FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Vilém Gutvald

Tower Defense Game with Procedurally
Generated Content and Rogue-like
Elements

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Jezek, Ph.D.

Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

Chteél bych podékovat svému vedoucimu prace, Mgr. Pavlu Jezkovi, Ph.D., za jeho
vedeni a cenné rady. Dale dékuji svym prateltim, kteri testovali hru a poskytli
spoustu uzitecné zpétné vazby. Jejich nadseni mi dalo nadéji, Ze hra, kterou jsem
vytvoril v ramci této prace, ma potencial byt velmi dobra. Také jsem nesmirné
vdécny svym rodic¢tim za jejich podporu a za to, ze mi poskytli zdzemi, nejen v
prubéhu psani této prace.

Title: Tower Defense Game with Procedurally Generated Content and Rogue-like
Elements

Author: Vilém Gutvald
Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Jezek, Ph.D., Department of Distributed and Dependable
Systems

Abstract: In this thesis, we designed and implemented in the Unity game engine
a demo version of a rogue-like tower defense game. We employed various procedural
generation techniques, including wave function collapse and simulated annealing,
to generate level terrain and attacker paths. We also developed an algorithm
to procedurally generate attacker wave composition. We implemented the primary
gameplay systems, including resource management, tower and production building
placement, special attacker abilities, and a blueprint collection system. We also
created a simple tutorial to guide new players. Finally, we conducted a playtest
to gather user feedback, verifying our design choices and identifying key areas for
improvement, such as the user interface and the resource economy.

Keywords: procedural generation, game development, game design, tower defense,
rogue-like

Néazev prace: Tower defense hra s proceduralné generovanym obsahem a rogue-like
prvky

Autor: Vilém Gutvald
Katedra: Katedra distribuovanych a spolehlivych systémi

Vedouci bakalarské prace: Mgr. Pavel Jezek, Ph.D., Katedra distribuovanych
a spolehlivych systémt

Abstrakt: V této praci jsme navrhli a implementovali v hernim enginu Unity demo
verzi rogue-like tower defense hry. Vyuzili jsme riizné techniky proceduralniho
generovani, véetné wave function collapse a simulovaného zihéni, ke generovani
terénu a cest pro utocniky. Také jsme vyvinuli algoritmus pro proceduralni
generovani slozeni vin uto¢niki. Implementovali jsme hlavni herni systémy, véetné
spravy surovin, umistovani vézi a vyrobnich budov, specialnich schopnosti ito¢nik
a systému sbirani ndkrestt novych budov. Dale jsme vytvorili jednoduchy tutorial,
ktery nauci hrace, jak hru hrat. Nakonec jsme provedli playtest k ziskani zpétné
vazby, ktery nam umoznil ovérit navrhova rozhodnuti a identifikovat dulezité
oblasti pro zlepseni, napriklad uzivatelské rozhrani a systém spravy surovin.

Klicova slova: procedurdlni generovani, vyvoj her, game design, tower defense,
rogue-like

Contents

(1.2 Roguelike]
(1.3 Original Vision|,
[I.4° Current Scope and Goals|

Game Design|

2.1 Designgoals|
[2.1.1 Strategic Depth in Every Battlel
[2.1.2 Strategic Depth in Every Run|
2.1.3 Make Various Builds Viablel
[2.1.4 Force Exploration|o
[2.1.5 Provide a Challenge|

2.2 Procedural Generationl

[2.3.4 Attacker Types oL
[2.3.5 Buildings| oo

2.4 Blueprints|o
2.4.1 Design|
2.4.2 Augments|

[2.5 Battle Graphical User Interfacel
|2,5[i,1 &!a&f:s allsl l],.II],ﬂ S:!zll!l!zlsl

DOZ MOBOY| . « o o oo 44

2.9.5 Permanent Unlocks 44

3 Analysis 46
[3.1 Game Engine]o 46
3.2 Procedural Generation| 46
3.3 Path Generationl 0L 47
(3.3.1 Hub Position and Path Starts 48
[3.3.2 Generating the Main Pathsgl 50
[3.3.3 Simulated Annealingl, 50
[3.3.4 Generating Paths using Simulated Annealing|. 51
[3.3.5 Simplitying the Relative Improvement Calculationl 55
[3.3.6 Final Pathsl oo 57

(3.4 Terrain Generationl 61
[3.4.1 Wave Function Collapse| 61
[3.4.2 Advantages and Disadvantages of WFC|. 64
[3.4.3 Using WEC for Terrain Generationl 65

3.5 Obstacle Generation| 68
B.0.1 Obstacle Placement Parametersl 68
[3.5.2 Obstacle Placement Algorithm/. 69
[3.5.3 Generating Obstacle Models| 70

(3.6 Attacker Wave Generation| 73
[3.6.1 Model 1: Single Attacker| 74
(3.6.2 Model 2: Infinite Waves 75
[3.6.3 Model 3: Finite Waves 76
[3.6.4 Model 4: Damage in an Area| 78
[3.6.5 Model 5: Multiple Batches 80
[3.6.6 Model 6: Multiple Paths| 81
(3.6.7 Model 7: Abilities.o 81
[3.60.8 Wave Generation Overviewl. 82
[3.6.9 Generating Sequential Waves| 83
[3.6.10 Generating Parallel Waves| 85

(3.7 Random Number Generators|. 87
(3.8 Battle Simulation and Visualslo L 89
[3.9 Targeting Attackers|.o 90
[3.10 Range Visualization|. 91
[3.10.1 Determining The Range Shape, 91
[3.10.2 Representation for The GPU. 94
[3.10.3 Computing Everything on the GPU|. 95

[3.11 Blueprints and Info Panel Text{ 95
[3.11.1 Blueprint Representation|. 95
[3.11.2 Info Panel Textl 96
[3.12 Modifiable Commands and Queries| 96
(3.12.1 Modifiable Commands| 97
[3.12.2 Modifiable Queries| 98
[3.12.3 Fvent Reaction Chainl 99

4 Developer Documentation|

[4.2.8 Visuals and Interpolation|.
[4.2.9 Highlights and Range Visualization|
4.2.10 Tutoriall oo

[4.3.1 Loading
[4.3.2 Menus and Startinga Runf
[4.3.3 Run Persistence and Blueprint Rewards|.
[4.3.4 Seed Branching and Level Initialization

4.3.5 Procedural World Generationl

[Designer Documentation|

[>.1.3 Attacker Behavior Script kxample|.
(.2 Blueprints|
[5.2.1 Blueprint Scriptable Object|
[5.2.2 Blueprint Pretab|
[5.2.3 Ability Behavior Script Example| 0000
[5.2.4 Tower Behavior Script Example,
[5.2.5 Description Formatting Tags/.
(.3 Terrain Types|
[5.3.1 General Syntax|
[5.3.2 One-Line Top Level Properties|.

3.4 Obstaclesl

[7 Playtesting]
[7.1 Playtesting Procedure]
[7.2 Takeaways

[7.2.3 Further Design Decisions|

[7.3 Assessment of Design Goals| .

[7.3.1 Strategic Depth in Every Battlel

[7.3.2 Strategic Depth in Every Run|

[2.3.3 Make Various Builds Viablel

[7.3.4 Force Exploration|. . .
[7.3.5 Provide a Challenge| .

8 Conclusion|
R1 Goal Assessmentl

(8.2 Plans for Future Development|

[Bibliography|

[Attachmentsl

148
148
148
148
149
150
151
151
151
151
152
152

153
153
153

155

158

1 Introduction

Video games are a popular form of entertainment. There is a plethora of games
to choose from, each offering a different experience. Still, it is always possible to
create something new that players might enjoy. The author of this thesis enjoys
both tower defense games and roguelike games and there are not many games
that combine these two genres. In this thesis, we will design and implement a
video game, that uniquely blends them, and discuss the decisions behind it. So,
what do we mean by a roguelike tower defense game?

1.1 Tower Defense

A game genre can encompass many characteristics, most often its mechanics,
but also its theme, art style or the medium it is played on. Genres have no exact
definitions or strict boundaries, they are characterized by how people use them to
describe games.

Tower defense is often described as a subgenre of real-time strategy.
This means the game focuses on long-term planning, but also quick thinking.
In tower defense games, the player has to defend against waves of attackers by
building defensive towers. As an example we’ll look at Plants vs. Zombies [3].

In Plants vs. Zombies, the player defends their house from zombies. As shown
figure the zombies come from the right side of the screen and advance left. If
any zombie reaches the far left edge of the screen, the player loses the level. The
goal of each level is to survive all the incoming waves by placing plants that kill
or otherwise impede the zombies. We can also see two Repeaters in the upper left
part of the image, one of them shooting at a zombie. Further to the left, there
are a lot of Sunflowers. These are a very important part of the game, because all
plants cost sun, and Sunflowers produce those.

Figure 1.1 A level in Plants vs. Zombies.

In our game, the player will also build towers, to defend from waves of attackers,
and economic buildings that produce materials. Though, it will differ a lot from
Plants vs. Zombies in the overall structure of the game. The main game mode of
Plants vs. Zombies is a campaign consisting of 50 individual levels. If the player
loses a level, they can try again and again until they succeed in beating it. After
most levels, the player unlocks a new plant, which they can use in upcoming levels,
slowly building up their arsenal. In our game, however, once the player loses, they
lose all their progress and must start from the very beginning. This and some
other mechanics are taken directly from the roguelike genre.

1.2 Roguelike

Roguelike is a subgenre of role-playing games. In role-playing games, the
player takes on the role of a character and goes on an adventure. The character
can grow stronger by acquiring new abilities, items, or experiences. The player
has to make decisions about how to upgrade their characters to overcome the
challenges they might face. Role-playing games are a very broad genre with a long
history, for more information we recommend the book Game Design Deep Dive:
Role Playing Games |4] by J. Bycer.

The roguelike genre is named after the game Rogue [5], released in 1980. In
this single-player turn-based game, the player explores a grid-based dungeon and
fights monsters that inhabit it. Along the way, they collect various weapons,
armor and other magical items that improve their abilities. It features a mechanic
nicknamed permadeath, which means that when the character dies, the player loses
all progress and must start from the very beginning. The dungeon is randomized —
it is different in every run, so the player can’t just memorize the layout. These
are the most defining features of roguelikes, but games of this genre aren’t just
clones of the original Rogue. The breadth of roguelike games is well explored and
explained by J. Bycer [6].

A more recent game that’s a good example of this genre is Slay the Spire [7].
In Slay the Spire, the player ascends a spire and fights various enemies. The fights
are also turn-based, and when the player’s character dies, they have to start from
scratch. However, it is not a traditional roguelike. The game is not played on a
grid, instead the spire the player navigates is a graph of separate rooms, where
they move from bottom up. We can see this in figure [I.2] Here, the player has
been to the rooms that are circled, and now they have to choose where to go next.
The player can come across different kinds of rooms, each represented with an
icon. The most important are enemy encounters, where the player fights monsters
using a deck of cards.

10

Villfuk02 thelronclad ¥ 57/78 ‘& 69 @

‘9, ™

Return

Figure 1.2 The map screen in Slay the Spire.

In figure [1.3] the player character is shown on the left, facing a Jaw worm on
the right of the screen. On the bottom, there are cards that the player can play
to fight the enemy. At the start of each turn, the player draws five cards from the
deck. We can see that each card has a name at the top with its corresponding
illustration below. Below the illustration is text explaining the effect of the card
when played. Most cards deal damage to the enemies or provide block to defend
from enemy attacks, but some have more unique effects. In the top right corner
of a card is displayed its energy cost. The player can only spend three energy
per turn, so they can only play a limited amount of the cards they drew. It is
important to play the right cards in order to kill the enemy without taking a lot
of damage.

Villfuk02 thelronclad “* 64/75

‘9,

Figure 1.3 A fight in Slay the Spire.

Even though the player never knows exactly what cards they’ll draw, they
can shape the deck they draw from throughout the game. The player starts each
run with a predefined deck of starter cards, and as they progress, they add new
cards into their deck. For example, after every fight, they get presented with
three randomly selected cards, and they can choose one of them. The player can

11

also get new cards from events or shops and sometimes remove the cards they
don’t want. Some cards are rarer than others, and they are often more powerful.
However, being lucky and getting the most powerful cards is not what the game’s
about. The player must learn which cards work together well and which don’t,
and understand the weaknesses of their deck and how to fix them.

Many games take the roguelike mechanic of permadeath and randomized
procedural generation, but fill in different game mechanics. Slay the Spire has the
player build their own deck of cards to play with, but they still play as a character
that fights enemies. Some, however, deviate much more. In our game, the battles
will be in the style of tower defense, and the player will collect blueprints for
defensive towers and other buildings instead of weapons and armor.

Games that deviate more from the roguelike formula are sometimes called
roguelite games. However, there is no agreement on when a game stops being
roguelike and starts being roguelite. We will not make this distinction, since game
genres have no precise boundaries and can be freely blended with others.

1.3 Original Vision

Now that we have introduced the concepts of tower defense and roguelike
games, we can use them to create an overview of the game we intend to make.
It will be a single-player game. As stated, the moment to moment gameplay will
be a tower defense, but on a larger scale, the game will be roguelike. This means
that it will consist of individual procedurally generated runs, where the player
will start from scratch every time. During each run, the player will defend against
attackers in many battles and improve their arsenal to grow stronger. Their goal
is to get as far as possible, trying to reach the final level and beat the game.

Battles

The goal of each battle is to gather enough fuel to continue. The faster the player
gathers the fuel, the sooner they win the battle. The fuel is generated passively,
but additional buildings can be built to speed up the process. In the meantime,
the player has to defend against waves of attackers by building towers and using
abilities. Towers persist throughout the battle and shoot at the attackers, whereas
abilities provide single-use effects that can help in a time of need. All of this costs
materials and energy — resources, which are generated by economic buildings.

Procedural generation

Each battle will take place on a unique, procedurally generated terrain. This means
that the paths the attackers take will also differ in each battle. Furthermore, there
will be various kinds of attackers and the attacker waves will also be procedurally
generated.

Blueprints

On their way, the player will choose from randomly selected blueprints to add to
their collection. These blueprints will allow them to use new abilities, or build
new towers and other buildings. The player will have to choose blueprints which
work together well in order to use their full potential.

12

Run progression

The player will also encounter various shops and events. These can present
additional choices and provide the player with opportunities to gain various
rewards or punishments. The path the player takes will not be linear, allowing
them to decide which battles to fight and what to interact with from the map
screen.

Platform

We will target the game for personal computers only. Unlike mobile phones, PCs
usually have a screen large enough to let us clearly convey all the information
the player needs. It won’t be for game consoles either because we think a mouse
will be the best way to control the game. The mouse allows the player to select a
precise position in the world quickly. The player can also control certain aspects
of the game using the keyboard.

1.4 Current Scope and Goals

The scale of the game as outlined in section is quite large. Furthermore,
it would need a lot of content and polish before being able to be released as a
full game. Instead of creating a full-featured polished game, in this thesis we will
focus on making a functional demo version, which can be used to playtest the core
gameplay. The demo will contain some base content in order to be playable, and
it must be prepared for future development so that more content can be added
later.

The demo version will allow the player to progress through battles and collect
blueprints. However, there will be no map screen to let them choose their path
as described in the paragraph [Run progression| of the previous section. For now,
the progression will be linear and there will be no events or shops, only battles.
All the art and sound assets will be placeholders, but care will be taken to make
everything as clear as possible to the player.

The main goals of the thesis are:
1. Design the game’s mechanics and features.

2. Implement all the systems and mechanics described in paragraphs [Battles]
[Procedural generation| and [Blueprints,

3. Include a tutorial to explain the game’s mechanics to the player.

4. Conduct a playtest.

13

2 (Game Design

Before we start implementing the game, we should design its individual parts.
An overall design was described in section [I.3] In this chapter, we will go into
more detail and flesh out the design. We need to decide which mechanics will be
in the game and how will the player interact with them. The game needs to react
to the player’s actions and communicate the information the player should know.
This all depends on what exactly are we trying to achieve. Thus, we will start by
setting some design goals.

We would also like to emphasize that some features will not be implemented
in the demo version of our game. These features will be marked by the following
box:

i (not implemented in the demo) !
|

| |
' A feature that won’t be in the demo. j

2.1 Design goals

We aim to make the game’s mechanics clear, and controls intuitive and
responsive. This is a necessity for every game because without this, the players
can’t even properly play the game we want them to play. This is an important
goal that will inform many of our decisions throughout the design.

We have analyzed several games of similar genres to our game, that we find
enjoyable, and we tried to identify what makes them fun. We identified five
features, which we think make the games very intriguing and replayable, and we
think these would work for our game too. Thus, we intend to design the game, so
it exhibits these features, making them our game-specific design goals. We will
explain each in a separate section, and we will use other games as inspiration for
how to reach them. The goals are:

1. [Strategic Depth in Every Battle|

2. [Strategic Depth in Every Runl

3. Make Varions Bulds Viak]

4. |[Force Exploration|

5. [Provide a Challenge|

2.1.1 Strategic Depth in Every Battle

One of the design goals we identified is that the game should let the player
make meaningful strategic decisions throughout every battle. Each battle should
be different enough to require the player to adapt to the current situation. This is
where the action will happen, but we want the player to make tactical decisions,
not test their reflexes. With this constraint, battles would be boring if every one
played out the same.

14

In Plants vs. Zombies, the player wants to plant Sunflowers or other sun-
producing plants. The more they build their economy, the more plants they can
afford in the future. However, these plants can’t kill zombies, so the goal is to
spend the bare minimum on defense. This is a hard problem to solve, since when
and where zombies will appear is not completely predictable. What makes this
even more complicated are cheap single-use plants like the Potato Mine. It costs
only 25 sun and can kill almost any zombie, where, for example, a Peashooter
costs 100 sun, but is permanent and able to kill many zombies over the course of a
level. This means the player always has to consider if it’s better to place a plant
that’s the best now or a plant that will be the best in the future.

In Slay the Spire, the player has to make a similar decision, but even more
often. Almost every enemy grows stronger over time, or makes the player character
weaker as they fight. This means that the player always has to consider when
it’s the best to defend and when it’s better to attack. The player can choose to
not block some damage now in order to kill the enemy sooner and prevent bigger
attacks in the future. The player also has to plan several turns in advance because
many cards have longer lasting effects. They often have to decide whether it’s
better to play a card that makes them stronger in future turns, or a card that
helps them now.

Every fight is different because every enemy has distinctive behavior. Some
enemies get much more powerful over time, so it is important to kill them quickly.
Others punish the player for attacking them, so the player needs to kill them with
precision. Fights also vary a lot because the player draws their cards in a different
order every time. All this means that the player has something to think about
every turn.

Our game will also have economic buildings and instant abilities, so the player
has to balance economy and short-term versus long-term defense. The player
will have to survive some number of waves, but they will be able to spend extra
materials to mine fuel faster and end the battle sooner. This is similar to being
more offensive in Slay the Spire, since the waves of attackers should get stronger
at a faster pace than the player’s defense. Each battle will require a different
approach, since the waves will be composed of a different set of attackers every
time. We can also vary the nature of a battle by changing up the terrain and
making attacker paths different lengths or more numerous. This might seem like
too much, but we want to playtest all these options and possibly cut those, which
don’t work well.

2.1.2 Strategic Depth in Every Run

Another of the design goals is that our game should let the player make
meaningful strategic decisions throughout every run and there should be no clear
path to victory. In our game, when the player makes a decision when fighting in
a battle, its consequences should be contained mostly within the battle. This goal
refers to the decisions the player will make outside a battle, which affect all future
battles.

In Slay the Spire, the player needs to improve many aspects of their deck
in tandem. They need to have great defensive cards, cards that can deal with
enemies that have a lot of health, cards that can attack multiple enemies at once

15

and more. The player should also care about the average cost of the cards in their
deck. It is bad when the player wants to both defend and attack on a given turn,
but they’ve drawn only an expensive attack and an expensive defensive card. It is
also suboptimal when the player plays out all the cards they’ve drawn, but they
have leftover energy they didn’t spend. Balancing these aspects of the deck leads
to some difficult decisions when picking cards to add. For example, should the
player pick a good defensive card because they are lacking in defense, or should
they pick an attack that’s just very strong.

We want to balance the battles in a way, which requires the player to have
strong blueprints (see section [2.4]) with various qualities. The players should need
good economic buildings, fuel-producing buildings, abilities and towers good at
dealing with various kinds of attackers. They should also have some cheaper
towers to build in the first few waves and more expensive towers to build once
they produce a lot of materials.

In Slay the Spire, the player comes across the interesting trade-off between
short-term and long-term power even in building their deck. The player wants
cards which will have a great potential to be strong in the future, having great
synergy with other cards. But these cards aren’t strong right now and the player
needs to survive the next few fights, making them choose cards that are useful
immediately, but might not be as powerful later in the run. As an example we
can look at the cards Iron Wave and Double Tap.

The player starts each run with several copies of cards Defend and Strike in
their deck. Compared to them, Iron Wave is a very cost-efficient card. As shown
in figure , it costs 1 energy (displayed in the top right corner of the card), the
same as Defend or Strike. However, it does almost the same thing as Defend and
Strike combined — it deals damage and gives block too. Picking this card can
help a lot in the early fights, but it doesn’t really grow stronger later in the run.
The card Double Tap, on the other hand, is not great at the start. In essence, it
acts like another Strike most of the time, and is useful only when the player draws
another attack alongside it. It is however very strong when the deck contains
many attacks that cost a lot of energy but deal much more damage. Then it
allows the player to play a powerful attack twice at the cost of only one more
enerqgy.

Gain 5 Block. This turn, your next
Deal 5 damage. Attack is played twice.

Gain 5 Block. Deal 6 damage.

Figure 2.1 Defend, Strike, Iron Wave and Double Tap cards from Slay the Spire.

We can design the blueprints in our game similarly, making some useful early
in the run and some powerful later. This will let the player decide if they need to
take a blueprint that will help them now, or a blueprint that can potentially be
strong later.

16

2.1.3 Make Various Builds Viable

One of the goals of our game is that the player should be able to beat the game
with a lot of different combinations of blueprints. We will call these combinations
builds, as is often done [8| for unique combinations of skills, attributes and items
a player’s character can have in a role-playing game. Builds are distinguished
mainly by what they feel like to play with. If two blueprints are used in the same
way, then exchanging one for the other doesn’t make a new build. To allow the
player to choose from various builds, there has to be enough blueprints that feel
distinct and better yet, they should interact with other blueprints in unique ways.

In figure [2.2 are shown all the plants from Plants vs. Zombies. As we can see,
there is a lot of them, and various combinations that work well are possible. The
plants usually don’t interact with each other strongly, so the player mostly has
to combine the plants such that they have no weak spots. For example, longer
levels require both cheap and expensive defensive plants. The cheap plants are
used at the start of the level, and later they are replaced by the more expensive
ones to fit more firepower on the limited lawn. Some plants can struggle against
certain zombie types, so the player also wants to choose plants to cover for all
their weaknesses.

O

[z[2[&[e]=[=[E]=
Ti!!!ggg
&[]

ﬁﬁi@ﬁ

Snow Peas shoot Frozen peas that damage
and slow the enetw,

Damage: normal, slows zombies

Folks oFten Tell Snow Pea how “cool” he is,
or exhort hil to “chill out.” They tell him
to "stay Frostu.” Snow Pea just rolls his
eyes. He's heard ‘em all.

T | [[| [| [| [T | [T

%Oj"@im@:l}!

[CEE

Figure 2.2 All the plants of Plants vs. Zombies in the in-game almanac.

We can also look at a few examples from Slay the Spire. Here, builds are
often defined by cards that interact in ways that make them stronger. One of
the most blatant examples are cards that apply poison to the enemy. A poisoned
enemy takes damage every turn based on the amount of poison they have, and the
amount decreases by one every turn. This means an enemy with 2 poison takes
2+ 1 = 3 damage in total, whereas an enemy with 4 poison takes 4+3+2+1 = 10
damage in total. It’s easy to see that every card that applies poison makes other
poison cards stronger.

There are also rare cards the player can find, which change how the game
works. For example, defensive cards provide block only for one turn because the

17

player character loses all block at the start of every turn. However, once the player
plays the card Barricade, they don’t lose block at the start of their turns for the
rest of the fight. Cards like this can determine the player’s strategy for the rest of
the game on their own.

We want the players of our game to try lots of different builds and for that,
the builds need to be strong enough to beat the game when the player executes
them well. We can tweak the strength of individual blueprints, but we can also
design enemies that punish specific builds that would otherwise be too good. For
example, in Slay the Spire, many enemies shuffle unplayable cards into the players
deck for the duration of the fight. This punishes decks with fewer cards way more
than decks with many cards, keeping small deck builds from being too powerful.

2.1.4 Force Exploration

We don’t want the player to just find a single build that works and never
explore anything new. When the player is familiar with a build, it becomes
stronger, since they know how to use it effectively. This discourages them from
trying other builds, because they can’t use them so well, making them weaker.
Thus, one of our goals is to force the player to explore and make them learn other
strategies.

The main way to get cards in Slay the Spire are the rewards after every battle,
where the player can choose one of three cards to add to their deck, as shown
in figure 2.3 All the ways to acquire cards are randomized, so the player can’t
just hope to always get the card they want. They have to adapt their build to
the cards on offer, so they have to explore different strategies in order to win
consistently. In our game, the player will also pick a blueprint to add to their
collection from a randomized offer after each battle.

Villfuk02 theironded 5778 & 69 & &

'y

Figure 2.3 Card reward screen in Slay the Spire.

In Plants vs. Zombies, the player has to adapt to different zombies and level
environments. This can be illustrated with figure 2.4 which shows a seed select
screen. Here, the player selects which plants they want to use in this level from
the selection on the left side. On the right the player can see that this level takes
place on the roof and the zombie types that will appear in this level. In rooftop
levels, the player has to place a Flower Pot, which costs 25 sun, on a tile before

18

they can place a plant there. Furthermore, all plants that shoot in a straight line
are of little use here because the roof slopes up, so their projectiles can’t travel
very far. An experienced player will also notice that Bungee Zombies will appear.
These zombies swing from above to take the player’s plants instead of coming
from the right. The player should consider all these factors when choosing the
build to play this level with.

3
_‘. -
CHOOSE YOUR PLANTS + h

o3
— e mwnm —
a
TN sa! 257 ze0.
— — m..._..

I I e I T

125,
Coren o) e) e)
: :
7 '

lm lm lﬂ

Figure 2.4 Seed select screen in a rooftop level in Plants vs. Zombies.

In our game, the player could select which blueprints to play with before every
battle based on the level’s features and attackers. Instead, we chose an approach
more similar to Slay the Spire — the player will keep the blueprints they collect for
the rest of the run, and they won’t know the specifics of a battle before selecting
it. However, they will be allowed to have only a limited amount of blueprints at
once, so they still cannot just keep all the blueprints they encounter.

2.1.5 Provide a Challenge

The player should always have some goal to work towards, just out of their
reach. If the game is too easy, the players will have no reason to think strategically
or learn. Always having a harder challenge to overcome will motivate the player
to improve and keep playing.

Slay the Spire is not easy to beat, but the player can still improve so much
even after beating the game. After beating the game, the player unlocks so-called
ascension. Before embarking on another run, the player can select the ascension
level they want to play on. Each level introduces a small change that makes
the game slightly more difficult. Each ascension level is unlocked only after
the previous level is beaten, and each difficulty increase is small, so it doesn’t
discourage the player. These changes are cumulative, so in the end it takes serious
effort and luck to beat the game on ascension level 20 even for the most skilled
players.

19

(not implemented in the demo)

This system is simple, yet effective, so we might as well use it too. We will
also want to balance the base game, so that most players that try are able to
beat it, but it still takes some effort and several attempts, so the players feel
like they’ve accomplished something.

|
|
I
I
I
I
|
|
|
|
|
\

2.2 Procedural Generation

Randomized procedural generation is one of the defining features of the rogue-
like genre. We want to use randomized procedural generation to make each run of
the game unique. Since we design the procedural generation algorithms ourselves,
we have great control over the results. However, procedurally generated parts of
the game can be really hard to balance. We need to make sure the randomized
parts of the game feel fair to the player. It doesn’t feel good if the player loses
the game because they were just unlucky and couldn’t have done anything to
prevent the loss. Another issue with randomized procedural generation is that
things might start to feel very homogenous. For example, hand-crafted levels can
have features that really stand out. We need to decide which parts of our game
will be procedurally generated and to what degree.

(not implemented in the demo)

The overall structure of each run will be decided by what we call the map. 3
As stated before, it will be a graph, and the player will go from node to node |
along the edges. Each node will be a battle, shop or an event. We really 3
want each run to be different enough, that the player doesn’t develop a single !
strategy to use in every run. Since the player will decide where to go, it’s not |
a problem when some paths through the map are more difficult than others.)

Every battle will also be randomized to a large degree. The world a battle
takes place on will be procedurally generated, making for a different environment
every time. However, the combination of features that can appear in a given world
will be decided by the world’s terrain type.

(not implemented in the demo)

There will be several hand-crafted terrain types to randomly select from, some
appearing only early in the run and some only later. This is to create several
cohesive styles of the worlds that look and play distinctly from each other. We
feel this is better than if we just let the world generator mix all the features
every time, because the results would be more homogenous. We will go into
more detail about the world generation and these features in section [2.3.2]

In Slay the Spire, each encounter is chosen from a pool of hand-picked enemy
combinations. Each of these pools contains encounters of similar difficulty. If the
authors of Slay the Spire decide one of the encounters is too difficult for its pool,
they can tweak the encounter to make it less difficult, or move it to a different
encounter pool.

20

In our game, however, the attacker waves in each level will also be procedurally
generated. We want this, because each level in our game will consist of many
waves, each with many attackers. We could design many sets of waves, but we
feel that would make the levels too predictable, once a player learns these sets.
So, the waves shouldn’t be tied to the previous waves in a level. Each wave in a
level will be harder and harder, so this would mean we would have to populate
tens of pools with hand-crafted waves, which feels very inefficient.

From the player’s perspective, all procedural generation and the rewards they
receive will be random and unpredictable. However, each run will have a single
seed that deterministically decides all the “random decisions” the game makes.
Two runs with the same seed should look identical and if the player makes the
same decisions and choices, the outcomes should be the same. This allows the
players to share seeds of the runs they found interesting and compare their skill in
the same situations. Furthermore, this is helpful for debugging, because it lets us
easily reproduce any issue with the generation just by running it with the same
seed.

We could also procedurally generate the blueprints and attacker types. However,
here we want to have greater control, because that will allow us to create designs
that have powerful and unique abilities. Procedurally generating these would be
very difficult, and it would often lead to abilities that are either uninteresting, or
way too powerful.

2.3 Battle

As stated in section [I.3] in our game, the player will fight in battles throughout
each run, and these battles will have tower defense gameplay. In this section, we
will describe the battles in more detail and explain our intentions.

2.3.1 Attacker Waves

The attackers in various tower defense games often come in waves. However,
in Plants vs. Zombies, the zombies also come in continuously throughout a level
in addition to the large waves, to keep the pressure up. Even in games where
attackers come in distinct waves, the waves are usually on a timer and once the
level starts, they keep coming. One example of such a game is Kingdom Rush [9].
In figure is shown the indicator which shows the time remaining to the next
wave. This means the game is also full of action and requires the player to think
quickly. Furthermore, this indicator lets the player call the next wave early. If
they do, they get some coins as a reward, but this is risky, because the player’s
defense might get overwhelmed.

- ;
| « @ ' INCOMING NEXT WAVE!
e CLICK TO CALL IT EARLY
t =+
Figure 2.5 Next wave indicator from Kingdom Rush.

21

However, we want to emphasize the long-term strategy, so we will give the
player plenty of time to plan out their next move. There won’t be any timer,
instead, they can start the next wave when they are ready. This is also common
in tower defense games, used for example by Bloons TD 6 . This brings our
game closer to the turn-based gameplay that is often featured in roguelike games.
First it is the player’s turn to build towers, and then the attackers’ turn.

There are also many ways the attackers can move in different tower defense
games. Most often, the attacker paths are predetermined, and the player builds
their towers around them. The attackers go from the start of the path and try
to reach the end of the path. This is especially great when there is multiple
different levels in the game, each featuring different paths, because it makes
different towers more useful than others in each level. In figure are shown two
levels with distinct paths from Bloons T'D 6. The path in the first level shown
has a lot of tight turns, perfect for close-range towers or towers which damage all
attackers in an area. In the second level, the path is made up of few long straight
segments, where are much more useful towers that pierce through many attackers
in a straight line. Since we want to have various procedurally generated levels
in our game, we will also have attackers come on predefined paths that will be
different in each level.

3180

l']

[

Figure 2.6 The levels Park Path and Another Brick from Bloons TD 6 with the
attacker paths highlighted.

There are other options used in other games. In Desktop Tower Defense |11],
for example, the attackers try to cross a rectangular playing field. It starts out
empty, but as the player fills it with towers, the attackers have to adjust their
path, because they cannot go through the towers. In figure we can see the
purple attackers funnel into a narrow passage between the white towers. Since
the player decides the path of the attackers, they have to learn what kind of path
works well, but then they can build it all the time. This is not ideal for us, because
we want the player to adapt to the environment, not the other way around.

22

Figure 2.7 Attackers being funneled between towers in Desktop Tower Defense.

In Plants vs. Zombies, the zombies come from the right side of the screen and
try to reach the left side, as we already mentioned. The plants are planted directly
in the way of the zombies and the zombies have to eat their way through them to
reach their goal. This is unique, and it greatly changes the gameplay. However,
this is again not great for our game, because we would lose a lot of potential for
the levels in our game to be distinct from each other.

In Bloons TD 6, the player receives very little information about what the
upcoming waves look like. Here, the player selects the level they want to play
on, but the same sequence of waves comes every time, so the player is expected
to learn at least those waves that give them problems. In our game, however,
the waves will be procedurally generated. We want the player to plan around
the upcoming waves, so we need to communicate what the upcoming waves are
going to be. This means that the waves should be simple enough to communicate
effectively. Desktop Tower Defense features a wave preview, shown in figure [2.§
that only describes the type of attacker that will come. We want interesting
behavior to emerge from the interaction of different attacker types, so we won’t
limit our waves to one attacker type, but instead three. We feel that any more
would make the waves messy and unnecessarily hard to communicate.

P IMMUNE EAST SPAWN BEBVIMGE BGSS NORMAL GROUP) IMMUN

Figure 2.8 Wave preview from Desktop Tower Defense.

In fact, each wave will be composed of one to three batches. FEach batch
will be composed of a number of attackers of only one type, spaced evenly. But
some waves will be just one batch, but this batch will send a different attacker
type on each path on levels with multiple paths. Also, some waves won’t spawn
attackers on all paths. This should provide enough variety without being too hard
to communicate to the player and too hard for a skilled player to predict the wave
difficulty. To make it simple both for the player and for us when displaying the
preview of the wave, the spacing between two batches will always be 1 second.

23

The waves in a single battle will get progressively harder, forcing the player
will to improve their defense. However, the wave difficulty should increase faster
than the player’s defense is expected to improve. This increase will need to be
carefully balanced to allow for some strategies where the player invests more into
fuel production to end a battle quickly, but also strategies where the player invests
heavily into defense to keep up with the later waves.

2.3.2 World

In some tower defense games, for example in Desktop Tower Defense, the
towers can only be placed in positions on a grid. In other games, for example
Bloons TD 6, the towers can be positioned freely, as long as they don’t collide
with each other, the attacker paths, or other obstacles. While the second option
might allow for more interesting tower placement, we will go with grid placement,
and the grid will be pretty coarse — only 15 x 15 tiles. In fact, the attacker paths
will also be restricted to the grid. They will be formed by segments, each going
from the center of one tile to the center of a neighboring tile. This is because we
want the experience a player gains in one level to be transferrable to another level.
For example, they might learn that “tower A” placed right next to a straight path
can handle a wave of five “attackers B” on its own. They will then know this is
true in any level whenever there is a sufficiently long straight path. Reducing the
number of path shape and tower position combinations will make the player come
across a combination they already know more often, letting them predict better if
their defense can handle a wave or not. This is a really important skill to learn,
because the player will have to decide before every wave, if they need to invest
into defense or if they can invest into their economy.

In some tower defense games, for example in Kingdom Rush, there are only
few places where the player can place a tower in each level. We feel this is too
restrictive for our game, and it would take too much freedom away from the player.
This option also really works only in hand-crafted levels, because it is important
to select the places for the towers in a way that makes for fun and interesting
levels.

However, each level being just a big square of tiles with rectilinear paths on
top wouldn’t be very interesting. That’s why some tiles will contain obstacles that
block the player from building on these tiles. Some obstacles will be small and
some will be large — they will also block the line-of-sight of towers that require
a straight line between them and the attacker they want to shoot. Some small
obstacles will make the tile rich in minerals (see section [2.3.8)) or fuel (see[2.3.9)).
These will be used by some economic buildings (see , and also act as small
obstacles. There number of tiles with resource obstacles should always be between
some minimum and maximum value, so the levels aren’t unfair.

The tiles are pretty big, so when a tile has an obstacle, it’s usually not just
one obstacle, but a whole cluster of them. For example, a tile won’t be blocked
by one rock, but rather a cluster of rocks. These clusters will also be procedurally
generated. If we used a small set of hand-made models, the repetition would be
very obvious, and making a lot of these models by hand seems unnecessary.

Another great way to make the levels more interesting, that is also intuitive
for the player, is having tiles at different heights. The heights will be in multiples

24

of 0.5 units, where one unit is the edge length of a tile. Towers that require line of
sight won’t be able to shoot over higher terrain or down from steep cliffs. We can
also make some tower unable to shoot uphill or downhill for more variety. Some
tiles will also be slanted, gradually going from one height to another. These tiles
will allow the attacker paths to change their height, because it would be weird if
the attackers had to jump up a cliff. Some buildings will be possible to build on
slanted tiles and some won’t, making slants also a kind of obstacle.

As we already mentioned, each level will randomly select one of multiple terrain
types. A terrain type will dictate how a terrain should look — the colors used,
which terrain feature will appear and how often, and which obstacles will appear.
Some obstacles will appear in clusters or near another obstacle, others will be
spread out or avoid another obstacle. Each terrain type will have its distinct look,
keeping the levels from being all the same.

To summarize:

« RW1 The world each level takes place on will be a grid of 15 x 15 square
tiles.

o RW2 There will be small or large obstacles on some tiles, large obstacles
blocking certain towers’ line of sight. Some small obstacles make the tile
rich in minerals or fuel.

« RW3 Each tile with an obstacle will usually contain a whole procedurally
generated cluster of obstacle models.

« RW4 The tiles will be at different heights in multiples of 0.5 units, and
some tiles will be slanted, going between two heights.

« RW5 The player can build one building per tile, and only if the tile doesn’t
contain an obstacle or the attacker path.

« RW6 Each world will be generated according to a randomly selected terrain
type, which determines what the world will be like.

2.3.3 Attacker Paths

In section we decided that the attackers will travel on predefined paths
generated with the world. If we designed each level of our game by hand, we could
create paths that just feel like they would be fun to play around. Since the paths
will also be procedurally generated, we need to describe what qualities should the
paths have, so the generation can later be implemented to produce such paths.

In the previous section we decided that the world will consist of a grid of
tiles and the paths will be constrained to straight segments between the centers
of the tiles. We can think of the paths segments as one-way passages between
neighboring tiles. This means that a path cannot go twice through the same tile or
cross itself, because a tile has the same path segments coming from it, no matter
if it was visited for the first or second time.

There can be multiple paths in a level, each with a different shape and in some
waves a different set of attackers. This will add more variety and depth to tower
placement. Any path will also be able to split into more paths, or join together

25

with another path, creating new path geometry or sections with different attacker
density. When a line of attackers comes to a split into multiple paths, they will
alternate in which path they continue to, splitting between the paths evenly.

The player will start each level with one building already built — the Hub. It
is the goal the attackers are trying to reach to destroy it. Hence, all attacker paths
will converge to the tile the Hub is on. The attackers will come from outside the
world the battle takes place on. In the game’s universe, the worlds are bigger, but
the playable area is just a small neighborhood around the Hub. It would be weird
if the attackers just appeared on the edge tiles, so their paths will start on tiles
just outside the playable world, and the first path segment goes from the path
start to the nearest tile in the playable world.

In figure we can see an example of a valid path network drawn in blue on
a world of square tiles. The black point represents the Hub.

Y
Y
Y
Y

(4
7
Y
Y
Y
Y
®

Y
Y
Y
Y

Y
Y

»
Y
Y
Y
Y
Y

Figure 2.9 An example of a valid path network in a 7 x 7 game world.

The attackers from single wave batch will start out evenly spaced. If the path
they are on splits into two, they will still be evenly spaced, but now the spacing is
twice as large. This is illustrated in figure where the attackers are represented
by black dots on the path. We can also see, that after the paths join back into
one, the attacker spacing is no longer even. We don’t want this to happen for
aesthetic reasons, but also because overlapping attackers could be hard to identify
or distinguish by the player. This only happens when the branches of a path are
of unequal length and the difference is not a multiple of the spacing between the
attackers. We don’t want to put more constraints on attacker spacing, so instead,
we will constrain path branches to be of equal length. More precisely, each tile
on a path has to be the same distance from the Hub, no matter which path an
attacker would take.

ST NS SO

Figure 2.10 Attackers on a path that splits and joins.

26

Most towers will have limited range, and they will be most effective near the
attacker paths. We want the paths to be spread out throughout the game world in
order to not have tiles that are just way too far from any paths to be useful. This
is illustrated in figure [2.11], where we can see a path network with bad features on
the left, and on the right, one with the same path lengths and starting positions,
but nicer and more spread out. We have marked tiles whose center is 2 or more
tiles from the nearest path with a small cross.

In the right figure, we can also see a red point on one tile, marking a great
spot for a tower. This spot allows even a tower with shorter range, illustrated by
the red ring around it, to target attackers on a large portion of the path. On the
left we have circled another U-turn in the path that is, however, undesirable. This
is because there is no empty tile between the paths, so the player can’t place a
tower there, which feels bad. We don’t want many sharp turns like these, but they
can occur from time to time for variety. Similarly, paths going right next to each
other (marked in red) are bad. The player cannot place towers on paths, so these
paths greatly limit the player’s access to each other, making for an unpleasant
experience. A similar situation occurs when a path goes through tiles at the edge
of the world, blocking access to the path from one side, so paths should not go
through these tiles very often.

The Hub should be several tiles away from the edges of the playable area, so
the player has good access to the path segments near it. It should be very close
to the center in levels with many paths, so the paths can come towards it from
different sides of the world. It can be more off-center in levels with only one or
two long paths, where the path can snake through the world from the side furthest
away from the Hub, also covering the world somewhat evenly.

Y Y Y Y
—Y Y Y Y
& &
< <
Y Y Y Y
Y ./ L 4 \r L 4
5. 5. 5. 5. 5. & & & &
7 7 7 7 7 7 < < < <
Y Y Y Y
Y Y Y Y
V] V]
< <
Y Y Y Y
Y Y Y Y
X X 3 3 3 3
7 7 7 7
Y Y N Y
Y Y Y Y
X X .)))) 3 3 .))
< < < < 7 7 < <

Figure 2.11 A path network with undesirable properties and a path network with
great properties.

Similarly, we don’t want to produce side branches that just take up more space,
but don’t deviate meaningfully from the original path, like on figure 2.12] To
make this desire into a rule, we can define it in the following way: Every branch
must go through at least one tile that is not adjacent (by an edge or by a corner)
to any already existing path.

27

Y
Y

Y

[\ [\ [\ S S
7 7 7

Y Y Y
S A~ A~

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y Y Y
S A~ A~

3 3 3 3 3 3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7 7 7 7 7 7

Figure 2.12 A path with undesirable side branches.

To summarize, these are the rules the paths should follow:

RP1 The Hub should not be near the edge of the world, and it should be
close to the center in levels with multiple paths.

RP2 Paths are formed by one-way segments, each from the center of one
tile to the center of a neighbor tile.

RP3 Paths start on tiles just outside the playable world, and the first path
segment goes from the path start to the nearest tile in the playable world.

RP4 There can be one or more path starts in each level.
RP5 Paths can split or join.

RP6 All paths must end on the tile with the Hub, no other dead ends can
exist.

RP7 Each tile with a path going through it has to be the same distance
from the Hub no matter which path an attacker would take.

RP8 Paths should be spread throughout the playable world, not bunched
up.

RP9 Paths right next to each other or the edge of the world, and sharp
U-turns (see figure [2.11]), should be rare.

RP10 Every branch must go through at least one tile that is not adjacent
to any already existing path.

2.3.4 Attacker Types

We have mentioned that there will be many attacker types in out game. Each
will be designed on its own, but they will be randomly combined to make attacker
waves. An attacker type defines the following properties of an attacker:

Appearance. Every attacker will be represented in a battle by its 3D
model, corresponding animations and other visual effects. Every attacker
type will also have an associated icon to display in the user interface.

Hit Points or HP determine how much damage can an attacker take from
the towers before it dies.

Movement speed in tiles per second.

28

o Size — either small, large or boss — determines how much hull (see
section the player loses when this attacker reaches the Hub. Also
defines the height off the ground of the spot defensive towers target. More
details below.

 Abilities. These can be passive (for example “Immune to fire.”), repeating
(“Heals 5 HP every two seconds.”), or reactive (“Spawns attacker A when

killed.”).

The height of a target a tower shoots at is important — lower targets can
easily hide behind a terrain feature or an obstacle. We want some attackers to
look bigger than others, and it would be weird if the towers shot at a lower portion
of their model. Larger attackers will have their targeting point higher. To make
things simple for the player, there are only two heights of the targeting point —
small at 0.15 units above the ground and large at 0.3.

Whenever an attacker reaches the Hub, the player will lose some hull. The
small attackers will come in greater numbers than large attackers. To make the
stakes more equal, small attackers cost the player only 1 hull, whereas the large
attackers cost 3 hull.

! (not implemented in the demo)

The player will encounter only few boss attackers in every run. They will be 3
the main attackers in special boss levels, which are spread throughout the |
run and cannot be avoided by the player. When a boss reaches the Hub, the 3
player immediately loses the game. Each boss will bend the rules of the game !
a bit as one of their abilities, but most of them will have the same target |
height as large attackers. |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2.3.5 Buildings

The player will be able to build buildings, but only between waves of attackers.
They will be able to build one building per tile, if the tile has no obstacles and
an attacker path is not going through it. Each building costs some amount of
materials to build. The player will be able to delete a building at any time, mainly
to make way for other buildings.

There are three building types defined by their primary function: towers,
economic and special. Towers deal damage and kill attackers, and they are
described in more detail in the next section. Economic buildings produce resources,
often at the end of every wave, just in time for the player to use them to build
more buildings. Some economic buildings produce resources at other times, often
as a reaction to some other event, for example an attacker dying.

Special buildings are the buildings that don’t fit in either category. They
have a unique ability that usually increases the effectiveness of other buildings.
One special building could make economic buildings produce more, another could
increase the range of towers, yet another might slow attackers down.

One notable special building is the Hub, since the player starts each level
with one for free, and they cannot build more. The goal of the attackers is to
reach the Hub, and when they do, the player loses some hull (see section .
Additionally, the Hub produces some amount of fuel, materials and energy at

29

the end of each wave. These resources are further described in their respective
sections.

2.3.6 Towers

Towers are the buildings which deal damage to attackers in order to kill them.
There are many properties that distinguish towers from each other. There is a lot
of freedom to allow for many unique designs. Combining towers with different
properties is supposed to be a fun and interesting part of the game.

Towers usually shoot once per their shot interval, but some towers can shoot
multiple projectiles at once, others deal a certain amount of damage per second
continuously. They can usually only target attackers in a circular range around
them. However, some towers have an unlimited range, or their range is not circular.
Most towers instantly aim at their target, some take time to rotate around and
others cannot rotate at all. Some towers cannot aim upwards or downwards.
Most towers require line of sight to their target, but some don’t. Most towers fire
projectiles in a straight line, but some don’t fire projectiles, others fire projectiles
that travel over obstacles along a ballistic arc. Some towers can even miss their
target. With tower designs, the sky is the limit.

Whenever a tower has more attackers in its range, it will decide which one to
target based on the tower’s targeting priority. The player will be able to select
one of these priorities on most towers:

o First — the attacker that’s closest along its path to the Hub.

o Last — the attacker that’s farthest along its path from the Hub.
o Closest — the attacker that’s closest to this tower.

o Farthest — the attacker that’s farthest from this tower.

o Weakest — the attacker with the least HP.

o Strongest — the attacker with the greatest HP.

Each tower will be set to one of these by default, but the player will be able to
change the priority of any tower at any time, even during waves. This will let the
player have more control over their towers, allowing them to best use their unique
properties.

The damage the towers deal comes in many types. For example physical,
explosive, energy. Some towers will deal damage of multiple types at once. This
distinction lets us make some towers explicitly weak against some attackers —
those that are resistant to the given damage type. Or it lets us restrict some
synergies, for example by making a building that makes attackers take more
damage from energy attacks only.

It is worth mentioning, that in most tower defense games, the player can
upgrade any tower during a battle by investing more resources into it. The
upgrades often increase a tower’s damage or fire rate, however some substantially
change the tower’s behavior. Some games take this to the extreme, for example
in Bloons TD 6, each tower has 15 different upgrades available, and each tower
can be upgraded to two different upgrades at once. However, in our game, the

30

player won’t be able to upgrade their towers during a battle. Instead, they will
have to have some towers that are useful at the start of a level, and others that
are more powerful, but more expensive, to be used later.

2.3.7 Abilities

Unlike buildings, abilities will be usable during waves only. They will often
have only short-term effects on the attackers, so there is no point to using them
outside a wave. The primary use-case is to kill or weaken attackers of a wave that
might be too difficult to deal with for the towers alone. Abilities cost energy to
use, but if the energy a player has is insufficient, materials can be used to cover
the difference. The reasoning behind this is explained in the next section [2.3.8|

Most abilities will only deal damage to the attackers, each in its own unique
way. However, similarly to towers, there is no restriction on what an ability can
do, as long as it makes gameplay sense and offers something new. One ability
could create a temporary defensive tower, another could temporarily improve the
towers the player has already built. Another ability might improve the player’s
blueprints for the rest of the battle, yet another might just give the player some
additional resources.

2.3.8 Materials and energy

Materials are the main resource within a battle. The player starts each battle
with some materials, and the Hub produces a small amount of materials after every
wave. Materials accumulate over the battle and there is no limit as to how many
the player can have. The player can spend materials on buildings, notably towers
and economic buildings. The more economic buildings that produce materials a
player builds, the more materials they will have later in the battle.

Intuitively, a great strategy is to build the towers necessary to survive the next
wave and spend the rest on economic buildings. However, this strategy heavily
relies on the player being able to estimate which combination of towers is strong
enough to beat the wave. To help, the player will have various abilities at their
disposal, which can be used to kill of or weaken attackers when the towers are
not strong enough by a small margin. The abilities should also cost resources to
regulate their usage — stronger abilities will cost more and weaker abilities will
cost less. However, if abilities also cost materials, it would be the best to spend
everything on permanent defense or economy. Ideally a player would leave no
materials for their abilities. That is why abilities have a resource dedicated only
to them — energy. A steady income of energy lets the player use an ability once
in a while, without costing them any long term power.

However, abilities can also be paid for in materials. All this time we've
assumed that long-term power is always better than short-term. However, this is
not necessarily true. In the last few waves, a powerful one-time effect is way better
than a weak long-term one, since the battle is ending soon anyway. Due to this,
abilities are perhaps most useful in the last few waves of a battle, and allowing
the player to use materials for these lets them use the materials on whatever they
think is the best. Paying with materials also helps when the player has a few
materials left over, so they can use a slightly more expensive ability than they

31

could without this.

We don’t want the player to hoard all their energy and only use it on the last
waves. To encourage using abilities throughout the battle, there will be a limit
on the energy a player has in reserve. This way there is much less downside to
using an ability in the middle of a battle when the player’s energy reserve is full
anyway, so they can’t get any more.

2.3.9 Fuel

We have already mentioned fuel a few times, for example in section and
section [2.1.1] But in this section, we will summarize everything about fuel.

The goal of each battle is to gather enough fuel to continue to the next level.
The faster the player gathers the fuel, the sooner they win the battle. It is
generated passively by the Hub, but additional buildings can be built to speed
up the process. This makes the player decide when it’s the best to improve their
defenses and when to build fuel-producing building instead, to end the battle
before the more difficult waves come, hopefully leading to greater strategic depth.
The maximum number of waves each battle will take is determined by the amount
of fuel the player needs to gather.

(not implemented in the demo)

3 We want some battles to be significantly harder, but they will provide better
. rewards. These will be marked on the map, so the player will decide if
i they want to risk a harder battle. Making these battles require more fuel to
. complete is a great way to distinguish them from other battles. This also
. applies to boss battles (see section .

2.3.10 Hull

The player starts each run with a fixed amount of hull. As described in
section [2.3.4] whenever an attacker reaches the Hub during a battle, the player
loses some hull. Once the player loses all hull, they lose the game. A player’s hull
is a kind of buffer that allows them to make a few mistakes throughout the whole
run before they lose. They will be able to restore their hull only a few times during
the run (and no hull can be restored in the demo version). For example, they can
intentionally focus more on economy in the early waves of a battle, maybe letting
a few attackers through, in order to be stronger in the later waves and prevent
possibly greater losses. They can even take a harder battle where they expect to
lose hull when they are confident they won’t need it before they can restore it
back. However, an experienced player can use their hull as a resource. Another
option would be to have the player start each battle with full hull, but we feel
that this option allows for way less strategic depth.

32

2.3.11 Status Effects

(not implemented in the demo)

Buildings and attackers will both be able to have status effects applied on them.
These represent temporary effects which modify the behavior of whatever
they affect. They will be displayed with an icon above what they are applied
to, along with a number representing their duration. The duration can be
measured in seconds, but other kinds of duration are possible. The source of
these effects can be anything from a tower to an attacker.

Here are few examples of effects that might be applied to attackers, x
representing their duration:

e Burning deals a small amount of energy damage over time for x seconds,
possibly applied by some fire-based tower.

3 e Freezing slows down the attacker’s movement speed for x seconds, i
} possibly applied by some ice-based ability. }

o Shield prevents the next x damage an attacker would take, possibly
applied by another attacker.

o Stealth makes the attacker untargetable for the next x seconds, possibly
applied on their own.

And a few examples of effects that could be applied to buildings are:

e An Overclocked tower shoots 50% faster for x waves, possibly applied
by an ability.

o A Paralyzed building is out of order for x seconds, possibly applied by
an attacker.

o The next x projectiles an Electrified tower shoots deal additional
energy damage, possibly applied by a support building.

’

(not implemented in the demo)

We want the player to be able to pause the game. This is a quality-of-life
feature, common among other real-time single-player games. In our game,
the waves are short, and the player can just not start the next wave until
ready. However, pausing will be very useful during the waves for lining up
ability placement. Some attackers move fast and hitting them can be difficult,
and we don’t want our game to focus on dexterity or reaction time. What’s
even more difficult is clicking on a fast moving attacker to inspect its details
(described in section [2.5.7).

We will also let the player speed up the game to play at double speed.
This is useful for less eventful portions of gameplay, for example when a
slow-moving attacker travels along a long empty stretch of path.

! \
| |
I |
I |
I |
| |
| |
| |
| |
| |
| |
I |
I |
I |
I |
I |
| |
| |
| |
| |
| |
| |
I |
I |
I |
I |
| |
| |
| |
| |
| |

33

It is important that the game plays out the same no matter at which
speed it’s playing, and that pausing doesn’t interfere with the game. For |
example, it would be bad if the towers sometimes missed their targets when 3
playing at double speed. What happens in the game should also be frame |
rate independent. 3

On the other hand, everything should look as smooth as possible given |
the frame rate at which is the game currently rendered. Some animations will |
have to speed up when the game speeds up, others will still play at the same 3
speed, even when the game is paused. |

The demo version will be developed in a way that allows for this separation of
game logic and game visuals. However, the time controls themselves will not be
available in the demo.

2.4 Blueprints

A Dblueprint represents a building the player can build or an ability they can
use during battles. Each blueprint will include a description that explains its
function, including the exact values of important statistics — for example the
amount of damage a tower deals with each hit. The player will start each run
with few predefined blueprints, and they will collect more blueprints throughout
the run, giving them access to more buildings and abilities.

The player will only be able to have a limited number of blueprints at any
given time. Whenever they want to acquire a new blueprint while at the limit,
they’ll have to give up one of the blueprints they already have. This way it is
impossible to make a build that is just good at everything. They will have to
consider carefully which blueprints they need to cover their weaknesses and which
blueprints are the most synergistic with the rest.

Each blueprint costs some materials and/or energy (see section [2.3.8)) to use,
though there could be some blueprints that are free. The player must pay this
cost every time they want to build the given building or use the given ability.

Most blueprints will have no cooldown, so the player will be able to use them
as of ten as they want. Some will have a cooldown given as a number of waves.
This means some will be usable only once per wave, some only once per two waves,
ete.

As we already mentioned a few times, the player will acquire new blueprints
mainly after every battle. The player will be presented with a selection of three
different blueprints they have not picked in this run yet. They can choose one of
these to add to their collection, acquiring it for the rest of the run.

(not implemented in the demo)

Similar blueprint rewards will appear during some events the player might 3
encounter. Some events will offer blueprints randomly selected from the same |
pool as battle card rewards, other events will offer predefined blueprints, 3
which don’t appear in the regular blueprint rewards. Some shops will also sell !
blueprints chosen randomly from the reward pool. A blueprint might even be |
permanently altered in an event or a shop. |

In the regular blueprint rewards, some blueprints will be more rare than others.
Each blueprint will have one rarity, which determines how often it will appear.
The rarities are

e common,
e rare,
o and legendary.

o Additionally, there is starter — the player starts each run with these. Thus,
they do not appear as rewards.

o And also special — these blueprints also do not appear in the regular
blueprint rewards, but they can be obtained on other ways, usually in
events.

As their name suggests, common blueprints will be more common than rare
blueprints, and legendary blueprints will be even more rare. At first, the player
will encounter a rare blueprint about once per a few rewards with the rest being
common. However, towards the end of the run, most blueprints on offer will
be rare. Additionally, some rewards, for example after harder battles or boss
battles (see section [2.3.4), will contain more rare blueprints more often. The exact
proportions are yet to be determined based on playtesting.

2.4.1 Design

The blueprints should be designed in such a way, that it is not great to always
take the blueprint with the highest rarity. Of course, rarer blueprints will usually
be stronger, but they will usually be more specific in their use. Rare blueprints
should be similarly good to common blueprints in most cases, but potentially
much stronger when used in the right way or in combination with the right
blueprints. Legendary blueprints should have the greatest potential power, but
in even more specific circumstances. This power should however be so great, it
is worth it to sacrifice some of the build’s other aspects in order to get the most
out of this blueprint. The overall strategy of a given build could be defined by a
few legendary blueprints, with the rest built to support them. Of course, some
legendary blueprints will be useful in more builds than others. It should also
be possible to make a strong build just with a good set of common and rare
blueprints.

As we already mentioned in sections [2.3.5] [2.3.6] and [2.3.7], each blueprint
should be unique in its own way. The most exciting designs are often those
that somehow break the rules. For example, we could design a building that
costs energy, or a tower that has to be placed on a path, or even an ability that
manipulates the player’s blueprints or the waves of attackers that are yet to come.
However, most of these are hard to balance properly, and most important is
whether they lead to fun gameplay or not.

It is also important to design a good set of starter blueprints. It should be as
small as possible, but somewhat balanced in most aspects. Specifically, it should
provide a way to gather materials and fuel. There should be at least two towers

35

that can deal with the early levels, and they are distinct from each other, so there
are still decisions to make even in the first levels. There should also be a starter
ability, since abilities are a core of the design (see section . The individual
blueprints should be as simple to use and understand as possible. Their power
should be sufficient for the early levels, but they should be worse than other, even
common blueprints.

2.4.2 Augments

(not implemented in the demo)

The player will also be able to upgrade their blueprints with augments. Each |
blueprint will be able to take up to 2 augments. Each augment will be a 3
slight improvement, applicable to many blueprints. For example, one augment
might increase damage, another might change the damage type, yet another 3
might make the blueprint cheaper. }

The augments will also have different rarities, determining how often they
appear. Similarly to blueprints, they will usually appear as a reward in battles 3
or events and the player will choose one of three. It will also be possible to |
buy them or get them in events. Sometimes, blueprints will appear in rewards i
with an augment already applied. ,‘

I
|
|
I
|
I
I
I
I
I
I
|
|
|
I
I
I
I
I
I
I
|
|
|
|
|
\

2.5 Battle Graphical User Interface

In this section, we will describe the graphical user interface that will be overlaid
over the game world during a battle. The goal of the GUI is to display all the
information the player might need, that is not present within the world itself, and
to let the player access all the game controls without the need for a keyboard.
However, for each of the controls accessible through the GUI, there will also be a
hotkey the power users can use.

In figure is a mockup of the GUI with red numbers in circles, marking each
of the components. We will describe each component in its separate subsection
with the last number corresponding to the number in the figure.

36

o Sample tower

Rexd
| XK
8x 15x

Ix 1 12x 2x

& First ¥
Damage ¢ 2
Range ()
Interval © 0 5¢
This tower shoots at
attackers.
When it shoots, it
produces |0 energy.

Delete

Figure 2.13 A mockup of the GUI during a battle. Red numbers in circles marking
the individual components.

2.5.1 Waves and time controls

In the top left corner is displayed the number of the current wave in big
white text. Above it is the remaining number of waves in green. This amount is
calculated from the current amount of fuel and the fuel production per wave.

Below this, there is a panel with time controls. Here, the player can start the
next wave, or pause or speed up the game. The pause button will change into
play when the game is paused or between waves. The speed button will change
between one arrow and two arrows, based on the currently selected speed.

2.5.2 Fuel and Hull

Immediately to the right of the wave s display is displayed fuel and hull. The
green progress bar displays how much fuel the player has out of the total required
to finish the level. It also displays these values in text. Additionally, it shows
the amount of fuel produced per wave and light green marks previewing the fuel
values after each of the upcoming waves.

Below is a red progress bar showing the player’s hull out of the maximum
amount.

2.5.3 Wave Preview

Below the fuel and hull displays it the wave preview. It shows the composition
of the current and upcoming waves. Each wave has an arrow with its number and
the batches of attackers that will come. Each batch shows one or more icons of
the attacker type it’s composed of along with a count. The icon spacing represents
the spacing of the attackers in the wave itself.

37

2.5.4 Materials and Energy

At the bottom of the screen is the materials and energy display. In the orange
hexagon is shown the current amount of materials the player has, along with a
smaller number below it representing the material production per wave. Similarly,
the blue circle shows the current amount of energy and the energy limit, with
the energy production below. The circle is partially filled with a lighter blue to
visually show how much energy the player has out of the maximum.

2.5.5 Blueprint Menu

To the right of materials and energy is the blueprint menu. Here the player
can select their blueprints to use them. Between waves, only buildings are shown,
and during a wave, only abilities are shown.

Each blueprint is shown as a colored square of paper with an icon over it. The
color represents the type of the blueprint:

blue for towers,

» green for economic buildings,

purple for special buildings,
« and orange for abilities.

Overlaid over the lower portion of the blueprint is its cost. This is what the
blueprints look like everywhere in the game, for example in blueprint rewards.

The cost number turns red when the player has insufficient resources. The
cooldown is also shown as a partial dark transparent overlay over the blueprint
paper. The portion it covers represents the portion of the cooldown that’s left
until the blueprint can be used again.

By clicking on a blueprint in the blueprint menu, the player will select it. To
use it, they will have to click somewhere in the world to specify at which position
do they want to use it. The player will also be able to select the blueprints using
the number keys 1 to 9 on their keyboard, based on the blueprint’s position in
the blueprint menu.

2.5.6 Settings Button

In the top right is a button which lets the player access a settings screen. Here
the player will be able to access some game settings like sound and music volume.
They will also be able to exit back to menu from this screen. When the settings
screen is opened dur