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Abstract: As the production of multimedia continues to grow, the demand for
effective multimedia retrieval methods increases. One critical task in this domain
is known-item search within large unstructured collections of images using text
queries. In recent years, this field has been dominated by deep networks trained to
map both images and text in joint-embedding space. We evaluated multiple pre-
trained networks, including CLIP, OpenCLIPs, ALIGN, and BLIP2, comparing
their performance across various datasets. Additionally, we investigated how
the amount of information provided within the text queries influences model
performance. We also assessed the consistency of models’ perceived image-image
similarity with human judgments. Our findings indicate that OpenCLIP models
excel in known-item search with queries and align well with human perception of
similarity. Furthermore, we observed that providing more detailed information in
text queries enhances model performance.
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Introduction
Multimedia has become an essential part of our daily lives, seamlessly inte-

grating into how we communicate, learn, and entertain ourselves. The amount of
multimedia data continues to grow exponentially, and this trend shows no sign of
slowing down. As the volume of multimedia data grows, so does the complexity
of managing it. One very common problem is the ability to effectively retrieve
relevant items from huge, often unstructured collections of images or videos based
on the content of the searched item. We will focus mainly on retrieving images
with text queries.

In 2021, OpenAI introduced the CLIP model[1], which revolutionized content-
based known-item search within image collections. This model extracts features
from both images and text and aligns them into a joint-embedding space. As a
result, retrieval is enabled by computing the similarity between query and database
features. Since then, several new models have been introduced, some of which
extend and build upon the CLIP architecture, while others present completely
new ideas.

We have chosen 9 pre-trained models and evaluated their performance across
three different datasets. Each dataset presents a unique challenge: MVK (Marine
Video Kit)[2] contains a collection of images from underwater videos, LSC[3]
contains real-life images from lifelogging, and the Private Photos dataset features
a gallery of phone photos from a real person. MVK and LSC datasets are utilized
in the international retrieval competitions VBS and LSC. The findings from our
comparison could potentially enhance retrieval systems used in these competitions.

We also conducted experiments to determine if providing more information
in text queries is helpful for certain models and datasets. Additionally, we
expanded on the findings from the RESET paper[4] to assess how closely models’
understanding of image similarity aligns with human perception of similarity.
This thesis is divided into four chapters: Basic Terms, Crossmodal Models,

Implementation and Codebase, and Experiments. The first two chapters serve
as an introduction to the findings upon which we build. The main contribution
of my work is presented in the chapters Experiments and Implementation and
Codebase.
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1 Basic Terms
In this chapter, we will first introduce multimedia retrieval and related topics

relevant to our work, as well as techniques for its implementation. Following this,
we will introduce the two experiments conducted, along with their motivation and
evaluation process. Ideas and knowledge introduced in 1.1 and 1.2 come from my
supervisor’s subject: Video Retrieval.

1.1 Multimedia Retrieval
Multimedia Retrieval is a field of computer science and information science

focused on the process of obtaining relevant multimedia content—such as images,
videos, audio, and text—from large, often unstructured datasets. The primary goal
of Multimedia Retrieval Systems is to efficiently locate content that meets the user’s
needs based on queries, which can be expressed in natural language, example inputs,
or structured formats. These systems employ various algorithms and techniques
to index, search, rank, or retrieve the user-searched data. Common applications of
Multimedia Retrieval include digital libraries, e-commerce platforms, social media,
and video surveillance, all of which access vast amounts of multimedia content.

1.1.1 Known-Item Search in Image Datasets
In this work, we mainly focused on a subdomain of Multimedia Retrieval

known as known-item search within image collections. Known-item search is a
retrieval task where the user seeks a specific item they already know exists within
the collection. This contrasts with ad hoc search, where users search for items
based on general or broad queries without a specific item in mind. Known-item
search is more precise and typically involves more specific queries tailored to locate
a precise item or set of items.

The pursuit of known-item search within image datasets is motivated by several
key factors. First, the exponential growth of multimedia production has led to vast
collections of images, even in personal galleries, often containing tens of thousands
of items. Efficiently locating specific images within these potentially unstructured
collections can be incredibly time-consuming if done manually. This challenge
becomes even more complex with large video collections, as videos are essentially
sequences of images. Searching for specific scenes within hundreds of hours of
video content highlights the importance of effective known-item search techniques.
Moreover, the significance of known-item search is underscored by its prominence
in international competitions like VBS and LSC [5, 6, 7, 8, 9, 10, 11, 12, 13].

1.1.2 Content-based Image Retrieval
We have introduced the concept of known-item search, but have not yet

discussed the methodologies for its implementation. To retrieve an item from a
database, the first consideration is the form of the query. The type of query is
task-dependent; however, in general, queries can be based on metadata or the
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content of the images. Metadata-based queries, although straightforward and
achievable through simple metadata or attribute filters, are not the focus of this
discussion. Instead, we will concentrate on content-based queries, which are more
complex and interesting. Content-based image retrieval involves queries related
to the actual content of the images within the collection. These queries can take
various forms, including:

• Text Query: A textual description of the image content.

• Query by Sketch: A hand-drawn sketch approximating the desired image.

• Query by Example: An example image provided as the query.
The essential requirement for content-based queries is the ability to measure

the similarity between the query and the data (images). This measurement allows
the retrieval system to return the most similar items to the query. To generalize
this process, we define the Similarity Search Model[14].

The Similarity Search Model involves:
• Feature Extraction: Identifying and extracting relevant features from

both the query and the database images. Features are usually represented
as high-dimensional vectors. Recently, deep neural networks have been the
leading feature extraction methods [7, 8, 9, 10, 12, 13].

fe : DB → Rn

• Similarity Measurement: Applied on extracted feature vectors. Usually,
a distance function or similarity function is used. A very common method
is cosine similarity.

δ : Rn × Rn → R≥0

• Ranking and Retrieval: Ranking the images based on their similarity
scores and retrieving the most similar images to the query.

Retrieval of 
the most 
similar 
Image

Extracted feature vector

query

DB

Figure 1.1 Sketch of the Similarity Search Model.
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1.2 Known-Item Search with Text Query
In this experiment, our goal was to compare the performance of selected deep

joint-embedding networks for known-item search within an image collection using
text queries. To do this, evaluation datasets and text-image pairs for randomly
sampled subsets of the datasets are needed. Both will be explained in more detail
in the subchapter 4.1.

1.2.1 Evaluation Process
1. Feature Extraction: Extract feature vectors for the entire dataset and for

the text queries using the same pre-trained model.

2. Similarity Computation: For each query, compute the cosine similarity
between the query’s feature vector and each image’s feature vector in the
dataset.

3. Ranking: Sort the dataset items based on their similarity scores, from most
to least similar to the query. Determine the rank of the correct image in
this ordered list. The rank is the position of the corresponding image in the
sorted sequence.

4. Rank Aggregation: Repeat the above steps for all text-image pairs in the
experiment. Record the rank of the correct image for each query.

1.2.2 Evaluation Methods
To compare the performance of the models, we will use two main methods:

1. Cumulative Graphs:

• These graphs plot the proportion of queries for which the correct image
is found within the top N ranks.

• The x-axis represents the rank (e.g., top 1, top 5, top 10), and the y-axis
represents the cumulative percentage of correctly retrieved images.

2. Scatter Plots:

• Scatter plots will be used to compare pairs of models.
• Each point represents a query, with the x and y coordinates correspond-

ing to the ranks assigned by two different models.
• This helps visualize the relative performance of the models for each

query.

By following this evaluation pipeline, we can comprehensively assess and
compare the effectiveness of different deep joint-embedding networks in retrieving
relevant images based on text queries.
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1.3 Image-Image Similarity
The inspiration for this experiment came from the paper "RESET: Relational

Similarity Extension for V3C1 Video Dataset" [4]. The authors suggest that
the quality of the image-image similarity model, especially in the context of
images from videos is essential for some applications [15, 16, 17]. They also
propose that there might be a semantic gap between human and deep networks’
understanding of video keyframe similarity. This difference could be due to
humans focusing on a highly variable and contextually dependent set of visual
clues, which might differ from the visual clues extracted by the deep network.
There is some evidence to support this [18]. Consequently, they constructed
the RESET dataset, which will be explained in more detail in the subchapter
4.1. The dataset contains (query, candidate1, candidate2) triplets that were
human-annotated (showing which candidate is more similar to the query). This
can be used as a ground truth for measuring the consistency of human and model
understanding of similarity. In the paper, the authors compared multiple feature
extraction methods and measured the agreement ratio between model and human
judgments. For the feature extraction, they used various techniques ranging from
simple color histograms to more complex methods such as versions of CLIP or
other deep networks. In our experiment, we will build upon the testbed from
their experiments and extend the results with our selected pre-trained deep neural
networks.

1.3.1 Evaluation Process
1. Feature Extraction: Extract feature vectors for the entire dataset with

the model.

2. Similarity Computation: For each triplet, compute the cosine distance
between the target image and the candidates.

3. Consistency Computation: Compute the agreement ratio between the
models’ and humans’ judgments.
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2 Cross-Modal Models
In recent years, content-based known-item search in image collections has been

dominated by joint-embedding deep neural networks [7, 8, 9, 10, 12, 13]. In this
chapter, we will delve into four different cross-modal networks, examining their
architectures and training processes in greater detail. The specific versions of
these models, which were used in our experiments, will be specified later.

2.1 CLIP
CLIP (Contrastive Language-Image Pretraining)[1] developed by OpenAI is a

groundbreaking neural network intended to comprehend and connect visual and
textual information. Using a dual-encoder architecture, CLIP processes images
and text separately through specialized encoders, which map these inputs in joint-
embedding space. CLIP uses a vast dataset of image-caption pairs scraped from
the internet and then learns to align textual and visual representation through a
method called contrastive learning[19]. This innovative training approach enables
CLIP to demonstrate strong performance in various downstream tasks such as
zero-shot classification and cross-modal retrieval without the need for task-specific
fine-tuning.

Figure 2.1 Architecture of CLIP model and process of contrastive learning on image-
text pairs [1].

2.1.1 Architecture
CLIP employs a dual-encoder architecture consisting of an image encoder

and text encoder. Image encoder is usually based on ResNet [20] or Vision
Transformers (ViT) [21] architectures. These encoders are trained to extract
visual information such as shapes, colors, and textures, forming high-dimensional
feature vectors that capture the content of the image in a semantically meaningful
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way. Text encoder is usually based on transformer-based models [22], such as
BERT (Bidirectional Encoder Representations from Transformers) [23]. This
encoder is trained to transform the input text into a high-dimensional feature
vector space, which is shared with an output of the image encoder. The feature
vector captures the semantical meaning of the text.

2.1.2 Contrastive Learning Mechanism
The core of CLIP’s training paradigm is using a contrastive loss [19], which

encourages the model to bring matching image-text pairs closer to each other in
the joint-embedding space while pushing non-matching pairs further apart. The
first batch of N image-text pairs is passed through corresponding encoders to form
text and image embeddings. Then the contrastive loss is computed by considering
the cosine similarity between each pair of image and text embeddings.

2.1.3 Training Process
The CLIP model was trained on a vast dataset consisting of 400 million image-

text pairs collected from the internet. The encoders were trained from scratch,
without any prior pretraining. The training process took place over 32 epochs,
using large batches of image-text pairs to improve the model’s learning efficiency.

2.2 OpenCLIP
The CLIP (Contrastive Language-Image Pre-Training) model, developed by

OpenAI, was released in early 2021 [1]. Alongside the release of the original
research paper, the codebase was made open source. Since then, major companies
like Google and Apple, as well as online research communities, have explored
pre-training their own versions of CLIP. These variations involve different datasets,
image, and text encoders, training frameworks, and even slightly modified objective
functions. This open-source initiative has been dubbed OpenCLIP. Covering all
the variations would be beyond the scope of this work, so we have selected six
OpenCLIP versions for our experiments:

• ViT-SO400M-14-SigLIP-384

• ViT-L-16-SigLIP-384

• ViT-B-16-SigLIP-512

• DFN5B-CLIP-ViT-H-14-378

• ViT-g-14_laion2b_s34b_b88k

• ViT-H-14_laion2b_s32b_b79k
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2.2.1 OpenCLIP Versions Trained on WebLI Dataset

Name Number of
Parameters
(in millions)

Shape of Output
Embedding

ViT-SO400M-14-SigLIP-384 877.96 1152
ViT-L-16-SigLIP-384 652.48 1024
ViT-B-16-SigLIP-512 203.79 768

Table 2.1 Selected OpenCLIP versions trained on the WebLI dataset.

Three of the six models we selected were developed by Google’s research team
and trained on the WebLI dataset [24]. As the names suggest, these models
utilize the innovative SigLIP objective function described in the "Sigmoid Loss for
Language Image Pre-Training" paper [25], which also contains detailed descriptions
of these models. Like CLIP, these models use a dual encoder architecture: the
language encoder is transformer-based [22], and the image encoders are ViT-
SO400M [26], ViT-L-16, and ViT-B-16. Google used the Big Vision codebase [27]
for training, and all three models were subsequently converted to the PyTorch
format. These publicly available pre-trained models were found and downloaded
from Hugging Face [28, 29, 30].

WebLI (Web Language Image), described in the PaLI paper[24] is a multi-
lingual image-text dataset developed by Google to support their vision-language
research. This extensive dataset, built from publicly available images and text on
the web, includes up to 10 billion images and 12 billion alt-texts, covering 109
languages.

2.2.2 OpenCLIP Version Trained on DFN5B Dataset

Name Number of
Parameters
(in millions)

Shape of Output
Embedding

DFN5B-CLIP-ViT-H-14-378 986.71 1024

Table 2.2 Selected OpenCLIP version trained on the DFN5B dataset.

This model was developed as a byproduct of the paper "Data Filtering Net-
works" by Apple and the University of Washington [31]. In this paper, Data
Filtering Networks are introduced as small networks designed to automatically
filter large pools of uncurated data. The best-performing dataset, DFN-5B, consist-
ing of 5 billion images filtered from a pool of 43 billion uncurated image-text pairs,
was selected and used for pre-training the OpenCLIP model with the ViT-H-14
Vision Transformer [21]. The AXLearn [32] code framework was used for training,
and the model was subsequently converted to the PyTorch format. This publicly
available pre-trained model was found and downloaded from Hugging Face [33].
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2.2.3 OpenCLIP Versions Trained on LAION-2B Dataset

Name Number of
Parameters
(in millions)

Shape of Output
Embedding

ViT-g-14_laion2b_s34b_b88k 1366.68 1024
ViT-H-14_laion2b_s32b_b79k 986.11 1024

Table 2.3 Selected OpenCLIP versions trained on the LAION-2B dataset.

The remaining two models were trained on LAION-2B which is an English
subset of the LAION-5B dataset [34, 35]. LAION-5B is a massive, publicly
available dataset comprising 5.85 billion image-text pairs and is designed to
support large-scale research in machine learning. Both models were introduced in
the paper "Reproducible Scaling Laws for Contrastive Language-Image Learning,"
[36] which provides a detailed explanation of the training process. These publicly
available pre-trained models were sourced from Hugging Face [37, 38].

2.3 ALIGN
ALIGN (A Large-scale Image and Noisy-text) [39] is a model developed by

Google Research designed and pre-trained to align visual and textual represen-
tations within high-dimensional joint-embedding space, enabling it to be used
for cross-modal retrieval. Similarly to the CLIP model [1] it leverages the dual
encoder architecture with contrastive loss [19]. The key difference lies in the fact
that ALIGN achieves this through large-scale pre-training on noisy web data,
which were not preprocessed or filtered.

2.3.1 Architecture
The ALIGN model consists of two main components: an image encoder and

a text encoder. The image encoder, typically a convolutional neural network
(CNN) like EfficientNet [40], processes input images and generates fixed-size
image embeddings. On the other hand, the text encoder uses a transformer-based
architecture, similar to BERT [23, 22], to process input text and produce text
embeddings.

2.3.2 Training Process
Both the image and text encoders are trained simultaneously using a contrastive

learning objective [19]. This objective encourages the model to bring related image-
text pairs closer together in the joint embedding space while pushing unrelated
pairs apart. The key innovation of ALIGN lies in the data used for pre-training.
ALIGN was trained on a massive dataset of image-text pairs collected from the
web. This dataset is inherently noisy, containing various levels of text quality and
relevance to the corresponding images. Despite the noise, the sheer scale of the
data enables ALIGN to learn robust representations.
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“motorcycle front wheel” “thumbnail for version as of 21 
57 29 june 2010”

“file frankfurt airport 
skyline 2017 05 jpg”

“file london barge race 2 jpg” “moustache seamless 
wallpaper design”

“st oswalds way and shops”

Figure 2.2 Example image-text pairs from the original ALIGN paper [39].

2.4 BLIP2
BLIP-2 (Bootstrapping Language-Image Pre-training) [41] introduces an inno-

vative vision-and-language pre-training approach that utilizes off-the-shelf frozen,
pre-trained image encoders [21] and frozen large language models [42]. The gap be-
tween modalities is bridged with a lightweight Q-Former (Querying Transformer),
effectively addressing the rising costs associated with vision-and-language pre-
training. The model is capable of a variety of zero-shot vision-language tasks such
as instruct image-to-text generation, visual question answering, image captioning,
and even text-image retrieval.

Querying Transformer
Q-Former

Large
Language

Model
(LLM)

Queries
Text

Image
Encoder

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

…

Vision-and-Language
Representation Learning

Vision-to-Language 
Generative Learning

Write a romantic message 
that goes along this photo.

Love is like a sunset, it’s 
hard to see it coming but 
when it does it’s so beautiful.

Figure 2.3 Overview of the BLIP2 Model from the original paper[41].

2.4.1 Architecture
The BLIP-2 model introduces a sophisticated architecture that utilizes frozen,

pre-trained components to minimize computational overhead. The architecture
consists of three main components: a frozen image encoder, a frozen language
model (both acting like black boxes), and a lightweight querying transformer,
which is the key innovation of this approach.

16



Figure 2.4 Architecture of the BLIP2 Model from the original paper[41].

Frozen Image Encoder: The image encoder is a pre-trained model, such as a
Vision Transformer (ViT) [21], that processes input images into high-dimensional
feature representations. By keeping this encoder frozen, the model makes use of
the robust visual features learned from extensive pre-training.

Frozen Language Model: Similarly, the language model is a pre-trained
transformer[22], such as GPT[42] or BERT [23], which remains frozen during the
integration process. This model is responsible for generating or understanding
text for downstream tasks such as visual question answering or image captioning.
It is not needed for retrieval tasks, as there is no need for text generation, but
nonetheless, it is a part of the architecture.

Q-Former: The Q-Former architecture consists of two transformer[22] sub-
modules that share self-attention layers. The first sub-module, an image trans-
former, interacts with the frozen image encoder to extract visual features. The
second sub-module serves as both an encoder and a decoder for text, functioning
as a text transformer. A fixed number of learnable query embeddings are used as
input to the image transformer. These queries interact with each other through
self-attention layers and engage with frozen image features via cross-attention
layers, which are inserted every other transformer block. Additionally, the queries
can also interact with text through the same self-attention layers. Different
self-attention masks are applied at the self-attention layer to manage query-text
interaction, depending on the pre-training task. Q-Former is initialized with the
pre-trained weights of BERTbase, while the cross-attention layers are randomly
initialized. The model comprises 188M parameters, with the queries themselves
considered part of the model parameters.

2.4.2 Training Process
Pre-training process of the BLIP-2 model is divided into two stages. The first

is called Vision-Language Representation Learning where three pre-training objec-
tives are optimized and the second is Vision-to-Language Generative Learning.
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Vision-Language Representation Learning

In this stage, we focus solely on the architecture involving the frozen image
encoder and Q-Former. Inspired by BLIP [43], three objective functions are opti-
mized: Image-Text Contrastive Learning (ITC), Image-grounded Text Generation
(ITG), and Image-Text Matching (ITM). The goal is to train Q-Former to ensure
that its learnable queries extract visual representations highly informative of the
text.

Figure 2.5 Image of self-attention masking strategy for each objective from the
original paper [41].

• Image-Text Contrastive Learning (ITC): Aligns image and text rep-
resentations by maximizing their mutual information through contrastive
learning [19], comparing positive image-text pairs against negative ones.
The highest similarity score between query outputs and the [CLS] token
embedding is used.

• Image-grounded Text Generation (ITG): Trains Q-Former to generate
text based on input images. Queries extract visual features and pass them to
text tokens via self-attention layers, using a multimodal causal self-attention
mask.

• Image-Text Matching (ITM): Learns fine-grained alignment between
image and text through a binary classification task predicting whether
image-text pairs are matched or not. It uses a bi-directional self-attention
mask, with query embeddings capturing multimodal information.

Vision-to-Language Generative Learning

In this stage, the Large Language Model (LLM) is connected to the Q-Former.
The fully connected layer is used to linearly project the output query embeddings
into the same dimension as LLM’s input language embeddings. In the previous
stage, the Q-Former was pre-trained to extract visual representations that are
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informative for language processing. It acts as an information bottleneck, deliv-
ering the most relevant details to the LLM and filtering out unnecessary visual
information. The authors of the paper experimented with two types of LLMs:
encoder-decoder-based LLMs and decoder-based LLMs. For encoder-decoder-
based LLMs, prefix language modeling loss was used. The prefix of the text was
combined with the visual information and inputted to the LLM, while the suffix
was used as the generation target. For decoder-based LLMs, language modeling
loss was utilized.

2.4.3 BLIP-2 Retrieval Tasks
When conducting a known-item search using a joint-embedding space, there

is no need for text generation, so a frozen Large Language Model is unnecessary.
To enhance the performance of BLIP-2, the authors of the paper suggest that
the initial training stage can be utilized to further fine-tune the model. The
pre-trained model we utilized was obtained from the LAVIS project [44], and for
assistance with implementation, we referred to the article [45]. The model utilized
is BLIP2, adapted for feature extraction with the ViT-L/14 image transformer.
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3 Implementation and Codebase
3.1 Language, Libraries and Resources

The project is implemented using Python. Below are some of the most crucial
libraries used in this project.

• Pillow (10.3.0): Python Imaging Library for opening, manipulating, and
saving image files.

• Pandas (2.2.2): An essential library for data manipulation and analysis.

• NumPy (1.26.4): Fundamental package for numerical computations with
support for arrays and matrices.

• Matplotlib (3.8.4): Comprehensive library for creating static, animated,
and interactive visualizations in Python.

• Torch (2.3.0): Also known as PyTorch, it is a deep learning framework
that provides a flexible and efficient platform for building neural network
models.

• Transformers (4.41.0.dev0): A library by Hugging Face that provides
pre-trained models and tools to implement state-of-the-art natural language
processing (NLP) and computer vision tasks.

• Timeit : A simple library to measure the execution time of small code
snippets, useful for performance testing.

• Tkinter: Standard Python interface to the Tk GUI toolkit, used for building
graphical user interfaces.

For the computation of image feature extraction and retrieval evaluation, I used
the computational resources provided by the Czech National Grid Infrastructure,
MetaCentrum, and Google Colab.
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3.2 Codebase
We have organized our code in a project called M3RT (Multi-Modal Models

Retrieval Tasks). The source code is conceptually divided into four parts: re-
trievers, utils, scripts, and notebooks. The datasets directory is where our
datasets and labels are situated, while the saves directory is the place for saving
all experiment results, plots, and image encodings. The structure is as follows:

M3RT
src

retrievers
scripts
utils

labelling_app
plot

notebooks
datasets

photos
marine
lsc

saves
image_features
cumulations
ranks
plots
reset_csvs

3.2.1 Directory ’retrievers’
Files:

• retriever.py

• clip_retriever.py

• openclip_retriever.py

• align_retriever.py

• blip2_retriever.py

The Retriever class, which is defined in retriever.py, encompasses the entire
functionality of the retriever system used in our experiments. It serves as the
superclass to all other specialized retriever subclasses. The class allows for loading
image features from a specified path, computing and saving cumulation, and ranks
for building plots and handling runtime messages printed to the terminal.

Since each model used in our retriever system may have a different interface,
we have structured our classes accordingly. The subclasses ALIGNRetriever,
BLIP2Retriever, OpenCLIPRetriever, and CLIPRetriever, extend the Retriever
class and implement their own constructors. These constructors load the pre-
trained model and define functions encode_images() and encode_text(). The

21



encode_images() function allows us to save the created image embeddings in a
specified output path. The process of image encoding is handled in batches to
prevent memory overflow. In addition, the OpenCLIPRetriever allows us to select
the version of the pre-trained model we use. The computation also makes use of
CUDA, allowing for processing on GPUs. This structure enables us to separate
implementations of the retriever system for different models, keeping it clean and
modular for potential future extensions.

3.2.2 Directory ’scripts’
Files:

• encode_images.py

• compute_cumulations.py

• compute_ranks.py

• extend_reset_csv.py

This directory contains scripts for higher-level tasks such as creating image
encodings and computing cumulations and ranks. Each script accepts arguments
where you can specify the dataset, type of labels, model, and version of the model if
it is openclip. They instantiate the retriever system with the given parameters and
save the results to the saves directory with appropriate filenames. The scripts also
measure and report the time taken for encoding and computing tasks, providing a
clear interface even for remote execution. The script extend_reset_csv.py is
slightly different from the rest. It is used to compute distances for all triplets and
extend the CSV file, which is then used in the RESET paper’s codebase[4].

3.2.3 Directory ’notebooks’
Files:

• baseline_CLIPvsALIGN.ipynb

• overallJudgementConsistency.ipynb

This directory contains Jupyter notebooks. The baseline_CLIPvsALIGN.ipynb
was our first implementation, from which all other code evolved. The overallJudgementConsistency.ipynb
file is part of the RESET paper[4] codebase, but we adapted it to extend it with
our models.

3.2.4 Directory ’utils’
Subdirectories:

• labelling_app

• plot

The labelling_app subdirectory contains a simple GUI application built with
Tkinter for easing the dataset labeling process. It consists of:
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• LabellingApp.py: Implements the GUI, which displays an image and
provides two text boxes for entering short and long text labels. It includes
"Save" and "Sample Again" buttons. The "Save" button appends the
labels to a CSV file and displays a new random image, while the "Sample
Again" button just displays a new random image without saving.

• LabellingEngine.py: Contains the class responsible for selecting random
images from a specified dataset and writing the labels to a CSV file.

The plot directory contains all the code used to create our plots.

• plot_cumulative.py: Contains plot_cumulative_graph()
function, which plots the cumulative graph for specified models.

• scatter_plots.py: It allows us to add computed ranks for models and
then it creates scatter plots for all combinations of models.

• complementary_cumulation.py: It allows us to add computed cumulations
and then it creates plots for all combinations of models.

• plot_grid.py: Takes scatter plots and cumulative graphs as input, it also
needs mask images for diagonal and it prints them in the grid.

3.2.5 Directory ’saves’
This directory is designated for storing the results of our computations and

plots. We have established naming conventions for the files to maintain a clean and
structured organization. The subdirectories image_features, cumulations,
and ranks contain pickle files with stored results. File names are structured as
follows: first, the model name is mentioned, followed by the model version if the
model is openclip. Then, the dataset name is included, and finally, if it is a ranks
or cumulation file, the type of labels is also added. The subdirectories plots and
reset_csvs contain plots, usually in the form of PNG files, and CSV files used
in the RESET codebase[4].
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4 Experiments
In this chapter, we will start by introducing the datasets and text labels used

to evaluate our experiments. After that, we will present the results of our research.
Our experiments included Known-Item Search with Text Query and Image-image
Similarity, which are discussed in detail in 1.2 and 1.3. We tested and compared
nine different joint-embedding networks during the evaluation:

1. CLIP ViT-B/32

2. BLIP-2 (with the ViT-L/14 image transformer)

3. ALIGN

4. OpenCLIP ViT-SO400M-14-SigLIP-384

5. OpenCLIP ViT-L-16-SigLIP-384

6. OpenCLIP ViT-B-16-SigLIP-512

7. OpenCLIP DFN5B-CLIP-ViT-H-14-378

8. OpenCLIP ViT-g-14_laion2b_s34b_b88k

9. OpenCLIP ViT-H-14_laion2b_s32b_b79k

4.1 Testbed
For our experiments total of 4 datasets were used. Three of these—namely

the Private Photos dataset, MVK (Marine Video Kit)[2], and LSC’24 (Lifelog
Search Challenge)[3] dataset were used within our testbed for the Known-Item
Search with Text Query experiment. For the Image-image Similarity experiment,
we employed the testbed from the paper ’RESET: Relational Similarity Extension
for V3C1 Video Dataset’ [4], which included a human-annotated RESET dataset
consisting of more than 17000 (query, cnadidate1, candidate2) triplets. Each of
these datasets was selected for its unique characteristics and relevance to our
research goals. In the following section, we will delve into a detailed examination
of these datasets, as well as the text labels that were used to measure performance
in our experiments.

Below are brief explanations of the datasets we used:

1. Private Photos Dataset: Collection of photos from private phone gallery.

2. MVK (Marine Video Kit)[2]: Collection of videos(converted to images)
from underwater environments, capturing variety of sea flora and fauna.

3. LSC’24 (Lifelog Search Challenge)[3]: Collection of real life images
generated by one active lifelogger.
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4. RESET (RElational Similarity Evaluation dataseT)[4]: Collection of
over 17,000 similarity annotations for query-candidate-candidate triples of
video keyframes taken from the V3C1 video collection which is a subset of
V3C(Vimeo Creative Commons Collection)[46].

4.1.1 Text Labels For Images
To measure the performance of Known-Item Search with Text Query ex-

periment, text-image pairs are needed. Since external, publicly available text
annotations for our datasets are somewhat limited, I custom-created the text
labels for all three datasets. This allows us to simulate real-life user text queries
for retrieval from image datasets. Although designing text labels from a single
user is suboptimal, it should still provide a reasonable approximation of real-life
users. Additionally, it allows us to use the testbed to extend the text label set for
other users in the future. Custom creation of text labels also gives us an option
to experiment with the amount of information provided within the text label. For
each dataset, we created two types of text labels:

• Short text labels: Image is described with a minimal amount of words,
usually up to one short sentence.

• Long text labels: Image is described with more than one sentence usually
describing the content of the image in more detail, for example specifying
the position, color, and shape of objects within the Image.

Short label:
Scuba diver on a blue 
background.

Long label:
Scuba diver with a grey gas 
tank with bubbles above 
him. He is in left bottom 
corner and his feet are not 
visible. On the background 
there is blue color.

Short label:
Sunset above Prague.

Long label:
Orange sunset above 
Prague castle, river 
canal in the front.

Short label:
Taking a picture of a 
lake.

Long label:
Hands holding a phone 
taking a picture of a 
lake. There is a hill 
behind the lake.

Figure 4.1 Examples of short and long text labels for images sampled from each of
our datasets: Private Photos Dataset (left), MVK (middle), and LSC’24 Dataset (right).

Note that all three datasets are different and require different types of vocabu-
lary during the labeling process. While the Private Photos Dataset and LSC’24
primarily capture real-life situations, the MVK dataset is highly domain-specific,
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featuring a wide variety of underwater recordings. To those without prior knowl-
edge of this specialized terminology, these recordings might appear quite similar.
To simulate real-life users during the labeling process of the MVK dataset, we
avoided using domain-specific terminology to describe the images. For example,
instead of specifying the exact species of fish, we described its appearance. How-
ever, this approach resulted in longer text labels for the MVK dataset compared
to the Private Photos Dataset and LSC’24.

During the labeling process, we randomly sampled 100 images from each of
our three datasets. In the MVK dataset, some images were not suitable for the
retrieval task and likely wouldn’t be targeted for retrieval, such as very blurred
images or those showing nothing but blue color. In these instances, we randomly
selected another image from the dataset and continued with the labeling process.
For each image, both a short and a long text label were created, resulting in a
total of 600 text labels.

4.1.2 Private Photos Dataset
• Name: Private Photos Dataset

• Source: Custom-created from a personal collection of images

• Date Range: October 2022 to July 2023

• Total Images: 534

• Format: JPEG

Composition and Origin The Private Photos Dataset was developed as a
lightweight baseline for cross-modal model evaluation. Most images were captured
using an iPhone 13 Pro Max, but the dataset also contains screenshots and
downloaded images. The collection provides a diverse visual representation of
student life in Prague, with additional photos from various locations.

Content Description The dataset captures an image gallery of a student
residing in Prague. It includes everyday activities and objects, social gatherings,
cityscapes, nature, and miscellaneous personal moments.

Data Preparation

• Selection: Images were handpicked to ensure a representative sample of
daily activities and diverse scenes.

• Quality Adjustment: Image quality was deliberately reduced to optimize
dataset size and allow faster processing.

• Formatting: All selected images were converted to JPEG format and
numbered sequentially.
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Figure 4.2 Sample of images from the Private Photos Dataset.

4.1.3 MVK(Marine Video Kit)
Nontraditional Domain-specific datasets present an interesting challenge for

state-of-the-art general-purpose models. That is why we selected the Marine Video
Kit dataset[2] featuring a wide collection of videos of marine environments. This
dataset was also utilized in an international known-item retrieval competition
VBS[10].

Usage in our Experiments In our experiments, we used a subset of the full
MVK dataset, which includes 9,413 images. This subset offers a sufficiently large
sample for our purposes.

Composition and Origin The dataset is composed of single-shot videos taken
by moving cameras in various underwater environments. These videos feature
a wide variety of underwater flora and fauna, as well as diving gear. Since the
videos are not post-processed, they vary in quality, with some being blurred or
captured in low-light conditions. The full MVK collection includes 1,379 videos,
ranging from 2 seconds to nearly 5 minutes. The average video length is 29.9
seconds, while the median is 25.4 seconds. The videos were recorded across 11
different regions from 2011 to 2022.
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Figure 4.3 Sample of images from the MVK dataset.

4.1.4 LSC’24(Lifelog Search Challenge)
LSC (Lifelog Search Challenge)[3] is a workshop where teams compete to

develop the leading Lifelog retrieval tool. The workshop has been held since 2018,
with the most recent challenge taking place at the ACM IMCR’24 conference
on June 10th, 2024 in Phuket, Thailand. The datasets in the LSC contain life
log data captured over an extended period from a single individual, consisting
of real-life shots from their experiences. For our experiments, we used a smaller
subset from the LSC’24 dataset, which includes 9566 images captured during the
first 10 days of January 2020, providing a significant dataset for our evaluations.
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Figure 4.4 Sample of images from the LSC’24 dataset.

4.1.5 RESET(RElational Similarity Evaluation dataseT)
RESET(RElational Similarity Evaluation dataseT)[4] is a dataset consisting of

17026 human-annotated (query, candidate1, candidate2) triplets collected during
the spring of 2023. The annotations indicate whether candidate1 image is more
similar to the query image than candidate2 image, according to human judgment.
A total of 84 participants were recruited to create this dataset. The participants
were reasonably diverse in terms of age, education, and knowledge of machine
learning. The images for the dataset were sourced from the publicly available
V3C1 dataset[46]. As mentioned in section 1.3, this dataset can be utilized as a
benchmark for assessing the consistency of human and model understanding of
similarity in image collections.
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Figure 4.5 Screenshot illustrating the data collection process as described in the
original paper [4].

4.2 Known-Item Search with Text Query
In this experiment, we will examine how well the selected models performed

in known-item search with text queries. All nine selected models were evaluated
under the same conditions on all three datasets and with both short and long
text labels. First, in Figure 4.6, we will examine the cumulative graph results.
Subsequently, in Figures 4.7 4.8 4.9 4.10 4.11 4.12, we will select the top 5
performing models for specific datasets and label types, and compare them in
pairs. The results will be presented in a 5x5 grid of plots.

4.2.1 Cumulative Graphs Plot
The figure below shows six cumulative graphs featuring two sets of labels

(short and long) for each of our three datasets. Each curve on the graph represents
the performance of a specific model. In the cumulative graph, the x-axis indicates
the rank, and the y-axis represents the cumulative percentage of retrieved images.
This allows us to see what percentage of our text queries were retrieved within
the top k rank. A steeper and higher line on the graph indicates better model
performance. For clarity, each model was assigned a unique color during our
experiments. Additionally, for the "Private Photos" dataset, we limit the x-axis to
rank 50, as the dataset contains only 534 images. For the MVK and LSC datasets,
each containing approximately 10000 images, we limit the x-axis to rank 500.
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Figure 4.6 Cumulative Graphs

It is important to acknowledge that domain-specific datasets like MVK pose a
slightly more difficult challenge for our models compared to less domain-specific
datasets like LSC and the Private Photos Dataset, which capture more "real-life"
situations. This is evident not only from observing the height and steepness of
the curves but also from the fact that the best-performing model on LSC and
short labels was able to retrieve over 60% of the queries within rank 50 and
nearly 80% within rank 150. In contrast, for MVK, the retrieval rates were only
slightly over 50% and almost 70% respectively. This trend was also evident for
long labels, where the differences were slightly larger. It is also worth noting
that the models performed better on the Private Photos Dataset compared to the
other two datasets, as the best-performing model was able to retrieve 100% of the
queries with a rank of 25 or better for both short and long labels. This is likely
due to the significantly smaller size and complexity of the dataset.
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An interesting observation is that long labels consistently perform better than
short labels across all three datasets. Queries with longer text tend to result
in much steeper curves. For the MVK dataset, the best performing model was
able to retrieve nearly 70% of the test queries within the top 50 ranks for long
labels, while for short labels, it was only about 50%. This trend was similar for
the LSC dataset as well. Another notable point is that for long labels in the
LSC and Private Photos Dataset, the differences in model performance appear
to be smaller compared to short labels on the same datasets, wherein the model
performances seem to vary more. However, this pattern does not seem to hold for
the MVK dataset, where the differences between the models seem to persist even
for long labels. This might be caused by the fact that if you provide sufficient
information for most models on a simpler, less domain-specific dataset, they can
retrieve better results.

After analyzing the model performances, it is evident that OpenCLIPs out-
perform other models across all six plots. Both base CLIP and BLIP2 models
consistently underperform across all three datasets. ALIGN also struggles with
the Private Photos Dataset and MVK dataset, however performs solid for LSC,
especially for long labels. It’s worth noting the significant lead of webli-trained
OpenCLIPs over other models on the MVK dataset for both short and long
labels. Webli-trained models also excel on the Private Photos Dataset, with
ViT_L_16_webli performing best for both short and long labels, as well as
ViT_SO400M_14_webli showing strong performance on the LSC dataset. Dfn5b
trained model keeps up with webli-trained OpenCLIPs and even outperforms
them in some cases, except for the MVK dataset where it seems to struggle. On
the other hand, Laion2B-trained models deliver average performance across all
three datasets.
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4.2.2 Grid Plots
In the following plots, we wanted to test what pairs of models might have the

potential for performing good when used in combination for known-item search
with text query. An example utilization of such a pair would be using a more
effective model for retrieval first, and if that doesn’t work, switching to the second
model.

For each dataset and text label type, we created a 5x5 grid plot featuring
the 5 best-performing models. The upper triangle of the plot contains scatter
plots for all combinations of models, while the lower triangle contains cumulative
graphs for all combinations. The scatter plots have both the x and y axis in log

scale. Each point represents a text query and its position is determined by the
ranks of model 1 and model 2. Points on the diagonal have the same rank for
both models. A larger number of points on the diagonal may indicate a lower
potential for using the models in combination. In the cumulative graphs, there

are three curves: one for each model and one named the complementary curve.
This was created by taking the better of the two produced ranks for each text
query. A larger gap between the complementary curve and the curve of the better
performing model might indicate a better potential for combination. However,
please note that if we use the method described before, we would not be able to
achieve the performance showcased in the complementary curve because we don’t
know which model will perform better for each query.
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Figure 4.7 Private Photos Dataset with Short Text Labels

Figure 4.8 Private Photos Dataset with Long Text Labels
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Figure 4.9 MVK Dataset with Short Text Labels

Figure 4.10 MVK Dataset with Long Text Labels
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Figure 4.11 LSC Dataset with Short Text Labels

Figure 4.12 LSC Dataset with Long Text Labels
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Upon reviewing the grid plots for the Private Photos Dataset, it appears that
there is little potential for improving performance by combining two models. Since
all the models performed well, there is no logical need to combine them. This is
supported by the fact that most queries ended up on the diagonal for all scatter
plots, and the curves are very similar to the complementary curve.

Conversely, the MVK dataset shows the best potential for improving the
retrieval system’s performance by combining two models. We observed a small
number of queries ending up on the diagonal for scatter plots, and the comple-
mentary curve is better than the model curves. Combining ViT_H_14_dfn5b
with all three webli-trained models seems like a promising combination for both
short and long labels.

Furthermore, LSC also shows potential for improving the retrieval by combining
two models. We can see that a relatively small number of queries ended up on
the diagonal for scatter plots. This number increases for long text labels, but
upon inspecting the cumulative graphs, the complementary curves still perform
substantially better, even for long labels. The combination of ViT_H_14_dfn5b
with webli-trained models, as well as with ViT_G_14_laion2b, seems like a
promising combination for long text labels. For short text labels, combinations of
models containing ViT_H_14_laion2b and ViT_H_14_dfn5b seem promising.
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4.3 Image-Image Similarity
In this experiment, we extended the results from the study conducted in

the RESET paper using four different models. Instead of selecting the four
best-performing models, we opted for models trained on different datasets. We
chose ’clip’ as a reference model, as the original paper already uses a version of
CLIP. Additionally, we selected ’ViT_SO400M_14_webli’, which performed well
in previous experiments, ’ViT_H_14_laion2b’, which was the best-performing
model trained on the ’laion2b’ dataset, and ’ViT_H_14_dfn5b’, trained on the
’dfn5b’ dataset which also performed very well in previous experiments. The
original study measured the consistency of human and model judgments by
determining how many of the triplets were consistent, divided by all triplets. A
total of 30 models were tested, with the best model reaching a consistency ratio of
over 0.76. The results of our extended experiment are plotted in a bar graph. The
original feature extractors are represented by blue bars, while our four models are
shown with red bars.
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Figure 4.13 Plot showing the consistency of model predictions with human judgments.

We can see that all three OpenCLIPs performed very well, ranking in the top
6 among all 34 models. In particular, ViT_H_14_dfn5b achieved a very strong
performance, coming very close to the best model W2VVExtractor. Our CLIP
model shows very similar performance to CLIPExtractor_medium, although it’s
not the same version.
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Conclusion
In this work, we conducted a comparative analysis of multiple pre-trained joint-

embedding models on datasets with varying characteristics that posed different
challenges for the models. We also investigated how the amount of information
in the text query influences our models’ performance. Additionally, we extended
a RESET study to examine the models’ consistency in understanding similarity
with humans.

Our findings indicate that OpenCLIP models, particularly those trained on
the webli dataset, performed the best. However, the OpenCLIP model trained
on the dfn5b dataset also demonstrated strong performance. We also observed
the potential for using a combination of models in retrieval systems, especially for
the MVK dataset and the LSC dataset. Providing more information within text
queries improved the performance of models on all tested datasets.

Furthermore, our selected OpenCLIP models used to expand the original study,
showed good consistency with human judgments. They ranked in the top 6 out of
34 tested extractors, achieving consistency close to 75

In the future, this research can be extended by evaluating the models using
a larger set of text queries generated by different individuals. Additionally, new
models and more datasets can be incorporated.
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