
BACHELOR THESIS

Martin Hubata

Conditional Branching Assistant for C#

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Ing. Robert Husák

Study programme: Computer Science

Study branch: Programming and Software
Development

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

First, I want to thank my supervisor for his patience and advice. I also want to
thank my friends and parents for their support. Lastly, I want to thank my sister
for proofreading.

ii

Title: Conditional Branching Assistant for C#

Author: Martin Hubata

Department: Department of Software Engineering

Supervisor: Mgr. Ing. Robert Husák, Department of Software Engineering

Abstract: Convoluted if statements are often the reason why code written by
beginners is hard to understand, and beginners might not even realize there are
other options for writing functionally identical code. Existing code manipulation
tools for C# do not focus on beginners. Their main focus is on saving time
one would spend manually modifying the code. We developed an extension for
Visual Studio and C# that presents the user with concrete small-sized refactoring
options and recommends which ones to apply. The extension also helps the
user understand the refactors through code highlighting in both the old and the
previewed refactored code. The extension allows the user to weigh the changes
themselves and decide if they are worth it. If they follow our recommendations,
this results in more easily understandable and more maintainable code.

Keywords: Branching, Static analysis, Refactoring, C#, Microsoft Visual Studio
2022, Beginner programmers

iii

Contents

Introduction 4

1 Background 9
1.1 C# If Statement Syntax . 9

1.1.1 Condition . 9
1.1.2 If Embedded Statement 10
1.1.3 Optional Else . 11

1.2 Code Complexity Metrics . 12
1.3 Roslyn . 12

1.3.1 Syntax Data Structures 12
1.3.2 Creating and Changing Syntax Data Structures 13
1.3.3 Semantic Errors . 14
1.3.4 Tracking and Annotations 14
1.3.5 Existing Tools . 14

1.4 Visual Studio . 15
1.4.1 Visual Studio Community Toolkit 15

2 Analysis 16
2.1 Constraints . 16

2.1.1 Semantic Correctness Assumption 16
2.1.2 Conditions . 17

2.2 Specific Code Complexity Metrics 20
2.3 Helping Beginners Improve Their Code 21

2.3.1 Example Use Cases . 22
2.3.2 Primary User Interaction 30
2.3.3 Parts of a Specific Case Focused Refactor 30

2.4 UI . 34
2.4.1 Location of the UI Best for Beginners 35
2.4.2 Main Part of UI . 36

3 Solution 37

1

3.1 General Limitations and Focus 37
3.1.1 When Semantic Analysis Is Necessary 37
3.1.2 Intraprocedural Analysis 38
3.1.3 Boolean Binary Operators 39

3.2 Refactorers . 39
3.2.1 Applicability . 39
3.2.2 Refactor . 40
3.2.3 Highlighting . 42

3.3 Code Reusability Through Annotations 42
3.4 Walk Over a Syntax Tree . 43
3.5 Concrete Refactorers . 44

3.5.1 Extract Start . 44
3.5.2 Flatten If . 48
3.5.3 Invert If . 49
3.5.4 Simplify Condition . 53
3.5.5 Return Condition . 58
3.5.6 Simplify Parentheses . 59
3.5.7 Propagate Negations . 60
3.5.8 Combine Else and Embedded If 61

4 Implementation 63
4.1 Refactorers Implementation API 63

4.1.1 API . 63
4.1.2 Type Parameter . 64
4.1.3 Non-Parametrization of Refactorers 64

4.2 Concrete Solutions . 65
4.2.1 Auto-Simplification . 65
4.2.2 Trivia . 68
4.2.3 VS Integration . 71

Conclusion 77

Bibliography 79

A Attachment structure 81

B Using CoBrAs (User Documentation) 82
B.1 Installing VS . 82
B.2 Installing Our Extension . 82
B.3 Example Solution . 83
B.4 Using the Extension . 83

2

B.4.1 Opening the Tool Window 83
B.4.2 Settings . 83
B.4.3 Main Part of the UI . 84

B.5 Disabling or Uninstalling Our Extension 86

3

Introduction

All beginners make mistakes, and beginner programmers are no different. There
are two kinds of mistakes in code: functional and stylistic. Functional mistakes
can be very difficult to fix, as they have a wide range, as wide as what you can do
with programming. Getting rid of them constitutes a lot of what a programmer
actually does. Stylistic mistakes are not isolated from them. If there are no
functional mistakes but a lot of stylistic ones, the program will do what it is meant
to, but the code itself will be hard to understand. Moreover, stylistic mistakes can
make it unreasonably difficult or even impossible to implement any modifications.

Stylistic mistakes, such as bad naming conventions or overly long source code
files, can be simple and easy to fix. However, some stylistic mistakes can also
be very complex without a single objectively correct answer. One such complex
and subjective area, and the subject of this thesis, are if statements and their
conditions.

if statements are, in one way or another, necessary in every programming
language. The question is: What can we improve about beginner-written if
statements? The answer, of course, depends on a lot of context.

4

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions)

{
if (pipeCapacity == 0)
{
/*replace it, it is too broken*/
}
else
{

if (inUse && maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else if (inUse)
{

if (maintenanceInstructions == "decide"
|| pipeCapacity == 0)

{
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}
else if (pipeCapacity == 42)
{
/*investigate the magical pipe*/
}

}
}

}

Listing 0.1 Introductory example.

Listing 0.1 seems to be very questionably composed. There are purely stylistic
choices, such as if (pipeCapacity == 0) lexically contains less code than its else
, hence maybe they should be swapped and the condition negated. However,
a more serious potentially functional mistake is that else if (pipeCapacity ==
42) is actually unreachable. It also logically seems a little out of place, maybe

because the beginner author actually wanted to place it a nesting level higher.

5

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions)

{
if (pipeCapacity == 0)
{
/*replace it, it's too broken*/
}
else if (inUse && maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else if (inUse)
{
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}

}

Listing 0.2 Listing 0.1 refactored.

Listing 0.2 shows functionally equivalent code. Notice that else if (
pipeCapacity == 42) completely disappeared. The issue with it was not actually
a problem with the pipeCapacity == 42 condition, but with the previous condition
maintenanceInstructions == "decide" || pipeCapacity == 0, which always ends
up being true in the place where it was in the code. This results in the code
that was under if (maintenanceInstructions == "decide" || pipeCapacity ==
0) now only being under the condition of inUse. We also flattened the whole
structure so there are no nested if statements.

Beginners can currently make use of the many resources on the Internet
to improve their code. They can also learn in courses or generally get help
from an experienced programmer, but these options might be less accessible.
However, if experienced programmers can identify and recommend solutions to
these mistakes without much trouble, these mistakes could possibly be identified
and fixed programmatically, at least to an extent.

Figure 1 A top-level function.

6

(a) on if keyword (b) on unnecessary opening parentheses

Figure 2 Examples of Quick Actions on Figure 1.

Visual Studio already offers a range of possible Quick Actions that enable
the user to restructure their code stylistically. Figure 1 shows a short function in
a program that utilizes top-level statements.

Figure 2a shows Quick Actions we get when opening the menu from the if
keyword. We get the option to invert the if, which is a very local change. But we
also get an option to convert the whole program to a Program.Main style, which
does not directly concern the if, and is there due to the utilization of top-level
statements.

Figure 2b shows Quick Actions available when accessed from the unnecessary
opening parentheses in the if statement condition. We get many options with
very different ideas and consequences. Wrapping expression only changes the
whitespaces, removing unnecessary parentheses changes the condition a little,
and introducing a parameter for part of the condition would change the code
a lot. We also have the options that were available for the if keyword as well.

All of these options together can be overwhelming for the beginner user.
Some options are only available very locally, while others are available in the
whole code. Furthermore, they are just options. They are offered when they are
possible but with no further commentary on whether it is a good idea to utilize
them.

The goal of this thesis is: To help beginner programmers improve the
if statements in their existing code and teach them how to implement these
improvements themselves in the future. We create a tool that allows the users
to explore the if statements and offers functionally equivalent refactors. We
recommend these refactors based on whether they are generally better or worse
than the unmodified code. We explain why the refactors are functionally the
same by highlighting structures that make them possible in the user code. This
can challenge the user to think about whether the current code does what they
want if a refactor we offer does not seem to do so. The tool can also be used by

7

experienced programmers who often come into contact with beginner code to
help them refactor it.

We will now describe how this thesis is structured:

• Background describes existing adjacent works, both theoretical and prac-
tical. Theoretical works are primarily relevant for analysis, but even the
practical works shaped some of our early discussions. The practical works
descriptions also include the existing software we utilize in our implemen-
tation.

• Analysis discusses constraints we have to set on our analyses for them to
be reasonably complex. We then discuss different ways we could go about
our goal, both on the raw refactors side and also the user interaction side,
while advocating the approach we think is the best.

• Solution introduces the general framework of our solution to the conclu-
sions of Analysis. We also concretize specific code mistakes and describe
them using the mentioned framework.

• Implementation describes specific implementation solutions that are
a consequence of the framework introduced in Solution. We also give
an overview of the whole implementation and its integration into Visual
Studio.

• Conclusion summarizes what we managed to achieve, and gives ideas on
how to extend our work further.

• Appendix A describes structure of the attachment.

• Appendix B describes how to go about installing and using the software
we developed to achieve the goal of this thesis.

8

Chapter 1

Background

We will start by introducing existing works relevant to the thesis.

1.1 C# If Statement Syntax
Our primary focus in the thesis is if statements. Thus, we will describe some
C# specific quirks of if statements, but also related code structures, such as
boolean expressions that constitute conditions. A C# if statement has the basic
anatomy[1] of:

if(conditon) ifEmbeddedStatement
With the optional else:
if(conditon) ifEmbeddedStatement else elseEmbeddedStatement

1.1.1 Condition
conditon is always a boolean expression; unlike C/C++, it cannot be, for example,
an integer that gets interpreted as a boolean automatically.

Before it delves into non-boolean subexpressions, conditon is most often made
out of lazily evaluated operators && and ||. Lazily evaluated means they act as
their non-lazy variants & and |, but their second operand is only evaluated if it
can change the result with respect to the result of the first operand. Importantly,
&& has precedence over ||.

Most conditons also delve into operating on non-boolean operands at some
point. This is usually done by the operators ==, !=, <, <=, >, and >=. These can be
overloaded. It must be implemented in pairs of supposedly inverse operators, like
== and !=. But there is no active enforcement of the implementations being the
inverse of each other. One could, for example, make both always be true.

A final note on overloading: && and || cannot ever be overloaded due to

9

language rules. Moreover, they cannot be overloaded on the base bool type, as
one simply cannot change the existing behavior of base types in C#. This means
we can rely on the language-defined behavior of && and ||.

It is possible to declare a variable in the argument list of a method call using
the syntax out int variableName (or any other specific type instead of int, or var).
Due to methods being callable in expressions, this means that one can declare
variables in conditon of an if statement.

void m(string unparsedNumber) {
if (int.TryParse(unparsedNumber , out int number))
{

Console.WriteLine(number);
}

}

Listing 1.1 Declaration of a variable in a condition.

void m(string unparsedNumber) {
int number;
if (int.TryParse(unparsedNumber , out number))
{

Console.WriteLine(number);
}

}

Listing 1.2 Listing 1.1 reformulated.

Listing 1.1 is a common use case. It behaves exactly the same as Listing 1.2,
meaning that the variable number exists after the if even in the first example.

1.1.2 If Embedded Statement
ifEmbeddedStatement does not have to be a block statement; it can directly contain
a single non-block statement. That statement could even be another if statement.

Block statements are often used as the ifEmbeddedStatement to effectively allow
multiple statements in a place where syntax rules allow only one. They are often
used even when they contain only one statement to keep the code consistent.
They also limit the scope of variables, which is sometimes necessary to make the
code unambiguous. The problem with ambiguous code is that it simply cannot
be run.

10

void m(bool greetEnglish , bool greetCzech) {
if (greetEnglish) {

string x = "Hello world";
Console.WriteLine(x);

}

if (greetCzech) {
string x = "Ahoj svete";
Console.WriteLine(x);

}
}

Listing 1.3 Example where identically named variable scopes do not overlap.

Listing 1.3 is an example where the blocks limit the scope of both variables x,
which makes the scopes not overlap, and every usage of x clearly refers to one or
the other.

void m(bool greetEnglish) {
if (greetEnglish) {

string x = "Hello world";
Console.WriteLine(x);

}

string x = "Ahoj svete";
Console.WriteLine(x);

}

Listing 1.4 Example where identically named variable scopes do overlap.

Listing 1.4 is an example where that is not the case. The scope of the variable x
declared in string x = "Ahoj svete" is the whole method. This overlaps with the
variable declaration in string x = "Hello world", meaning the second Console.
WriteLine(x) is ambiguous.

1.1.3 Optional Else
Everything we said about ifEmbeddedStatement also applies to
elseEmbeddedStatement. Once again, elseEmbeddedStatement can be an if state-
ment. An else if statement is just an else statement with elseEmbeddedStatement
being an if statement; it has no special dedicated construct in the language.

The dangling else problem is solved in the usual way [2], with the else being
attributed to the testually closest preceding if without an else yet.

11

1.2 Code Complexity Metrics
There are many established code complexity metrics, for example:

1. McCabe’s cyclomatic complexity [3], which measures the number of lin-
early independent paths through the source code. It is important to note
that complex conditions do not influence it; either the condition ends up
being true or false. It only analyzes static code and not the actual running
behavior.

2. The multiple vocabulary complexity metrics proposed by Halstead [4]
which work with the total and distinct numbers of operators and operands.

3. The length of the code itself is also relevant.

The impact of these metrics was, among others, measured even using medical
devices [5]. And while they certainly have their flaws, considering how we impact
them is still valuable.

1.3 Roslyn
.NET Compiler Platform [6], codenamed Roslyn, is a C# and Visual Basic compiler
that also exposes the tools and data structures used in the compilation. This is
for the purpose of code analysis and refactoring, which is exactly what we want
to do. There are two distinct types of analysis: syntactical and semantical. We
primarily focus on the simpler syntax analysis. It is sufficient for analyzing the
structure of the code. Still, we must delve into semantics at least a little.

1.3.1 Syntax Data Structures
Let’s first describe the syntax data [7] structures Roslyn and we use. The syntax
analysis in Roslyn parses the code into the following structures: SyntaxTree,
SyntaxNode, SyntaxTokens and SyntaxTrivia.

Every statement, expression, declaration, and other complicated syntax lan-
guage constructs get parsed into a descendant of SyntaxNode. Importantly, every
SyntaxNode has a reference to its parent and also the whole tree it is in, which
means even with a specific SyntaxNode in hand, we can analyze code around it.
Every SyntaxNode also has a list of its children SyntaxNodes. This can mean dif-
ferent things for different constructs and the corresponding Roslyn types. For
BlockSyntax, which represents a block, it includes the statements directly in it.
But for an IfStatementSyntax it includes both the condition, and the embedded
statement of the if, which might seem unexpected to a new user.

12

For many cases like IfStatementSyntax Roslyn exposes properties that
make working with the child nodes easier than with the general SyntaxNode
. IfStatementSyntax, as an example, has IfStatementSyntax.Condition and
IfStatementSyntax.Statement. These are already very specifically typed, as,
for example, IfStatementSyntax.Condition is ExpressionSyntax, which represents
expressions.

If we want to further inquire if the condition is comprised of &&, we have to use
the function condition.IsKind(SyntaxKind.LogicalAndExpression), and then po-
tentially cast the condition to BinaryExpressionSyntax. Notice that the SyntaxKind
.LogicalAndExpression is more specific than the expression type we cast to, which
is a design decision made by Roslyn to have less SyntaxNode descendants, but have
them be a bit more parametrizable.

This parametrization is, among other things, done by SyntaxTokens. These
represent small fragments of the code like keywords, identifiers, operators,
and more. For example, BinaryExpressionSyntax binExpr is binExpr.IsKind(
SyntaxKind.LogicalAndExpression) if binExpr.OperatorToken.IsKind(SyntaxKind.
AmpersandAmpersandToken).

Finally, there is trivia, which represents parts of the source code that do
not change its functionality, examples being whitespaces and comments. Note
that, for example, the whitespace in return true; is necessary in the source code.
However, once Roslyn has parsed it into nodes and tokens, the whitespace is kept
as trivia, but it is no longer necessary.

Roslyn also keeps the information about the textual span of the structures it
parses the code to, which is completely unnecessary for code analysis. However,
it is very useful when one also wants to work with the source code as a text,
which we do during highlighting.

1.3.2 Creating and Changing Syntax Data Structures
So far, we have described the different Roslyn syntax structures and shown ways
how to access information through them. However, the point of the thesis requires
us to be able to change the code. When building nodes from scratch, Roslyn
uses the class SyntaxFactory, which has methods that serve for the creation of
new SyntaxNode or SyntaxToken. For example, SyntaxFactory.BinaryExpression(
SyntaxKind kind, ExpressionSyntax left, ExpressionSyntax right).

One could rebuild any existing code using just these methods, but a much
more usual use case is that we use these when necessarily creating new nodes,
but then we reuse existing structures instead of recreating them. It is important to
note that the SyntaxNode and its descendants are strictly immutable. Any changes
done to them produce a new SyntaxNode, while leaving the old one unchanged.

These changes are locally done by functions like IfStatementSyntax

13

.WithCondition, which lets us replace a certain part of a SyntaxNode while keep-
ing the rest. In IfStatementSyntax .WithCondition, we replace the condition of
an IfStatementSyntax, but the embedded statement stays the same. Note that
these operations produce a whole new SyntaxTree where the node we changed is
its root.

On a larger scale, they are done by the methods SyntaxNode.ReplaceNode and
SyntaxNode.RemoveNodes. These once again make the copy of SyntaxNode we call
them on the root of the newly created SyntaxTree. but if we call these on a root
of a SyntaxTree, the result will be that root with the replaced or removed nodes.

1.3.3 Semantic Errors
Semantic analysis is necessary for detailed type analysis, variable tracking, and
other more complicated code analyses outside of the scope of our thesis. However,
semantic analysis is also necessary to determine if the code contains any semantic
errors or specific ones. We have already shown an example of a semantic error
that includes an if statement in Listing 1.4. We can access semantic errors of the
analyzed code by querying SemanticModel, which represents the semantic analysis,
for its diagnostics. These include errors but also warnings and informative
messages. We can then filter those by severity or specific issues they diagnosed.

1.3.4 Tracking and Annotations
The immutability of SyntaxNode necessitates a way to track a SyntaxNodes across
multiple SyntaxTrees, where they were duplicated simply because of the im-
mutability. This is necessary when we want to make changes that cannot be done
using only one Roslyn API call.

One way is to ask Roslyn to track a SyntaxNode using SyntaxNode.TrackNodes.
We can get the current version of a SyntaxNode by passing the old version of the
SyntaxNode to rootOfNewTree.GetCurrentNode. We utilize this approach sometimes.

Another way to “track” SyntaxNode in a sense is to use SyntaxAnnotation
. Using SyntaxNode.WithAdditionalAnnotations, we can annotate a SyntaxNode
with a specific SyntaxAnnotation, possibly multiple SyntaxNodes with the same
SyntaxAnnotation. We can then get all of the annotated nodes using SyntaxNode.
GetAnnotatedNodes.

1.3.5 Existing Tools
Roslyn already includes a way to provide refactors to users. This is done using
Analyzers and CodeFixes [8]. The former detects when a rule in the source code

14

is broken, while the latter provides a fix that refactors the code to adhere to that
rule.

Our goal fits the goals of these APIs in some respects but not in others. The raw
changes we propose could be considered CodeFixes, but the supporting structures
around them that serve as guidance to beginners are not the primary focus of
Analyzers and CodeFixes. Moreover, the implementations are not supposed to be
IDE-specific.

1.4 Visual Studio
Visual Studio [9] is an integrated development environment. When used to
develop C#, Visual Studio already runs a Roslyn instance under the hood for the
purposes of syntax highlighting and such. We can borrow that instance of both
syntax and semantic analysis without running our own, saving resources.

Visual Studio exposes several APIs that let us manipulate the usual windows
that serve to display source code, including a way that lets us do our own high-
lighting.

We can integrate our own dedicated user interface into Visual Studio using
their extensibility system [10], which allows us to even have our own window
using WPF.

1.4.1 Visual Studio Community Toolkit
Visual Studio Community toolkit [11] is a package that aims to simplify writing
Visual Studio extensions. The problem with many of the raw APIs for extensions
is that they are cumbersome to access, often requiring a type parameter, a GUID,
going through a web of properties, and/or numerous casting to different types.
Visual Studio Community toolkit simplifies both access and manipulation of
documents, which we use extensively. It also allows easier access to Visual Studio
services, including the running Roslyn instance. For a more UI benefit, it allows
the automatic theming of tool windows to align them with the rest of Visual
Studio. Finally, it provides a simple way to log exceptions.

15

Chapter 2

Analysis

Our thesis aims to refactor if statements in beginner code without changing their
behavior, help beginners understand why the behavior remains the same, and
consequently help beginners improve any code they write in the future. There are
many ways one could achieve that goal. First, we had to choose a language. We
chose C# as the language to analyze because it is a common beginner language,
but one could certainly do what we do in the thesis in another language. However,
after choosing a language (where there are many similarly good options), there are
many more design decisions to be made and limitations to be set. In this chapter,
we describe those decisions and limitations, as well as our thought processes
behind them.

2.1 Constraints
The refactoring part of our goal necessitates that we define a number of limita-
tions as complicated approaches like symbolic execution [12], which analyzes
what inputs cause what parts of the code to execute, fall outside of the scope of
a bachelor thesis.

2.1.1 Semantic Correctness Assumption
Helping beginners refactor semantically incorrect code is a commendable en-
deavor in some cases, but it goes against our focus of not changing its behavior,
as such code has no behavior at all. So, in the whole thesis, we assume the user
code is semantically correct, and we want our refactors to also only produce
semantically correct code.

16

2.1.2 Conditions
if statement conditions are, by their nature, complicated. They can contain many
language constructs, forcing us to interact with them. Thus, we must impose some
constraints on how we approach certain constructs directly in the conditions, and
we often care about the constructs surrounding the if statements the condition is
in.

No In-Between Run Code

void m(bool greetInEnglish , Brewery brewery)
{

if (greetInEnglish) {
Console.WriteLine("Hello World");
return;

}
brewery.OrderBeer();
if (!greetInEnglish) {

Console.WriteLine("Ahoj svete");
}

}

Listing 2.1 Two similar conditions, but with code between their evalutaions.

We only ever draw conclusions about one condition from another if there
is no non-condition code run between them. Let us look at Listing 2.1, where
there is such code present. In this specific case, it might be reasonable to as-
sume that the second condition !greetInEnglish will always be evaluated as true
if we get to it. That is because if greetInEnglish was true at the start of the
function, the call ends with the return, and if it were false, !greetInEnglish is
always true. However, we are assuming that brewery.OrderBeer() cannot change
greetInEnglish. If we exclude some very unorthodox code tricks, it might be true
in the case of Listing 2.1. But what if we passed greetInEnglish by reference to
brewery.OrderBeer()? Then, we cannot assume anything about evaluating the
second condition, as greetInEnglish might or might not be changed.

Attempts to check the in-between code for, in this case, occurrences of
greetInEnglish will not solve this problem. For example, if greetInEnglish were
a class property, and we passed this to brewery.OrderBeer(), it could still be
modified between the conditions.

There are many other partial solutions to this problem, but they are bound
to fall short in specific cases. Thus, the approach chosen in the thesis is not to
assume anything from one condition about another if any non-condition code is
run between them.

17

Side Effects

We discussed the problem of deducing information about conditions from one
another if there is any in-between code between them. The problem stemmed
from the in-between code possibly changing values used in the conditions. Un-
fortunately, this is a problem even conditions themselves can cause through
side effects without any in-between code. For example, the condition myClass.
GetAndSetToTrueProp || myClass.GetAndSetToTrueProp will always be true if the
property does as advertised by its name. While from a logic point of view, we
would want it to be simplifiable to myClass.GetAndSetToTrueProp, we cannot do
that since the condition would not be a tautology anymore. Side effects are gen-
erally considered undesirable in getters. But we cannot just go hands off of with
this problem, as, for example, debugging outputs are a very common side effect,
and many existing standard libraries have side effects, especially ones that cost
a lot of real resources.

Let us start with the debugging outputs. Let us assume an if(myClass.
GetAndSayHelloProp && myClass.GetAndSayHelloProp), where myClass
GetAndSayHelloProp prints out something every time it is accessed. If we simplify
it to just if(myClass.GetAndSayHelloProp), we inadvertently reduced the number
of hellos the code prints. However, we argue that these side-effect changes would
not be a problem because the reason for them can be inferred even by a beginner
programmer. We reduced the number of times we need to call the function, thus
we reduced the number of printed outputs.

bool m(bool commsInEnglish , MyVeryCostlyAPI api)
{

if (api.Connect()) {
if (commsInEnglish) {

Console.WriteLine("Hello world " + api.Username);
}
else {

Console.WriteLine("Ahoj svete " + api.Username);
}

}
}

Listing 2.2 Costly function call in a condition.

18

bool m(bool commsInEnglish , MyVeryCostlyAPI api)
{

if (api.Connect() && commsInEnglish) {
Console.WriteLine("Hello world " + api.Username);

}
else if (api.Connect()) {

Console.WriteLine("Ahoj svete " + api.Username);
}

}

Listing 2.3 Listing 2.2 refactored at the cost of duplicating the costly function call,
which might even break the code.

The general side effect problem is much more difficult to choose an approach
for. Consider Listing 2.2 and Listing 2.3. If, for example, MyVeryCostlyAPI.Connect
() does not expect to be called if already connected, Listing 2.3 is not a correct
reformulation of Listing 2.2. Even if it can handle being called if already con-
nected, it might still be a costly operation, which we do not want to duplicate
unnecessarily.

Code with side effects is frequent enough that we must consider it in our
analysis. We describe specific solutions to specific problems stemming from side
effects later in this thesis. But generally, we only consider function calls and
assignments side effect prone, and not, for example, properties. Whenever we
risk duplicating or removing expressions with function calls, we are cautious.

Exceptions

Exceptions behave similarly to side effects in our problematics, hence they cause
similar problems. We generally assume exceptions are not part of the usual
code execution, and thus, we do not specifically consider them anywhere in our
analysis outside of the already mentioned side effect considerations. One can
certainly write code where exceptions are often thrown in conditions, but it is
not a good practice. While we focus on beginners, who certainly do not always
follow best practices (as is the point of our thesis), we argue that our proposed
refactors are still worthwhile even with these limitations.

Operator Overloading

There is no way in C# to overload bool operators. However, the binary operators
==, !=, <, <=, >, and >= operators can be overloaded by users on their classes as
they please. They could, for example, break the implication that a == b implies
!(a != b). We argue that breaking that implication is generally difficult to justify.
Furthermore, beginners are unlikely to do any operator overloading at all unless

19

explicitly instructed to. Once they do, they are bound to pay attention to what
happens to these operators. The reason we are mentioning operator overloading
is that simplifying !(a != b) to a == b is much easier to digest, and we will not
give it up just because one can technically make the operators asymmetrical.

2.2 Specific Code Complexity Metrics
We aim to work with the user and introduce changes to their code that follow best
practices and make the code “better”. Since most established metrics (described
in Section 1.2) are very general, our refactors are bound to influence their outputs.
However, with our main focus being if statements, there are two main smaller
scope metrics that are almost always influenced when refactoring if statements:
Usage of nesting and condition complexity.

Nesting is a necessary tool in programming. However, overusing it can lead
to poorly understandable code. It increases both the length of the code in lines
and the length of lines due to indenting. Moreover, it also increases the number of
levels on which the programmer has to think about a problem; if there is a variable
declared two nestings in, but three more nestings follow, it might get difficult to
mentally keep track of where that variable does what. There are ways to reduce
nesting:

• It is always possible to extract some of the nested code into a separate
function. This reduces the nesting complexity, but it can result in functions
with many parameters. It also puts related code further apart, which might
cause trouble, especially for beginner programmers.

• Another possibility is to somehow reduce nesting by conjoining multiple
constructs that cause it together. For example, two for statements whose
purpose is to iterate over a matrix might be flattened. The cost here is
that the code is less straightforward, as most programmers would choose
the two for statements solution. In our case, where we are focusing on if
statements, there might be cases where we are able to transform nested if
statements into one or multiple on the same nesting level.

• And finally, we might be able to refactor the code to include less nesting
due to the specifics of the problem. We think of a “better” solution. It can
also help with the application of previously mentioned ways of reducing
nesting.

All of these options influence the length of the code, which itself is important.
They might also influence the other mentioned metrics; for example, extracting
the body of an if statement influences the Halstead metrics because we have to

20

introduce a new function, which has to have a name. In Listing 0.1, we found out
that an if statement is unreachable, which influences the cyclomatic complexity.
Even though it is unreachable while the program is running, in the static code,
which McCabe focuses on, the if looks just as good as any other. We influence
many other already used or imaginable metrics, but we argue that just the code
length is reason enough to try to reduce nesting, as it plays a large part in
comprehending code [5].

The other metric we focus on, mostly unique to if statements, is the com-
plexity of conditions. Complicated boolean calculations can appear elsewhere
but often naturally occur in conditions. Let us look at some constructs or their
combinations that complicate conditions:

• Parentheses can both make a condition easier or harder to understand.
A pair of parentheses that encloses another pair of parentheses only in-
creases the complexity. Not even a beginnerwould directlywrite a condition
like that but might end up with one after a few refactors. On the other
hand, the pair of parentheses in (x == 1 && y == 2) || z == 3 might be
clearer to both a beginner and an experienced programmer, even though it
is technically unnecessary.

• Similarly, negating a long part of a condition might be useful for under-
standing it in some cases. In others, we might want to only negate the
smallest parts of the condition possible.

• Combining many nested && and ||, possibly with many duplicate subex-
pressions, is confusing even for experienced programmers, especially with
the added complexity that the conditions behave a bit differently to logic
operators due to their lazy nature.

• Textual length can also make conditions harder to understand. This can
often stem from long member accesses but is also partly influenced by
the previously mentioned points: an unnecessary pair of parentheses also
makes the condition longer.

There are many other imaginable metrics relevant to if statements, but we will
focus on the two mentioned: nesting and condition complexity. We might some-
times be able to improve one at no cost, but often, improving one comes at the
cost of the other.

2.3 Helping Beginners Improve Their Code
We have outlined some constraints and reasoned why convoluted if statements
might make code hard to understand. Now, we will discuss our approach to

21

unraveling these convoluted if statements.

2.3.1 Example Use Cases
Let us start by presenting a few code examples we aim for our tool to be applicable
to and show how. First we will improve upon one example sequentially from
different angles. Then, we will show a number of examples that can be improved
upon from the same point of view.

Intro Example Detailed Explanation

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions)

{
if (pipeCapacity == 0)
{
/*replace it, it is too broken*/
}
else
{

if (inUse && maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else if (inUse)
{

if (maintenanceInstructions == "decide"
|| pipeCapacity == 0)

{
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}
else if (pipeCapacity == 42)
{
/*investigate the magical pipe*/
}

}
}

}

Listing 2.4 Introductory example (Listing 0.1 duplicated).

We will start with a larger example, where we improve the code for multiple
reasons. That example is the one from the introduction. Let us introduce the
story a bit. Imagine we are a learning repairman with questionable judgment who
is called to repair a leaking pipe. We know how much it lets through and whether

22

it is currently being used, and we got instructions from our boss on how to fix the
pipe. But if the pipe is letting nothing through, it is too broken to be fixed, so we
must replace it. If it lets at least something through, is it being used? If not, then
we do not need to do anything. After all, no leaks are visible, so nothing is wrong!
If it is in use and the boss did not tell us to decide how to fix it ourselves, we have
to turn the water off and do what they told us. If they let us decide, we might
as well turn off the water and replace the pipe, as that is easier than thinking
about how to fix it. Wait, what if the pipe is letting nothing through? In that case,
we also want to turn off the water and replace the pipe, so let us combine those
thought processes. And finally, what if the pipe has a capacity of 42? We need to
investigate it then.

Let us return to reality. The previous paragraph has several questionable lines
of thought. Still, we argue that they are plausible, and Listing 0.1 is a piece of
code representing those thoughts, not too distant from what a beginner might
actually write. There are multiple mistakes to fix in the code and a number of
alternative ways to express the same thing. The first is how the variable inUse is
checked. We could only check it once, lift that check into the encompassing else,
making it else if(inUse), as shown in Listing 2.5.

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions) {

if (pipeCapacity == 0) {
/*replace it, it is too broken*/
}
else if(inUse) {

if (maintenanceInstructions != "decide") {
/*turn off water and do what instructed to*/
}
else if (maintenanceInstructions == "decide"

|| pipeCapacity == 0) {
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}
else if (pipeCapacity == 42) {
/*investigate the magical pipe*/
}

}
}

Listing 2.5 Introductory example refactor part 1.

Now let us discuss the condition maintenanceInstructions == "decide" ||
pipeCapacity == 0 in Listing 2.5. The right operand pipeCapacity == 0 might
seem reasonable. If the pipe has no capacity, we want to swap it out. However,
exactly this is already handled by if (pipeCapacity == 0), meaning it cannot

23

contribute to fulfilling the ||. Perhaps the beginner added this case here “just
to be sure,” or we arrived at this through multiple rounds of debugging. But no
matter how this code came to be, we can remove the || pipeCapacity == 0 part,
but the remaining left operand could still fulfill the condition.

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions) {

if (pipeCapacity == 0) {
/*replace it, it is too broken*/
}
else if(inUse) {

if (maintenanceInstructions != "decide") {
/*turn off water and do what instructed to*/
}
else if (maintenanceInstructions == "decide") {
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}
else if (pipeCapacity == 42) {
/*investigate the magical pipe*/
}

}
}

Listing 2.6 Introductory example refactor part 2.

But looking at Listing 2.6, wherewe removed the unnecessary part of the condi-
tion, this idea obviously does not hold. First, we inquire maintenanceInstructions
!= "decide", then maintenanceInstructions == "decide". This is overly compli-

cated. If the first condition is true, the second one never gets evaluated. If the first
one is false, the second one is true. This means that we always branch into else
if (maintenanceInstructions == "decide") if we get there. It can thus be turned
into a simple else with no condition. But what about else if (pipeCapacity ==
42)? We cannot just keep it there. It cannot follow after else. This might be
exposing a problem in the initial code composition, maybe this else if should
have been a nesting higher, or in a completely different place. But if the code
really was structured as intended, we can delete else if (pipeCapacity == 42).

24

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions) {

if (pipeCapacity == 0) {
/*replace it, it is too broken*/
}
else if(inUse) {

if (maintenanceInstructions != "decide") {
/*turn off water and do what instructed to*/
}
else {
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}

}
}

Listing 2.7 Introductory example refactor part 3.

The result is shown in Listing 2.7. It is important to note that the simplification
of else if (maintenanceInstructions == "decide" || pipeCapacity == 0) could
also start with maintenanceInstructions == "decide". We have shown it this way
because then the simplification in Listing 2.6 seemed very easy. An experienced
programmer could argue it is almost as easy to simplify maintenanceInstructions
== "decide" in Listing 2.5, but we argue that it might not be for many beginners.

Combining these two mistakes makes getting rid of them much harder.
The final result with less nesting shown in Listing 0.2 can be achieved by

flattening the else if(inUse) with its embedded if statements, at the cost of
duplicating the usage of inUse.

25

void m(int pipeCapacity , bool inUse,
string maintenanceInstructions)

{
if (pipeCapacity == 0)
{
/*replace it, it's too broken*/
}
else if (inUse && maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else if (inUse)
{
/*turn off water, replace it just to be sure,
or because nothing flows through*/
}

}

Listing 2.8 Listing 2.4 refactored (Listing 0.2 duplicated).

Flattening Nested If Statements

Let us now look at multiple examples of a similar problem in different codes. Our
motivation is that we want to flatten nested if statements.

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}

}
}

Listing 2.9 Flattening if statements
basic example.

void m(bool x, bool y) {
if (x && y) {
/*Body1*/
}

}

Listing 2.10 Listing 2.9 refactored.

Listing 2.9 shows code most programmers would agree is much better if
written as shown in Listing 2.10. if statement that only contains another if
statement can always be simplified by merging them into one and combining
their conditions.

26

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}
else {
/*Body2*/
}

}
}

Listing 2.11 Flattening if statements
example with nested else.

void m(bool x, bool y) {
if (x && y) {
/*Body1*/
}
else if (x) {
/*Body2*/
}

}

Listing 2.12 Listing 2.11 refactored.

Listing 2.11 differs from Listing 2.9 by the inner if having an else. It is still
possible to apply our idea as we did in Listing 2.10, but the cost is that the outer
condition now has to be included with the else as well, turning it into else if (x),
shown in Listing 2.12.

void m(bool x, bool y, bool z)
{
if (x) {

if (y) {
/*Body1*/
}
else if (z) {
/*Body2*/
}

}
}

Listing 2.13 Flattening if statements
example with two nested if statements.

void m(bool x, bool y, bool z)
{
if (x && y) {
/*Body1*/
}
else if (x && z) {
/*Body2*/
}

}

Listing 2.14 Listing 2.13 refactored.

Listing 2.13 is similar to Listing 2.11, but with the else already being an else
if. In this case, refactoring them as shown in Listing 2.14 is correct, but what if
the conditions were not as simple?

27

void m(MyClass x, MyClass y,
MyClass z) {
if (x.m()) {

if (y.m()) {
/*Body1*/
}
else if (z.m()) {
/*Body2*/
}

}
}

Listing 2.15 Flattening if statements
example with potential side effects.

void m(MyClass x, MyClass y,
MyClass z) {
if (x.m() && y.m()) {
/*Body1*/
}
else if (x.m() && z.m()) {
/*Body2*/
}

}

Listing 2.16 Listing 2.15 sometimes
correctly refactored, depending on side
effects.

Listing 2.15 differs from Listing 2.13 by having classes instead of booleans as
parameters and the conditions accessing a function instead of directly taking the
boolean value. The refactoring shown in Listing 2.16 might be correct in some
cases, but not always. As discussed in Section 2.1.2, this refactor is functionally
equivalent only if x.m() has no side effects. Note the same problemwould appear if
we swapped out booleans for classes in Listing 2.11, but the basic idea of flattening
if statements shown in Listing 2.9 is correct even with side effects, due to us not
having to duplicate the potential side effect inducing condition.

So far, we have shown examples of refactoring that is always correct in
Listing 2.10, two that can be correct in Listing 2.12 and Listing 2.14, but we must
watch out for side effects as shown in Listing 2.16. Let us now look at a negative
example where “flattening if statements” cannot be reasonably done. Our first
trivial negative example could be one where no nested if is present. We certainly
cannot “flattening if statements” in that case, as there is nothing to flatten.

28

void m(bool x, bool y, bool z)
{
if (x) {

/*Some code*/
if (y) {
/*Body1*/
}
else if (z) {
/*Body2*/
}

}
}

Listing 2.17 Flattening if statements
example with two nested if statements
and additional code.

void m(bool x, bool y, bool z)
{
if (x) {
/*Some code*/
}
if (x && y) {
/*Body1*/
}
else if (x && z) {
/*Body2*/
}

}

Listing 2.18 Listing 2.17 almost always
incorrectly refactored.

Now for a more interesting negative example. Listing 2.17 differs from List-
ing 2.13 by having some code inside of the outer if. We discussed in-between
code being a problem in Section 2.1.2 in relation to making a conclusion about one
condition from another. However, while the problem here stems from in-between
code between conditions, the reason is different. The problem here is where to put
the in-between code if we want to do some if flattening. Listing 2.18 shows one
option, but it is almost certainly incorrect to refactor the code like that. That is
because if /*Some code*/ changes the values of the boolean, the code will behave
differently than in Listing 2.17. Finding out if such changes will occur would
require above the scope of the thesis.

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}

}
else {
/*Body2*/
}

}

Listing 2.19 Flattening if statements
example with outer else.

void m(bool x, bool y) {
if (x && y) {
/*Body1*/
}
else {
/*Body2*/
}

}

Listing 2.20 Listing 2.19 almost always
incorrectly refactored.

Listing 2.19 differs from Listing 2.9 by the outer if having an else. We cannot
do what we did in Listing 2.10 and keep the else as is because in the case that x
is true, but y is false, no code outside of the condition evaluation is supposed to
run, whereas if we used the proposed refactor in Listing 2.20 the else body would

29

be run.

2.3.2 Primary User Interaction
As discussed in Section 2.2, we mainly focus on nesting and condition complexity.
We could provide the user with a button to “reduce nesting” that uses many
approaches in our arsenal, including what was described in Section 2.3.1, to
reduce the nesting across the whole solution, file, or function. There are two
main problems with this approach.

Imagine an example like Listing 2.13, but with ten else if statements instead
of one. Flattening the if statements there would be very unwise. Thus, we would
need some setting that relativizes the metrics of nesting and condition complexity
to each other. However, such a setting would be too abstract and subjective to
both the author and the user.

The second problem is that such a button would teach very little. The user
could go through the code before and after using the button, but the code might
become almost unrecognizable to a beginner programmer. Encouraging users to
write good code by making them understand our proposed refactors is an impor-
tant part of the thesis.

Thus, the thesis does not introduce any metrics to the user at all. Instead, we,
at one point in time, focus on one concrete code refactor with a singular idea
behind it. That refactor could be done manually in a few minutes or even seconds
of work by an experienced programmer. Still, a beginner programmer might
not even think of it. These refactors might change both nesting and condition
complexity. It is then up to the user to consider if these refactors are worth it in
their specific case.

2.3.3 Parts of a Specific Case Focused Refactor
Let us investigate the approach of focusing on specific small-sized refactors we
arrived at in Section 2.3.2 using a concrete example. We will use the problem
of flattening if statements described in Section 2.3.1. But we quickly arrive at
a problem: What to do when presented with code such as in Listing 2.21 below?

30

Size of Refactors

void m(bool x, bool y, bool z) {
if (x) {

if (y) {
if (z) {
/*Body1*/
}

}
}

}

Listing 2.21 Flattening example with double nesting.

We have two possible approaches here. We could propose immediately flat-
tening the three if statements into a single if statement with the condition
x && y && z. We will call this approach recursive.

Or we could give the choice of flattening the if (x) and if (y), or if (y) and
if (z), and then, if the user decides, they could further flatten the remaining two
if statements to get the same result as the recursive approach, that is an if with
the condition x && y && z. We will call this approach singular.

We argue that the singular approach is better. The recursive approach is
straightforward in the case of Listing 2.21, but what if if (y) had an else like
shown in Listing 2.22 below? if (x) and if (y) can be flattened, as shown in
Listing 2.23, but further flattening them with if (z) is impossible for the same
reason it was not possible in Listing 2.19.

void m(bool x, bool y, bool z)
{
if (x) {

if (y) {
if (z) {
/*Body1*/
}

}
else {
/*Body2*/
}

}
}

Listing 2.22 Flattening example with
double nesting and middle else.

void m(bool x, bool y, bool z)
{
if (x && y) {

if (z) {
/*Body1*/
}

}
else if (x) {
/*Body2*/
}

}

Listing 2.23 Listing 2.22 flattened as
much as possible.

The recursive approach might be confusing to a beginner programmer by
sometimes recursing deep or sometimes stopping much earlier. We could, of

31

course, explain this case to the user just like we do in this thesis. However, we
argue that the bite-sized refactors and their explanations proposed in the singular
approach are friendlier to beginners. It is an extension of the argument and
conclusion in Section 2.3.2. Even the small singularly minded refactors should be
split into the smallest parts possible.

Attributing the Refactor

The possibility of general refactors is an attribute of the code as a whole. However,
our refactors are small in size. And if we were able to pin any refactors we make
onto a specific place in the code, it would be very useful for UI design. Making the
refactors accessible from that place in the code would make user interactions very
natural. And it turns out we can achieve exactly that. We attribute all refactors
to the textually earliest changed language construct, usually an if.

Combined with the singular approach from Section 2.3.3, we have two possible
refactors to offer in our running example of flattening if statements in Listing 2.21:
flattening if (x) and if (y), which is attributed to if (x), and flattening if (y)
and if (z) which is attributed to if (y). The singular approach makes it so that
if (x) only flattens with if (y), and not also with if (z).

Can We Do It

We now have a concrete refactor idea we want to apply to a concrete thing; in
our running example, we want to flatten an if with its nested if, and we want
to apply that to a concrete if. But first, we have to decide whether that refactor
even makes sense on that concrete thing. For example, we trivially cannot flatten
if (z) with its nested if in Listing 2.21 because it has no nested if. There are,
of course, more possibilities that make flattening impossible, some described in
Section 2.3.1, but it is important to note that even these trivial ones exist and are
the ones that disqualify refactors most often.

Should We Do It

If a refactor is impossible, thenwe obviously cannot carry it out. But if it is possible,
that still does not mean it is a good idea to do so. As previously discussed in
Section 2.3.2, we want the users to gauge the refactor themselves and decide if
it makes sense in their particular case. But we still also want to offer guidance
on whether it is generally a good idea. For example, flattening if statements
in Listing 2.9 is almost certainly a good idea. The only instance where it could
not be is if the user plans to add code into the outer if but outside the inner if.
But we have no way of knowing that, so we assume the user is not planning
on changing the code’s functionality, and in that case, we want to recommend

32

flattening them. Flattening the if statements in Listing 2.13 is a mixed case. It
sometimes makes sense, sometimes not. It also depends on the future extension
of the program, which we cannot predict. So it is best left up to the user to decide
whether it is worth it; we are indifferent. Finally, if the nested if in Listing 2.13
did not have one else if, but let us say ten, it would almost certainly be a bad
idea to flatten the if statements there. However, it would still be possible to use
the tools we must already have in place for the other cases, so we might as well
offer that refactor to the user but heavily discourage it.

Explaining Refactors to Beginners

Explaining refactors is a complex issue. All of the refactors we offer should
function the same as the original code. This is a stable fact the user can rely on
while judging our refactors. Still, providing further hints on why the functionality
did not change is necessary if we want to guide the user in their learning.

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}

}

if (x) {
/*Body2*/

}
}

Listing 2.24 Pairing negative example.

A useful tool we can utilize to provide these hints is somehow pairing related
constructs. We can do that pairing either on just the original code or on the
original code and the refactored code at the same time. In Listing 2.11, the variable
x appears once in the code before refactoring and twice after it in Listing 2.12.
Since these appearances are directly related, it makes sense to emphasize that fact
by somehow pairing them together, making that fact apparent to the user. On the
other hand, in Listing 2.24, if we are analyzing flattening if (x) and if (y), there
is no reason to pair the first if (x) with the second if (x). It has no bearing on
the refactor.

There might also be cases where parts of the refactored code are completely
new instead of being pairable with other code. Inversely, as a part of our refac-
toring, we might find out that some code can be simply deleted. We ought to
somehow point these additions or deletions to the user, as not doing so would be
confusing.

33

Combining Certain Code Changes

Sometimes, it might make sense to combine certain refactors together. Let us
extend our running example of if flattening for the following case shown in
Listing 2.25 and Listing 2.26.

void m(bool x, bool y, bool z)
{
if (x) {

if (y || z) {
/*Body1*/
}

}
}

Listing 2.25 Flattening with an ||
example.

void m(bool x, bool y, bool z)
{
if (x && (y || z)) {
/*Body1*/
}

}

Listing 2.26 Listing 2.25 refactored.

The parentheses in Listing 2.26 are necessary because of operator precedence.
But if we swapped the || in y || z for an &&, the parentheses would not be
necessary. This is something we obviously have to get right in our refactors. We
do not want to produce code that is functionally different. But it is also something
we can teach the user about.

At first, we should assume the user is a complete beginner, and we should be
as consistent as possible. In that case, we will always put the parentheses on both
of the operands, making the actual if in the refactored code if ((x) && (y || z)).
The parentheses in (x) are obviously unnecessary, but, again, if the expression in
parentheses was more complicated, they might be necessary.

Once the user has understood this, we might offer them an option to only
include the parentheses when necessary. This breaks the principle of small-sized
refactors, but we will only apply this to relatively simple expression simplification,
like with parentheses.

2.4 UI
In Section 2.3.3, we discussed how to make the educational part of this thesis
accessible to the users through pairing. Still, there are a number of decisions
to be made on how to make other functionalities, both primary and supporting,
accessible to the user.

34

2.4.1 Location of the UI Best for Beginners
The first question is if we even require a dedicated user interface. Experienced
programmers might do well with a command line tool, but our primary tar-
get audience is beginners. A well-designed user interface will be much more
approachable to them.

The next question is where we should put the user interface. An external tool
that serves only to recommend, explain, and perform our recommended refactors
but does not let the user edit the code themselves seems like an unnatural solution.
We are changing the code. Why should the user not be able to? If the user should
also be able to change the code close to our user interface, the most natural
solution is to put it somewhere in the existing development environment. This
carries the benefit of it being a mostly familiar environment, except for our own
refactors.

Still, there are many ways to offer our refactors to the user. We could follow
the existing CodeFixes described in Section 1.3.5, and just extend those. This has
many disadvantages from the point of view of this thesis:

• The user might mix up our custom CodeFixes with the existing CodeFixes,
which is a problem. Mixing up our and other options might lead to not
meeting user expectations. A big part of our work is explaining it to the user,
but not all CodeFixes are like that. Moreover, our CodeFixes might behave
differently from the existing ones due to differences in the assumptions
we make. Ours are mostly justified by focusing on beginners, but not all
CodeFixes can do that.

• The user also has to actively look for CodeFixes. They are only available in
the immediate textual vicinity they actually affect. If we want the user to
consider a specific refactor, we must hope they discover it on their own.

• Continuing with the previous point, if we expanded the availability of our
CodeFixes, too many might be available. If we offered parentheses simplifi-
cation of the condition of an if statement in all of the nested statements of
the condition, we could easily end up with dozens or hundreds of options.
And most of our changes aim to be very local.

• There are also technical limitations to this approach, as our CodeFixes have
to align with the already existing CodeFixes implementation. For example,
they are not supposed to be IDE-specific.

The other solution is to have a fully-fledged user interface that is tightly
interconnected with the code that the user currently has open. This allows us
more freedom to express recommendations to the user. For example, if we see

35

a glaringly obvious and easy change we could implement, we can make it very
apparent to the user, and the only thing they need to do is to look at our user
interface. We also have more freedom in general and can explore the code with
the user in different ways. For example, we can extract just the parts about which
we can improve something from the existing code.

2.4.2 Main Part of UI
Now, the question is what we should actually show in the user interface. The
possibility to attribute all our changes to the textually earliest changed language
construct that is discussed in Section 2.3.3 is important here. If all of our changes
can be attributed to a small subset of language constructs, if statements and else
statements, then we might use them in the UI as a kind of summary of the code.
We can, for example, omit a variable declaration from the UI, as we cannot do
anything about it specifically while taking it into consideration in our analysis
under the hood.

Moreover, many of our proposed changes interact with nesting, which is
a natural outcome as nesting is one of the two main complexities we focus on, as
discussed in Section 2.2. Thus, it might make sense to use that nesting in the user
interface as well.

Together, this results in a user interface structured like the actual code, with
nested if statements nested under their parents but only with the parts of the
code that are important to us. This approach both serves as a concise summary
of the code constructs we focus on and exposes our tools to the user.

36

Chapter 3

Solution

In this chapter, we will build upon the conclusions we arrived at in Chapter 2.
We will present the overarching solutions to most of our goals in the form of
a refactorer. Then, we will present concrete refactorers, which constitute the main
“content” the users can utilize while interacting with our tool.

3.1 General Limitations and Focus
First, we must set a few general limitations to our analysis that shape the API and
functionality of all refactorers.

3.1.1 When Semantic Analysis Is Necessary
We can solve plenty of problems while focusing on just the syntactical analysis.
However, we will only begin our analysis if the code is compilable, which requires
both syntactical and semantical correctness. For example, even if our analysis
stays on the syntactical level, it is still useful to assume that if the code contains if
(x), then x is a boolean. That is, however, something that can only be uncovered

by semantic analysis. A much simpler reason is that we want to offer functionally
equivalent versions of the code, and that makes little sense when the code is not
in a compilable state, as the functionality is not there.

Another problem for which we have to delve into semantics is the problem of
variable declarations in a block. Consider the example in Listing 3.1 below. The
condition of the inner if will always be true due to the immediately previously
evaluated condition of the outer if. This means we can transform the code as
shown in Listing 3.2. But we must keep the block around int x = 0, as removing
it would make the scopes of the two variables x overlap. However, if we replaced
one of the declarations with something else, even just renamed the variable, the

37

block around int x = 0; or its replacement would be unnecessary.

void m(bool a, bool b) {
if (a) {

if (a) {
int x = 0;

}
if (b)
{

string x = "Hello
world";

}
}

}

Listing 3.1 Example where a block is for
variable scope limitation.

void m(bool a) {
if (a) {

{
int x = 0;

}
if (b)
{

string x = "Hello
world";

}
}

}

Listing 3.2 Listing 3.1 refactored, but the
block must stay.

We do not want to always defensively keep the sometimes unnecessary block
because unembedded blocks are an unusual sight in programming. Blocks are
most often used inside statements that allow only one embedded statement, for
example, the if statements we focus on in this thesis. But we would not want to
produce uncompilable code by always removing the blocks. The chosen solution
in this thesis is to do a bit of semantical analysis, but just over the file where the
block/variable scope problem arose. First, we try to remove the block and check if
any semantical errors arising from overlapping variable scopes are present. There
could not have been any before, as we only begin our analysis once the code is
without semantical errors. If there are any such errors, we caused them by our
proposed change. Thus, we need to keep the block, as it is important to limit the
variable scope.

3.1.2 Intraprocedural Analysis
In this thesis, we focus on valuable but small changes to code concerning mainly
if statements. Small in the sense that the changes could be somewhat quickly
done by hand. All of our proposed refactors are limited to a single function. Some
refactors could be made quickly, even if they manipulate multiple functions or
create and delete them, but those fall outside the scope of this thesis. It could be
argued that, for example, extracting the body of an if statement into a separate
function is a problem that we should solve, as it crops up quite often when writing
long if statements. Such extracting also intends to reduce the function length and
nesting, which are metrics we focus on. However, that would require extensive
semantical analysis and interaction with many more language constructs, which
falls outside of the scope of this thesis.

38

3.1.3 Boolean Binary Operators
Lazily evaluated && and || constitute most conditions by both experienced and
beginner programmers. The not lazily evaluated boolean binary operators &, |,
and ^ are rarely seen in conditions. Thus, we focus our analysis on && and ||.
This does not mean we do no analysis when the non-lazy operators are present,
but we do not recurse under them.

The benefit of focusing on && and || is that we can rely on the set order of
evaluation due to their laziness. None of our refactors should reorder operands
of && and ||, as without complicated analysis, we must assume the ordering is
important. Looking at the first item of a list and then checking if the list contains
any items is unwise.

3.2 Refactorers
In Section 2.3.2, we arrived at the conclusion that we want to focus on refactoring
instances of specific mistakes in specific places in the code. The specific mistake is
directly represented in the implementation by refactorers. But how is the specific
place in the code represented? We utilize the existing syntax nodes from Roslyn
(see Section 1.3), usually one representing an if statement. Note that even if
we only pass a concrete syntax node around, we still have access to the whole
syntax tree, as discussed in Section 1.3. This means we have the context of the
surrounding code.

For a specific syntax node, each refactorer can decide if the refactoring it
represents is possible there. It can also decide if we should recommend it. The
refactorer can also apply the refactoring. Finally, it can also facilitate explaining
the refactoring through highlights on either just the pre-refactored code or both
the pre-refactored and post-refactored code.

3.2.1 Applicability
As discussed in Section 2.3.3, the first thing a refactorer has to be able to answer
is if the refactoring is even possible. If it is impossible, then there is nothing more
to be done using this refactorer. It could be that the refactoring is impossible
because it is unnecessary, as the code might already be “perfect” from the point of
view of this refactorer. Or it could be due to some implementation or constraint
limitations. Note that we do not attempt to show how the user should change the
code to make some refactorer applicable. If the changes required did not change
the functionality, we could simply extend the implementation for that case. If
the changes required did change the functionality, that is something we want to
completely avoid.

39

Afterwe find out the refactoring is possible, we immediately want to determine
to what extent the refactoring is a good idea. This is because guiding the user
plays an important part in this thesis. And there is no instance where considering
a recommendation without first finding out the possibility of a refactor makes
sense. Thus, our solution is to merge the possibility of applying a refactor with the
recommendation. Combining these two questions, we get four possible answers:

1. The refactoring is impossible, either by the nature of the existing code or
due to some limitations of the refactorer.

2. We discourage applying the refactoring because it produces generally worse
code, but it is possible.

3. The resulting code and the original code are about the same complexity.
Thus, it is mainly left up to the user to decide.

4. We encourage applying the refactoring because it produces generally better
code, but we do not force the user to apply it. It might not make sense in
their case.

Inverse Refactors

We outlined that we sometimes have a refactoring available that does not neces-
sarily improve the code, it just makes the code different. It is especially important
for refactorers that allow such cases to also have an inverse refactorer that enables
the user to switch between the two similarly complex code variants. We would
not want to lock the user into one of the options after presenting them as similarly
good.

3.2.2 Refactor
If the user decides to do so, we have to be able to carry out the refactoring. But
what does that entail? Replacing the actual code the user sees in their IDE can be
done in multiple ways. The cleaner approach is not to immediately use the code
in the refactorers but to return some intermediate data structure, which we use to
replace code when and where needed. The obvious choice for that structure is to
use the Roslyn syntax nodes again, which we use as the input for the refactorer
and in the actual analysis. It might also allow direct layering of analysis if we
use the Roslyn syntax nodes everywhere. But which syntax node or nodes do we
return?

40

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}

}
}

Listing 3.3 Flattening basic example.

void m(bool x, bool y) {
if (x && y) {
/*Body1*/
}

}

Listing 3.4 Listing 3.3 refactored.

Let us look at a basic example of combining if statements in Listing 3.3 and
Listing 3.4. We pass the node representing if (x) to the refactorer. It might seem
sufficient that the refactorer returns the new merged if (x && y) statement with
which we should replace the old one. In this case, this approach is good enough,
but elsewhere it will fail.

void m(bool x) {
if (x) {
/*Lots of code*/
}

}

Listing 3.5 Invert basic example.

void m(bool x) {
if (!x) {

return;
}
/*Same Lots of code*/

}

Listing 3.6 Listing 3.5 refactored.

if (x) in Listing 3.5 can be “inverted”, which results in Listing 3.6. In this
case, there is no single node we want to replace the old if (x) with. We do
want to replace the old if (x) with the inverted if statement that just has return
inside. But we also need to put the code that used to be inside if (x) after the
new inverted if (!x). So, what do we need to return from refactorers refactor
to solve this? For the mentioned case of inverting if statements, a list of nodes
to replace it would be sufficient. But there are cases where even that would be
insufficient.

After the discussion in Section 3.1.2, returning a replacement for the function
that the inputted syntax node was in might seem like a good idea. But this is
an unnecessarily middling solution with no actual benefits. A general solution
when we are sure that we are only changing one document is to return the
syntactical root of the whole document. This approach would be insufficient
only if we ever decided to do refactors across multiple documents, but that falls
outside of the scope of this thesis and would nontrivially complicate the code
everywhere.

41

3.2.3 Highlighting
A big part of this thesis is not only carrying out a refactoring but also explaining
it. As described in Section 2.3.3, pairing related pieces of code in both just the
old or the old and the new code is a good way to do so. Pairing can be shown in
many ways, for example, by pointing arrows between the paired pieces of code.
But said arrows might be too intrusive and take away a lot of attention. The
already used way of drawing attention to specific parts of code in programming
is somehow styling the text. We follow that notion and highlight parts of the
code by changing the background color of those parts.

So, how does a refactorer provide this highlighting? A solution akin to the
ones we arrived at earlier is to return a list of pairs consisting of a Roslyn syntax
node and some type of a highlight. This, however, ends up having too little
granularity. Looking at Listing 3.5, the Roslyn syntax node representing if (x)
contains not only the if keyword and the (x) condition but also the body as
well. If we want to only highlight the expression x, we could do so, as that is
its own syntax node. But what if we wanted to highlight the whole line if (x),
but not the body? That is impossible if we limit ourselves to syntax nodes as
the main result of refactorer highlighting. Even if we tried to piece it together
from multiple nodes, that would not work, as, for example, just if in if (x) is not
a syntax node but a syntax token. It might seem that the solution is to return a list
of syntax nodes or tokens and their highlight types, but even then, the granularity
would be an issue. Furthermore, we also need to consider trivia. The solution
that evades all of the mentioned problems, and the one chosen in this thesis, is to
return a list of pairs of textual spans and the accompanying highlight types. This
is the most general solution, where we can basically do what we want. These
spans might often directly come from syntax nodes, but do not need to.

3.3 Code Reusability Through Annotations
The applicability, refactoring, and highlighting analysis might share a lot of logic
and, thus, code. For example, many of our refactorers use recursion but differ in
actions that should be taken at different points in the recursion. As code duplicity
is undesirable, we want to avoid it as much as we can. This is usually done by
using type parameters, callbacks, or other generalizations of code. We use them
to a degree, but also use a different way of generalizing, specific to the problem
we solve. We use Roslyn syntax annotations.

Let us use parentheses simplification as an example. When highlighting, we
want to find all pairs of parentheses that can be simplified and highlight them.
When actually refactoring the code, we want to take these pairs and remove them.

42

This could, of course, be reasonably solved through the normal ways of code
generalization. We could generalize the code using a callback, to which we would
pass any unnecessary parentheses we find during recursing.

In highlighting this callback would “log” any of the pairs given to it, and then
we would highlight the “logged” pairs. Refactoring would be a bit more difficult.
One solution would be to utilize the callback in the middle of the recursing to
remove the parentheses as we go. This, however, would require the callbacks
to be able to change the code we are refactoring while recursing. The highlight
callback could just “log” the unnecessary parentheses and not make any changes.
This is not a clean solution from a design point of view. Another solution is to
have two callbacks, one that only “logs” and one that can do changes while we are
recursing. This is, in our opinion, too overly complicated for a relatively simple
goal.

Another option is that we could solve the refactoring by “logging” too. First,
we would “log” the unnecessary parentheses and then remove them after the
“logging” is done. This removal would require more recursion due to the nature
of expressions but separates the problem nicely. One part of the code finds the
interesting parts, unnecessary parentheses in this case, and others do something
with the list of the interesting parts, highlight or remove them in this case.

The approach from the previous paragraph is basically what we do with
annotations. Instead of a callback that fills a list, we, in most cases, have one piece
of code that annotates all the simplifiable pairs and returns the syntax tree with
the annotations. This is the equivalent of the “logging”. Then in highlighting
we go through these annotated pairs and highlight them, when refactoring we
remove them, same as we described we could do after “logging”.

The advantage of annotations over the “logging” approach is that we do not
need a “logging” callback that would always do almost the same thing. We simply
use annotations, as they are intended for, among other things, this exact problem.
The drawback is that the flow of information in the code is not as clear as a more
direct solution. Any syntax tree or node can include any number of annotations.
However, the code still has obvious purposes: some parts annotate, some go
through the annotations, and some do something concrete with them.

3.4 Walk Over a Syntax Tree
if statement syntax often includes recursive structures. Even a simple expression
like A && B && C && ..., which could be a condition of an if statement, turns
out to be recursive, even though programmers often think about it as a list of
conditions A, B, C... Provided we have to workwith these recursive structures, there
are multiple ways to approach them. Recursive functions, or their unraveling

43

into loops, are one option. Another one, specific to our problem, is Roslyn syntax
walkers and rewriters.

Themain difference between recursion and the Roslyn options is whomanages
the recursing. If we do it ourselves, wemust explicitly state all language constructs
we recurse through. If we do not explicitly include something, we will not recurse
into it. But managing the recursion ourselves is more verbose and duplicate. If
we use the Roslyn walker or rewriter, the recursion management is done over
the whole syntax tree for us, but it only stops if we explicitly say so. This fact
dictates the difference between their usage. The Roslyn way is useful when we
want to do something in many similar nodes, and we do not really care what is
between these nodes or how the syntax tree generally looks. In all other cases,
we manage the recursion ourselves, so we have complete control and only recurs
when we actually want to.

3.5 Concrete Refactorers

3.5.1 Extract Start
Introductory Example

void m(bool a, bool b, bool c,
bool d) {
if (a && b) {
/*body1*/
}
else if (a && c) {
/*body2*/
}
else if (a && d) {
/*body3*/
}

}

Listing 3.7 Extract start basic example.

void m(bool a, bool b, bool c,
bool d) {
if (a) {

if (b) {
/*body1*/
}
else if (c) {
/*body2*/
}
else if (d) {
/*body3*/
}

}
}

Listing 3.8 Listing 3.7 refactored.

Listing 3.7 and Listing 3.8 show the basic idea behind “Extracting start” of if
statements. This is the ideal case where we slightly increase the nesting but reduce
the multiple instances of an identical expression at the start of the conditions.

44

Possibility

void m(bool a, bool b, bool c) {
if (a && c) {
/*body1*/
}
else if (b && c) {
/*body2*/
}

}

Listing 3.9 Extract start example with different starts.

The conditions of the if and the following else if statements have to share
the same start in some sense to use the Extract start refactorer. We cannot use
this refactorer on if (a && c) in Listing 3.9, because it does not share the start
with else if (b && c). Sharing the same start means that if the expressions in
the conditions consist of sequences of && operators, the leftmost operand of the
leftmost && in such sequence must be equivalent for all of the conditions. If the
condition of an else if does not consist of &&s at the top level, it might still be
possible to extract the whole condition out, and turn said else if into just an else,
as shown in Listing 3.10 and Listing 3.11 below.

void m(bool a, bool b) {
if (a && b) {
/*body1*/
}
else if (a) {
/*body2*/
}

}

Listing 3.10 Extract start example with
else if.

void m(bool a, bool b) {
if (a) {

if (b) {
/*body1*/
}
else {
/*body2*/
}

}
}

Listing 3.11 Listing 3.10 refactored.

But what if there was another else if after else if (a) as shown in List-
ing 3.12 below? The refactored code would result in Listing 3.13, which is just
like Listing 3.11, except the function parameter bool c is still there, as potentially
omitting it falls outside of the scope of this refactorer, and generally the whole
thesis. else if (a && c) can be deleted because if the condition a is not met, then
the condition a && c also cannot be met. Even a simple refactorer like this can
uncover an unreachable part of the code in this way.

45

void m(bool a, bool b, bool c)
{
if (a && b) {
/*body1*/
}
else if (a) {
/*body2*/
}
else if (a && c) {
/*body3*/
}

}

Listing 3.12 Extract start example with
unreachable else if.

void m(bool a, bool b, bool c)
{
if (a) {

if (b) {
/*body1*/
}
else {
/*body2*/
}

}
}

Listing 3.13 Listing 3.12 refactored.

So far, all of the conditions of if and else if statements shared the common
beginning a. But what if the condition of the last else if statement had nothing in
common with the others, as shown in Listing 3.14 below? The proposed refactor
in Listing 3.15 is incorrect, because when a and d are true, but b and c are false, the
original code would have run /*body3*/, but the proposed refactor would result
in no body being run. When a else if condition does not share the start with the
preceding else if conditions, refactoring the preceding if statement or else if
statements are impossible.

void m(bool a, bool b, bool c,
bool d) {
if (a && b) {
/*body1*/
}
else if (a && c) {
/*body2*/
}
else if (d) {
/*body3*/
}

}

Listing 3.14 Extract start example with
unextractable from else if.

void m(bool a, bool b, bool c,
bool d) {
if (a) {

if (b) {
/*body1*/
}
else if (c) {
/*body2*/
}

}
else if (d) {
/*body3*/
}

}

Listing 3.15 Listing 3.14 incorrectly
refactored.

However, it does not prevent using the refactoring on the following else if
statements. So far, we have always considered and shown applying the refactoring
on the first if statement. But, for example, in the first shown example in Listing 3.7,

46

it could be applied to both else if statements, resulting in Listing 3.16 and
Listing 3.17.

void m(bool a, bool b, bool c, bool d) {
if (a && b) {
/*body1*/
}
else if (a) {

if (c) {
/*body2*/
}
else if (d) {
/*body3*/
}

}
}

Listing 3.16 Refactored Listing 3.7 on first else if.

void m(bool a, bool b, bool c, bool d) {
if (a && b) {
/*body1*/
}
else if (a && c) {
/*body2*/
}
if (a) {

else if (d) {
/*body3*/
}

}
}

Listing 3.17 Refactored Listing 3.7 on second else if.

Criterion

void m(bool a, bool b) {
if (a && b) {
/*body1*/
}

}

Listing 3.18 Extract start discouradged
example.

void m(bool a, bool b) {
if (a) {

if (b) {
/*body1*/
}

}
}

Listing 3.19 Listing 3.18 refactored.

Listing 3.18 and Listing 3.19 show an example usage of the refactorer that

47

we should discourage but falls under this refactorer and thus should be possible
through it. The difference between this example and the ideal example in List-
ing 3.7 and Listing 3.8 is the number of conditions we are extracting the start
from. And exactly that constitutes our criterion. If it is one, we discourage the
refactoring, for two we are indifferent, and for three or above we encourage it.

Limitations

If the start of conditions we extracted had side effects, wewould affect the behavior
of the code if we extracted it from more than one condition. Thus, if we are
extracting from more than one condition, and the start is side effect prone (see
Section 2.1.2), we consider the refactoring impossible.

3.5.2 Flatten If
Introductory Example

void m(bool x, bool y) {
if (x) {

if (y) {
/*Body1*/
}

}
}

Listing 3.20 Listing 2.9 duplicated.

void m(bool x, bool y) {
if ((x) && (y)) {
/*Body1*/
}

}

Listing 3.21 Listing 3.20 refactored but
with parentheses.

We already described flattening in Section 2.3.1 before we knew we would
implement it as a refactorer. The main difference between the analysis refactor
idea in Listing 2.10 and the Flatten if refactorer refactoring in Listing 3.21 is that
we always keep the parentheses around the former conditions that constitute the
new condition. We discussed the reason for this in Section 2.3.3.

Possibility

The possibility was discussed in detail in Section 2.3.1.

Criterion

The criterion is the inverse of the criterion of the Extract start refactorer. If the
inner construct is only an if statement, we encourage the refactoring; if the inner
if statement has one else if, we are indifferent; and if it has two or more, we
discourage the refactoring.

48

Limitations

Again, similarly to the Extract start refactorer, if the outer condition is side effect
prone, and the inner if statement has at least one else if, the refactoring is
impossible because we risk duplicating a side effect expression.

3.5.3 Invert If
Introductory Example

void m(bool a) {
if (a) {
/*Lots of code*/
}

}

Listing 3.22 Invert if basic example.

void m(bool a) {
if (!(a)) {

return ;
}
/*Lots of code*/

}

Listing 3.23 Listing 3.22 refactored.

Listing 3.22 and Listing 3.23 sum up the idea behind the Invert if refactorer.
This refactorer allows us to, in some cases, massively reduce the nesting of the
code at the cost of possibly adding return statements. Note that the return type is
void. The parentheses in !(a) are there because they would be necessary for any
binary expression.

Possibility - If With a Lot of Code Inside

Adding code before the if statement we aim to invert does not impact the refac-
toring in the case of Listing 3.24 and Listing 3.25 below. We keep the code where
it was and do what we did in the previous example.

void m(bool a) {
Console.WriteLine(a);
if (a) {
/*Lots of code*/
}

}

Listing 3.24 Invert if example with
preceding code.

void m(bool a) {
Console.WriteLine(a);
if (!(a)) {

return ;
}
/*Lots of code*/

}

Listing 3.25 Listing 3.24 refactored.

However, consider Listing 3.26 below. The two inner blocks in the example
contain a declaration of x. This means keeping the block after the refactoring is
necessary, as shown in Listing 3.27. We discussed this problem and its solution
in Section 3.1.1. To sum it up, we try semantic analysis on the refactored code

49

without the block and check for errors that signify overlapping variable scopes.
If there are none, we do not need the block; if there are any, we need it.

void m(bool a) {
{

int x = 0;
}
if (a) {

/*Lots of code 1*/
string x = "hello world

";
/*Lots of code 2*/

}
}

Listing 3.26 Invert if example with
a block/scope issue.

void m(bool a) {
{

int x = 0;
}
if (!(a)) {

return ;
}
{

/*Lots of code 1*/
string x = "hello

world";
/*Lots of code 2*/

}
}

Listing 3.27 Listing 3.26 refactored.

Finally, note that even if the condition of the inverted if statement contains
a function with an out parameter, our refactoring is sound (semantics discussed
in Section 1.1.1). An example is shown in Listing 3.28 and Listing 3.29 below.

void x() {
if (int.TryParse("1", out

var result)){
Console.WriteLine(

result);
}

}

Listing 3.28 Invert if example with out
parameter.

void x() {
if (!(int.TryParse("1", out
var result))) {

return;
}
Console.WriteLine(result);

}

Listing 3.29 Listing 3.28 refactored.

Possibility - If With Only a Return Inside

As discussed in Section 3.2.1, having inverse variants for our proposed refactors is
good. Let us look at the first example discussed under this refactorer Listing 3.22
and Listing 3.23, but in reverse order. If we started with Listing 3.23, transforming
it into Listing 3.22 seems like a refactor that could reasonably be described as
“inverting an if.” It might not be advisable if /*Lots of code*/ is indeed lots of
code, but what if it was just one line? It might then be the cleaner version of
the code. And because even the inverse refactoring is in the spirit of “inverting
an if”, the refactorer itself can play the part of its own inverse refactorer.

50

Possibility - Generalization

We can generalize the idea of this refactorer to encompass all of the previously
described cases. Consider the example shown in Listing 3.30 below. If a is true
/*Lots of inner code*/ is run, if it is false /*Lots of following code*/ is run. We
can transform to Listing 3.31 while keeping the functionality.

void m(bool a) {
if (a) {

/*Lots of inner code*/
return ;

}
/*Lots of following code*/

}

Listing 3.30 Invert if example with
following code.

void m(bool a) {
if (!(a)) {

/*Lots of following
code*/

return ;
}
/*Lots of inner code*/

}

Listing 3.31 Listing 3.30 refactored.

Once again, any preceding code before if (a) in Listing 3.30 would only affect
the refactoring about the potential block removal. Other than that, it would not
change how the refactoring works; we always keep the preceding code, and it
sometimes makes us unable to remove the block around /*Lots of inner code*/.

If /*Lots of following code*/ is empty, we do not actually require return
immediately after the /*Lots of inner code*/ in Listing 3.30. This special case is
how the generalized approach handles some previously shown examples, which
contain no following code after the inverted if.

A final improvement is to remove unnecessary return statements after the
refactor. There is no need to have a return statement at the absolute end of
a function, and there is no need to have it at the end of the if we just refactored
if no code follows after the if.

Possibility - Prohibitive Summary

We discussed the many applications of this refactorer, but what prohibits it
from being used? Firstly the return ; at end of if in Listing 3.30 is important
if /*Lots of following code*/ is not empty. If it was not there both /*Lots of
inner code*/ and /*Lots of following code*/ would be run if a was true, and we
cannot reasonably refactor the code from the point of view of “inverting an if.”
Furthermore, the if needs to be directly in a function’s body. It being inside any
other block prohibits the use of this refactorer.

51

Criterion

We show the criterion for recommendation on Listing 3.30. The criterion is simply
the difference between the number of lines of /*Lots of inner code*/ and /*Lots
of following code*/. If the difference is a large positive number, swapping them

means reducing the nesting of a lot of lines, which we recommend. Contrary to
that, if the difference is a large negative number, swapping them would greatly
increase the amount of nested code, so we discourage it. Finally, there is a middle
ground, where the size of the /*Lots of inner code*/ and /*Lots of following
code*/ is about the same, where we are indifferent.

Complex Example

Listing 3.32, Listing 3.33 and Listing 3.34 below show how two usages of this
refactorer can unravel the code to reduce the nesting of all of the code in the
function to its absolute minimum.

void ConditionalHello(bool polite, bool multilingual) {
if (polite) {

Console.WriteLine("Hello world");
if (multilingual) {

Console.WriteLine("Dobry den");
}

}
}

Listing 3.32 Complex invert if example.

void ConditionalHello(bool polite, bool multilingual) {
if (!(polite)) {

return ;
}
Console.WriteLine("Hello world");
if (multilingual) {

Console.WriteLine("Dobry den");
}

}

Listing 3.33 Listing 3.32 refactored.

52

void ConditionalHello(bool polite, bool multilingual) {
if (!(polite)) {

return ;
}
Console.WriteLine("Hello world");
if (!(multilingual)) {

return ;
}
Console.WriteLine("Dobry den");

}

Listing 3.34 Listing 3.33 refactored.

Limitations

The refactorer is limited to just void functions but could potentially be extended to
others in the cases where the necessary return statements were already present.

3.5.4 Simplify Condition
Introductory Example

Listing 3.35 below shows one use case of the Simplify condition refactorer. The
problem is that once we get to the evaluation of !a && b, a must have been
false, meaning that the second condition can be simplified to just b, as shown in
Listing 3.36. No seasoned programmerwouldwrite this code. However, a beginner
might, especially if we imagine more else if statements between the two else if
statements in the example.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (!a && b) {
/*Code2*/
}

}

Listing 3.35 Simplify condition basic
example.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (b) {
/*Code2*/
}

}

Listing 3.36 Listing 3.35 refactored.

53

Atoms

Atom is what we call a simple expression that is the endpoint of our analysis.
They are binary expressions with operators ==, !=, <, <=, > or >=. Identifier names,
like variable or property names, are also atoms. If our analysis ever reaches
an identifier name, it necessarily means the underlying type of them is bool
because we do not recurse under any operators that compare non bool types.
Finally, simple member accesses, which include property and field accesses, are
also atoms. However, invocations of class methods are not. This is due to our
assumptions about side effects made in Section 2.1.2.

Possibility

The refactorer approaches this problem from the point of view of the if whose
condition can be simplified, called in this chaptermain if. In the case of Listing 3.35,
the main if is if (!a && b). Next, we need a list of conditions with a clear outcome
at the point we are evaluating the condition of the main if. We will call this
simplifying list. In the case of Listing 3.35, the list has just one condition a. We
will use these for the simplification. Note that these do not need to just come
from the preceding if and else if conditions in the same if and else if chain,
but can also be a part of an enclosing if, shown in Listing 3.37 and Listing 3.38.

void m(bool a, bool b) {
if (a) {

if (a && b) {
/*Code1*/
}

}
}

Listing 3.37 Simplify condition example
with enclosing if.

void m(bool a, bool b) {
if (a) {

if (b) {
/*Code1*/
}

}
}

Listing 3.38 Listing 3.37 refactored.

A limit to our solution is that we will only put atoms or their negations into
the simplifying list. A general solution could use a logical solver to do more, but
that is outside of the scope of this thesis.

So far, the examples only had one condition in the simplifying list, but consider
Listing 3.39 below. Here, we can simplify !a && b && c based on a being false and
b being true, and we get Listing 3.40.

54

void m(bool a, bool b, bool c)
{
if (a) {
/*Code1*/
}
else if (b) {

if (!a && b && c) {
/*Code2*/
}

}
}

Listing 3.39 Simplify condition example
with two entries in simplifying list.

void m(bool a, bool b, bool c)
{
if (a) {
/*Code1*/
}
else if (b) {

if (c) {
/*Code2*/
}

}
}

Listing 3.40 Listing 3.39 refactored.

Note that if there was any code between else if (b) and if (!a && b && c),
the values of a and b might have been changed by that code, so we no longer put
them in the simplifying list. This refactorer would not be able to simplify that
code in any way.

The main if so far always consisted of a sequence of &&, but we allow || as
well, an example shown in Listing 3.41 and Listing 3.42.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (a || b) {
/*Code2*/
}

}

Listing 3.41 Simplify condition basic
example with ||.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (b) {
/*Code2*/
}

}

Listing 3.42 Listing 3.41 refactored.

Consider Listing 3.35 and Listing 3.41. We know that a is always false when
applying the refactorer on the else if statements, which neither helps nor hinders
fulfilling the conditions !a && b and a || b, so we can just delete the respective
part about a. So far, all the examples were like that. Now consider Listing 3.43. It
is like Listing 3.35, but without the negation in a && b. This makes the /*Code2*/
unreachable, and we can delete it as shown in Listing 3.44.

55

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (a && b) {
/*Code2*/
}

}

Listing 3.43 Simplify condition example
with always false condition.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}

}

Listing 3.44 Listing 3.43 refactored.

Listing 3.45 below is an example just like Listing 3.35 but with an || instead
of &&. The change means that /*Code2*/ is always executed if we reach the else
if (!a || b). Thus, we can transform the else if into just an else, shown in

Listing 3.46.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else if (!a || b) {
/*Code2*/
}

}

Listing 3.45 Simplify condition example
with always true condition.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}
else {
/*Code2*/
}

}

Listing 3.46 Listing 3.45 refactored.

The last two examples are special cases that stem from simplifying the main
if condition. Simplifying if(a && b) in Listing 3.43 is internally rewritten as if(
false). Conversely if(!a || b) in Listing 3.45 is internally rewritten as if(true).
The structural changes in Listing 3.44 and Listing 3.46 are just a more natural and
overall clean version of the if with a boolean constant as a condition.

Note that if Listing 3.43 had more else if statements after a && b, we would
leave those in place, as their statements might still be reachable. If Listing 3.45
had more else if statements after !a || b, the following else if statements were
actually unreachable, so there is no reason to include them.

Finally, note that if the if we are refactoring is not a part of an else if (we
have already shown an example like that in Listing 3.37), the behavior in the
special cases where the condition is always true or always false is a bit different.
If we find it is always true, we replace the whole if statement with its embedded
statement. We also try the block simplification as described in Section 3.1.1. If it
is always false, we replace it with the if statement in its else if.

To summarize, when is the refactoring of main if possible? It is possible when

56

we are able to pair at least one member of the simplifying list to an atom or the
negation of an atom in the condition of the main if.

Criterion

If it is possible, we recommend it. No inverse refactorer is present, as it does not
apply to this refactorer.

Limitations

void m(bool a, MyClass x) {
if (a) {
/*Code1*/
}
else if (x.m() && a) {
/*Code2*/
}

}

Listing 3.47 Simplify condition example
with potential side effect.

void m(bool a, bool b) {
if (a) {
/*Code1*/
}

}

Listing 3.48 Listing 3.47 refactored.

Let us look at Listing 3.47. When refactoring if(x.m() && a), we know a is
false. We could evaluate that condition as always false and then get rid of it. This,
however, would be incorrect if x.m() has any side effect. It could, in a similar
example, even change the value of a.

We already talked about how we only consider expressions that are not side-
effect-prone as atoms. This means that the simplifying list only includes what we
consider side-effect-free expressions, as we only put atoms there. But to solve
the problem in Listing 3.47, we must also make sure the main if condition is
not side-effect-prone. Finally, when recursing into preceding conditions to find
out the simplifying list, whenever we encounter a side-effect-prone condition,
we must stop. Otherwise, we risk that the side effect could interfere with our
presumed function of the code.

The main focus of this refactorer is on simple cases like Listing 3.35 and
Listing 3.37, which are occasionally found in beginner code. The described
functionality is a natural extension of these cases in a few directions but could
be improved much further using semantic analysis, advanced code analysis, and
mathematical logic techniques.

57

3.5.5 Return Condition
Introductory Example

bool m(bool a)
{

if (a)
{

return true;
}
else
{

return false;
}

}

Listing 3.49 Return condition basic
example.

bool m(bool a)
{

return a;
}

Listing 3.50 Listing 3.49 refactored.

Listing 3.49 and Listing 3.50 show the basic application of the Return condition
refactorer, which simplifies the if to just a return.

Possibility

The only requirement for the usage of this refactorer is that the bodies of the if and
else contain only return true; and return false;. The boolean constants may be
swapped. In that case, we negate the condition that is now in the return, shown
in Listing 3.51 and Listing 3.52 below. The parentheses in !(a) are unnecessary
but would be necessary if a was a binary expression, so we leave them there, as
discussed in Section 2.3.3.

bool m(bool a)
{

if (a)
{

return false;
}
else
{

return true;
}

}

Listing 3.51 Return the condition
example with swapped boolean values.

bool m(bool a)
{

return !(a);
}

Listing 3.52 Listing 3.51 refactored.

58

Criterion

If the refactoring is possible, we always recommend it. The only reason not to
refactor is if we predict we will need to add some code that should only be run
if the condition is either true or false. However, we cannot predict that, so we
always recommend the refactoring.

Limitations

An inverse refactorer is not completely necessary here, as, without seeing into the
future, applying this refactorer is always a good idea. But if the user later realizes
they want to, for example, log something when the condition is true, it would
be nice to have the option to go back to the if statement form, instead of having
to do it manually. This would, however, require including return statements in
the UI to have a place for the inverse refactorer. We chose not to include return
statements in the UI to not overly complicate it for one small use case. But if
we wanted to do so in the future, the refactorer interface and the surrounding
structures are easily extensible to allow for return statement refactorers.

3.5.6 Simplify Parentheses
Introductory Example

void m(bool a, bool b, bool c)
{

if (a && (b && c))
Console.WriteLine("

Hello World");
}

Listing 3.53 Simplify parentheses basic
example.

void m(bool a, bool b, bool c)
{

if (a && b && c)
Console.WriteLine("

Hello World");
}

Listing 3.54 Listing 3.53 refactored.

The idea behind this refactorer is summed up by its name Simplify parentheses:
sometimes parentheses get overly complicated, and it is handy to have a tool that
simplifies them. A basic example is shown in Listing 3.53 and Listing 3.54.

Possibility

The refactoring is possible if we find any pair of parentheses that can be simplified.
We obviously need to respect operator precedence. For example, parentheses in
the expression a && (b || c) cannot be omitted without changing the meaning.

59

Criterion

If it is possible, we always recommend it.

Limitations

During analysis, we focus primarily on operators like &&, ||, negations, and
parentheses. If we encounter anything uncommon, like ^ (XOR), we might keep
parentheses even though they are unnecessary. We also do not recurse under
these uncommon constructs.

3.5.7 Propagate Negations
Introductory Example

void m(bool a, bool b)
{

if (!(a && b)) {
Console.WriteLine("

Hello World");
}

}

Listing 3.55 Propagate negations basic
example.

void m(bool a, bool b)
{

if (!a || !b) {
Console.WriteLine("

Hello World");
}

}

Listing 3.56 Listing 3.55 refactored.

Once again, this refactorer is summed up by its name Propagate negations.
An example is shown in Listing 3.55 and Listing 3.56.

Possibility

The refactoring is possible whenever there is at least one negation that can be
propagated into its operand.

Criterion

If it is possible, we always recommend it.

Limitations

Once again, as with the Simplify parentheses refactorer, we only focus on a se-
lect subset of expressions that constitute most conditions. When we encounter
an uncommon operator like ^ (XOR) during the propagation, we simply wrap it
in parentheses and a negation.

60

3.5.8 Combine Else and Embedded If
Introductory Example

void m(bool a, bool b)
{

if (a) {
Console.WriteLine("

Hello World");
}
else {

if (b) {
Console.WriteLine("

Ahoj svete");
}

}
}

Listing 3.57 Combine else and
embedded if basic example.

void m(bool a, bool b)
{

if (a) {
Console.WriteLine(
"Hello World");

}
else if (b) {

Console.WriteLine(
"Ahoj svete");

}
}

Listing 3.58 Listing 3.57 refactored.

Listing 3.57 and Listing 3.58 show the basic application of this refactorer.
It removes the unnecessary block between the else and if statement and thus
reduces the nesting. Note we attribute this refactoring to the else.

Possibility

The refactor is possible only if the embedded block of the else contains only
an if statement. If there is any other code before or after the if statement, this
refactoring is impossible. If the if statement has an else or else if, we simply
move those with the if statement during the refactoring, as shown in Listing 3.59
and Listing 3.60 below.

61

void m(bool a, bool b)
{

if (a) {
Console.WriteLine(
"Hello World");

}
else {

if (b) {
Console.WriteLine(
"Ahoj svete");

}
else {

Console.WriteLine(
"Hallo Welt");

}
}

}

Listing 3.59 Combine else and
embedded if basic example.

void m(bool a, bool b)
{

if (a) {
Console.WriteLine(
"Hello World");

}
else if (b) {

Console.WriteLine(
"Ahoj svete");

}
else {

Console.WriteLine(
"Hallo Welt");

}
}

Listing 3.60 Listing 3.59 refactored.

Criterion

If it is possible, we always recommend it.

Limitations

Due to the simplicity of this refactorer, no limitations really apply.

62

Chapter 4

Implementation

In this chapter, we describe the implemented refactorer API and some interesting
consequences and solutions stemming from that API. We then describe the core
parts of Visual Studio integration.

4.1 Refactorers Implementation API
We will start by describing the refactorer API because it has consequences for
many of our interesting implementation solutions.

4.1.1 API
What we have so far called a refactorer in this thesis is a class that implements
the interface IRefactorer<T>. The interface has four methods, which all share the
parameter T node, for which the given operation should be carried out:

• GetRecommendation(T node) which returns the recommendation for the
refactoring on node. That recommendation is the enum
ERefactoringRecommendation, which has four values: Impossible,
Recommended, Sidegrade (an alternative that is neither better nor worse),
and Discouraged. This directly implements the conclusion we arrived at in
Section 3.2.1.

• GetRefactoredRoot(T node) which carries out the refactoring on node and
returns the root of the syntax tree where the changes have been carried
out. The implementations also annotate select nodes solely for paired
highlighting without any effect on the source code.

• GetHighlights(T node) which returns a list of pairs, where each pair rep-
resents where and what type of highlight should be applied in the code

63

pre-refactor. The highlight type is represented by the enum EHighlight,
which has values that signify newly added code, deleted code, and then
several values that are used for pairing similar constructs in code when
appropriate. Pairing similar constructs is done by putting multiple pairs
into the returning list, with different locations but the same EHighlight.

• GetPairedHighlights(T node, SyntaxNode annotatedRefactoredRoot) is sim-
ilar to GetHighlights but is expected to be used when a preview of the
refactored code is also available. It is the only method in the interface that
has another parameter. The parameter annotatedRefactoredRoot contains
the root of the tree where the refactoring has already been carried out,
and it (usually) contains annotations solely present to facilitate paired
highlights, which were put there during GetRefactoredRoot.

4.1.2 Type Parameter
The type parameter in IRefactorer<T> is IfStatementSyntax for most implemented
refactorers. The one usage in this thesis where it is something else is in the
Combine else with embedded if refactorer described in Section 3.5.8, where it
is ElseClauseSyntax. IRefactorer<T> type parametrization is helpful because, in
combination with other type parametrization, we can use the same code in the
extensions view model transformation for both if and else statements. It would
also be useful in any future attempts to generalize the tool. If there were any other
constructs we wanted to have refactorers for, for example, variable declarations,
we would require very few changes to the existing code.

4.1.3 Non-Parametrization of Refactorers
The one disadvantage of the IRefactorer<T> interface is that the refactors cannot
be parameterized. For example, imagine we wanted to extend the Extract start
refactorer described in Section 3.5.1 to be able to transform Listing 4.1 to Listing 4.2
below in one go. We would somehow need to pass the information that we want
to extract a start of “length 2” to the refactorer. A possible workaround that uses
the existing API would be to pass that additional information as an annotation.
That is, however, only a workaround solution. A cleaner approach would be
a further generalization of IRefactorer<T> interface that included such additional
information in the method signatures, which is not implemented.

64

void m(bool a, bool b, bool c)
{

if (a && b && c) {
Console.WriteLine("

Hello World");
}

}

Listing 4.1 Extract start example with
two && in the condition

void m(bool a, bool b, bool c)
{

if (a && b) {
if (c) {

Console.WriteLine("
Hello World");

}
}

}

Listing 4.2 Listing 4.1 possible refactor
through our tools, but no in one step.

4.2 Concrete Solutions

4.2.1 Auto-Simplification
While using the Flattening refactorer described in Section 3.5.2, we might produce
a condition like (a || b) && (c || d). The parentheses here are necessary. But
even when they are not necessary, such as if the resulting condition was just
(e) && (f), it is sometimes a desirable result that we want to show to the user.
That is because it keeps the refactoring consistent. The refactorer always keeps
the parentheses there. However, once the user understands this, we might want
to offer an option to remove these unnecessary parentheses. In one way, we do
that by having a dedicated refactorer that simplifies parentheses. But it would be
inconvenient for the user to have to use it all the time. So we want an option to
use it automatically. This presents several technical problems.

Why

We already mentioned unnecessary parentheses as one problem we want to auto-
simplify. Another one is negations and their propagation, for similar reasons. Both
of these are worthy of their own refactorer, which we described in Section 3.5.6
and Section 3.5.7. However, we should also be able to do them automatically,
and that automation presents problems. Finally, there is the option of including
clarity parentheses. Parentheses in a || (b && c) are technically unnecessary,
but they lessen the mental load for even experienced programmers. We separate
the problem of clarity parentheses from the parentheses simplification because
then the responsibilities are clear. One auto-simplification option only removes
parentheses, and the other only adds parentheses.

65

Limiting What

The first problem is which conditions to auto-simplify. The first thing to note is
that it might not always be just one condition. This fact influenced the decision
to return the root of the refactored tree from IRefactorer<T>.GetRefactoredRoot,
as discussed in Section 3.2.2. Even when we only modify one condition and thus
want to auto-simplify one condition, we still lose the information on which one
it was due to returning the root.

We certainly do not want to auto-simplify conditions the refactorer did not
work with at all, as that would be confusing for the user. In fact, we only want
to automatically simplify the conditions that were directly important to the
refactor. Some conditions might be inside blocks of code we are moving during
the refactoring, but if they were not directly involved in the possibility and
carrying out of the refactoring, we should not auto-simplify them. This means
that we cannot, for example, check the syntax tree pre-refactor and post-refactor
and auto-simplify based on their differences because we cannot easily differentiate
the conditions important to the refactoring from the ones that just happened to
be there.

The chosen solution is to use a concrete annotation across all refactorers in
every IRefactorer<T>.GetRefactoredRoot, with which we tag all of the conditions
that the refactorer has modified. These conditions might or might not be auto-
matically simplified based on user preferences. This is a sort of hidden contract
of IRefactorer<T>, but if it is not fulfilled, the only thing that happens is that we
will be unable to auto-simplify the conditions where the annotation is missing.

Wrappers

Refactorers now annotate the conditions we want to auto-simplify. A further
decision that needs to be made is how to act on these annotations. A way to
seamlessly integrate the auto-simplifications among refactorers is to make them
refactorers. We call these wrapper refactorers, but they still fulfill the same
IRefactorer<T> interface. We call them “wrapper” because, contrary to so far
mentioned refactorers, these need an inner refactorer they wrap around. Whenwe
ask a wrapper refactorer for GetRecommendation, it simply asks the inner refactorer
for its GetRecommendation on the node it was given. The more interesting case is
what the wrapper refactorer does for GetRefactoredRoot. First, we ask the inner
refactorer for its GetRefactoredRoot. Then, we go through all of the conditions
that were annotated as candidates for auto-simplification, and we do just that.
Then, we return the result. Note that this approach allows for multiple wrapper
refactorers.

66

Highlighting

While the wrapper refactorers could theoretically add additional highlights in
GetHighlights, there is not a good use case for that. Hence, the reality is that just
like GetRecommendation, they just return what the inner refactorer returns.

The paired highlights are much more interesting. We mentioned that, unlike
other IRefactorer<T> methods, GetPairedHighlights has an additional parameter
annotatedRefactoredRoot. The original reason for including it was that every
GetPairedHighlights implementation started with calling the GetRefactoredRoot(
node). But paired highlights only make sense if we already have the refactored
code somewhere, so we might as well pass it to GetPairedHighlights and save
some resources.

This is where wrapper refactorers come into play and exploit this design
choice. The normal refactorers implement the post-refactor highlights by anno-
tating nodes during GetRefactoredRoot, and then translating the annotations to
highlights in GetPairedHighlights.

If we calculated the post-refactor highlights based on the code before the
auto-simplification, it would not visually (or logically) line up with the code we
show to the user with the auto-simplification, so that is not an option. This only
leaves us with the option to somehow calculate the post-refactor highlights based
on the auto-simplified code.

However, there is a problem. Consider that the parentheses simplification
wrapper might remove a pair of parentheses that were annotated for highlighting.
The solution is to do auto-simplification carefully regarding annotations. When
we, for example, remove a pair of parentheses in auto-simplification, we copy the
annotation of the removed parentheses to its child. Note that both parentheses and
negations are unary operators, so whenever we omit them, it is straightforward
who should receive their annotations.

Usage Summary

So what do we do if we want to follow up a Flattening refactorer described in
Section 3.5.2 with all three auto simplification options? That is, we want to
simplify parentheses, but include clarity parentheses, and propagate negations.
We create the Flattening refactorer, then wrap that refactorer by the wrapper one
that takes care of the negations, then one for the parentheses simplification, and
then the one that adds the clarity parentheses back. The ordering is important.
The negation one might introduce many unnecessary parentheses, which means
the parentheses simplification has to be after it. And there would be no point in
adding clarity parentheses before omitting all of the unnecessary ones.

This approach allows us to use this triple-wrapped refactorer as if it were just

67

the inner refactorer without any wrapping. Only the part of the code that trans-
lates user preferences regarding auto-simplification knows about the wrappers.

Simplify Parentheses and Clarity Parentheses Quirk

When we wrap the Simplify parentheses refactorer in the clarity parentheses
wrapper refactorer, we get a package that, when refactoring, removes unneces-
sary parentheses and then adds the clarity ones. This, however, means that the
package will be applicable to whatever it itself produces because it will contain
unnecessary clarity parentheses. This is a quirk of our decision to separate the
clarity parentheses from the parentheses simplification instead of making a com-
bined “parentheses adjuster” or such. We could easily have special behavior for
this special case. But we chose to keep this behavior, as it keeps the functioning
of auto-simplification options consistent. The best solution would be to notify
the user somehow why the refactor seemingly does not do anything, but we have
no such notification system in place and chose not to implement it just for this
special case.

4.2.2 Trivia
Most of our refactorers move code around. As discussed in Section 1.3, trivia,
which includes comments and white spaces, falls under nearby syntax nodes.
Note that the nodes or tokens Roslyn assigns trivia to might not be the actual
reason it was put there, especially with comments.

Comments

We try to keep comments intact using methods like IfStatementSyntax
.WithCondition(ExpressionSyntax). These only replace the given part, in this
case, the condition, while keeping everything else the same, including comments.
However, consider the Flattening refactorer described in Section 3.5.2. As a part of
our refactor, we must eliminate one of the if statements. Generally, whenever we
delete or combine nodes as part of a refactor, we risk losing comments if they are
attached to the nodes we are manipulating. We could tag the deleted comments
onto another node, but it adds another layer of complexity, as they have no set
structure, unlike code. Any implementation would require user adjustments to
the comments in most cases, anyway. Thus, the implementation only keeps trivia
to the extent that the family of methods like IfStatementSyntax.WithCondition(
ExpressionSyntax) allows, but we never intentionally move trivia around to keep
it.

This presents a problem if we take a different route during refactoring the

68

intro example, which we analyzed in Section 2.3.1. By extracting inUse first, we
can quickly arrive at the code in Listing 4.3.

void m(int pipeCapacity , bool inUse, string
maintenanceInstructions) {
if (pipeCapacity == 0)
{
/*replace it, it's too broken*/
}
else
{

if (inUse)
{

if (maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else
{

if (maintenanceInstructions == "decide"
|| pipeCapacity == 0)

{
/*turn off water, replace it just to be sure,

or because nothing flows through*/
}
else if (pipeCapacity == 42)
{
/*investigate the magical pipe*/
}

}
}

}
}

Listing 4.3 Introductory example alternative path.

The comments in the example are meant to stand for some functional code.
But if we take them literally, and apply the Simplify condition refactorer on if (
maintenanceInstructions == "decide" || pipeCapacity == 0), we get Listing 4.4
below. This is because block removal, discussed in Section 3.1.1, comes into
play. If no statements are inside a block, any comments inside the block must be
attributed to the block. When we remove that block, we pay no special attention
to the comments, and we remove them as well.

69

void m(int pipeCapacity , bool inUse, string
maintenanceInstructions) {
if (pipeCapacity == 0)
{
/*replace it, it's too broken*/
}
else
{

if (inUse)
{

if (maintenanceInstructions != "decide")
{
/*turn off water and do what instructed to*/
}
else
{
}

}
}

}

Listing 4.4 Listing 4.3 refactored using Simplify condition refactorer, with comments
taken literally.

Whitespaces

In the case of whitespaces, we cannot just try to keep them as they are. We often
increase or lessen the nesting of code, which we need to signify by increasing or
decreasing the indentation of the code, which means changing whitespaces. An-
other problem is that SyntaxFactory methods, by default, do not include any trivia.
For example, SyntaxFactory.ReturnStatement(SyntaxFactory.LiteralExpression(
SyntaxKind.TrueLiteralExpression)) results in returntrue;, without the space
that is necessary when we turn the syntax tree back to code.

We utilize the function SyntaxNode.NormalizeWhitespace(), which does exactly
as its name implies. It is, however, very aggressive in that normalization and has
very few settings.

A first idea to limit the impact of NormalizeWhitespace() would be to only
apply it as locally as possible. This does not work because the function does
not know at what indentation we are, as it assumes the node we call it on has
none. We could, of course, manually increase or decrease that indentation, but the
more non-conforming code is compared to the whitespaces NormalizeWhitespace
() prescribes, the more difficult these manual changes will be.

It is also unnecessary, as we are not the first to have a problem with too heavy-
handed whitespace normalization. The usual approach is to utilize the Formatter

70

.Format() function from Microsoft.CodeAnalysis.Formatting. This function re-
quires a workspace from which it takes formatting settings. It can either format
a syntax node we directly pass to it or format all nodes with a specific annotation.
The important difference is that when formatting a node that is part of a larger
tree, it takes its context into account, mainly the indentation. Thus, it can have
the limited impact NormalizeWhitespace() cannot easily have.

We, however, currently do not utilize Formatter.Format(). Currently, all imple-
mented refactorers directly use NormalizeWhitespace() in their implementation.
A cleaner way to do whitespace normalization would be to create a whitespace
normalizing wrapper refactorer. We could reuse the existing auto-simplification
annotations or create new ones just for the whitespace normalizing. This wrapper
could then use Formatter.Format() on either a user workspace or one with our
custom format.

Implementing the solution described in the previous paragraph would not be
that difficult by itself. However, it would require changing most of the refactor
tests we use. Early on, we decided to make the refactor tests fit the output exactly,
including whitespaces. This, however, means that changing the way we normalize
those whitespaces would necessitate adjusting the tests.

We could also implement a wrapper refactorer that uses Formatter.Format
(), and another one which would use NormalizeWhitespace() to keep the tests
relevant. However, the best way, but one that would take a lot of effort, would be
to remake the tests and test what we will actually present to the user.

4.2.3 VS Integration
We will now describe the integration into Visual Studio. Figure 4.1 shows a sim-
plified UML diagram that demonstrates the relationships between classes. All
relationships without explicit cardinality are one-to-one. Some classes are omitted,
so the diagram is not overly complicated, but we describe them in the text.

WPF and View Models

The front end of the extension uses WPF, as is usual for VS extension. We
utilize binding to keep our UI up to date with our analysis. The source for that
binding is MainViewModel, which has bindable properties for settings, property
for the text we display, and, most importantly, it contains a bindable list of
BranchingStatementViewModel (BSVM) representing if, else if and else statements
directly in the body of a function we are analyzing. Every BSVM has its own list of
nested BSVM that represent the nested code constructs.

Every BSVM has a list of RefactorerViewModel, which represent a potential
application of a concrete refactorer on the concrete if, else if or else the given

71

CoBrAs

CoBrAsExtension

1

*

1

*

*

1

*

1

*

…

≪interface≫
IRefactorer<T>

≪interface≫
IRefactorer<IfStatementSyntax>

FlattenIf

ExtractStart

≪interface≫
IRefactorer<ElseClauseSyntax>

CombineElseAndEmbeddedIf

MainViewModel

BranchingStatementViewModel

RefactorerViewModel

MainViewModelUpdater

RoslynFinderChecker

Previewer

Highlighter

Listener

Figure 4.1 Visual Studio integration simplified UML diagram.

72

BSVM represents. We bind buttons to these. The refactor being impossible means
the button is invisible, and if it is possible, recommendations result in different
colors. We also use the binding to bind to ICommand that carries out the highlighting
and refactoring.

MainViewModel is only ever manipulated by MainViewModelUpdater. We separate
the data from the manipulation because MainViewModel is already busy with being
WPF binding compliant, and MainViewModelUpdater contains non-trivial logic that
transforms our analysis into the bindable structures of MainViewModel, BSVM, and
RefactorerViewModel.

Previewing and Highlighting

MainViewModelUpdater utilizes MainViewModel to express ourselves in our own tool
window. However, highlighting in the old code and previewing and highlighting
in the refactored code requires us to express ourselves outside of our tool window.
MainViewModelUpdater utilizes Previwer for that.

Previwer utilizes Highlighter for highlighting on DocumentView (which rep-
resents an open text document) with user code, with our preview also being
DocumentView, meaning we can use the same API to highlight on both the user
code and our preview. Previwer is also responsible for creating that preview.

Highlighter encapsulates the raw VS highlighting (further just called RAW).
Such an encapsulation is required because we are using it somewhat unnatu-
rally. RAW expects the analysis required to be done inside of its implementation.
Whereas, in our case, we want to highlight something occasionally, but a good
encapsulation and splitting of responsibilities necessitates the code that does
analysis cannot be inside of our RAW implementation.

In a more low-level description, RAW provider is automatically instantiated
for an open document. But we need to access that RAW provider from the outside
to put our highlights in. However, due to the automatic instantiation, we found it
difficult to gain that access. A solution we found is that Microsoft.VisualStudio
.Text.ITextBuffer, which represents a sequence of characters and is utilized
by DocumentView, has the so-called properties (not to be confused with the code
construct). Any type can be put into those properties, and it can also be retrieved
using the type.

We can put the RAW provider into those properties during instantiation as
ITextBuffer is easily accessible there. It is also easily accessible from Highlighter
using DocumentView.TextBuffer, whose properties we then query for the RAW
provider type.

73

Servicing Updates

We have yet to talk about what starts or refreshes our analysis. That is the
responsibility of Listener. On startup, we use it to start listening to workspace
events. These include both big events, such as loading a different solution, and
small ones, such as just writing a single character. We also periodically use
Listener to start listening for the currently open documents moving of the caret.
Note that the movement as a result of the usual text edits is not considered moving
the caret, meaning our two listening points do not overlap. We let the workspace
changes settle for a short period of time before we start our analysis simply
because normal programming often results in non-compilable code before one
finishes. To most caret changes, we react immediately, but not when the user is
moving the caret as a part of a selection. In that case, we do not react at all.

Listener only has access to MainViewModelUpdater for the purposes of reporting
reasons we could not analyze, for example, that we are waiting for the workspace
changes to settle. If Listener finally decides it is time to analyze, it does not call
MainViewModelUpdater but calls RoslynFinderChecker.

The responsibility of RoslynFinderChecker is to primarily retrieve the Roslyn
instance already running in VS and check it for both syntax and semantic er-
rors. It also retrieves other internal VS information required for the actual file
changes, previewing, and such. If it does not find any errors, it takes the retrieved
information and finally passes it to MainViewModelUpdater.

Transforming Refactorers to View Models

MainViewModelUpdater has a hardcoded list of implemented IRefactorer <
IfStatementSyntax> and IRefactorer<ElseClauseSyntax> it uses when creating the
viewmodels. There is a number of IRefactorer<IfStatementSyntax> implemented,
but only one IRefactorer<ElseClauseSyntax>, but there would be no problem in
integrating more.

We will now describe the transformation of a Roslyn syntax tree into the view
models. First, we summarize if, else if, and else statements into descendants of
a class BranchingStatementSummary<T> (not displayed in the diagram for the sake of
brevity). These summaries are IDE-independent and simply serve as a summary
of conditional branching statements without any of the code between them.
Contrary to the view models, they follow the recursiveness of code constructs.
Importantly, they include the SyntaxNode the summary represents.

MainViewModelUpdater then goes through these summaries. It has to transform
them from the language rule recursiveness to the one we need in the tree view
and thus view models. We want to display an else if statement on the same level
as its ancestor if statement, even though in the language rules, their relationship

74

is descendant-ancestor.
When we are view modeling a summary of if or else if statements, the

hardcoded list of IRefactorer<IfStatementSyntax> applies. For else statements,
the hardcoded list of IRefactorer<ElseClauseSyntax> applies.

For a given summary, we first create its BranchingStatementViewModel. Then
we go through all of the refactorers that apply to it. For each refactorer, we first get
its GetRecommendation on the node the summary represents. If it is not impossible,
that refactorer is not applicable to the current node. If it is not impossible, we
also speculatively try to calculate the refactored code and highlights and declare
it impossible if any exceptions appear. This is to increase the stability of our
implementation.

If the refactor is possible, we transform it into a RefactorerViewModel under
the current BranchingStatementViewModel. The recommendation we calculated
translates into the color of the button we display. The actions on hovering and
clicking on the button are (under some wrappers necessary for WPF) facilitated
through C# Actions.

As a part of these Actions, we wrap the base refactorer with wrapper refac-
torers. The wrapper refactorers are not shown in the diagram for the sake
of brevity, and we will now describe the reality of their instantiation. The
MainViewModelUpdater simply has the wrapper refactorers hardcoded in a local
function, which conditionally does the wrapping based on the settings. We utilize
variable capturing to keep them up to date with the current settings. This means
we do not need to recalculate the view models when the settings change.

Mock View Model and Theming

We utilize a design time mock view model that runs our analysis on a set piece of
code. It is not presented in the diagram to avoid overcomplicating it. It inherits
from MainViewModel and fills out its properties in the constructor.

The usage of a design time mock view model influenced the design a bit
due to the technical constraints of the mock binding. It, for example, re-
quired BranchingStatementViewModel and RefactorerViewModel to not be type
parametrized. However, the mock view model allows easier redesigning of the
tree view part of the UI.

We use the Visual Studio Community toolkit to align the theming of our tool
window with the rest of the Visual Studio. This means the design time mock
viewed in the designer will not be how the tool window looks exactly because
the automatic theming needs a VS instance to function. But it will still look very
similar.

75

Exceptions

We utilize the Visual Studio Community toolkit to log any exceptions we en-
counter. The log is in the Output window of Visual Studio, in a selection named
Extensions.

76

Conclusion

In our analysis, we identified that the main problem with existing ways of provid-
ing refactors, such as CodeFixes, is that they do not focus on beginners. Instead,
they focus on improving the efficiency of programmers who already know what
they want to do. We also identified a problem with the availability and approach-
ability of CodeFixes for beginners.

As a solution, we implemented a Visual Studio extension that lets the user
explore the already present if statements in their C# code. Whenever the ex-
tension has a refactor to offer, it is clearly presented to the user in the dedicated
part of the UI of the extension, which summarizes the if statements from the
user code. This is in contrast to CodeFixes, which are only locally available and
hidden behind a few menus.

The extension not only offers the refactor but also recommends them in
a beginner-friendly simple color coding. Moreover, the extension explains the
reasoning why the refactors are possible using highlighting in the user code.
Whenever the user is considering a refactor, they can utilize this highlighting on
either the old code or on both the old code and a preview of the refactored code to
better understand the refactor. The comparable feature of CodeFixes is a simple
diff, which might be hard to understand for new users, and simply describes the
textual changes instead of the ideas behind them.

Overall, the goal of this thesis was met. We put emphasis on our users being
beginner programmers and designed the extension to cater to them. The extension
is easy to install and use, which is important for beginners.

Future Work
The most valuable addition would be a gentler handling of user white spaces, for
which we already outlined a solution in Section 4.2.2.

The existing refactor analyses could be deepened to cover more cases. Some
of them could also utilize much more advanced code analysis techniques. Test
coverage could also always be improved.

The implementation is easily extensible with refactors of new mistakes

77

for if, else if, and else statements, albeit with the caveat of refactor non-
parametrization described in Section 4.1.3. Our infrastructure could also reason-
ably be extended to accommodate refactors on, for example, return statements.

Textual explanations alongside refactors could help beginners better under-
stand them. However, if done in the detail necessary to be helpful, they would
immensely increase the complexity of a simple refactor analysis. Similarly, ex-
plaining why a refactor idea does not apply in a specific case could be helpful but
also very complex.

78

Bibliography

[1] Microsoft. If statement language specification. url: https : / / learn .
microsoft . com / en - us / dotnet / csharp / language - reference /
language-specification/statements#1382-the-if-statement
(visited on 07/12/2024).

[2] Paul W Abrahams. “A Final Solution to the Dangling else of ALGOL 60 and
Related Languages”. In: Communications of the ACM 9.9 (1966), pp. 679–682.

[3] T.J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE-2.4 (1976), pp. 308–320. doi: 10.1109/TSE.1976.233837.

[4] Maurice H Halstead. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[5] Norman Peitek et al. “Program Comprehension and Code Complexity
Metrics: An fMRI Study”. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 2021, pp. 524–536. doi: 10.1109/ICSE43902.
2021.00056.

[6] Microsoft. Roslyn GitHub repository. url: https://github.com/dotnet/
roslyn (visited on 06/27/2024).

[7] Microsoft. Roslyn syntax introduction. url: https://learn.microsoft.
com/en-us/dotnet/csharp/roslyn-sdk/work-with-syntax (visited
on 07/12/2024).

[8] Microsoft.Analyzer and CodeFix overview. url: https://learn.microsoft.
com / en - us / visualstudio / code - quality / roslyn - analyzers -
overview?view=vs-2022 (visited on 07/12/2024).

[9] Microsoft. Visual Studio 2022 homepage. url: https://visualstudio.
microsoft.com/cs/vs/ (visited on 07/12/2024).

[10] Microsoft. Visual Studio 2022 extensibility resources. url: https://learn.
microsoft.com/en-us/visualstudio/extensibility/?view=vs-
2022 (visited on 07/12/2024).

79

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#1382-the-if-statement
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#1382-the-if-statement
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#1382-the-if-statement
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/ICSE43902.2021.00056
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/work-with-syntax
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/work-with-syntax
https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://visualstudio.microsoft.com/cs/vs/
https://visualstudio.microsoft.com/cs/vs/
https://learn.microsoft.com/en-us/visualstudio/extensibility/?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/?view=vs-2022

[11] Mads Kristensen and community. Visual Studio Community toolkit. url:
https://github.com/VsixCommunity/Community.VisualStudio.
Toolkit (visited on 07/08/2024).

[12] James C. King. “Symbolic execution and program testing”. In: Commun.
ACM 19.7 (July 1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.
360252. url: https://doi.org/10.1145/360248.360252.

80

https://github.com/VsixCommunity/Community.VisualStudio.Toolkit
https://github.com/VsixCommunity/Community.VisualStudio.Toolkit
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

Appendix A

Attachment structure

CoBrAsExtension.vsix is the file using which you can install our extension.
repository contains a copy of the repository that was used during the devel-

opment. It includes all of the git files, including the history of the repository.
Source code, solution and project files, and other necessary files needed to pro-

duce and test our extension are present in folders repository\CoBrAs, repository
\CoBrAsExtension, and repository\CoBrAsTests. The solution file specifically is
present in repository\CoBrAs.

An example solution on which we recommend trying out our extension is in
repository\Examples.

Finally, repository\Analysis contains a few proof concept solutions and infor-
mal notes about use cases. In repository\SourceOfMistakes is a solution written
by a beginner programmer, which served as a source for most of the use cases we
focus on in the thesis.

81

Appendix B

Using CoBrAs (User
Documentation)

Conditional Branching Assistant is a Visual Studio 2022 extension that aims to
help beginners refactor the if statements in their C# code. It not only provides
the refactors but also helps the user understand them through highlighting.

B.1 Installing VS
To find out the requirements and install Visual Studio 2022, follow the steps on
their installation guide1. Version 17.10.4 or higher is required. As our extension
only focuses on C#, you must install the appropriate workload (as of writing,
named “.NET desktop development”) in Visual Studio Installer to utilize our
extension. If the workload is not installed, you will see an error when trying to
open the extension as described in Appendix B.4.1.

B.2 Installing Our Extension
Our extension is attached as a .vsix file, see Appendix A for more details. Once you
have VS2022 installed, it should set itself as a default application to manipulate
.vsix files. You can simply double-click it to start the installation and follow the
instructions from there2.

1https://learn.microsoft.com/en-us/visualstudio/install/
install-visual-studio?view=vs-2022

2https://learn.microsoft.com/en-us/visualstudio/ide/
finding-and-using-visual-studio-extensions?view=vs-2022#
install-without-using-the-manage-extensions-dialog-box

82

https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/finding-and-using-visual-studio-extensions?view=vs-2022#install-without-using-the-manage-extensions-dialog-box
https://learn.microsoft.com/en-us/visualstudio/ide/finding-and-using-visual-studio-extensions?view=vs-2022#install-without-using-the-manage-extensions-dialog-box
https://learn.microsoft.com/en-us/visualstudio/ide/finding-and-using-visual-studio-extensions?view=vs-2022#install-without-using-the-manage-extensions-dialog-box

Building Our Extension

To produce the .vsix file, you need to build the source code, which is available
as an attachment; see Appendix A for more details. Extension development
requires an additional workload “Visual Studio extension development”. The
solution contains three projects: one with the analysis that is not IDE specific
(also happens to be a console project for debugging), one with the extension, and
one with tests. We utilize a number of packages through NuGet, but those should
not require any explicit actions to work.

B.3 Example Solution
We prepared an example solution/project/file, available as an attachment. See
Appendix A for details. We encourage opening that example while following the
rest of this documentation.

The only .cs file in the solution contains a number of functions. Each function
contains code tailored for one of the use cases we focus on. Some of the use cases
are covered by multiple functions. Even though the examples are tailored to a
specific use case, others may be available.

B.4 Using the Extension

B.4.1 Opening the Tool Window
The tool window can be opened by clicking View > Other Windows > CoBrAs.
After clicking into a function, the tool window should look similar to Figure B.1.

B.4.2 Settings
The top part of our tool window contains settings in the form of four checkboxes.
The first one labeled “Preview refactors in a separate file” and the latter three
have different functions.

Preview

Clicking the “Preview refactors in a separate file” checkbox will immediately
create a new document, similar to one with user code. We recommend moving
it side by side with your code, so you can compare the differences between our
preview and your code.

83

Figure B.1 CoBrAs tool window

If you accidentally close the preview window, we will automatically open it
again, provided the checkbox is still checked, once we have something to show
in it. We automatically close the preview window if you uncheck the checkbox.

Auto-Simplification

The rest of the settings concern themselves with the refactor we propose. Some
of the refactors we produce may require adding parentheses or a negation to
conditions. These parentheses might sometimes be unnecessary, and the operand
of the negationmight be a long expression, while the negation could be propagated
into the long expression. The auto-simplification options “Remove unnecessary
parentheses” and “Propagate negations” are for that exact purpose. The remaining
auto-simplification option we have yet to talk about is “Add operator precedence
clarity parentheses”. This option results in adding parentheses to conditions
like a || b && c, in this case resulting in a || (b && c). The parentheses are
unnecessary due to operator precedence but might sometimes be helpful so the
reader does not have to think about operator precedence.

If checked, whenever we refactor, all of the conditions that were directly part
of the refactor get the unnecessary parentheses removed, clarity parentheses
added, or negations propagated, depending on the settings. Note that these
options might make some of the refactors harder to understand.

B.4.3 Main Part of the UI
The non-setting part of the UI always relates to the part of user code where the
caret is.

84

Function Signature

Directly under the settings, we display either a message about why our analysis
was not completed or (in the usual case) the signature of the function inside of
which the caret is and that our analysis applies to.

Tree View

Figure B.2 Tree view for Listing 0.1

A tree view with custom items follows, which only shows if, else if and
else statements from the function we are analyzing. The nesting in the tree view
follows the nesting in the code, as shown in Figure B.2 for Listing 0.1.

Tree View Item

Figure B.3 Tree view item

Every tree view item, for example, in Figure B.3, contains the text of the
conditional branching statement it represents. Next to it is a button with an icon
of a magnifying glass with an arrow, which, on clicking, jumps to the conditional
branching statement the tree view item represents.

After that, every tree view item contains a variable number of buttons, where
each of the buttons represents a possible refactor. The buttons are color-coded
based on how much we recommend the refactor. Red means we discourage it,
yellow means we neither discourage nor recommend it, and green means we
recommend it. Whenever you hover one of these buttons, we utilize highlight
in both your code and the preview to explain what is happening in the refactor,

85

as shown in Figure B.4 below, where we hovered over the “Invert if” button. We
automatically scroll to the highlights, but you can also manually scroll around.

Figure B.4 Full example of highlighting and preview

B.5 Disabling or Uninstalling Our Extension
To disable (which allows later reactivation) or uninstall our extension, you have
to use the Manage Extensions dialog, accessible in VS2022 from Extensions >
Manage Extensions. Once there, you need to find our extensions named CoBrA-
sExtension and disable or uninstall it. We utilize no persistent settings or files you
could potentially want to keep, so the uninstallation process is straightforward.

86

	Introduction
	Background
	C# If Statement Syntax
	Condition
	If Embedded Statement
	Optional Else

	Code Complexity Metrics
	Roslyn
	Syntax Data Structures
	Creating and Changing Syntax Data Structures
	Semantic Errors
	Tracking and Annotations
	Existing Tools

	Visual Studio
	Visual Studio Community Toolkit

	Analysis
	Constraints
	Semantic Correctness Assumption
	Conditions

	Specific Code Complexity Metrics
	Helping Beginners Improve Their Code
	Example Use Cases
	Primary User Interaction
	Parts of a Specific Case Focused Refactor

	UI
	Location of the UI Best for Beginners
	Main Part of UI

	Solution
	General Limitations and Focus
	When Semantic Analysis Is Necessary
	Intraprocedural Analysis
	Boolean Binary Operators

	Refactorers
	Applicability
	Refactor
	Highlighting

	Code Reusability Through Annotations
	Walk Over a Syntax Tree
	Concrete Refactorers
	Extract Start
	Flatten If
	Invert If
	Simplify Condition
	Return Condition
	Simplify Parentheses
	Propagate Negations
	Combine Else and Embedded If

	Implementation
	Refactorers Implementation API
	API
	Type Parameter
	Non-Parametrization of Refactorers

	Concrete Solutions
	Auto-Simplification
	Trivia
	VS Integration

	Conclusion
	Bibliography
	Attachment structure
	Using CoBrAs (User Documentation)
	Installing VS
	Installing Our Extension
	Example Solution
	Using the Extension
	Opening the Tool Window
	Settings
	Main Part of the UI

	Disabling or Uninstalling Our Extension

