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Abstract: This thesis introduces a Python-based tool designed to generate diverse
and original problem assignments in formal languages theory, encompassing tasks
such as determinization, the CYK problem, and conversion to a proper CFG.
The tool allows the specification of desired properties for the generated problem
assignments. Moreover, it allows us to facilitate the creation of variations of these
assignments, ensuring their reuse across different exam dates. Each problem
assignment includes a detailed report that covers the solving process, problem
properties, and final solution, all formatted in LaTeX for easy integration into
educational materials. Utilizing JSON configuration files, the tool offers flexibility
and supports the seamless addition of new problems. By addressing challenges
in the problem generation and solution validation, this tool serves as a valuable
resource for enhancing teaching and assessment of formal languages theory.

Abstrakt: Tato práce představuje nástroj založený na Pythonu, který je navržen
pro generováńı r̊uznorodých a originálńıch úkol̊u v teorii formálńıch jazyk̊u, zahr-
nuj́ıćıch úkoly jako determinizace, CYK problém a převod na správnou bezkontex-
tovou gramatiku. Nástroj umožňuje specifikaci požadovaných vlastnost́ı pro gen-
erované úkoly. Kromě toho usnadňuje tvorbu variant těchto úkol̊u, což zajǐsťuje
jejich opakované použit́ı při r̊uzných termı́nech zkoušek. Každý úkol obsahuje
podrobnou zprávu, která zahrnuje proces řešeńı, vlastnosti problému a konečné
řešeńı, vše formátované v LaTeXu pro snadnou integraci do vzdělávaćıch ma-
teriál̊u. Pomoćı konfiguračńıch soubor̊u JSON nástroj nab́ıźı flexibilitu a pod-
poruje bezproblémové přidáváńı nových problémů. Řešeńım výzev při generováńı
úkol̊u a ověřováńı řešeńı slouž́ı tento nástroj jako zdroj pro zlepšeńı výuky teorie
formálńıch jazyk̊u.
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iii



Contents

Introduction 4

1 Existing Solutions 5
1.1 Existing Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Automata and Grammar Libraries . . . . . . . . . . . . . . . . . . 8

1.2.1 Pyformlang . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 JFLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 AutomataLib . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Algorithms Library Toolkit . . . . . . . . . . . . . . . . . 15
1.2.5 Libraries Comparison . . . . . . . . . . . . . . . . . . . . . 17

2 Preliminaries 20
2.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Grammars and Chomsky Hierarchy . . . . . . . . . . . . . . . . . 20
2.3 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . 27

3 Specification 30
3.1 Formal Language Framework . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Grammar Module . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Finite Automata Module . . . . . . . . . . . . . . . . . . . 31
3.1.3 Formal Language Object . . . . . . . . . . . . . . . . . . . 32

3.2 Generic Requirements . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Problem Class . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Console Application . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Non-Functional Requirements . . . . . . . . . . . . . . . . 41

4 Problems 42
4.1 Determinization of NFA Problem . . . . . . . . . . . . . . . . . . 42

4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Generation Process . . . . . . . . . . . . . . . . . . . . . . 44

4.2 CYK Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Generation Process . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Proper CFG Problem . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Algorithm for Exclusion of Redundant Symbols . . . . . . 50
4.3.2 Algorithm for Exclusion of ε-rules . . . . . . . . . . . . . . 52
4.3.3 Exclusion of Simple Rules Algorithm . . . . . . . . . . . . 52
4.3.4 Proper CFG Algorithm . . . . . . . . . . . . . . . . . . . . 53
4.3.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.6 Generation Process . . . . . . . . . . . . . . . . . . . . . . 56

1



5 Documentation 64
5.1 High-Level Programmer Documentation . . . . . . . . . . . . . . 64

5.1.1 Formal Language Framework . . . . . . . . . . . . . . . . 64
5.1.2 Main Application . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Instalation Documentation . . . . . . . . . . . . . . . . . . . . . . 72

Conclusion 74

Bibliography 75

List of Figures 77

List of Tables 78

A Attachments 79
A.1 generator application.zip . . . . . . . . . . . . . . . . . . . . 79

2



Introduction
Formal Languages theory is a fundamental area of computer science, with signifi-
cant applications in compiler design, artificial intelligence, and formal verification.
Central to this field are the study and manipulation of automata and grammars,
which are essential for the understanding of language recognition and generation.
Creating problem assignments for formal languages theory is crucial for evalu-
ating understanding of a student and application of these concepts. However,
generating original and diverse problem assignments that accurately test specific
skills and situations can be challenging, especially when there are multiple exam
dates and a need for variation.

The primary challenge addressed in this thesis is the difficulty in creating orig-
inal and diverse problem assignments. Specifically, we aim to generate problems
that test particular properties and situations within automata and grammar the-
ory. Another key aspect is the necessity of providing solutions and the process of
solving the generated problems to ensure their correctness and educational value.

The objective of this thesis is to develop an application capable of generat-
ing problem assignments based on configurable properties and situations. This
application will not only generate diverse problem assignments but also create
variations of these problems to reuse good problem assignments. Additionally,
the application will provide a report with all generated assignments and their
variations, solutions, and detailed solving processes for each generated problem
assignment.

Another objective for the application is that it will support different problems
and will be expandable with other problems.

The scope of the work includes the following types of problems: the deter-
minization of NFA to DFA, the CYK problem, and the conversion to proper CFG
problem.

Structure of the Thesis
This thesis is organized as follows:

• Chapter 1: Existing Solutions – We examine the existing solutions for
generating problems and creating formal language frameworks necessary for
this project.

• Chapter 2: Preliminaries – We define the essential concepts of automata,
grammars, and formal languages.

• Chapter 3: Specification – We outline the requirements and specifica-
tions for the application and formal language framework.

• Chapter 4: Problems – We investigate the algorithms for solving spe-
cific problems, properties to be tested, and configuration for the problem
generation.

• Chapter 5: Documentation – We provides high-level programmer doc-
umentation, user guides, and installation instructions for the application.
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• Chapter 6: Conclusion – We summarize the findings, discusses the im-
plications of the work, and suggests potential areas for future research.

By addressing these components, this thesis aims to contribute to the field
of formal languages theory by providing a robust tool for generating and solving
diverse problem assignments.
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1. Existing Solutions
First, we explore the existing solutions for assignments generation for automata
and grammars. This involves checking out various resources like websites, apps,
and other online platforms. Unfortunately, we cannot find anything like existing
generator for an automata and grammars problems but there are other resources
related to it. Many of them already have predefined sets of assignments, while
others offer tools to verify certain grammar rules. We are not limiting our search
to automata and grammars; we are also curious about how other problem as-
signments, mainly math problems, are created. Since there are tools available for
generating math problem assignments, we think there might be some techniques
or ideas that we can borrow or learn from.

In the second part, we turn our attention to the technic side of things. We want
to understand known libraries in different programming languages for automata
and grammars and what they can do. By studying these libraries, we can get a
better idea of what is possible and how to build our own framework.

In summary, the aim of this chapter is twofold: to understand what is already
out there and to gather the necessary tools and knowledge to program basic
framework, on which we will build.

1.1 Existing Generators
We will search for tools or methods related to generating problem assignments
from automata, grammars, regular expressions, formal languages and topics from
different subjects, or something what is related to formal languages.

There are numerous websites and online platforms that provide predefined
sets of problem assignments. By assignments we mean all kind of assignments,
multiple choice, open, or yes or no questions. Take, for instance, website San-
fourdy [1]. It includes a collection of over 1000 multiple choice questions spanning
various formal language topics. However, there is the absence of any randomness.
A few other websites introduce unpredictability by selecting a random subset of
problem assignments from a larger pool. Even these predefined assignments can
help us in inspiring of what kind of assignments we can create by our generator.

Another type of web applications we can find are validators that check if a
grammar is context-free, regular, et cetera.

For example, there is a web application CFG Developer [2]. It was created by
Christopher Wong at Stanford University in 2014. This web application offers the
ability to create a grammar, automatically verify if the grammar is context-free,
and if it is not, it will not generate examples of strings in this grammar. Similarly,
if the grammar is context-free, it generates up to 7 examples of different strings
that belong to the language of this grammar. In the beginning of creation of a
grammar, there is always a rule from the starting symbol to the epsilon and we
can not delete it, we can just change the right side of it. Then there is a button
for adding a new rule. After we create a context-free grammar, we can test the
acceptance of the set of strings, where it employs the Earley parser algorithm [3]
for parsing the strings. There is the Example button, which generates an example
of a context-free grammar. Unfortunately, it generates the same grammar every
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time.
Up to now, we have discovered web applications and websites with pre-defined

problem assignments on this topic. Our next step is to explore tools or meth-
ods related to the generation of math problem assignments from elementary to
high school. As for subjects like Biology, Geography, and others, the problem as-
signments are typically created by humans. We might replicate or adopt similar
methods to create our problem assignments. Some might employ artificial intel-
ligence to devise these problem assignments, but that falls outside our primary
focus.

Finding generators for math problem assignments is not challenging. Most of
them are web applications and follow a similar principle. Consider the Question
Generator from the web application MathsBot [4] as an example. It is a web
application, where we can create three sets of problem assignments (1 to 25
problem assignments in each set). It covers topics from math up to high school.
We can choose an interval of difficulty (from 1 to 10), which means setting borders
of minimal difficulty and maximal difficulty of problem assignments. Of course,
after generating problem assignments, we can show the answers by clicking on
the problem assignment or the button Show Answers.

There is no explanation of how this generator works, but after creating a
bunch of problem assignments, we observe that it is based on a randomness al-
gorithm with templates. Most likely, creators write down problem assignment
templates for each topic, and then there is a random generator with constraints
that generates the constants for each problem assignment template. Then there
has to be some function for parsing the constants into the template and a func-
tion for each template type, to calculate the correct output based on generated
constants. The difficulty of the problem assignment could be determined by the
constraints used for the random generator or by the template itself. For example,
when creating a problem assignment for adding two numbers x + y, the difficulty
depends on the constraints for the generator for constants. The difficulty will be
lower when the constants are numbers from 0 to 9 versus when they are from 10
to 99.

Another interesting tool for generating math problem assignments is One-
Note [5], which is a digital note-taking application developed by Microsoft. There
we have an option to generate a quiz based on the equation we are solving. First
of all, we have to solve an equation using Math Assistant, which is a special func-
tion in OneNote. After that, there will be an option titled Generate a practice
quiz. We can choose to generate up to 20 similar problem assignments. This
tool can generate equations with basic arithmetic operations on integers, such as
addition, subtraction, division, and multiplication. It can also create linear or
quadratic equations and inequalities, or many types of expressions with polyno-
mials to factor, expand, integrate, or differentiate them. The generated problem
assignments are multiple-choice, and Microsoft says that “distraction” answers
(answers that are wrong but could be easily considered right) can take into ac-
count common mistakes that can be made while solving that specific problem,
but they do not say how it works.

Continuing our search for math problem generators, we encounter platforms
utilizing artificial intelligence, as anticipated, such as Questgen [6]. They cannot
serve as an inspiration, but we can take inspiration from the following article.
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The article Algorithmically Generating Questions [7], written by Jonathan
Goldman and published in September 2013, is closely aligned with our topic. It
outlines two strategies for generating problem assignments, particularly for math.
These two approaches are solution-oriented and template-based.

The solution-oriented approach is about generating problem assignments ba-
sed on the set of skills and concepts required to solve them. For instance, if we
aim to craft an equation that requires adding two numbers and our goal is to
test the ability of the student to carry a digit, we have to think of two numbers
where this will happen and not only test the correctness of the result. In this
context, the author mentions the publication by Erik Andersen, Sumit Gulwani,
and Zoran Popović [8].

The publication is about analyzing and building a framework for abstracting
the characteristics of a given procedure, in our case the procedure of addition.
Jonathan Goldman mentions page three of his article. There is a pseudo-code
of an algorithm for adding two integers, where the output of the algorithm is a
trace. By the trace, we mean a string, where each character means some sort of
skill or partial procedure, which the algorithm had to do to add the two integers.
Let us consider that we have an algorithm for the addition of two integers, which
imitates the procedure as we would do it on paper. We track properties of this
problem by these characters: A stands for adding two digits, C stands for carrying,
and F stands for final carrying. Final carrying is when we still carry a digit at
the end of the addition but do not have anything else to add. We will create the
traces for two addition assignments. For 1+1 we have the trace A, and for 112 +
993 we get the trace AACAAF. Based on the traces, we can say in which addition
assignment we are going to test the skill of carrying a digit.

By generalizing this, we can execute the algorithm, monitor the trace, and
categorize the task based on the tested skills and difficulty.

The second approach, discussed in the article, is template-based. We have
already encountered this in the section on math problem generators. One of the
examples could be to find all roots of ax2 + bx + c. In this case, the quadratic
equation is our template. Indexes a, b, and c are parameters to change, or we
could say ’holes that must be filled’. We can restrict the template to have integer
indexes from 1 to 10, then we have 103 = 1000 possible problem assignments.

A big advantage of this approach is that it is easily generalizable and there
is no problem in creating a huge amount of problem assignments. But on the
other hand, we do not know how hard the problem assignment will be, or in
which category we should put it. For example, the majority of the roots of the
quadratic equation will not be integers. To generate problem assignments with
this approach, we need to create some sort of validator, which will confirm that the
generated values for a template lead to the desired type of problem assignment.
Then we can randomly generate values and run them over the validator. There
could also be the problem that only a small fraction of the generated problem
assignments are the ones we are looking for. In this case, it could be desirable to
involve some sort of heuristic for generating values, or maybe for quick recognition
of good or bad problem assignments.

As far as we know, there are no existing generators of problem assignments
for automata and grammars, but this article is a very useful insight into how to
generate problem assignments in general and its thoughts will be definitely useful
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in our future building of a generator.

1.2 Automata and Grammar Libraries
We will now focus on the existing libraries implemented in some of the most rele-
vant programming languages because we will certainly need to represent automata
and grammars within the framework for the generator we intend to propose.

1.2.1 Pyformlang
Pyformlang [9] is one of the most used frameworks for formal languages, au-
tomata and grammars for Python, written in Python. It was released as an
open-source project by the main author Julien Romero on May 5, 2019. The
library has continued to receive active maintenance and updates since its initial
release. Its dedicated community of contributors and maintainers ensures that
Pyformlang remains reliable, functional, and compatible with the latest Python
versions or other dependencies. One part of the project is, of course, the official
documentation. It is written with numerous examples of usage.

The library is segmented into eight distinct modules, each housing its unique
set of classes. These modules are Regular Expression, Finite Automaton, Fi-
nite State Transducer, Context Free Grammar, Push-Down Automata, Indexed
Grammar, Recursive State Automata, and Feature Context Free Grammar. Even
though not all of the enumerated modules are relevant to our objective, we are
interested at least in five of them.

Let us explore these modules to understand their composition and capabilities.
The Regular Expression module consists of three primary classes: Regex,

PythonRegex and MisformedRegexError.
The PythonRegex class represents a regular expression as the built-in Python

class re for regular expressions. A few additional features such as the positive
closure were added.

The Regex class uses operators differently, for example, the union is rep-
resented either by or +, while the + symbol denotes positive closure in the
PythonRegex class. All of these operators could also be a part of the alphabet.
Another surprising difference is that the alphabet in Pyformlang is not reduced
to individual characters in terms of ordinary strings from the programming point
of view. For instance, in Pyformlang, ‘matfyz’ is treated as a single symbol,
whereas in Python, it is treated as a concatenation of six characters. We can see
this situation bellow:

>>> r1 = Regex("matfyz|d")

>>> print(r1.accepts(["matfyz"]))
True

>>> r2 = PythonRegex("matfyz|d")

>>> print(r2.accepts(["matfyz"]))
False
>>> print(r2.accepts(["m", "a", "t", "f", "y", "z"]))
True
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There are several classes in the Finite Automaton module, but main classes
are FiniteAutomaton, DeterministicFiniteAutomaton,
NondeterministicFiniteAutomaton, EpsilonNFA. The class FiniteAutomaton
represents a general automaton and cannot be used directly. Other classes in
this module inherit from it. The inheritance is in this order FiniteAutomaton→
EpsilonNFA→ NondeterministicFiniteAutomaton→ DeterministicFinite-
Automaton. Assuming that A → B means B inherits from A. We can see that
the inheritance order corresponds to the order in which we transform one type
of automaton to another when we try to do it ”on paper”. For example, if we
want to convert a non-deterministic automaton to a deterministic, we can do it
easily by using the function to deterministic(). To be sure, we check if the
automata, are equivalent to each other:

>>> nfa = NondeterministicFiniteAutomaton()
...
>>> dfa = nfa.to_deterministic()
>>> nfa.is_equivalent_to(dfa)
True

We have two options to define an automaton. The first one is to create an
empty class object corresponding to the type of an automaton we will build.
Afterward, we can freely add or remove states and transitions or declare which
states are initial and final. The second one is to include all parameters properties
while creating the object.

Beyond the core functionality of determining if a string is accepted by an
automaton, the library offers various other functions for automaton objects. For
example, minimize(), reverse(), is acyclic(), to regex(), or from net-
workx(). All examples are self-explanatory, with the exception of the last one.

The last example is connected with the NetworkX [10] library. NetworkX is
a Python library for studying, creating, and manipulating networks and graphs.
The class FiniteAutomaton implements functions from networkx(), to net-
workx(), and write as dot(). The function from networkx() will transform
a graph of networkx.MultiDiGraph type to the corresponding automaton and
to networkx() will analogously transform an automaton to a graph. Note that
the graph must adhere to a specific format. The write as dot() function is used
for the visualization of an automaton. The outcome is the automaton in a DOT
format written into the filename given as an attribute.

A basic DOT representation of an automaton consists of a digraph keyword
followed by a set of statements enclosed in curly braces .

For example, an automaton with states A and B, and a transition from A to
B on the symbol x, would be represented in DOT as:

digraph automaton {
A -> B [label="x"];

}

Here is an example of creating an automaton, minimizing it, and then applying
the write as dot() function, and final visualization
(see Figures 1.1 and 1.2):
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dfa = DeterministicFiniteAutomaton()
dfa.add_transitions(

[
(0, "b", 1),
(0, "a", 2),
(1, "a", 1),
(1, "b", 2),
(2, "a", 2),
(2, "b", 2),

]
)

dfa.add_start_state(0)
dfa.add_final_state(1)
dfa.add_final_state(2)

minimized_dfa = dfa.minimize()

dfa.write_as_dot(filename1)
minimized_dfa.write_as_dot(filename2)

Figure 1.1: Visualization of DFA using Pyformlang

Figure 1.2: Visualization of minimized DFA using Pyformlang

As regular expression and finite automaton are equivalent, this library offers
functions for converting between them.
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The next module is the Context Free Grammar module, which has one main
class, CFG, along with other smaller classes for terminals, non-terminals, etc.
There exists a special class for an epsilon metasymbol named Epsilon. This
representation removes ambiguities. Creating a CFG object is analogous to cre-
ating a FiniteAutomaton object in the FiniteAutomaton module. We define
non-terminals (the official documentation and source code use the term variables
instead of non-terminals), terminals, a start symbol, and production rules. The
difference is that we can either create an empty automaton and then start adding
states, transitions, and so on, or include it all, in parameters while creating the
object in the Finite Automaton module. e have only the second option to include
symbols and rules in the parameters while creating a CFG object here. Afterward,
we can modify a grammar by a few functions such as concatenate() for con-
catenation of two grammars, eliminate unit productions() which return an
equivalent context-free grammar without unit productions, intersection(), for
example, with a regular expression or a finite automaton, etc.

We should mention non-editing functions such as contains(), get closu-
re(), get positive closure(), and get generating symbols()...

CFG is capable of checking if a grammar is in Chomsky normal form by calling
is normal form() or getting equivalent CFG in Chomsky normal form by calling
to normal form().

It is worth noting that the library offers a more user-friendly representation
of the grammar: non-terminals begin with a capital letter, and any other strings
are considered terminals. Importantly, all strings must be space-free.

Our final module of interest is the Push-Down Automata. The hierarchy of
classes is quite similar to the Context Free Grammar module. We have one
main PDA class and a few smaller ones. And again we have a dedicated class for
the epsilon metasymbol, different from other Epsilon classes in other modules.
PDA has many functions in common with functions of finite automata in the
Finite Automaton module. There are several extending functions for the proper
functionality of a push-down automaton, like set start stack symbol() and
extended add transition(). In this implementation, a push-down automaton
can either accept by the final state or by an empty stack and there exist functions
for conversion between them. We should also note that we can visualize the
automaton by transferring it into the DOT file by write as dot().

It is a well-established fact that context-free grammars and push-down au-
tomata are equivalent in expressive power. In this library, conversions between
the two are supported. However, it is crucial to note that the conversion is only
possible when the push-down automaton accepts by empty stack. This constraint
is technical and is set by developers of the library because in formal language
theory push-down automata which accept by empty stack and by final states are
equivalent and convertable to each other.

From a usability perspective, this library is intuitive, user-friendly, and in-
cludes many features for automata and grammar. One downside is that creating
an automaton by hand on paper or using a graphical user interface could be more
intuitive than manually writing down each transition in the source code.
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1.2.2 JFLAP
JFLAP [11] (Java Formal Languages and Automata Package) stands as one of
the most notable frameworks for formal languages, automata, and grammars.
This Java-based tool is a collection of graphical tools ideal for both learning
and simulation. Susan H. Rodger and her team from Duke University developed
and released JFLAP as an open-source project on April 12, 1998. Thanks to an
active community of contributors, JFLAP has seen consistent updates, ensuring
its compatibility with the latest versions of Java. Furthermore, there is extensive
official documentation complete with hands-on examples. Those interested can
also refer to the book JFLAP An Interactive Formal Languages and Automata
Package [11] for more insights.

JFLAP covers topics such as Regular languages, Context-free languages, and
Recursively Enumerable Languages, among others. We will highlight its capabil-
ities within these topics.

Upon first encountering graphical interface of the JFLAP, we are presented
with a main menu featuring options like Finite Automaton, Mealy Machine, Moore
Machine, Pushdown Automaton, Turing Machine, Multi-Tape Turing Machine,
Turing Machine With Building Blocks, Grammar, L-System, Regular Expression,
Regular Pumping Lemma, Context-Free Pumping Lemma.

Selecting the Finite Automaton option allows us to design deterministic and
non-deterministic automata, either with or without epsilon transitions. After
designing, we can test automaton with various strings to check for acceptance.
There is also the ability to visualize operation of the automaton step-by-step or
view a complete path of its state transitions. Additionally, we can convert the
automaton to its deterministic form, minimize it, or convert it into a regular
grammar or regular expression. These conversions can be done instantly or in a
step-by-step manner.

After clicking on the Pushdown Automaton button, we can choose from two
options, create a pushdown automaton with multi-character input or with single-
character input. Building a pushdown automaton is similar to creating a finite
automaton; however, when adding a transition, we must specify the stack behav-
ior. The core functionalities are also similar, we can track, and ask for acceptance
of a single or set of strings. Also checking if there is any non-determinism. Lastly,
we can convert it into a grammar while tracking specific steps, or combine it with
another automaton.

For Turing machines, we can build a single-tape or a multi-tape Turing ma-
chine, up to 5 tapes. Then we can simulate a run on a string or set of strings,
test non-determinism, combine it with another automaton, and convert it into an
unrestricted grammar.

Selecting the Grammar option empowers us to craft distinct grammar rules.
Once the rules are established, JFLAP discerns its classification, whether it is
right or left linear, context-free, Greibach-normal, context-sensitive, or unre-
stricted. To validate if a string belongs to the language generated by a grammar,
we might employ the Brute Force Parse feature. This method evaluates the string
and constructs a parser tree, autonomously determining which rules are used to
expand the nodes. Alternatively, with the User Control Parse, we specify in each
phase which specific rule should unfold a node, provided that the rule is appli-
cable. Transitions between different representations are streamlined: right-linear
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grammars can convert into finite automata, and context-free grammars find their
counterpart in push-down automata. Furthermore, JFLAP facilitates the trans-
formation of a context-free grammar into Chomsky normal form. Again, there
is the option to navigate through each transformation progressively, observing
every nuance.

When selecting the Regular Expression button, we are presented with an
empty space to input our regular expression. This functionality permits the con-
struction of expressions utilizing symbols like parentheses (, ), the Kleene star
represented by *, + for concatenation, and ! signifying the empty string. More-
over, we can employ any characters from the alphanumeric characters, excluding
the specified operators.

All objects created within JFLAP can be saved as a JFLAP file or exported
as images in formats such as JPEG [12] or PNG [13].

Very interesting option from the main menu are either the Regular Pumping
Lemma or Context-Free Pumping Lemma. By choosing them we are directed to
a window that presents various language examples. From here, we can select
the desired language to apply the lemma. For illustration, if we select regular
languages, the process for context-free languages is similar. Upon making this
selection, the Explain button appears. Clicking this button provides insight into
whether the language is not regular, offering an explanation via the pumping
lemma. Our main goal in this, however, is to find a valid division of a string that
can undergo the pumping process. The initial step involves selecting an integer
value m. The computer then picks a string longer than the value of m from the
language of the grammar. Subsequently, our task is to divide the string into three
distinct parts: x, y, and z. These substrings must meet the conditions stipulated
by the pumping lemma. If a selected division does not comply with the conditions
of the lemma, it flags the inconsistency. In cases where the string, based on our
division, is unpumpable, we can try again.

An intriguing feature is the ability to reverse roles with the computer. In
this mode, the computer takes the initiative by selecting the integer m. We then
provide a string exceeding the length of m. The challenge of the computer is to
discern a pumpable partition.

This is very interesting feature, which other mentioned libraries in this thesis
do not have. Compared to Pyformlang, this library offers more functionalities
and thanks to that the implementation of the JFLAP objects such as a finite
automaton is more complex, distributed across several classes.

If we continue in comparing JFLAP and Pyformlang, we can say that there
are significant differences between them in the simulation of the finite automaton
or the conversions. While Pyformlang offers a more straightforward, function-
call approach, JFLAP provides an in-depth, step-by-step method. This makes
JFLAP an invaluable resource for those keen on understanding the workings of
automata and grammars. On the other hand, for those aiming to integrate its
logic into their projects, a study of source code of the JFLAP becomes essential.

1.2.3 AutomataLib
AutomataLib [14] is a versatile framework in Java including variety of automata
types, but not for grammars and regular expressions. It is not as well-known
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as Pyformlang, but it provides a robust platform for those looking to delve
deeper into the realm of automata theory and graph theory. Currently, it covers
generic transition systems, Deterministic Finite Automata, Mealy machines, and
also more advanced structures like Visibly Pushdown Automata. AutomataLib
was originally released in 2015 as an open-source project by Malte Isberner and
Markus Frohme. The library has garnered a dedicated community over time,
ensuring its regular updates and maintenance.

Apart from its primary focus on automata theory, AutomataLib demonstrates
proficiency in tasks tied to graph structures. Given that automata can be viewed
as directed graphs, the library facilitates graph-related operations. Notably, it
enables users to traverse automata using methods similar to the classic depth-first
and breadth-first searches, or find strongly connected components. Although it
might not offer specialized shortest path algorithms, one can still find the most
direct route to a state, typically through breadth-first search.

Another a pivotal aspect of AutomataLib is model checking. Ensuring that
automata and state machines operate as expected. Within its suite of func-
tionalities, AutomataLib offers features that support comprehensive testing and
verification. For even deeper verifications, especially when we work with the
domain of Linear Temporal Logic (LTL) model checking, AutomataLib demon-
strates compatibility with LTSMin [15], which is a toolset for manipulating la-
beled transition systems and for model checking. By leveraging specific functions
within AutomataLib, we can smoothly integrate with LTSMin, enabling users to
export automata models and tap into advanced verification capabilities of the
LTSMin.

After inspecting the diverse features of AutomataLib, ranging from its graph-
related capabilities to its integration with LTSMin for advanced model checking,
let us further explore the specific functionalities AutomataLib offers in the domain
of automata theory and how they stand out.

We can build a deterministic automaton, a non-deterministic automaton, or
convert the non-deterministic to the deterministic, ask if a string is accepted but
there is no function to easily simulate it step-by-step and track the progress. We
can edit the automaton, remove transitions, make an intersection, union, and
difference operations with another automaton. We can compute minimalization
of the deterministic automaton. We can also check equivalence of automata.
AutomataLib provides other advanced functionalities over an automaton, but
they are not important for our purposes.

AutomataLib does not provide built-in GUI, but the visualization of an au-
tomaton can be done by exporting it as a DOT file and visualizing it using another
tool.

Related to finite automata, there are classes and many functions for building
and operating over Moore and Mealy automata. Functions such as for determin-
istic and non-deterministic automata.

What about regular expressions? There are no classes for implementing or
parsing regular expressions. This absence implies that it is not possible to create
an automaton directly from a regular expression within this framework. Conse-
quently, there are no functions provided for conversions between automata and
regular expressions.

Let us dive into Context-free languages. There is not a direct way to create
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a push-down automaton. There is only an interface called OneSEVPA, which is
interface for implementing a 1-single entry visible push-down automaton, which
is a visible push-down automaton of specific structures and semantics. Every
visible push-down automaton can be viewed as a type of push-down automaton,
which means that visible push-down automata accept a subclass of context-free
languages.

As could be expected, there is no way to represent a context-free grammar,
context-sensitive, or recursively enumerable language, or create an automaton
that would recognize it.

AutomataLib is powerful in representing graph structures, which includes fi-
nite automata, including Mealy and Moore automata. It offers more algorithms
over them than Pyformlang but for our purposes, we can not find many usable
methods and classes for other parts of formal language theory.

1.2.4 Algorithms Library Toolkit
The ALT [16] (Algorithms Library Toolkit) is a library written in C++ and devel-
oped at the Faculty of Information Technology of the Czech Technical University
in Prague, since 2019. Its primary function is to provide implementations for
various automata, grammars, and other common structures, coupled with math-
ematical algorithms operating over them. It is an open-source project created
by authors Jan Trávńıček, Tomáš Pecka, and Štěpán Plachý. Its modular ar-
chitecture emphasizes the independence of data types and algorithms, ensuring
easy maintenance and extensibility. One of distinguishing features of ALT is its
algorithm query language, aql. This language, executed within the aql2 shell, al-
lows users to manipulate data structures by mimicking the bash syntax. In other
words, the library is meant to be used directly in the command line. Another
option is to use the WebUI version. Where we can create automata, grammars,
regular expressions, and graphs, and run algorithms on them as well. The WebUI
application primarily utilizes mouse controls, supplemented by a set of keyboard
shortcuts for enhanced usability. It should be noted that there is no official guide
for the WebUI application as of now. The ALT project is actively maintained,
continually enhancing its functionalities and updating its features.

The library is divided into many modules. For example, the alib2data module
houses the main datatypes, including automata, grammars, and regular expres-
sions, and the alib2xml module enables XML parsing and composing, etc.

A summary of what the library covers, in the context of formal languages,
is, finite automata, regular grammars, and regular expressions cover the regu-
lar languages area. Representations for strings and various trees are provided.
Pushdown automata, context-free grammars, and their variants cover context-free
language areas. Finally, tree automata and tree regular expressions represent data
structures related to tree languages.

We can create many types of automata that accept regular languages. The
firs option is to create it in the command line with a specific format in the aql
language, or the second option is to parse it from a XML file. Analogically, there
is a function for converting the automaton to a XML file. If we are creating
it in the command line, as in the Pyformlang library, we have to specify which
automaton we are building, for example, deterministic, non-deterministic, epsilon
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non-deterministic, and so on. While building, we have to define the alphabet
of the automaton. After we have built the automaton, we can run it on the
string and check its acceptance, get the string of indexes where the automaton
passed a final state, and get the reached state after reading the whole string.
There are functions for minimalization, exclusion of unreachable states, or we can
determinize the non-deterministic automaton. For any two automata of the same
type, we can compare them, if they are equivalent, make a union or concatenate.
There are functions, which return an automaton in the DOT, LaTeX, or GasTex
format, to an output stream. Afterward, we can use it to visualize the automaton.

The library includes a class for representing regular expressions, which em-
ploys well-established operators: + for alternation, * for iteration, and () to es-
tablish priority. The symbols #E and #0 are dedicated representations for epsilon
and the empty set. Furthermore, the library introduces a distinction between
concatenated symbols and individual alphabet symbols. An integral aspect is the
space delimiter, where 11 represents a single symbol, 1 1 represents two distinct
concatenated symbols. After we build a regular expression, we can convert it to
the automaton, or an automaton to the regular expression, thanks to different
algorithms, such as the Brzozowski’s derivation algorithm [17], Glushkov’s con-
struction algorithm [18], or Thompson’s Construction Algorithm [19]. We can
also convert a regular expression to the corresponding regular grammar, which
delegates to the Glushkov’s construction algorithm, or to the corresponding right
regular grammar, with Brzozowski’s derivation algorithm. There is also the func-
tion for optimizing a regular expression, which means that it tries to transform
the expression to be smaller but equivalent.

To accept a context-free language, we can build a non-deterministic push-
down automaton or a less powerful deterministic push-down automaton. Let us
note that the official documentation does not provide instructions on how to build
it, whether in the command line or the web application. But we can read from the
API documentation, that there are many similar functions as in the automata
for regular languages. For example, in speaking of editing functions over the
automaton, such as changing initial states, and adding, or removing transitions,
the functions of non-deterministic, or deterministic automata are the same. Of
course, we can run it over a string. We can convert it to the same format for the
visualization, or to the XML file. But there are no functions for minimalization
or union. We also cannot convert between push-down automata and context-free
grammars.

For creating grammar, firstly, we have to specify the type of the grammar,
RIGHT RG, LEFT RG, CFG, GNF (stands for context-free grammar in the Greibach
normal form), CNF (stands for a context-free grammar in the Chomsky normal
form), etc. After that, we include the set of non-terminals, the set of terminals,
the set of rules, and the initial non-terminal symbol. Naturally, acceptance of
a string is included. Additionally, there are various other functions, such as
querying if the language generates epsilon and retrieving reachable symbols of the
grammar. For two regular or context-free grammars, we can alternate them, or
concatenate them. Regarding conversion, for a regular grammar, we can convert
it to the finite automaton, to the left or right form, and afterward, the left
regular, or the right regular grammar convert to the regular expression. We
can convert regular and context-free grammars to Chomsky’s normal form, or to
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Greibach’s normal form. Let us note that we can also create a noncontracting
and an unrestricted grammar.

We can find the class for representation of a deterministic single tape Turing
machine, which accepts recursive languages, in the API documentation. Unfortu-
nately, as for the push-down automata, there is no explanation of how to create
them with the command line interface, and there is no option to create them in
the WebUI.

The Algorithms Library Toolkit excels when dealing with regular languages.
However, for context-free languages and beyond, it lacks explanation on how to
construct corresponding objects.

1.2.5 Libraries Comparison
For our summary of libraries, we will compare them in terms of usability, features,
and functionalities. This will give us a better overview of each library, and we
can easily navigate through them in the future, while building our framework for
automata, grammars, regular expressions, etc.

First of all, we will compare them in a general context 1.1. Pyformlang and
AutomataLib are both frameworks that can be imported into the code and used
for their functionalities in our project. Conversely, JFLAP and ALT can be used
on their own only with their graphical interface, while JFLAP is the primary
graphical educational tool, the ALT library is designed to be used with query
language aql, directly in the command line or written down in scripts that can be
executed. Theoretically, we could import classes, and the whole logic of JFLAP
and ALT into our code, in JFLAP case to our Java code and in ALT case to our
C++ code, and use it as a framework for our project. This option could be quite
tricky and would include studying their source code.

Written inLibrary language Frameworka GUIb

Pyformlang Python YES NO
JFLAP Java NO YES
AutomataLib Java YES YES
ALT C++ NO YES
a Its logic can be integrated easily into our own project.
b Graphical User Interface

Table 1.1: General information about libraries.

The libraries are in active maintenance and are open-source. The oldest one
is JFLAP, released in 1998. All of the others are quite new, released in 2015–
2019 1.2.

All of the libraries can represent finite automata. The only library that cannot
represent a regular expression and a push-down automata, and a context-free
grammar is AutomataLib. Note that in ALT there exists a class for representing
a push-down automaton but there is no explanation of how to create it. The only
library that can represent and work with Turing machines is JFLAP.

What libraries can do with objects in regular languages context?
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ActiveLibrary Open-source Released in maintenance

Pyformlang YES 2019 YES
JFLAP YES 1998 YES
AutomataLib YES 2015 YES
ALT YES 2019 YES

Table 1.2: External information about libraries.

All of the libraries can represent and offer basic functionalities over finite
automata, such as the acceptance of a string, converting the non-deterministic to
a deterministic one, minimizing a deterministic automaton, etc. Also, all libraries
have a function to somehow visualize the automaton. Either exporting the DOT
file or in its own GUI.

The only library that cannot represent a regular expression is AutomataLib
and it implies that we cannot convert between finite automata and regular ex-
pressions. But all other libraries have an option to convert between them

As we can see in a table 1.3.

Basica Minimize VisualizeLibrary functionalities DFA Convertb

automaton

Pyformlang YES YES YES YES
JFLAP YES YES YES YES
AutomataLib YES YES NO YES
ALT YES YES YES YES
a Acceptance of a string, or editing automata.
b Conversion between a regular expression and a finite automaton, in both ways.

Table 1.3: Capabilities of libraries in regular languages.

A push-down automaton can be represented in the Pyformlang and JFLAP,
despite there exists the class for a push-down automaton in ALT, we do not count
it because we do not know how to use it. Both, Pyformlang and JFLAP, offer
similar basic functionalities over them for finite automata, including visualization
of them.

In the speaking of only context-free grammars context, we can represent them
in Pyformlang, JFLAP, or ALT but only for ALT and JFLAP we can create
another type of grammar. There is one big difference, in ALT we have to specify
the type of a grammar, and in JFLAP we can write down rules and after that
check the type of it. But let us focus now only on context-free grammars. The
basic functionality, if a string is contained in a language the grammar generates,
is included in all three libraries. Even the transformation to the Chomsky normal
form is in all of them. Other functionalities are very similar in Pyformlang and
ALT, for example, the concatenation of two grammars. Despite there being a
bunch of options to convert between different types of grammar in JFLAP, other
functionalities, such as concatenation, miss. The conversion between a push-down
automaton and a context-free grammar is possible in JFLAP and Pyformlang.
These properties are compared in a table 1.4
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Other To ChomskyLibrary CFGa

Grammarsb normal form PDAc Convertd

Pyformlang YES NO YES YES YES
JFLAP YES YES YES YES YES
AutomataLib NO NO NO NO NO
ALT YES YES YES NO NO
a Context-free grammar.
b Grammars of type 1 and 0.
c Push-down automaton.
d Conversion between a push-down automaton and a context-free grammar.

Table 1.4: Capabilities of libraries in context-free languages.

Only JFLAP offers the ability to follow conversions, testing acceptances, and
other functionalities step-by-step. This feature is really powerful for learning and
understanding how the algorithms in formal languages work. It is also the only
library where we can build Turing machines, and even do something with the
Pumping lemma. These reasons are, why it is very powerful. On the other hand,
each library has something exclusive, that others do not have. For example, in
which programming language we can use it, or how we can use it. In terms of
functionalities, ALT is quite powerful, but the learning of the aql language could
turn many people off. The Pyformlang is on the other hand straightforward in
terms of usage, with well-written official documentation. For AutomataLib, we
do not have many functionalities in the whole context of formal languages but it
is strong in graph algorithms over finite automata and other graph structures, or
in testing them.
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2. Preliminaries
In this chapter, we will establish and introduce some concepts and objects from
formal languages theory. We will define a deterministic, and an non-deterministic
automaton, grammar, or a regular expression and then talk about how they work.

Upon theoretical basis, we will be building our framework for automata and
grammars, analyzing algorithms for problems in our scope, and creating our in-
tended generator.

2.1 Basic Notions
Let us start with the strings. Firstly, we will need an alphabet, so that we have
something to build strings from. An alphabet is a finite set of symbols, usually
denoted by Σ. For example, the binary alphabet is the set {0, 1}. A string over an
alphabet Σ is a finite sequence of symbols from Σ. Empty string will be denoted
by ε. Naturally, the length of a string x, denoted by |x|, is a number of symbols
in the string. For an alphabet Σ, we define Σ+ as the set of all non-empty strings
over Σ and Σ∗ is defined as Σ∗ = Σ+∪{ε}, which means it is the set of all strings
over Σ.

We can do a few operations over strings. The operation of the concatenation
of strings x and y is written as x · y, or a shorter version xy. Another one is a
reversal of a string. For a string x = a1a2. . .an, xR = anan−1. . .a2a1 is the reversal
of the string x.

A formal language L over an alphabet Σ is a subset of Σ∗. There are basic set
operations, such as union, difference, or intersection. Non-trivial operations are
the concatenation of two languages or the n-th power of language and kleene star.
The concatenation of two languages L1 over Σ1 and L2 over Σ2 is L = L1.L2 =
L1L2 = {x.y : x ∈ L1, y ∈ L2} and L is defined over the alphabet Σ = Σ1 ∪ Σ2.
For n ∈ N is the n-th power of a language L derived from the concatenation as
Ln = L.Ln−1 and L0 = {ε}. The last mentioned operation kleene star L∗ of
language L is defined as L∗ = ⋃︁∞

n=0 Ln.
The first thought about how to represent a language is that we can just list

its elements. However, this approach becomes impractical when dealing with
languages that have an infinite number of strings, in other words, language is not
finite. Formally, a language L ⊂ Σ∗ is finite if ∃ n ∈ N0 : |L| ≤ n.

As we established fundamentals of formal languages, we can proceed to models
that describe them.

2.2 Grammars and Chomsky Hierarchy
The solution, how to represent any language, even non-finite, lies in the use of
grammars. A grammar serves as a formal specification for a language.

Definition 1 (Grammar). A grammar is a tuple G = (N, Σ, P, S), where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols. Σ ∩N = ∅.
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• P is a finite set of production rules. It is a subset of (N ∪ Σ)∗.N.(N ∪
Σ)∗ × (N ∪ Σ)∗. An element (α, β) of P is written as α → β and is called
rule.

• S ∈ N is the start symbol.

Non-terminal symbols represent syntactic variables in the grammar and are
used to generate strings, but they do not appear in the final generated string.
Terminal symbols, on the other hand, are the symbols from which the strings are
built and cannot be further derived.

A derivation of a string in a grammar G = (N, Σ, P, S) is a sequence of
application of production rules. A sentential form represents a string in the
process of derivation, serving as an intermediate step. A sentence β is special case
of sentential form consisting solely of terminal symbols (β ∈ Σ∗), representing
the final string derived.

The generation process begins with the start symbol S, which serves as the
initial sentential form. Then we non-deterministically derive by applying produc-
tion rules until we get a sentence, which is the final string we have generated and
we say that the string is generated by the grammar.

By applying a production rule, we mean that we take a sentential form and
find a substring that is located on the left-hand side of a production rule and
then we replace that substring with the right-hand side of that rule, in other
words, if we have a sentential form uXv, where and we apply a production rule
X → Y , we get a new sentential form uY v. Note that there is always at least
one non-terminal symbol on the left-hand side of each production rule.

The derivation of uY v from uXv is denoted by uXv ⇒ uY v. If the derivation
from a string α to a string ω is sequence of applying k rules we denote it as α⇒k ω.
By α ⇒+ ω, we denote α ⇒i ω, where i ≥ 1, we derive in nonzero number of
steps. And by α⇒∗ ω, we denote α⇒j ω, where j ≥ 0, we derive in any number
of steps, because we can always derive ω from ω by applying zero rules, ω ⇒0 ω.

There is an assumption that non-terminal symbols N and the terminals Σ are
disjoint sets and that is essential. Because we could not distinguish between them
if we use them in one sentential form. Then we would not know if the sentential
form is sentence containing only terminal symbols an consequently, we cannot
determine whether the generating process has terminated or should continue.

A language L generated by a grammar G is noted as L(G) and it is a set of
all sentences generated by the grammar.

Two grammars G1 and G2 are considered equivalent if and only if they generate
the same language, denoted as L(G1) = L(G2).

Let us demonstrate how to represent a language by a grammar and the deriva-
tion process. We have a language L over the alphabet {0, 1}, where all strings
begin with 0, then have any number of 1s and end with 0 again. This is impos-
sible to represent it by writing down all of the strings but we can represent it by
the following grammar G1.
Example (Grammar).

G1 = ({S, A}, {0, 1}, P, S)
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where P includes the following production rules:

1. S→ 0A
2. A→ 0
3. A→ 1A

In this grammar, S is the start symbol, and the terminal symbols are 0 and 1.
Using this grammar, we can derive a sentence such as (α⇒k ω means, we derive
ω from α by applying the rule number k):

S⇒1 0A⇒3 01A⇒3 011A⇒2 0110

Now, we introduce a hierarchy in grammars and the class of language that
every type of grammar generates.

Definition 2 (Hierarchy of Grammars). Let G = (N, Σ, P, S) be a grammar,
then G s:

• unrestricted (type 0), if it satisfies a general grammar definition.

• context-sensitive (type 1), if every rule from P is of the form γAδ → γαδ,
where γ, δ ∈ (N ∪ Σ)∗, α ∈ (N ∪ Σ)+, A ∈ N , or the form S → ε if S is not
present in the right-hand side of any rule.

• context-free (type 2), if every rule is of the form A → β, where A ∈ N ,
β ∈ (N ∪ Σ)∗.

• regular (type 3), if every rule is of the form A → aB or A → a, where
A, B ∈ N, a ∈ Σ, or the form S → ε if S is not present in the right-hand
side of any rule.

As we can see, with each lower class (higher type number) the conditions for
the grammar rules are more strict, which leads to lower expressive power and the
languages generated by these grammars are less complex.

Now let us see a corresponding hierarchy of languages.

Definition 3 (Hierarchy of Languages). The language L is:

• recursively enumerable (type 0), if there exists an unrestricted grammar
which generates it.

• context-sensitive (type 1), if there exists a context-sensitive grammar
which generates it.

• context-free (type 2), if there exists a context-free grammar which gener-
ates it

• regular (type 3), if there exists a regular grammar which generates it.

It is called the Chomsky hierarchy.
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2.3 Automata
Automata are models that take a string over the alphabet of an automaton and
answer if the string is accepted or not. In this way, we can describe a language.
We can build an automaton and the corresponding language will be composed
of all strings accepted by that automaton. Regular languages (type 3) can be
recognized by finite-state automata, in other words, for each regular language
there exists a finite-state automaton which accepts all and only strings from the
language.

We have a deterministic finite automaton or a non-deterministic finite au-
tomaton. They are equivalent in computing power, which means both of them
recognize regular languages and each non-deterministic automaton can be con-
verted to a deterministic one.

Definition 4 (Deterministic Finite Automaton). A deterministic finite au-
tomaton (DFA) is a tuple M = (Q, Σ, δ, q0, F ), where:

• Q is a finite set of states.

• Σ is a finite alphabet (input alphabet).

• δ : Q× Σ→ Q is a transition function.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final (accepting) states.

The DFA processes an input string by starting in the initial state q0 and, for
each symbol in the input string (starting with the first symbol of the input string)
it makes one step. By step we mean that the automaton transition into the new
current state, based on the current state and next input symbol from the input
string. To which state we will transition is determined by the transition function
δ. The input string is accepted if and only if, after reading the last symbol, the
automaton is in one of the final states in F . The input is rejected if we end in a
state which is not final or the transition for the next symbol is not defined.

We can define an automaton by defining main elements and δ function, or by
a diagram.

Let us build a simple DFA D1, which will be over the alphabet Σ = {a, b}
and will accept only strings with even number of a.
Example (Deterministic Finite Automaton).

D1 = ({s1, s2}, {a, b}, δ, s1, {s1})

Where δ is defined as:

a b
s1 s2 s1
s2 s1 s2
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The shorter option for defining the whole automaton is the table, which cor-
responds to the δ function. Initial state is denoted by an arrow pointing into it
and final state by an arrow pointing out of it.

a b
<-> s1 s2 s1

s2 s1 s2

And lastly, a diagram, where nodes represent states. The node with an arrow
pointing into it is the initial state and states with double bordering are final
states. The input alphabet is implicitly defined by all symbols found on edges
between nodes and these edges define the δ function.

As we can see, a table and a diagram representation are equivalently strong
to the plain definition but a diagram is the most intuitive way for explaining how
an automaton accept or reject an input string.
Example (Acceptance of an inptut string by a DFA). Let us have an automaton
D1 and an input string aabab. We will start in the initial state s1.

We are in the state s1 and reading the first symbol in the input string aabab.
Which means that we will transition through the edge with a.
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And the new current state is s2.

We will read the next symbol in the input string aabab, which is a again, and
we will transition to the state s1.

We will iterate, until we reach the end of the input string and in this particular
case we will end in the state s2.

Because we have read the whole input string and we are not in the final state
at the end, it implies that the input string aabab is not accepted. This corresponds
to the fact that there are three occurrences of a, which is not an even number.

Equally powerful to a DFA is a non-deterministic finite automaton. The only
difference is in the transition function.
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Definition 5 (Non-deterministic Finite Automaton). A non-deterministic fi-
nite automaton (NFA) is a tuple N = (Q, Σ, δ, q0, F ), where:

• Q is a finite set of states.

• Σ is a finite alphabet (input symbols).

• δ : Q×Σ→ 2Q is a transition function, where 2Q is a set of all subsets
of Q.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final (accepting) states.

The NFA processes an input string, similar to a DFA, by starting in the
initial state q0, and for each input symbol, it takes one step. However, unlike a
DFA, an NFA makes a non-deterministic transition in each step. Specifically, it
non-deterministically (randomly) selects a new state from a set of possible states
based on the transition function δ.

To clarify, at each step, given the current state and the input symbol, the NFA
explores multiple potential paths by considering all possible next states from the
set defined by δ.

The NFA accepts the input string if and only if there exists at least one
sequence of steps such that, after reading the last symbol of the input string, it
ends in one of the final states from the set F ; otherwise, it rejects the input.
Example (Non-deterministic Automaton). We can create a NFA N1 over an al-
phabet {a,b} which accepts only strings ending with aba. The automaton will
look like this:

Here, we can see that it starts in the state s1 and by processing the input string
aba, it can end in states {s1, s2, s4}. Therefore, it accepts this string because at
least one of the ending states is final, specifically the state s4.

The last two notes for automata are that two automata are equivalent if they
accept the same language.There is a theorem that for each NFA there exists an
equivalent DFA.

We introduced two types of finite-state automata and how to represent them
and we know they are equally powerful in describing or defining regular languages
as regular grammars. Let us mention that there are algorithms for conversions
between regular grammars and finite automata.
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2.4 Context-Free Languages
Languages of the type 2 in Chomsky hierarchy are generated by context-free
grammars. They have smaller restrictions than regular languages and thus they
are more complex. Rules of context-free grammars can be only in a form A→ β,
where A is one non-terminal and β is any string build from terminals and non-
terminals.

The generated language by a context-free grammar can be empty (it does not
generate any string). For deciding if the langauge is empty we will have to know
if the starting symbol S is a generating symbol.

Definition 6 (Generating Symbol). Symbol A ∈ N in a context-free grammar
G = (N, Σ, P, S) is generating if there exists at least one derivation A ⇒+ ω,
such that ω ∈ Σ∗, in other words, there exists at least one sentence that can be
derived from the symbol A.

If the starting symbol S is non-generating, we cannot generate any string from
it and the language of the corresponding grammar is empty.

Another types of not useful symbols are unreachable symbols. They can be
generating but we cannot reach them from the starting symbol.

Definition 7 (Reachable Symbol). Symbol B ∈ (N ∪ Σ) in a context-free gram-
mar G = (N, Σ, P, S) is reachable if there exists a derivation S ⇒∗ ωBγ where
ω, γ ∈ (N ∪ Σ)∗, in other words, there exists at least one sentential form or sen-
tence that includes B and can be derived from S.

If we combine both of them then we have an unreachable or a non-generating
symbol, we say it is redundant.

Definition 8 (Redundant Symbol). Symbol X ∈ (N ∪ Σ) is redundant in
G = (N, Σ, P, S), if there does not exist a derivation S ⇒∗ ωXγ ⇒∗ ωxγ, where
ω, x, γ ∈ Σ∗.

Redundant symbols can be removed from a context-free grammar without
loss of power because the grammar without redundant symbols still generates
the same language.

The special type of a rule is an ε-rule. It is a rule where ε is on the right hand
side (note that ε cannot be on the left hand side, it would not make any sence).
We can have a special demand that a grammar will be ε-rule free.

Definition 9 (ε-rule Free Grammar). A context-free grammar G = (N, Σ, P, S)
is ε-rule free, if

1. P contains no ε-rule, or

2. P contains only one ε-rule of form S → ε and S does not appear on the
right hand side of any rule in P .
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If we have a context-free grammar which can generate an ε, we can not delete
all the ε-rules because we would no longer be able to generate it and the gram-
mars would not be equivalent. Because of that there is the second option in the
definition of ε-rule free grammar.

Another additional requirement for a context-free grammar could be that it
must be cycle-free.

Definition 10 (Cycle-Free Grammar). A context-free grammar G = (N, Σ, P, S)
is cycle-free, if no derivation A⇒+ A is possible for any A ∈ N .

After combining all of these requirements, we get a special type of a context-
free grammar, which is a proper context-free grammar.

Definition 11 (Proper Context-Free Grammar). A context-free grammar G =
(N, Σ, P, S) is proper, if it is cycle-free, ε-rule free, and without redundant sym-
bols.

We can convert every context-free grammar into a proper one, as we will
explore further in our reading.

The last special rule is a simple rule. It is a rule of type A→ B, where A, B
are both non-terminals. It can be even same non-terminals, A = B.

Theorem 1. If a context-free grammar G = (N, Σ, P, S) has no ε-rules and no
simple rules, then it is cycle-free.

To convert a context-free grammar into a proper context-free grammar, we
need to eliminate ε-rules, followed by the removal of simple rules and redundant
symbols. This process ensures that the grammar fulfills the definition of a proper
context-free grammar.

As we try to restrict the production rules in a grammar, we can also put some
restrictions on their format but with the same expression power. For example, for
context-free grammars, we can define a grammar with a specific format of rules
which is called Chomsky normal form.

Definition 12 (Chomsky Normal Form). Let be G = (N, Σ, P, S) a context-free
grammar, it is in Chomsky normal form (CNF) if all production rules are of a
form:

1. A→ BC (unit productions), where A, B, C ∈ N .

2. A→ a (terminal productions), where A ∈ N , and a ∈ Σ.

In CNF, there are no ε-rules instead of a rule of a form S → ε, where the
starting symbol is deriving ε and also there are no unreachable symbols.

In this chapter, we laid the foundational concepts of formal languages theory.
We defined essential elements such as alphabets, strings, and formal languages.
We introduced grammars as formal language generators, detailing their structure
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and derivation process. The Chomsky hierarchy categorized grammars based on
their expressive power, correlating with the types of languages they can gener-
ate. Finally, we introduced finite automata as models for recognizing regular
languages, distinguishing between deterministic and non-deterministic variants.
These concepts establish the groundwork for our subsequent discussions on au-
tomata and grammars theory.
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3. Specification
In this chapter, we outline the detailed specifications of our project, which in-
volves designing a framework for formal languages and developing a program to
generate and solve problem assignments from formal language theory. We will
analyze the structure of the framework, focusing on its modules and classes for
automata and grammars, and specify the requirements and functionalities of the
main program. This will include an in-depth look at how the program will be
structured, generating problem assignments, decorating them, creating reports,
and formating them for easy integration into exam papers.

3.1 Formal Language Framework
First of all, we will need a framework for formal languages. We would like to
scope problems from finite automata theory and grammar theory. We could
use Pyformlang [9], but we already know that there are many extra methods
and utilities that we will not need. For example, algorithms over a context-free
grammar, and there could be others that we will need. Our formal language
framework should have two main modules: automata and grammars 3.1.

We will have a sub-module for finite automata in the automata module, where
we will include representations for each finite automaton object, such as DFA
(deterministic finite automaton), NFA (non-deterministic finite automaton), or
ε-NFA (non-deterministic automaton with epsilon transitions). In the grammars
module, we will have a representation of a CFG (context-free grammar).

Figure 3.1: Formal Language Framework modules

Symbols and states for finite automata will be string values, and symbols for
grammars will be just one-character symbols because, for testing purposes, we do
not need computational power or abstraction that symbols can be anything.
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3.1.1 Grammar Module
Grammar is defined by a set of non-terminal symbols, terminal symbols, a starting
symbol, and a set of production rules.

We will have a class representing a symbol, and from it, we will inherit classes
for non-terminal and terminal symbols. The symbol class will have one field
representing the value of the symbol (most of the time, we will use just one single
character value). There has to be a special class for an epsilon symbol, which will
inherit from the terminal class and will have a unique constant value $. For this
constant value, we have taken inspiration from the Regular Expressions Gym [20]
web application.

The production rule class will consist of two main properties, which will be
the body and head of the production rule. They will be a non-empty sequence of
symbols.

With symbol and production rule classes established, we can define a grammar
class. The grammar class will be an abstract class, and from this class, we will
inherit other grammars, such as CFG, which will have additional restrictions for
production rules. The grammar class will include fields for a set of non-terminals,
a set of terminals, a field for the starting symbol, and a field for a set of production
rules. The class diagram for the grammar module is shown in Figure 3.2.

Figure 3.2: Grammars module classes

3.1.2 Finite Automata Module
The module for automata will include a class for representing all automata ob-
jects, from which a finite automaton class will be inherited.

To define a finite automaton, we need to specify an input alphabet, states,
initial states, final states, and a transition function over these states and input
alphabet.
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Similar to the grammar module, we will have a class for a symbol with only
one field representing the value of the symbol. This will not be an abstract class
because automata use only one type of symbol. A special inherited class for the
epsilon symbol will have its value set to $, as seen in the web application Regular
Expression Gym [20].

For the state, we will create a class with one field for the string value.
The transition function will behave like a dictionary with keys as tuples of

states and symbols, and values as sets of states. If the transition for a given state
and symbol is not defined, it should return an empty set.

We will then define a class for a finite automaton object. This abstract class
will have fields for a set of symbols (input alphabet), three sets of states (all states
of the automaton, initial states, and final states), and a transition function object.
From the finite automaton class, we will inherit classes for an ε-NFA, NFA, and
DFA. The class diagram for the automata module is shown in Figure 3.3

Figure 3.3: Automata module classes

3.1.3 Formal Language Object
Each formal language object, whether a grammar or a finite automaton, should
be serializable and deserializable, as we will need to save them to a file and
load them. Additionally, each object in this framework should have a to-report
method, which will return the object in a human-readable form in the format
corresponding to the final report, and a to-latex method, which will return the
object as a LaTeX string.

To ensure this, we will have an abstract formal language object class that
will serve as a predecessor for each object in our formal language framework.
The complete hierarchy of classes for grammars and automata will be shown in
Figure 3.4.
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Figure 3.4: Formal Language Framework objects hierarchy

3.2 Generic Requirements
Our program will be an application for generating problem assignments from
formal language theory.

• Program Functionality:

– The program will generate problem assignments from formal language
theory.

– Specific properties for each problem can be set by a user. The program
will then generate problem assignments with properties close to the
specified ones.

– The number of generated problem assignments can be set.
– For each problem assignment, decorations will be created. Where dec-

orations ensure students cannot easily copy each assignments of each
other even if they have the same problem assignment. Decorations
include renaming variables, symbols, states, etc.

– The program will display the report for each generated and decorated
problem assignment. The report includes the process of solving, a
comparison of desired versus actual properties and the solution.

– Our program will convert problem assignments and decorations into
LaTeX format for easy inclusion into our exam for students.

• Default Use Case:

– Choose a problem type to work with.
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– Set desired properties for generated problem assignments.
– Set properties for decorations.
– Set the number of generated problem assignments.
– Set the number of decorations per problem assignment.
– Generate assignments, decorate them, and create a final report.
– Summarize the entire process into the report, including actual versus

desired properties, the solving process, and solutions for each created
problem assignment.

– Convert problem assignments and decorations into LaTeX format.

• Additional Requirements:

– Ability to set whether new problem assignments will be generated or
it will use already generated ones. With this option, we are introduc-
ing an ability to manually change the generated problem assignments
if they do not meet the required properties. This involves recalcu-
lating decorations and updating the report based on the modified as-
signments. Another reason to skip the generation is to change the
decoration properties and only recreate decorations.

– Ability to set whether decorations will be created.
– Ability to set whether the final report will be created.
– Ability to set whether problem assignments will be converted to the

LaTeX format.

• Non-Functional Requirements:

– Easily add new supported problem types.
– Add new configurable properties or track new properties while solving

problem assignments.

Now, let us inspect, how our program will look and how it will be structured.

3.3 Main Program
Our program will be implemented as a console application. It will read its main
settings from a configuration file, supplemented with additional attributes. We
will use JSON [21] for configuration files and HTML [22] with CSS [23] formatting
for the final report.

3.3.1 Problem Class
Our core objective is to generate problem assignments from formal language the-
ory, ensuring they meet required properties. Subsequently, we will create solutions
for these assignments, track their actual properties, and compare them against
the desired one. This process involves a generator module to create assignments
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based on the specified properties, and a solver module to compute solutions while
monitoring the actual properties of the generated assignments.

Initially, we will define two main components for each problem: an input
structure and an output structure. Both will be subclasses of an abstract class
named problem object. The input structure will represent the problem assignment,
while the output structure will encapsulate its solution.

Each problem object must support serialization and deserialization since we
will store and load them from files. Serialization will be handled using JSON,
where the serialize method will return a JSON-serializable representation of the
object, and the deserialize method will load a serialized object back into its
corresponding form.

Additionally, each problem object 3.5 will provide methods for formatting:
to-html and to-latex. The to-html method will convert the object into an HTML-
formatted string suitable for inclusion in the final report, while the to-latex
method will return the object as a LaTeX-formatted string for easy integration
into test assignments. Note that problem object can be anything what is input or
output of a problem. For instance, when verifying whether a string conforms to a
context-free grammar using the CYK algorithm, the input consists of a context-
free grammar and a string of terminals. The output in this scenario is a boolean
value. This flexibility allows a problem object to be composed of nested objects
or to represent a single value as required.

Figure 3.5: Problem Object hierarchy

Each problem will have the corresponding problem properties and configurable
properties (used as input for the problem generator). Configurable properties
must always be a subset of the problem properties. Each properties object will
also be serializable into JSON and deserializable from JSON, allowing them to
be saved into a file where a user can set them up and load them back.

Every problem must include a generator 3.6. This generator takes the con-
figurable properties of the problem and generates an input object based on these
properties. Each generator has a field containing the corresponding configurable

35



properties and a generate method that generates and returns a problem object.

Figure 3.6: Problem Generator classes

Each type of problem object used as input for any problem must have a deco-
rator 3.7. The decorator takes a problem object and returns the same object with
renamed elements, as specified in the decorator properties. For instance, with a
grammar, we can alter the names of terminals while preserving the structure of
the grammar—it is akin to renaming variables in an equation.

Figure 3.7: Problem Decorator classes

Finally, each problem requires a solver 3.8 that takes the input problem object,
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solves it while tracking the problem properties, and returns an output problem
object—that is, the solution. The solver will also create a report in the HTML
format detailing the solving procedure and presenting the output object.

Figure 3.8: Problem Solver classes

Each problem 3.9 will be composed of a generator, decorator, and solver.
These objects will be publicly accessible, along with an attribute named input pro-
blem object, where the generated and decorated problem object will be stored.

There will be three main methods for each problem: Generate, Decorate, and
GetReport. The Generate method will invoke the generate method of the corre-
sponding generator and store the generated problem object in the input pro-
blem object attribute. Subsequently, after setting the properties for the decora-
tor, the Decorate method will decorate the input problem object and update the
input problem object with the decorated problem object. Finally, the GetReport
method will return an HTML string representing the problem report. This report
will include the generated input object, a comparison table showing the desired
configurable problem properties provided to the generator versus the actual prob-
lem properties tracked by the solver, and a detailed solving process culminating
in the final solution.
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Figure 3.9: Problem classes

The GetReport method works as follows. Firstly, it converts the input problem
object to the HTML format. Then, it utilizes the solver to solve the problem for
the input problem object attribute and determines the actual problem properties.
Next, it compares these actual problem properties with the desired configurable
problem properties used during the generation process, obtained from the genera-
tor. This comparison is presented in an HTML table where each row represents a
property, and columns display their respective values. Properties that cannot be
configured but are tracked will display empty cells in the configurable properties
column.

During the solving process, it retrieves the HTML string of the solving report
from the solver, including the final solution. Finally, it integrates all components
to compose and return the comprehensive problem report 3.10.
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Figure 3.10: Problem report design

Our program can rely on the abstraction of a problem and its objects because
the problem entity works the same for every specifically implemented problem.
Each problem entity behaves uniformly, and every problem object is designed to
be serializable and deserializable.

3.3.2 Console Application
Our program will be a console application. To run the program, the user will
need to specify the path to a configuration file containing all settings required for
a single execution.

A job will refer to one complete execution of our program. Each job will
consist of three main parts: initialization, execution, and saving.

During the initialization, the program will set up the job with the provided
properties and, if necessary, load previously generated objects and their decora-
tions. We will discuss these use cases later.

The execution phase will primarily involve generating problem input objects,
referred to as base objects, decorating them, and creating a report for each base
object and its decorations. These reports will be compiled into a single compre-
hensive final report, which will begin with a summary of the job and then include
individual reports for each object.

In the saving phase, the program will serialize the base objects and their
decorations and save them into files. It will then convert them to the LaTeX
format and save these files as well. Finally, the complete final report will be
saved to a file.

In the beginning, we will load job properties from the file and initialize them
for the job. This will include:
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• Keyword for the problem type.

• Flag for saving base objects and their decorations into one file.

• Flag for saving their LaTeX versions into one file.

• Number of generated base objects (input objects for the problem).

• Number of decorations for each base object.

• Corresponding decorator properties for each decoration.

• Corresponding configurable properties for the problem generator.

A output of the job (base object files, decoration files, LaTeX files, and report
file) will be stored in an output directory. By default, this directory will be named
after the configuration file, but there will be an attribute for specifying a custom
output directory.

There will be flags for setting up the whole process of a job. There will be
flags for generating, decorating, latex, report, and creating config phase. They will
correspond to whether the phase should be executed. Flags can be set by a user
as attributes in the console when running our program.

We will start with the creating config phase. If this phase is to be executed,
we will not load job properties from a given file. Instead, we will create default
job properties for a given problem type into the specified file, allowing the user
to set them up. The configuration phase can only be executed without executing
other phases because the other phases require loading the configuration file with
job properties.

If the generating phase is to be executed, the base objects will be generated
by a corresponding problem generator during the execution part of the job. If it
is not executed, we assume that a job with the same properties has already taken
place, and we will load the already generated base objects during the initialization
part.

Similarly, for the decorating phase, if it is to be executed, we will decorate the
created or loaded base objects during the execution part of the job. If it is not
executed, we assume that they were already created in a previous job, and we
will load them from their files during the initialization part.

If the latex phase is to be executed, we will convert all base objects and their
decorations to LaTeX and save them to files, considering the property of whether
they should be stored in one file or not.

Lastly, in the report phase, we will create a final report and store it in a file
if this phase is to be executed, and skip it if it is not. The final report file name
can also be customized in the attributes.

The phases to be executed should be specified by running our program with
the appropriate attributes. Each time, it must be run with the required attribute
for the job file name. A job file contains the job properties, and the name of this
file will also serve as the name of the job. Additionally, there will be optional
attributes for phases. If no optional attributes are provided, the program should
run with default behavior, which includes the generating, decorating, latex, and
report phases. If the attribute for the create config phase is provided, a problem
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type keyword must also be provided so the program knows for which problem to
create job properties. Two other optional attributes are available: one for setting
the name of the output directory and another for setting the name of the final
report file.

Our program should print the progress of the job to the console, indicating
what happened, which processes were successful, which failed, and if any errors
occurred.

Finally, each property of a problem, problem object decorator, or job must
be serializable to JSON and deserializable. This allows conversion to a file where
users can set them up. Each decorator or problem object decorator will need
unique corresponding properties for creating the decoration. The same applies to
each problem and its problem properties.

3.3.3 Non-Functional Requirements
The main non-functional requirements are that we can easily add new problems
for our program to support. If we want to add a new problem, we will need to
create custom problem objects for the input and output of the problem (or use
the existing ones), implement a generator and define configurable properties for
the problem, implement a solver and define all tracked properties for the problem,
and finally, create a decorator for the input problem object with defined properties
for the decorator. Once these components are created, they should be integrated
into the new problem. The final step of adding the newly defined problem to the
list of supported problems will be straightforward.

The functionality of the program should not depend on the specific type of
problem. This means that using our program will be consistent across all problem
types.
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4. Problems
In this chapter, we analyze selected problems that our generator will produce,
detailing which properties can be configured for each problem and other properties
that we are tracking. We will also analyze how to generate a problem with the
desired properties. The problems included are:

• Determinization of NFA Problem: Converting a NFA (non-deterministic
finite automaton) to an equivalent DFA (deterministic finite automaton).

• CYK Problem: Determining if a string is accepted by a CFG (context-free
grammar) using the CYK (Cocke–Younger–Kasami) algorithm.

• Proper CFG Problem: Converting a CFG (context-free grammar) to a
proper CFG.

4.1 Determinization of NFA Problem
As mentioned, the input for this problem will be an NFA (without epsilon transi-
tions) which we will convert to an equivalent DFA. It is known that for every NFA,
there exists an equivalent DFA, and the two automata are considered equivalent
if they accept the same language.

4.1.1 Algorithm
The algorithm for a determinization is shown in Figure 4.1:

Require: NFA M = (Q, Σ, δ, I, F ) where I ⊆ Q (multiple initial states)
Ensure: DFA M ′ = (Q′, Σ, δ′, q′

0, F ′) such that L(M) = L(M ′)
1: q′

0 ← I
2: Q′ ← {q′

0}
3: for all q′ ∈ Q′ do
4: for all a ∈ Σ do
5: δ′(q′, a)← ⋃︁

p∈q′ δ(p, a)
6: Q′ ← Q′ ∪ δ′(q′, a)
7: end for
8: end for
9: F ′ ← {q′ ∈ Q′ | q′ ∩ F ̸= ∅}

10: M ′ ← (Q′, Σ, δ′, q′
0, F ′)

11: return M ′

Figure 4.1: Algorithm for determinization of NFA

This algorithm supports NFAs with initial states. Note that the number of
the initial states in the input NFA will be one of the configurable properties of
this problem.

The algorithm begins by initializing the initial state of the DFA, q′
0, to be the

set of all initial states of the NFA, I. This is because the DFA must start in a
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state that represents all possible initial states of the NFA. The set of DFA states,
Q′, is then initialized to contain only this initial state q′

0.
Next, the algorithm iteratively processes each new state q′ in Q′. For each

state q′, it examines each possible input symbol a. The transition function δ′

of the DFA is then defined by computing the set of states that the NFA can
transition to from any state in q′ on input a. This computed set is represented as
δ′(q′, a). This new set of states, δ′(q′, a), representing a new state, which is added
to the set of DFA states Q′.

After processing all states and symbols from the input alphabet, the algorithm
determines the set of accepting states F ′ of the DFA. A state q′ in the DFA is
considered an accepting state if there is at least one state in q′ that is an accepting
state in the NFA. Formally, F ′ is defined as the set of all states q′ in Q′ for which
the intersection with F (the set of accepting states of the NFA) is non-empty.

Finally, the resulting DFA M ′ is defined by tuple (Q′, Σ, δ′, q′
0, F ′), encapsulat-

ing the newly constructed states, transition function, initial state, and accepting
states. This DFA M ′ is guaranteed to accept the same language as the original
NFA M , effectively completing the conversion process.

4.1.2 Properties
Now, let us outline all the properties we want to track or require for this problem.
We will begin with some fundamental properties:

• Number of symbols in the input alphabet: |Σ|

• Number of states: |Q|

• Number of initial states: |I|

• Number of final states: |F |

These properties pertain to the input NFA. Additionally, there are three prop-
erties that may be challenging to configure during problem generation but are
worth to track:

• Number of new states in the resulting DFA: |Q′|

• Two new states with initial states from the input NFA occurred

• Occurrence of an empty set state, or ”garbage” state, in the DFA

The number of new states in the DFA will equal the number of combinations of
states in the new DFA. Tracking this property is crucial because the state count in
the resulting DFA can grow exponentially because number of these combinations
can be up to 2|Q|. This property helps us gauge the computational demand of
solving the problem and assess whether the generated assignment is practical for
student use. We aim to ensure that students do not spend excessive time on
this problem. Their ability to solve it can be demonstrated even with smaller
automata, where the creation of numerous new states is unnecessary.

The property of two new states with initial states refers to a scenario in which
the DFA may contain two new states that each include initial states from the
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NFA. Students may incorrectly identify both as new initial states for the DFA,
which violates determinism since a DFA can only have one initial state.

The garbage state or empty set state in the DFA is a new state created to
handle undefined transitions in the NFA. For instance, in the following NFA:

0 1
→ A B
← B A

There is no defined transition for state A and symbol 0. During determiniza-
tion, a new empty set state is created to handle such cases, and it is added to the
DFA. Consequently, every transition that is not defined in the NFA leads to this
empty set state in the output DFA. The resulting DFA would look like this:

0 1
→ {A} {} {B}
← {B} {A} {}

{} {} {}

Tracking these properties ensures that the problem assignments we generate
are diverse and sufficiently challenging, yet not overly complex. Some of these
properties will be integral for generating the input NFA.

4.1.3 Generation Process
Let us analyze the process of generating an input NFA, focusing primarily on the
creation of the transition function.

To begin, we establish configurable properties that will influence the genera-
tion process. It is important to note that these configurable properties represent
only a subset of all properties tracked for the problem. For the determinization
process, the configurable properties include:

• Number of symbols in the input alphabet: |Σ|

• Number of states: |Q|

• Number of initial states: |I|

• Number of final states: |F |

These properties define the characteristics of the generated input NFA.
The generation of an input NFA M = (Q, Σ, δ, I, F ) starts with creating Q

and Σ. The naming of symbols and states does not matter initially, as they can
be changed later. They just need to be unique. The size of Σ is determined by the
number of symbols in the input alphabet property, and the size of Q is determined
by the number of states property.

Next, we define the initial states I and final states F . These will be random
subsets of states Q, with the size of I given by the number of initial states property
and the size of F given by the number of final states property.
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After creating the states, input alphabet, initial states, and final states, we
define the transition function δ. This generation is based on a random strategy
with certain constants to produce a reasonable transition function.

The transition function δ is generated by iterating over all states and symbols.
For each state-symbol pair, we determine whether the transition should be empty
using a biased random choice. If the transition is not empty, the number of new
states for the transition is chosen randomly with an exponentially decreasing
probability. This ensures that transitions with fewer states are more likely.

Specifically, the probability P (k) of choosing k ∈ {1, 2, 3, . . . , |Q|} states for
the transition follows an exponential distribution. To ensure the probabilities
sum to 1 over the possible values of k, we use the following normalization:

P (k) = e−λk∑︁|Q|
j=1 e−j

The parameter λ in the exponential distribution controls the rate of decay of
probabilities. A higher value of λ results in a faster decrease in the likelihood of
choosing larger values, effectively emphasizing transitions with fewer states.

For k ∈ {1, 2, 3, 4, 5} and λ = 0.6, the probabilities are:

P (1) = e−0.6·1 ≈ 0.5488
P (2) = e−0.6·2 ≈ 0.3012
P (3) = e−0.6·3 ≈ 0.1653
P (4) = e−0.6·4 ≈ 0.0907
P (5) = e−0.6·5 ≈ 0.0498

These probabilities ensure that the likelihood of choosing more states de-
creases exponentially, which means that we can set the decaying factor somewhere
between 0.6 and 1.0.

4.2 CYK Problem
The next problem, now from grammars, will be determining if a string can be
generated by a CFG. For this, we will use the CYK algorithm, which takes as
input a CFG in Chomsky normal form and the input string, and returns true or
false depending on whether the input string is in the language generated by the
grammar or not.

4.2.1 Algorithm
The CYK algorithm is shown in Figure 4.2
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Require: CFG G = (N, Σ, P, S) in Chomsky normal form, x = x1x2 . . . xn ∈ Σ∗,
xi ∈ Σ, n ∈ N

Ensure: Boolean value true if x ∈ L(G), else false.
1: P [i, j]← ∅,∀i, j ∈ {1, 2, . . . , n} ▷ Initialize array
2: for i ∈ {1, . . . , n} do ▷ Initialize for substrings of length 1
3: P [n− (i− 1), i]← P [n− (i− 1), i] ∪ {A},∀A ∈ N, (A→ xi) ∈ P
4: end for
5: for j ∈ {2, . . . , n} do ▷ Length of substring
6: for i ∈ {1, . . . , n− j + 1} do ▷ Start of substring
7: for k ∈ {1, . . . , j − 1} do ▷ Partition of substring
8: a← (n− (i− 1)− (j − 1)) ▷ Current row index
9: b← i ▷ Current column index

10: P [a, b] ← P [a, b] ∪ {A},∀{A → BC} ∈ P, B ∈ P [a + k, b] ∧ C ∈
P [a, b + (j − 1)− (k − 1)]

11: end for
12: end for
13: end for
14: if S ∈ P [1, 1] then
15: return true ▷ x ∈ L(G)
16: else
17: return false ▷ x ̸∈ L(G)
18: end if

Figure 4.2: CYK Algorithm

The CYK algorithm operates by constructing a table where each entry P [i, j]
represents the set of non-terminal symbols that can generate the substring of
length n− (j− 1)− (i− 1) starting at position j in the input string. This table is
initialized and then filled iteratively with using the production rules of the CFG.

Initially, the table is filled for substrings of length 1. For each position i
in the input string, if there is a production rule in the grammar where a non-
terminal A produces the terminal symbol at position i, then A is added to cell
P [n − (i − 1), i] on the main diagonal of the table. This step ensures that the
table correctly represents all possible single-symbol substrings according to the
grammar.

The algorithm then proceeds to fill the table for substrings of increasing
lengths, from 2 up to n, where n is the length of the input string. For each
substring of length j, and for each possible starting position i, the algorithm
considers all possible partitions of the substring into two smaller substrings. For
each partition, it checks whether there are production rules in the grammar that
can generate the entire substring from the non-terminal symbols that generate the
smaller substrings. If such production rules exist, the corresponding non-terminal
symbol is added to the corresponding cell P [n− (i− 1)− (j − 1), i].

Specifically, for each substring α of length j starting at position i, the algo-
rithm considers each partition of this substring into two parts of lengths j − k
and k. It then checks if there exists a rule A → BC, where B are all possible
non-terminals generating the first part of the substring α of length j − k and C
are all possible non-terminals generating the second part of the substring α of
length k. If such a rule exists, A is added to the cell representing all possible
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non-terminals generating the substring α. This process is repeated for all possible
splits of the substring α, ensuring that the table correctly represents all possible
ways to generate substrings of increasing lengths.

Finally, after filling the table, the algorithm checks whether the start symbol
S of the grammar is in P [1, 1], which represents all possible non-terminals that
can generate the whole input string. If S is present in this cell, the input string
is generated by the grammar; otherwise, it is not.
Example (CYK Algorithm). Let us demonstrate this algorithm on an example.
For input string baaba and grammar G1 = ({S, A, B, C}, {a, b}, P, S),

P = {
S → AB | BC,
A→ BA | a,
B → CC | b,
C → AB | a

}

First, we initialize the table and fill it with empty sets. Then, we fill the main
diagonal of the table for substrings of length 1, as shown below. Note that ”-” in
a cell means that the algorithm does not work with that cell. If the cell is empty,
it contains an empty set {}.

1 2 3 4 5
1 {A, C}
2 {B} -
3 {A, C} - -
4 {A, C} - - -
5 {B} - - - -

As we can see, for example, cell P [4, 2] = {A, C} corresponds to the substring
a in the input string baaba. The a can be generated by production rules A→ a
and C → a, which corresponds to the set {A, C} in the cell.

Next, we fill one diagonal after another. After filling the main diagonal, we
fill the next diagonal for substrings of length 2.

1 2 3 4 5
1 {A, S} {A, C}
2 {S, C} {B} -
3 {B} {A, C} - -
4 {A, S} {A, C} - - -
5 {B} - - - -

We continue this process until we get to the cell P [1, 1].

1 2 3 4 5
1 {A, C, S} {A, C, S} {B} {A, S} {A, C}
2 {B} {S, C} {B} -
3 {B} {A, C} - -
4 {A, S} {A, C} - - -
5 {B} - - - -
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For demonstration, let us show how to fill cell P [1, 2] = {A, S}, which cor-
responds to the substring starting at the second position of length 4 (baaba),
meaning α = aaba. For each split k ∈ {1, 2, 3}, we check the corresponding cells
and combinations of non-terminals in them.

• For k = 1, we split aaba into α1 = aab and α2 = a. For α1, we have
the corresponding cell P [2, 2] = {B} and for α2, we have the cell P [1, 5] =
{A, C}. All possible pairs are BA, BC. For these pairs, we have production
rules A→ BA and S → BC. Thus, we add A and S to cell P [1, 2].

• For k = 2, we get α1 = aa and α2 = ba. The corresponding cells are
P [3, 2] = {B} and P [1, 4] = {A, S}. All possible pairs are BA, BS. Only
A generates BA, so we add it to P [1, 2].

• For k = 3, α1 = a and α2 = aba. We inspect P [4, 2] = {A, C} and
P [1, 3] = {B}. All possible pairs are AB, CB, so we add S and C to the
cell.

The cell P [1, 2] will be equal to {A, C, S}.

With understanding of the algorithm, we can inspect the tracked properties.

4.2.2 Properties
For this problem, we will consider more straightforward properties that will also
be used during the generation process. These properties are:

• Lenght of the input string

• Number of terminals

• Number of non-terminals

• If the starting symbol is generating epsilon

All of these properties can be easily tracked and fulfilled during the generation
process.

Other properties that are not as straightforward or are harder to fulfill during
the generation process include:

• Whether the input string is accepted

• Count of empty cells

• Work coefficient

The property of whether the input string is accepted is easy to track, but ful-
filling it during the generation would involve solving the problem. If the property
is not fulfilled, the generation process would have to be rerun, which could result
in an endless loop due to the random nature of the generation. An alternative
way to fulfill this property would be to work backwards when filling the CYK
table. To ensure the input string is accepted, we would place the starting symbol
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in the cell representing the whole string and then randomly fill the table in reverse
order. This approach, however, could lead to countless possibilities for filling the
table, many of which would result in unusable problem assignments, making this
option impractical.

The next property is the count of empty cells. This is the number of empty
cells in the CYK table, considering only cells that are used, which are those above
and including the main diagonal. Controlling this during the generation would
again involve solving the problem and then regenerating it, which, as mentioned,
could lead to an endless process.

Finally, we have the work coefficient, which is a non-negative whole number
corresponding to how demanding it is to solve the generated assignment. We will
count this as the number of comparisons. When filling the table for substrings
of length 1, we add 1 for each comparison of a production rule with the terminal
(substring of length 1) if the production rule generates it. Similarly, in the second
half of the algorithm, we add 1 for each comparison of a pair of non-terminals
versus a production rule. This property can show that two almost similar problem
can be very differently hard to solve, making it unfair to assign them to different
groups of students.

These properties will give us good insight into the solving process and allow
us to determine which problem assignments are suitable.

4.2.3 Generation Process
The generation of problem assignments for the CYK problem will be based on
randomization, where we will initially fulfill configurable properties and then
create production rules based on biased randomization.

First, for a CFG G = (N, Σ, P, S), we need to define terminals Σ, non-
terminals N , and the starting symbol S of our desired CFG in CNF form. The
numbers of terminals and non-terminals are specified in the properties. Then, we
will randomly choose the starting symbol, or we can simply pick the first one. In
most cases, we will name it S at the end. Again, the naming does not matter.
Then we create production rules.

Firstly, we must ensure that each terminal can be generated by the CFG.
However, we do not want to have many non-terminals that generate the same
terminal. For terminal t, we will set the number kt of non-terminals that can
generate it. The number will be kt ∈ {1, 2, . . . , m}. This means we do not want
more than m non-terminals generating the terminal. The m will be a constant
set to a small natural number, for example, m = 3. We will then choose the kt

randomly with an exponentially decreasing chance for higher values. This means
we will most likely get only 1 non-terminal that can generate terminal t. After
setting the number of non-terminals that can generate t, we will randomly choose
a subset of non-terminals Kt ⊆ N , where |Kt| = kt (if there are not enough
non-terminals, we will allow |Kt| ≤ kt), and create production rules for each non-
terminal in Kt, P ← P ∪ {A → t | A ∈ Kt}. We repeat this process for each
terminal t ∈ Σ.

After ensuring that each terminal can be generated, we will add the rule S → ϵ
if it is required in the properties.

We can finally add rules where the right-hand side is composed from a pair of
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non-terminals. Again, we do not want many rules for each non-terminal because
then it will easily happen that each cell of the table will include all non-terminals.
For non-terminal A, we will set the number kA, which will again be between
1 and some constant m, which we will set to m = 3. The kA will then be
randomly chosen from {1, 2, . . . , m} with a decreasing exponential probability,
which will not have a large descending factor λ because we do not want only
one rule for each non-terminal. Consequently, we will create a new set of rules
PA = {A → BC | B, C ∈ N}, where |PA| = kA and B, C are randomly chosen
non-terminals. In other words, we will create kA new random rules in the format
of A← BC. Then we will add them to all production rules, P ← P ∪ PA. This
process will be repeated for each non-terminal A ∈ N .

This generation process will not always produce reasonable assignments, but
we can iterate it many times and easily determine if the generated problem as-
signment is reasonable by looking at the CYK table and the work coefficient.

4.3 Proper CFG Problem
The third and most complex problem is converting a CFG to a proper CFG. Recall
that a CFG is proper if it is cycle-free 11, ε-rule-free, and without redundant
symbols 8. The input of the problem is a CFG, and the output is an equivalent
CFG that is proper. Transforming a CFG into a proper CFG involves several
subproblems: excluding redundant symbols, ε-rules, and simple rules. We will
introduce algorithms for these subproblems.

4.3.1 Algorithm for Exclusion of Redundant Symbols
To get a proper CFG, we need to remove redundant symbols. A redundant symbol
is any symbol that is either non-generating 6 or unreachable 7. Therefore, we need
to remove both non-generating and unreachable symbols. Both algorithms take
a CFG as input and output a CFG.

We start with the algorithm for excluding non-generating symbols 4.3.

Require: CFG G = (N, Σ, P, S)
Ensure: CFG G′ = (N ′, Σ, P ′, S) such that L(G′) = L(G), where N ′ includes

only generating symbols
1: N0 ← ∅; i← 0
2: repeat ▷ Finding generating symbols
3: i← i + 1
4: Ni ← {A | A ∈ N, (A→ α) ∈ P, α ∈ (Ni−1 ∪ Σ)∗} ∪Ni−1
5: until Ni = Ni−1
6: N ′ ← Ni

7: P ′ ← {A→ α | A ∈ N ′, α ∈ (N ′ ∪Σ)∗, (A→ α) ∈ P} ▷ Removing rules with
non-generating symbols

8: G′ ← (N ′, Σ, P ′, S) return G′

Figure 4.3: Algorithm for exclusion of non-generating symbols from CFG

The algorithm, starts by initializing an empty set N0 and iteratively computes
sets Ni until convergence, where Ni consists of all non-terminal symbols that can
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generate strings composed solely of terminal symbols and previously identified
generating non-terminals. Subsequently, the resulting set N ′ represents the set
of all generating non-terminals. The algorithm then constructs a new CFG G′

by retaining only those production rules from G where both the left-hand side
non-terminal and the right-hand side production consist solely of symbols from
N ′ and Σ.

The algorithm for exclusion of unreachable symbols is in Figure 4.4.

Require: Context-free grammar G = (N, Σ, P, S)
Ensure: CFG G′ = (N ′, Σ′, P ′, S) such that L(G′) = L(G), where N ′ and Σ′

includes only reachable symbols
1: V0 ← {S}; i← 0
2: repeat ▷ Finding reachable symbols
3: i← i + 1
4: Vi ← {X | X ∈ N ∪Σ, (A→ αXβ) ∈ P, A ∈ Vi−1, α, β ∈ (N ∪Σ)∗}∪Vi−1
5: until Vi = Vi−1
6: N ′ ← Vi ∩N
7: Σ′ ← Vi ∩ Σ
8: P ′ ← {A→ α | A ∈ N ′, α ∈ V ∗

i , (A→ α) ∈ P} ▷ Removing rules with
unreachable symbols

9: G′ ← (N ′, Σ′, P ′, S)
10: return G′

Figure 4.4: Algorithm for exclusion of unreachable symbols from CFG

The algorithm operates on the principle of breadth-first search (BFS), com-
mencing from the start symbol. Initially, the algorithm initializes V0 with the
start symbol S and iteratively expands Vi, where Vi includes symbols reached by
i steps of the algorithm. This process continues until Vi stabilizes, ensuring all
reachable symbols are identified. Subsequently, N ′ and Σ′ are determined as the
intersections of Vi with N and Σ, respectively. The algorithm then constructs P ′

by retaining only those productions from P where are no unreachable symbols.
The final algorithm 4.5 for the exclusion of redundant symbols uses these two

algorithms.

Require: Context-free grammar G = (N, Σ, P, S)
Ensure: CFG G′′ = (N ′′, Σ′′, P ′′, S) such that L(G′) = L(G), without redundant

symbols
1: Using algorithm exclusion of non-generating symbols over G, we remove all

non-generating symbols and we get an output CFG G′.
2: Using algorithm exclusion of unreachable symbols over G′, we remove all un-

reachable symbols and we get G′′ = (N ′′, Σ′′, P ′′, S).
3: return G′′

Figure 4.5: Algorithm for exclusion of redundant symbols from CFG

The order of these two algorithms is crucial. The exclusion of non-generating
symbols may create new unreachable symbols, but not vice versa. If done in the
reverse order, some new unreachable symbols might not be excluded, thus failing
to eliminate all redundant symbols and the algorithm would be incorrect.
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4.3.2 Algorithm for Exclusion of ε-rules
The next algorithm required to make a CFG proper is exclusion of ε-rules 4.6.

Require: CFG G = (N, Σ, P, S)
Ensure: CFG G′ = (N ′, Σ, P ′, S ′) without ε-rules, such that L(G′) = L(G)

1: N0 ← ∅; i← 0
2: repeat ▷ BFS for nonterminals X, X ⇒∗ ε
3: i← i + 1
4: Ni ← {A | (A→ α) ∈ P, α ∈ N∗

i−1}
5: until Ni−1 = Ni

6: Nε ← Ni

7: P ′ ← {A→ α1α2 . . . αn | (A→ X1X2 . . . Xn) ∈ P, Xi ∈ N ∪ Σ,
8: (αi = Xi or ε if Xi ∈ Nε),
9: (αi = Xi if Xi /∈ Nε),

10: α1α2 . . . αn ̸= ε} ▷ No ε-rules
11: if S ∈ Nε ∧ ∃(A→ αSβ) ∈ P ′ | α, β ∈ (N ∪ Σ)∗, A ∈ N then
12: P ′ ← P ′ ∪ {S ′ → ε, S ′ → S} ▷ Introduce S ′ not in N
13: N ′ ← N ∪ {S ′}
14: else if S ∈ Nε then
15: S ′ ← S
16: P ′ ← P ′ ∪ {S ′ → ε}
17: else
18: S ′ ← S
19: end if
20: G′ ← (N ′, Σ, P ′, S ′)
21: return G′

Figure 4.6: Algorithm for exclusion of ε-rules from CFG

This algorithm transforms a given CFG G = (N, Σ, P, S) into a new CFG
G′ = (N ′, Σ, P ′, S ′) that has no ε-rules (except optionally for the starting symbol),
ensuring that L(G′) = L(G). The algorithm begins by initializing N0 as an empty
set and iteratively expands Ni using a breadth-first search (BFS) approach to find
nonterminals X such that X ⇒∗ ε. This process continues until Ni stabilizes,
indicating that all nonterminals that can derive ε symbol have been identified.
Next, the set Nε is set to Ni. The set of productions P ′ is then constructed
by modifying the original productions in P to exclude ε-rules, ensuring no ε-
productions remain. If the start symbol S can derive ε and appears on the right
side of any rule, a new start symbol S ′ is introduced with the production rules
S ′ → ε and S ′ → S, and S ′ is added to the set of nonterminals N . Otherwise, S ′

is set to S. The resulting CFG G′ = (N ′, Σ, P ′, S ′) is returned, which is equivalent
to the original CFG but without ε-rules.

4.3.3 Exclusion of Simple Rules Algorithm
Finally, we have the algorithm for exclusion of simple rules from a CFG 4.7.
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Require: CFG G = (N, Σ, P, S)
Ensure: CFG G′ = (N, Σ, P ′, S ′) without simple rules, such that L(G′) = L(G)

1: for A ∈ N do
2: N0 ← {A}; i← 0
3: repeat
4: i← i + 1
5: Ni ← {C | (B → C) ∈ P, B ∈ Ni−1} ∪Ni−1
6: until Ni−1 = Ni

7: NA ← Ni

8: end for
9: P ′ ← ∅

10: for A ∈ N do
11: P ′ ← P ′ ∪ {A→ α | (B → α) ∈ P, B ∈ NA, α ∈ ((N ∪ Σ)∗ \N)}
12: end for
13: G′ ← (N, Σ, P ′, S ′)
14: return G′

Figure 4.7: Algorithm for exclusion of simple rules from CFG

Initially, for each nonterminal A in N , the algorithm constructs the set NA

which contains all nonterminals reachable from A through a sequence of simple
rules (productions of the form B → C where B, C ∈ N). This is done using
an iterative process similar to breadth-first search (BFS), starting from N0 = A
and expanding it until no new nonterminals are added using only simple rules.
Once the sets NA are computed for all nonterminals A, the algorithm constructs
the new set of productions P ′ by including a production A→ α for each original
production B → α where B ∈ NA and α is a string of terminals and nonterminals
that does not contain any simple rules. Finally, the algorithm returns the new
grammar G′ = (N, Σ, P ′, S), which is equivalent to the original grammar but
without simple rules.

4.3.4 Proper CFG Algorithm
We now focus on an algorithm that will convert a CFG into a proper CFG.
According to Theorem1, a CFG is cycle-free if there are no ε-rules and simple
rules. Therefore, to convert the CFG to a proper CFG, we must:

1. Exclude ε-rules,

2. Exclude simple rules,

3. Exclude redundant symbols.

This order is crucial because exclusion of ε-rules can create new simple rules,
and both processes of exclusion of ε-rules and simple rules can introduce new
redundant symbols. Therefore, redundant symbols must be excluded at the end
of the process. This ensures that the new CFG is cycle-free, ε-rules-free, and
devoid of redundant symbols, resulting in a proper CFG.

However, to save time and effort when performing this process manually, we
will modify the order slightly:
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1. Exclude redundant symbols,

2. Exclude ε-rules,

3. Exclude simple rules,

4. and exclude redundant symbols again.

While exclusion of ε-rules and simple rules can introduce new redundant sym-
bols, they cannot make a redundant symbol non-redundant. This modified pro-
cess still results in a proper CFG but is more efficient when doing it manually.
Exclusion of redundant symbols initially can prevent unnecessary work by avoid-
ing the creation of new rules for symbols that will ultimately be removed. Thus,
this composed process of invoking the defined algorithms will yield a proper CFG
with various properties that can be tracked or configured.

4.3.5 Properties
This problem involves the largest number of properties, which will be divided
into parts, each related to different processes involved in converting a CFG to a
proper CFG.

Properties for Initial Exclusion of Redundant Symbols

The properties for the first call of the algorithm for exclusion of redundant sym-
bols include:

• Number of non-generating symbols

• Whether the language is empty

• Whether there is a rule with a right-hand side of non-generating symbols
and terminals

• Number of unreachable non-terminals

• Number of unreachable terminals

• Whether there is a new unreachable symbol after exclusion of non-gene-
rating symbols

The number of non-generating symbols is the count of non-terminals removed
from the grammar during the exclusion of non-generating symbols. The property
whether the language is empty is set to true if the starting symbol is among the
non-generating symbols. If true, we can terminate the process, as there will be no
rules from the starting symbol, and after the exclusion of all unreachable symbols,
the grammar will contain only the starting symbol without any non-terminals,
terminals, or rules.

The property whether there is a rule with a right-hand side of non-generating
symbols and terminals is there because it can make students misunderstand which
non-terminals are generating and mistakenly mark a non-terminal on the left side
of such a rule as generating.
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Number of unreachable non-terminals and number of unreachable terminals
track how many symbols are removed when excluding unreachable symbols. The
property whether there is a new unreachable symbol after exclusion of non-gene-
rating symbols is crucial, as it identifies cases where a new unreachable sym-
bol is created while excluding non-generating symbols. This helps track errors
when students incorrectly reverse the order of algorithms, leading to an undesired
grammar with remaining unreachable symbols.

Post-Redundant Symbols Removal Properties

The properties related to the grammar after exclusion of redundant symbols are:
• Number of non-terminals

• Number of terminals

Properties for The Exclusion of ε-rules

The properties for the process of removing ε-rules are:
• Number of ε-rules

• Whether the starting symbol generates ε

• Whether the starting symbol appears on the right side of any rule
Number of ε-rules is straightforward. The next two properties are set to true

if we want the algorithm to create a new starting symbol with an ε-rule and a
rule from the new symbol to the old starting symbol.

Properties for The Exclusion of Simple Rules

The properties for the process of removing simple rules are:
• Whether there are simple rules

• Whether there is transitivity over two simple rules

• Whether there is a new unreachable symbol after the exclusion of simple
rules

We do not track the number of simple rules, as it is too complex to configure
due to the many possibilities of the structure of the grammar after exclusion of
ε-rules. Instead, we use a boolean value to indicate the presence of any simple
rules. The property whether there is transitivity over two simple rules tracks if
we find a simple rules closure for any non-terminal using at least two steps in the
breadth-first search part of the algorithm. The last property, whether there is a
new unreachable symbol after the exclusion of simple rules, identifies cases when
there is a non-terminal reachable only by simple rules and becomes unreachable
after their removal.

These properties are related to their respective algorithms: properties for ε-
rules pertain to the grammar after excluding redundant rules, and properties for
simple rules pertain to the grammar after excluding both redundant and ε-rules.

With all properties for the proper CFG problem established, we will now
analyze the process of generating such a problem assignment.
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4.3.6 Generation Process
To generate this problem assignment, we will consider all mentioned properties
and utilize biased randomization.

We can split this generation into a three parts of a final CFG, the first part
is generating a G0, which will correpsond to a grammar after the exclusion of
redundant symbols because when we will generate this grammar and then add a
non-generating and unreachable symbols it will not change the G0 at all because
we will remove them and get the same G0. So after the first part of generating
G0, we can add rules and generate a G−1, which swill correspond to the grammar
in the stage after first performing the algorithm for excluding all non-generating
symbols. Finally, the G−2 will correspond to the input assignment itself, it will
be the grammar in the stage before the whole conversion to the proper CFG.
Another two stages of grammar G1, G2, up to G4 will be performing exclusion
of ε rules algorithm, exclusion of simple rules algorithm and again exclusion of
non-generating and unreachable symbols. The diagram of stages of the grammar
between algorithms, will be as follows:

The generation is divided into three stages for the final CFG. The first part
is generating G0, which corresponds to a grammar after exclusion of redundant
symbols. Adding non-generating and unreachable symbols will not alter G0, as
they would be excluded to yield the same G0. After generating G0, we add rules
to generate G−1, corresponding to the grammar stage after exclusion of all non-
generating symbols. Finally, G2 corresponds to the input assignment itself, the
grammar stage before converting to the proper CFG. The stages of the grammar
G1 through G4 involve excluding ε-rules, simple rules, and again exclusion of
non-generating and unreachable symbols. The diagram of these stages is shown
in Figure 4.8.
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Figure 4.8: Stages of grammar during conversion to a proper cfg

We aim to avoid grammars where the right side of rules exceeds five symbols
or contains many rules for one non-terminal. When generating a random rule
for possible non-terminals on the left side, non-terminals with fewer production
rules are chosen with higher probability. The statement ”we will generate a rule
of format A → α” includes an assumption that α is a maximum of five symbols
long. If the right side is specified with a regular expression or a set of possible
right sides, it is randomly chosen with some bias. However, five-symbol rules are
rare, with most rules having 1 to 3 symbols on the right side.

Generating G0

We start with generating G0 = (N0, Σ0, S0, P0). First, we set N0 and Σ0, deter-
mined by the number of non-terminals and number of terminals properties. The
starting symbol S0 is chosen randomly. Next, we create production rules for G0.

To ensure every non-terminal symbol A ∈ N0 is generating (as non-generating
symbols are removed), we create a random permutation pN0 of N0:

pN0 = π(N0) = (A1, A2, . . . , A|N0|)
For the last ks non-terminals from pN0 ,

pN0 [(|N0| − ks + 1) :] = (A|N0|−ks+1, A|N0|−ks+2, . . . , A|N0|),

where ks is the sum of kε ≤ |N0| (the number of ε-rules property) and
kto terminals ∈ {1, 2, . . . , |N0| − kε}. Each non-terminal A ∈ pN0 [(|N0| − ks + 1) :]
has a rule of the format A→ Σ∗

0. In other words ks is number of straightly gener-
ating symbols, symbols that we will be found in the first iteration of algorithm for
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exclusion of non-generating symbols. The number kto terminals is chosen randomly
from 1 to |N0| − kε with an exponentially decreasing probability, avoiding too
many straightly generating non-terminals.

After establishing pN0 and pN0 [(|N0| − ks + 1) :], we generate rules of format
A → Σ+

0 for the first kto terminals non-terminals and A → ε for the remaining
kε = ks − kto terminals non-terminals in pN0 [(|N0| − ks + 1) :]. Then for each
Ai ∈ pN0 \ pN0 [(|N0| − ks + 1) :] = (A1, A2, . . . , A|N0|−ks) we generate a rule:

• Ai → α, where α ∈ (pN0 [i + 1 :] ∪ Σ0)+, with at least one symbol from
pN0 [i+1 :] and Σ0, if Ai is the starting symbol S0 and the property whether
the starting symbol generates ε is false, ensuring that the right side cannot
be composed only of non-terminals generating ε, which would imply that
the starting symbol also generates ε.

• Ai → α, where α ∈ (pN0 [i + 1 :] ∪ Σ0)+, with at least one symbol from
pN0 [i + 1 :] and Σ0, if the property whether there are simple rules is false,
ensuring no simple rules are created while excluding ε-rules.

• Ai → α, where α ∈ (pN0 [i + 1 :] ∪ Σ0)+, with at least one symbol from
pN0 [i + 1 :], otherwise.

The sequence pN0 [(i + 1) :] = (Ai+1, Ai+2, . . . , A|N0|). This creates a directed
acyclic graph (DAG) and ensures that each non-terminal is generating because
each right side of a rule is made from generating non-terminals and terminals.

Before generating rules that ensure each non-terminal is generating, we must
consider properties for the starting symbol and make adjustments because it could
infringe some properties. If the property whether the starting symbol is on the
right side of any rule is set to false or whether the starting symbol generates
ε is false, we must swap the starting symbol in the pN0 with the first symbol,
so it cannot occur on the right side of any rule, preventing it from generating
ε. Conversely, if the properties whether the starting symbol generates ε are true
and whether there are simple rules are false, we must create a rule S0 → ε. If
there is no rule S0 → ε, there must be a rule S0 → C1C2 . . . Cn, where Ci ∈ N0
and each Ci generates ε. Otherwise, S0 would not generate ε, violating the first
property. After performing the algorithm for exclusion of ε-rules, it will create
new rules in the format S0 → Ci for each Ci ∈ {C1, C2, . . . , Cn}, creating simple
rules and violating the second property. To prevent this, we force the addition of
the rule S0 → ε. If the starting symbol is not in a position to add such a rule in
the pN0 (from |N0| − kε + 1 to |N0|), we set kε ← kε − 1. Then we can perform
the generation of production rules as mentioned.

After ensuring that each non-terminal in G0 is generating, we must ensure that
each non-terminal is reachable so that we do not remove them while excluding
unreachable symbols. First, we call an algorithm for exclusion of unreachable
symbols on the so-far-generated G0 and compare the final Vi, the set of reachable
symbols, with N0. If Vi includes all non-terminals from N0, we are done. If not,
we must add a few rules. We define U0 as U0 = N0 \ Vi, all unreachable non-
terminals. While U0 ̸= ∅, we iterate a process where we create a rule ensuring
that at least one unreachable non-terminal from U0 becomes reachable.

In each iteration, we add a rule for A ∈ N0 in the form:

58



• A → α, where α ∈ (U0 ∪ Σ0 ∪ N0)+, with at least one symbol from U0
and Σ0, if the property whether there are simple rules is false and the
property number of ε-rules is not set to 0. We do not want to create rules
with only non-terminals on the right side to prevent creating simple rules
while excluding ε-rules. If the property number of ε-rules is set to 0, then
while excluding ε-rules, nothing happens, so we can have right sides made
up of only non-terminals.

• A→ α, where α ∈ (U0 ∪ Σ0 ∪N0)+, with at least one symbol from U0 and
|α| is at least 2 symbols long if the property whether there are simple rules
is set to false. We do not want to create a rule with only one non-terminal
on the right side because it would be a simple rule.

• A → α, where α ∈ (U0 ∪ Σ0 ∪ N0)+, with at least one symbol from U0
otherwise.

After generating a new rule and adding it to P0, we recalculate U0, and if it
is not empty, we go for another iteration.

So far, we have ensured that all non-terminals are generating and reachable.
Now we will move into fulfilling other properties. The next property to be fulfilled
is whether the starting symbol is on the right side of any rule. If the property is
set to true and is not fulfilled yet, it could have been fulfilled in the process of
generating rules for ensuring all non-terminals are generating and reachable. If
it is not fulfilled yet, we generate a rule with S0 on the right side. We will add a
rule to P0 for A ∈ N0 in the form:

• A → α, where α ∈ (Σ0 ∪ N0)+ and there must be S0 and at least one
symbol from Σ0 on the right side if the property whether there are simple
rules is set to false. There must be at least one terminal because then in
the removal of ε-rules, no new simple rules can be created from this rule.

• A → α, where α ∈ (Σ0 ∪ N0)+ and there must be S0 on the right side
otherwise.

The next property to check is whether the starting symbol generates ε. If it
is set to false, we can skip to another part. If it is not, then we perform an
algorithm for exclusion of ε-rules on the so-far-generated G0 and check if S0 is in
Nε from the algorithm process. If S0 ∈ Nε, generating ε, we can move on. If it is
not, we must add a rule ensuring that it generates ε. We add a rule:

• S0 → ε, if the property whether there are simple rules is set to false.
However, this option should never occur because this type of rule is added
at the beginning of generating rules for G0 to ensure that each non-terminal
must be generating.

• S0 → α, where α ∈ N+
ε . The right side is composed only of non-terminals

generating ε, ensuring that S0 does too.

If the property whether there are simple rules for G1, meaning for a grammar
after exclusion of ε-rules, is set to false, then we can skip to the next property.
If it is not, we simplify a few generated rules for G0 to avoid generating new
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redundant rules, making the grammar too complex. If there are no rules for sim-
plification, we must add new simple rules. Rules that can be simplified are in the
format A→ αXβ, where X, A ∈ N0 and α, β ∈ Σ∗

0, meaning there is exactly one
non-terminal on the right side. Simplifying this rule without disrupting already
fulfilled properties is safe. Simplifying a rule with at least two non-terminals on
the right side could break the invariant that all non-terminals in G0 are reachable.
Thus, we try to simplify any rule in the format A→ αXβ to A→ X.

If we do not have a rule for simplification, we add random rules in the format:

• A → α, where α ∈ ((N0 ∪ Nε) \ {S0})+, with maximal one symbol from
(N0 \Nε), if the property whether the starting symbol is on the right side of
any rule is set to false. We avoid generating the starting symbol on the
right side.

• A → α, where α ∈ (N0 ∪ Nε)+, with maximal one symbol from (N0 \ Nε)
otherwise.

Where A ∈ (N0−{S0}) if the property whether the starting symbol generates
ε is set to false, else A ∈ N0. Note that the probability of adding Nε should not
be high because there could be too many new rules during the ε-rules removal
process. If N0 − {S0} = ∅, then we cannot create simple rules at all.

The next property, dependent on whether there are simple rules, is whether
there is a new unreachable symbol after exclusion of simple rules. This prop-
erty holds true when there exists a non-terminal that can only be reached using
simple rules. To check this, we convert the grammar G0 up to G2 by first exclud-
ing ε rules, and then simple rules. G2 undergoes an algorithm for exclusion of
unreachable symbols, checking if Vi ̸= N0.

If the property is set to true and there can be simple rules at all, we will at
the start of generating symbols G0, move one non-starting symbol from generated
non-terminals N0 to a special non-terminal H. Then we do not work with this
non-terminal in the process of generating so-far-generated G0. Without checking
if the property is already fulfilled, we generate two rules: the first, a simple
rule with H on the right side, A→ H, where A ∈ (N0 − {S0}) if the whether the
starting symbol generates ε property is false, else A ∈ N0, to prevent the starting
symbol from generating ε if H can generate ε; and the second rule ensuring H is
generating in the form:

• H → α, where α ∈ ((N0 \ {S0}) ∪ Σ0)+, with at least one symbol from
(N0 \ {S0}) if the property whether the starting symbol is on the right side
of any rule is false.

• H → α, where α ∈ (N0∪Σ0)+, with at least one symbol from N0 otherwise.

After generating rules for G0 and these two rules for H, we add H to N0.
This ensures that if the property is true, it will always be fulfilled. We cannot
prevent the situaton, that from previous generation it can end true, even it was
set to false in the beginning.

The last property for simple rules, not so easy to fulfill, is whether there is
transitivity over two simple rules. This property requires the existence of two
rules A → B and B → C without a rule A → C, where A ̸= B, A ̸= C, and
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B ̸= C. In other words, for at least one non-terminal, while exclusion of simple
rules and finding a closure of simple rules, perform at least two iterations of a
breadth-first search algorithm.

First, we check if the corresponding property is not yet fulfilled, assuming it
is set to true and whether there are simple rules is also set to true. To check if it
is fulfilled, we apply the simple rules removal algorithm on G1, derived from G0,
and check if more than one iteration of breadth-first search is performed while
finding closures of simple rules for each non-terminal. If not fulfilled, add a rule
to extend a simple rule.

To add an extending rule for a simple rule in G1, first we take the set of simple
rules of G1 over N0, denoted by SimpleRulesP1 = {A → B | A, B ∈ N0, (A →
B) ∈ P1, A ̸= B}. We are taking only simple rules over N0 because N1 can be
extended by a new starting symbol created while exclusion of ε-rules. Then select
a random simple rule X → Y ∈ SimpleRulesP1 to extend.

We can attempt to extend it from the left if X ̸= S0 and the property whether
the starting symbol is on the right side of any rule is set to false. If extending
from the left, we add a rule in the format:

• Z → X, where Z ∈ (N0 − {S0}), Z ̸= X, Z ̸= Y , if the property whether
the starting symbol generates ε is false and the number of ε rules is not
set to 0 to prevent X from generating ε and avoid S0 → X.

• Z → X, where Z ∈ N0, Z ̸= X, Z ̸= Y otherwise.

Alternatively, we can try to extend it from the right if Y ̸= S0 and the property
whether the starting symbol generates ε is false and the number of ε rules is not
0. If extending from the right, we add a rule:

• Y → Z, where Z ∈ (N0 − {S}), Z ̸= X, Z ̸= Y , if the property whether the
starting symbol is on the right side of any rule is true to exclude S0 from
the right side.

• Y → Z, where Z ∈ N0, Z ̸= X, Z ̸= Y otherwise.

If attempting to extend the rule (X → Y ) ∈ SimpleRulesP1 fails, we remove
X → Y and choose another rule from SimpleRulesP1 to attempt extension. If
all attempts fail, we assume this property cannot be fulfilled and end the G0
generation process.

After generating the core grammar G0, we wrap this grammar with addi-
tional unreachable symbols and their rules to obtain G−1, and then generate
non-generating non-terminals with rules to obtain the final product G−2.

Generating G−1

Assuming G0 is successfully generated, we add additional unreachable symbols
and rules to G0 to obtain G−1. Properties to fulfill include number of unreachable
non-terminals and number of unreachable terminals.

We begin by generating non-terminals and terminals that will be unreach-
able. New unreachable non-terminals are denoted by Nur and terminals by Σur.
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|Nur| corresponds to the number of unreachable non-terminals, and |Σur| corre-
sponds to number of unreachable terminals. We ensure each unreachable symbol
is generating and store all generated production rules in Pur.

We randomly select ks ∈ {1, 2, . . . , |Nur|} with exponentially decreasing prob-
ability for larger values. This number determines the straightly generating non-
terminals from Nur. Then we create a random permutation

pNur = π(Nur) = (A1, A2, . . . , A|Nur|)
For the first ks non-terminals A ∈ pNur [1 : ks], we generate a rule:

• A → α, where α ∈ (N0 ∪ Σ0 ∪ Σur)∗, with a low probability of getting the
rule A→ ε.

For the remaining |Nur| − ks non-terminals
Ai, where i ∈ pNur [ks + 1, |Nur|], which are not straightly generating, we create
rules:

• Ai → α, where α ∈ (pNur [1 : (i − 1)] ∪ Σur ∪ N0 ∪ Σ0)+, with at least one
symbol from pNur [1 : (i− 1)].

We can see that the property number of unreachable terminals will not be
always fullfiled but we do not need that. Unused terminals while generating rules
for G−1, we remove from Σur. And we finally create G−1 = (N−1, Σ−1, S−1, P−1),
where N−1 = Nur ∪ N0, Σ−1 = Σ0 ∪ Σur, S−1 = S0, and P−1 = P0 ∪ Pur. After
that we can proceed to generate G−2.

Generating G−2

Assuming G−1 is successfully generated, we proceed to generate G−2. We need
to fulfill the properties of the redundant symbols part, including number of non-
generating symbols, whether there is a rule with the right side of non-generating
symbols and terminals, whether there is a new unreachable symbol after exclusion
of non-generating symbols, and whether the language is empty.

We generate non-generating non-terminals Nng, where |Nng| is the number of
non-generating symbols. We use the set Png for new generated rules in G−2.

To fulfill whether there is a new unreachable symbol after exclusion of non-
generating symbols, we create paths. By creating a path A0 → A1 → . . . → An,
we mean that we will create rules with the format of A0 → α1A1β1, A1 → α2A2β2,
. . ., up to An−1 → αnAnβn.

Our paths to create will be of the format:

A→ B1 → B2 → . . .→ Bk → C

Where A ∈ N0, B1, B2, . . . , Bk ∈ Nng, and C ∈ Nur,
we choose k ∈ {1, 2, . . . , |N0|} randomly with decreasing probability for higher
values. We avoid long paths to limit the number of rules. These paths ensure
that non-terminals from Nur at the end are reachable due to these paths if the
algorithm for exclusion of unreachable symbols is performed first.

For each path A→ B1 → B2 → . . .→ Bk → C and k, we generate a rule:

• A→ α, where α ∈ (Nng ∪ Σ−1)+, with B1 on the right side.
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For each i ∈ {1, 2, . . . , k}, we generate a rule:

• Bi → β, where β ∈ (Nng ∪Σ−1∪N0)+, with Bi+1 on the right side, if i < k.

• Bi → β, where β ∈ (Nur ∪Nng ∪Σ−1∪N0), with C and at least one symbol
from Nng on the right side if i = k.

The next property to fulfill is whether there is a rule with the right side of
non-generating symbols and terminals. If it is set to true, we add rules of the
format:

• A→ α, where A ∈ Nng, α ∈ ((Nng \{A})∪Σ−1)+, with at least one symbol
from (Nng \ {A}) and Σ−1 on the right side. We ensure the non-terminals
on the right side do not equal to A, for making the possibility of mistakenly
marking the A as generating.

Before moving to the last property, we add some additional random rules to
make the grammar slightly more complex:

• A→ α, where A ∈ Nng, α ∈ (Nng ∪N−1 ∪Σ−1)+, with at least one symbol
from Nng on the right side. This ensures that the rule will be removed
during the exlusion of non-generating symbols and will not affect properties
of generated grammar.

The last property, whether the language is empty, discredits all previous prop-
erties. If it is true, we want to make the starting symbol non-generating and
then we will remove all rules during the first exclusion of non-generating symbols.
To fulfill this, we set a non-generating non-terminal as the starting symbol while
creating G−2.

To create the final G−2 = (N−2, Σ−2, S−2, P−2), we set

• N−2 ← N−1 ∪Nng,

• Σ−2 ← Σ−1,

• P−2 ← P−1 ∪ Png,

• S−2 ← S−1.

If the whether the language is empty property is true, we set S−2 ← A ∈ Nng.

Generation of Additional Rules

As the final step, we add a few random rules that do not affect the properties:

• A → α, where A ∈ Nur, α ∈ (N−2 ∪ Σ−2)+. This rule will be removed in
the exclusion of unreachable symbols process.

• A → α, where A ∈ N0, α ∈ (Nng ∪N−1 ∪ Σ−1)+, with at least one symbol
from Nng on the right side. This rule will be removed during the exclusion
of non-generating symbols because it includes a non-generating symbol.

We add these rules to P−2, and the process is complete. This finalizes the
generation of a CFG for the proper CFG problem.
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5. Documentation
The documentation for this project comprises three essential components: high-
level programmer documentation, user documentation, and installation docu-
mentation. Each part serves a distinct purpose in ensuring comprehensive under-
standing and usability of the project.

5.1 High-Level Programmer Documentation

5.1.1 Formal Language Framework
The Formal Language Framework is a comprehensive library designed to repre-
sent objects from Formal Language theory. It includes modules for automata,
grammars, and various utility functions. Let us begin with a high-level overview
of its components and modules.

The framework consists of two main modules: Grammars and Automata.

Grammars

The classes in the Grammars module are:

• Grammar – Abstract base class for representing a grammar object, which
inherits:

– CFG – Base class for context-free grammar objects.

• ProductionRule – Represents a production rule with main properties: a
body and a head, both tuple of symbols.

• Symbol – Abstract base class for symbols in grammar and production rules,
with subclasses:

– NonTerminal – Represents non-terminals.
– Terminal – Represents terminals.
– Epsilon – Represents an empty string, denoted by $.

Automata

The classes in the Automata module are:

• Automaton – Abstract base class for all automata objects.

• FiniteAutomaton – Abstract base class for finite automata, derived from
Automaton.

– eNFA – Represents ε-Non-Deterministic Automata, derived from
FiniteAutomaton.

– NFA – Represents Non-Deterministic Automata, derived from eNFA.
– DFA – Represents Deterministic Automata, derived from NFA.
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• Symbol – Represents symbols for the input alphabet of automata.

– Epsilon – Special class derived from Symbol, represents an empty
string.

• State – Represents a state in an automaton.

• TransitionFunction – Represents a transition function δ in an automaton,
using State and Symbol functions.

The Formal Language Framework also includes a base abstract class
FormalLanguageObject for each object, such as grammars or automata. The
Grammar and Automaton abstract classes inherit from it. The entire inheritance
hierarchy is shown in Figure 5.1.

Figure 5.1: Formal Language Framework Objects Hierarchy

5.1.2 Main Application
The main part of the application is the JobHandler class. It parses attributes,
loads the job file, and initializes JobProperties with properties from the job file
to run the program. It also loads already generated base objects or decorated
objects if specified in the attributes. The JobHandler then uses two classes,
JobCore and JobReporter, to run the program. It first gives an instance of
JobProperties to JobCore and executes it. JobCore handles the main logic,
generating base objects, decorating them, and creating reports for each object
based on JobProperties and additional settings. All generated objects and
reports are stored within JobCore. After JobCore completes, it passes its instance
to JobReporter for final reporting. JobReporter generates a HTML report from
the given JobCore. Upon completion of JobCore and JobReporter, all generated
base objects and their decorations from JobCore are serialized and stored in the
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output folder. They are also converted into LaTeX format and stored in the same
location. Additionally, the final report generated by JobReporter is saved as an
.html file in the output folder.

JobCore uses JobProperties to drive the main logic of the program. It
creates a generic instance of the Problem class based on the problem type us-
ing ProblemFactory. Then it initializes corresponding ProblemProperties and
DecoratorProperties for each decoration from JobProperties (types defined
by Problem). The sequence of operations in JobCore proceeds as follows: First,
it generates a base object and creates a report for it by setting the required
ProblemProperties to the Problem, executing generate() and then report()
methods from the Problem instance, and storing the generated object and its
report. Next, it creates decorations for the generated base object by setting the
corresponding DecorationsProperties to the Problem, executing decorate()
and report() methods of the Problem, and storing the decorated object and its
report. This process repeats for the required number of generated objects.

The Problem abstract class serves as an abstraction over a problem. It con-
tains a property, an instance of ProblemObject, corresponding to the problem
input. The Problem class provides three main methods:

• generate() – Generates an object of ProblemObject corresponding to the
input and stores it in the input object property.

• decorate() – Decorates the input object.

• report() – Takes the input object, solves it, creates a report from it, and
stores the report in the property.

The primary objective of the Problem class is to integrate corresponding
types of abstract classes: ProblemGenerator, ProblemObjectDecorator, and
ProblemSolver. The ProblemGenerator is used in the generate() method to
generate a problem object based on ProblemProperties (configurable properties
for the problem). The ProblemObjectDecorator class decorates the correspond-
ing ProblemObject (input of the problem) in the decorate() method. Finally,
the ProblemSolver class solves the problem using the input object, creates a
report, and tracks problem properties.

The classes ProblemGenerator, ProblemSolver, ProblemProperties, and
Problem are abstract classes, with non-abstract derived classes created for each
problem type supported. Likewise, classes ProblemObject,
ProblemObjectDecorator, and ProblemObjectDecoratorProperties are ab-
stract classes, with non-abstract derived classes created for each type of input
object for supported problem types.

Note that the ProblemObject class often comprises FormalLanguageObject
objects, and each class representing properties (e.g., JobProperties,
ProblemProperties, or ProblemObjectDecoratorProperties) derives from the
abstract class Properties.

Figure 5.2 illustrates the relationships and class usage across the entire pro-
gram.
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Figure 5.2: Relations between classes in the application

5.2 Testing
We have included automated tests for various components of the program.

Initially, tests ensure that objects from the Formal Language Framework ac-
curately represent formal language theory objects. Subsequently, tests validate
core functionalities of the main application.

For each ProblemSolver, tests verify the correctness of the solving algorithm,
ensuring accurate solutions and property tracking. Tests for each
ProblemObjectDecorator ascertain proper decoration of the problem object with
specific decorator properties.

The ProblemGenerator undergoes testing with diverse property values to
ensure it yields reasonable outcomes, as evidenced in the attachments in the
examples directory.

Furthermore, we have tested the robustness of our application against user
errors, such as setting properties with nonsensical values. In such cases, the
application identifies the erroneous property, preventing job execution. The ap-
plication also handles errors during object generation, decoration, and report
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creation gracefully, terminating without exceptions in case of failure.

5.3 User Documentation
This program is an application for generating problem assignments based on
Formal Language, with configurable properties.

To run the program, download the repository and execute the script run.bat
on Windows or run.sh on Unix-like systems (Linux, macOS).

Each program run requires specifying the path to a job file. The job file is a
JSON configuration file containing settings for program execution, configurable
properties for the problem, and configurable properties for each decoration of
the generated object. The configurable properties for the problem are used to
generate base objects, where each corresponds to a single problem assignment.
The configurable properties for each decoration, by that we mean a variation,
with different naming of the problem assignment, are used to create decorations
for these base objects.

After running the program, a directory named after the job file with a output
suffix will be created in the same path. This directory will store:

• Generated base objects in serialized and LaTeX formats.

• Decorations of base objects for each problem assignment in serialized and
LaTeX formats.

• The final report in HTML format.

Let us walk through an example run of the program for the ”Determinization
of NFA” problem, assuming Windows OS.

1. Create a job configuration file to define program settings:

>>> run.bat job_file.json --CreateConfig

This command prompts you to specify a problem type after the
--CreateConfig attribute and lists available problem types. For instance,
choosing nfa to dfa:

>>> run.bat job_file.json --CreateConfig nfa_to_dfa

This generates the configuration file.

2. Modify the configuration file job file.json as needed.

3. Execute the command to run the program and generate problem assign-
ments:

>>> run.bat job_file.json

68



This command runs the program with default behavior, generating base ob-
jects, creating decorations, generating LaTeX files for problem assignments
and a final summary report. All output is stored in the job file output
directory.

A configuration file for the nfa to dfa problem looks like this:

{
"problem_type": "nfa_to_dfa",
"problems_count": 10,
"decorations_count": 5,
"decorations_properties": [

...
],
"one_file_problems": false,
"one_file_decorations": false,
"one_file_latex": false,
"problem_properties": {

...
}

}

Configuration File Properties

• problem type: Specifies the type of problem.

• problems count: Number of problem assignments (base objects) to gener-
ate.

• decorations count: Number of decorations to create for each problem
assignment.

• decorations properties: List of properties used for creating decorations,
with length corresponding to decorations count.

• one file problems: If true, stores all generated base objects in a single
file.

• one file decorations: If true, stores all decorations in a single file.

• one file latex: If true, stores all LaTeX versions of base objects in a
single file.

• problem properties: Required properties for generating base objects.

Problem Properties for nfa to dfa Problem

• alphabet length: Number of symbols in the alphabet for the generated
NFA.

• states count: Number of states in the generated NFA.
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• initial states count: Number of initial states.

• final states count: Number of final states.

Problem Properties for cyk Problem

• input string length: Length of the input string for checking acceptance.

• terminals count: Number of terminals in the CFG.

• non terminals count: Number of non-terminals in the CFG.

• starting symbol generating epsilon: Equals true if the CFG includes
the rule S → ε.

Problem Properties for proper cfg Problem

• non generating count: Number of non-generating symbols to remove ini-
tially.

• empty language: Equals true if the grammar generates an empty language.

• right side from non generating and terminals: Equals true if there is
a rule with a right side consisting of non-generating symbols and terminals.

• unreachable non terminals count: Number of unreachable
non-terminals found during the initial removal of redundant symbols.

• unreachable terminals count: Number of unreachable terminals found
during the initial removal of redundant symbols.

• new unreachable after exclusion non generating: Equals true if new
unreachable symbols are found after excluding non-generating symbols.

• non terminals count: Number of non-terminals after excluding redundant
symbols.

• terminals count: Number of terminals after excluding redundant symbols.

• epsilon rules count: Number of ε-rules after excluding redundant sym-
bols.

• starting symbol generating epsilon: Equals true if the starting sym-
bol generates ε after excluding redundant symbols.

• starting symbol on right side: Equals true if the starting symbol ap-
pears on the right side of any rule after excluding redundant symbols.

• simple rules: Equals true if there are any simple rules after excluding
redundant symbols and ε-rules.

• transitivity over two simple rules: Equals true if at least two itera-
tions are required to find a closure over simple rules.
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• new unreachable after exclusion simple rules: Equals true if new
unreachable symbols are found after excluding simple rules.

Note that generated base objects attempt to match these attributes but may
not exactly replicate them.

Decorations Properties for an Automaton (nfa to dfa Problem)

• states: String specifying states for the property, with each character rep-
resenting a state. If insufficient number of states is specified, new states are
created using the last character plus an index, starting from 0.

• input alphabet: String specifying symbols for the new input alphabet,
starting from the first character. If insufficient number of symbols is speci-
fied, the decoration is not created.

Decorations Properties for a Grammar (cyk and proper cfg Problems)

• non-terminals: String specifying new non-terminals, starting from the
first character. The first character of the string is used for the starting
symbol.

• terminals: String specifying new terminals, starting from the first charac-
ter.

If insufficient symbols are specified for non-terminals or terminals, the deco-
ration is not created.

Optional Attributes

Optional attributes control program phases depending on previous runs:

• --CreateConfig PROBLEM TYPE: Generates a configuration file for the first
program run, specific to the PROBLEM TYPE problem.

• --Generate: Generates new base objects based on problem properties in
the job file.

• --Decorate: Creates new decorations for each base object based on prop-
erties in the job file.

• --Latex: Generates LaTeX files for each base object and its decorations.

• --Report: Generates a final report based on the generated and decorated
objects.

By default, if no specific attributes are specified, the program runs equivalently
to:

>>> run.bat JOB_FILE --Generate --Decorate --Latex --Report

or simply:
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>>> run.bat JOB_FILE

If run without --Generate, previously generated base objects are loaded. If
run without --Generate and --Decorate, previously generated and decorated
objects are loaded. These assumptions apply when running the program with
the same settings after at least one prior execution. Omitting --Decorate and
including --Generate skips decoration creation. Omitting --Latex or --Report
skips LaTeX file creation or report generation.

Additional attributes include:

• --ReportFile REPORT FILE: Specifies a custom name or path for the report
file.

• --OutputFolder OUTPUT FOLDER: Specifies a custom name and path for the
output folder, where all outputs are stored or loaded from.

5.4 Instalation Documentation
The only requirement for running this program is to have Python 3.0 installed [24].
This program does not require any additional installation steps. Simply download
the repository and execute the script run.bat on Windows or run.sh on Unix-like
systems (Linux, macOS).
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Conclusion
In the beginning, we found that there are no existing generators of objects or
problem assignments for formal language theory. Because of this, we investigated
existing formal language libraries and frameworks and their capabilities. Based
on this knowledge, we specified requirements and created our own formal language
framework, which we use in our final generator.

We then analyzed and specified our desired application for generating problem
assignments. We proposed the structure of such a generator and successfully
implemented it.

Our application supports two simpler problems: the determinization of NFA
to DFA and the CYK problem, which checks if a string is generated by a corre-
sponding CFG. Additionally, it handles one complex problem, the proper CFG
problem, which involves converting a CFG to a proper CFG. This problem in-
cludes several subproblems, such as the exclusion of redundant symbols, the ex-
clusion of ε-rules, and the exclusion of simple rules.

For each problem, we can specify the required properties or situations that we
want to test with the generated assignment. We can then create variations with
different namings of states, symbols, etc., for each problem assignment. Another
utility of the application is that it provides a final report with the generated
assignments and their variations. For each assignment, it compares the actual
properties with the required ones and includes the entire process of solving the
problem along with the final solution. Finally, it converts each problem assign-
ment into the LaTeX format for easy inclusion in tests created for students.

One problem we faced was how to configure the running of the program and
the required properties for the generated assignments and their variations. We
solved this with JSON configuration files with nested properties. The main JSON
configuration file includes the main settings for running the program, a list of
required properties for each decoration, and a field with nested required properties
for generated problem assignments. For each type of property, we created a base
class Properties, ensuring that each properties object can be easily serialized into
and from JSON.

Another complication was with the proper CFG problem, where we had to ad-
dress the complexity of the problem and its composition of several subproblems.
The generation process is not trivial and includes several phases of generation.
The next challenge was how to use the composition of subproblems to our ad-
vantage and create a solver that solves the problem, generates a report from the
solution process, and tracks the properties for the entire problem. We imple-
mented smaller subsolvers to solve each subproblem and track the relevant prop-
erties. The solver for the proper CFG problem is composed of these subsolvers
and tracks additional properties relevant to the whole process.

Another utility we wanted to fulfill was the ability to change the generated
assignments since a slight change can sometimes yield a reasonable assignment.
We achieved this by adding options to skip the generation phase and saving the
generated assignments into files. Since we added the serialization of generated
assignments or input objects of the problem, we can generate them, modify them
in their serialized form in the files, and then restart the program, skipping the
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generation phase and loading and deserializing them from the files.
Lastly, we encountered the non-functional requirement that our application

must be extensible to include other problems. To address this, we established an
abstraction over problems in the Problem class, where we specify the input object
of the problem, the corresponding generator, decorator (for creating variations),
solver, etc. Thanks to this abstraction, we can even add problems not only from
formal language theory.

Contributions

Our main contributions are:

• A formal language framework that supports objects from automata and
grammars theory.

• An application for generating problem assignments with required properties
from formal language theory.

• The application includes the creation of variations for each problem assign-
ment.

• The application includes a report from the solving process and the final
solution.

• Three supported problems: the determinization, the CYK problem and the
proper CFG problem.

• Extensibility of the application for other problems, not limited to formal
language theory.

Future Work

The main future work lies in adding new problems, which includes implementing
the generator, decorator, solver, and other necessary components.

Another area for improvement is creating IDs for exceptions raised during
the run of the program and generating better output to the console during the
execution process of the application.
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A. Attachments

A.1 generator application.zip
• README.md – A file containing basic information about the program.

• run.bat – A script for running the application on the Windows platform.

• run.sh – A script for running the application on the Linux platform.

• app/ – A directory containing the source code of the application.

• app/docs/ – A directory containing the generated documentation.

• jobs examples/ – A directory containing examples of generated problem
assessments.
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