
BACHELOR THESIS

Vilém Gutvald

Tower Defense Game with Procedurally
Generated Content and Rogue-like

Elements

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

Chtěl bych poděkovat svému vedoucímu práce, Mgr. Pavlu Ježkovi, Ph.D., za jeho
vedení a cenné rady. Dále děkuji svým přátelům, kteří testovali hru a poskytli
spoustu užitečné zpětné vazby. Jejich nadšení mi dalo naději, že hra, kterou jsem
vytvořil v rámci této práce, má potenciál být velmi dobrá. Také jsem nesmírně
vděčný svým rodičům za jejich podporu a za to, že mi poskytli zázemí, nejen v
průběhu psaní této práce.

Title: Tower Defense Game with Procedurally Generated Content and Rogue-like
Elements

Author: Vilém Gutvald

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable
Systems

Abstract: In this thesis, we designed and implemented in the Unity game engine
a demo version of a rogue-like tower defense game. We employed various procedural
generation techniques, including wave function collapse and simulated annealing,
to generate level terrain and attacker paths. We also developed an algorithm
to procedurally generate attacker wave composition. We implemented the primary
gameplay systems, including resource management, tower and production building
placement, special attacker abilities, and a blueprint collection system. We also
created a simple tutorial to guide new players. Finally, we conducted a playtest
to gather user feedback, verifying our design choices and identifying key areas for
improvement, such as the user interface and the resource economy.

Keywords: procedural generation, game development, game design, tower defense,
rogue-like

Název práce: Tower defense hra s procedurálně generovaným obsahem a rogue-like
prvky

Autor: Vilém Gutvald

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných
a spolehlivých systémů

Abstrakt: V této práci jsme navrhli a implementovali v herním enginu Unity demo
verzi rogue-like tower defense hry. Využili jsme různé techniky procedurálního
generování, včetně wave function collapse a simulovaného žíhání, ke generování
terénu a cest pro útočníky. Také jsme vyvinuli algoritmus pro procedurální
generování složení vln útočníků. Implementovali jsme hlavní herní systémy, včetně
správy surovin, umisťování věží a výrobních budov, speciálních schopností útočníků
a systému sbírání nákresů nových budov. Dále jsme vytvořili jednoduchý tutorial,
který naučí hráče, jak hru hrát. Nakonec jsme provedli playtest k získání zpětné
vazby, který nám umožnil ověřit návrhová rozhodnutí a identifikovat důležité
oblasti pro zlepšení, například uživatelské rozhraní a systém správy surovin.

Klíčová slova: procedurální generování, vývoj her, game design, tower defense,
rogue-like

Contents

1 Introduction 9
1.1 Tower Defense . 9
1.2 Roguelike . 10
1.3 Original Vision . 12
1.4 Current Scope and Goals . 13

2 Game Design 14
2.1 Design goals . 14

2.1.1 Strategic Depth in Every Battle 14
2.1.2 Strategic Depth in Every Run 15
2.1.3 Make Various Builds Viable 17
2.1.4 Force Exploration . 18
2.1.5 Provide a Challenge . 19

2.2 Procedural Generation . 20
2.3 Battle . 21

2.3.1 Attacker Waves . 21
2.3.2 World . 24
2.3.3 Attacker Paths . 25
2.3.4 Attacker Types . 28
2.3.5 Buildings . 29
2.3.6 Towers . 30
2.3.7 Abilities . 31
2.3.8 Materials and energy . 31
2.3.9 Fuel . 32
2.3.10 Hull . 32
2.3.11 Status Effects . 33
2.3.12 Time controls . 33

2.4 Blueprints . 34
2.4.1 Design . 35
2.4.2 Augments . 36

2.5 Battle Graphical User Interface 36
2.5.1 Waves and time controls 37
2.5.2 Fuel and Hull . 37
2.5.3 Wave Preview . 37
2.5.4 Materials and Energy . 38
2.5.5 Blueprint Menu . 38
2.5.6 Settings Button . 38
2.5.7 Info Panel . 38

2.6 Attacker HP Indicators . 40
2.7 Selection and Highlighting . 40
2.8 Battle Camera Controls . 43
2.9 Future Features . 43

2.9.1 Setting and Story . 43
2.9.2 Run Structure . 43
2.9.3 Saving the Game . 44

5

2.9.4 Money . 44
2.9.5 Permanent Unlocks . 44

3 Analysis 46
3.1 Game Engine . 46
3.2 Procedural Generation . 46
3.3 Path Generation . 47

3.3.1 Hub Position and Path Starts 48
3.3.2 Generating the Main Paths 50
3.3.3 Simulated Annealing . 50
3.3.4 Generating Paths using Simulated Annealing 51
3.3.5 Simplifying the Relative Improvement Calculation 55
3.3.6 Final Paths . 57

3.4 Terrain Generation . 61
3.4.1 Wave Function Collapse 61
3.4.2 Advantages and Disadvantages of WFC 64
3.4.3 Using WFC for Terrain Generation 65

3.5 Obstacle Generation . 68
3.5.1 Obstacle Placement Parameters 68
3.5.2 Obstacle Placement Algorithm 69
3.5.3 Generating Obstacle Models 70

3.6 Attacker Wave Generation . 73
3.6.1 Model 1: Single Attacker 74
3.6.2 Model 2: Infinite Waves 75
3.6.3 Model 3: Finite Waves . 76
3.6.4 Model 4: Damage in an Area 78
3.6.5 Model 5: Multiple Batches 80
3.6.6 Model 6: Multiple Paths 81
3.6.7 Model 7: Abilities . 81
3.6.8 Wave Generation Overview 82
3.6.9 Generating Sequential Waves 83
3.6.10 Generating Parallel Waves 85

3.7 Random Number Generators . 87
3.8 Battle Simulation and Visuals . 89
3.9 Targeting Attackers . 90
3.10 Range Visualization . 91

3.10.1 Determining The Range Shape 91
3.10.2 Representation for The GPU 94
3.10.3 Computing Everything on the GPU 95

3.11 Blueprints and Info Panel Text 95
3.11.1 Blueprint Representation 95
3.11.2 Info Panel Text . 96

3.12 Modifiable Commands and Queries 96
3.12.1 Modifiable Commands . 97
3.12.2 Modifiable Queries . 98
3.12.3 Event Reaction Chain . 99

6

4 Developer Documentation 100
4.1 Project Structure . 100

4.1.1 Scenes . 100
4.1.2 Scripts . 101
4.1.3 Third-Party Assets . 102

4.2 Battle . 102
4.2.1 Scene contents . 103
4.2.2 Selecting World Objects 103
4.2.3 Selecting and Placing a Blueprint 104
4.2.4 Player State . 107
4.2.5 Attacker Waves . 108
4.2.6 Shooting at Attackers . 109
4.2.7 Info Panel . 110
4.2.8 Visuals and Interpolation 112
4.2.9 Highlights and Range Visualization 112
4.2.10 Tutorial . 113

4.3 Game Start and Procedural Generation 113
4.3.1 Loading . 113
4.3.2 Menus and Starting a Run 114
4.3.3 Run Persistence and Blueprint Rewards 114
4.3.4 Seed Branching and Level Initialization 115
4.3.5 Procedural World Generation 116

5 Designer Documentation 118
5.1 Attackers . 118

5.1.1 Attacker Stats . 118
5.1.2 Attacker Prefab . 119
5.1.3 Attacker Behavior Script Example 121

5.2 Blueprints . 123
5.2.1 Blueprint Scriptable Object 123
5.2.2 Blueprint Prefab . 124
5.2.3 Ability Behavior Script Example 126
5.2.4 Tower Behavior Script Example 128
5.2.5 Description Formatting Tags 130

5.3 Terrain Types . 131
5.3.1 General Syntax . 132
5.3.2 One-Line Top Level Properties 132
5.3.3 Modules . 133
5.3.4 Obstacles . 135
5.3.5 Scatterer . 137

6 User Documentation 141
6.1 Instructions . 141
6.2 Reference Tables . 141

7

7 Playtesting 148
7.1 Playtesting Procedure . 148
7.2 Takeaways . 148

7.2.1 Tutorial . 148
7.2.2 Common Problems . 149
7.2.3 Further Design Decisions 150

7.3 Assessment of Design Goals . 151
7.3.1 Strategic Depth in Every Battle 151
7.3.2 Strategic Depth in Every Run 151
7.3.3 Make Various Builds Viable 151
7.3.4 Force Exploration . 152
7.3.5 Provide a Challenge . 152

8 Conclusion 153
8.1 Goal Assessment . 153
8.2 Plans for Future Development . 153

Bibliography 155

Attachments 158

8

1 Introduction
Video games are a popular form of entertainment. There is a plethora of games

to choose from, each offering a different experience. Still, it is always possible to
create something new that players might enjoy. The author of this thesis enjoys
both tower defense games and roguelike games and there are not many games
that combine these two genres. In this thesis, we will design and implement a
video game, that uniquely blends them, and discuss the decisions behind it. So,
what do we mean by a roguelike tower defense game?

1.1 Tower Defense
A game genre can encompass many characteristics, most often its mechanics,

but also its theme, art style or the medium it is played on. Genres have no exact
definitions or strict boundaries, they are characterized by how people use them to
describe games.

Tower defense is often described [1][2] as a subgenre of real-time strategy.
This means the game focuses on long-term planning, but also quick thinking.
In tower defense games, the player has to defend against waves of attackers by
building defensive towers. As an example we’ll look at Plants vs. Zombies [3].

In Plants vs. Zombies, the player defends their house from zombies. As shown
figure 1.1, the zombies come from the right side of the screen and advance left. If
any zombie reaches the far left edge of the screen, the player loses the level. The
goal of each level is to survive all the incoming waves by placing plants that kill
or otherwise impede the zombies. We can also see two Repeaters in the upper left
part of the image, one of them shooting at a zombie. Further to the left, there
are a lot of Sunflowers. These are a very important part of the game, because all
plants cost sun, and Sunflowers produce those.

Figure 1.1 A level in Plants vs. Zombies.

9

In our game, the player will also build towers, to defend from waves of attackers,
and economic buildings that produce materials. Though, it will differ a lot from
Plants vs. Zombies in the overall structure of the game. The main game mode of
Plants vs. Zombies is a campaign consisting of 50 individual levels. If the player
loses a level, they can try again and again until they succeed in beating it. After
most levels, the player unlocks a new plant, which they can use in upcoming levels,
slowly building up their arsenal. In our game, however, once the player loses, they
lose all their progress and must start from the very beginning. This and some
other mechanics are taken directly from the roguelike genre.

1.2 Roguelike
Roguelike is a subgenre of role-playing games. In role-playing games, the

player takes on the role of a character and goes on an adventure. The character
can grow stronger by acquiring new abilities, items, or experiences. The player
has to make decisions about how to upgrade their characters to overcome the
challenges they might face. Role-playing games are a very broad genre with a long
history, for more information we recommend the book Game Design Deep Dive:
Role Playing Games [4] by J. Bycer.

The roguelike genre is named after the game Rogue [5], released in 1980. In
this single-player turn-based game, the player explores a grid-based dungeon and
fights monsters that inhabit it. Along the way, they collect various weapons,
armor and other magical items that improve their abilities. It features a mechanic
nicknamed permadeath, which means that when the character dies, the player loses
all progress and must start from the very beginning. The dungeon is randomized —
it is different in every run, so the player can’t just memorize the layout. These
are the most defining features of roguelikes, but games of this genre aren’t just
clones of the original Rogue. The breadth of roguelike games is well explored and
explained by J. Bycer [6].

A more recent game that’s a good example of this genre is Slay the Spire [7].
In Slay the Spire, the player ascends a spire and fights various enemies. The fights
are also turn-based, and when the player’s character dies, they have to start from
scratch. However, it is not a traditional roguelike. The game is not played on a
grid, instead the spire the player navigates is a graph of separate rooms, where
they move from bottom up. We can see this in figure 1.2. Here, the player has
been to the rooms that are circled, and now they have to choose where to go next.
The player can come across different kinds of rooms, each represented with an
icon. The most important are enemy encounters, where the player fights monsters
using a deck of cards.

10

Figure 1.2 The map screen in Slay the Spire.

In figure 1.3, the player character is shown on the left, facing a Jaw worm on
the right of the screen. On the bottom, there are cards that the player can play
to fight the enemy. At the start of each turn, the player draws five cards from the
deck. We can see that each card has a name at the top with its corresponding
illustration below. Below the illustration is text explaining the effect of the card
when played. Most cards deal damage to the enemies or provide block to defend
from enemy attacks, but some have more unique effects. In the top right corner
of a card is displayed its energy cost. The player can only spend three energy
per turn, so they can only play a limited amount of the cards they drew. It is
important to play the right cards in order to kill the enemy without taking a lot
of damage.

Figure 1.3 A fight in Slay the Spire.

Even though the player never knows exactly what cards they’ll draw, they
can shape the deck they draw from throughout the game. The player starts each
run with a predefined deck of starter cards, and as they progress, they add new
cards into their deck. For example, after every fight, they get presented with
three randomly selected cards, and they can choose one of them. The player can

11

also get new cards from events or shops and sometimes remove the cards they
don’t want. Some cards are rarer than others, and they are often more powerful.
However, being lucky and getting the most powerful cards is not what the game’s
about. The player must learn which cards work together well and which don’t,
and understand the weaknesses of their deck and how to fix them.

Many games take the roguelike mechanic of permadeath and randomized
procedural generation, but fill in different game mechanics. Slay the Spire has the
player build their own deck of cards to play with, but they still play as a character
that fights enemies. Some, however, deviate much more. In our game, the battles
will be in the style of tower defense, and the player will collect blueprints for
defensive towers and other buildings instead of weapons and armor.

Games that deviate more from the roguelike formula are sometimes called
roguelite games. However, there is no agreement on when a game stops being
roguelike and starts being roguelite. We will not make this distinction, since game
genres have no precise boundaries and can be freely blended with others.

1.3 Original Vision
Now that we have introduced the concepts of tower defense and roguelike

games, we can use them to create an overview of the game we intend to make.
It will be a single-player game. As stated, the moment to moment gameplay will
be a tower defense, but on a larger scale, the game will be roguelike. This means
that it will consist of individual procedurally generated runs, where the player
will start from scratch every time. During each run, the player will defend against
attackers in many battles and improve their arsenal to grow stronger. Their goal
is to get as far as possible, trying to reach the final level and beat the game.

Battles
The goal of each battle is to gather enough fuel to continue. The faster the player
gathers the fuel, the sooner they win the battle. The fuel is generated passively,
but additional buildings can be built to speed up the process. In the meantime,
the player has to defend against waves of attackers by building towers and using
abilities. Towers persist throughout the battle and shoot at the attackers, whereas
abilities provide single-use effects that can help in a time of need. All of this costs
materials and energy — resources, which are generated by economic buildings.

Procedural generation
Each battle will take place on a unique, procedurally generated terrain. This means
that the paths the attackers take will also differ in each battle. Furthermore, there
will be various kinds of attackers and the attacker waves will also be procedurally
generated.

Blueprints
On their way, the player will choose from randomly selected blueprints to add to
their collection. These blueprints will allow them to use new abilities, or build
new towers and other buildings. The player will have to choose blueprints which
work together well in order to use their full potential.

12

Run progression
The player will also encounter various shops and events. These can present
additional choices and provide the player with opportunities to gain various
rewards or punishments. The path the player takes will not be linear, allowing
them to decide which battles to fight and what to interact with from the map
screen.

Platform
We will target the game for personal computers only. Unlike mobile phones, PCs
usually have a screen large enough to let us clearly convey all the information
the player needs. It won’t be for game consoles either because we think a mouse
will be the best way to control the game. The mouse allows the player to select a
precise position in the world quickly. The player can also control certain aspects
of the game using the keyboard.

1.4 Current Scope and Goals
The scale of the game as outlined in section 1.3 is quite large. Furthermore,

it would need a lot of content and polish before being able to be released as a
full game. Instead of creating a full-featured polished game, in this thesis we will
focus on making a functional demo version, which can be used to playtest the core
gameplay. The demo will contain some base content in order to be playable, and
it must be prepared for future development so that more content can be added
later.

The demo version will allow the player to progress through battles and collect
blueprints. However, there will be no map screen to let them choose their path
as described in the paragraph Run progression of the previous section. For now,
the progression will be linear and there will be no events or shops, only battles.
All the art and sound assets will be placeholders, but care will be taken to make
everything as clear as possible to the player.

The main goals of the thesis are:

1. Design the game’s mechanics and features.

2. Implement all the systems and mechanics described in paragraphs Battles,
Procedural generation and Blueprints.

3. Include a tutorial to explain the game’s mechanics to the player.

4. Conduct a playtest.

13

2 Game Design
Before we start implementing the game, we should design its individual parts.

An overall design was described in section 1.3. In this chapter, we will go into
more detail and flesh out the design. We need to decide which mechanics will be
in the game and how will the player interact with them. The game needs to react
to the player’s actions and communicate the information the player should know.
This all depends on what exactly are we trying to achieve. Thus, we will start by
setting some design goals.

We would also like to emphasize that some features will not be implemented
in the demo version of our game. These features will be marked by the following
box:

(not implemented in the demo)

A feature that won’t be in the demo.

2.1 Design goals
We aim to make the game’s mechanics clear, and controls intuitive and

responsive. This is a necessity for every game because without this, the players
can’t even properly play the game we want them to play. This is an important
goal that will inform many of our decisions throughout the design.

We have analyzed several games of similar genres to our game, that we find
enjoyable, and we tried to identify what makes them fun. We identified five
features, which we think make the games very intriguing and replayable, and we
think these would work for our game too. Thus, we intend to design the game, so
it exhibits these features, making them our game-specific design goals. We will
explain each in a separate section, and we will use other games as inspiration for
how to reach them. The goals are:

1. Strategic Depth in Every Battle

2. Strategic Depth in Every Run

3. Make Various Builds Viable

4. Force Exploration

5. Provide a Challenge

2.1.1 Strategic Depth in Every Battle
One of the design goals we identified is that the game should let the player

make meaningful strategic decisions throughout every battle. Each battle should
be different enough to require the player to adapt to the current situation. This is
where the action will happen, but we want the player to make tactical decisions,
not test their reflexes. With this constraint, battles would be boring if every one
played out the same.

14

In Plants vs. Zombies, the player wants to plant Sunflowers or other sun-
producing plants. The more they build their economy, the more plants they can
afford in the future. However, these plants can’t kill zombies, so the goal is to
spend the bare minimum on defense. This is a hard problem to solve, since when
and where zombies will appear is not completely predictable. What makes this
even more complicated are cheap single-use plants like the Potato Mine. It costs
only 25 sun and can kill almost any zombie, where, for example, a Peashooter
costs 100 sun, but is permanent and able to kill many zombies over the course of a
level. This means the player always has to consider if it’s better to place a plant
that’s the best now or a plant that will be the best in the future.

In Slay the Spire, the player has to make a similar decision, but even more
often. Almost every enemy grows stronger over time, or makes the player character
weaker as they fight. This means that the player always has to consider when
it’s the best to defend and when it’s better to attack. The player can choose to
not block some damage now in order to kill the enemy sooner and prevent bigger
attacks in the future. The player also has to plan several turns in advance because
many cards have longer lasting effects. They often have to decide whether it’s
better to play a card that makes them stronger in future turns, or a card that
helps them now.

Every fight is different because every enemy has distinctive behavior. Some
enemies get much more powerful over time, so it is important to kill them quickly.
Others punish the player for attacking them, so the player needs to kill them with
precision. Fights also vary a lot because the player draws their cards in a different
order every time. All this means that the player has something to think about
every turn.

Our game will also have economic buildings and instant abilities, so the player
has to balance economy and short-term versus long-term defense. The player
will have to survive some number of waves, but they will be able to spend extra
materials to mine fuel faster and end the battle sooner. This is similar to being
more offensive in Slay the Spire, since the waves of attackers should get stronger
at a faster pace than the player’s defense. Each battle will require a different
approach, since the waves will be composed of a different set of attackers every
time. We can also vary the nature of a battle by changing up the terrain and
making attacker paths different lengths or more numerous. This might seem like
too much, but we want to playtest all these options and possibly cut those, which
don’t work well.

2.1.2 Strategic Depth in Every Run
Another of the design goals is that our game should let the player make

meaningful strategic decisions throughout every run and there should be no clear
path to victory. In our game, when the player makes a decision when fighting in
a battle, its consequences should be contained mostly within the battle. This goal
refers to the decisions the player will make outside a battle, which affect all future
battles.

In Slay the Spire, the player needs to improve many aspects of their deck
in tandem. They need to have great defensive cards, cards that can deal with
enemies that have a lot of health, cards that can attack multiple enemies at once

15

and more. The player should also care about the average cost of the cards in their
deck. It is bad when the player wants to both defend and attack on a given turn,
but they’ve drawn only an expensive attack and an expensive defensive card. It is
also suboptimal when the player plays out all the cards they’ve drawn, but they
have leftover energy they didn’t spend. Balancing these aspects of the deck leads
to some difficult decisions when picking cards to add. For example, should the
player pick a good defensive card because they are lacking in defense, or should
they pick an attack that’s just very strong.

We want to balance the battles in a way, which requires the player to have
strong blueprints (see section 2.4) with various qualities. The players should need
good economic buildings, fuel-producing buildings, abilities and towers good at
dealing with various kinds of attackers. They should also have some cheaper
towers to build in the first few waves and more expensive towers to build once
they produce a lot of materials.

In Slay the Spire, the player comes across the interesting trade-off between
short-term and long-term power even in building their deck. The player wants
cards which will have a great potential to be strong in the future, having great
synergy with other cards. But these cards aren’t strong right now and the player
needs to survive the next few fights, making them choose cards that are useful
immediately, but might not be as powerful later in the run. As an example we
can look at the cards Iron Wave and Double Tap.

The player starts each run with several copies of cards Defend and Strike in
their deck. Compared to them, Iron Wave is a very cost-efficient card. As shown
in figure 2.1, it costs 1 energy (displayed in the top right corner of the card), the
same as Defend or Strike. However, it does almost the same thing as Defend and
Strike combined — it deals damage and gives block too. Picking this card can
help a lot in the early fights, but it doesn’t really grow stronger later in the run.
The card Double Tap, on the other hand, is not great at the start. In essence, it
acts like another Strike most of the time, and is useful only when the player draws
another attack alongside it. It is however very strong when the deck contains
many attacks that cost a lot of energy but deal much more damage. Then it
allows the player to play a powerful attack twice at the cost of only one more
energy.

Figure 2.1 Defend, Strike, Iron Wave and Double Tap cards from Slay the Spire.

We can design the blueprints in our game similarly, making some useful early
in the run and some powerful later. This will let the player decide if they need to
take a blueprint that will help them now, or a blueprint that can potentially be
strong later.

16

2.1.3 Make Various Builds Viable
One of the goals of our game is that the player should be able to beat the game

with a lot of different combinations of blueprints. We will call these combinations
builds, as is often done [8] for unique combinations of skills, attributes and items
a player’s character can have in a role-playing game. Builds are distinguished
mainly by what they feel like to play with. If two blueprints are used in the same
way, then exchanging one for the other doesn’t make a new build. To allow the
player to choose from various builds, there has to be enough blueprints that feel
distinct and better yet, they should interact with other blueprints in unique ways.

In figure 2.2 are shown all the plants from Plants vs. Zombies. As we can see,
there is a lot of them, and various combinations that work well are possible. The
plants usually don’t interact with each other strongly, so the player mostly has
to combine the plants such that they have no weak spots. For example, longer
levels require both cheap and expensive defensive plants. The cheap plants are
used at the start of the level, and later they are replaced by the more expensive
ones to fit more firepower on the limited lawn. Some plants can struggle against
certain zombie types, so the player also wants to choose plants to cover for all
their weaknesses.

Figure 2.2 All the plants of Plants vs. Zombies in the in-game almanac.

We can also look at a few examples from Slay the Spire. Here, builds are
often defined by cards that interact in ways that make them stronger. One of
the most blatant examples are cards that apply poison to the enemy. A poisoned
enemy takes damage every turn based on the amount of poison they have, and the
amount decreases by one every turn. This means an enemy with 2 poison takes
2+1 = 3 damage in total, whereas an enemy with 4 poison takes 4+3+2 +1 = 10
damage in total. It’s easy to see that every card that applies poison makes other
poison cards stronger.

There are also rare cards the player can find, which change how the game
works. For example, defensive cards provide block only for one turn because the

17

player character loses all block at the start of every turn. However, once the player
plays the card Barricade, they don’t lose block at the start of their turns for the
rest of the fight. Cards like this can determine the player’s strategy for the rest of
the game on their own.

We want the players of our game to try lots of different builds and for that,
the builds need to be strong enough to beat the game when the player executes
them well. We can tweak the strength of individual blueprints, but we can also
design enemies that punish specific builds that would otherwise be too good. For
example, in Slay the Spire, many enemies shuffle unplayable cards into the players
deck for the duration of the fight. This punishes decks with fewer cards way more
than decks with many cards, keeping small deck builds from being too powerful.

2.1.4 Force Exploration
We don’t want the player to just find a single build that works and never

explore anything new. When the player is familiar with a build, it becomes
stronger, since they know how to use it effectively. This discourages them from
trying other builds, because they can’t use them so well, making them weaker.
Thus, one of our goals is to force the player to explore and make them learn other
strategies.

The main way to get cards in Slay the Spire are the rewards after every battle,
where the player can choose one of three cards to add to their deck, as shown
in figure 2.3. All the ways to acquire cards are randomized, so the player can’t
just hope to always get the card they want. They have to adapt their build to
the cards on offer, so they have to explore different strategies in order to win
consistently. In our game, the player will also pick a blueprint to add to their
collection from a randomized offer after each battle.

Figure 2.3 Card reward screen in Slay the Spire.

In Plants vs. Zombies, the player has to adapt to different zombies and level
environments. This can be illustrated with figure 2.4, which shows a seed select
screen. Here, the player selects which plants they want to use in this level from
the selection on the left side. On the right the player can see that this level takes
place on the roof and the zombie types that will appear in this level. In rooftop
levels, the player has to place a Flower Pot, which costs 25 sun, on a tile before

18

they can place a plant there. Furthermore, all plants that shoot in a straight line
are of little use here because the roof slopes up, so their projectiles can’t travel
very far. An experienced player will also notice that Bungee Zombies will appear.
These zombies swing from above to take the player’s plants instead of coming
from the right. The player should consider all these factors when choosing the
build to play this level with.

Figure 2.4 Seed select screen in a rooftop level in Plants vs. Zombies.

In our game, the player could select which blueprints to play with before every
battle based on the level’s features and attackers. Instead, we chose an approach
more similar to Slay the Spire — the player will keep the blueprints they collect for
the rest of the run, and they won’t know the specifics of a battle before selecting
it. However, they will be allowed to have only a limited amount of blueprints at
once, so they still cannot just keep all the blueprints they encounter.

2.1.5 Provide a Challenge
The player should always have some goal to work towards, just out of their

reach. If the game is too easy, the players will have no reason to think strategically
or learn. Always having a harder challenge to overcome will motivate the player
to improve and keep playing.

Slay the Spire is not easy to beat, but the player can still improve so much
even after beating the game. After beating the game, the player unlocks so-called
ascension. Before embarking on another run, the player can select the ascension
level they want to play on. Each level introduces a small change that makes
the game slightly more difficult. Each ascension level is unlocked only after
the previous level is beaten, and each difficulty increase is small, so it doesn’t
discourage the player. These changes are cumulative, so in the end it takes serious
effort and luck to beat the game on ascension level 20 even for the most skilled
players.

19

(not implemented in the demo)

This system is simple, yet effective, so we might as well use it too. We will
also want to balance the base game, so that most players that try are able to
beat it, but it still takes some effort and several attempts, so the players feel
like they’ve accomplished something.

2.2 Procedural Generation
Randomized procedural generation is one of the defining features of the rogue-

like genre. We want to use randomized procedural generation to make each run of
the game unique. Since we design the procedural generation algorithms ourselves,
we have great control over the results. However, procedurally generated parts of
the game can be really hard to balance. We need to make sure the randomized
parts of the game feel fair to the player. It doesn’t feel good if the player loses
the game because they were just unlucky and couldn’t have done anything to
prevent the loss. Another issue with randomized procedural generation is that
things might start to feel very homogenous. For example, hand-crafted levels can
have features that really stand out. We need to decide which parts of our game
will be procedurally generated and to what degree.

(not implemented in the demo)

The overall structure of each run will be decided by what we call the map.
As stated before, it will be a graph, and the player will go from node to node
along the edges. Each node will be a battle, shop or an event. We really
want each run to be different enough, that the player doesn’t develop a single
strategy to use in every run. Since the player will decide where to go, it’s not
a problem when some paths through the map are more difficult than others.

Every battle will also be randomized to a large degree. The world a battle
takes place on will be procedurally generated, making for a different environment
every time. However, the combination of features that can appear in a given world
will be decided by the world’s terrain type.

(not implemented in the demo)

There will be several hand-crafted terrain types to randomly select from, some
appearing only early in the run and some only later. This is to create several
cohesive styles of the worlds that look and play distinctly from each other. We
feel this is better than if we just let the world generator mix all the features
every time, because the results would be more homogenous. We will go into
more detail about the world generation and these features in section 2.3.2.

In Slay the Spire, each encounter is chosen from a pool of hand-picked enemy
combinations. Each of these pools contains encounters of similar difficulty. If the
authors of Slay the Spire decide one of the encounters is too difficult for its pool,
they can tweak the encounter to make it less difficult, or move it to a different
encounter pool.

20

In our game, however, the attacker waves in each level will also be procedurally
generated. We want this, because each level in our game will consist of many
waves, each with many attackers. We could design many sets of waves, but we
feel that would make the levels too predictable, once a player learns these sets.
So, the waves shouldn’t be tied to the previous waves in a level. Each wave in a
level will be harder and harder, so this would mean we would have to populate
tens of pools with hand-crafted waves, which feels very inefficient.

From the player’s perspective, all procedural generation and the rewards they
receive will be random and unpredictable. However, each run will have a single
seed that deterministically decides all the “random decisions” the game makes.
Two runs with the same seed should look identical and if the player makes the
same decisions and choices, the outcomes should be the same. This allows the
players to share seeds of the runs they found interesting and compare their skill in
the same situations. Furthermore, this is helpful for debugging, because it lets us
easily reproduce any issue with the generation just by running it with the same
seed.

We could also procedurally generate the blueprints and attacker types. However,
here we want to have greater control, because that will allow us to create designs
that have powerful and unique abilities. Procedurally generating these would be
very difficult, and it would often lead to abilities that are either uninteresting, or
way too powerful.

2.3 Battle
As stated in section 1.3, in our game, the player will fight in battles throughout

each run, and these battles will have tower defense gameplay. In this section, we
will describe the battles in more detail and explain our intentions.

2.3.1 Attacker Waves
The attackers in various tower defense games often come in waves. However,

in Plants vs. Zombies, the zombies also come in continuously throughout a level
in addition to the large waves, to keep the pressure up. Even in games where
attackers come in distinct waves, the waves are usually on a timer and once the
level starts, they keep coming. One example of such a game is Kingdom Rush [9].
In figure 2.5 is shown the indicator which shows the time remaining to the next
wave. This means the game is also full of action and requires the player to think
quickly. Furthermore, this indicator lets the player call the next wave early. If
they do, they get some coins as a reward, but this is risky, because the player’s
defense might get overwhelmed.

Figure 2.5 Next wave indicator from Kingdom Rush.

21

However, we want to emphasize the long-term strategy, so we will give the
player plenty of time to plan out their next move. There won’t be any timer,
instead, they can start the next wave when they are ready. This is also common
in tower defense games, used for example by Bloons TD 6 [10]. This brings our
game closer to the turn-based gameplay that is often featured in roguelike games.
First it is the player’s turn to build towers, and then the attackers’ turn.

There are also many ways the attackers can move in different tower defense
games. Most often, the attacker paths are predetermined, and the player builds
their towers around them. The attackers go from the start of the path and try
to reach the end of the path. This is especially great when there is multiple
different levels in the game, each featuring different paths, because it makes
different towers more useful than others in each level. In figure 2.6 are shown two
levels with distinct paths from Bloons TD 6. The path in the first level shown
has a lot of tight turns, perfect for close-range towers or towers which damage all
attackers in an area. In the second level, the path is made up of few long straight
segments, where are much more useful towers that pierce through many attackers
in a straight line. Since we want to have various procedurally generated levels
in our game, we will also have attackers come on predefined paths that will be
different in each level.

Figure 2.6 The levels Park Path and Another Brick from Bloons TD 6 with the
attacker paths highlighted.

There are other options used in other games. In Desktop Tower Defense [11],
for example, the attackers try to cross a rectangular playing field. It starts out
empty, but as the player fills it with towers, the attackers have to adjust their
path, because they cannot go through the towers. In figure 2.7, we can see the
purple attackers funnel into a narrow passage between the white towers. Since
the player decides the path of the attackers, they have to learn what kind of path
works well, but then they can build it all the time. This is not ideal for us, because
we want the player to adapt to the environment, not the other way around.

22

Figure 2.7 Attackers being funneled between towers in Desktop Tower Defense.

In Plants vs. Zombies, the zombies come from the right side of the screen and
try to reach the left side, as we already mentioned. The plants are planted directly
in the way of the zombies and the zombies have to eat their way through them to
reach their goal. This is unique, and it greatly changes the gameplay. However,
this is again not great for our game, because we would lose a lot of potential for
the levels in our game to be distinct from each other.

In Bloons TD 6, the player receives very little information about what the
upcoming waves look like. Here, the player selects the level they want to play
on, but the same sequence of waves comes every time, so the player is expected
to learn at least those waves that give them problems. In our game, however,
the waves will be procedurally generated. We want the player to plan around
the upcoming waves, so we need to communicate what the upcoming waves are
going to be. This means that the waves should be simple enough to communicate
effectively. Desktop Tower Defense features a wave preview, shown in figure 2.8,
that only describes the type of attacker that will come. We want interesting
behavior to emerge from the interaction of different attacker types, so we won’t
limit our waves to one attacker type, but instead three. We feel that any more
would make the waves messy and unnecessarily hard to communicate.

Figure 2.8 Wave preview from Desktop Tower Defense.

In fact, each wave will be composed of one to three batches. Each batch
will be composed of a number of attackers of only one type, spaced evenly. But
some waves will be just one batch, but this batch will send a different attacker
type on each path on levels with multiple paths. Also, some waves won’t spawn
attackers on all paths. This should provide enough variety without being too hard
to communicate to the player and too hard for a skilled player to predict the wave
difficulty. To make it simple both for the player and for us when displaying the
preview of the wave, the spacing between two batches will always be 1 second.

23

The waves in a single battle will get progressively harder, forcing the player
will to improve their defense. However, the wave difficulty should increase faster
than the player’s defense is expected to improve. This increase will need to be
carefully balanced to allow for some strategies where the player invests more into
fuel production to end a battle quickly, but also strategies where the player invests
heavily into defense to keep up with the later waves.

2.3.2 World
In some tower defense games, for example in Desktop Tower Defense, the

towers can only be placed in positions on a grid. In other games, for example
Bloons TD 6, the towers can be positioned freely, as long as they don’t collide
with each other, the attacker paths, or other obstacles. While the second option
might allow for more interesting tower placement, we will go with grid placement,
and the grid will be pretty coarse — only 15× 15 tiles. In fact, the attacker paths
will also be restricted to the grid. They will be formed by segments, each going
from the center of one tile to the center of a neighboring tile. This is because we
want the experience a player gains in one level to be transferrable to another level.
For example, they might learn that “tower A” placed right next to a straight path
can handle a wave of five “attackers B” on its own. They will then know this is
true in any level whenever there is a sufficiently long straight path. Reducing the
number of path shape and tower position combinations will make the player come
across a combination they already know more often, letting them predict better if
their defense can handle a wave or not. This is a really important skill to learn,
because the player will have to decide before every wave, if they need to invest
into defense or if they can invest into their economy.

In some tower defense games, for example in Kingdom Rush, there are only
few places where the player can place a tower in each level. We feel this is too
restrictive for our game, and it would take too much freedom away from the player.
This option also really works only in hand-crafted levels, because it is important
to select the places for the towers in a way that makes for fun and interesting
levels.

However, each level being just a big square of tiles with rectilinear paths on
top wouldn’t be very interesting. That’s why some tiles will contain obstacles that
block the player from building on these tiles. Some obstacles will be small and
some will be large — they will also block the line-of-sight of towers that require
a straight line between them and the attacker they want to shoot. Some small
obstacles will make the tile rich in minerals (see section 2.3.8) or fuel (see 2.3.9).
These will be used by some economic buildings (see 2.3.5), and also act as small
obstacles. There number of tiles with resource obstacles should always be between
some minimum and maximum value, so the levels aren’t unfair.

The tiles are pretty big, so when a tile has an obstacle, it’s usually not just
one obstacle, but a whole cluster of them. For example, a tile won’t be blocked
by one rock, but rather a cluster of rocks. These clusters will also be procedurally
generated. If we used a small set of hand-made models, the repetition would be
very obvious, and making a lot of these models by hand seems unnecessary.

Another great way to make the levels more interesting, that is also intuitive
for the player, is having tiles at different heights. The heights will be in multiples

24

of 0.5 units, where one unit is the edge length of a tile. Towers that require line of
sight won’t be able to shoot over higher terrain or down from steep cliffs. We can
also make some tower unable to shoot uphill or downhill for more variety. Some
tiles will also be slanted, gradually going from one height to another. These tiles
will allow the attacker paths to change their height, because it would be weird if
the attackers had to jump up a cliff. Some buildings will be possible to build on
slanted tiles and some won’t, making slants also a kind of obstacle.

As we already mentioned, each level will randomly select one of multiple terrain
types. A terrain type will dictate how a terrain should look — the colors used,
which terrain feature will appear and how often, and which obstacles will appear.
Some obstacles will appear in clusters or near another obstacle, others will be
spread out or avoid another obstacle. Each terrain type will have its distinct look,
keeping the levels from being all the same.

To summarize:

• RW1 The world each level takes place on will be a grid of 15× 15 square
tiles.

• RW2 There will be small or large obstacles on some tiles, large obstacles
blocking certain towers’ line of sight. Some small obstacles make the tile
rich in minerals or fuel.

• RW3 Each tile with an obstacle will usually contain a whole procedurally
generated cluster of obstacle models.

• RW4 The tiles will be at different heights in multiples of 0.5 units, and
some tiles will be slanted, going between two heights.

• RW5 The player can build one building per tile, and only if the tile doesn’t
contain an obstacle or the attacker path.

• RW6 Each world will be generated according to a randomly selected terrain
type, which determines what the world will be like.

2.3.3 Attacker Paths
In section 2.3.1 we decided that the attackers will travel on predefined paths

generated with the world. If we designed each level of our game by hand, we could
create paths that just feel like they would be fun to play around. Since the paths
will also be procedurally generated, we need to describe what qualities should the
paths have, so the generation can later be implemented to produce such paths.

In the previous section 2.3.2 we decided that the world will consist of a grid of
tiles and the paths will be constrained to straight segments between the centers
of the tiles. We can think of the paths segments as one-way passages between
neighboring tiles. This means that a path cannot go twice through the same tile or
cross itself, because a tile has the same path segments coming from it, no matter
if it was visited for the first or second time.

There can be multiple paths in a level, each with a different shape and in some
waves a different set of attackers. This will add more variety and depth to tower
placement. Any path will also be able to split into more paths, or join together

25

with another path, creating new path geometry or sections with different attacker
density. When a line of attackers comes to a split into multiple paths, they will
alternate in which path they continue to, splitting between the paths evenly.

The player will start each level with one building already built — the Hub. It
is the goal the attackers are trying to reach to destroy it. Hence, all attacker paths
will converge to the tile the Hub is on. The attackers will come from outside the
world the battle takes place on. In the game’s universe, the worlds are bigger, but
the playable area is just a small neighborhood around the Hub. It would be weird
if the attackers just appeared on the edge tiles, so their paths will start on tiles
just outside the playable world, and the first path segment goes from the path
start to the nearest tile in the playable world.

In figure 2.9 we can see an example of a valid path network drawn in blue on
a world of square tiles. The black point represents the Hub.

Figure 2.9 An example of a valid path network in a 7× 7 game world.

The attackers from single wave batch will start out evenly spaced. If the path
they are on splits into two, they will still be evenly spaced, but now the spacing is
twice as large. This is illustrated in figure 2.10, where the attackers are represented
by black dots on the path. We can also see, that after the paths join back into
one, the attacker spacing is no longer even. We don’t want this to happen for
aesthetic reasons, but also because overlapping attackers could be hard to identify
or distinguish by the player. This only happens when the branches of a path are
of unequal length and the difference is not a multiple of the spacing between the
attackers. We don’t want to put more constraints on attacker spacing, so instead,
we will constrain path branches to be of equal length. More precisely, each tile
on a path has to be the same distance from the Hub, no matter which path an
attacker would take.

Figure 2.10 Attackers on a path that splits and joins.

26

Most towers will have limited range, and they will be most effective near the
attacker paths. We want the paths to be spread out throughout the game world in
order to not have tiles that are just way too far from any paths to be useful. This
is illustrated in figure 2.11, where we can see a path network with bad features on
the left, and on the right, one with the same path lengths and starting positions,
but nicer and more spread out. We have marked tiles whose center is 2 or more
tiles from the nearest path with a small cross.

In the right figure, we can also see a red point on one tile, marking a great
spot for a tower. This spot allows even a tower with shorter range, illustrated by
the red ring around it, to target attackers on a large portion of the path. On the
left we have circled another U-turn in the path that is, however, undesirable. This
is because there is no empty tile between the paths, so the player can’t place a
tower there, which feels bad. We don’t want many sharp turns like these, but they
can occur from time to time for variety. Similarly, paths going right next to each
other (marked in red) are bad. The player cannot place towers on paths, so these
paths greatly limit the player’s access to each other, making for an unpleasant
experience. A similar situation occurs when a path goes through tiles at the edge
of the world, blocking access to the path from one side, so paths should not go
through these tiles very often.

The Hub should be several tiles away from the edges of the playable area, so
the player has good access to the path segments near it. It should be very close
to the center in levels with many paths, so the paths can come towards it from
different sides of the world. It can be more off-center in levels with only one or
two long paths, where the path can snake through the world from the side furthest
away from the Hub, also covering the world somewhat evenly.

Figure 2.11 A path network with undesirable properties and a path network with
great properties.

Similarly, we don’t want to produce side branches that just take up more space,
but don’t deviate meaningfully from the original path, like on figure 2.12. To
make this desire into a rule, we can define it in the following way: Every branch
must go through at least one tile that is not adjacent (by an edge or by a corner)
to any already existing path.

27

Figure 2.12 A path with undesirable side branches.

To summarize, these are the rules the paths should follow:

• RP1 The Hub should not be near the edge of the world, and it should be
close to the center in levels with multiple paths.

• RP2 Paths are formed by one-way segments, each from the center of one
tile to the center of a neighbor tile.

• RP3 Paths start on tiles just outside the playable world, and the first path
segment goes from the path start to the nearest tile in the playable world.

• RP4 There can be one or more path starts in each level.

• RP5 Paths can split or join.

• RP6 All paths must end on the tile with the Hub, no other dead ends can
exist.

• RP7 Each tile with a path going through it has to be the same distance
from the Hub no matter which path an attacker would take.

• RP8 Paths should be spread throughout the playable world, not bunched
up.

• RP9 Paths right next to each other or the edge of the world, and sharp
U-turns (see figure 2.11), should be rare.

• RP10 Every branch must go through at least one tile that is not adjacent
to any already existing path.

2.3.4 Attacker Types
We have mentioned that there will be many attacker types in out game. Each

will be designed on its own, but they will be randomly combined to make attacker
waves. An attacker type defines the following properties of an attacker:

• Appearance. Every attacker will be represented in a battle by its 3D
model, corresponding animations and other visual effects. Every attacker
type will also have an associated icon to display in the user interface.

• Hit Points or HP determine how much damage can an attacker take from
the towers before it dies.

• Movement speed in tiles per second.

28

• Size — either small, large or boss — determines how much hull (see
section 2.3.10) the player loses when this attacker reaches the Hub. Also
defines the height off the ground of the spot defensive towers target. More
details below.

• Abilities. These can be passive (for example “Immune to fire.”), repeating
(“Heals 5 HP every two seconds.”), or reactive (“Spawns attacker A when
killed.”).

The height of a target a tower shoots at is important — lower targets can
easily hide behind a terrain feature or an obstacle. We want some attackers to
look bigger than others, and it would be weird if the towers shot at a lower portion
of their model. Larger attackers will have their targeting point higher. To make
things simple for the player, there are only two heights of the targeting point —
small at 0.15 units above the ground and large at 0.3.

Whenever an attacker reaches the Hub, the player will lose some hull. The
small attackers will come in greater numbers than large attackers. To make the
stakes more equal, small attackers cost the player only 1 hull, whereas the large
attackers cost 3 hull.

(not implemented in the demo)

The player will encounter only few boss attackers in every run. They will be
the main attackers in special boss levels, which are spread throughout the
run and cannot be avoided by the player. When a boss reaches the Hub, the
player immediately loses the game. Each boss will bend the rules of the game
a bit as one of their abilities, but most of them will have the same target
height as large attackers.

2.3.5 Buildings
The player will be able to build buildings, but only between waves of attackers.

They will be able to build one building per tile, if the tile has no obstacles and
an attacker path is not going through it. Each building costs some amount of
materials to build. The player will be able to delete a building at any time, mainly
to make way for other buildings.

There are three building types defined by their primary function: towers,
economic and special. Towers deal damage and kill attackers, and they are
described in more detail in the next section. Economic buildings produce resources,
often at the end of every wave, just in time for the player to use them to build
more buildings. Some economic buildings produce resources at other times, often
as a reaction to some other event, for example an attacker dying.

Special buildings are the buildings that don’t fit in either category. They
have a unique ability that usually increases the effectiveness of other buildings.
One special building could make economic buildings produce more, another could
increase the range of towers, yet another might slow attackers down.

One notable special building is the Hub, since the player starts each level
with one for free, and they cannot build more. The goal of the attackers is to
reach the Hub, and when they do, the player loses some hull (see section 2.3.10).
Additionally, the Hub produces some amount of fuel, materials and energy at

29

the end of each wave. These resources are further described in their respective
sections.

2.3.6 Towers
Towers are the buildings which deal damage to attackers in order to kill them.

There are many properties that distinguish towers from each other. There is a lot
of freedom to allow for many unique designs. Combining towers with different
properties is supposed to be a fun and interesting part of the game.

Towers usually shoot once per their shot interval, but some towers can shoot
multiple projectiles at once, others deal a certain amount of damage per second
continuously. They can usually only target attackers in a circular range around
them. However, some towers have an unlimited range, or their range is not circular.
Most towers instantly aim at their target, some take time to rotate around and
others cannot rotate at all. Some towers cannot aim upwards or downwards.
Most towers require line of sight to their target, but some don’t. Most towers fire
projectiles in a straight line, but some don’t fire projectiles, others fire projectiles
that travel over obstacles along a ballistic arc. Some towers can even miss their
target. With tower designs, the sky is the limit.

Whenever a tower has more attackers in its range, it will decide which one to
target based on the tower’s targeting priority. The player will be able to select
one of these priorities on most towers:

• First — the attacker that’s closest along its path to the Hub.

• Last — the attacker that’s farthest along its path from the Hub.

• Closest — the attacker that’s closest to this tower.

• Farthest — the attacker that’s farthest from this tower.

• Weakest — the attacker with the least HP.

• Strongest — the attacker with the greatest HP.

Each tower will be set to one of these by default, but the player will be able to
change the priority of any tower at any time, even during waves. This will let the
player have more control over their towers, allowing them to best use their unique
properties.

The damage the towers deal comes in many types. For example physical,
explosive, energy. Some towers will deal damage of multiple types at once. This
distinction lets us make some towers explicitly weak against some attackers —
those that are resistant to the given damage type. Or it lets us restrict some
synergies, for example by making a building that makes attackers take more
damage from energy attacks only.

It is worth mentioning, that in most tower defense games, the player can
upgrade any tower during a battle by investing more resources into it. The
upgrades often increase a tower’s damage or fire rate, however some substantially
change the tower’s behavior. Some games take this to the extreme, for example
in Bloons TD 6, each tower has 15 different upgrades available, and each tower
can be upgraded to two different upgrades at once. However, in our game, the

30

player won’t be able to upgrade their towers during a battle. Instead, they will
have to have some towers that are useful at the start of a level, and others that
are more powerful, but more expensive, to be used later.

2.3.7 Abilities
Unlike buildings, abilities will be usable during waves only. They will often

have only short-term effects on the attackers, so there is no point to using them
outside a wave. The primary use-case is to kill or weaken attackers of a wave that
might be too difficult to deal with for the towers alone. Abilities cost energy to
use, but if the energy a player has is insufficient, materials can be used to cover
the difference. The reasoning behind this is explained in the next section 2.3.8.

Most abilities will only deal damage to the attackers, each in its own unique
way. However, similarly to towers, there is no restriction on what an ability can
do, as long as it makes gameplay sense and offers something new. One ability
could create a temporary defensive tower, another could temporarily improve the
towers the player has already built. Another ability might improve the player’s
blueprints for the rest of the battle, yet another might just give the player some
additional resources.

2.3.8 Materials and energy
Materials are the main resource within a battle. The player starts each battle

with some materials, and the Hub produces a small amount of materials after every
wave. Materials accumulate over the battle and there is no limit as to how many
the player can have. The player can spend materials on buildings, notably towers
and economic buildings. The more economic buildings that produce materials a
player builds, the more materials they will have later in the battle.

Intuitively, a great strategy is to build the towers necessary to survive the next
wave and spend the rest on economic buildings. However, this strategy heavily
relies on the player being able to estimate which combination of towers is strong
enough to beat the wave. To help, the player will have various abilities at their
disposal, which can be used to kill of or weaken attackers when the towers are
not strong enough by a small margin. The abilities should also cost resources to
regulate their usage — stronger abilities will cost more and weaker abilities will
cost less. However, if abilities also cost materials, it would be the best to spend
everything on permanent defense or economy. Ideally a player would leave no
materials for their abilities. That is why abilities have a resource dedicated only
to them — energy. A steady income of energy lets the player use an ability once
in a while, without costing them any long term power.

However, abilities can also be paid for in materials. All this time we’ve
assumed that long-term power is always better than short-term. However, this is
not necessarily true. In the last few waves, a powerful one-time effect is way better
than a weak long-term one, since the battle is ending soon anyway. Due to this,
abilities are perhaps most useful in the last few waves of a battle, and allowing
the player to use materials for these lets them use the materials on whatever they
think is the best. Paying with materials also helps when the player has a few
materials left over, so they can use a slightly more expensive ability than they

31

could without this.
We don’t want the player to hoard all their energy and only use it on the last

waves. To encourage using abilities throughout the battle, there will be a limit
on the energy a player has in reserve. This way there is much less downside to
using an ability in the middle of a battle when the player’s energy reserve is full
anyway, so they can’t get any more.

2.3.9 Fuel
We have already mentioned fuel a few times, for example in section 1.3 and

section 2.1.1. But in this section, we will summarize everything about fuel.
The goal of each battle is to gather enough fuel to continue to the next level.

The faster the player gathers the fuel, the sooner they win the battle. It is
generated passively by the Hub, but additional buildings can be built to speed
up the process. This makes the player decide when it’s the best to improve their
defenses and when to build fuel-producing building instead, to end the battle
before the more difficult waves come, hopefully leading to greater strategic depth.
The maximum number of waves each battle will take is determined by the amount
of fuel the player needs to gather.

(not implemented in the demo)

We want some battles to be significantly harder, but they will provide better
rewards. These will be marked on the map, so the player will decide if
they want to risk a harder battle. Making these battles require more fuel to
complete is a great way to distinguish them from other battles. This also
applies to boss battles (see section 2.3.4).

2.3.10 Hull
The player starts each run with a fixed amount of hull. As described in

section 2.3.4, whenever an attacker reaches the Hub during a battle, the player
loses some hull. Once the player loses all hull, they lose the game. A player’s hull
is a kind of buffer that allows them to make a few mistakes throughout the whole
run before they lose. They will be able to restore their hull only a few times during
the run (and no hull can be restored in the demo version). For example, they can
intentionally focus more on economy in the early waves of a battle, maybe letting
a few attackers through, in order to be stronger in the later waves and prevent
possibly greater losses. They can even take a harder battle where they expect to
lose hull when they are confident they won’t need it before they can restore it
back. However, an experienced player can use their hull as a resource. Another
option would be to have the player start each battle with full hull, but we feel
that this option allows for way less strategic depth.

32

2.3.11 Status Effects
(not implemented in the demo)

Buildings and attackers will both be able to have status effects applied on them.
These represent temporary effects which modify the behavior of whatever
they affect. They will be displayed with an icon above what they are applied
to, along with a number representing their duration. The duration can be
measured in seconds, but other kinds of duration are possible. The source of
these effects can be anything from a tower to an attacker.

Here are few examples of effects that might be applied to attackers, x
representing their duration:

• Burning deals a small amount of energy damage over time for x seconds,
possibly applied by some fire-based tower.

• Freezing slows down the attacker’s movement speed for x seconds,
possibly applied by some ice-based ability.

• Shield prevents the next x damage an attacker would take, possibly
applied by another attacker.

• Stealth makes the attacker untargetable for the next x seconds, possibly
applied on their own.

And a few examples of effects that could be applied to buildings are:

• An Overclocked tower shoots 50% faster for x waves, possibly applied
by an ability.

• A Paralyzed building is out of order for x seconds, possibly applied by
an attacker.

• The next x projectiles an Electrified tower shoots deal additional
energy damage, possibly applied by a support building.

2.3.12 Time controls
(not implemented in the demo)

We want the player to be able to pause the game. This is a quality-of-life
feature, common among other real-time single-player games. In our game,
the waves are short, and the player can just not start the next wave until
ready. However, pausing will be very useful during the waves for lining up
ability placement. Some attackers move fast and hitting them can be difficult,
and we don’t want our game to focus on dexterity or reaction time. What’s
even more difficult is clicking on a fast moving attacker to inspect its details
(described in section 2.5.7).

We will also let the player speed up the game to play at double speed.
This is useful for less eventful portions of gameplay, for example when a
slow-moving attacker travels along a long empty stretch of path.

33

It is important that the game plays out the same no matter at which
speed it’s playing, and that pausing doesn’t interfere with the game. For
example, it would be bad if the towers sometimes missed their targets when
playing at double speed. What happens in the game should also be frame
rate independent.

On the other hand, everything should look as smooth as possible given
the frame rate at which is the game currently rendered. Some animations will
have to speed up when the game speeds up, others will still play at the same
speed, even when the game is paused.

The demo version will be developed in a way that allows for this separation of
game logic and game visuals. However, the time controls themselves will not be
available in the demo.

2.4 Blueprints
A blueprint represents a building the player can build or an ability they can

use during battles. Each blueprint will include a description that explains its
function, including the exact values of important statistics — for example the
amount of damage a tower deals with each hit. The player will start each run
with few predefined blueprints, and they will collect more blueprints throughout
the run, giving them access to more buildings and abilities.

The player will only be able to have a limited number of blueprints at any
given time. Whenever they want to acquire a new blueprint while at the limit,
they’ll have to give up one of the blueprints they already have. This way it is
impossible to make a build that is just good at everything. They will have to
consider carefully which blueprints they need to cover their weaknesses and which
blueprints are the most synergistic with the rest.

Each blueprint costs some materials and/or energy (see section 2.3.8) to use,
though there could be some blueprints that are free. The player must pay this
cost every time they want to build the given building or use the given ability.

Most blueprints will have no cooldown, so the player will be able to use them
as of ten as they want. Some will have a cooldown given as a number of waves.
This means some will be usable only once per wave, some only once per two waves,
etc.

As we already mentioned a few times, the player will acquire new blueprints
mainly after every battle. The player will be presented with a selection of three
different blueprints they have not picked in this run yet. They can choose one of
these to add to their collection, acquiring it for the rest of the run.

(not implemented in the demo)

Similar blueprint rewards will appear during some events the player might
encounter. Some events will offer blueprints randomly selected from the same
pool as battle card rewards, other events will offer predefined blueprints,
which don’t appear in the regular blueprint rewards. Some shops will also sell
blueprints chosen randomly from the reward pool. A blueprint might even be
permanently altered in an event or a shop.

34

In the regular blueprint rewards, some blueprints will be more rare than others.
Each blueprint will have one rarity, which determines how often it will appear.
The rarities are

• common,

• rare,

• and legendary.

• Additionally, there is starter — the player starts each run with these. Thus,
they do not appear as rewards.

• And also special — these blueprints also do not appear in the regular
blueprint rewards, but they can be obtained on other ways, usually in
events.

As their name suggests, common blueprints will be more common than rare
blueprints, and legendary blueprints will be even more rare. At first, the player
will encounter a rare blueprint about once per a few rewards with the rest being
common. However, towards the end of the run, most blueprints on offer will
be rare. Additionally, some rewards, for example after harder battles or boss
battles (see section 2.3.4), will contain more rare blueprints more often. The exact
proportions are yet to be determined based on playtesting.

2.4.1 Design
The blueprints should be designed in such a way, that it is not great to always

take the blueprint with the highest rarity. Of course, rarer blueprints will usually
be stronger, but they will usually be more specific in their use. Rare blueprints
should be similarly good to common blueprints in most cases, but potentially
much stronger when used in the right way or in combination with the right
blueprints. Legendary blueprints should have the greatest potential power, but
in even more specific circumstances. This power should however be so great, it
is worth it to sacrifice some of the build’s other aspects in order to get the most
out of this blueprint. The overall strategy of a given build could be defined by a
few legendary blueprints, with the rest built to support them. Of course, some
legendary blueprints will be useful in more builds than others. It should also
be possible to make a strong build just with a good set of common and rare
blueprints.

As we already mentioned in sections 2.3.5, 2.3.6 and 2.3.7, each blueprint
should be unique in its own way. The most exciting designs are often those
that somehow break the rules. For example, we could design a building that
costs energy, or a tower that has to be placed on a path, or even an ability that
manipulates the player’s blueprints or the waves of attackers that are yet to come.
However, most of these are hard to balance properly, and most important is
whether they lead to fun gameplay or not.

It is also important to design a good set of starter blueprints. It should be as
small as possible, but somewhat balanced in most aspects. Specifically, it should
provide a way to gather materials and fuel. There should be at least two towers

35

that can deal with the early levels, and they are distinct from each other, so there
are still decisions to make even in the first levels. There should also be a starter
ability, since abilities are a core of the design (see section 2.3.7). The individual
blueprints should be as simple to use and understand as possible. Their power
should be sufficient for the early levels, but they should be worse than other, even
common blueprints.

2.4.2 Augments
(not implemented in the demo)

The player will also be able to upgrade their blueprints with augments. Each
blueprint will be able to take up to 2 augments. Each augment will be a
slight improvement, applicable to many blueprints. For example, one augment
might increase damage, another might change the damage type, yet another
might make the blueprint cheaper.

The augments will also have different rarities, determining how often they
appear. Similarly to blueprints, they will usually appear as a reward in battles
or events and the player will choose one of three. It will also be possible to
buy them or get them in events. Sometimes, blueprints will appear in rewards
with an augment already applied.

2.5 Battle Graphical User Interface
In this section, we will describe the graphical user interface that will be overlaid

over the game world during a battle. The goal of the GUI is to display all the
information the player might need, that is not present within the world itself, and
to let the player access all the game controls without the need for a keyboard.
However, for each of the controls accessible through the GUI, there will also be a
hotkey the power users can use.

In figure 2.13 is a mockup of the GUI with red numbers in circles, marking each
of the components. We will describe each component in its separate subsection
with the last number corresponding to the number in the figure.

36

12x

4

2x

5

8x 15x4x 1x

10/30

35

3

85/120 +153 waves
remaining

wave Sample tower

Damage 2
Range 2.4
Interval 0.5s
This tower shoots at
attackers.
When it shoots, it
produces 10 energy.
This tower is cool.

+15

+10

20 30 40 10 20 25

First

1
2

3

4
5

6

7

Delete

Figure 2.13 A mockup of the GUI during a battle. Red numbers in circles marking
the individual components.

2.5.1 Waves and time controls
In the top left corner is displayed the number of the current wave in big

white text. Above it is the remaining number of waves in green. This amount is
calculated from the current amount of fuel and the fuel production per wave.

Below this, there is a panel with time controls. Here, the player can start the
next wave, or pause or speed up the game. The pause button will change into
play when the game is paused or between waves. The speed button will change
between one arrow and two arrows, based on the currently selected speed.

2.5.2 Fuel and Hull
Immediately to the right of the wave s display is displayed fuel and hull. The

green progress bar displays how much fuel the player has out of the total required
to finish the level. It also displays these values in text. Additionally, it shows
the amount of fuel produced per wave and light green marks previewing the fuel
values after each of the upcoming waves.

Below is a red progress bar showing the player’s hull out of the maximum
amount.

2.5.3 Wave Preview
Below the fuel and hull displays it the wave preview. It shows the composition

of the current and upcoming waves. Each wave has an arrow with its number and
the batches of attackers that will come. Each batch shows one or more icons of
the attacker type it’s composed of along with a count. The icon spacing represents
the spacing of the attackers in the wave itself.

37

2.5.4 Materials and Energy
At the bottom of the screen is the materials and energy display. In the orange

hexagon is shown the current amount of materials the player has, along with a
smaller number below it representing the material production per wave. Similarly,
the blue circle shows the current amount of energy and the energy limit, with
the energy production below. The circle is partially filled with a lighter blue to
visually show how much energy the player has out of the maximum.

2.5.5 Blueprint Menu
To the right of materials and energy is the blueprint menu. Here the player

can select their blueprints to use them. Between waves, only buildings are shown,
and during a wave, only abilities are shown.

Each blueprint is shown as a colored square of paper with an icon over it. The
color represents the type of the blueprint:

• blue for towers,

• green for economic buildings,

• purple for special buildings,

• and orange for abilities.

Overlaid over the lower portion of the blueprint is its cost. This is what the
blueprints look like everywhere in the game, for example in blueprint rewards.

The cost number turns red when the player has insufficient resources. The
cooldown is also shown as a partial dark transparent overlay over the blueprint
paper. The portion it covers represents the portion of the cooldown that’s left
until the blueprint can be used again.

By clicking on a blueprint in the blueprint menu, the player will select it. To
use it, they will have to click somewhere in the world to specify at which position
do they want to use it. The player will also be able to select the blueprints using
the number keys 1 to 9 on their keyboard, based on the blueprint’s position in
the blueprint menu.

2.5.6 Settings Button
In the top right is a button which lets the player access a settings screen. Here

the player will be able to access some game settings like sound and music volume.
They will also be able to exit back to menu from this screen. When the settings
screen is opened during a wave, the game pauses.

2.5.7 Info Panel
At the right edge of the screen is the info panel. It shows up only when the

player has selected something, and it displays information about the selected thing.
It also shows up when the player has not selected anything, but only hovered over
something selectable with the cursor. In this mode, the panel is semi-transparent
and no buttons are showing (more information below). This panel will appear

38

whenever the player selects a relevant object, even on other screens, not just in
battle. For example, when the player selects a blueprint in a shop.

At the top is the name of the currently selected object. For now, let’s assume
it’s a tower, as shown in the picture. The name is over a large icon of the tower’s
blueprint.

Over the lower portion of the icon is the targeting priority selector. It is
displayed only when there are targeting options to choose from. Usually, only
towers can have a targeting priority, and not all of them have it. The targeting
priority selector consists of the name of the currently selected priority, and arrows
to the left and right of it to switch to the next or previous priority. The priorities
are usually a subset of those described in section 2.3.6.

The main portion of the info box is taken up by the description. The contents of
the description depend on the selected object and will be specified later. However,
there is a few special features the description has that can appear no matter the
selected object type.

First of them are icons in the text. These icons are used for important stats
or quantities that appear often. For example there is an icon associated with
damage, one for range, one for materials, etc. The icon usually appears before
the mention of the thing it’s associated with or before the stat. Examples of this
use can be seen in figure 2.13.

Most of the quantities in the description can be modified in various ways. If
there is some sort of original version which differs from the current version, we
can highlight the changed quantities using colors. Red means the quantity is now
worse than before, green means it’s better. Note that for some statistics, higher
is better, and for others, lower is better. Additionally, it is possible something
added a new description that wasn’t in the original version. For example, a special
building could add new abilities to neighboring towers. This new description is
highlighted in orange.

Below the description is a button that allows the player to delete the selected
building. Of course, this button only appears when the selected object is a building
that it is not permanent, unlike for example, the Hub.

As mentioned, the info panel will display the description of blueprints. A
blueprint’s description contains sentences that explain what the thing, which the
blueprint represents, does. Additional quantities that don’t fit into these sentences
are summarized at the top, as shown in figure 2.13. Also, when a blueprint is
selected from the blueprint menu, it will show the remaining cooldown if any.

The descriptions of buildings are basically the same as their blueprints.
However, buildings can also provide some additional information of their own, for
example the total amount of damage a tower has dealt or the amount of materials
a building has produced.

Similarly, attacker stats can be displayed, for example when the player
encounters a given attacker type for the first time. The format is the very similar
to blueprints with base stats (see section 2.3.4) at the top and additional abilities
described in sentences below. Attackers can also be selected during a wave. The
changes are the same as with buildings and blueprints, but also the attackers
always show their current HP in addition to their max HP.

The player can also inspect an empty tiles. Here only little information is
provided. Whether the tile has some obstacles, or is rich in minerals or fuel,

39

whether it is slanted and whether a path runs across it. If the tile has a building
on it, the details of the building are displayed instead.

2.6 Attacker HP Indicators
During a wave, we want the attackers in the world to have HP indicators above

them to communicate to the player how much more damage they need to deal to
a given attacker to kill it. These indicators should be overlaid over the attackers
and always face the camera. Their purpose is to let the player know how much
HP the attacker has left. There is going to be a lot of attackers on the screen, and
thus a lot of HP indicators. They should be simple in order to be legible when
viewed when the camera is zoomed out and not too noisy in large quantities.

Thus, we will use the design displayed in figure 2.14. It has a rectangular shape,
and it should be one size for all small attackers and one size for all large attackers.
The rectangle is filled in with a colored fill on a dark gray background. This fill
represents the portion of the attacker’s HP that’s left out of their maximum HP.

Figure 2.14 Two attackers with HP indicators. The one on the left has 4/5 HP, the
one on the right has 25/35 HP.

Over the colored fill, there are black vertical lines dividing the indicator into
sections. Each section represents the same amount of HP. In the HP indicator
above the attacker on the left, each section represents 1 HP. Thus, we can count
that the attacker has 4 HP out of a maximum of 5. However, some attackers will
have a lot of HP, and section of just 1 HP would be impractical for those. So
each section will represent a power of 10 of HP, and we will distinguish them by
the color of the fill. Orange for 1 HP sections, red for 10 HP sections, dark red
for 100 HP sections, and potentially also magenta and purple if larger values are
needed.

We always choose the largest section size that leads to the indicator having
more than one section, so there is always 2 to 10 sections. It is also important to
note, that the rightmost section will not necessarily represent the amount of HP
it should. For example when an attacker has 35 HP, their indicator will consist
of three 10 HP sections and one 5 HP section. This last section will be scaled
accordingly, in this case it will be only half as wide as the whole sections, as seen
in figure 2.14.

2.7 Selection and Highlighting
In section 2.5.7 we’ve mentioned that the player will be able to select blueprints,

buildings, tiles and attackers. We want to communicate to the player what is

40

currently selected. We can accomplish this by displaying a blue outline around
the selected object. Similarly, we can show what’s the player’s cursor hovering
over with a lighter shade of blue.

During a battle, buildings can often affect other objects, for example, towers
usually have a big impact on the HP of surrounding attackers. We can use similar
highlights to show these relations. All attackers within the range of a tower should
be highlighted in yellow when that tower is selected. Similarly, when placing an
ability that immediately affects attackers, we should highlight the attackers that
would be affected. As another example, while the player is placing a building that
affects other buildings, or when the player selects this building, all the affected
buildings should be highlighted. For some objects, for example most attackers, we
don’t even want to highlight anything else. However, what to highlight will have
to be decided on a case by case basis, because the objects in our game can have all
sorts of unique behaviors. Additionally, when the player hasn’t selected anything,
but has hovered over some object, we can also display its relevant highlights, since
we’re not displaying the highlights of any selected object.

Relevant objects won’t be highlighted only based on what’s selected. As we
indicated, when the player has selected a blueprint in order to use it, we can
preview what would be affected if the player used it right now. We should also
highlight as hovered only the object relevant to the blueprint’s placement. When
placing a building, we don’t want to highlight the attacker the player’s cursor is
over, because building are not used on attackers. They are built on tiles, so we
should highlight the tile the attacker is on. Similarly, when the player is about
to use an ability that can be placed at any point on the surface of the world,
we shouldn’t highlight tiles or attackers, but only highlight the exact point the
ability is about to be placed at. This placement highlight can also indicate when
a placement is invalid by turning red instead of being blue.

When placing something that can only be placed on specific tiles, we can
also highlight these tiles. For example, most towers cannot be placed on tiles
with obstacles or a path. There is usually going to be a lot of valid tiles, so this
highlight should be a bit more subtle. We think the best way to show this is to
tint the terrain of the valid tiles in blue.

We also want to show the range of the ability or tower the player is currently
placing (or a tower that’s selected). The player needs to see the range in the
context of the world, just a number is not enough. The most clear way to do this
is to also draw this range visualization directly on the terrain. This is because
the situation could be viewed from different angles. In most cases, this would be
just a simple circle, however, some towers or abilities can have an unusual range
shape, for example a straight line. Most importantly, a lot of towers will only be
able to shoot at attackers in line of sight, which will create all sorts of unusual
range shapes. We definitely need to communicate to the player where the tower
can hit attackers and where it cannot.

In figure 2.15 is an example range visualization for a tower that requires line
of sight. The tower in question is represented by the blue square. This situation
is showed from a top-down view, however in game, this would take place on a 3D
terrain and this range visualization would have to be drawn correctly even from a
different angle. In the figure, the tower is represented by the blue square in the
center. The black lines separate different levels of the terrain, the lowest level is

41

colored with the darkest shade of gray. In the top part of the figure, we can see
the tower’s line of sight is being blocked by a higher terrain. The visualization
also shows that this tower cannot shoot uphill, since there is nothing drawn on
the higher level of the terrain. In the top left quadrant we can see the tower’s line
of sight by some large obstacles. The tile immediately to the right of the tower
is slanted, transitioning to a lower level. On the lower level, we can see some
unusual shapes emerge. This gap in the range appears, because the terrain level
the tower is on is in the way when the tower wants to shoot at attackers close to
the base of the overhang.

Figure 2.15 Example visualization of a tower’s range.

Here, we can also see a portion of the range colored in yellow. This means
that if an attacker was at this point, the tower would only be able to shoot at it
over the ledge if it was a large attacker. In section 2.3.4 we have explained that
there will be two sizes of attackers. This means that there will be a region where
a tower can’t see any attackers, a region where the tower can see any attackers
(green), a region where the tower can only see large attackers (yellow), but also a
region where the tower can only see small attackers. The last case is, however,
very rare, so we can draw this region also in green.

Calculating the exact shape of the region the tower can see can be expensive.
We could simplify this by only computing the range visualization where an attacker
could appear — on a path. However, we think it is important to show at least an
approximation of the whole picture, to make it easier for the player to see what’s
blocking the line of sight and where.

42

2.8 Battle Camera Controls
During a battle, the world will be rendered onto the player’s screen using an

orthographic camera at an angle that mimics isometric graphics [12]. The world
is pretty large, so we want to let the player zoom in. They will be able to do so
using the mouse scroll wheel. Most of the time, the world will be viewed at an
angle in to clearly convey the various heights of the 3D terrain. However, in some
cases it would be useful to have a top-down view, for example when inspecting
whether a path intersects with a tower’s range. We can blend these functions by
slowly tilting the camera to look straight down at the maximum zoom level. This
is the zoom level at which it’s best to inspect details anyway.

Since the camera can be zoomed in, the whole world won’t necessarily be on
the screen at once. The player will have to be able to move the camera around.
Additionally, high terrain can sometimes obstruct what’s behind it, so we will allow
the player to rotate the camera around the vertical axis, bot only in 90 degree
steps to preserve the isometric look.

2.9 Future Features
In this section, we would like to mention other features that will be in the full

game, and we’ve not described them earlier in this chapter. These features will
also have to be designed eventually, but they will not be in the demo, so only
rough descriptions are provided.

(not implemented in the demo)

2.9.1 Setting and Story
From the names we’ve given to various game components, it might be clear

that we’re leaning towards some kind of sci-fi setting. The player would travel
across a galaxy using a spaceship, stopping on various planets along the way
to refuel for further travels. But what is the main character’s story? What
is their ultimate goal? Well, the story has not been decided yet. However,
the story should be an important part of the game, and it will inform a big
portion of the game’s further design. Any game can always benefit from an
engaging story, especially single-player games.

2.9.2 Run Structure
We want each run of the game to last at most 2 hours, since we want the

players to be able to complete each run in on sitting. Each run will probably
consist of three acts, each ending in a boss level. This is the same structure as
in Slay the Spire or Monster Train [13], which are both roguelike deck-building
games. It seems to work very well for them, so it is where we’ll start. However,
the final run structure will heavily depend on playtesting.

One thing that is clear even now, is that each battle will take substantially
longer than in Slay the Spire. Monster Train also has longer levels, so each run

43

consists only of 9 fights. It is reassuring to know that a roguelike of this kind
can work even with fewer levels. Even though Monster Train has fewer levels
than Slay the Spire, it has a similar amount of rewards and shops throughout
the run, letting the players customize their build to a similar degree, if not
greater.

2.9.3 Saving the Game
Even though we want the players to be able to play a run in one sitting,

saving their progress is still a very useful feature.
Ideally, we would save the game after every choice the player makes and

after every tick of simulation during a battle. However, this is technically
unfeasible. We could save the game whenever they explicitly choose to save,
for example when they exit the game. This would still be pretty difficult, since
we would need to serialize the state of all towers, attackers and projectiles,
and then we would need to be able to load and initialize everything correctly
again.

We could take the approach both Slay the Spire and Monster Train use
and save the game whenever the player makes a decision outside of battle,
and during battle only at the start and the end. This would definitely work
and be usable. However, we will aim to save the game at the start and end
of every wave. In Bloons TD 6, the game is saved at the end of every wave
only, and the player can build towers even during a wave. This means that
a player can exit the game right before they would lose and redo the wave,
with a different strategy. In our game this sort of save scumming would be
less effective, since during a wave, the player can only use abilities, which are
meant to be used reactively anyway.

2.9.4 Money
We that it would be good to add another resource, one that persists

throughout the entire run. The main use of this resource, for simplicity called
money, would be to pay for items in shops. This would allow the player to
make more decisions than for example, if they got one thing in every shop for
free and nothing more. This way they can save up their money when a shop
doesn’t offer anything they’d like to buy, and spend more at shops with things
they like. Of course, money would be acquired mainly by winning battles and
sometimes in events.

2.9.5 Permanent Unlocks
The most strict definitions of a rogue-like mandate that the game doesn’t

let the player unlock any permanent improvements which persist between
runs. The players themselves should improve by playing the game, not their
in-game characters. We like this idea and wish to preserve it even within our
game. However, it is possible the player will be able to unlock more of our
game’s content as they play, in a way that is similar to Slay the Spire. In
Slay the Spire, the player starts off as a character called The Ironclad and

44

only after playing one game they unlock the second character. Furthermore,
for each character, the game offers five sets of new cards and relics to unlock.
These unlock serve mainly to not overwhelm a new player with choices or
items which are harder to understand.

45

3 Analysis
Now that we have described the game’s design, in this chapter, we will explain

the approach we took to implement it from a high-level perspective. We will
provide concrete details only for what will be implemented in the playable demo
version, but as always, we will make many decisions based on the original vision
of our game.

3.1 Game Engine
Game engines provide many important and useful systems for us, so we can

focus on implementing the game logic. For our game, we chose Unity because it
offers all the features we need, and the author is already familiar with it. There
are many game engines we could have used, and the high-level decisions presented
in this chapter would be still applicable. However, in some sections we will use
nomenclature that is specific to Unity, so we assume the reader is at least familiar
with it. More information is available in the official documentation [14].

3.2 Procedural Generation
As explained in the previous chapter, a lot of the game will be procedurally

generated, including the map of a run and each battle along the way. In the next
few sections, we will decide how to generate the worlds for the battles, and in
section 3.6, we will focus on generating the waves of attackers.

We also want to procedurally generate the map of each run, however the run
map will not be a part of the demo version of our game, so we won’t implement the
map generator yet. Many of the parameters for the procedurally generated battles
will be decided by the map generator. For example, at the start of each run, the
battles should be easy, and they should gradually get more difficult further into
the run. Additionally, some battles will be special in some way. For example,
some battles will be harder, or use a unique terrain type. We should decide what
will be determined by the map generator before the battle generates, and what
will be determined only once the battle starts generating.

The map generator will select the terrain type of the world and what attacker
types will appear. These parameters define the theme of the battle. To control the
difficulty, the map generator dictates how difficult should the waves of attackers
be, and how much fuel is required to finish the level. This is further explained
in section 3.6. The number of attacker path starts and the path lengths also
greatly influence the difficulty. More paths are harder to cover with defenses than
a single path. Shorter paths give the player’s defenses less time to deal with the
attackers than longer paths. The map generator will also define the maximum
number of path branches, since the paths can split into more. This is mainly to
limit the complexity of the path network in some levels. There are many more
factors which influence the difficulty of the battle, but they are more difficult to
quantify, and we believe their influence is not as great.

46

The map and the map generator will not be a part of the demo, but we still
want to let the players play more levels and collect blueprints, until they inevitably
lose. So, we will just create a simple system that will set up the levels with
gradually harder attacker waves, shorter paths and different numbers of paths.

The worlds the battles take place on are composed of three somewhat distinct
parts — paths, terrain and obstacles. It would make the most sense to generate
each part separately, one after another. We should start with the part that is the
most restricted, because each part is additionally restricted by what was generated
before it. For this reason, we will start with paths. There are a lot of rules the
paths should follow, as described in section 2.3.3. Additionally, the map generator
exactly specifies their number, lengths, and maximum number of branches. So,
we will generate paths first (section 3.3), then the terrain (3.4), and finally, the
obstacles (3.5).

All the randomized algorithms we will use require a source of randomness.
For reasons described in section 2.2, we need to choose the right random number
generator for our use-case. This is further explained in section 3.7.

3.3 Path Generation
In the previous section, we decided that when generating a world, we will start

with the paths. We also mentioned that we will get the number of path starts,
their path lengths and the maximum number of branches as an input from the
map generator, because these values heavily influence difficulty. In section 2.3.3,
we outlined many requirements and suggestions for the paths, in order to make
them play well. Generating a path network with good properties is not an easy
task. To simplify it, we can split the path generation process into three simpler
problems:

1. Select the Hub position and path starts.

2. Generate the main branch from each path start.

3. Refine the paths and make them split and join.

How to accomplish the goal of each of these stages will be described in the following
subsections of this section.

Before we continue, we would like to define several terms which we’ll use in
the rest of this section. These are illustrated in figure 3.1.

As stated in section 2.3.2, the world is formed by a 15× 15 grid of square tiles.
Each tile shares an edge with up to four neighboring tiles, or neighbors. The
outermost tiles of the world which have less than four neighbors are the edge
tiles. The tile the Hub is on is the Hub tile. Some tiles can be marked as path
starts.

A path network consists of path segments. Each path segment is an oriented
straight line from the center of one tile to the center of its neighbor. We can think
of them as the edges in an oriented graph, with tiles being the nodes. A tile with
at least one segment starting or ending at it is a path tile. A path or a branch
is a sequence of consecutive segments. The number of extra branches of a
path network could be defined as the sum of the number of outgoing segments

47

from each tile beyond the first. For example, the path network in figure 3.1 has
2 path starts, and because there are two tiles with two outgoing segments each,
they make for 2 extra branches.

Tile

Legend:

Edge tile

The Hub

Path start

Path segment

Example of a
branch

Figure 3.1 A path network in a 7× 7 tile world.

If tile u can be reached from tile t by going along d path segments, we say
the path distance from t to u is d. Two tiles can have multiple different paths
between them, however by requirement RP 7, all of these paths must have the
same distance. When u is not reachable from t, they do not have a path distance.
The path length of a start dictates its path distance to the Hub. For example,
the path start on the bottom left of figure 3.1 has path length 9.

3.3.1 Hub Position and Path Starts
In the first stage of path generation, we need to select the tile the Hub will be

on, and all the path starts. This will be informed by the number of path starts
we have to generate and their path lengths.

Hub Position
First, we will select the Hub tile. According to requirement RP1, it “should not
be near the edge of the world, and it should be close to the center in levels with
multiple paths”. There aren’t any more requirements, so we will simply select a
random tile from tiles that are at most some distance from the center using the
euclidean metric. This distance will be the greatest for levels with one path start
and decrease with each additional path start.

Path Start Requirements
Now we select the path starts. According to requirement RP3, “paths start on
tiles just outside the playable world, and the first path segment goes from the path
start to the nearest tile in the playable world.” However, other path segments are
confined to the actual tiles of the world. For simplicity, and to avoid edge cases
when generating paths, we will pretend, that the paths start at an edge tile of the
world, where the first path segment will end.

We will add this segment going over the edge only after the paths are generated.
This segment is uniquely determined anyway, except in the corners of the world,

48

where we’ll always select the one that makes the path go straight, as shown in
figure 3.2. On the right are the pats as we think of them when generating, and on
the left are the actual final paths. The red circles represent the path starts, and
the arrows represent the first segment of each path that only gets added at the
end.

Figure 3.2 Real path starts compared to the ones we work with.

What tiles are valid for a path start with a given path length? Each start
must be at an edge tile, such that a path of the given length can go from it to
the Hub. It is easy to see that the minimum path distance between two tiles is
their Manhattan distance. So, we know that each start cannot be further from
the Hub in Manhattan distance that its path length.

We can imagine creating a path backwards from the Hub by appending a
segment at every step. After the first step, the path starts on the neighboring
tile of the Hub tile. Both Manhattan distance and path distance from the tile to
the Hub are 1. After every step, the path distance increases by 1, changing its
parity from odd to even or vice versa. The Manhattan distance to the Hub either
increases or decreases by 1, also changing its parity. Thus, the parity of the path
distance and Manhattan distance always match. This means a path start with
an even path length must be a tile with an even Manhattan distance to the Hub,
and analogously for odd lengths.

In levels with more paths, we want the path starts to be spread out from
each other, in order to cover the world with paths more evenly. We can choose a
minimum distance between the paths starts. For levels with just one long path,
we can also set a minimum distance from the Hub, so it starts further away from
it and has more space to zigzag through the world.

Selecting Path Starts
To actually select the starts, we find all edge tiles, and separate them into two
sets — each for one parity. Then to select each start, we can use rejection sampling.
This means we take random tiles from the set of with the correct parity until
we find one that satisfies all the conditions. As long as the minimum distances
between path starts and from the Hub are small enough, this approach always
yields a valid list of path starts. However, with stricter parameters it is possible

49

that the first few starts invalidate all other start positions. In that case we can
use rejection sampling again — trying to randomly select lists of starts, until we
get one that’s valid. If the failure rate was great enough, it would be wise to
select a different algorithm, but our requirements are not very strict, so rejection
sampling works fine.

3.3.2 Generating the Main Paths
From the previous step, we have the Hub position and all the path starts. Now

we want to generate the main paths, which will serve as a template for the next
steps. These paths have to have the correct lengths and follow the requirements,
which we set in section 2.3.3.

We couldn’t find many resources on procedurally generated paths. There is a
lot of research on generating road networks, mazes or dungeons. Theoretically, we
could use one of the many algorithms for generating mazes [15], and modify it to
suit our needs. However, it would be difficult to achieve what we need using an
approach that was designed for something else.

We found one algorithm specifically designed for procedurally generating paths,
called path chiseling by Boris the Brave on his blog [16, 17]. This algorithm creates
random paths on a tile grid by randomly blocking off individual tiles until only
one path remains. This is more promising, however we were unable to find a good
way to modify it to generate paths of specific lengths with the properties we want.

Since many of our requirements are more like suggestions, we always want to
fulfill them almost the best we can. This means we can look at the task as an
optimization problem: create the best looking paths, given the requirements like
length, no crossing etc. Since we want the paths to be randomized, we don’t need
to find the optimum, we only need a random solution that is good enough. Given
this, we decided to generate the paths using an optimization technique called
simulated annealing.

3.3.3 Simulated Annealing
Simulated annealing can be used to find an approximation of the global

optimum of an optimization problem, much faster than it would take to find the
exact global optimum. A great analysis of this technique can be found in the
article Optimization by Simulated Annealing [18]. In this section, we will describe
the technique, and in the next section (3.3.4), we will use it to generate the paths
we want.

The problems simulated annealing can be used for have to be formulated as
follows:

From the set of all states S, find a state s∗ that minimizes the cost
function f : S → R, given a neighbor function n : S → P(S) which
gives the neighbor states of each state.

For example, to use simulated annealing to solve the travelling salesman problem,
each state is usually defined as a permutation of the cities to be visited. The cost
function then gives the length of the salesman’s path, and the neighbor function
gives all the states that can be acquired by swapping two cities in the original
state.

50

The process of simulated annealing is described in pseudocode as algorithm 1.
It starts in an initial state s0 and runs for max_steps steps. For each step, a
temperature t is computed, slowly decreasing from tinitial in the first step, to tfinal

at the final step. In each step, a random neighbor s′ of the current state s is
selected, and an acceptance probability p is computed, based on the values of
f(s), f(s′) and the current temperature t. The new state s′ is then set as the
current state with probability p.

This acceptance probability function can be implemented however we see fit,
however it should follow these rules: It always accepts a better new state (s′ such
that f(s′) < f(s)), but it can also give a non-zero probability when the new state
is worse that the current state (f(s′) > f(s)). The probability to accept a worse
new state decreases with decreasing temperature. The acceptance probability
of state t cannot be greater than the probability of u when t is worse than u
(f(t) > f(u)).

Algorithm 1 Simulated annealing
1: s← s0
2: for k from 0 to max_steps− 1 do
3: t← Lerp(tinitial, tfinal, k/(max_steps− 1))
4: s′ ← random neighbor from n(s)
5: p← AcceptanceProbability(f(s), f(s′), t)
6: with probability p: s← s′

7: end for
8: return s

It is easy to see that if the algorithm never accepted states which are worse
than the current state, it would gradually reach a local optimum. Since it also
accepts worse states, it can move away from the local optimum and hopefully end
up in a better one. The probability to accept a worse state gradually decreases
with the decreasing temperature. So at the start, when the temperature is high,
the algorithm explores the search space a lot, but as the temperature decreases,
it is less and less likely to escape from the local optimum it finds. Since the
exploration prioritizes better states, it is more likely to lead the algorithm to a
better optimum than a worse one.

3.3.4 Generating Paths using Simulated Annealing
To use simulated annealing to optimize paths, we need to formulate our task

as an optimization problem that simulated annealing can solve. We need to define
what is a state, a cost function and a neighbor function.

States
Each state is a path network composed of one path for each path start. We will
represent each path by a sequence of tiles the path goes through. Two consecutive
tiles in the sequence must be neighbors. Additionally, each path starts at the
given path start, has the correct length, and ends at the Hub tile. We chose this
representation to make it easy to generate neighbor states. Notice, that we don’t

51

check for any intersections and a path can visit one tile multiple times. This is
because the state is going to change only by a small amount at every step. If
we banned intersections, we would lose too much freedom during the simulated
annealing, and the final state would always end up close to the initial state.

Neighbor States
We decided that two states are neighbors when they differ only by one tile. To
generate the set of all neighbors, we have to find all the ways to change one tile
in the state to a different tile, such that the result is still a valid state.

For a state to be valid, we require that each path starts with the path start
and ends with the Hub tile. This means that the first and last tile of every path
can never change. For each other tile, there aren’t many options on how to change
it. All these options, up to symmetry, are illustrated in figure 3.3. The tiles in
the sequence are drawn as circles connected by arrows that show their order in
the sequence. The tile we plan to change is drawn as a red circle. Additionally,
we draw the tiles which go before and after it in the sequence. These are the only
tiles that determine the possible changes.

When the tiles form a straight line, no change is possible. When they form
a right angle, one change is possible. And when the same tile comes before and
after, 3 changes are possible.

Figure 3.3 All the possible tile changes.

Cost function
Now we select a cost function that gives a better score to paths that are more
desirable. Since we want the paths to spread out, we can calculate for each tile
of the world what we call a crowding penalty. Each time a tile appears in the
state, it’s crowding penalty increments by 1, and all other tiles get a lower penalty
decreasing with euclidean distance. This way, the tiles that get visited the most
times get the highest crowding penalty. A tile can be substantially crowded even
when no path goes through it just because there is a lot of paths around it.

We will denote the crowding penalty that tile t gets from tile u as c(t, u). The
total crowding penalty from tiles in state s for a given tile t is then ct(t, s) =∑︁

u∈s c(t, u).
We also add a big crowding penalty to the tiles along the edge of the world,

which gradually decreases as we go away from the edge. This is to push the paths
away from the edges, as that is undesirable by requirement RP9. We will denote
the crowding penalty that tile t gets from its closeness to the edge as ce(t).

52

We define the cost function of a state s as the sum of the crowding penalties
of each tile in the state:

f(s) =
∑︂
t∈s

(ce(t) + ct(t)) =
∑︂
t∈s

(︄
ce(t) +

∑︂
u∈s

c(t, u)
)︄

This is an obvious choice, because we want each tile to be crowded as little as
possible. So, a state with less crowded tiles has a lower cost, and a state with
more crowded tiles has a higher cost.

However, we can just calculate the relative improvement ri = f(s) − f(s′)
between the current state s and the new state s′ to save on computation. The
relative improvement still gives us enough information to create a good acceptance
probability function, but it is simple to compute, because s and s′ share most of
their tiles.

For s′ obtained by changing tile v in s to w, we can calculate ri as:

ri = ce(v)− ce(w) + 2ct(v, s)− 2ct(w, s) + 2c(w, v)− 2

We prove this in section 3.3.5. This can be computed in O(1) time if we keep
the ct(t, s) of every tile t in the world. We have to keep all ct updated when we
change the current state to the new state. This update is simple for each tile t:

ct(t, s′) = ct(t, s)− c(t, v) + c(t, w)

Initial State
Now, with the problem formulated, we still need to fill in a few details to be able
to solve it. First, we need to produce an initial state. This is not trivial, because
of our constraints on what’s considered a valid state. Namely, every path has to
be the correct length. However, we can easily produce a valid initial state using a
random walk from each path start.

The algorithm starts on the path start tile, and adds it to the state as the first
path tile of this path. Then it moves to a random neighbor and appends it to the
sequence. This is repeated until it creates a path of the correct length. However,
we need to ensure that the path ends at the Hub. To achieve this, we just make
the algorithm never select a tile that is further away from the Hub in Manhattan
distance than the remaining length of the path.

Acceptance Probability Function
Next, we need to select an acceptance probability function that works well for
this problem. We don’t compute the cost of the current state f(s) and the cost of
the new state f(s′) separately, instead we compute only the relative improvement
ri = f(s) − f(s′). This means that the function will decide on the probability
only based on the relative improvement and the temperature. The function
needs to fulfill the requirements outlined in the previous section 3.3.3. The most
straight-forward function is simply ri − t. This function can return values greater
than 1 and less than 0, this does not matter, because when testing the probability,
these values get treated as 1, respectively 0.

Is this the best function for this problem? We don’t know, but it performed
well in our testing, so we kept it.

53

Intersection Untwisting
However, when we use simulated annealing with these parameters, it still sometimes
produces paths that intersect. This is because it is difficult for the algorithm to fix
a loop in the path, as shown on the left in figure 3.4. It would first have to bring
many path tiles closer together, in order to let them cross over each other. This
is the sort of problem simulated annealing is supposed to be able to overcome.
However, we can help it by adding a step that just untwists crossings by reversing
the section of the path that forms a loop, as shown in the figure. This still leaves
two identical tiles, but now, simulated annealing can drive these apart without
any issue.

Figure 3.4 Untwisting a self-intersecting path.

This modification of the state is valid, because the length of the path doesn’t
change. However, we cannot untwist crossings between two different paths, because
that could change their lengths. This means that we should take special care to
not produce an initial state where two different paths cross. We can achieve this
by calculating crowding penalties while creating the initial state. Then, when
the random walk algorithm selects a random neighbor to move to, we make it
prefer the neighbors with a lower crowding penalty. Because we don’t mind
self-intersections, we don’t add the crowding penalties from the nodes of the path
the algorithm is currently creating. We add them only when the path is complete.

Still, the algorithm sometimes fails in creating a valid path network. In case no
valid network is generated, we can restart the path generation algorithm, including
picking new starting positions.

In figure 3.5, we can see how the paths evolve over time as the temperature
decreases.

54

(a) Initial state (tinitial = 2.5) (b) t = 2

(c) t = 1.5 (d) Result (tfinal = 1)

Figure 3.5 Evolution of paths during simulated annealing.

3.3.5 Simplifying the Relative Improvement Calculation
In paragraph Cost function of the previous section, we defined the cost function

we will use and its components: The cost function for state s is defined as follows:

f(s) =
∑︂
t∈s

(︄
ce(t) +

∑︂
u∈s

c(t, u)
)︄

Where c(t, u) is the crowding penalty that tile t gets from its distance to tile
u, and ce(t) is the crowding penalty tile t gets from its distance to the edge of
the world. The total crowding penalty from tiles in state s for a given tile t is
then ct(t, s) = ∑︁

u∈s c(t, u). We also stated that we will only calculate the relative
improvement ri = f(s)− f(s′) between the current state s and the new state s′.

In this section, we show that the relative improvement ri = f(s)− f(s′) for s′

obtained by changing tile v in s to w can be calculated as follows:

ri = ce(v)− ce(w) + 2ct(v, s)− 2ct(w, s) + 2c(w, v)− 2

55

We start by substituting the definition for the cost function f .
ri = f(s)− f(s′)

=
∑︂
t∈s

(︄
ce(t) +

∑︂
u∈s

c(t, u)
)︄
−
∑︂
t∈s′

⎛⎝ce(t) +
∑︂
u∈s′

c(t, u)
⎞⎠

Now we separate v from s and w from s′.

=
∑︂
t∈s

(︄
ce(t) + c(t, v) +

∑︂
u∈s−v

c(t, u)
)︄
−
∑︂
t∈s′

⎛⎝ce(t) + c(t, w) +
∑︂

u∈s′−w

c(t, u)
⎞⎠

=
(︄

ce(v) + c(v, v) +
∑︂

u∈s−v

c(v, u)
)︄

+
∑︂

t∈s−v

(︄
ce(t) + c(t, v) +

∑︂
u∈s−v

c(t, u)
)︄

−

⎛⎝ce(w) + c(w, w) +
∑︂

u∈s′−w

c(w, u) +
∑︂

t∈s′−w

⎛⎝ce(t) + c(t, w) +
∑︂

u∈s′−w

c(t, u)
⎞⎠⎞⎠

We use that s − v = s′ − w, and we name q the set of tiles both states have in
common.

= ce(v) + c(v, v) +
∑︂
u∈q

c(v, u) +
∑︂
t∈q

⎛⎝ce(t) + c(t, v) +
∑︂
u∈q

c(t, u)
⎞⎠

−

⎛⎝ce(w) + c(w, w) +
∑︂
u∈q

c(w, u) +
∑︂
t∈q

⎛⎝ce(t) + c(t, w) +
∑︂
u∈q

c(t, u)
⎞⎠⎞⎠

= ce(v) + c(v, v) +
∑︂
u∈q

c(v, u) +
∑︂
t∈q

ce(t) +
∑︂
t∈q

c(t, v) +
∑︂
t∈q

∑︂
u∈q

c(t, u)

−

⎛⎝ce(w) + c(w, w) +
∑︂
u∈q

c(w, u) +
∑︂
t∈q

ce(t) +
∑︂
t∈q

c(t, w) +
∑︂
t∈q

∑︂
u∈q

c(t, u)
⎞⎠

= ce(v) + c(v, v) +
∑︂
u∈q

c(v, u) +
∑︂
t∈q

c(t, v)

−

⎛⎝ce(w) + c(w, w) +
∑︂
u∈q

c(w, u) +
∑︂
t∈q

c(t, w)
⎞⎠

The function c is symmetric, because it depends only on the distance between the
tiles, which is symmetric, so we get:

= ce(v) + c(v, v) + 2
∑︂
t∈q

c(v, t)−
⎛⎝ce(w) + c(w, w) + 2

∑︂
t∈q

c(w, t)
⎞⎠

The crowding a tile inflicts to itself is 1, so c(v, v) = c(w, w).

= ce(v)− ce(w) + 2
∑︂
t∈q

c(v, t)− 2
∑︂
t∈q

c(w, t)

We can add the terms 2c(v, v)− 2c(v, v) + 2c(w, v)− 2c(w, v) because they sum
to zero:

= ce(v)− ce(w) + 2
∑︂
t∈q

c(v, t)− 2
∑︂
t∈q

c(w, t)

+ 2c(v, v)− 2c(v, v) + 2c(w, v)− 2c(w, v)

56

And we collect the sums to sum over the elements of s.

= ce(v)− ce(w) + 2
∑︂
t∈s

c(v, t)− 2
∑︂
t∈s

c(w, t)− 2c(v, v) + 2c(w, v)

= ce(v)− ce(w) + 2ct(v, s)− 2ct(w, s)− 2c(v, v) + 2c(w, v)
= ce(v)− ce(w) + 2ct(v, s)− 2ct(w, s) + 2c(w, v)− 2

□
So we see that the equality holds, letting us compute the relative improvement

more efficiently.

3.3.6 Final Paths
Now that we have generated the main paths, we just have to generate the side

branches. The world generation steps that come after have to make sure to not
block the paths we have generated. However, we don’t want to constrain them
with the whole path network. Since we don’t have requirements on the minimum
side branch count or their lengths, it is enough to ensure the paths we generated
in the previous step get preserved. We can generate the rest of the world first, and
only then make extra paths where they fit. We don’t want the branching to feel
the same in every level. This lets us use the randomness of the world generation
instead of needing to introduce more in this stage.

Due to this decision, this step will start with an already generated terrain and
obstacles, as described in sections 3.4 and 3.5. These steps respect the original
paths, but they will cause other tiles or edges between them to be blocked, as
shown in figure 3.6. Here, we can see the original paths on the left. On the
right, we can see tiles blocked by obstacles as gray squares with black edges.
Additionally, some edges between tiles are also blocked, usually because the two
tiles are at different height levels, separated by a cliff. These are the remaining
black lines.

Figure 3.6 Blocked edges and tiles after generating the terrain and obstacles.

Now, how do we actually generate the path network? There are so many
blocked edges that we want to add all the valid branches we find, up to the

57

maximum number of branches decided by the map generator (see section 3.2). To
do this, we will use depth first search, but we will add a few heuristics to produce
better paths. To decide on these heuristics, we will set a few more requirements:
We still want the paths to be spread out, but we would prefer the paths to go
straight if possible.

However, we would also like to somehow capture the shape of the paths that
were optimized during the previous stage. We could simply make the first path
from each start be identical to the original path. We would like multiple paths to
sometimes join together, which we cannot do without changing them. To achieve
this, we add a rule for every tile with a path: if an original path also went through
it, its path distance must be the same as the original path distance. This way, the
path segments of any new path will be distributed similarly to the original path,
since they have to cross at every choke point. This is illustrated in figure 3.7. On
the left are the original paths, and on the right are randomly generated paths
which respect the rule. The tiles where the random paths would intersect the
original paths are marked with a blue circle.

Figure 3.7 Randomly generated paths which respect the original path distances.

We need to make sure the paths we produce are the correct length and respect
the required original path distances. We can save a lot of time by precomputing
the minimum distance each tile can have. This way the algorithm can avoid tiles
from which it’s impossible to finish a path of the correct length. For this, we can
do a breadth first search from the Hub tile, and we restrict the original path tiles
to only “be found” at the right time and not sooner. The result can be seen in
figure 3.8. We will call these distances the minimum distances.

58

1

1

1

23

4

5

6

789

1011

12

13

14

15

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32

2 3

45

67

8 9

10

1112

131415

16

17181920

21

22 23

2 3

4 5

6 7

8

9

10

11

12131415

16

17

18

19 20 21

22

23 24 25

26

27

1

2 2 3

3 4

4

7 889

9

10

10

10

11

11

11 11

12

12

12

12

13

13

131314 14

141314

1414

1415 15

15 15

15

15

16

16

16

16

16

16

16

16

17

17

17

17

17

18

18

18

18

18

19

19

19

20

20

20

20

21

21

21

21

21

22

22

22

23

23

23

23

24

24 25 26

26

27

27

27

27

31 32

33 34

Figure 3.8 Calculated minimum distances.

Now we finally run the depth first search, one path by one. The algorithm
keeps a stack of path prototypes. These are paths, which start at the start tile,
but have not reached the Hub yet. At the start, the stack contains only the
path prototype with only the start position as its only element. At every step,
the algorithm pops the last prototype from the stack, finds all valid one-step
continuations of the current paths, and adds those to the stack.

Valid continuations are the neighbors of the last tile of the current path
prototype that aren’t blocked. Additionally, they have to have a minimum
distance that is less than or equal to the remaining length of this path prototype.
The valid continuations are ordered such that the best option will be put onto
the stack last, so it gets popped in the next step. The best option is always the
one that goes straight, and the rest is ordered by the same crowding penalty as in
paragraph Cost function of section 3.3.4.

Once the algorithm reaches the Hub or an already existing path, it checks
whether it is valid to finish the current path. First, it must have the correct
remaining length to produce a valid path. When it connects to the Hub, the
remaining length must be 0, and for connecting to an existing path, the remaining
length must match the path distance of that tile. Additionally, as per requirement
RP10: “every branch must go through at least one tile that is not adjacent to any
already existing path”.

If this check fails, the algorithm does not mark this branch, it pops the last
item from the stack and continues from there. If the check succeeds, it marks the
new path section and updates the crowding penalties to take the new path section
into account. Then it continues by making another branch.

However, the last path prototype on the stack will share most of its tiles with
the branch we just found. We want the branches be separated from each other as
much as possible. To minimize the shared section, we take the path prototype
from the opposite end of the stack. So, in reality, we won’t use a stack, but a
double ended queue. The entire search is described in pseudocode as algorithm 2.

59

Algorithm 2 Finalizing paths
1: for each path start start do
2: stack.PushLast(path prototype containing only start)
3: success← false

4: while stack is not empty do
5: if success then
6: p← stack.PopFirst
7: else
8: p← stack.PopLast
9: end if

10: if last tile in p contains a path or the Hub then
11: success← TryFinishPath(p)
12: else
13: success← false
14: for each tile c from GetValidContinuations(p) do
15: stack.PushLast(p extended by c)
16: end for
17: end if
18: end while
19: end for

With this ordering of valid continuations, the algorithm usually reaches the
Hub too soon, and then it has to backtrack many times before producing a path
that is the right length. To fix this, we prioritize above all the tiles with minimum
distance exactly equal to the remaining length. The results of the algorithm are
displayed on the right in figure 3.9, compared to the initially generated paths on
the left. Segments that have changed are highlighted in red.

Figure 3.9 Final paths compared to the originally generated paths.

60

3.4 Terrain Generation
There are many techniques we could use for generating the terrain. However,

we have pretty strict requirements for the terrain generation. We need to make sure
the paths we have generated in the previous step are not blocked by terrain features
like cliffs. We also want the algorithm to be able to generate different-looking
terrain types.

This led us to a variant of a procedural generation algorithm called model
synthesis, originally developed by Merrell [19]. The discrete version of this
algorithm is better known by the name wave function collapse (or WFC in short),
popularized by Gumin on GitHub [20]. Model synthesis is more general and focuses
more on 3D models, whereas WFC applies the same concepts to generating 2D
pixel art and tile maps. Since the name “wave function collapse” is more popular,
we will use it in the rest of this thesis, even though it’s not the name of the
algorithm that came first.

We chose WFC, because it can generate randomized terrain, whilst fully
respecting the initial constraints we give it. To see how this works, we will explain
the algorithm first.

3.4.1 Wave Function Collapse
The original intent behind the algorithm is to replicate the structure of an

example on a larger scale, making sure that the output is locally similar to the
input, as shown in figure 3.10. We will limit our examples to 2-dimensional grids
of tiles, however this algorithm works in more dimensions.

Figure 3.10 Example input and output of the wave function collapse algorithm.

The first step of the algorithm is to extract from the input which features can
appear next to each other. The algorithm creates a set of modules1, which are the
building blocks the output will be built from. Each module comes with a set of
constraints on its neighbors. The main portion of the algorithm then builds the
output from these modules, such that all the constraints are satisfied, and each
module appears in the output with a similar frequency to the input. However, we
will create the modules for our generator by hand, including their constraints, in
order to have greater control over the generated result. In figure 3.11, we can see
a set of 7 modules and the resulting output, given only the constraint that the
edges of directly adjacent modules must match.

1This is a naming convention used in an article by Marian [21].

61

Figure 3.11 Example output of WFC, using the modules on the left and only the
constraint that their edges must match.

We call each spot in the output where a module is supposed to be a slot.
Each slot keeps track of all the modules that can be placed in it. At the start
of the main part of the algorithm, all slots are initialized with all the modules.
Figure 3.12a shows a visualization of this state. Then the algorithm repeats two
actions: collapse a slot, propagate constraints. To collapse a slot, the algorithm
removes all possible modules from the slot except for one, chosen at random.

Then it has to propagate constraints, which means that it removes from
each slot all the modules which can no longer be placed there. For example, in
figure 3.12b we see that a slot has collapsed to a module which has a line on each
edge. Thus, the algorithm removes from the neighboring slots (marked in red) all
modules which don’t have a line at the corresponding edge. After propagating
constraints, the algorithm collapses another slot and so on.

(a) Initial state (b) First step (c) Second step

Figure 3.12 Two steps of wave function collapse.

In figure 3.12c, we can see an interesting situation after collapsing a second
slot. The slot between the collapsed slots can still contain two possible modules,
however both of them have a line at the top and bottom edges. This means that
the algorithm also has to propagate to the neighbors of this tile that they have to
have lines at the corresponding edges. A change in one slot can affect slots even
very far away from it.

This process repeats until all slots are collapsed, at which point we have
successfully generated the output. This process is summarized as algorithm 3. We
left out one detail: which element does Pop select? This does not matter for the
overall function of the algorithm, and it will be further discussed in section 3.4.3.
We will call this algorithm WFC, even though it differs from both WFC by Gumin

62

and Merrell’s model synthesis. The only notable difference is that we skip the
feature extraction step, and the algorithm takes as input the modules directly.

Algorithm 3 A naïve version of wave function collapse
1: for each slot s in output do ▷ Initialize all slots.
2: s.modules← all_modules
3: end for

4: uncollapsed← all slots
5: while uncollapsed is not empty do
6: s← uncollapsed.Pop ▷ Collapse a slot.
7: s.modules← {random module from s.modules}

8: to_update← neighbors of s ▷ Propagate constraints.
9: while to_update is not empty do

10: u← to_update.Pop

11: changed← false
12: for each module m in u.modules do ▷ Remove invalid modules.
13: if not IsValid(m) then
14: u.modules← u.modules−m
15: changed← true
16: end if
17: end for

18: if changed then ▷ If u changed, enqueue its neighbors.
19: to_update← to_update∪ neighbors of u
20: end if

21: end while
22: end while

However, it is possible for the algorithm to create a slot with no valid module.
In that case, it is no longer possible to create a valid output. We call this situation
a conflict. An example can be seen in figure 3.13. If we look at WFC as a
constraint satisfaction problem solver, we can see that the constraint propagation
only ensures arc-consistency, which is not enough to rule out conflicts. This is
concisely explained in the Wikipedia article on local consistency [22].

We called algorithm 3 naïve, because it is unable to deal with any conflicts.
What can we do to always produce a result, even when a conflict happens? One
option is to simply restart the algorithm. For sufficiently small outputs, conflicts
should be rare enough, only needing a few restarts.

Another option is to use backtracking. Whenever the algorithm runs into
a contradiction after collapsing a slot, it returns to the state before collapsing.
Additionally, it removes the module the slot collapsed to from its valid options,
because it now knows it causes to a conflict. The state after backtracking is
illustrated in fig 3.13c. This way, the algorithm can continue generating without

63

getting rid of all its progress.

(a) Before collapsing (b) After collapsing (c) After backtracking

Figure 3.13 Conflicts and backtracking in WFC. The red cross marks a slot with no
valid modules.

3.4.2 Advantages and Disadvantages of WFC
The main advantage of WFC is that it offers a lot of control over the generated

world. That’s ultimately why we chose to use it. We always know what features
can appear in the world, because we explicitly select them as building blocks of
the terrain. We can also freely constrain the world that we are generating. For
example, we can force the generator to not block the paths we’ve generated in the
previous stage, and we can force the tile with the Hub to be flat. We also force a
random tile to be at the lowest height level and another to be at the highest.

However, WFC has some disadvantages when used as a terrain generator. First,
it is very slow. Even the naïve implementation has to do a lot of work for each slot
in the world. However, the real problem are the conflicts. Merrell shows in section
3.3.5 of their thesis that deciding whether an incomplete output is consistent,
i.e., it can be completed without running into contradictions, is an NP-complete
problem. This necessarily means that WFC cannot run in polynomial time for all
inputs, assuming P ̸= NP.

The real problem is that the algorithm usually does run into contradictions,
and the larger the generation task, the more likely it is to run into a contradiction.
This is especially bad for online generation of infinite worlds, because we can’t
simply restart and generate a new world after the player has already seen a part of
it. Backtracking also doesn’t solve this issue, because the algorithm can collapse a
slot in a way that is guaranteed to cause a contradiction, and then do arbitrarily
many more steps before finally running into it. Of course, there are ways to
circumvent this issue, namely by making the individual generation tasks smaller.
In section 3.3.6 of their thesis, Merrell describes a technique called modifying in
parts based on this approach. Luckily, this is not a problem for us, because our
world is very small.

Another potential problem with WFC is that the individual slots or modules
can be very apparent and repetitive. This can be solved by procedurally generating
the resulting geometry the player sees, only based on the modules chosen by WFC.
Another way to make the slots less apparent is to make the slots irregular. Both
of these techniques are used by Townscaper [23], a game by Oskar Stålberg. This
also isn’t a problem for us: we don’t mind that the tiles will be apparent, since
the gameplay of our game is centered around them anyway

64

Also, WFC only uses local constraints, so it provides no control over the more
global features of the output. On a large scale, the results are very homogenous.
For larger outputs, WFC should only be used to generate the local features, guided
by large-scale features generated by some other algorithm. Our game world is
also too small for this to matter.

3.4.3 Using WFC for Terrain Generation
Even though we want to generate a 3D terrain, our output will consist of a 2D

grid of slots. We want the tiles of the generated world to be at different heights,
however, we don’t want any tiles to generate above other tiles. Ultimately, this
is a 2D generation task, with the addition that modules can appear at different
height levels.

Slots and Modules
At first, it might seem sensible to have one slot per world tile. However, each
tile on its own will be mostly a flat square. The interesting terrain features will
appear on the boundaries between the tiles. For example, two tiles at different
height levels next to each other will have a cliff separating them. If we wanted
to incorporate the cliff into the tile module, which tile does it belong to? What
about the features where the corners of four tiles meet?

We offset the slots in a way shown in figure 3.14, such that each slot is
responsible for four quarter-tiles of the world. Tiles are drawn in black, slots in
red. This way, the modules dictate how can the adjacent tiles connect to each
other.

Figure 3.14 The slots for generating a 3× 3 tile world.

One example of such module is shown in figure 3.15. Each module constrains
the 8 adjacent slots. An edge type is specified for each edge, and modules which
share an edge must have the same edge type. For each corner of the module,
several tile constraints are specified. The modules that share a tile must agree on
the tile’s properties: its height, slant direction (if any) and surface type. Terrain
types can have multiple surface types, each with a different set of modules and a
few modules that allow to transition between them. For example, a shore module
could have ground tiles on one side and water tiles on the other. Some surface
types block paths and buildings and some edge types block paths. What modules
are available for the generator will be determined by the terrain type that was
chosen for this world.

65

(a) The 3D geometry of the module.

height: 3
slant: none

surface: default

height: 2
slant: none

surface: default

height: 2
slant: none

surface: default

height: 2 to 3
slant: south

surface: default
edge: cliff

edge: cliff

edge: flat

edge: flat

(b) A view from above with the constraints.

Figure 3.15 An example module and its constraints.

In figure 3.11, we show 7 modules as an input. However, when designing
them, it would make more sense to think of them as 3 different modules that
can each be rotated. Thus, the modules we use will also have an option to select
the allowed reflection and rotations. Then, before generating the terrain, we will
automatically generate all variants of each module. Each module can also be
placed at different height levels, which is handled similarly. For example, the
module shown in figure 3.15 will effectively become 24 different modules in a
terrain type with 4 height levels (0, 1, 2, 3), because it has 8 different reflections
and rotations, and it can appear at 3 different height levels (0–1, 1–2, 2–3).

For each module, we also specify a weight. This dictates how likely it is to be
selected when collapsing a slot, compared to other modules. For example, when
we collapse a slot that only has two valid modules, with weights 1 and 4, then the
first module will be selected with a 20 % probability.

Backtracking
We have decided to implement backtracking to solve contradictions. If the
algorithm only ever has to backtrack once before collapsing another slot, we say that
it needs backtracking depth 1. However, it is possible that the algorithm collapses
a slot, finds a contradiction, and after backtracking, removes the only remaining
module in the slot that was collapsed. Thus, it creates another contradiction,
which causes it to backtrack deeper.

We ran some quick tests with the set of modules which is going to be used to
generate terrain in the demo version. The results are shown in table 3.1. For each
test, we tried generating 2000 random worlds, each with three path starts with
lengths 24, 28 and 33, making them pretty constrained.

66

Maximum
backtracking depth Fails Successes Success rate Time (s)

0 2000 0 100.00 % 644
1 786 1214 60.70 % 740
2 783 1217 60.85 % 797
10 783 1217 60.85 % 819

Table 3.1 Success rate of terrain generation based on maximum backtracking depth.

No world was able to generate without running into a contradiction, i.e., with
a backtracking depth 0. 60.7 % of the worlds only ever needed backtracking depth
of 1 to successfully generate. Greater backtracking depth doesn’t seem to help
very much. Instead, it makes the generator spend more time trying to save worlds
which are still going to fail. We decided to allow for backtracking depth 1 and
otherwise just restart the generation to try again.

Deciding Which Slot to Collapse
We also need to decide which slot to collapse at each step of the algorithm. Merrell
uses in their thesis [19] a scan line order, collapsing slots in the lexicographic
order of their coordinates. Gumin in their implementation [20] always collapses
a slot with the lowest Shannon entropy. This causes the generation to collapse
slots outwards form the slot that was collapsed first. From our testing, the results
tend to look unnatural, often creating regions at the same height, or repeating
patterns.

Both approaches grow the collapsed portion of the world from one initial
slot, similar to growing a single crystal solid from one seed crystal. To make the
results more natural, we chose to select the slot to collapse at random. This leads
to the generator first collapsing slots in various parts of the world to different
configurations. Then it has to somehow connect these to make the world follow
the rules we set. This leads to much more diverse results, however, the success
rate becomes very low, leading to slower generation.

As a compromise, we tried to still select the slots randomly, but give slots
with lower entropy a greater weight, so they are more likely to be selected.
Specifically, the weight of each slot is 1/entropy, making it more likely to select
more constrained slots, but still collapsing unconstrained slots once in a while.
This leads to results similar to the ones with uniform randomness, but it increases
the success rate. However, this results in the algorithm being even slower, probably
because calculating the entropy of a slot is not trivial.

To remedy this, we tried weighting the slots by the number of invalid slots + 1
(the +1 at is there to make all weights non-zero). This is an approximation of the
previous metric, still assigning greater weight to more constrained slots. From
our testing, the resulting worlds look still as good as before, but this metric is
trivial to compute, so the worlds generate slightly faster.

The tests we ran are summarized in table 3.2. For each method, we generated
worlds until we successfully generated 1000 of them. This is to compare the
average time it takes to successfully generate a world, which is a more useful
metric for us.

67

Which slot
to collapse? Fails Successes Success rate Time (s)

minimum entropy 213 1000 82.44 % 492
uniformly random 823 1000 54.85 % 691
weighted by 1/entropy 672 1000 59.81 % 728
weighted by invalid modules 676 1000 59.67 % 656

Table 3.2 Success rate of terrain generation based on how the algorithm decides which
slot to collapse next.

In the end, we chose to select slots to collapse randomly, weighted by the
number of invalid modules. This method is the fastest of the methods that produce
worlds that look random. In figure 3.16, we show an example of terrain that was
generated this way.

Figure 3.16 An example terrain generated using WFC.

3.5 Obstacle Generation
Now that we have generated the attacker paths and terrain, the next step is to

generate obstacles. We know from section 2.3.2, that each tile can have up to one
obstacle placed on it. They block the tiles, so they cannot appear on path tiles.
Which obstacles can appear, and their placement is controlled by the terrain type.
Before we select an algorithm to place them, we should formalize the parameters
which influence the obstacle placement.

3.5.1 Obstacle Placement Parameters
In section 2.3.2, we also specified that some obstacles will be more common than

others. In the terrain type specification, we can assign each obstacle a probability
of it appearing on each tile. Some obstacles, for example the mineral-rich and
fuel-rich ones will also have a maximum and minimum count.

Some obstacles will appear more often or less often around other obstacles.
This means that an obstacle’s probability to be placed on a given tile will be

68

influenced by the obstacles already placed on surrounding tiles. For each obstacle
type, the terrain type can specify its affinity for each other obstacle type. When
trying to place the obstacle on a given tile, its placement probability will be
modified for each already placed obstacle by the affinity for that obstacle times
the closeness to it. The closeness is some function that decreases with distance,
similar to the crowding penalty we used in section 3.3.4 when generating paths.

Since each tile can only have one obstacle, the more important obstacles should
be placed before others. For example, we want the resource providing obstacles to
be placed first. So, the obstacle types will be divided into phases, and the first
phase will be placed first, then the second, and so on.

In section 3.4.3, we mentioned that each tile will have a surface type from
the set of surface types the terrain type allows. We also want to limit on which
surfaces can each obstacle appear. For example, we don’t want trees to appear in
water. This should be all we need to procedurally place obstacles how we want.

3.5.2 Obstacle Placement Algorithm
Placing the obstacles should be fairly straightforward given the parameters we

decided on. The algorithm should place them phase by phase. For each phase, it
will loop through all tiles, and for each tile, it will assign an obstacle to it with the
probability that is calculated for that obstacle for that tile. The probability is 0
for invalid placements, like path tiles, tiles with another obstacle, or tiles with the
wrong surface. When multiple obstacles from the same phase want to be placed
on the same tile, we just select one of them at random.

However, we also have a minimum and maximum count for some obstacles.
To adhere to the maximum count, we can just stop placing the obstacle once the
maximum count is reached. This creates a small problem. If the algorithm went
through the tiles in some predefined order, the tiles at the start would have a
higher chance of containing obstacles with a count limit than the tiles at the end.
Because once the algorithm reaches the maximum count, it stops placing them.
We can fix this by enumerating the tiles in a random order.

Enforcing the minimum count is also not difficult. If we finish a phase and
there is not enough obstacles of some types, we can do another placement phase,
this time only with the obstacle types which didn’t reach their minimum yet.
Assuming there is enough tiles with non-zero probability, we can repeat this
process until the right amount obstacles is placed.

This is summarized as algorithm 4. Here, a phase is just a set of obstacle types.
Here, the function GetPlacementProbability also checks if the placement
would be valid. If not, it returns 0.

Of course, there are some optimizations we can make. For example, we don’t
have to go through all tiles, only those that don’t have an obstacle and don’t have
a path going through them.

69

Algorithm 4 Obstacle placement
1: for each phase p do
2: while p is not empty do

3: for each tile t in random order do
4: candidates← ∅
5: for each obstacle type o in p do
6: q ← GetPlacementProbability(o, t)
7: with probability q: candidates← candidates + o
8: end for

9: if candidates is not empty then
10: selected← random obstacle type from candidates
11: Place(selected, t)
12: end if
13: end for

14: for each obstacle type o in p do
15: if number of placed obstacles of type o ≥ o.minimum then
16: p← p− o
17: end if
18: end for

19: end while
20: end for

3.5.3 Generating Obstacle Models
We can now determine which tiles are blocked by which obstacles. But

by requirement RW3, “each tile with an obstacle will usually contain a whole
procedurally generated cluster of obstacle models”. How do we generate these
models?

For any given obstacle type, we can through all the tiles with that obstacle
type and place some number of the corresponding model at random points within
the tile. We can also slightly randomize the rotation and scale of the models to
achieve a more natural look. The terrain type then specifies the number of models
per tile and the scale and rotation range.

Just placing the models at random points often creates clusters of intersecting
models that don’t look nice. So, we let the terrain type set some minimum distance
the models should keep from each other. If it would place a model at a position
that’s too close to an already placed model, it doesn’t place it.

However, this still doesn’t feel very natural because the models create squares
with hard edges, as shown in figure 3.17a. We would like the boundaries to be
more natural, and even make the models smaller and more spread out near the
edges of the boundary. This is illustrated in figure 3.17b.

70

(a) Undesirable result with hard edges. (b) More desirable result with smooth
boundaries.

Figure 3.17 Comparison of generated obstacle models.

To place the models in a more natural fashion, we can use what the developers
of the game Factorio [24] call noise expressions. Earendel has written a great
overview of noise expressions on their blog [25]. The main idea is that we create a
function that assigns a numeric value to each point in our world. For our use-case,
the value represents “how much of an obstacle” is at any given point. We can
then place the obstacle models only where the value is above some threshold, and
we scale the models and their spacing by the value too.

We will specify a noise expression for each model in the terrain type. To do
so, we will build up each noise expression from some basic functions, combined
using arithmetic operations. First, we explain the basic functions we will use, and
then we’ll show how to combine them into a noise expression that is useful for us.
In our examples, we will give each of the basic functions a pseudocode alias to let
us express the operations on them better.

Height Function
A simple basic function we might want is a height function. This function simply
tells us what is the height of the terrain at any given point. The output of this
function is shown in figure 3.18a. This function can be useful for example when
we want some model to appear only above some specific height. We denote this
function in pseudocode as height().

Signed Distance Functions
The most important basic function is the one that tells us which tiles have on
them the obstacle we care about. After all, we want to place the models on tiles
with the obstacle. We could make a basic function that returns 1 for points within
the tiles with the obstacle and 0 otherwise. However, this doesn’t help us make
smooth transitions, because we cannot distinguish points that are just outside
a tile with the obstacle from points that are far away. Similarly, we would also
like to know how far inside the tile with the obstacle is any given point. So, we

71

need a signed distance function, or SDF, a function which tells the distance to a
boundary of some region, but is positive inside the region and negative outside.

We will express this function in pseudocode as obstacle(). For greater
convenience, we will also specify the scale of the values the function outputs
separately for the values inside the region and outside the region. We will denote
these parameters in the pseudocode as in and out. In figure 3.18b, we can see an
example of this SDF. The function takes on positive values on the tiles with the
obstacle and negative values otherwise, as specified by the parameters.

We can use SDFs to also express the distance to other tiles that are somehow
special. For example the tiles with a path going through them. We will denote
this function as path. An example of this function is shown in figure 3.18c.

0

-1

-2

-3

1

2

3

height()

(a) Height function.
obstacle(in:1, out:-1)

(b) Obstacle SDF.
path(in:1, out:-1)

(c) Path SDF.

Figure 3.18 The values of the height function and signed distance functions.

Noise Functions
The basic functions we defined so far are useful, but they still don’t let us create
shapes without straight boundaries. For that we can use a noise function. However,
we don’t want a function that just gives us some random value for each point, we
need the noise to be smooth and change its value gradually as we move in space.
For example Perlin noise, developed by Perlin and used in their paper An image
synthesizer [26]. It is easy for us to use this function, since it is included in the
Unity engine.

In figure 3.19, we show what values it produces. We denote it with the alias
noise, and it can be scaled up or down to get larger or smaller features using
the scale parameter. With a large scale, it might seem too smooth and artificial,
while with a smaller scale, the values fluctuate too much. To solve this, we can use
arithmetic to combine the values of multiple noise functions. By adding together
more layers of the noise, each with a different scale and amplitude, we can create
a result that has details but doesn’t look as random.

72

0

-1

-2

-3

1

2

3

noise(scale:2) noise(scale:0.5) noise(scale:2) +
0.5 noise(scale:1) +
0.25 noise(scale:0.5)

Figure 3.19 Examples of Perlin noise.

Putting it All Together
In figure 3.20, we show how we can build up a noise expression that we could use to
place obstacle models. In addition to the basic functions and arithmetic operations,
we also use a function called clamp which clamps a value between the specified
minimum and maximum. We do this in three steps to show how the output of
the noise expression changes with each addition. Each sub-figure represents one
step, and later steps reference the noise expressions from the previous steps in
their pseudocode, written as STEP_#.

0

-1

-2

-3

1

2

3

STEP_1 =
clamp(min:-2, max:0.2,
obstacle(in:1,out:-3))

STEP_2 =
STEP_1 +

path(in:-2, out:0)

STEP_2 +
0.8 noise(scale:0.9) +
0.54 noise(scale:0.45)

Figure 3.20 Building up a noise expression step by step.

When placing the models, we sample many points on each tile and place the
model only if the value of the specified noise expression is for that point above
some threshold. The value also determines how close together can the models
be and how large they should be. This lets us be more expressive with model
placement and create more natural-looking worlds. Using the noise expression
from figure 3.20, we have generated the models shown in figure 3.17b.

3.6 Attacker Wave Generation
Now that world generation is done, attacker waves are the last remaining part

of battles we want to procedurally generate. In section 2.3.1 we have outlined that

73

each wave will be composed of batches, and each batch will contain potentially
different attackers spawning on each path. However, the spacing and count will
be shared by the whole batch. We also mentioned, that the waves need to scale
in difficulty, ideally slightly faster than the player could realistically handle. In
section 3.2 we also decided that this difficulty will be controlled by the map
generator.

Our goal in this section will be to create an algorithm for generating these
waves, such that their difficulty somewhat matches the requested difficulty. We
were able to find some relevant sources about procedural wave generation in tower
defense games, but they generate waves dynamically to adapt to the player’s skill,
or to find weaknesses in their defenses. For example, in the paper A neat approach
to wave generation in tower defense games [27], its authors train a neural network
to decide the composition of a wave based on the player’s defenses, with the goal
to increase engagement. However, we want the waves to be only based on the
requested difficulty. And, as stated in section 2.3.1, we let the player see them in
advance, so the player is the one who adapts, not the waves.

There are also some already existing implementations. For example, even
though the waves in the main game modes of Bloons TD6 are always the same,
there are also game modes with randomized waves. However, the nature of the
algorithm used to generate these waves is not publicly known, and it probably
wouldn’t be useful us, because the generated waves vary in difficulty a lot. We were
unable to find an example of a tower defense game with procedurally generated
waves with a consistent difficulty.

To create a good algorithm that generates waves with a specific difficulty, we
need to somehow quantify the difficulty of a wave first. In the following subsections
we aim to find a way to express the difficulty of a wave, that is as simple as
possible, but it is close enough for the waves to not feel unfair. It is important to
stress that depending on the player’s defenses, some waves will be always harder
for them to deal with and others will be easier. However, if a player is unable to
beat some wave, we want them to feel like there were ways to prevent this. In
other words, that the wave was beatable, they just didn’t play the best way they
could.

As we discussed in section 3.2, the world on which the battle takes place
greatly influences the difficulty. However, we will eliminate this variable and try
to quantify the wave difficulty in vacuum. It will be the responsibility of the map
generator to select the right wave difficulty based on the parameters it selected
for the world.

Let’s simplify our problem to as much as we can to make it easy to find an
exact solution. Then we’ll gradually add more complications until we get an
approximation of the real problem that is good enough.

3.6.1 Model 1: Single Attacker
For our simplest model, we assume that a wave contains only one attacker

with some amount of HP, denoted as h, and a speed s in tiles per second. The
attacker has no other qualities or special abilities. We say the player’s defense
beats this wave when the attacker is killed before it reaches the Hub.

We also imagine each defensive tower t to always deal some fixed amount of

74

damage dt per second to the first attacker in its range which covers some region
of the path that is lt long. This means that the attacker will spend lt/s seconds
in its range, taking dt · lt/s damage in total.

A defense T that consists of multiple towers can then deal damage equal to
the sum of the individual towers. This means that the defense can beat the wave
if and only if the following inequality holds:∑︂

t∈T

dtlt/s ≥ h (3.1)

We will refer to the total damage the towers would deal to an attacker with speed
1 as damage capacity C. It can be calculated as follows:

C =
∑︂
t∈T

dtlt (3.2)

This lets us write the condition more concisely as C ≥ hs.
From this equation we can see, that the difficulty of this wave is exactly

proportional to hs. The defenses that can beat an attacker with 10 HP and
speed 1 are exactly the same as those that can beat an attacker with 5 HP and
speed 2.

This is a great result, but our waves can contain more attackers than one, so
we have to generalize. Next, we will take a look at a case with an infinite amount
of attackers.

3.6.2 Model 2: Infinite Waves
For this model, everything is the same as in the previous model, but each

wave consists of infinitely many attackers of one attacker type. We will denote
the spacing (or gap) between the attackers as g, measured in seconds. Here, we
say the player’s defense beats this wave when no attacker ever reaches the Hub.

The towers still deal damage only to the first attacker. Imagine the first
attacker is killed after it has travelled p tiles. Assuming at least g seconds have
passed, the second attacker has already spawned, and it has traveled p− sg tiles,
so the defenses have less time to kill it than they had for the first attacker. If the
towers progressively kill the attackers later and later, eventually, one of them will
reach the Hub. Intuitively, the towers need to be able to kill an attacker every g
seconds to beat the wave.

When each attacker spends at least g seconds within the range of each tower,
then each tower t deals in total dtg damage to each attacker. However, when the
spacing is larger, some towers won’t be able to deal damage to each attacker for g
seconds, but only lt/s as we determined in the previous model. So, each tower
can only deal dt damage per second for min(lt/s, g) seconds. So, to each attacker,
the towers will deal a total damage amount expressed by the following formula:∑︂

t∈T

dt ·min(lt/s, g) (3.3)

It is more useful to think about the damage per second, so let R be the
total damage per second the player’s defenses can deal to the attackers, or the

75

damage rate. One attacker spawns each g seconds, so we can calculate the damage
rate by dividing the previous formula by g:

R =
∑︂
t∈T

dt ·min(lt/(sg), 1) (3.4)

We see that R is at most ∑︁t∈T dt, and it is equal to it only when lt/(sg) ≥ 1 for
each tower t.

R is also at most ∑︁t∈T dt · lt/(sg), and it is equal to it in the other cases. Since
s and g are not dependent on the tower t, we can bring them in from of the sum:

1
sg

∑︂
t∈T

dt · lt/(sg) (3.5)

This sum is by definition equal to C (see equation 3.2), so we can substitute to
get the following relation between R and C:

R ≤ C

sg
(3.6)

Since one attacker spawns every g seconds, the towers can deal at most Rg
damage to each attacker. Each attacker has h HP, so the player will beat the wave
if and only if Rg ≥ h.

As described before, sometimes R does not depend only on the player’s defenses,
but also on the attacker speed s and spacing g. However, this should be very rare,
because the maximum spacing we will use is g = 2 seconds, and no attacker will
be faster than s = 4 tiles per second, which is still extremely fast compared to
most attackers. This means that every tower has to have lt ≥ 8 for g and s to
never influence R, which is easily achievable with most tower types. For now, we
can think of R as being a constant determined by the player’s defenses.

3.6.3 Model 3: Finite Waves
In this model, we add another parameter to our wave. The wave is once again

composed of attackers with h HP and speed s, coming with a spacing of g seconds,
but this time, there is exactly n of them. How do we judge the wave difficulty
now?

The best way to think about this is that the player’s towers need to deal nh
damage in total. From model 1 we know that if the whole wave was a single
attacker, the player’s defenses would deal C/s damage in total. So, they would
defeat the wave if and only if C/s ≥ nh.

The towers still target only the first attacker, so they will kill it first. Then,
they can deal with the second attacker, but the second attacker is g seconds
behind the first, so they have g more seconds to deal with it. This is also true for
each other attacker, so the towers effectively get g seconds of firing for free for
each attacker beyond the first. Thus, a more accurate condition for beating the
wave is the following inequality:

C/s + (n− 1)Rg ≥ nh (3.7)

When we put all wave-dependent terms on the right and rearrange, we get that
the player beats the wave if and only if the following condition is satisfied:

C ≥ s(nh− (n− 1)Rg) (3.8)

76

We cannot quantify the difficulty of the wave with one number anymore. For
example, there exists a defense T1 which beats the wave, and another defense T2
which also beats it despite having lower C, because it has greater R. So, we have
to accept that each defense has two characteristic values.

We aim to illustrate how the required damage capacity and rate change
based on the wave parameters using figure 3.21. The blue area represents the
defenses which can beat the wave, and the white area represents those which
can’t. The orange area shows defenses that can’t exist because they would violate
inequality 3.6. We also highlight two points in each plot, each of these points
represents one example defense. T1 consists of one tower with dt = 5 and lt = 12.
T2 consists of one tower with dt = 10 and lt = 1.5 which is an unusually small
path coverage.

Figure 3.21a shows a wave which we will use as a base case for our comparison.
We can see that both T1 and T2 are able to beat it. In figure 3.21b we can see
what happens when the attacker health becomes 20 HP. Neither of the defenses
are able to beat it now. Figure 3.21c shows that increasing the speed s to 2 causes
problems for towers with small path coverage lt. We can see that the damage rate
of defense T2 has decreased because each attacker spends less than g seconds in
the range of the only tower.

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(a) h = 10, s = 1,
g = 1, n = 4

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(b) h = 20, s = 1,
g = 1, n = 4

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(c) h = 10, s = 2,
g = 1, n = 4

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(d) h = 10, s = 1,
g = 0.5, n = 4

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(e) h = 10, s = 1,
g = 1, n = 1

0 5 10 15 20 25
0

20

40

60

80

100

damage rate R (damage per second)

da
m

ag
ec

ap
ac

ity
C

(d
am

ag
e)

T1

T2

(f) h = 10, s = 1,
g = 1, n = 12

Figure 3.21 Which defenses can beat various attacker waves, according to model 3.

In figure 3.21d we can see that with smaller spacing of 0.5 seconds between
the attackers, damage rate becomes less effective. A similar effect can be seen
when we decrease the number of attackers. As shown in figure 3.21e, when the
wave contains only one attacker, damage rate is irrelevant. On the other hand,

77

when there are many attackers, the damage rate becomes much more important
than capacity. In figure 3.21f we can see T1 cannot beat a wave with 12 attackers,
but T2 can.

Thus, we need both parameters R and C to accurately describe which defenses
can beat the wave and which cannot.

3.6.4 Model 4: Damage in an Area
Many towers will be able to deal damage to all attackers in some area. These

towers are much more effective against large groups of attackers, especially when
they are close together. We can model these towers similarly to what we have
done so far, but we will add one more parameter, the damage range rt. Now, each
tower t deals dt damage per second to the first attacker, but also all the attackers
at most rt tiles behind it. This still makes all calculations much more difficult, so
we will choose to ignore many edge cases.

Intuitively, for the first attacker of every wave, nothing changes. To kill it,
the condition C/s ≥ h still holds. Killing the second attacker is easier as it has
already been damaged by collateral damage. The attackers spawn g seconds apart,
so each can travel sg tiles before the next one spawns, making the gaps between
them sg tiles long. So, the second attacker has been receiving collateral damage
from all towers t with rt ≥ sg. But how much damage is that?

To simplify our calculations, we will introduce some new variables Rk. R1 is
the damage rate (see equation 3.4) of towers which hit one extra attacker with
collateral damage, R2 for towers which deal damage to two extra attackers, and
so on. Formally,

∀k ∈ N+ let Rk be the damage rate of towers t with rt ≥ ksg.

Killing the first attacker will take t1 = h/R seconds as usual, and in the time,
the second attacker will take t1R1 collateral damage. In general, the kth attacker
will take t1Rk−1 collateral damage from towers shooting at the first attacker. Let
tk be the time it takes for the kth attacker to be killed by towers continuously
shooting at it. It is equal to the remaining health the attacker will have after the
ones before it have been killed, divided by R:

tk = 1
R

(︄
h−

k−1∑︂
i=1

tiRk−i

)︄
(3.9)

This formula isn’t useful yet, because we still need too many variables to
specify the player’s defenses. However, this calculation can be simplified with the
right assumptions. The game should force the player use towers that deal damage
in an area, in addition to those with a single target. So, when generating the
waves, we can just assume the player has these towers. This in turn makes the
player use them in order to beat the wave.

The greater the tower’s damage range rt, the less damage it should deal and
the less often it should appear. Let’s assume that in a balanced defense, the
towers’ damage rate decreases exponentially with increasing rt.

We say that a defense T is (α, β)-balanced for some α, β ∈ (0, 1)
when ∀x ∈ R+ the total damage rate of towers t ∈ T with rt ≥ x is
equal to αβxR.

78

We will select the right α and β based on playtesting. Since towers with larger
damage range are generally going to be more expensive than single-target towers,
we will make these parameters very small at the start of each level, only reaching
their intended values after a few waves.

Now we can precisely determine all Rk for a given wave. From the definition,
Rk is the damage rate of towers with rt ≥ ksg, so Rk = αβksgR. We can substitute
this into equation 3.9 to get the following recurrence relation:

tk = 1
R

(︄
h−

k−1∑︂
i=1

tiαβ(k−i)sgR

)︄
(3.10)

We can calculate its closed-form solution2:

tk = h

R

(︄
1− α− βsg + αβsg + α(1− α)kβsgk

(1− α)(1− βsg + αβsg)

)︄
(3.11)

Now we can finally construct an updated condition for beating this wave. By
definition of tk, we know that each attacker will have Rtk HP when all attackers
before it die. So, the player’s defenses needs to deal in total ∑︁n

k=1 Rtk damage to
all the attackers while they are the first attacker alive, instead of hs. Otherwise,
the derivation is the same as for model 3, so the player will beat a wave if the
following inequality holds:

C/s + (n− 1)Rg ≥
n∑︂

k=1
Rtk (3.12)

If we put all wave-dependent terms on the right side of the equation and rearrange,
we get the following inequality:

C ≥ s

(︄
Rt1 +

n∑︂
k=2

(Rtk −Rg)
)︄

(3.13)

However, there is still one problem we overlooked. We are using Rg as the
extra damage each attacker beyond the first will take, because it is g seconds
behind the attacker before it. However, this damage can never be greater than
the attacker’s health, Rtk in this case. This wasn’t a problem in model 3, because
this would only happen in waves the player would beat anyway. So, we get the
following updated condition:

C ≥ s

(︄
Rt1 +

n∑︂
k=2

max(Rtk −Rg, 0)
)︄

(3.14)

If we substitute the definition of tk, we get the following inequality:

C ≥ s

(︄
h +

n∑︂
k=2

max
(︄

h
1− α− βsg + αβsg + α(1− α)kβsgk

(1− α)(1− βsg + αβsg) −Rg, 0
)︄)︄

(3.15)

We would like to get rid of the summation, but this is tricky because of the
maximum function. However, for the parameters we allow, tk is always decreasing

2To calculate this, we first transformed the recurrence into one that depends only on the
previous term, and then we used Wolfram Mathematica [28] to calculate the closed-form solution.

79

with k. This means that for some n∗, the first n∗ terms of the summation will be
greater than zero and the rest will be zero. This lets us discard the maximum
function and simplify the condition further:

C ≥ s

(︄
h− (n∗ − 1)Rg + h

n∗∑︂
k=2

1− α− βsg + αβsg + α(1− α)kβsgk

(1− α)(1− βsg + αβsg)

)︄
(3.16)

Finally, we can calculate the closed-form solution3 for the summation to obtain
that the player’s defenses will beat a wave if and only if the following condition is
satisfied:

C ≥ s

(︄
n∗(βsg − 1)− αβsg((1− α)n∗

βsgn∗ + n∗(βsg − 1)− 1)
(1 + (α− 1)βsg)2 h− (n∗ − 1)Rg

)︄
(3.17)

Where n∗ is the smallest k between 1 and n, such that the following inequality
holds:

1− α− βsg + αβsg + α(1− α)kβsgk

(1− α)(1− βsg + αβsg) ≤ Rg

h
(3.18)

In case no such k exists, we set n∗ to n.

3.6.5 Model 5: Multiple Batches
So far we have considered only waves with one attacker type. In section 2.3.1

we mentioned that waves can consist of up to three batches. Each batch contains
some number of attackers of the same attacker type, spaced apart by some spacing.
We can specify a set of wave parameters for each batch bk instead of having one
for the wave as a whole. These parameters have a subscript which denotes which
batch they correspond to, for example the first batch (b1) contains n1 attackers
with h1 HP and speed s1, with a gap of g1 seconds between them.

To determine which defenses will beat a wave with N batches, we can extend
the condition for model 4. We will refer to the right-hand side of inequality 3.17
as the total value of the attackers. For simplicity, we can then denote the total
attacker value with the parameters for batch bk as the batch value Vk. The defenses
now have to beat all the batches one by one, but they still have the same damage
capacity C to work with. So, we can say the defenses will beat the wave when
the following inequality holds:

C ≥
N∑︂

k=1
Vk (3.19)

We also specified that the spacing between batches will be 1 second, but the
previous condition acts like the next batch begins right as the previous one ends.
So, we need to add 1 additional second of firing to each wave beyond the first.
An updated condition could look like this:

C ≥ V1 +
N∑︂

k=2
max(Vk − skR, 0) (3.20)

3Wolfram Mathematica was used to find the closed-form solution.

80

Again, we limit the batches to have a non-negative value, because the towers
cannot “restore the damage capacity” by dealing damage to dead attackers.

Even though they are not visible now, the collateral damage calculations are
all wrong. We never investigated what happens with an uneven attacker spacing,
however we don’t even know what’s the spacing going to be like. We know how far
each attacker spawns behind the attacker before it, but attackers from different
batches can have different speeds, so the spacing between them changes as they
move, and they can even overtake each other. There really isn’t a way to capture
this behavior in our model without making it much more complicated. So, we
will ignore it, and hope that the waves we generate don’t deviate in difficulty too
much from our estimate. If this ends up being a problem, we can adjust the wave
generation algorithm to only produce waves that aren’t problematic.

3.6.6 Model 6: Multiple Paths
The levels in our game can have multiple paths, and we can even spawn

different attackers on each path. Since all paths in a single level will have similar
lengths, we can treat them all the same. To start, we’ll assume that the paths
don’t interact in any way and that each tower can only shoot at attackers on one
path. This means that each path pk will have its own damage capacity Ck and
rate Rk. The player’s defenses then beat a wave if they beat it on each path.

However, when generating a wave, we generate it based on the difficulty
determined by the map generator. We want the difficulty of each path to vary
between waves, but the overall difficulty to smoothly increase. It would be weird
for the map generator to dictate the difficulty of each path separately, the wave
generator should take care of that. So, it only specifies the total difficulty using
one damage capacity C and rate R and for each wave, the wave generator will
divide them between the paths.

3.6.7 Model 7: Abilities
So far, we’ve only considered attackers that have no abilities, towers with no

special abilities, and we ignored the abilities the player can use (see section 2.3.7).
In this section, we will incorporate these into our wave difficulty estimate.

Usable abilities usually provide one-time damage to the attackers, so they
effectively contribute to the damage capacity of the player’s defenses. Similarly,
special abilities of towers or other buildings which have some effect on the attackers,
usually just make the defense more effective, thus increasing its damage capacity
or rate. These should all be balanced based on playtesting, so they aren’t too weak
or too strong. Thus, they don’t need any special treatment in our calculations.

On the other hand, attacker abilities is something the wave generator should
take into account. We don’t want it to spawn lots of attackers which have very
strong abilities just because of their low HP and slow speed. These abilities can
vary widely in their effect and can interact in unpredictable ways. However, we
think it’s enough to assign each attacker a value which will be used in all the
calculations we did so far instead of their HP. For example, an attacker with no
special abilities and 10 HP will still have a value of 10. If it had an ability that
makes it take 50% less physical damage, its value might be about 13. Also, the

81

damage rate of a defense (see equation 3.4) is influenced by the attacker speed,
but we treated it as a constant the whole time. We can increase the value of very
fast attackers to offset this, treating super-speed as a kind of special ability. The
important thing is that this value can be tweaked based on playtesting.

This way of quantifying the wave difficulty should be good enough to let us
produce waves that vary widely in their feel, but are consistent in their difficulty,
so they don’t feel unfair to the player.

3.6.8 Wave Generation Overview
In the previous sections we decided that the map generator will specify the

difficulty of each wave using the value rate and capacity. Rate basically represents
how much damage we expect the player’s defenses to deal to an attacker per
second. Capacity basically represents how much damage we expect the defenses to
deal to an attacker during its travel from the path start to the Hub. We derived
some formulas which tell us the total attacker value, and we say that a defense
can beat a wave if its value capacity is greater than the total attacker value. Now
that we can quantify the difficulty of a wave, we can start generating them. Our
goal for each wave is to generate a random wave, but it has to have a total value
very close to the expected capacity without going over.

We also know how many paths are in the level and what attackers we are
allowed to use. In addition to the parameters prescribed by the map generator,
the wave generator itself is going to have more parameters which we can tweak
based on playtesting, in order to produce the best results. The first parameters
the wave generator will have are limits on the maximum wave length, and the
maximum number of attackers, because we don’t want waves that are way too long
or have way too many attackers. In section 3.6.4 we also mentioned that the wave
generator will have parameters α and β that dictate the expected distribution of
collateral damage.

In section 2.3.1 we specified that each wave doesn’t have to spawn attackers
on every path. Of course, each wave should always spawn attackers on at least
one path. So, for each wave we will select one path as forced, and each path from
the rest will be also selected for this wave with some probability which will be
specified as another parameter.

We also decided that there will be two types of waves. We will call these
types sequential and parallel. Sequential waves consist of up to three batches of
attackers, each with a different attacker type. Parallel waves consist of only one
batch, but they can spawn a different attacker type on every path. There is no
reason to make the first few waves complex, so we limit waves 1 and 2 to just
one batch, and waves 3 and 4 to two batches. Additionally, we will allow each
wave to only use the attacker types the waves before it used plus at most one new
attacker type.

In section 3.6.6 we decided that we will evaluate the value rate, capacity and
attacker value separately for each path. And that it is up to the generator how it
will split up the value rate and capacity between the individual paths. However,
that doesn’t mean it should be just random. The towers the player builds are
permanent, so each tower contributes its firepower to some paths from the moment
its built until the battle ends. It would be really difficult for the player, if one wave

82

spawned all its attackers on one path, and then another wave expected the player
to have as many defenses on another path. So, we keep track of the expected rate
and capacity per path. For every wave, only the extra rate and capacity it has
over the previous wave is to be distributed between the paths freely.

However, the towers can cover multiple paths, and abilities can also be used
on any path the player wants. So, we will reserve a fraction of the capacity as
global, which can be used by any path and is not locked in afterwards. How big of
a fraction will this be is another parameter to be determined by playtesting.

The generator starts each wave by selecting which paths it will use. Then the
generator randomly picks which wave type this wave will be, with the distribution
also specified as a parameter. Finally, it will generate the random wave, such that
a defense with the expected value rate and capacity can beat it. Any capacity
that’s left over then gets added to the next wave to compensate. Since sequential
and parallel waves will each be generated with a different algorithm, we will
describe them separately in the following subsections.

3.6.9 Generating Sequential Waves
A sequential wave consists of up to three batches of attackers, each with a

different attacker type. We want to select a random number of a random attacker
type with a random spacing for each batch, and we are trying to use up as much
of the capacity without going over. Notably, the same attackers will spawn on
each of the selected paths. This means that we also expect the selected paths to
have the same rate and capacity.

Distributing new rate and capacity evenly
So, the first thing the algorithm does is distribute the new rate and capacity. We
would like all paths to be equal, but we have to respect the rate and capacity
values they have now, and we can distribute only the rate and capacity that are
new for this wave. So, we at least make them as even as possible. This can be
done by always giving to all paths with the lowest amount the amount required
to reach the next lowest amount. Once they are all even, we split evenly the rest.
However, there is no guarantee that the rates and capacities of all paths will be
equal.

Rejection sampling
Now we can actually generate the wave. The most straightforward approach would
probably use rejection sampling. Generate the specified number of completely
random batches and check if whether the total value doesn’t overshoot the capacity.
If it does, we try again. To use up the capacity as much as possible, we can
generate many waves and select the one which has the greatest total attacker
value. This approach could work, but it has obvious flaws that cause it to produce
invalid results very often. We can improve this by removing them from the options
for random selection.

Removing invalid options in advance
For each batch, we first find all the valid attacker types this batch could consist
of. We cannot use an attacker we have already used in a previous batch of this

83

wave, so we filter out those. Also, if an attacker’s value is so great, that spawning
only one on each path overshoots the capacity, it is invalid. When we select a
random attacker now, it is guaranteed to be valid.

Another problem a wave might have is that it has simply more than the
maximum allowed attacker count, or it might be too long. It is also possible the
wave overshoots the maximum capacity. So, after picking a random attacker type
and a random spacing for a batch, we calculate the maximum number of these
attackers the batch can have while staying within these limits. We then select a
random attacker count between 1 and this maximum count.

Ensuring every generated wave uses up the capacity
This guarantees that each wave we generate is valid. However, we still need to
generate many waves to find one that uses up the capacity somewhat well. To
fix this, for the last batch of the wave, we select the spacing and attacker count
that minimize the remaining capacity. This, however, isn’t enough to guarantee
that every wave we generate is good. It is possible for the last batch to select an
attacker and spacing, such that it’s impossible to use up the remaining capacity.
This can happen because with collateral damage, some attackers don’t contribute
to the total attacker value anymore after some count, as described in section 3.6.4.
Or simply because the previous batches used up too much of the wave duration
or attacker count.

To remedy this, we add another condition when determining the valid attackers
for the last batch of the wave. We remove the attacker types with which we cannot
use up the remaining capacity. However, both the maximum amount of attackers
we can use, and their value depends on the spacing we choose. So we have to
check each spacing, and reject the attacker types for which none of the spacings
work. Thus, for the last batch, we don’t enumerate only the valid attacker types,
but for each we also enumerate all the valid spacings.

This still doesn’t ensure the previous waves didn’t use up too much of the
attacker count or wave duration. So, if a batch is unable to use up the remaining
capacity completely, given the selected attacker type and spacing, we reduce its
maximum count by one third, to leave some space for the next batches. Assuming
there is enough different attacker types available, so that we never encounter a
situation where there are no valid attackers available, this approach will always
produce a valid wave that uses up most of the value capacity.

The whole process of generating a sequential wave is summarized as algorithm 5.

84

Algorithm 5 Generating a sequential wave
1: distribute new rate and capacity evenly

2: for i from 1 to batch count N do
3: find all valid attacker types and spacings
4: a← random valid attacker type

5: if i ̸= N then
6: s← random valid spacing for a
7: max← calculate maximum attacker count
8: c← random attacker count between 1 and max
9: bi ← (a, s, c)

10: else
11: for each valid spacing s for a do
12: cs ← calculate maximum attacker count
13: end for
14: bi ← (a; s and cs that maximize total value)
15: end if
16: end for
17: return b1 . . . bN

3.6.10 Generating Parallel Waves
For generating a parallel wave, we will use a different approach. A parallel

wave consists of only one batch that can spawn different attacker types on every
path. But because it is one batch, all paths have the same number of attackers and
the same spacing. Since we don’t yet know the relative difficulty of the attackers
we’ll spawn on each path, we will keep the new value rate and capacity for this
wave unassigned for now, and we will distribute them to the paths only after we
have generated the wave.

Comparison to generating a sequential wave
Some requirements are the same as for a sequential wave: the wave cannot be
longer than the maximum duration, it cannot have more than the maximum
attacker count, and we want to use up as much of the capacity without going
over. We will add some more that naturally extend these: Since we want to
use up most of the capacity, it would make sense to use up all individual path
capacities. We will again use up the global capacity by increasing the number of
attackers as much as we can. To do this effectively, we will want from each path
to have enough capacity for at least few attackers on its own. This allows for
more granularity, for example the difference in value between 3 and 4 attackers is
smaller than between 1 and 2 attackers, so we can get closer to the capacity limit.

To generate the wave, we first select a random spacing. Then we want to
find a random set of attacker types, one attacker type for each path, such that
it produces a valid wave, if we select the maximum amount that doesn’t go over
the maximum capacity. Similarly to a sequential wave, we can filter out all the

85

attacker types that are invalid given the selected spacing. However, this time
they can be different for every path. Based on our requirements, at least some
attackers of the type must fit within the current path capacity plus the current
global capacity. This amount will be specified as a parameter based on playtesting.
We also check that it is possible to use up the current path capacity using this
attacker type and spacing.

Again, we could select random sets of attackers from these options until we
find one that is valid. However, these validity tests can help us determine which
attacker to change in case the set is not valid. We start by selecting a random
attacker for each path from the set of valid attackers for that path. Then we enter
a loop, where we do some tests, and if the set fails one of the tests, we change
one attacker type and try again. If all tests succeed, we then produce the finished
wave and distribute the new rate and capacity accordingly.

Using up the path capacities
First, we test that it’s possible to use up every path capacity: We calculate
the minimum number of attackers the wave must have in order to use up every
path capacity. We then check if this count is even a viable option for this wave.
Specifically, we check whether this number of attackers would fit within the total
capacity, including the new rate and new capacity we still haven’t assigned. To
do this, we first calculate the value of the attackers for each path and sum these
values together. We now compare this value to the total combined value of all the
capacities, including the new capacity and new rate. Since we know how many
attackers are in the wave, we can convert the new rate to the maximum amount
of extra capacity it will provide by multiplying it by the number of attackers after
the first. If the total value of the attackers is greater than the final capacity, it
means that we need at least some amount of attackers to fill each path capacity,
but this amount would not fit within the final capacity, so this set is not valid.

This usually happens because some attacker had too much value relative to
its path’s rate and capacity, compared to the other attackers. So, this is the
one attacker will change for another random attacker. Specifically, we change
the attacker type of the path whose value in the previous test overshot its path
capacity by the most. Then we try the test again with this new set.

Using up the global capacity
If the test succeeds, we know the minimum number of attackers the wave can
have in order to use up every path capacity. We also want to ensure this set of
attackers can use up most of the capacity, given the constraints on the maximum
wave duration and attacker count. So, as a second test, we calculate the maximum
number of attackers these restrictions let us use, and then we check whether the
value of this many attackers plus one is more than the total capacity in the same
way as in the previous test. If the value is less than the capacity, it means that
the maximum allowed attacker count still doesn’t let us use up the capacity as
much as we would want.

This time, the issue is that the attackers we want to use don’t have enough
value to use up the capacity. So, we change the attacker type of the path whose
value in the previous test overshot its path capacity by the least.

86

Attacker count and distributing new rate and capacity
If both tests succeed, we have found a good enough set of attackers for this wave.
Now we just find the exact maximum number of attackers that will fit within the
total capacity, and the wave is finished. We don’t have a formula for this, but we
can determine if a specific count fits within the total capacity or not, as we did in
the tests. So, we can find the exact maximum count using binary search.

We have now generated a valid parallel wave, but we still have to somehow
distribute the new rate and capacity to the individual paths. To mimic what the
player might do to handle this wave, we calculate by how much the attacker value
overshoots the capacity of each path, and we distribute the new rate and capacity
in the same proportion.

Again, assuming there is enough different attacker types, this process always
produces a valid wave that uses up most of the capacity. The whole process of
generating a parallel wave is summarized as algorithm 6.

Algorithm 6 Generating a parallel wave
1: select a random spacing s
2: for each path find all valid attacker types
3: S ← random valid attacker for each path

4: min← calculate minimum attacker count to use up the all path capacities
5: if value of min attackers > total capacity then
6: p← path with the greatest value over the path capacity
7: Sp ← random valid attacker
8: go to 4 ▷ Try again.
9: end if

10: max← calculate maximum attacker count
11: if value of max + 1 attackers < total capacity then
12: p← path with the lowest value over the path capacity
13: Sp ← random valid attacker
14: go to 4 ▷ Try again.
15: end if

16: c← calculate maximum count that doesn’t overshoot total capacity
17: distribute new rate and capacity proportionally to the attacker values
18: return (S, s, c)

3.7 Random Number Generators
The algorithms we use for procedural generation depend on a random number

generator, or RNG, as their source of randomness. Their uses and how they work is
explained well in Random Number Generators–Principles and Practices: A Guide
for Engineers and Programmers [29] by Johnston. Some RNGs use specialized
hardware to generate truly random data using an external source of entropy, these
are called true random number generators. However, we want a deterministic

87

RNG, also known as a pseudorandom number generator (PRNG). These produce
the random data using a completely deterministic algorithm, but unless we know
the current internal state of the generator, the outputs still can’t be predicted.
The initial state of a PRNG is called the seed, and a generator will always generate
the same sequence of outputs when seeded with the same value.

Each query advances the generator’s state, so the value a deterministic random
number generator returns depends on the number of previous requests. If we used
one generator for generating everything, the outcomes of different systems would
depend on the order they were generated in. For example, when a player triggers
some effect that uses randomness before generating a level, the level would be
different than if the player triggered the randomized effect after the level was
generated. To remedy this, we will utilize a simple trick we call seed branching all
throughout the procedural generation. Whenever we want more systems to be
independent of each other, we create a new RNG instance for each system, and
we seed them with each with a seed generated from the old RNG in advance. For
example, we will have a master RNG seeded with the seed of the run, from which
we will generate the seeds for the map generator, reward systems, etc. The map
generator itself will generate the run map and then assign a new seed to each of
the levels planned on the map, and so on.

We can determine what properties are required of the RNG we are going to use
from our use-case. First, obviously, the numbers generated by the generator should
be random enough. However, the RNG doesn’t have to be cryptographically secure
or pass strict statistical tests, since we aren’t going to use them for cryptography
or scientific simulations. Since we will create many instances of the RNG, it should
be lightweight and fast to initialize. Some of them, for example the ones used by
the reward system, will persist throughout the whole run, so we need an easy way
to save the RNG’s current state. So, what options do we have?

Since we are using Unity, the first RNG that comes to mind is Unity class
Random [30]. It is designed to be easy to use, but it is very limited — for example,
we have access to only one instance of the class and the same instance is used for
other systems within the game engine. This is a dealbreaker for us, because we
want to create more instances, and we want to have complete control over them
to ensure determinism.

Another option that’s on-hand is .NET System.Random [31]. According to
the documentation, instantiating a random number generator is fairly expensive.
Furthermore, there are no methods to read and set the internal state of the
generator. This becomes a problem when we want to save the state of an instance
to restore it later, for example when loading a save file. We would have to serialize
and deserialize the instance, which isn’t a big problem, but it feels inelegant and
inefficient.

Instead, we chose to go with a more straight-forward option — making our
own RNG. This way, we can make the generator have all the features we need.
There are many algorithms a PRNG can use. Johnston describes in their book [29]
some most commonly used non-cryptographic PRNGs, namely:

• Linear congruential generators (LCG),

• Multiply with carry (MWC),

• XORSHIFT,

88

• Permuted congruential generators (PCG).

All of these are random enough for our use-case, provided we use the right param-
eter values, so we chose an LCG, because it seemed the most simple to implement.
In the article Tables of Linear Congruential Generators of Different Sizes and
Good Lattice Structure [32], the author explains the statistical tests they used to
measure the randomness of the LCGs and tabulates the best-performing parameter
combinations. From there we took the parameters for our LCG implementation.

3.8 Battle Simulation and Visuals
With procedural generation done, we will now focus on some interesting

problems that we need to solve to implement the gameplay of the battles. First,
we need to decide how will the battle play out, given the constraints specified
mostly in section 2.3.12. We mention that the game will let the players pause or
change the speed of the game. We want the game simulation to be deterministic,
frame rate independent, and game speed independent. But, we want everything
to look and feel smooth.

Games usually operate in a game loop, repeatedly taking inputs from the
player, updating the game logic, and then outputting the new state to the player,
like rendering a new frame. In Unity, the game logic has to be implemented in
methods Update and FixedUpdate of our MonoBehaviour scripts, which Unity
calls in the game loop. Update gets called before rendering every frame, whereas
FixedUpdate gets called on each fixed update. Fixed updates are performed a set
amount of times per second, and the Unity physics engine also uses them. This
means that Unity is built with the separation of game logic and visuals in mind,
and we don’t have to do anything complicated to achieve this.

By default, FixedUpdates are performed 50 times per second. If we decrease
the number of ticks per second, we decrease the performance cost of our game,
which is especially useful if we want to speed the game up. We don’t need any
kinematics from the physics engine, only collision detection, so we don’t need this
much temporal resolution. For our game, 20 ticks per second should be enough.
This means the shortest interval between any two events will be 0.05 seconds.
This can be problematic, for example for towers with fast fire rate. For example,
we cannot have a tower that shoots 8 projectiles per second, because it would
need a 0.125 second interval between shots, which is not a multiple of 0.05. There
are ways to circumvent this, but we think that this quantization isn’t a problem
for our game.

Everything in our game will happen in 0.05 second intervals. For example, a
projectile will jump forward 20 times per second. We want everything to look
as smooth as possible, so we will have to interpolate the positions of all moving
objects and more. The game simulation doesn’t need to know about any of this,
so we will completely separate this logic from the game logic. The visualization
logic will react to the simulation logic.

Unity offers many useful systems for visuals, for example particle systems or
animations. Most of the visuals should change speed with the simulation speed.
Luckily for us, Unity has a built-in global variable that lets us change the speed
of the game, including both the simulation speed and the speed of visuals. Some

89

visuals will be game speed agnostic, like instant animations or the game user
interface animations. This also isn’t a problem since Unity lets us specify to use
the unscaled time for individual effects.

3.9 Targeting Attackers
An important question we should consider is during a battle, how will the

towers determine which attackers are in range, and which attacker to shoot at?
As described in section 2.3.6, most towers will have a range in the shape of a
cylinder, but some will have a different shape. Most towers will select only one
attacker as their target, but some don’t need a specific target, for example those
that damage all attacker in their range. The towers will have unique behaviors,
but the vast majority will need to know which attacker is in range at all times, so
it makes sense to separate targeting from the rest of the tower’s logic. The tower
can then ask its targeting system which attackers are in range, or which attacker
to shoot at.

Technically, a tower needs to know which attackers are in range and which one
of them to target just before it shoots. However, we usually want to make the
tower visually turn towards the attacker’s position before it shoots, so we want
to know its preferred target at all times. Checking every attacker in the world
on every tick would cause performance issues, since there can be a lot of towers
and attackers at once. So, we need to come up with a more efficient solution.
Physics engines need to perform similar checks many times per second, so they
are optimized to do them as efficiently as possible. Specifically, we can think of
our problem as a collision detection problem: we want to know which attacker
colliders collide with the tower’s range collider. So, we can use the Unity physics
engine to detect which attackers are in range by representing the range with a
collider.

Unity provides callbacks for us whenever another object enters the collider
of our range and whenever an object leaves the collider. Thus, we don’t have to
ask which attackers are within range on every tick. Instead, we keep a list of the
attackers in range and add or remove attackers when they enter or leave.

We can also use the physics engine whenever we need to enumerate all attackers
in some area, for example when using an ability that affects all attackers in some
radius. Unity physics lets us query which attackers are in some region using the
built-in functions, which should be faster than checking each attacker one by one.
For example Physics.SphereCast returns all colliders that intersect with a given
sphere.

In section 2.3.6 we also mentioned that some towers will require a line of sight
to the attacker they want to shoot at. In other words, if we draw a line segment
from the tower to the attacker, it can’t collide with anything. We can again use
Unity physics, specifically Physics.Linecast which does exactly this.

However, linecasting is still somewhat expensive, so we don’t want to test each
attacker in range on every tick. Most towers will have a configurable targeting
priority that determines which attacker to target if multiple are in range, especially
those that require line of sight. So, we can save on many linecasts by testing the
attackers in order from the highest priority until we find one for which the test
succeeds. This means that we need to sort the attackers by priority. Their order

90

usually won’t change between subsequent ticks, so we keep them in a sorted order
in the list of all attackers in range.

3.10 Range Visualization
In section 2.7 we described that we want to draw the range of the tower that’s

currently selected, or the tower or ability that is being placed, directly on the
terrain. We want to show if the tower could shoot at a small or large attacker,
depending on their position in the world. These regions will then be differentiated
using different colors. The tower ranges can have complicated shapes, and some
towers need a line of sight to the attacker to be able to shoot them. To produce
the visualization, we need to solve two problems: how to determine this range
shape, and how to communicate it to the terrain shader.

3.10.1 Determining The Range Shape
The shape of the range of a tower usually isn’t so complex. This is because

we are building them from primitive collider shapes, but it is also intentional,
because complex shapes would be unnecessarily confusing to the player. However,
we don’t show only the bounds of the range, we show explicitly where an attacker
can be for the tower to target it. This is complicated by line of sight checks, some
tower being unable to shoot upwards or downwards, etc.

The simplest approach is to construct an approximation by testing points on
the world in a square grid. The result of the point test will then determine the
color of a small square centered on the point. Theoretically, if we sample enough
points, we can create visualization that has greater resolution that the player’s
screen. In figure 3.22 we show what the range visualization would look like if we
sampled four points per tile.

Actual range. Four samples per tile.

Figure 3.22 Range visualization approximation.

So, for each special range type, we need an implementation of some sort of
oracle that tells us for each point whether an attacker at that point would be
visible or not. For some towers, this oracle will perform a simple check whether
the point lies within the range, but for others, more checks will be performed,

91

notably the line of sight checks which are expensive. Doing thousands of these
point tests whenever the player selects a tower which performs line of sight checks
would cause a noticeable stutter. So, we will create a low-resolution visualization
first, and slowly refine it by performing more tests over the next frames.

We will probably perform only few hundred line of sight checks per frame, and
we don’t want the visualization to keep changing for several seconds, so we will go
with a rather small final resolution. A grid of 256× 256 squares, which is 65536
in total, should be enough, giving us 16× 16 samples per tile. The visualization
will be obviously pixelated, but it should communicate the towers’ range well.

We can build this visualization as a quadtree [33]. A quadtree is a data
structure in the form of a rooted tree, where the root node represents the whole
world as one large square, and each internal node has four children which split
the parent node into four smaller squares.

We can start our visualization with the root node, and over time refine each
leaf node by adding its four children. For each child we perform a point test in its
center and assign to it the obtained value. This is repeated until all leaf nodes
are of the required depth, which would be 8 for a 256× 256 square grid. Thus,
we perform one third more point tests, but we can have a valid representation
of the range after every frame that gets better over time. This is illustrated in
figures 3.23 and 3.24.

Figure 3.23 Quadtree range representation after expanding just the root node.

...

Figure 3.24 Quadtree range representation after expanding 11 nodes.

92

We can choose in which order to expand the leaf nodes by calculating a priority
for each and storing unrefined nodes in a priority queue. We should prioritize
nodes which are larger, but also nodes whose siblings have different results than
them, because this means they are near a boundary where the results change from
one state to another.

This representation also lets us easily perform quadtree compression to save
memory: Whenever all four children of an internal node match, and they are leaves
that won’t be refined further, we can delete them and mark their parent as also
finished. This can happen recursively, so that large squares with the same color
can be represented by just one node. This is illustrated in figures 3.25 and 3.26.

...

Figure 3.25 Quadtree range representation of a 16× 16 grid of sample points.

...

Figure 3.26 Compressed quadtree range representation.

Furthermore, we don’t have to refine some nodes at all, when we know for sure
that all points tests within their square will yield the same result. To help with
this, the point test oracles won’t return only the result at that point, but also the
guaranteed minimum distance to a point which gives a different result. When
the distance is greater than half of the current square’s diagonal, we don’t have
to refine it further. This distance is easy to determine for simple range shapes,
but for towers with line of sight checks, it will always be reported as 0 for points
inside the range.

93

3.10.2 Representation for The GPU
Now that we can compute the visualization, we also need to render it. To do

that, we need to send it to the GPU and display it using a shader. But how do
we represent it in the GPU?

The first option that comes to mind is to just take the quadtree we constructed
and send it to the GPU. Of course, we would have to put the data into some
shader buffer, probably by creating an array of nodes. We want to reduce the
bandwidth as much as possible, so all children of a single node could be consecutive
in the array, so each node would only need to store one index to the array to
reference all its children. Theoretically, we would need at most 4/3× 65535 nodes
in order to represent the 256× 256 resolution we selected, but thanks to quadtree
compression, we usually won’t need as many. So, each node could be represented
by 2 bytes, since we only need to save one index to the children or the result of
the point test for leaf nodes.

However, this approach is expensive on the CPU, because we need to prepare
this data structure. And on the GPU too, because it needs to traverse the tree to
its leaf to determine the color for each pixel with the terrain, but that isn’t as big
of a problem, since overall, the GPU is much more powerful.

A better option might be to store the data directly in a texture. In the GPU,
we only have to access the texture once to determine the color of a given position
on the terrain, making it much simpler. On the CPU side, it will be simpler too.
For each node, we fill a square that is represented by it the texture with the value
of the node, all the way to single pixels for the deepest nodes.

This is much better, but we can save some more CPU computation with a
trick: Mipmapping, first described in the paper Pyramidal parametrics [34], is a
widely used technique where we generate several lower-resolution variants of a
texture, which can then be used to reduce aliasing and performance cost when
rendering surfaces from a great distance or when viewed at a shallow angle. The
width and height of each additional image is a half of the previous level. These are
usually automatically generated from the main texture, but we can make them
look how we want, and we can use them how we want.

If we create a texture with mip levels all the way to a 1 × 1 image, and we
imagine all the layers stacked on top of each other, stretched to be the same size
as the terrain, we essentially get a quadtree. The root node of our quadtree is
the only pixel in the highest layer, and each other pixel represents another node,
each in the layer corresponding to its depth, directly below its parent. This is
illustrated in figure 3.27. Here we mark non-leaf nodes with red color and pixels
with no corresponding nodes in blue.

Now, the CPU only has to change one pixel for each node. However, the GPU
has to access the texture multiple times per each pixel again, but that shouldn’t
be a problem. Including the mipmaps also makes the texture one third larger
than without them. Whenever we change a part of a texture, it has to be copied
to the GPU again. Since we do this every frame, bandwidth will probably be the
limiting factor, but for our small 87 KiB texture this shouldn’t be an issue.

94

Figure 3.27 Quadtree stored in a mipmapped texture.

3.10.3 Computing Everything on the GPU
We would like to mention that only after implementing the demo version of

our game, we thought of a solution that can be used if higher resolution of the
visualization is needed, or just to improve performance. This is the exact kind
of task that GPUs are great at: computing the same thing for many points at
once. So, it would be the best to only send the world geometry to the GPU, and
compute these range visualizations there. Testing which points are in the line of
sight of some tower is the same, as if the tower was a point light, and we wanted
to draw the shadows. This is a problem that has been heavily studied and there
are many techniques we could use for it.

3.11 Blueprints and Info Panel Text
In section 2.4 we described that in our game, the player will be able to build

buildings or use abilities, only if they have their blueprint. Each blueprint will
include a description that explains its function, including the exact values of
important statistics.

3.11.1 Blueprint Representation
We also mentioned that the blueprints will be modifiable, be it permanently or

temporarily. For example, we could have a building that increases the range of all
buildings adjacent to it, or an augment that increases the damage of the blueprint
it augments. To do this, we would like to know from each blueprint whether it
has a given statistic and its value. It is also important to note that we want to
access these statistics even without creating an instance of the thing the blueprint
represents. So, all the statistics we could ever want to know or modify will not be
stored in the class that represents blueprints, separately from the implementation
of their behavior.

In Unity, we will implement blueprints as scriptable objects. Unity allows us to
edit the values of these in the editor, and to save them in the project as separate
files. We can also include references to other resources in our project, for example
the prefab of the object that get instantiated when the blueprint is used in a

95

battle. These prefabs are then where we put the scripts that implement the actual
behavior of the building or ability. The blueprint itself will only hold the stats
and the description. When the prefab is created, it will be assigned a copy of
the blueprint, in order to have access to the blueprint statistics, which can be
modified separately from the source blueprint.

Similarly, we will use scriptable objects to represent attacker types. They will
hold the stats and the description of the attacker type, and a reference to the
prefab of the attacker itself.

3.11.2 Info Panel Text
In section 2.5.7, we describe that the information about anything the player

has selected will be displayed on an info panel on the right side of the screen. For
blueprints, this will be mainly their statistics and the description. For buildings,
the info panel will display the up-to-date stats and description of their blueprint,
but the buildings can also include some information of their own, for example,
each tower will show the damage it has dealt throughout the battle. We also
specified that the statistics that have changed from the original blueprint will be
highlighted using colors, indicating whether they changed for better or for the
worse. Additionally, any new or removed abilities will also be highlighted.

To dynamically update the statistics, we will use placeholder tags in the
descriptions, and then a preprocessor, which will find these tags and replace them
with the up-to-date values, including the correct formatting. For example, the tag
[DMG] will be replaced by the damage statistic, correctly formatted, and prefixed
with an icon that symbolizes the damage stat, to show that if something changes
damage, this value will change. Of course, to compare the new value, we will also
need to store the original value.

To display this formatting and icons within text, we will use the features of
the Unity package Text Mesh Pro. It lets us format the text with tags similar to
HTML. For the icons, we can create a Text Mesh Pro sprite asset, and then insert
the icons into the text using the tag <sprite=ID>.

3.12 Modifiable Commands and Queries
In our game, we want various objects to modify how other objects function.

However, this can be very problematic if we don’t select the right approach.
For example, we could have a building that slows down attackers in its range

by 25%, or an attacker that speeds up by 1 tile per second once its HP drops
below half. However, this can cause issues when implemented incorrectly: Imagine
the attacker that speeds up has a base speed of 1 tile per second. Then, it enters
the range of the building that slows it down to three quarters, dropping its speed
to 0.75 t/s. Then its speed increases by 1 t/s, because its HP drops, so the new
speed is 1.75 t/s, but we would expect it to be 1.5 t/s. Finally, when it leaves the
range of the building, its speed increases by third of the current speed to revert
the slowdown, ending up at 2.333 tiles per second. This is obviously not equal to
the expected speed of 2 tiles per second. This situation is illustrated in figure 3.28.

96

time
sp

ee
d

(ti
le

s p
er

 se
co

nd
)

1

2

0

in slowing range (×0.75)

below half HP (+1 t/s)

actual speed

expected speed

3

Figure 3.28 Possible discrepancy when multiple effects change an attacker’s speed.

To illustrate another problem we might run into, we imagine a building that
makes it so whenever the player would get energy, they get that many materials
instead. How would we implement it? We obviously don’t want to modify the
blueprints of other buildings, and there might be other sources of energy too. We
could add a special case to the code that handles the player’s current material and
energy balance to check specifically for this building, and handle the conversion
if needed. That cannot be a good solution. Furthermore, the sources of the
energy would still show pop-ups that they produced some energy, even though
they produced materials instead.

3.12.1 Modifiable Commands
Our solution for these issues is what we call modifiable commands and queries.

This system is an extension of the observer pattern [35]. In this pattern, many
subscribers can subscribe to an event, to be notified when the event occurs. This
event can be triggered by any other object that has a reference to it, also known
as publisher. The advantage of this pattern is its weak coupling. The subscribers
don’t have to know anything about other subscribers or about the publishers and
vice versa.

To create modifiable commands, we add the option for subscribers to modify
the data of the event, and we invoke the subscribers’ callbacks in an order based
on the priority that was specified when they subscribed to the command. For
example, when a building wants to produce energy, it invokes the modifiable
command to add the given amount of energy. The command then notifies all the
registered modifiers’ callbacks, one by one. Each subscriber alters the amount of
energy how it wants, and finally, the last subscriber, which we’ll call the handler,
reads the energy amount and adds it to the total. The handler also doesn’t have
to be the last subscriber, there can be more subscribers after it which react to
the event, for example by displaying the amount produced. We will call these
reactions, and we will refer to the subscribers that get notified before the handler
as modifiers. We will also let modifiers cancel the command completely.

This is illustrated in figure 3.29. It shows an example of a command to add
energy. A solar panel produces tries to produce 10 energy, but the energy amplifier
has registered a modifier which increases it to 15. The player state handles this
command by adding the energy to the player’s energy amount. Finally, reactions
are notified, in this case a reaction to show the number and one to play the sound.

97

Add energy
command

Solar Panel

10

Energy amplifier

Produce

Amplify energy

10 15

Priority:
-100

Priority:
0

Priority:
100

Priority:
200

Player state

Add energy

15

Number effects

Show number

Sound effects

Play sound

15 15

Modifiers Handler Reactions

Figure 3.29 Modifiable command to add energy.

It doesn’t make sense to have more than one handler for the command, so
we will say that the handles always has priority 0, and there can only ever be
one. The reactions shouldn’t need to modify the command anymore, since it has
already been handled by the handler, so we don’t let them modify the command,
only react to it. This means the signature of their callback will be different, and
they will be registered separately from the modifiers. We will also force callbacks
registered as a reaction to have a positive priority, so they happen after the handler.
And that leaves negative priority values for modifiers.

It is now easy to see how we would implement the example building that turns
energy into materials. It would simply register a modifier to the command for
producing energy, which would cancel the command and invoke a command to
produce materials instead.

3.12.2 Modifiable Queries
We could solve the first example with the attacker speed similarly. Instead of

just reading the speed value from the attacker stats, we will have a modifiable
command for reading it. So, when anyone wants to know the attacker’s speed,
they invoke the command with the base speed 1 as the initial data, and after
series of modifications, they handle the updated value. This ensures that multiple
simultaneous modifiers don’t produce an invalid value, and the order of application
no longer matters, because they are ordered by their priority.

However, we don’t ever need to react to a query, furthermore it would make
no sense for a modifier to cancel a query. Also, it makes no sense to handle the
result using a callback that is then immediately unsubscribed. So, we remove
these features and streamline the interface to get modifiable queries.

A modifiable command is invoked with some initial parameter that can be
modified. This doesn’t make sense for a query. If we query the speed of an
attacker, we call the query with the attacker as an input, and the result is the
attacker’s speed. To achieve this, we register a provider which acquires the base
value from the input, before both the input and the value are sent through the
modifiers.

In figure 3.30, we show a query that determines the speed of the attacker in the
example at the beginning of section 3.12. In the depicted situation, the attacker
is in range of the slowing building, and also below half HP. To determine the
speed, first, this query’s provider determines the base speed. It is then modified
by the attacker’s ability, and by the slowing building. Both of these modifiers use
the attacker reference to determine whether they should apply or not, since the

98

slowing building only slows down attackers in range, and the attacker’s ability
only applies to attackers below half HP.

Speed query

Attacker

Increase speed

Priority:
-10000

Priority:
0

Slowing building

Slow down

Attacker

2

Priority:
-100

1.5

Get base speed

Result1

Provider Modifers

Attacker

Figure 3.30 Modifiable query for determining attacker speed.

3.12.3 Event Reaction Chain
For modifiable queries, we used only the first half of the modifiable command

pipeline. If we take just the second half, we get an event system, but with reactions
ordered by priority. This is also useful for us, because the reactions could create
race conditions if their order wasn’t fixed. We call this the event reaction chain
just to differentiate it from Unity events, Unity event system and .NET events.

99

4 Developer Documentation
In this chapter we aim to describe the implementation of the demo version of

our game. In the first section 4.1 we describe the overall structure, and in the later
sections we go into more detail about the individual parts. Section 4.3 describes
what goes on from the application start to the end, including all procedural
generation, but not what happens during a battle. We will focus on battles first,
in section 4.2.

4.1 Project Structure
In Unity, each project is composed of individual scenes. The scenes contain

game objects to which are attached scripts that provide their behavior. These are
all saved in the project’s asset folder, along with all other resources like prefabs,
models, materials, textures, sounds and more. They are separated to folders based
on their type, for example all scenes are in the Scenes folder.

In addition to the project assets, an important part of the project are the
project settings. However, these are all mostly set to their default value from
the standard 3D (Built-in render pipeline) project template. The settings that
were changed are all uninteresting adjustments that an experienced Unity user
would expect us to configure how we did, based on the explanation of our project
provided in this chapter and chapter 3. These include for example settings in
categories Tags and Layers, Physics and Player.

4.1.1 Scenes
The demo version of our game is composed of 5 scenes. We provide a brief

summary of each, but we will describe them in more detail later. This summary
will be useful for the rest of the chapter, allowing us to see which parts of the
game occur chronologically after other parts. For convenience, the transitions
between the scenes are shown in figure 4.1.

Loading

Run Settings Blueprint Selection

Menu Battle

Application start

Done loading

Custom run Victory Done selecting

Exit to menu / Defeat

Start

Start

Select starting blueprints

Figure 4.1 Scene transitions.

• Loading is the first scene that gets loaded when the game starts. This
scene contains only scripts that load data and game objects that persist
throughout the entire lifetime of the application. After the loading is done,
this scene transitions to Menu.

100

• Menu contains the game title, and a button to start a run, a button to set
up a custom run, and a button to exit the game. The start button takes
the player to the Battle scene, whereas the custom run button leads to the
Run Settings scene.

• Run Settings lets the player customize the run by selecting a custom seed
or by opting to select their starting blueprints. There is also a button that
lets the player play again the in-game tutorial. Starting a run from here
also takes the player to the Battle scene, unless they chose to select starting
blueprints in which case they go to the Blueprint Selection scene.

• Battle is the scene where the battles take place. First, the world is proce-
durally generated. Then the player plays one level of the game, until they
win the level or lose. If they lose, their only option is to return to Menu.
When they win, they continue to the Blueprint Selection scene.

• In Blueprint Selection, the player is shown their current blueprints and
new blueprints to choose from. When they finish choosing, they continue to
the next Battle.

4.1.2 Scripts
Most game object exist only within one scene, but some persist between

scene transitions. Each battle happens in one scene, but it still contains multiple
separate systems. This means that we cannot judge the structure of the project
just by the scenes. The structure of Scripts folder should be more informative.
The scripts are divided based on their function into these 6 subfolders:

• BattleSimulation — game logic of the systems present in a battle. Used
in the Battle scene.

• BattleVisuals — logic for the visuals during a battle like animations,
particle effects and the user interface. Used in the Battle scene.

• Data — parsing and loading data from the disk in the Loading scene. It
also contains singleton classes the data is loaded into to be used by other
scripts in the application.

• Game — systems and concepts that are present outside battle, across
multiple battles or throughout the whole application runtime.

• Utils — various utility functions and data structures used throughout the
project.

• WorldGen — procedural generation of the world for each level, used in
the Battle scene.

Each of these folders is split further into more subfolders, each usually repre-
senting one game system. The scripts are also separated into namespaces which
exactly match the folder structure. We also usually place one assembly definition

101

asset in each folder, which make unity separate these scripts into different assem-
blies in the project solution. This is done shorten compilation times because the
codebase is rather large.

We will further describe the scripts in the subfolders in the following sections,
but first we’d like to mention the function of the scripts SceneController and
SoundController in the Game/Shared script folder. Both these scripts are
attached to game objects in the Loading scene which persist between scenes
throughout the whole application lifetime. They are both singletons that provide
some functionality for other scripts using static functions. The SoundController
lets other scripts play stationary sound effects, and is used all throughout the
application. SceneController lets other scripts seamlessly change scenes by
fading out the screen to black, then changing the scene, and fading back in once
the new scene is loaded.

We would also like to mention that in the code, in MonoBehaviour scripts, we
use some conventions that might seem odd to programmers who don’t use Unity.
For example, many private fields have the attribute [SerializeField] which
makes them show up in the Unity editor in the inspector. This lets us save the
values of these fields as a part of the scene, instead of initializing them in code.
We can also inspect the value of these fields at runtime in the Unity editor. Since
properties don’t show up in the inspector, we use public fields in many places
where it would be more appropriate to use a property with a public getter and a
private setter.

4.1.3 Third-Party Assets
In the project, we use some assets that were not created by the author of this

thesis in addition to the Unity game engine. We would like to acknowledge and
disclaim these assets here:

• The Unity package UI Soft Mask by mob-sakai [36].

• We adapted the implementation of a Priority Queue from the .NET
Platform [37].

• We also adapted an Editor Init script by Z4urce [38], used to select the
scene to load when we run the game in the Unity editor.

• And a function for calculating the number of set bits in an int, or Hamming
Weight, from this stack overflow answer [39].

• The font used for all text in the game is Open Sans by the Open Sans
Project contributors [40].

4.2 Battle
In this section, we discuss the systems that come into play during a battle.

When the Battle scene is loaded, some scripts generate the world and some other
scripts initialize various parts of the scene. Throughout this, the screen is faded
out to black. It fades in and lets the player interact with the scene only after all
the initialization is done.

102

From the player’s perspective, after the game fades in, the battle alternates
between the building phase and the wave phase, as shown in figure 4.2. In the
building phase, the player can build buildings. When they start the next wave,
the game goes to the wave phase, where the player can use abilities, but cannot
build buildings. Once all attackers are killed, the game goes back to the building
phase. This repeats until the player wins this level or lose the game.

Initialize systems
and generate world

Ready Building phase
Start wave

Wave phase
Kill all attackers

Fade in

Figure 4.2 Battle scene phases.

We will explain the initialization and procedural generation in section 4.3.5.
In this section, we’ll describe only the processes involved in the gameplay. First
we’ll explain the game logic, and then the visualizations used to communicate
information to the player.

To most systems in involved in the battle, it doesn’t matter if the game is
currently in the building or wave phase, they behave the same at all times. Only
few things change when a wave starts or ends, which we describe in section 4.2.5.

4.2.1 Scene contents
Before we explain what goes on during a battle, we should introduce the

contents of the battle scene. When loaded, the Battle scene contains only the UI,
and various singleton objects with scripts that each take care of one game system.
We will explain these when they become relevant.

During the procedural generation and initialization, more game objects are
created in the scene and various scripts are initialized with data. For example,
the results of the world generation are stored in the WorldData singleton script.
The world terrain is created in the scene under the World game object, including
the obstacle models and visualization of the attacker paths. Also, an instance of
the Tile prefab is created for each world tile, and references to the tiles are also
stored in WorldData script for easy access. For the rest of this section, we assume
the scene is already initialized and ready for the player’s inputs.

In battle, there are also some game objects which persist between scenes and
don’t originally come from the Battle scene. These are the SceneController
and SoundController we introduced in section 4.1.2. Additionally, there is Run
Persistence game object, which contains scripts that persist throughout the player’s
run. The only script relevant during battle it has is RunPersistence, which keeps
track of the player’s blueprints and hull. We will describe it in more detail in
section 4.3.3.

4.2.2 Selecting World Objects
During the battle, one of the most important things the player can do is

to build buildings or use abilities. To do that, the player first needs to select
the blueprint they want to use. The SelectionController keeps track of what
objects the player selects or hovers over. In this subsection, we will illustrate the

103

SelectionController’s function by explaining what happens when the player
selects objects within the game world. Selecting and placing blueprints is more
complicated, and it will be explained in the next subsection 4.2.3. The game also
visualizes which objects are currently selected or hovered, and it shows additional
information on the info panel. This is ultimately the reason why the player would
select a world object. These visual components will be explained in section 4.2.9,
and how the info panel works is described in section 4.2.7.

In the world, the only selectable objects are tiles and attackers. When the
player selects a building, they have in fact selected the tile the building is built
on. Every frame, the SelectionController performs a raycast to determine
which selectable object is the cursor over, if any. The selectable objects have a
game objects with a collider on the physics layer Selection and a Selectable
script. If a selectable world object is hovered over, a reference to its Selectable
script is saved in the SelectionController as currently hovered. Whenever the
currently hovered object changes (even to null), the info panel is notified to show
information about the hovered object (or to hide).

When the player clicks while an object is hovered, it is selected: The selected
field in the SelectionController is set to the hovered object and the info panel
is notified. While something is selected, the SelectionController still updates
which object is hovered. When the player deselects the object, the field is unset,
and again, the info panel are notified.

4.2.3 Selecting and Placing a Blueprint
Let’s start with an example of what happens when from the player’s perspective

when they place a blueprint: The player clicks on a blueprint of a tower in the
blueprint menu. It is now selected. Then, they hover over the tile they want to
place the tower on. The game shows a visualization of the range the tower would
have if it was placed there. We say the selected blueprint is set up as if it was
placed there. Finally, the player clicks to place the tower on the selected tile.

We can see that each of the player’s actions had an effect on the state of the
selection. In this section, we’ll take a look at what happens in response to each of
the player’s actions in order to achieve this behavior. For reference, the possible
selection states and action that transition between them are shown in figure 4.3.
Each arrow represents what the player can do in the current state and what is the
new state after the action is performed. Few actions are show with blue arrows
instead of black. These are still actions the player can take, but in the code, they
are performed as a deselection followed by a selection.

104

Nothing selected

Initial state

Select a world object
Deselect

Blueprint selected

Select a blueprint

Select a blueprint

Hover over
an invalid position

Blueprint selected
and set up

Deselect Deselect

Hover over
a valid position

World object
selected

Place

Hover over a different
valid position

Select a different
world object

Select a
different blueprint

Figure 4.3 Selection states.

We have already explained what happens when a world object is selected or
deselected, but things are a bit more complicated with blueprints. We will now
explain each of the remaining actions in the diagram.

Selecting a Blueprint
A blueprint can be selected by clicking on it in the blueprint menu user interface
(see section 2.5.5) or by pressing a number key on the keyboard that corresponds
to its position in the blueprint menu. Either way, the SelectionController gets
only the blueprint’s index in the blueprint menu. If this index corresponds to
the currently selected blueprint, it gets deselected. But now, we’ll look at what
happens when a blueprint gets selected. During this, the SelectionController
interacts with other scripts. Figure 4.4 contains a sequence diagram for reference.

First, the SelectionController obtains the actual blueprint at the given
index from the BlueprintMenu. Then it takes the prefab associated with this
blueprint and instantiates it. Each blueprinted object prefab has on it two
scripts that are relevant for us right now: A script derived from Placement, which
decides where the blueprint can be placed. And a script derived from Blueprinted,
which handles the behavior of the blueprinted object when placed in the world.
For example, the Budget Sentry has the script SimpleBuildingPlacment for
placement and its behavior is implemented by the script BasicProjectileTower.

After instantiating the prefab, the SelectionController saves a reference to
its Placement script which signifies that this is the currently selected object. It
then initializes the Blueprinted script by giving it a copy of the original blueprint.
Similarly to selecting a world object, it notifies the info panel to show the relevant
information. This is not shown in the sequence diagram to avoid clutter.

Setting Up the Blueprint
We want to accurately preview the effects a blueprint will have, or how it will
be affected by other buildings once placed. To do this, we need to position the
blueprinted object in the world as if it actually was placed. On every update, the
SelectionController tells the Placement to set up the object as if it was placed
in the position the player currently hovers over. The Placement returns whether
the setup changed from the last frame, and if it did, the SelectionController
also notifies the Blueprinted script.

105

It is possible that the current position is not a valid placement for the blueprint.
In that case, the Placement marks the setup as invalid. This is represented in fig-
ure 4.3 as the state “Blueprint selected”. However, for the SelectionController,
there is no distinction between a valid and invalid setup. From its perspective,
the states “Blueprint selected” and “Blueprint selected and set up” are just one
state. To the player, they are pretty distinct, because the various visualizations
behave differently based on whether the current placement is valid or not, and
they communicate the difference to the player. How these visualizations work is
explained in section 4.2.9.

Selection-

Controller

BlueprintMenu-

Controller

TrySelect

Blueprint

Select a blueprint

Blueprinted Placement

blueprinted object
Instantiate

InitBlueprint

Set up
Setup

bool

OnSetupPlacement

Try place

Deselect a blueprint

Place

Place

IsValid

bool

TryPlace

bool

Destroy

Deselect

GameObject

UnityEngine

.Object

Figure 4.4 Sequence diagram of events related to placing a blueprint.

Placing the Blueprint
When the player clicks to place the selected blueprint, the SelectionController
first asks the Placement if this position is valid. If it is, the SelectionController
asks BlueprintMenu to try to place the blueprint. This only means that the
BlueprintMenu checks if the player can afford the cost and that the blueprint
isn’t on cooldown. If this succeeds, the BlueprintMenu invokes a command to
subtract the cost of the blueprint from the player’s resources, and it makes the
blueprint go on cooldown if applicable.

106

If the blueprint cannot be placed, the SelectionController just plays an
error sound to provide feedback to the player. Otherwise, it calls the Place
method on the blueprinted object’s Placement. Then the SelectionController
deselects the blueprint. However, in figure 4.3 the “Place” action forks and leads to
two different states. This just signifies that after placing an ability, the blueprint
gets automatically selected again.

After being actually placed, the Blueprinted script enables the visual parts
of the blueprinted objects, but the rest is left up to the implementation of the
given object. Usually, their initialization includes registering some modifiers
and reactions to modifiable commands (see section 3.12). For example, most
production blueprints produce resources every turn, so they register a modifier
to the modifiable query which determines the production per turn displayed to
the player. They also register a reaction to the event signifying that a wave has
ended, because they produce the resources specifically after every wave.

Deselecting the Blueprint
If the selected blueprint gets deselected without placing it, the blueprinted object
gets destroyed and the BlueprintMenu is notified that the blueprint is no longer
selected. This can also be seen in figure 4.3, but note that the exact sequence of
events shown in the diagram is invalid. It is not possible to deselect a blueprint
after it has already been placed.

Hovering over a Blueprint
We would also like to mention how we handle hovering over a blueprint in the
blueprint menu, because it is different from hovering over a selectable world object.
In fact, the SelectionController doesn’t know when the player hovers over
a blueprint. As far as it knows, the player doesn’t hover over anything. The
blueprints in the blueprint menu detect the hover on their own and react to the
hover accordingly, including notifying the info panel. The script that makes this
work is the BlueprintDisplay script on each of the blueprint menu items. This is
done this way, because the blueprint display prefabs are also used in the Blueprint
Selection scene, where they behave the same.

4.2.4 Player State
Another important singleton script in the Battle scene is the PlayerState.

Compared to the SelectionController, its function is much simpler. It keeps
track of the player’s energy, materials and fuel, and if the battle has been won
or lost. Other scripts can use its static modifiable commands to add or spend
resources.

Once the fuel amount reached the fuel goal for this level, it invokes its modifiable
command WIN_LEVEL. In reaction to this, the OverlayController shows the
victory overlay with a button to proceed to the next level. What happens next is
explained in section 4.3.3.

107

4.2.5 Attacker Waves
The WaveController script controls what happens during a wave. It interacts

with several other scripts, which we’ll describe in the following paragraphs. For
reference, we’ve lillustrated these interactions in figure 4.5. The diamonds are
modifiable commands or events, and for their interactions, we use a convention
similar to the diagrams in section 3.12.

Try start wave

Get wave contents

Instantiate

Initialize

Wave finished

WaveController

Didn't win or lose yet?
START-

WAVE

ON_WAVE-

FINISHED

Reached
Hub

Attacker

PlayerState

Start wave

BlueprintMenu

Switch available blueprints

...

WaveGenerator

When it dies or reaches
the Hub, decrement

attacker count

...

BlueprintMenu

Switch available blueprints
and reduce cooldowns

Production building

Produce

damageHull
Decrease

hull

...

Hull reached 0

RunPersistence

defeat

Paragraph (1)

Paragraph (2)

Paragraph (3)

Paragraph (4)

Figure 4.5 Interactions of WaveController with other scripts.

(1) When the player requests to start a new wave, the WaveController invokes
the START_WAVE modifiable command. This command has a modifier registered
by PlayerState, which cancels the command if the battle has been won or lost.
Various scripts react to this command, for example the BlueprintMenu changes
which blueprints are available from buildings to abilities.

(2) When the wave is started, the WaveController requests the contents of the
wave from the WaveGenerator, and it starts spawning the specified attackers. To
spawn an attacker, it instantiates the prefab specified by the attacker stats, and it

108

initializes the attacker’s Attacker script. The attacker then moves and behaves
on its own, as implemented in its Attacker script.

(3) The WaveController does not keep track of the attackers, only their count.
Whenever it spawns an attacker, it increments the count, and whenever an
attacker dies or reaches the Hub, the count is decremented. Once all attackers
have been spawned and there are no attackers left in the world, the wave ends,
and the ON_WAVE_FINISHED event is invoked. This event has many reactions, for
example the BlueprintMenu switches the blueprint offer back to buildings, and it
decrements all cooldowns. Also, most production buildings produce resources in
reaction to ON_WAVE_FINISHED.

(4) Whenever an attacker reaches the Hub, it invokes the command damageHull.
The RunPersistence reacts to this and decreases the player’s hull. If the hull
reaches 0, the command defeat is invoked. This lets all game systems know that
they should stop, and to display the defeat overlay.

4.2.6 Shooting at Attackers
During a wave, the towers the player has built shoot at the attackers. As we

described in section 3.9, the towers know that an attacker is in range, if it is within
the tower’s targeting collider. They use the Targeting script to know which
attackers are in range, which attackers are in line of sight, and which attacker
they should shoot at, based on the current targeting priority. The interactions
described in this section are summarized in figure 4.6.

Targeting

Attacker entered / left

Targeting-

Collider

Targeting-

Collider

...

Attacker entered / left Attacker entered / left

ProjectileTowerGet target

Projectile

Instantiate

Attacker

Hit attacker

DAMAGEInvoke
... ...

Damage

TryHit

Figure 4.6 Script interactions when a tower shoots at an enemy.

A tower’s range can be composed of many TargetingColliders, and they can
be combined with any set operations to create various range shapes. Figure 4.7
shows how we could create a range shaped like a cylinder with a hole. Whenever
an attacker enters or leaves a TargetingCollider, it notifies its parent. Based
on the state reported by other children, the parent decided whether to notify its
parent. The scripts that can be children in this targeting tree implement the
interface ITargetingChild and parents implement ITargetingParent. The root
of this tree is the Targeting script itself, which uses this information to track
which attackers are in range.

109

Capsule

Box

∩

Capsule

\
Cylinder

Cylinder with a hole

Targeting

DifferenceTargetingComponent

IntersectionTargetingComponent

TargetingCollider

TargetingCollider

TargetingCollider

Figure 4.7 Combining collider shapes using set operations.

Most towers ask the Targeting every tick they could shoot whether they
have a target, and if so, they shoot at it. Some towers hit their target instantly,
but others shoot a projectile, which will take few ticks to hit the target. Some
projectiles might even miss the target. The behavior of various projectiles is
implemented in the derived classes of Projectile used in their prefabs. Once
they hit their target, they notify the tower that shot them.

To damage an attacker, the tower should use its method TryHit. The attacker
then invokes the DAMAGE command, and it also handles this command by decreasing
its own HP accordingly. Similarly, when the player uses an ability to damage
attackers, the ability determines its targets, usually using a sphere cast, and
damages them via the TryHit.

4.2.7 Info Panel
In the following subsections we’ll take a look at the more visual elements of

the game, whose main job is to communicate information to the player. We’ll
start with the info panel.

The info panel exists both in the Battle and Blueprint Selection scene. The
public methods of its InfoPanel script get called directly by various scripts. To
show info about a certain object, the right method is called, and the object is
passed as an argument. The InfoPanel saves these references, so it always works
with up-to-date information. The Hide method can be used to hide the panel.

To show information about some object, the info panel creates an instance
of the corresponding DescriptionProvider script. The InfoPanel then asks
the DescriptionProvider every frame for the current description. This way,
the descriptions can change in real time. Each DescriptionProvider first gen-
erates the description with tags as specified in section 3.11.2, and then it uses
DescriptionFormatter to format them into the corresponding formatted text
and icons.

110

Most tags used in the descriptions of buildings or blueprints represent a value
that can be modified. The Blueprint script contains a modifiable query for each
modifiable value it holds. The values stored in the blueprint are the base values,
and the real up-to-date values are to be obtained through these queries. For
formatting the descriptions, the DescriptionFormatter compares these modified
values to the base values, and it colors the text based on if the modified value has
changed for the better, worse or not at all.

In figure 4.8 we show an example of how a description is produced. In this
case, the info panel is displaying a description of a Predator tower, and for
that, it has created an instance of a BlueprintDescriptionProvider. In the
diagram, the info panel asks the description provider for the description. The
description provider first assembles it from parts provided by the tower and
its blueprint, and then it asks the DescriptionFormatter to format it. The
DescriptionFormatter replaces the tag “[$DMG]” with the word “Damage”, the
icon of the damage type, and a colored text with the damage amount. It reads
from the blueprint that in this case, the base damage is 10, and by using the
modifiable query Damage, it obtains that the current damage should be 17. So, it
outputs that the tower deals 17 damage, and the number is green, because it is
greater than the base damage.

10

Blueprint
Predator
(a tower)

Description-
Formatter

Blueprint-
Description-

Provider
InfoPanel

Get description
GetExtraStats

Format

the same text

damage

10

Query

17

Damage

17

"Kills 7"

"[$DMG]
Increases its damage by 1 with every kill."

"Kills 7
Damage <sprite=8><color=green>17</color>

Increases its damage by 1 with every kill."

Get stats and description

"Kills 7
[$DMG]

Increases its damage by 1 with every kill."

Figure 4.8 Generating the description to be shown in the info panel.

When a building is selected, the info panel also shows a delete button. For
towers, it also shows arrows that allow the player to change the tower’s targeting
priority. Since the info panel has a reference to the building it’s displaying
information about, it can just directly call the building’s public methods for this
functionality. It’s important to note that when a building gets destroyed, the
building has to unregister all modifiers and reactions it has registered.

111

4.2.8 Visuals and Interpolation
Scripts that take care of visuals are separated from the game logic. The

visuals scripts have references to the game logic scripts they care about, and they
read their public fields, or react to various events. For example, the scripts that
display the player’s energy and materials just read the values directly from the
PlayerState script. However, sometimes we add some events to the game logic
scripts, whose only purpose is to let the visuals know when something happens. For
example, the SelectionController has the Unity event resetVisuals, which
is used to let visuals scripts know that the setup of the blueprint currently being
built has changed, so they should reflect this change.

Various visuals scripts also react to the game events. For example, the
NumberEffects script spawns a number effect above an attacker whenever the
attacker gets damaged, and it creates number effects whenever resources get
produced. These number effects show the amount of damage that was dealt, or
the amount and type of the resource produced.

Each blueprinted object also has some scripts that control its visuals. For
example, the script that takes care of the visualization of most projectile-shooting
towers is BasicProjectileTowerVisuals. It makes the tower’s turret point
towards the attacker the tower is targeting, but it also interpolates the rotation
to be smooth. It also subscribes to the tower’s onShoot Unity event to play an
animation when the tower shoots.

We would also like to mention that both attackers and projectiles move the
world as a part of the game logic. Of course, they change their position only 20
times per second, but to the player, their travel needs to look smooth. So, their
visuals scripts simulate their movement in the same way as the game logic scripts,
only with a greater temporal resolution.

4.2.9 Highlights and Range Visualization
When the player selects a building, attacker, or a blueprint, it is highlighted,

so the player knows it’s selected. Furthermore, we might highlight other relevant
objects differently to show that they are somehow affected by the selected object.
For example, when the player selects a tower, it highlights the attackers in its
range in yellow. We also want to show the affected region of the world, by coloring
the terrain accordingly. For example for towers, we draw their range. This is
described in section 2.7. The interactions described in this section are shown in
figure 4.9.

Get highlights

Highlight-

Controller

Selection-

Controller

Highlight-

Provider

Get selected
object

Get range data

Range-

Visualization

Selected object's

Figure 4.9 Interactions between scripts for highlights and range visualization.

The HighlightController looks at the SelectionController’s selected
and/or hovered objects every frame and determines which objects in the world

112

should be highlighted. However, each selected object wants to highlight ob-
jects differently. This behavior is implemented in the object’s script derived
from HighlightProvider. If the selected object has a HighlightProvider,
or when a selected tile has a building with a HighlightProvider on it, the
HighlightController asks it what objects should be highlighted, and with
which color. It then tells these object to change their highlights accordingly. The
objects that can show highlights implement the interface IHighlightable.

The HighlightController also closely monitors the SelectionController
when placing a blueprint. It highlights the selected tile, or attacker, or it shows
just a point highlight which highlights the selected position in the world, based
on the blueprinted object’s Placement.

Each HighlightProvider also implements a function that returns the color of
the range visualization for any given point, as described in section 3.10. The script
RangeVisualization then creates the range visualization over many frames,
based on the HighlightProvider that’s currently selected according to the
HighlightController.

In addition to our specification in section 3.10, when placing a blueprint, the
HighlightProvider also shows in blue the valid positions to place it. For this,
it needs a reference to the given Placement script to ask it which positions are
valid.

4.2.10 Tutorial
The tutorial is handled by a system separate from other scripts. It calls their

public methods, and modifies their data to achieve the behavior we want. There
are two scripts that handle the tutorial:

TutorialController keeps track of the player’s progress through the tutorial.
The tutorial is a sequence of steps, and the TutorialController has a Unity
event for each of them. At the start of each step, it invokes the corresponding
Unity event. This way, all things that happen during the tutorial can be assigned
in the Unity editor.

The script TutorialActions then contains methods which do various modifi-
cations to various objects within the scene, so these actions can be subscribed to
the TutorialController Unity events. TutorialActions also contains various
checks based on which it tells the TutorialController when to go to the next
step.

4.3 Game Start and Procedural Generation
In this section we’ll take a look at the processes that happen from the applica-

tion start, all the way to generating worlds and waves. We already described the
transitions between scenes in section 4.1.1, and now we’ll go into more detail.

4.3.1 Loading
When the application starts, a “Made with Unity” splash screen is shown, and

then the Loading scene is loaded. As we mentioned in section 4.1.2, this scene
contains SceneController and SoundController — game objects that persist

113

throughout the entirety of the application runtime and provide useful functionality.
However, the main purpose of this scene is to load various data from the disk into
memory. This is handled by the StartLoader script. We can register to it any
number of ILoader scripts, which do the loading and store the data in singleton
classes.

Currently, the only loader we use is TerrainTypeLoader, which loads the
terrain types from the StreamingAssets/TerrainTypes folder. For each terrain
type file, the TerrainTypeLoader creates a new TerrainType object using the
function Parse it has. The parsing is done using a simple parser implemented
in the folder Scripts/Data/Parsers. The terrain type file format is described in
section 5.3.

4.3.2 Menus and Starting a Run
The Menu scene contains mostly just three buttons and an object with the

RunStarter script. All three buttons call a method on the RunStarter when
pressed. When the “Start” button is pressed, the RunStarter instantiates the
RunPersistence prefab, configures it, and calls the NextLevel() method on its
RunPersistence script.

Pressing the “Custom Run” button takes the player to the Run Settings scene.
It contains more UI elements, and another object with a RunStarter script. Here,
the player can change the run settings by interacting with the UI elements, which
in turn notify the RunStarter about these changes. When the player starts the
run, the instantiated RunPersistence prefab is then configured according to the
settings. If the “Select starting blueprints” option is enabled, instead of going to
the first level, the scene Blueprint Selection is loaded, where the player can select
the starting blueprints.

4.3.3 Run Persistence and Blueprint Rewards
The RunPersistence object persists between scenes, and it only destroys

itself when a run ends. It holds all scripts that need to remember some state
throughout the whole run: The RunPersistence script keeps track of the player’s
hull and blueprints, the run seed, the current level, and it gives orders to the other
scripts. The BlueprintRewardController script generates blueprint rewards
for the player. The interactions between scripts described in this section are
summarized in figure 4.10.

114

RunPersistence

Blueprint-
Reward-

Controller
Prepare reward Change scene SceneController

Finish selection

Blueprint-
Selection-
Controller

Initialize

Clicked
BlueprintDisplay

Instantiate
Initialize

Update outline
InfoPanel

Show

Hide

Blueprint Selection scene

ClickedButtons

Figure 4.10 Interactions between scripts during blueprint selection.

After the player beats a level, the RunPersistence asks the BlueprintReward-
Controller to reward the player with blueprints. For the rewards after the
first tutorial level, the BlueprintRewardController has a predefined blueprint
selection, but for normal blueprint rewards, it picks the selection randomly, based
on its seed. It then changes the scene to the Blueprint Selection scene, and
initializes the BlueprintSelectionController script in it with the selection.

The BlueprintSelectionController handles the blueprint selection. It ini-
tializes the scene by instantiating BlueprintDisplay prefabs which depict the
blueprints on offer and the player’s current collection. When the player clicks
on one of the blueprints, it notifies the BlueprintSelectionController, which
handles the selection logic. It also modifies the blueprints’ outlines to communicate
to the player what is selectable or selected, and it makes the info panel show
relevant information. Once the player confirms their selection by clicking on a
button, it returns what the player chose in a callback to the RunPersistence,
which updates the player’s blueprint collection and proceeds to the next level.

4.3.4 Seed Branching and Level Initialization
As we described in section 3.7, we use seed branching everywhere throughout

the procedural generation. This means that whenever some system needs an RNG,
it gets a seed from another system, and from this seed it creates its own RNG
instance to use. Figure 4.11 shows how the seeds get propagated across the game’s
systems. When starting a new run, the RunStarter creates a new instance of
RunPersistence, and it is given a run seed. It is either randomly generated using
System.Random or selected by the player. The RunPersistence then initializes
the BlueprintRewardController, giving it a seed to generate rewards from.

Whenever a new level is started, the WorldGenerator in the Battle scene
finds the RunPersistence and asks it to set up the level settings. For this, the
RunPersistence uses the LevelSetter script, which finds the relevant scripts
in the scene and sets them up. The RunPersistence generates a seed for the
LevelSetter. The LevelSetter generates a new seed for the world generator
and configures the number of paths and their lengths, based on the level number,
storing this information in the WorldSettings script. It also configures the

115

WaveGenerator’s seed and parameters, and the fuel goal in the PlayerState.
Figure 4.11 shows the WorldSettings and WaveGenerator multiple times, to
convey that each level has a new instance of these scripts.

RunStarter

Selected by the player
or using System.Random

RunPersistence

BlueprintReward-

Controller

LevelSetter

For each level
WorldSettings ...

WorldSettings ...

WaveGenerator

WaveGenerator

...

...

Figure 4.11 Seed propagation using seed branching.

4.3.5 Procedural World Generation
The WorldGenerator handles the world generation by giving orders to other

scripts. We illustrate its interactions with other scripts in figure 4.12. As we
mentioned, when the Battle scene is loaded, it asks the RunPersistence to set
up the level. All information the WorldGenerator needs is supplied through the
WorldSettings script. The world generator then reads the information, and calls
other generator scripts, which each take care of one stage of the world generation,
as described in section 3.2.

Initialize world settings

Write generated dataTerrain generatedPaths finalized
Decoration
models placed

WorldGeneratorWorldSettings Read data

RunPersistence

Generate part World generation
scriptsGet seed

WorldData

LevelSetter

Read generated data

Fill in tile references

WorldBuilder
Instantiate world objects

SceneControllerFade in
Ready

Figure 4.12 Script interactions during world generation.

116

In order of use, the world generation scripts are:

1. PathEndPointPicker picks path end points (section 3.3.1).

2. PathPlanner generates main paths (section 3.3.2).

3. WFCGenerator generates the terrain (section 3.4).

4. ObstacleGenerator selects the positions for obstacles (section 3.5).

5. PathFinalizer then creates the final path network (section 3.3.6).

6. ObstacleModelScatterer selects the obstacle model positions and sizes
(section 3.5).

The WorldGenerator gives each script the information it needs, be it from
the WorldSettings or data that was generated in some previous stage. All
the algorithms are randomized, and they can require multiple random number
generators. To generate seeds for their RNG’s, they use the WorldGenerator’s
RNG that was initialized with the seed from WorldSettings. After each stage,
the WorldGenerator writes the generated data into the WorldData script. From
the WorldData, other scripts can read the information about the generated world,
as also mentioned in section 4.2.1. After several stages, the WorldGenerator
invokes an event to notify other scripts that new world data is ready.

The world generation stages are done in background threads so that the
game doesn’t become unresponsive. however, in Unity, we cannot instanti-
ate objects from a background thread. The script WorldBuilder reacts to the
WorldGenerator’s events, and it builds the terrain, obstacles, paths, and tiles in
the main thread. It also reads the world data from the WorldData script, and
writes back references to the tile instances it created.

Creating many objects is expensive, so to prevent stuttering, we use Unity
coroutines to build the world across multiple frames. Currently, the screen is
faded out using the SceneController during world generation, but later we’d
like to add an animation, which would make any stutters obvious. Once the
WorldBuilder finishes building the world, it tells the SceneController to fade
in the screen, and it invokes an event to notify all other scripts that the world is
generated.

117

5 Designer Documentation
In this chapter, we describe how one might go about adding new content to the

game. We explain how to add new Attackers, Blueprints and Terrain types, each
in its own section. For all these content types, we recommend taking inspiration
from the content already in the game, or even creating a copy and editing it as
needed. We expect the user to have experience with Unity, and in few steps,
implementing new scripts may be required.

The Unity project of the game is attached to this thesis as the folder “Project”.
It was created using Unity editor version 2021.3.8f1, so make sure to use the
same version or one that is compatible. In the project, assets are organized into
folders by their type. We’ll go into more detail about the folders when they
become relevant.

5.1 Attackers
In this section, we show how to add a new attacker type. Attacker types

are described in detail in section 2.3.4. At each step, we describe what to do
in general. We also sometimes provide information specific to the attacker type
Armored Skeleton for illustration.

5.1.1 Attacker Stats
1. Start by creating new AttackerStats scriptable object. These are stored

in the AttackerStats assets folder. To create new AttackerStats scriptable object,
in Unity, right-click in the folder and select Create > AttackerStats.

2. For this attacker to appear in the game, it must be assigned to the wave
generator’s selection. To do this, open the scene Scenes/Battle. In it, find the
game object World > WaveGenerator in the scene hierarchy, and add the new
AttackerStats to the Available Attackers array of its WaveGenerator script.

3. Next, select the AttackerStats scriptable
object and configure its values in the inspector.

3.1. The field Name contains the attacker’s
name as it will appear in game. It should be the
same as the AttackerStats file name if possible.

3.2. The fields Size, Max Health and Size are
the basic attacker stats explained in section 2.3.4.

3.3. Min Spacing is the minimum spacing these
attackers can be spawned with.

3.4. Base Value denotes the attacker’s value for the purposes of wave genera-
tion. Attackers with higher value are considered more difficult to kill. The value

118

should be equal to Max Health for attackers without abilities, and appropriately
higher or lower if the attacker has some abilities. This is further explained in
section 3.6.7.

3.5. Weight denotes how likely is this attacker to be selected when the wave
generator decides between multiple attackers. In the demo version, all attackers
have weight 1.

3.6. The Descriptions array should contain human-readable description of the
attacker’s special abilities. Each ability should be a separate entry. Formatting
tags can be used, as described in section 3.11.2. The implemented tags are
summarized in section 5.2.5.

3.7. The Icon represents the attacker in the incoming wave preview and
the info panel. The icons we use for attackers are placed in the asset folder
Sprites/Icons/Attackers and are 200× 200 pixels in size.

3.8. The Prefab field contains the prefab of the attacker as it will exist in
the game world. It should contain the attacker’s behavior and its 3D model with
other visuals. In the following subsection, we explain how to create this prefab.

5.1.2 Attacker Prefab
The attacker prefabs have many components in common, so we recommend

copying an existing attacker prefab and editing it. However, to explain all the
components, in this section we’ll create a new attacker prefab from scratch. The
prefabs of attackers are placed in the asset folder Prefabs/Attackers.

4. To create a new prefab, right-click in the folder and select Create > Prefab.
We recommend giving it the same name as the attacker stats file. Then assign it
to the Prefab field in the Attacker.

5. To the root game object of the prefab, attach the Attacker script. If the
attacker requires more complex behavior, it can be achieved by either adding
other scripts onto the attacker game object, or by using a script derived from
Attacker which implements this behavior. For example, the Armored Skeleton
attacker has special abilities which are implemented in the ArmoredSkeleton
script. Implementation of this script is described in section 5.1.3. This script has
various settings and references which we’ll fill out as we continue.

6. Next, attach a Rigidbody script. Disable Use
Gravity, enable Is Kinematic and set Collision
Detection to Continuous. Finally, assign this
component to the field Rb in the Attacker script.

7. Then, attach a collider that will be used
for collision detection by projectiles. It should
approximate the attacker’s model, so once the at-
tacker visuals are finalized, come back and tweak
it. Additionally, make sure to set the Layer of
the attacker game object to Attacker.

119

8. Next, attach the Selectable script and assign the Attacker script to its
Attacker field.

9. The last script the attacker game object needs is a HighlightProvider
script. The purpose of highlight providers is explained in section 4.2.9. For
most attackers, the AttackerHighlightProvider, which provides no additional
highlights, is sufficient. If custom highlights are needed, implement a custom
script derived from HighlightProvider.

10. Next, we add the target towers aim for.
Create an empty game object as a child of the
root game object. Set its Layer to AttackerTarget.
Set its position to (0, 0.15, 0) for small attackers
and (0, 0.3, 0) for large attackers. Then, attach
a Sphere Collider and set its radius to 1e-05.
Finally, assign this object to the Target field of
the Attacker script.

11. Next, we’ll set up all the visual parts of the attacker prefab. Start by
creating an empty child of the root object, which will be our root object for
everything visual. We will call it the visual root. All visuals should go under one
common root object, because we want them to move together. However, they will
move independently of the attacker prefab root object, because that one is moved
20 times per second by the Attacker script. This object’s movement should be
smooth, and for that, attach to it the PositionInterpolation script, and assign
the attacker root object to its Sim field.

12. Now it’s a good time to add the attacker model, and other custom visuals.
Our models are composed of primitive shapes, and they aren’t animated, though
some attackers have particle effects. The only restrictions here are that the target
the towers are going to aim for should be within the attacker’s body. After this,
we can go back and adjust the root collider to match the model.

13. Next, we add an empty child object under the visual root, which will be
the visual target. Its position should match the attacker target — (0, 0.15, 0) for
small attackers and (0, 0.3, 0) for large attackers — but it will move smoothly
with the rest of the visuals. It is used by towers to visually aim at the apparent
location of the attacker, without jumping 20 times per second. To fulfill this role,
assign the object to the Visual Target field of the Attacker script.

14. Then, we add the collider, which is used to
let the player select the attacker. For that, create
another object under the visual root and give
it a collider. Again, try to match the attacker
model, but a slightly bigger collider is better, so
the attacker is easier to select. Finally, set the
layer of this object to SelectionAttacker. In the
figure on the right we show the attacker collider
along with the bigger selection collider.

120

15. Next, we add attacker’s health display. For
that, place the prefab HealthCanvas under the
visual root. Position it at the top of the attacker
model as shown in the figure on the right. The
health display graphic will hover slightly above
the attacker model. Then, go to the child object
Health and assign the attacker root object to the
Attacker field of its HealthDisplay script.

16. Now we also add attacker’s highlight.
Place the prefab HighlightCanvas under the vi-
sual root. Position it in the center of the attacker
model.

Then, go to the child object Highlight and ad-
just it. Make the color of its Image fully opaque
to see what the highlight will look like. Adjust
the Highlight scale so that the highlight creates
an outline around the attacker model. It should
look similar to the one shown in the figure on the
right. Don’t forget to turn the opacity back to 0
when finished.

Finally, assign a reference to the Highlight ob-
ject to the fields Highlight and Highlight Anim in
the Attacker script.

17. As the last step, we assign some reactions
to events the Attacker script provides. For ex-
ample, we should subscribe some death animation
to the On Death event. As shown in the figure
on the right, in our current implementation, we
only deactivate the game object that holds the
attacker’s model, deactivate its health display,
and we play a particle effect.

5.1.3 Attacker Behavior Script Example
In this section we describe how is the Armored Skeleton attacker behavior

script implemented. The source code is for reference shown as code snippet 1, but
we’ve omitted the usings and namespace definition to save space.

As we can see, the class extends the Attacker script. This attacker has two
special abilities: “Has shields that block 1 damage from each hit. Once HP drops
below half of max HP, loses the shields and doubles its speed.” For this we’ve
added a setting damageReduction to configure by how much the shields reduce
the incoming damage. And a Unity event, that will let the attacker visuals react,
and hide the shields from the model once the attacker loses them. The field
hasShield just remembers the state. This is tracked explicitly, so the shields
don’t come back up when the attacker heals back from below half HP.

121

Code snippet 1 ArmoredSkeleton behavior script implementation.

public class ArmoredSkeleton : Attacker
{

[SerializeField] int damageReduction;
[SerializeField] UnityEvent onShieldDropped;
[SerializeField] bool hasShield;

static ArmoredSkeleton()
{

DAMAGE.RegisterModifier(TryBlockDamage, -1);
DAMAGE.RegisterReaction(OnDamaged, 1000);
SPEED.RegisterModifier(UpdateSpeed, -1000000);

}

static bool TryBlockDamage(ref (Attacker target, Damage damage) param)
{

if (param.target is not ArmoredSkeleton { hasShield: true } s ||
param.damage.type.HasFlag(Damage.Type.HealthLoss))
return true;

param.damage.amount -= s.damageReduction;
return param.damage.amount > 0;

}

static void OnDamaged((Attacker target, Damage damage) param)
{

if (param.target is not ArmoredSkeleton { hasShield: true } s ||
s.health >= (s.stats.maxHealth + 1) / 2)
return;

s.hasShield = false;
s.onShieldDropped.Invoke();

}

static void UpdateSpeed(Attacker attacker, ref float speed)
{

if (attacker is ArmoredSkeleton { hasShield: false })
speed *= 2;

}
}

The Armored Skeleton abilities modify how much damage they take and their
speed. To do this, we register modifiers to the modifiable command DAMAGE and
query SPEED. Because both of them are static, and the attacker is provided as
an argument to the modifier methods, we modify them using static methods,
registered in the ArmoredSkeleton static constructor. We also register a reaction
to damage in order to check the attacker’s HP whenever it is damaged. The
number provided as a second argument to the register methods is just the priority.

The command DAMAGE is modified by the TryBlockDamage method. It checks
whether the damaged attacker is an armored skeleton with its shields still up, and
that the damage isn’t of type HealthLoss, which ignores all damage modifiers.
Then it reduces the damage by the attacker’s damageReduction. If the damage
becomes 0 or less, we return false to completely block the damage command.

122

Whenever any attacker takes damage, the OnDamaged event is notified. It
checks whether the attacker is an ArmoredSkeleton with shields. If it is, and
its new HP is below half of max HP, it makes it drop its shield. Finally, the
attacker’s speed is modified by the UpdateSpeed method, which just doubles the
speed value, if the attacker is an ArmoredSkeleton with its shields gone.

5.2 Blueprints
In this section, we show how to add a new blueprint. Blueprints can be both

buildings or abilities.

5.2.1 Blueprint Scriptable Object
1. First we create the blueprint scriptable object. Blueprints are stored in the

Blueprints assets folder, further organized into subfolders by their type. In the
right folder, in Unity, right-click and select Create > Blueprint.

2. For this blueprint to appear in the game, it must be assigned to the
blueprint reward controller. To do this, open the prefab Prefabs/RunPersistence.
In it, find the game object BlueprintRewards, and add the new Blueprints to
the All Blueprints array of its BlueprintRewardController script.

3. Next, select the Blueprint scriptable object
and configure its values in the inspector.

3.1. The field Name contains the blueprint
name as it will appear in game. It should be the
same as the Blueprint file name if possible.

3.2. The Prefab field contains a reference to
the prefab that will be instantiated when the
blueprint is placed. We’ll explain how to set up
a prefab in section 5.2.2.

3.3. Icon is the icon that represents the
blueprint. For buildings, it should show the build-
ing’s model. Blueprint icons are stored in the
Sprites/Icons asset folder, further separated by
into subfolders by their type. Each is 200× 200
pixels in size.

3.4. The field Rarity determines the blueprint’s
rarity, as explained in section 2.4.

3.5. The field Type determines the blueprint’s
type, which is either ability or a type of building
as explained in section 2.3.5.

3.6. Energy Cost and Material Cost determine
the blueprint’s cost.

3.7. Starting Cooldown determines the number
of waves at the start of each level, for which the
blueprint cannot be used. Cooldown determines
how many waves the player has to wait after using
the blueprint before they can use it again.

123

3.8. Fields from Range to Energy Production are optional numeric statistics.
These determine various aspects of the blueprint, and they are explicitly stored
in the blueprint, so that other game objects can consistently modify them. If a
blueprint doesn’t use a given statistic, its value should be set to -1. 0 shouldn’t
be used. Damage Type is not a number but a set of flags, and should be set to
Nothing if and only if the blueprint doesn’t deal damage. Range and Radius are
floating-point numbers, and the rest are integers. The time durations Interval,
Delay, and Duration Ticks are in ticks, so 20 means one second.

3.9. Stats To Display is an array of stats to be displayed in the blueprint
description above the ability descriptions. These should contain all used stats
not explicitly mentioned in the ability descriptions. Each stat is represented by a
formatting tag prefixed with $, as explained in section 5.2.5.

3.10. The Descriptions array should contain human-readable description of the
blueprint’s special abilities. Each ability should be a separate entry. Formatting
tags can be used, as described in section 3.11.2. The implemented tags are
summarized in section 5.2.5.

5.2.2 Blueprint Prefab
Blueprint prefabs have many components in common, so we recommend

copying an existing attacker prefab and editing it. However, to explain all the
components, in this section we’ll create a new blueprint prefab from scratch. We’ll
start with components that are required for every blueprinted object, and then
we’ll show how to set up some components that are used often. The prefabs of
abilities are placed in the asset folder Prefabs/Abilities, and building prefabs are
in the asset folder Prefabs/Buildings, further separated into subfolders by type.

4. To create a new prefab, right-click in the appropriate folder and select
Create > Prefab. We recommend giving it the same name as the attacker stats
file. Then assign it to the Prefab field in the Blueprint.

5. To the root game object of the prefab, attach a script derived from the
Blueprinted script. This script implements the behavior of the blueprinted object
when placed. In most cases, the blueprinted object will have a completely unique
behavior, so a custom script will have to be created. However, it doesn’t have to
reimplement everything, it can extend a script that is already implemented.

Below is the inheritance tree of the scripts derived from Blueprinted. Scripts
that implement the behavior of one specific blueprinted object are grouped together
by their base class to save space.

Blueprinted
Ability

OrbitalLaser, Streamline
TargetedAbility

Catalyst, Greande, LightningStorm, Meteor
Building

Amplifier, EnergyHarvester, Radar, SolarPanel,
SurfaceDrill
ProductionBuilding

DustRefinery, MatterReplicator
Tower

124

FrostbiteFrontier, HoloSiphon, Sledgehammer,
StaticSparker, UltraRay
ProjectileTower

Galvanizer, Mortar
BasicProjectileTower

DoubleSentry, GatlingGun, Predator, Sniper

As an example, section 5.2.3 explains the implementation of the ability Meteor.
Similarly, section 5.2.4 explains the implementation of the tower Sledgehammer.

6. The next script we need to add is a script derived from Placement. This
script determines where the blueprint can be placed, as described in section 4.2.3.
Several placement scripts are already implemented, and in most cases one of them
has the behavior we need. If not, we recommend extending one of them. Below
is a summary of the already implemented placement scripts, organized into an
inheritance tree. Abstract classes are in italics.

Placement
GlobalPlacement — Doesn’t need a position or target.
SimplePointPlacement — Place on any point in the world.
TilePlacement — Place on tiles.

BuildingPlacement — For buildings.
HeightBasedBuildingPlacement — Limit valid tiles by height.

SolarPanelPlacement — Used by Solar Panel. Tells the solar
panel at which height level it’s being placed.

ObstacleSpecificBuildingPlacement — Configure on which
obstacles it can be placed, and whether it can be placed on
slanted tiles.

SurfaceDrillPlacement — Used by Surface Drill. Tells the drill
if it’s being placed on minerals or fuel.
RotatableBuildingPlacment — Also select a fixed orientation
when placing.

SpacedBuildingPlacement — Cannot be placed next to a building
with the same original blueprint.

RotatableTilePlacement — Also select a fixed orientation when
placing.

7. Similarly to attackers, blueprints also need a highlight provider script. The
purpose of highlight providers is explained in section 4.2.9. One of the already
implemented highlight providers should be sufficient. Below is a summary of the
already implemented highlight provider scripts, organized into an inheritance tree.
Abstract classes are in italics.

125

HighlightProvider
AttackerHighlightProvider — Used by attackers, highlights only the
attacker.
OrbiltalLaserHighlightProvider — Used by Orbital Laser.
PlacementHighlightProvider — Used by other highlight providers

as described below.
PlaceAnywhereHighlightProvider — For blueprints that can be
placed anywhere.
TilePlacementHighlightProvider — For blueprints that are placed

on tiles.
BuildingAffectingHighlightProvider — For buildings that

affect other buildings in some way.
AmplifierHighlightProvider — Used by Amplifier.
RadarHighlightProvider — Used by Radar.

TargetingHighlightProvider — For blueprints that have a targeting and
want to display their range.

RadiusHighlightProvider — For blueprints that can target anything
in a circle centered on their position.

TileHighlightProvider — Used by tiles. Delegates work to the highlight
provider of the building placed on the tile.
TowerHighlightProvider — Used by towers, displays their range.

Most highlight provider scripts only show the highlights akin to what is in
range of a tower, or the affected radius or objects. However, when placing a
blueprint, we also highlight in blue the regions where the blueprint can be placed.
For this, the highlight providers have reference to another highlight provider,
whose job is to show the valid placement positions. The main highlight provider
then combines highlights from itself and from the placement highlight provider.

We can’t attach two highlight providers to the root game object, because that
would make it ambiguous for the HighlightController which one to use. So, to
add the placement highlight provider, create a new empty game object under the
root object, and attach the script to it.

8. Finally, every blueprint should have some visuals or a visual effect when
placed. For those, create a new empty game object under the root object. Any
game objects providing the visuals should go under this game object. Then assign
this game object to the field Visuals of the Blueprinted script. This ensures that
the visuals are disabled until the blueprint is placed.

9. That’s everything that every blueprinted object must have. However, we’d
also like to mention, the purpose of the field Rotate Back of the script Building.
When a building gets placed on a slanted tile, all game objects assigned to this
field are rotated back against the slant so that their up direction faces up. This is
important for example for targeting colliders, so they aren’t misaligned.

5.2.3 Ability Behavior Script Example
In this section we’ll explain the implementation of the ability Meteor. The

source code is for reference shown as code snippet 2, but we’ve omitted the
usings and namespace definition to save space. We can see that it’s derived from

126

TargetedAbility, which just holds a reference to a Targeting script and keeps
its range up-to-date.

Code snippet 2 Meteor behavior script implementation.

public class Meteor : TargetedAbility
{

public int delayLeft;
bool waveEnded_;

protected override void OnPlaced()
{

WaveController.ON_WAVE_FINISHED.RegisterReaction(OnWaveFinished, 100);
}

protected void OnDestroy()
{

if (Placed)
WaveController.ON_WAVE_FINISHED.UnregisterReaction(OnWaveFinished);

}

protected override void FixedUpdate()
{

base.FixedUpdate();

if (!Placed)
{

delayLeft = currentBlueprint.delay;
return;

}

if (delayLeft == 0 && !waveEnded_)
Explode();

delayLeft--;
}

void Explode()
{

foreach (var a in targeting.GetValidTargets())
a.TryHit(new Damage(currentBlueprint.damage,

currentBlueprint.damageType, this), out _);
Destroy(gameObject, 3f);

}

void OnWaveFinished()
{

waveEnded_ = true;
Destroy(gameObject, 3f);

}
}

Meteor ’s description reads: “Impacts the ground after 0.8 seconds, dealing
damage to all attackers within radius.” We’ll start with the method Explode
which implements what happens when the meteor impacts the ground. In it, we
simply call TryHit on every attacker in range of our targeting. We provide the

127

method with a Damage struct, which contains the damage amount, damage type,
and source of the damage. Then we destroy the blueprinted object after 3 seconds.
We don’t destroy it immediately, because the meteor creates a particle effect when
it explodes, and we want to let it play out.

Now we just need to call Explode after the delay, after its placed. To do this,
we create a variable delayLeft. The method FixedUpdate gets called on every
tick. While the ability is not placed, we set the delay to the value specified in the
blueprint, so that it is up-to-date when the ability gets placed. Notice, that we
obtain this value through currentBlueprint, which is a snapshot of the blueprint
with modifiers from other objects applied. When the ability is placed, delayLeft
gets decremented every tick, and once it reaches 0, the meteor explodes.

However, it is possible to place a meteor right before a wave ends, and then
immediately start a new wave, so it damages attackers in the new wave. To
prevent this, we register a reaction to the ON_WAVE_FINISHED event, to let us
know when a wave ends. When that happens, we stop the meteor from exploding,
and also destroy it. It is important to unregister the reaction when the game
object gets destroyed, but only if it was registered in the first place.

5.2.4 Tower Behavior Script Example
Next, we’ll explain the implementation of the tower Sledgehammer. The source

code is for reference shown as code snippet 3, again without usings and the
namespace definition. The Sledgehammer class extends Tower, so we don’t have
to reimplement the behavior of buildings or keeping the associated Targeting
up-to-date with range changes.

The Sledgehammer ’s description contains the following:

“Cannot be paced on slanted tiles. Can be placed on tiles with
small obstacles. Smashes into the ground, dealing damage to all
attackers in range. ”

The first two sentences only specify how it can be placed. This is easily achieved
by using the SimpleBuildingPlacement script, and configuring its settings.

The third sentence describes its behavior when placed, which is implemented
by the Sledgehammer script. The first thing we might notice is that the script men-
tions shooting a lot, even though the Sledgehammer doesn’t shoot any projectiles.
This is just for consistency with other towers.

In the script settings, we provide an event that gets invoked when the tower
“shoots”. It is used by scripts which take care of the tower’s visuals. We also have
a parameter called shotDelay, which we’ll get to later.

128

Code snippet 3 Sledgehammer behavior script implementation.

public class Sledgehammer : Tower
{

[Header("Settings")]
[SerializeField] UnityEvent onShoot;
[SerializeField] int shotDelay;
[Header("Runtime variables")]
[SerializeField] int shotTimer;
[SerializeField] int shotDelayTimer;

protected override void FixedUpdate()
{

base.FixedUpdate();
if (!Placed)

return;

shotTimer--;
shotDelayTimer--;

if (shotTimer == 1)
SoundController.PlaySound(SoundController.Sound.ShootProjectile,

0.75f, 0.5f, 0.2f, transform.position);

if (shotTimer <= 0 && targeting.GetValidTargets().Any())
StartShot();

if (shotDelayTimer == 0)
Shoot();

}

void StartShot()
{

shotDelayTimer = shotDelay;
shotTimer = currentBlueprint.interval;
onShoot.Invoke();

}

void Shoot()
{

foreach (var target in targeting.GetValidTargets())
if (target.TryHit(new(currentBlueprint.damage,

currentBlueprint.damageType, this), out var dmg))
damageDealt += dmg;

SoundController.PlaySound(SoundController.Sound.ImpactHuge,
1, 1, 0.2f, transform.position);

}
}

Overall, the behavior of this tower is very simple, and it’s all implemented in
the FixedUpdate method: If the tower isn’t placed yet, it does nothing. If the
tower is ready, and it has any target in its range, it “shoots” and resets its delay
to the statistic Interval specified by its blueprint. This delay counts down, and
once it reaches zero, the tower can “shoot” again.

129

However, when the sledgehammer slams the ground the instant an attacker
enters its range, it will only ever hit the first attacker in a group. So we add a
small delay controlled by the shotDelay setting. Furthermore, the animation of
the Sledgehammer slamming the ground takes a fraction of a second, so now the
function aligns better with the animation. This delay is implemented by calling
StartShoot when the tower wants to shoot, but the method only sets the delay
timer to the selected delay, and only after the delay timer counts down to 0 does
the tower actually Shoot.

The method Shoot deals damage to all attackers in range, and it adds the
damage dealt to the variable damageDealt. This variable is defined in the Tower
class, and it is used to display how much damage has a tower dealt in total. Finally,
the method plays a sound using the SoundContoller. In the FixedUpdate, we
also make a click sound one tick before the tower is ready to shoot again, to mimic
a latch in the tower’s mechanism, to convey that the tower is ready.

5.2.5 Description Formatting Tags
In this section, we summarize the formatting tags that can be used in descrip-

tions of attackers and blueprints. The table 5.1 contains tags that can be used by
both attackers and blueprints, table 5.2 contains tags specific to attackers, and
table 5.3 contains tags to be used by blueprints.

In general, tags which contain the # character become icons. If you prefix a
tag specific to attackers or blueprints with $, it turns into the tag name followed
by its value, instead of just the value. For example, [$RNG] turns into “Range
<sprite=9>3.4” when used for a blueprint with range 3.4. If text enclosed by
square brackets is not a valid tag, it is left in the description as is, it just becomes
yellow.

Tag Description
[BRK] Line break with 150% line spacing.
[#FUE] Fuel icon.
[#MAT] Materials icon.
[#ENE] Energy icon.
[#HUL] Hull icon.
[#RNG] Range icon.
[#DMG] Damage icon.
[#INT] Interval icon.
[#DUR] Duration icon.
[#HP] HP icon.
[#RAD] Radius icon.
[#+] Production “+” icon.
[#DMT-HPL] HP loss damage type icon.
[#DMT-PHY] Physical damage type icon.
[#DMT-ENE] Energy damage type icon.
[#DMT-EXP] Explosive damage type icon.

Table 5.1 Universal description formatting tags.

130

Tag Name Notes
[SIZ] Size
[SPD] Speed
[HP] Health Current HP.
[MHP] Health Maximum HP as specified by attacker stats.
[HP/M] Health “<current HP> / <maximum HP>”.

Table 5.2 Attacker description formatting tags.

Tag Name Notes
[NAM] Name The name of the blueprint.
[RNG] Range
[DMG] Damage
[DTL] Damage type
[DTI] Damage type Icons only.
[INT] Interval
[DPS] Damage/s Calculated from damage and interval.
[RAD] Radius
[DEL] Delay
[DUR] Duration Either in ticks or waves, whichever is set.
[PRO] Production Fuel, material and energy production.
[SCD] Starting cooldown
[CD] Cooldown
[+CD] Cooldown suffix “/ <cooldown> waves” if cooldown > 0.
[FUE] Fuel production
[MAT] Material production
[ENE] Energy production

Table 5.3 Blueprint description formatting tags.

5.3 Terrain Types
In this section, we explain how to add a new terrain type to the game. Terrain

types are automatically loaded from the asset folder StreamingAssets/TerrainTypes.
Each terrain type has to be a file with the .txt extension. The terrain type a
world should use is set in the WorldSettings script in the field Terrain Type.
Currently, it is set to the terrain type Test. To automatically select different
terrain types for different levels, the LevelSetter script needs to be modified to
implement this behavior. LevelSetter is the script that automatically sets up
world settings for each level, as described in section 4.3.4.

In the rest of this section we describe the structure of the terrain type file
format. To understand the properties it contains, we recommend first reading
sections 3.4 and 3.5.

131

5.3.1 General Syntax
The terrain type files use custom syntax that was designed to encode structured

information, but is human-readable and human-writable.

Whitespace and Comments
Line breaks often matter, but otherwise all strings of whitespace are equivalent.
All indentation is purely for readability purposes. One line comments are created
using the # character, meaning that it and all characters following it are treated
as whitespace, until the end of the line. The % character is used to create multiline
comments. Everything between two % characters is treated as whitespace.

Overall Structure
he file is composed of several top-level properties. Each property consists of a
name, followed by its value. The properties can be defined in any order, but we
place them in a specific order to improve readability. The file contains several
one-line properties, and three block properties:

display_name ...
free_surfaces ...
blocked_surfaces ...
free_edges ...
blocked_edges ...
max_height ...

modules { ... }
obstacles { ... }
scatterer { ... }

We will explain the one-line properties in the following subsection, and each
block property will be explained in its own subsection after that. We would also
like to note that string values are not enclosed in quotation marks, and they
cannot contain whitespace.

5.3.2 One-Line Top Level Properties
display_name <name>
The name by which this terrain type is identified.
name: A string.

free_surfaces <keys>
Defines which surface types used by this terrain type’s modules are free. Each
surface type is represented by a single uppercase letter. Obstacles and buildings
can be placed on free surfaces, and paths can go over them.
keys: A string composed of uppercase letters. Each letter is one surface type.

blocked_surfaces <keys>
optional
Defines which surface types used by this terrain type’s modules are blocked. Each
surface type is represented by a single uppercase letter. Obstacles and buildings

132

cannot be placed on blocked surfaces, and paths cannot go over them.
keys: A string composed of uppercase letters. Each letter is one surface type.
Default value: none.

free_edges <keys>
Defines which edge types used by this terrain type’s modules are free. Each edge
type is represented by a single uppercase letter. Paths can go through free edges.
keys: A string composed of uppercase letters. Each letter is one edge type.

blocked_edges <keys>
optional
Defines which edge types used by this terrain type’s modules are blocked. Each
edge type is represented by a single uppercase letter. Paths cannot go through
blocked edges.
keys: A string composed of uppercase letters. Each letter is one edge type.
Default value: none.

max_height <value>
Maximum terrain height level. The minimum height level is 0, so the total number
of height levels is value + 1.
value: A non-negative integer.

5.3.3 Modules
The modules property defines the list of terrain modules to be used for terrain

generation. Each module is denoted by a * character followed by the module
name and a block containing its properties.

modules {
* <ModuleName> {

weight ...
variants ...
height_offset ...
collision ...
shape { ... }
heights ...

}
...

}

weight <value>
How likely is this module to be selected when collapsing a slot.
value: A positive floating-point number.

variants <flags>
optional
Which symmetric variants of this module can the terrain generator use.
flags: 0, 2 or 4 to denote the number of rotational symmetries, and optionally
f or F to denote reflection. For example, the code f4 means this module can be

133

freely flipped and rotated.
Default value: 0.

height_offset <value>
optional
Determines the height offset of the module mesh. Positive values mean the mesh
is placed higher than the module’s height level, negative values mean lower.
value: A floating-point number.
Default value: 0.

collision <path>
The collision mesh of the module.
path: The path to the mesh, relative to the asset folder Models/Resources. Must
not contain file extension.

shape
The shape of this module. Basically, the edge and corner constraints this module
imposes on adjacent slots, as shown in figure 5.1. The values are placed in a
square to visually convey the direction they are tied to, however, they would still
be parsed correctly even when placed on one line.

shape {
<surface><height><slant> <edge> <surface><height><slant>

<edge> <edge>
<surface><height><slant> <edge> <surface><height><slant>

}

surface: Uppercase letter representing a surface type.
height: A digit representing the height level, relative to the module’s lowest
height level.
slant: Direction of the tile slant — ˆ, v, <, > for north, south, west, east, or x for
no slant.
edge: Uppercase letter representing an edge type.

heights <digits>
optional
Defines the height levels this module can be at.
digits: A sequence of digits, each representing one valid height.
Default value: All heights from 0 to max_height.

134

Example Module
This is the definition of the module shown in figure 5.1.

* CornerCliffSlantUp {
weight 32
variants f4
collision Terrain/CornerSlantUp
height_offset 1
shape {

D1x X D1v
X O

D0x O D0x
}

}

(a) The 3D geometry of the module.

height: 3
slant: none

surface: default

height: 2
slant: none

surface: default

height: 2
slant: none

surface: default

height: 2 to 3
slant: south

surface: default
edge: cliff

edge: cliff

edge: flat

edge: flat

(b) A view from above with the constraints.

Figure 5.1 An example module and its constraints (copy).

5.3.4 Obstacles
The obstacles property contains obstacle definitions and properties that

determine their placement, as described in section 3.5. The block contains one
named property phases, and the individual obstacle definitions. Each obstacle is
denoted by a * character, followed by its name and block with its properties.

obstacles {
phases {

<Phase1>
<Phase2>
...

}

* <ObstacleName> {
type ...
min ...
max ...
base_probability ...
valid_surfaces ...
on_slants ...
affinities ...

}
...

}

135

phases
Define which obstacles are placed in which phase. Each line represents one phase,
and it consists of the names of the obstacles to be place, separated by whitespace:
<Obstacle1> <Obstacle2>

type <type>
Defines the obstacle type — one of large, small, small fuel-rich and small
mineral-rich.
type: One of strings: l, large, s, small, f, fuel, m or minerals.

min <value>
optional
Minimum number of tiles with this obstacle.
value: A non-negative integer, less than or equal to max.
Default value: 0.

max <value>
optional
Maximum number of tiles with this obstacle.
value: A non-negative integer, more than or equal to max.
Default value: no limit.

base_probability <value>
Base probability to place this obstacle for each tile.
value: A floating-point number.

valid_surfaces <keys>
optional
The surface types this obstacle can be placed on.
keys: A string composed of uppercase letters. Each letter is one surface type.
Default value: all surfaces.

on_slants <bool>
optional
Determines whether this obstacle can be placed on a slanted tile.
bool: true or false.
Default value: true.

affinities <entry1> <entry2> ...
The affinity for each layer. Affinity greater than zero means the probability to
place the obstacle increases with proximity to obstacle placed in the given layer.
Analogously, negative affinity decreases the probability.
Each entry is a floating-point number, and is assumed to be 0 for layers for which
it wasn’t specified.

136

Obstacle Definition Example

* Minerals {
type m
min 6
max 8
base_probability 0.3
on_slants false
affinities -1.5 0.3

}

5.3.5 Scatterer
The scatterer property defines how obstacle models are placed on the gen-

erated terrain, as described in section 3.5.3. It is a list of the model placement
definitions, each denoted by a * character followed by a name and a block con-
taining its properties.

scatterer {
* <ModelName> {

prefab ...
tries_per_tile ...
placement_radius ...
persistent_radius ...
size_gain ...
radius_gain ...
angle_spread ...
value_threshold ...
value { ... }

}
}

prefab <path>
The prefab to be instantiated.
path: The path to the prefab, relative to the asset folder Prefabs/Resources. Must
not contain file extension.

tries_per_tile <value>
Number of attempts to place the model per tile.
value: A positive integer.

placement_radius <value>
The base radius to check for collision with already placed models.
value: A non-negative floating-point number.

persistent_radius <value>
The base radius of the collision the model will have once placed, used for collision
checks for models placed after it.
value: A non-negative floating-point number.

137

size_gain <value>
The proportion at which the scale of the placed model increases or decreases
based on the noise expression value at the placement point. For example with
size_gain 1, a model placed at point with noise expression value 1 will have
scale 2, and at point with value -2, it will have scale 1/3.
value: A floating-point number.

radius_gain <value>
The proportion at which the scale of the model radius increases or decreases
based on the noise expression value at the placement point. For example with
redius_gain -1, a model placed at point with noise expression value 1 will have
its placement_radius and persistent_radius halved.
value: A floating-point number.

angle_spread <value>
By how big of an angle can the placed model be randomly tilted.
value: A non-negative floating-point number representing the angle in degrees.

value_threshold <value>
The model cannot be placed at points with noise expression value less than the
threshold.
value: A floating-point number.

value <noise_expression_nodes>
The noise expression that determines the value for this model at any given point.
The expression is the sum of the expressions provided as the argument.

noise_expression_nodes
A block with one or more noise_expression_node entries, separated by whites-
pace (including line breaks): { <node1> <node2> ... }.

noise_expression_node
One of <const>, <sum>, <mult>, <clamp>, <path>, <path>, <obstacle>,
<height>, or <fractal_noise>.

const <value>
Has a constant value at every point.
value: A floating-point number.

sum <noise_expression_nodes>
Returns the sum of the subexpressions.

mult <multiplier> <noise_expression_nodes>
Returns the sum of the subexpressions multiplied by the multiplier.
multiplier: A floating-point number.

138

clamp <min> <max> <noise_expression_nodes>
Returns the sum of the subexpressions, but clamped to be between min and max.
min: A floating-point number.
max: A floating-point number.

path <in> <out>
Returns the signed distance function to the tiles containing a path. The parameters
in and out specify the sign and magnitude of the value inside and outside the
tiles with path.
in: A floating-point number.
out: A floating-point number.

obstacle <ObstacleName> <in> <out>
Returns the signed distance function to the tiles containing the specified obstacle.
The parameters in and out specify the sign and magnitude of the value inside
and outside the tiles with the obstacle.
ObstacleName: Name of the obstacle.
in: A floating-point number.
out: A floating-point number.

height
Returns the terrain height level at the given point, including fractional values on
slopes.

fractal_noise <properties>
Returns a value generated by summing several layers of Perlin noise.
properties: A block with the following named properties:

fractal_noise {
octaves ...
bias ...
base_amplitude ...
amplitude_mult ...
base_frequency ...
frequency_mult ...

}

octaves <value>
The number of noise layers.
value: A positive integer.

bias <value>
A constant value added to each point.
value: A floating-point number.

base_amplitude <value>
The amplitude of the first noise layer. For example, noise with amplitude 2
produces values between -2 and 2.
value: A floating-point number.

139

amplitude_mult <value>
Each noise layer’s amplitude is the amplitude of the previous layer multiplied by
this value.
value: A positive floating-point number.

base_frequency <value>
The frequency of the first noise layer, in other words, the reciprocal of its scale.
value: A floating-point number.

frequency_mult <value>
Each noise layer’s frequency is the frequency of the previous layer multiplied by
this value.
value: A positive floating-point number.

Obstacle Model Placement Example

* Minerals {
prefab Terrain/obstacles/Minerals
tries_per_tile 50
placement_radius 0.05
persistent_radius 0.15
size_gain 2
radius_gain -0.5
angle_spread 25
value_threshold 0
value {

clamp -3 0.7 {
obstacle Minerals 1 -1
fractal_noise {

octaves 2
bias 0
base_amplitude 0.3
amplitude_mult 0.777
base_frequency 0.61
frequency_mult 2.137

}
path -3 0

}
}

}

140

6 User Documentation
The demo version of our game is called “Project Nitrogen”, and it is available

in the attachments as the folder Build. This is a build for a personal computer
with the Windows operating system. In this chapter, we will give instructions on
how to run the game, how to navigate its menus, and we provide some reference
tables with information the player might find useful.

6.1 Instructions
The attachment folder Build contains a few application binaries, a dynamically

linked library and directories with the game’s assets. To run the game, simply
run the ProjectNitrogen.exe binary.

The game will show a “Made with Unity” splash screen and take you to the
main menu. The main menu contains three large buttons: “Start”, “Custom Run”
and “Exit”. To start a new run, click the “Start” button. The “Custom Run”
button will take you to the run settings screen, and the “Exit” button will exit
the game.

The run settings screen lets you set the seed of the run, and it lets you choose
to select the starting blueprints at the start of the run. To start the run with these
settings, press the “Start” button. The “Replay Tutorial” button will disregard
these settings, and start a tutorial run instead. To return to the main menu, press
the “Back” button.

The first run started from the main menu will include the in-game tutorial,
which explains how to play the game in an interactive manner. It explains the
goals of the game and the game’s controls.

6.2 Reference Tables
In this section, we provide some tables the players might find useful. The

in-game tutorial explains how to control the game, but table 6.1 contains all
controls and hotkeys the player can use during battle for reference. Some hotkeys
are not mentioned in the game, but they are not necessary to play it.

We also provide reference tables with all the attackers and blueprints the game
contains. Attackers are in tables 6.2 and 6.3. Blueprints are separated by type:

• Economic buildings — table 6.4.

• Special buildings — table 6.5.

• Tower — tables 6.6 and 6.7.

• Abilities — table 6.8.

141

Button Actions

Left click

Press a user interface button.
Select a tile, building or attacker in the world, or a
blueprint from the blueprint menu.
Deselect currently selected object (except for a blueprint)
and hide the info panel by clicking on empty space.

Right click Deselect currently selected object and hide the info panel.
Right click
drag Move the camera.

Scrolling Zoom the camera in or out.
Scroll wheel
drag Rotate the camera to the left or right.

Escape Deselect currently selected object and hide the info panel.
Space Start the next wave.
1 to 9 Select the 1st to 9th blueprint from the blueprint menu.
R Rotate the currently selected blueprint, if possible.
W / S / A / D Move the camera forward / back / left / right.
T / G Zoom the camera in / out.
Q / E Rotate the camera left / right.

Tab Change the targeting priority of the selected tower to the
next.

Ctrl + Tab Change the targeting priority of the selected tower to the
previous.

Delete Delete the selected building.
M Mute or unmute the game sounds.

Table 6.1 The controls and hotkeys the player can use during a battle.

142

Icon Name Speed HP Description

Red Slime 1 5

Blue Slime 1.4 10 When killed, spawns a Red Slime.

Green Slime 1.8 15 When killed, spawns a Blue Slime.

Yellow Slime 3.2 20 When killed, spawns a Green Slime.

Pink Slime 3.5 25 When killed, spawns a Yellow Slime.

Black Slime 1.8 30 Immune to Explosive damage.
When killed, spawns two Pink Slimes.

Lead Slime 1 35 Immune to Physical damage.
When killed, spawns two Black Slimes.

Skeleton 1.6 20

Yellow Skeleton 1.6 60

Black Skeleton 1.6 180

Armored Skele-
ton 0.8 40

Has shields that block 1 damage from each hit.
Once HP drops below half of max HP, loses
the shields and doubles its speed.

Yellow Armored
Skeleton 0.8 120

Has shields that block 3 damage from each hit.
Once HP drops below half of max HP, loses
the shields and doubles its speed.

Black Armored
Skeleton 0.8 360

Has shields that block 5 damage from each hit.
Once HP drops below half of max HP, loses
the shields and doubles its speed.

Big Skull 1.2 10 Large.
When killed, spawns 3 Skeletons.

Big Yellow Skull 1.2 30 Large.
When killed, spawns 3 Yellow Skeletons.

Big black Skull 1.2 90 Large.
When killed, spawns 3 Black Skeletons.

Coffin 0.4 80
Large.
Spawns an Armored Skeleton every 4s.
When killed, spawns 4 Skeletons.

Yellow Coffin 0.4 240
Large.
Spawns a Yellow Armored Skeleton every 5s.
When killed, spawns 4 Yellow Skeletons.

Black Coffin 0.4 720
Large.
Spawns a Black Armored Skeleton every 6s.
When killed, spawns 4 Black Skeletons.

Space Jellyfish 0.8 8 Takes 40% less Physical damage.

Blue Space Jelly-
fish 0.8 40 Takes 50% less Physical damage.

Green Space Jel-
lyfish 0.8 200 Takes 66% less Physical damage.

Table 6.2 The attacker types in the game (part 1).

143

Icon Name Speed HP Description

Fire Spirit 3 6 Takes 50% less Energy damage.

Forest Spirit 2 15 Takes 66% less Explosive damage.

Protector 1.4 100
Large.
When killed, leaves behind a protective bubble
1.3 tiles in radius that blocks all projectiles
from outside for 5s.

Druid 1 120
Large.
Every 4s heals each attacker in a 1.6 tile radius
by 15 HP.

Table 6.3 The attacker types in the game (part 2).

Icon Name Rarity Description

Dust
Refinery Common

Cost: 5 materials
Produces 5 materials after every wave.
Cannot be placed on slants and adjacent to an-
other Dust Refinery.
Increases cost by 5 materials when built.

Energy
Harvester Rare

Cost: 15 materials
Whenever you gain Materials, produces 40% as
much Energy.

Fuel
Extractor Rare

Cost: 30 materials
Cooldown 1
Must be built on tiles rich in fuel.
Produces 10 fuel after every wave.

Matter
Replicator Rare

Cost: 30 materials
Cooldown 2
Produces 5 materials after every wave, then in-
creases its production by 5 materials.

Solar Panel Common

Cost: 5 materials
Cannot be paced on slanted tiles.
The higher it’s placed, the more energy it pro-
duces after every wave: 2 for every level of
height.

Surface
Drill Starter

Cost: 10 materials
Must be built on tiles rich in minerals or fuel.
Produces 5 materials or 2 fuel after every wave.

Table 6.4 The economic building blueprints in the game.

144

Icon Name Rarity Description

Amplifier Legendary
Cost: 40 materials
Cooldown 2
Range 2.3
Increases damage of all towers in range by 3.

Frostbite
Frontier Legendary

Cost: 25 materials
Range 2.1
Freezes attackers in range, making them move
25% slower and take 50% more Energy damage.

Hub Special
Produces 10 fuel, 10 materials and 10 energy
after every wave.
When an enemy reaches this building, you lose
Hull, up to 5 per wave. Protect at all costs!

Radar Rare Cost: 10 materials
Increases the range of adjacent buildings by 30%.

Table 6.5 The special building blueprints in the game.

Icon Name Rarity Description

Budget
Sentry Starter

Cost: 10 materials
Range 2.9
Damage 2 (physical)
Interval 0.8s
Shoots projectiles at attackers in line of sight.

Double
Sentry Common

Cost: 15 materials
Range 2.4
Damage 2 (physical)
Interval 0.4s
Shoots projectiles at attackers in line of sight.

Galvanizer Rare

Cost: 10 energy 40 materials
Range 3.7
Damage 5 (physical)
Interval 0.5s
Shoots projectiles at attackers in line of sight.
When idle for 1.8s, charges up the next shot,
making it deal additional 10 Energy damage
and produce 5 energy when it hits an attacker.

Gatling
Gun Common

Cost: 40 materials
Range 3.3
Damage 2 (physical)
Interval 0.15s
Needs to shoot continuously for 5s to spin up to
maximum fire rate.

Table 6.6 The tower blueprints in the game (part 1).

145

Icon Name Rarity Description

Mortar Starter

Cost: 25 materials
Range 3.7
Damage 4 (explosive)
Interval 2s
Cannot be paced on slanted tiles.
Shoots a cannonball over obstacles, impacting
the ground after 1s and dealing damage to at-
tackers within 1.2 tiles.

Predator Legendary

Cost: 50 materials
Range 3.4
Damage 10 (physical)
Interval 1s
Shoots projectiles at attackers in line of sight.
Increases its damage by 1 with every kill.

Sledge-
hammer Common

Cost: 45 materials
Range 1.6
Damage 20 (explosive)
Interval 2.5s
Cannot be paced on slanted tiles.
Can be placed on tiles with small obstacles.
Smashes into the ground, dealing damage to all
attackers in range.

Sniper Common

Cost: 20 materials
Range 11.1
Damage 10 (physical)
Interval 3.3s
Shoots projectiles at attackers in line of sight.
The further away an attacker is, the more dam-
age it takes, up to 200%.

Static
Sparker Common

Cost: 15 materials
Range 3.3
Damage 4 (energy)
Interval 1.9s
Hits its target, and then up to 3 more within
1.8 tiles from it, dealing half damage to each of
them.

Ultra-Ray Rare

Cost: 30 materials
Range 8.1
Damage 1 (energy)
Interval 0.15s
Press [R] to rotate.
Can be placed on tiles with small obstacles.
Fires a continuous beam in a fixed cardinal di-
rection, hitting up to 5 attackers at once.

Table 6.7 The tower blueprints in the game (part 2).

146

Icon Name Rarity Description

Catalyst Rare

Cost: 20 energy
Cooldown 1
Radius 0.8
Afflicts attackers within radius, making them
take 2x as much damage and produce 1 Material
when killed.

Grenade Starter
Cost: 10 energy
Radius 0.75
Damage 4 (explosive)
Deals damage to all attackers within radius.

Holo-
Siphon Rare

Cost: 10 energy
Cooldown 1
Range 2.4
Damage 3 (HP loss)
Interval 1.5s
Can be placed on tiles with small obstacles.
When placed, instantly deals damage to all at-
tackers within range.
Conjures a tower for 3 waves. Attacker targeted
by it must stay within range for 1.2s to take
damage.

Lightning
Storm Common

Cost: 15 energy
Radius 2.5
Damage 25 (energy)
Interval 1s
Strikes 6 times, each time hitting a random at-
tacker within radius.

Meteor Common

Cost: 25 energy
Radius 1.4
Damage 16 (physical and explosive)
Impacts the ground after 0.8s, dealing damage
to all attackers within radius.

Orbital
Laser Rare

Cost: 30 energy
Damage 30 (energy)
Duration 3s
Press [R] to rotate.
Sweeps across the world in a cardinal direction,
dealing damage to each attacker in its path.

Streamline Legendary

Cost: 10 energy 10 materials
Cooldown 1
Improves other blueprints for the rest of the
battle:
Makes them 2 materials cheaper.
Increases Range and Radius by 5%.
Decreases Interval by 10%, to a minimum of
0.25s.

Table 6.8 The ability blueprints in the game.

147

7 Playtesting
In this chapter, we’ll describe how we playtested the demo version of our game,

and what we’ve learned from the playtest. Of course, we playtested the game’s
features during development. However, letting outside players test the game lets
us test it on different hardware, and it is absolutely necessary to determine what’s
unintuitive about the game and to balance its difficulty.

7.1 Playtesting Procedure
For the purposes of playtesting, the game was shared with the author’s friends.

We started with only few playtesters, which got access to the version we call 0.2.0.
From their feedback, we mainly fixed bugs they discovered, and changed some
game controls. We also tweaked the overall game difficulty by changing the wave
generation parameters.

The game was gradually shared with more players, and the changes became
smaller and smaller. It became apparent that the game would benefit from some
cheap and efficient towers, so the Double Sentry was created, and the Static
Sparker was changed, both to fill this role. We also implemented a few small
changes suggested by the playtesters. For example, the amount of fuel required
scales with the level.

Later in the playtesting, we mostly changed the statistics of individual towers
or attackers. Some changes had to be made to prevent degenerate situations, for
example it was possible to make abilities free using the ability Streamline. Most
changes were just to bring the blueprint to a power level that was adequate, or to
make them useful in the situation they were designed to be used in.

Throughout the playtesting, we improved the demo version the best we could,
without implementing new complex or game-changing features. The final version
available to the playtesters and included in the attachments of this thesis is
version 0.2.14, indicating that it has gone through 14 revisions. In the remainder
of this chapter, we’ll discuss more of the feedback we’ve gathered throughout the
playtesting.

7.2 Takeaways
Overall, all playtesters found the game enjoyable. Some players only played

one run, but most played several runs, trying to explore what the game has to
offer and to reach higher levels. Several players spent more than 4 hours playing
the game. Of course, their enjoyment was amplified by them being friends with
the author and discussing the game together.

7.2.1 Tutorial
The game’s mechanics were understood well thanks to the in-game tutorial. It

explains the game’s controls and mechanics well, so they were able to enjoy the
game without any further instructions. However, there is always something to

148

improve. For some players with experience with tower defense games, it felt boring
and unnecessary. Some players were initially confused by the game controls and
parts of the user interface. These issues were addressed in the updates during the
playtesting period. Also, the players generally forgot some information mentioned
by the tutorial, because it wasn’t relevant to them, and then they had to rediscover
it on their own or by asking.

7.2.2 Common Problems
Even after the small updates, the game still has many issues. In this section

we’ll discuss the most common issues with the game, based on feedback from
the playtesters. In the next subsection we’ll talk about some additional design
decisions we should think about before continuing development.

Attacker Preview Information
The first time a player encounters a new attacker type, the game displays its
details in the info panel. However, the playtesters still most often complained
about not being able to read information about the incoming attackers. They
can see the incoming attacker’s icon in the wave preview, but that isn’t helpful
unless they remember the attacker’s stats and abilities. The fix is simple in theory:
Make it possible to display the attacker information by hovering over their icons
in the wave preview.

The players also complained that it is hard to select fast moving attackers.
We expected this issue, and we plan to solve it by letting them pause the game.

Attacker Appearance
Some players mentioned they like the game’s simple low-poly aesthetic. However,
the attackers stood out as unfinished. The models are really basic, and they aren’t
animated. They don’t even turn when they change direction of travel. This is an
issue we can solve as we continue to work on the game.

Info Panel is Obtrusive
Few playtesters mentioned the info panel is sometimes very obtrusive. This issue
has no obvious solution. If we make it substantially smaller, the text on it might
be too small compared to other UI elements. It could be a lot smaller before
becoming unreadable, so there should be a viable compromise. However, we feel
like there should be a way to make it less obtrusive without making it a lot smaller.
A solution is yet to be determined.

Camera Rotation and Zoom
Some players complained that the camera rotating in 90 degree increments is too
limiting. On the other hand, some felt the camera rotation was unnecessary. We
could easily let the camera rotate smoothly by any angle, however that would
ruin the isometric look we try to imitate. This will probably be solved by adding
a setting that lets you change between these two modes.

Furthermore, some players didn’t like how the camera pitch angle changed
when zooming in and out. Sometimes they wanted the camera to zoom in but
keep the pitch angle the same, and sometimes they wanted to zoom out, but keep

149

a top-down view. We will likely solve this by separating the zoom from the camera
pitch angle controls.

Fast-Forward Option
As expected, some players wished to fast-forward more boring parts of the game.
This is a feature we have been planning to add, so this at least confirms that it
won’t be useless.

Campaign Progression
Some players expressed that it’s not fun to build their defenses in one level, and
then start over in the next level with little to no change. Also, that the rewards for
winning a level sometimes aren’t very impactful. This problem should be solved
by fleshing out the games’ campaign. We’ll make the levels more distinct from
each other, and the player will have more options to improve their arsenal between
the levels. We also plan to increase the player’s starting material throughout the
campaign. This means they’ll have more options before the first wave.

7.2.3 Further Design Decisions
In this subsection we’ll discuss some observations we made throughout the

playtesting that were not explicitly mentioned by the playtesters.

Fuel Might be Unnecessary
In later levels of the demo version, it is very important to mine fuel in order to
beat them. However, currently it is best to focus on economy and defense, and
only start mining fuel once those are somewhat taken care of. So the fuel doesn’t
add much depth to the strategy.

We might want to change how fuel works to make it create more interesting
decisions. However, it is also possible we will remove the fuel mechanic entirely,
because it adds unnecessary complexity, and we might be able to reach the strategic
depth we desire even without it.

Energy Limit Problems
Currently, abilities are less useful in the later waves of a level than we’d hope.
Their usefulness is further limited by the energy limit. Currently, it doesn’t do
much, but it heavily decreases the effectiveness of strategies that generate a lot of
energy. We will design more abilities that are useful in the late game, but we will
likely also remove the energy limit.

Towers are Too Expensive
In the harder levels, the game is difficult from the first waves, and the player
doesn’t produce many materials, so every material counts. Most of the time, they
can’t afford to buy an expensive tower, except when their economy is so strong
they are almost guaranteed to win the level. This means that cheap towers are
very important and more expensive towers are almost never useful. So, we should
either make towers cheaper, or more likely, improve the player’s economy.

150

Performance Issues
No playtester complained about performance issues, and the game runs well,
however we’ve noticed that the game can stutter a little when a lot of attackers
all die at once. We should keep an eye on stutters like this and remove them by
optimizing the code that causes them.

7.3 Assessment of Design Goals
In section 2.1, we introduced 5 design goals specific for this game. In this

section, we’d like to assess how much does the demo version fulfill these goals,
and what we’ll do in further development to reach them.

7.3.1 Strategic Depth in Every Battle
During the playtesting, it was clear that the player’s strategy changed as they

played more and learned. Players were still able to improve even after playing the
game for several hours. This indicates that even the demo version has a lot of
strategic depth. Many playtesters also explicitly stated that the liked the strategic
aspect of balancing the defense and economy. However, as stated in the previous
section, the fuel mechanic didn’t add much to the game. We feel like the demo
version game provides a lot of strategic depth in every battle, and it will only
improve as we add more distinct levels and more customization.

7.3.2 Strategic Depth in Every Run
Currently, there is not much strategic depth present throughout the run. Once

the player identifies which blueprints are good, they just always pick the most
useful one. This is to be expected, because the game is still missing the two main
features we selected to provide this strategic depth: The progression through the
run is uninteresting, and the player doesn’t have any agency except for picking
blueprints. Furthermore, their arsenal doesn’t scale in a way that makes some
blueprints more powerful in the early game, and others in the late game. Both of
these issues should be solved by fleshing out the campaign.

7.3.3 Make Various Builds Viable
Even though there is a small amount of blueprints, the players were still able

to find three build-defining blueprint combinations. The blueprints were balanced
throughout the playtesting, so that the blueprints involved in the builds are useful
on their own. But when combined, they were significantly more powerful. One
of these combinations is Ultra-Ray and Amplifier, another is Sledgehammer and
Radar. Then there’s Streamline, which is really powerful with any blueprints when
the player knows how to best use it.

As we develop the game further, we’ll add more blueprints. We hope to increase
the number of different builds, and we hope to expand the number of blueprints
which go well together within each build. Currently, a good build consists of
cheap and efficient towers and economic buildings, finished off with a powerful
two-blueprint combination. We want more blueprints of a build to work together,

151

not just one or two with the rest being entirely separate from them. Overall, this
is very promising, but more work needs to be done to reach the full potential of
the blueprint collection mechanic.

7.3.4 Force Exploration
Some players specifically praised the randomized blueprint selection, that they

like how that makes them use a different strategy every time. However, we feel
like there isn’t enough different blueprints and other build customization options
for this to be true. Experienced players figured out that for early levels they need
to find some cheap and efficient towers, and then, they are able to survive long
enough to get exactly what they want almost every time.

This issue can be solved by adding more blueprints and making the synergies
between them span more blueprints. This way it will be more difficult to assemble
a combination that is one of the most powerful combinations in the game, because
the player will need to find more blueprints, and each of them will be more rare.
Since they will almost never get the exact build they wish for, they will have to
work with what they get, forcing them to explore more builds.

7.3.5 Provide a Challenge
The levels in the demo version of the game get gradually harder. So eventually,

a player will reach levels which are adequately challenging. According to the
playtesters, the game also doesn’t feel unfair. This is great, but some players
expressed that the early levels get boring.

So in further development, we should make sure that if a level is easy for
someone, they can get through it as fast as possible. The option to speed up the
game will help with that. We still have to work on the game difficulty progression,
once we flesh out the campaign. Furthermore, we still want to introduce a difficulty
selection system similar to ascension in Slay the Spire.

152

8 Conclusion
In this chapter, we will evaluate how well the objectives outlined in section 1.4

have been met. Following this evaluation, we will summarize the plans for future
development.

8.1 Goal Assessment
1. Design the game’s mechanics and features.

The design of the game is described in chapter 2. We specified the design of
everything that’s in the demo version of the game, and more. However, some
features are planned to be in the final game, but they are yet to be designed in
full detail. These are summarized in section 2.9.

2. Implement all the systems and mechanics described in
paragraphs Battles, Procedural generation and Blueprints.

We successfully implemented a demo version of the game. It includes the all
systems and mechanics the goal refers to, according to the design specification in
chapter 2. The demo is included in the attachments.

3. Include a tutorial to explain the game’s mechanics to
the player.

We implemented a simple in-game tutorial. According to playtesters, it explains
the game’s controls and mechanics well, so they were able to enjoy the game
without any further instructions.

4. Conduct a playtest.

We shared the demo version of our game with several playtesters. Thanks to
this, we fixed some bugs and implemented some improvements. We learned a lot
of useful information that will guide the future development of the game. This is
described in chapter 7.

In conclusion, we reached our goals: we successfully designed the game’s
mechanics and features, implemented core systems, and included an effective
in-game tutorial. Playtesting provided valuable feedback that led to improvements
and will guide future development. Overall, we created a solid foundation for the
game with a clear path forward.

8.2 Plans for Future Development
The playtesting phase helped us confirm many of our design choices and showed

that the game has a lot of potential. However, as mentioned in section 7.2, it

153

also revealed several issues that need to be addressed. Our first steps will be to
implement solutions to these problems.

The feedback from playtesting gives us a clearer vision for the gameplay and
will guide us as we continue working on the game design. We will also work on
adding the remaining game systems and features described in section 2.9 and
include more content. But before doing that, it makes sense to create a story for
the game and refine its setting and art direction.

154

Bibliography
1. Wikipedia contributors. Tower defense — Wikipedia, The Free En-

cyclopedia [online]. 2024. [visited on 2024-05-06]. Available from: https:
//en.wikipedia.org/w/index.php?title=Tower_defense&oldid=
1212378185.

2. Avery, Phillipa; Togelius, Julian; Alistar, Elvis; Leeuwen, Robert.
Computational Intelligence and Tower Defence Games. In: 2011, pp. 1084–
1091. 2011 IEEE Congress of Evolutionary Computation. Available from doi:
10.1109/CEC.2011.5949738.

3. Electronic Arts Inc. Buy plants vs. zombies - PC & mac - EA [online].
[N.d.]. [visited on 2024-05-06]. Available from: https://www.ea.com/games/
plants-vs-zombies/plants-vs-zombies.

4. Bycer, J. Game Design Deep Dive: Role Playing Games. CRC Press, 2023.
isbn 9781000966718.

5. Wikipedia contributors. Rogue (video game) — Wikipedia, The Free
Encyclopedia [online]. 2023. [visited on 2024-05-06]. Available from: https:
//en.wikipedia.org/w/index.php?title=Rogue_(video_game)&oldid=
1191758861.

6. Bycer, J. Game Design Deep Dive: Roguelikes. CRC Press, 2021. isbn
9781000362046.

7. Mega Crit. Mega Crit – Slay the Spire [online]. [N.d.]. [visited on 2024-05-
06]. Available from: https://www.megacrit.com/.

8. Dictionary.com. Build [online]. [N.d.]. [visited on 2024-04-13]. Available
from: https://www.dictionary.com/browse/build.

9. Ironhide Game Studio. Kingdom Rush [online]. [N.d.]. [visited on 2024-
04-16]. Available from: https://www.kingdomrush.com/kingdom-rush.

10. Ninja Kiwi. Bloons TD 6 [online]. [N.d.]. [visited on 2024-04-16]. Available
from: https://ninjakiwi.com/Games/Mobile/Bloons-TD-6.html.

11. Wikipedia contributors. Desktop Tower Defense — Wikipedia, The
Free Encyclopedia [online]. 2024. [visited on 2024-05-06]. Available from:
https://en.wikipedia.org/w/index.php?title=Desktop_Tower_
Defense&oldid=1220758442.

12. Wikipedia contributors. Isometric video game graphics — Wikipedia,
The Free Encyclopedia [online]. 2024. [visited on 2024-05-29]. Available from:
https://en.wikipedia.org/w/index.php?title=Isometric_video_
game_graphics&oldid=1224963052.

13. Shiny Shoe. Monster Train [online]. [N.d.]. [visited on 2024-05-29]. Available
from: https://www.themonstertrain.com/.

14. Unity Technologies. Unity Documentation [online]. [N.d.]. [visited on
2024-04-07]. Available from: https://docs.unity.com.

155

https://en.wikipedia.org/w/index.php?title=Tower_defense&oldid=1212378185
https://en.wikipedia.org/w/index.php?title=Tower_defense&oldid=1212378185
https://en.wikipedia.org/w/index.php?title=Tower_defense&oldid=1212378185
https://doi.org/10.1109/CEC.2011.5949738
https://www.ea.com/games/plants-vs-zombies/plants-vs-zombies
https://www.ea.com/games/plants-vs-zombies/plants-vs-zombies
https://en.wikipedia.org/w/index.php?title=Rogue_(video_game)&oldid=1191758861
https://en.wikipedia.org/w/index.php?title=Rogue_(video_game)&oldid=1191758861
https://en.wikipedia.org/w/index.php?title=Rogue_(video_game)&oldid=1191758861
https://www.megacrit.com/
https://www.dictionary.com/browse/build
https://www.kingdomrush.com/kingdom-rush
https://ninjakiwi.com/Games/Mobile/Bloons-TD-6.html
https://en.wikipedia.org/w/index.php?title=Desktop_Tower_Defense&oldid=1220758442
https://en.wikipedia.org/w/index.php?title=Desktop_Tower_Defense&oldid=1220758442
https://en.wikipedia.org/w/index.php?title=Isometric_video_game_graphics&oldid=1224963052
https://en.wikipedia.org/w/index.php?title=Isometric_video_game_graphics&oldid=1224963052
https://www.themonstertrain.com/
https://docs.unity.com

15. Wikipedia contributors. Maze generation algorithm — Wikipedia, The
Free Encyclopedia [online]. 2024. [visited on 2024-06-04]. Available from:
https://en.wikipedia.org/w/index.php?title=Maze_generation_
algorithm&oldid=1223006272.

16. Boris the Brave. Random Paths via Chiseling [online]. [N.d.]. [visited on
2024-06-04]. Available from: https://www.boristhebrave.com/2018/04/
28/random-paths-via-chiseling/.

17. Boris the Brave. Chiseled Paths Revisited [online]. [N.d.]. [visited on
2024-06-04]. Available from: https://www.boristhebrave.com/2022/03/
20/chiseled-paths-revisited/.

18. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated
Annealing. Science. 1983, vol. 220, no. 4598, pp. 671–680. Available from
doi: 10.1126/science.220.4598.671.

19. Merrell, Paul C. Model synthesis. 2009. PhD thesis. The University of
North Carolina at Chapel Hill. Also available at https://paulmerrell.
org/wp-content/uploads/2021/06/thesis.pdf [visited on 2024-06-01].

20. Gumin, Maxim. WaveFunctionCollapse [online]. [N.d.]. [visited on 2024-06-
01]. Available from: https://github.com/mxgmn/WaveFunctionCollapse.

21. Marian. Infinite procedurally generated city with the Wave Function Collapse
algorithm [online]. [N.d.]. [visited on 2024-06-01]. Available from: https:
//marian42.de/article/wfc/.

22. Wikipedia contributors. Local consistency — Wikipedia, The Free En-
cyclopedia [online]. 2023. [visited on 2024-06-05]. Available from: https:
//en.wikipedia.org/w/index.php?title=Local_consistency&oldid=
1179702336.

23. Stålberg, Oskar. Townscaper [online]. [N.d.]. [visited on 2024-06-02]. Avail-
able from: https://rawfury.com/games/townscaper/?portfolioCats=
30%2C23%2C20%2C25%2C18%2C26%2C28%2C16%2C17%2C11.

24. Wube Software. Factorio [online]. [N.d.]. [visited on 2024-06-08]. Available
from: https://factorio.com/.

25. Earendel; Genhis. Friday Facts #390 - Noise expressions 2.0 [online].
2023. [visited on 2024-06-08]. Available from: https://factorio.com/blog/
post/fff-390.

26. Perlin, Ken. An image synthesizer. In: Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques. Association for
Computing Machinery, 1985, pp. 287–296. SIGGRAPH ’85. isbn 0897911660.
Available from doi: 10.1145/325334.325247.

27. Hind, Daniel; Harvey, Carlo. A neat approach to wave generation in
tower defense games. In: 2022 International Conference on Interactive Media,
Smart Systems and Emerging Technologies (IMET). IEEE, 2022, pp. 1–8.

28. Wolfram. Wolfram Mathematica: Modern Technical Computing [online].
[N.d.]. [visited on 2024-06-18]. Available from: https://www.wolfram.com/
mathematica/.

156

https://en.wikipedia.org/w/index.php?title=Maze_generation_algorithm&oldid=1223006272
https://en.wikipedia.org/w/index.php?title=Maze_generation_algorithm&oldid=1223006272
https://www.boristhebrave.com/2018/04/28/random-paths-via-chiseling/
https://www.boristhebrave.com/2018/04/28/random-paths-via-chiseling/
https://www.boristhebrave.com/2022/03/20/chiseled-paths-revisited/
https://www.boristhebrave.com/2022/03/20/chiseled-paths-revisited/
https://doi.org/10.1126/science.220.4598.671
https://paulmerrell.org/wp-content/uploads/2021/06/thesis.pdf
https://paulmerrell.org/wp-content/uploads/2021/06/thesis.pdf
https://github.com/mxgmn/WaveFunctionCollapse
https://marian42.de/article/wfc/
https://marian42.de/article/wfc/
https://en.wikipedia.org/w/index.php?title=Local_consistency&oldid=1179702336
https://en.wikipedia.org/w/index.php?title=Local_consistency&oldid=1179702336
https://en.wikipedia.org/w/index.php?title=Local_consistency&oldid=1179702336
https://rawfury.com/games/townscaper/?portfolioCats=30%2C23%2C20%2C25%2C18%2C26%2C28%2C16%2C17%2C11
https://rawfury.com/games/townscaper/?portfolioCats=30%2C23%2C20%2C25%2C18%2C26%2C28%2C16%2C17%2C11
https://factorio.com/
https://factorio.com/blog/post/fff-390
https://factorio.com/blog/post/fff-390
https://doi.org/10.1145/325334.325247
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/

29. Johnston, D. Random Number Generators–Principles and Practices: A
Guide for Engineers and Programmers. De Gruyter, Incorporated, 2018. isbn
9781501506260. Available also from: https://books.google.cz/books?
id=yniVDwAAQBAJ.

30. Unity Technologies. Unity - Scripting API: Random [online]. [N.d.].
[visited on 2024-04-07]. Available from: https : / / docs . unity3d . com /
ScriptReference/Random.html.

31. Microsoft. Random Class (System) - Microsoft learn [online]. [N.d.]. [vis-
ited on 2024-04-07]. Available from: https://learn.microsoft.com/en-
us/dotnet/api/system.random.

32. l’Ecuyer, Pierre. Tables of Linear Congruential Generators of Different
Sizes and Good Lattice Structure. Mathematics of Computation. 1999, vol. 68,
no. 225.

33. Finkel, Raphael; Bentley, Jon. Quad Trees: A Data Structure for Retrieval
on Composite Keys. Acta Inf. 1974, vol. 4, pp. 1–9. Available from doi:
10.1007/BF00288933.

34. Williams, Lance. Pyramidal parametrics. In: Proceedings of the 10th Annual
Conference on Computer Graphics and Interactive Techniques. Association
for Computing Machinery, 1983, pp. 1–11. isbn 0897911091.

35. Wikipedia contributors. Observer pattern — Wikipedia, The Free En-
cyclopedia [online]. 2024. [visited on 2024-07-06]. Available from: https:
//en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=
1215840691.

36. mob-sakai. SoftMaskForUGUI [online]. [N.d.]. [visited on 2024-06-24]. Avail-
able from: https://github.com/mob-sakai/SoftMaskForUGUI.

37. .NET Platform contributors. PriorityQueue.cs [online]. [N.d.]. [vis-
ited on 2024-06-24]. Available from: https://github.com/dotnet/runtime/
blob/357525a31801e32250d2a3880e33d82aa95cca7c/src/libraries/Sy
stem.Collections/src/System/Collections/Generic/PriorityQueue.
cs.

38. Z4urce. Editor Init [online]. [N.d.]. [visited on 2024-06-24]. Available from:
https://stackoverflow.com/a/55863444.

39. Stack Overflow community wiki. Hamming Weight Function [online].
[N.d.]. [visited on 2024-06-24]. Available from: https://stackoverflow.
com/a/109025.

40. Open Sans Project contributors. Open Sans Font [online]. [N.d.].
[visited on 2024-06-24]. Available from: https://github.com/googlefonts/
opensans.

157

https://books.google.cz/books?id=yniVDwAAQBAJ
https://books.google.cz/books?id=yniVDwAAQBAJ
https://docs.unity3d.com/ScriptReference/Random.html
https://docs.unity3d.com/ScriptReference/Random.html
https://learn.microsoft.com/en-us/dotnet/api/system.random
https://learn.microsoft.com/en-us/dotnet/api/system.random
https://doi.org/10.1007/BF00288933
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1215840691
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1215840691
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1215840691
https://github.com/mob-sakai/SoftMaskForUGUI
https://github.com/dotnet/runtime/blob/357525a31801e32250d2a3880e33d82aa95cca7c/src/libraries/System.Collections/src/System/Collections/Generic/PriorityQueue.cs
https://github.com/dotnet/runtime/blob/357525a31801e32250d2a3880e33d82aa95cca7c/src/libraries/System.Collections/src/System/Collections/Generic/PriorityQueue.cs
https://github.com/dotnet/runtime/blob/357525a31801e32250d2a3880e33d82aa95cca7c/src/libraries/System.Collections/src/System/Collections/Generic/PriorityQueue.cs
https://github.com/dotnet/runtime/blob/357525a31801e32250d2a3880e33d82aa95cca7c/src/libraries/System.Collections/src/System/Collections/Generic/PriorityQueue.cs
https://stackoverflow.com/a/55863444
https://stackoverflow.com/a/109025
https://stackoverflow.com/a/109025
https://github.com/googlefonts/opensans
https://github.com/googlefonts/opensans

Attachments
The attachments of this thesis are in a .zip archive called attachments.zip.

In it, there are two folders and a readme text file:

• Build — The demo build of the game. Instructions on how to run it can
be found in chapter 6.

• Project — The source unity project. Created in the Unity editor version
2021.3.8f1.

• README.txt — A summary of the attachments and contact information.

158

	Introduction
	Tower Defense
	Roguelike
	Original Vision
	Current Scope and Goals

	Game Design
	Design goals
	Strategic Depth in Every Battle
	Strategic Depth in Every Run
	Make Various Builds Viable
	Force Exploration
	Provide a Challenge

	Procedural Generation
	Battle
	Attacker Waves
	World
	Attacker Paths
	Attacker Types
	Buildings
	Towers
	Abilities
	Materials and energy
	Fuel
	Hull
	Status Effects
	Time controls

	Blueprints
	Design
	Augments

	Battle Graphical User Interface
	Waves and time controls
	Fuel and Hull
	Wave Preview
	Materials and Energy
	Blueprint Menu
	Settings Button
	Info Panel

	Attacker HP Indicators
	Selection and Highlighting
	Battle Camera Controls
	Future Features
	Setting and Story
	Run Structure
	Saving the Game
	Money
	Permanent Unlocks

	Analysis
	Game Engine
	Procedural Generation
	Path Generation
	Hub Position and Path Starts
	Generating the Main Paths
	Simulated Annealing
	Generating Paths using Simulated Annealing
	Simplifying the Relative Improvement Calculation
	Final Paths

	Terrain Generation
	Wave Function Collapse
	Advantages and Disadvantages of WFC
	Using WFC for Terrain Generation

	Obstacle Generation
	Obstacle Placement Parameters
	Obstacle Placement Algorithm
	Generating Obstacle Models

	Attacker Wave Generation
	Model 1: Single Attacker
	Model 2: Infinite Waves
	Model 3: Finite Waves
	Model 4: Damage in an Area
	Model 5: Multiple Batches
	Model 6: Multiple Paths
	Model 7: Abilities
	Wave Generation Overview
	Generating Sequential Waves
	Generating Parallel Waves

	Random Number Generators
	Battle Simulation and Visuals
	Targeting Attackers
	Range Visualization
	Determining The Range Shape
	Representation for The GPU
	Computing Everything on the GPU

	Blueprints and Info Panel Text
	Blueprint Representation
	Info Panel Text

	Modifiable Commands and Queries
	Modifiable Commands
	Modifiable Queries
	Event Reaction Chain

	Developer Documentation
	Project Structure
	Scenes
	Scripts
	Third-Party Assets

	Battle
	Scene contents
	Selecting World Objects
	Selecting and Placing a Blueprint
	Player State
	Attacker Waves
	Shooting at Attackers
	Info Panel
	Visuals and Interpolation
	Highlights and Range Visualization
	Tutorial

	Game Start and Procedural Generation
	Loading
	Menus and Starting a Run
	Run Persistence and Blueprint Rewards
	Seed Branching and Level Initialization
	Procedural World Generation

	Designer Documentation
	Attackers
	Attacker Stats
	Attacker Prefab
	Attacker Behavior Script Example

	Blueprints
	Blueprint Scriptable Object
	Blueprint Prefab
	Ability Behavior Script Example
	Tower Behavior Script Example
	Description Formatting Tags

	Terrain Types
	General Syntax
	One-Line Top Level Properties
	Modules
	Obstacles
	Scatterer

	User Documentation
	Instructions
	Reference Tables

	Playtesting
	Playtesting Procedure
	Takeaways
	Tutorial
	Common Problems
	Further Design Decisions

	Assessment of Design Goals
	Strategic Depth in Every Battle
	Strategic Depth in Every Run
	Make Various Builds Viable
	Force Exploration
	Provide a Challenge

	Conclusion
	Goal Assessment
	Plans for Future Development

	Bibliography
	Attachments

