2 → [0; 1] be a function. We say that H is a two-variate cumulative
distribution function if and only if the following holds:
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1. lim
x,y→+∞

H(x, y) = 1;

2. ∀x, y ∈ R : lim
x→−∞

H(x, ·) = 0 = lim
y→−∞

H(·, y);

3. ∀x, y ∈ R : H(x, ·) and H(·, y) are right-continuous;

4. ∀ x1 < x2, y1 < y2 : H(x2, y2) −H(x1, y2) −H(x2, y1) +H(x1, y1) ≥ 0.

Remark 10. Property 4 from Definition 47 is sometimes called rectangle inequality
(see [5, p. 11]). Functions fulfilling property 4 are sometimes called two-increasing,
see [1, Section 2.1] for more information on two-increasing functions. Rectangle
inequality can be generalised to n-variate functions; see, for instance, [5, p. 12]
and [1, pp. 43–44, Definition 2.10.2].
Essentially, the property of being two-increasing stems from the fact, that we want
to construct a measure using the function, and it is inclusion-exclusion principle
combined with measure’s non-negativity.

Theorem 52 (Characterization of two-variate CDFs).

1. Consider random vector (X, Y ). Then its joint CDF HX,Y is a two-variate
cumulative distribution function.

2. Consider a two-variate cumulative distribution function H(x, y). Then there
exists random vector (X, Y ), such that HX,Y (x, y) = H(x, y).

Proof. See [22, pp. 8–9].

Definition 48 (Marginals of a two-variate random vector). Consider a random
vector (X, Y ). Distributions PX and PY are its marginal distributions, while
CDFs FX and GY are its marginal distribution functions.

Theorem 53 (Univariate CDF and distribution define each other).

1. Let F be a univariate CDF. Then there exists a unique distribution P defined
on (R,B), such that ∀x ∈ R : F (x) = P ((−∞;x]).

2. Let P be a distribution defined on (R,B). Then there exists a unique
univariate CDF such that ∀x ∈ R : P ((−∞;x)]) = F (x).

Theorem 54. See [22, p. 4, Prop. 1.2].

Theorem 55 (Two-variate CDF and distribution define each other).

1. Let H be a two-variate CDF. Then there exists a unique distribution P
defined on (R2,B2), such that ∀x, y ∈ R : H(x, y) = P ((−∞;x] × (−∞; y)]).

2. Let P be a distribution defined on (R2,B2). Then there exists a unique
univariate CDF such that ∀x, y ∈ R : P ((−∞;x] × (−∞; y)]) = H(x, y).

Proof. See [22, p. 6].
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Remark 11. The previous two theorems establish a direct connection between
CDFs and distribution: these object uniquely define each other. To simplify the
notation, we will often use them interchangeably without introducing the notation
explicitly. For instance, Pearson’s r for a random vector (X, Y ) with the 2-CDF H
could be equivalently written as r(X, Y ) and r(H) or even r(PX,Y ), where PX,Y

is the corresponding distribution.
Theorem 56 (Probability integral transform of a non-atomic variable). Let X be
a random variable with non-atomic distribution. Let FX(x) be its CDF. Then the
following holds:

F (X) ∼ Uni(0; 1).
Proof. Let u ∈ (0; 1). We then get

P[F (X) ≤ u] = P[X ≤ F−1(u)] = F (F−1(u)) = u. (A.1)

Theorem 57 (Inverse probability integral transform).
Consider a random variable U ∼ Uni(0; 1). Let F be a distribution function.
Put X := F−1(U), where F−1 is a quantile function from Definition 45.Then it
holds that X ∼ F .
Proof. Let x ∈ R. Then

P[F−1(U) ≤ x] = P[U ≤ F (X)] = F (X). (A.2)

Definition 49 (Rank of an observation). Let X1, . . . , Xn be a random sample.
We define the rank of the i-th observation as follows:

Ri :=
n∑︂

j=1
I[Xj ≤ Xi].

Definition 50 (Empirical CDF). Let X1, . . . , Xn be a random sample. We define
the empirical cumulative distribution function (ECDF) as follows:

ˆ︁Fn(x) := 1
n

n∑︂
j=1

I[Xj ≤ x].

Immediately from Definitions 49 and 50 follows the connection between the
empirical CDF and observations’ ranks.
Theorem 58 (Empirical CDF and ranks). Let X1, . . . , Xn be a random sample.
Notice that for the i-th observation, the following holds from the definitions of
empirical CDF and observation’s rank:

Ri :=
n∑︂

j=1
I[Xj ≤ Xi] = n · ˆ︁Fn(Xi).

Theorem 59 (Glivenko-Cantelli). Let {Xi}n
i=1 be a random sample from a distri-

bution with CDF FX . Then the following holds:

∥ ˆ︁Fn − FX∥∞ = sup
x∈R

| ˆ︁Fn(x) − FX(x)| a.s.−→
n→+∞

0. (A.3)

Proof. See [22, p. 320].
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B Examples

B.1 Computing Standard Extension Copula
Consider a random variable U ∼ Uni(0; 1). Define X and Y as follows:

X :=
⎧⎨⎩0, U ∈ (0; 1

3);
1, U ∈ [1

3 ; 1);
Y :=

⎧⎨⎩0, U ∈ (0; 2
3);

1, U ∈ [2
3 ; 1);

(B.1)

Let H be the joint CDF and F and G the marginal distribution functions of the
random vector (X, Y ). Clearly both X and Y are Bernoulli random variables with
the probabilities of success equal to 2/3 and 1/3, respectively. Tables B.1 and B.2
present the joint probability cumulative distribution functions. Notice that the
upper FH-bound M (Def. 8) is compatible with the random vector (X, Y ) in the
sense of Definition 10. For instance, H(0, 0) = 1/3. On the other hand, we have:

min (F (0), G(0)) = min
(︃1

3 ,
2
3

)︃
= 1

3 = H(0, 0). (B.2)

Observe also that X and Y are weakly co-monotonic (Def. 12) by construction,
but they are not strongly co-monotonic (see Definition 13).

X \ Y 0 1 Σ
0 1/3 0 1/3
1 1/3 1/3 2/3
Σ 2/3 1/3 1

Table B.1 Joint probability function h(x, y) = P[X = x, Y = y] of a weakly co-
monotonic vector.

X \ Y 0 1
0 1/3 1/3
1 2/3 1

Table B.2 Joint cumulative distribution function H(x, y) = P[X ≤ x, Y ≤ y] of a
weakly co-monotonic vector.

v \ v 0 2/3 1
0 0 0 0

1/3 0 1/3 1/3
1 0 2/3 1

Table B.3 Values of the associated subcopula C ′(u, v).

Observe that RanF = {0, 1/3, 1} and RanG = {0, 2/3, 1}. The unique
subcopula C ′ (see Thm. 24) is discrete and its values are given in Table B.3.
We are now going to reconstruct the unique standard extension copula (Def. 30)
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associated with (X, Y ). We begin with determining the pairs (a1, a2) and b1, b2
for different values of (a, b) ∈ [0; 1]2. Following Definition 30, we obtain:

(a1, a2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), a = 0;
(0, 1

3), a ∈ (0; 1
3);

(1
3 ,

1
3), a = 1

3 ;
(1

3 , 1), a ∈ (1
3 ; 1);

(1, 1), a = 1.

(b1, b2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), a = 0;
(0, 2

3), b ∈ (0; 2
3);

(2
3 ,

2
3), b = 2

3 ;
(2

3 , 1), b ∈ (2
3 ; 1);

(1, 1), b = 1.

(B.3)

We are now in position to calculate the coefficients λ and µ for different regions
of [0; 1]2.

λ(u) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, u ∈ {0, 1

3 , 1};
u−0

1/3−0 = 3u, u ∈
(︂
0, 1

3

)︂
;

u−1/3
1−1/3 = 3

2u− 1
2 , u ∈

(︂
1
3 , 1

)︂
,

(B.4)

and

µ(v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, v ∈ {0, 2

3 , 1};
v−0

2/3−0 = 3
2v, v ∈

(︂
0, 2

3

)︂
;

v−2/3
1−2/3 = 3v − 2, v ∈

(︂
2
3 , 1

)︂
.

(B.5)

Using the coefficients, we may now reconstruct the values of the standard
extension copula Cs. We will do it for the four regions of [0; 1]2 defined by the
point (1/3, 2/3).
For u ∈ [1/3; 1] and v ∈ [2/3; 1], we get:

Cs(u, v) := 1
3

(︃
1 − 3

2u+ 1
2

)︃
(1 − 3v + 2) +

1
3

(︃
1 − 3

2u+ 1
2

)︃
(3v − 2) +

2
3

(︃3
2u− 1

2

)︃
(1 − 3v + 2) +

1
(︃3

2u− 1
2

)︃
(3v − 2)

= 1
2 (3uv − u− v + 1) , u ∈

[︃1
3; 1

]︃
, v ∈

[︃2
3; 1

]︃
. (B.6)

For u ∈ [0; 1/3) and v ∈ [2/3; 1], we get:

Cs(u, v) := 0 (1 − 3u) (1 − 3v + 2) +
0 (1 − 3u) (3v − 2) +
1
3 (3u) (1 − 3v + 2) +
1
3 (3u) (3v − 2)

= u, u ∈
[︃
0; 1

3

)︃
, v ∈

[︃2
3; 1

]︃
. (B.7)
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For u ∈ [0; 1/3) and v ∈ [0; 2/3), we get:

Cs(u, v) := 0 (1 − 3u)
(︃

1 − 3v2

)︃
+

0 (1 − 3u)
(︃

3v2

)︃
+

0 (3u)
(︃

1 − 3v2

)︃
+

1
3 (3u)

(︃
3v2

)︃
= 3

2uv, u ∈
[︃
0; 1

3

)︃
, v ∈

[︃
0; 2

3

)︃
. (B.8)

Finally, for u ∈ [1/3; 1] and v ∈ [0; 2/3), we get:

Cs(u, v) := 0
(︃

1 − 3
2u+ 1

2

)︃(︃
1 − 3v2

)︃
+

1
3

(︃
1 − 3

2u+ 1
2

)︃(︃
3v2

)︃
+

0
(︃3

2u− 1
2

)︃(︃
1 − 3v2

)︃
+

2
3

(︃3
2u− 1

2

)︃(︃
3v2

)︃
= 3

4uv, u ∈
[︃1
3; 1

]︃
, v ∈

[︃
0; 2

3

)︃
. (B.9)

Observe that the expressions above coincide with the values specified by C ′ (see
Table B.3).
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B.2 Weak Co-monotonicity
Construction

Consider a random variable U ∼ Uni(0; 1). Define X and Y as follows:

X :=
⎧⎨⎩0, U ∈ (0; 0.5);

1, U ∈ [0.5; 1);
Y :=

⎧⎪⎪⎨⎪⎪⎩
0, U ∈ (0; 1/3);
1, U ∈ [1/3; 2/3);
2, U ∈ [2/3; 1).

(B.10)

Let H be the joint CDF of the random vector (X, Y ) and denote the marginal
distribution functions as F and G.

Clearly X ∼ Uni{0, 1} and Y ∼ Uni{0, 1, 2}, where by Uni we mean dis-
crete uniform distributions. The joint probability function and joint CDF for
vector (X, Y ) are given in Tables B.4 and B.5. By construction, it is weakly co-
monotonic (Def. 12); it is also easy to verify that the upper FH-bound M (Def. 8)
is compatible with (X, Y ). Further, obviously this vector cannot be strongly
co-monotonic (Def. 13) since by pigeonhole principle there is no bijection between
the sets consisting of three and two elements.

X \ Y 0 1 2 Σ
0 1/3 1/6 0 1/2
1 0 1/6 1/3 1/2
Σ 1/3 1/3 1/3 1

Table B.4 Joint probability function h(x, y) = P[X = x, Y = y] of a discrete weakly
co-monotonic vector.

Kendall’s τ and τb

To evaluate τ(X, Y ), we are going to use its stochastic representation from
Theorem 44. Tables B.5–B.8 present the values the calculations are based on.

We thus get

τ(X, Y ) = E [H(X, Y ) +H(X−, Y )] + E [H(X, Y−) +H(X−, Y−)] − 1

= 23
36 + 1

4 + 1
3 + 2

9 − 1 = 4
9 . (B.11)

Observe that although (X, Y ) is weakly co-monotonic and the upper Fréchet-
Hoeffding bound M is compatible with it, τ(X, Y ) < 0.5. This illustrates how
devastating ties are for the default measure of concordance.

Now let (X∗, Y ∗) be an independent copy of (X, Y ). For the probabilities of
not observing ties it then holds that P[X ̸= X∗] = 1/2 and P[Y ̸= Y ∗] ̸= 2/3.
For τb from Definition 35 this yields:

τb(X, Y ) := τ(X, Y )√︂
P[X ̸= X∗] P[Y ̸= Y ∗]

= 4
9

√
3 ≈ 0.77. (B.12)
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X \ Y 0 1 2
0 1/3 1/2 1/2
1 1/3 2/3 1

Table B.5 Joint cumulative density function H(x, y) = P[X ≤ x, Y ≤ y] of a discrete
weakly co-monotonic vector.

X \ Y 0 1 2
0 0 0 0
1 1/3 1/2 1/2

Table B.6 Values of H(x−, y) = P[X < x, Y ≤ y].

X \ Y 0 1 2
0 0 1/3 1/2
1 0 1/3 2/3

Table B.7 Values of H(x, y−) = P[X ≤ x, Y < y].

X \ Y 0 1 2
0 0 0 0
1 0 1/3 1/2

Table B.8 Values of H(x−, y−) = P[X < x, Y < y].
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Spearman’s ρ and ρs

Consider a reference vector (X∗, Y ∗) from Definition 23. Specifically, let X∗ ∼
X and Y ∗ ∼ Y while X∗ ⊥⊥ Y ∗. Let h∗ and H∗ denote the joint probability
and cumulative distribution functions, respectively; their values are presented in
Tables B.9 and B.10. We now compute ρ(X, Y ) using the stochastic representation
from Theorem 44:

ρ(X, Y ) = 3 E [H(X∗, Y ∗) +H(X∗−, Y ∗)] +
E [H(X∗, Y ∗−) +H(X∗−, Y ∗−)] − 3, (B.13)

where the expectation is taken with respect to the distribution H∗. We again use
Tables B.5–B.8 to calculate the summands and obtain

ρ(X, Y ) = 3
(︃1

2 + 2
9 + 11

36 + 5
36

)︃
− 3 = 3 · 7

6 − 3 = 1
2 . (B.14)

Again (X, Y ) is weakly co-monotonic and the upper FH-bound M is compatible
with it, yet ρ(X, Y ) = 0.5 < 1.

Let us now calculate the normalised version of Spearman’s ρs from Definition 36.
Recall that ∆F (x) := F (x)−F (x−) = P[X = x]. Since both X and Y are discrete
uniform, we get that ∆F (X) = 1/2 a.s. and ∆F (X) = 1/3 a.s. We thus obtain:

ρs(X, Y ) := ρ(X, Y )√︃(︂
1 − E [∆F (X)]2

)︂ (︂
1 − E [∆G(Y )]2

)︂ =

= 1
2 : 1√︂

3
4 · 8

9

=
√

6
4 ≈ 0.61 < 1. (B.15)

X∗ \ Y ∗ 0 1 2
0 1/6 1/6 1/6
1 1/6 1/6 1/6

Table B.9 Values of the joint probability function h∗(x, y) = P[X∗ = x, Y ∗ = y]
under elements’ independence.

X∗ \ Y ∗ 0 1 2
0 1/6 2/6 3/6
1 2/6 4/6 1

Table B.10 Joint distribution function H∗(x, y) = P[X∗ ≤ x, Y ∗ ≤ y] under elements’
independence.
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