
BACHELOR THESIS

Benjamín Benčík

On PlonK SNARK

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Pavel Hubáček, Ph.D.

Study programme: ArtiĄcial Intelligence

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
AuthorŠs signature

I would like to thank my advisor, Pavel Hubáček, for great support and also
Tomáš Krňák for his valuable suggestions.

Title: On PlonK SNARK

Author: Benjamín Benčík

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract: The thesis presents a comprehensive analysis of the PlonK zk-SNARK
protocol. It delves into the core cryptographic primitives underlying Plonk
and provides a detailed explanation of the protocolŠs execution. This in-depth
exploration complements existing research on security analysis by offering a clear
and accessible protocol overview. Additionally, the thesis explores optimization
strategies, with focus on reducing the degree of the wire polynomials deĄned by
the arithmetic circuit.

Keywords: cryptography, SNARK, zero-knowledge, polynomial commitment
scheme

Název práce: O PlonK SNARKu

Autor: Benjamín Benčík

Ústav: Informatický ústav Univerzity Karlovy

Vedoucí bakalářské práce: Mgr. Pavel Hubáček, Ph.D., Informatický ústav
Univerzity Karlovy

Abstrakt: Bakalárska práca ponúka analýzu zk-SNARK protokolu PlonK. Zaoberá
sa kryptograĄckymi základmi, na ktorých stojí bezpečnosť PlonKu, a poskytuje
detailné vysvetlenie procedúr protokolu. Práca dopĺňa existujúci výskum zameraný
na bezpečnostnú analýzu tým, že ponúka jasný a zrozumiteľný prehľad protokolu.
Okrem toho práca rozoberá možné optimalizácie protokolu, s dôrazom na zníženie
stupňa polynómov deĄnovaných aritmetickým obvodom.

Klíčová slova: kryptograĄa, SNARK, zero-knowledge, schéma pre polynomiálne
záväzky

Contents

Introduction 7

1 Preliminaries 9

1.1 Arithmetic circuits . 9
1.2 Argument systems . 9

1.2.1 Correctness . 10
1.2.2 Soundness . 10
1.2.3 Zero-Knowledge . 11

1.3 Succinctness . 12
1.4 Interactive and Non-interactive protocols 12
1.5 zk-SNARK . 12

2 Building Blocks 13

2.1 Elliptic curves . 13
2.1.1 Elliptic Curve Arithmetic 14
2.1.2 Elliptic curve pairing . 14
2.1.3 Multi-scalar Multiplication 15

2.2 Polynomial toolkit . 15
2.2.1 Comparing polynomials 15
2.2.2 Evaluation domain . 16
2.2.3 Lagrange basis . 16

2.3 Polynomial Commitment Scheme 17
2.3.1 KZG Polynomial commitment scheme 18
2.3.2 KZG analysis . 21
2.3.3 KZG in the evaluation form 27

2.4 Fiat-Shamir transform . 28
2.5 Arithmetization . 29

2.5.1 Gate equations . 29
2.5.2 Transcription into polynomials 30

2.6 Circuit checks . 31
2.6.1 Zero Test . 31
2.6.2 Output Check . 32
2.6.3 Gate Check . 32
2.6.4 Input Check . 33
2.6.5 Wiring Check . 33

3 The PlonK protocol 35

3.1 Setup algorithm . 36
3.1.1 Public Information . 36
3.1.2 Preprocessed Input . 36

3.2 Round 1 . 37
3.2.1 Computing wire polynomials 37

3.3 Round 2 . 38
3.3.1 Permutation check . 38
3.3.2 Intra-vector check . 39

5

3.3.3 Inter-vector check . 40
3.3.4 The Permutation Polynomial 40

3.4 Round 3 . 41
3.4.1 Computing quotient polynomial 42
3.4.2 Splitting quotient polynomial 43

3.5 Round 4 . 44
3.5.1 Linearization trick . 44

3.6 Round 5 . 45
3.6.1 Linearisation polynomial 45
3.6.2 Opening proof polynomial 46

3.7 VeriĄcation . 48

4 Security and Efficiency 49

4.1 Advantages and limitations . 49
4.2 Properties of the protocol . 51

5 Optimizations 52

5.1 Possibilities for optimization . 52
5.1.1 Polynomial commitment scheme: 52
5.1.2 Interactive protocol: . 52
5.1.3 Recursive proof construction: 52

5.2 ZK-Garage PlonK . 53
5.3 Wire polynomials degree reduction 54

5.3.1 Problem statement . 54
5.3.2 ZK-Garage implementation 56
5.3.3 Polynomial division . 56
5.3.4 Pairwise division . 58

5.4 Benchmarks . 59
5.4.1 Implementation description 59
5.4.2 Local benchmarks . 60
5.4.3 Remote benchmarks . 60
5.4.4 Engineering approach . 64

Conclusion 67

Bibliography 68

6

Introduction

Zero-Knowledge proofs

In a zero-knowledge protocol, there are two parties: one prover P and at least
one veriĄer V. The protocol allows to convince the veriĄer that the prover knows
some secret information. The prover provides an argument of knowledge, which is
a probabilistic proof.

More formally, the prover is an entity that has a witness w and aims to convince
the veriĄer about the knowledge of w without revealing it. For example, say that
the prover wants to convince the veriĄer that a graph is k-colorable. The prover
knows how to color the graph validly and wants to convince the veriĄer about its
knowledge of a valid k-coloring by providing an argument of knowledge π. The
veriĄer is responsible for checking the validity of π. It is essential to mention
that veriĄcation of the proof is a deterministic algorithm that runs strictly in
polynomial time and is orders of magnitude faster than generation of the proof.
The zero-knowledge property ensures that the veriĄer Şlearns nothingŤ about w

from π.

Example. Consider an ordinary deck with 32 red and 32 black cards to provide
another simple example. The prover picks a card. Assume it is the red 8. The
prover wants to convince the veriĄer that he picked a red card without showing
the card number. The prover can achieve this by listing all 32 black cars. Since
the card he picked is not among the black cards, it must mean that his card is red.
At the same time, the veriĄer does not get any information about the number of
the card that the prover picked. Importantly, this procedure is meaningful only if
the prover is honest and does not cheat by replacing cards in the standard deck.

For the PlonK protocol, we will use the properties of a polynomial to guarantee
that cheating is not possible except for a negligible soundness error. At this
point, it might not be clear why we should consider constructing such a proof.
Motivation for creating these types of protocols stems from different Ąelds:

1. Proving a statement on private data

• Proving your Ąnancial standing is often a requirement for loans, credit
applications, or other Ąnancial services. However, revealing your exact
account balance might be undesirable. Using zero-knowledge proof, you
can demonstrate to a Ąnancial institution that your account balance
meets a speciĄc threshold without disclosing the exact amount.

• When conducting a medical study, you may want to prove the validity
of your Ąndings without revealing any information about the individual
patients involved. Using zero-knowledge proof, you can demonstrate
the correctness of your statistical analysis of the data while ensuring
that patient information remains completely conĄdential.

2. Anonymous authorization

• You want to prove to some website that you have some privileges

7

without revealing a key or password. You can demonstrate to the
website that you possess the necessary information using zero-knowledge
proof.

3. Outsourcing a computation

• Imagine you need to solve a complex computational problem but lack
the resources. You outsource the task to a third-party service. This
service provides a solution but requires payment before revealing it.
The service can utilize a zero-knowledge proof, demonstrating theyŠve
computed the correct solution without revealing any details of their
computation process. This allows you to pay for a veriĄed solution
conĄdently.

• Suppose a company offers access to multiple versions of their AI model,
each with varying capabilities and costs. You subscribe to a speciĄc,
high-performance model. The company can leverage zero-knowledge
proofs to prove you are receiving the service you pay for, without
revealing the parameters of the model.

In the context of the bachelorŠs degree specialization in artiĄcial intelligence,
zero-knowledge proofs can potentially enhance the security and privacy of AI
systems. For example the training of large neural networks is often computationally
expensive. As suggested above, this process could be outsourced to an untrusted
party with large computational power. The remote server may then produce proof
that the model was trained correctly, and this proof would be easily veriĄable.
Another possible application could be in distributed computation, where we require
assurances that each of the participants derives the output according to the model,
and input data. These challenges are addressed in the recent work Zero-Knowledge
Proof-based Practical Federated Learning on Blockchain [1]. Despite the ĄeldŠs
relative newness, ongoing research holds promise for further advancements in
ensuring secure and veriĄable AI operations.

Assuming there is sufficient motivation for this type of protocol, we proceed
with the rest of the thesis. In Chapter 1, we provide a general introduction to
SNARKs, including the core deĄnitions essential for the rest of this work. Next,
Chapter 2 delves into the underlying mathematical structure of our protocol,
speciĄcally focusing on elliptic curves over Ąnite Ąelds. This chapter also includes
a detailed explanation of the KZG polynomial commitment scheme [2] and a high-
level overview of PlonK. With these tools in hand, we then present an in-depth
explanation of the PlonK procedures in Chapter 3, followed by an overview of
its properties and a detailed diagram in Chapter 4. Finally, Chapter 5 discusses
related work on optimizing the protocol and explains our own contributions to
further enhance its performance.

8

1 Preliminaries

1.1 Arithmetic circuits

DeĄnition 1 (Arithmetic circuit). C(w, x) : Fnp → Fp is a direct acyclic graph
with nodes representing arithmetic operations and edges Ćow of the variables,
where w is the witness and x is public input

It is standard that any program could be compiled into a boolean circuit with gates
AND, OR. It is commonly known that a boolean circuit can be easily translated
into an arithmetic circuit. We can represent 0 as the neural additive element of
Fp and one as a neutral multiplicative element of Fp. For variables a, b operation
AND becomes a · b and OR is a+ b− a · b.

a b a · c a+ b− a · b

0 0 0 0 - 0 = 0

1 0 0 1 - 0 = 1

0 1 0 1 - 0 = 1

1 1 1 2 - 1 = 1

Circuit size denotes ♣C♣, which is the number of gates in the circuit. The following
chapters will use n = ♣C♣. We will simplify the explanation by considering only
binary gates with operations +,×. However, there exist versions of PlonK that
can work with custom gates as [3]. Leaves will be considered input nodes, and all
other gates will have in-degree 2.

1.2 Argument systems

Prover aims to convince the veriĄer that ∃w : C(w, x) = 0. There are two ways to
construct an argument system:

• Interactive: P and V are allowed to exchange messages

• Non-interactive: the V does not send any message to P just veriĄes π

We will aim toward a non-interactive argument system with procedures:

1. Setup(1n)→ pp

2. Prove(pp,w, x)→ π

3. Verify(pp, x, π)→ accept/reject

The procedure Setup takes a security parameter 1n, which is determined by the
bound on the size of the arithmetic circuit n and produces public parameters
pp. The reason we use 1n instead of n is that we want the protocol to have
complexity dependent on the size of the security parameter and the standard

9

binary representation of number n size log n. Prove procedure takes the secret key
sk, the witness w, and the public input x to produce the argument of knowledge
(proof) π. Finally, the Verify procedure takes the public key pk, public input x,
and proof π and decides whether π is valid. Before going further, it is important
to formalize the properties that the argument system (Setup,Prove,Verify) should
have.

1.2.1 Correctness

DeĄnition 2 (Perfect Completeness). A proof system is complete if:

Pr

⋃︁
⋁︁⨄︁Verify(pp, x, π) = accept

\︄\︄\︄\︄\︄\︄\︄

pp← Setup(1n)

π ← Prove(pp,w, x)

⋂︁
⎥⋀︁ = 1 (1.1)

The correctness says that the veriĄer V will accept π if the prover knows the
witness w.

1.2.2 Soundness

DeĄnition 3 (Computational Soundness). A proof system (Setup,Prove,Verify)
is computationally sound if for all probabilistic polynomial time adversaries A
exists negligible negl(n) such that:

Pr

⋃︁
⋁︁⨄︁Verify(pp, x, π) = reject

\︄\︄\︄\︄\︄\︄\︄

pp← Setup(1n)

π ← A(pp, x)

⋂︁
⎥⋀︁ ≥ 1− negl(n). (1.2)

While correctness requires that an honest prover can always convince an honest
veriĄer, computational soundness says that a dishonest prover cannot convince
an honest veriĄer. If the prover does not know the witness w, then there is a
negligible probability that the prover can produce a proof π, which the veriĄer
accepts. The difference between an argument and a proof is that in a proof, the
soundness holds against a computationally unbounded prover. In an argument,
the soundness only holds against a polynomially bounded prover.

We will require the protocol to be knowledge-sound, which is a stronger property.
Arguments that satisfy knowledge soundness are typically referred to as arguments
of knowledge, formalized in the following deĄnition. The following notion is
presented speciĄcally for the setting where the prover must convince the prover of
the knowledge of a witness w for which C(x,w) = 0.

DeĄnition 4 (Argument of Knowledge). (Setup,Prove,Verify) is an argument of
knowledge for a circuit C if for every polynomial time adversary A = (A0,A1),
with probability of success δ such that:

Pr

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
Verify(pp, x, π) = accept

\︄\︄\︄\︄\︄\︄\︄\︄\︄\︄\︄

(pk, sk)← Setup(C)

(x, state)← A0(pp)

π ← A1(pp, x, state)

⋂︁
⎥⎥⎥⎥⎥⋀︁
≥ δ, (1.3)

10

there is a polynomial time extractor Ext which uses A1 such that:

Pr

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
C(x,w) = 0

\︄\︄\︄\︄\︄\︄\︄\︄\︄\︄\︄

pp← Setup(C)

(x, state)← A0(pp)

w← ExtA1(pp,x,state)(sk, x)

⋂︁
⎥⎥⎥⎥⎥⋀︁
≥ δ − negl(n). (1.4)

The adversary A is split into two parts where A0 chooses the instance of the
problem x and A1 that forges the proof π. The deĄnition says that if an A exists
that can forge the proof π, then there must be an algorithm Ext that uses A as a
black box to extract a valid witness w. Intuitively, the prover knows w if it can be
ŞextractedŤ from the prover.

1.2.3 Zero-Knowledge

DeĄnition 5 (Computational indistinguishability). Two sequences of probability
distributions ¶Xn♢n∈N, ¶Yn♢n∈N are computationally indistinguishable if, for every
probabilistic poly-time distinguisher D exists a negligible function negl(n)(x) such
that:

♣Prx←Xn
[D(1n, x) = 1]− Pry←Yn

[D(1n, y) = 1]♣ ≤ negl(n).

We will use this to construct the deĄnition of honest veriĄer zero-knowledge
speciĄc to the problem on the arithmetic circuit.

DeĄnition 6 (Honest VeriĄer Zero-Knowledge). (Setup,Prove,Verify) is honest
veriĄer zero-knowledge (HVZK) for circuit C if there is an efficient simulator Sim

such that ∀x ∈ Fp for which ∃w : C(x,w) the distribution:

(pp, x, π) : pp← Setup(1n), π ← Prove(pp, x,w),

is computationally indistinguishable from

(pp, x, π) : pp← Setup(1n), π ← Sim(pp, x).

This deĄnition is somewhat unintuitive. Essentially, it says that π Şdoes not
revealŤ anything about w besides its existence. This is formalized by the existence
of an efficient simulator that the veriĄer can use to generate π by itself. And if it
is possible to generate w without the knowledge of π, then it must mean that π
does not provide any information about w. There exist multiple variants of the
zero-knowledge property. The difference between them is explained in detail in
Proofs, Arguments, and Zero-Knowledge [4].

It might seem that the deĄnition of the argument of knowledge and zero-knowledge
are the opposite of each other. While the Ąrst one claims that, for each prover,
there needs to exist an extractor Ext that can extract the w, the second deĄnition
claims the existence of a simulator Sim which can generate valid transcripts with
proofs. Is it possible to use the extractor on the simulator in order to extract
a witness w? The key is that the extractor needs to have access to a prover
and query it in order to extract the witness. It might happen that the protocol

11

would not remain zero-knowledge after multiple queries to the prover, as will be
shown in Section 2.3.2. In that particular case, the extractor might query the
prover and eventually obtain the witness w, but multiple queries would break the
zero-knowledge property, so it is not possible to use the extractor.

1.3 Succinctness

The notion of succinctness captures that the proof should be relatively small and
easy to verify. This is formalized as:

• The size of the proof (argument) ♣π♣ is logarithmic in the circuit size n:
O(log n).

• The procedure Verify is poly-logarithmic in the circuit size n: O
(︂
log nk

)︂
.

1.4 Interactive and Non-interactive protocols

Many protocols are described in interactive settings where the veriĄer challenges
the prover. This is somewhat impractical for real-world use cases. In non-
interactive protocol, the only message is the proof π sent by the prover. This
means no interaction is required from the veriĄer. Under some assumptions, it
is possible to transform interactive protocol into non-interactive using the Fiat-
Sharmir transform [5]. This transformation needs to be handled with special
care. Multiple vulnerabilities were discovered due to improper application of the
heuristic [6].

1.5 zk-SNARK

PlonK, a member of the SNARK (Succinct Non-Interactive Argument of Knowl-
edge) family of cryptographic protocols, offers several advantages. The PlonK
protocol can be transformed into a zero-knowledge SNARK (zk-SNARK) with
minimal additional overhead, as explained in Section 2.3.2.

These protocols are particularly well-suited for scenarios where the veriĄer is
computationally weak. Thanks to the succinctness property, the proofs are small
and easily veriĄable. The noninteractivity makes the protocol well-suited for
practical application since no party has to wait for responses or queries. Non-
interactivity is especially beneĄcial in multiparty settings where the same proof
can be sent to multiple veriĄers without requiring individual interactions with
each one. For a more detailed explanation of SNARKS, the reader might refer to
Why and How zk-SNARK Works [7].

In the following Chapter 2, we will describe the tools needed to construct the
PlonK protocol. Many of these techniques are commonly used also in other
SNARKs. Chapter 3 gives a detailed explanation of the PlonK protocol.

12

with parameters a, b ∈ Fp. Points of the curve deĄne a group G with a neutral
element point at inĄnity (0, 0) and (x,−y) as the inverse element to (x, y). In the
following chapters, we will use multiplicative notation, and exponentiation will
denote repeated application of the group operation. We also denote G a generator
of the group G.

This group is especially interesting due to the hardness of the discrete logarithm
problem (DLP), which is considered hard over sufficiently large Fp. The discrete
logarithm problem states can be stated as follows. Given a group generator G and
a group element l, Ąnd k that solves Gk = l. For this reason, ♣Fp♣ will be viewed as
a security parameter of the PlonK protocol. We will rely on the hardness of DLP
on elliptic curves, which is standard in many modern cryptographic protocols.

2.1.1 Elliptic Curve Arithmetic

Given Ga, Gb, anyone can perform the operations listed below. However, it is very
hard to extract a, b due to DLP. That allows the prover to send some encoded
values to the veriĄer, who will be able to perform arithmetic checks without
discovering the original values.

Operation Inputs Computation Result

Addition Ga, Gb Ga ·Gb Ga+b

Subtraction Ga, Gb Ga · (Gb)−1 Ga−b

Scalar multiplication Ga, scalar s (Ga)s Gas

Polynomial evaluation
¶G,Ga, . . . Gan

♢

f(x) = c0 + c1x+ . . . cnx
n

√︃
i(G

ai

)ci Gf(a)

The Ąrst two operations, addition and subtraction, follow from the deĄnition of
the group, and scalar multiplication is just a generalization of the exponentiation.
For polynomial evaluation, take arbitrary polynomial f(x) = c0 + c1x + c2x

2 +
c3x

3 + ...+ xn of degree bound n. The evaluation of f(x) at some point a can be
written as

Gf(a) = Gc0+c1a+c2a2+...+cka
n

= (Ga0

)c0 · (Ga1

)c1 · (Ga2

)c2 · . . . (Gak

)cn =
n∏︂

i=0

(Gai

)ci

2.1.2 Elliptic curve pairing

Given groups G1,G2 and a target group Gt pairing e is in essence deterministic
mapping e : G1×G2 → Gt. To be more speciĄc, it is a bilinear mapping that takes
two encrypted elements from the source group and combines them into an element
of the target group. Since this is a complex topic, we will treat the pairing as a
black box; for a more detailed explanation, we refer the reader to [8]. For the
purposes of this work, it will be sufficient to know that curve pairings have the
following properties ∀a, b ∈ Fp:

e(Ga
1, G

b
2) = e(Gb

1, G
a
2) = e(Gab

1 , G
1
2) = e(G1

1, G
ab
2) = e(G1

1, G
a
2)b = e(G1

1, G
1
2)
ab

14

In Section 2.1.1, there is no way to calculate Ga×b from Ga, Gb. We will use curve
pairings to ŞemulateŤ this operation e(Ga

1, G
b
2) = Gab

t . Note that the operation
cannot be performed more than once because the result is in a different target
group. Thus, we will be allowed to use this operation in the PlonK protocol only
a single time. Not all elliptic curves are pairing-friendly, and this property is
rather rare.

2.1.3 Multi-scalar Multiplication

Polynomial evaluation can be performed via multi-scalar multiplication (MSM),
where elements ¶G,Ga, Ga2

, . . . , Gan

♢ are pairwise multiplied by scalars and even-
tually summed. In the group G, the scalar multiplication (Gai

)ci is deĄned as ci
times repeated group operation Gai

·Gai

. . . Gai

. When dealing with Ąelds in order
hundreds of bits, this becomes expensive, and this operation is a major bottleneck
of PlonK and many SNARK protocols.

To make this operation faster, it is possible to calculate the elements using the
square and multiply version, which can be described as:

(Gai)n =

⎧
⨄︂
⋃︂

((Gai)2)n/2 2 ♣ n

Gai((Gai)2)(n−1)/2 2 ∤ n

The naive way needs to perform n group operations to calculate (Ga
i)
n while square

and multiply achieves the same result in O(log2 n). The resulting complexity of
MSM is O(n× log2 maxi ci).

A more efficient way is to use PipengerŠs algorithm [9]. It is possible to optimize
the algorithm by precomputation and parallelism. Moreover, there is also an effort
to create a hardware-accelerated version of MSM as described in PipeMSM [10].

2.2 Polynomial toolkit

2.2.1 Comparing polynomials

The effective comparison of polynomials is one of the building blocks of PlonK.
We can test if two polynomials are equal just by comparing them at a uniformly
random point. The Ąeld size inĆuences the security, and this section assumes that
the size of the Ąeld ♣Fp♣ is signiĄcantly larger than the degree bound d on the
polynomials used. For the rest of this thesis, we will assume that ♣Fp♣ ≫ d.

Theorem 1. Arbitrary two non-identical polynomials a0 + a1x+ a2x
2...anx

n; b0 +
b1x+ b2x

2...bmx
m, where both n,m ≤ d ∈ N intersect in no more than d points.

Intersection of polynomials

Proof. An intersection point γ such that

a0 + a1γ + a2γ
2 . . . anγ

n = b0 + b1γ + b2γ
2 . . . bmγ

m,

15

is a root of the following polynomial of degree max(n,m) ≤ d

a0 − b0 + (a1 − b1)x+ (a2 − b2)x
2 . . . (an − bn)xn = 0.

From the Fundamental Theorem of Algebra, we know that a polynomial of degree
d cannot have more than d roots.

If two polynomials are identical, then ∀x : p(x) = q(x), so determining identity
based on evaluation at a random point is correct. Two polynomials with different
coefficients can be equal at intersection points, so this approach has a soundness
error rate. Based on Theorem 1, two non-identical polynomials might intersect in
almost d points, so the probability of randomly selecting one of the intersection
points is d

domain size
= d
♣Fp♣

. This probability is considered negligible, so we can
compare two polynomials just by a single evaluation.

A multivariate version of the previous observation could be proved by the Schwartz-
Zippel lemma [11].

Lemma 1. For domain D ∈ Fp and a polynomial f(x1, x2, . . . xn) ∈ Fp[x1, . . . , xn]
with degree bound d and independently uniformly at random selected (r1, r2 . . . rn) ∈
Dn it holds:

Pr[f(r1, r2 . . . rn) = 0] ≤
d

♣D♣
.

2.2.2 Evaluation domain

To create the evaluation domain, we use the primitive n-th root of unity ω ∈ Fp

for which it holds that ωn = 1 and ∀1 ≤ i < n : ωi ≠ 1. The evaluation domain
H will be constructed as

H = ¶1, ω, ω2 . . . ωn−1♢.

This domain will be especially useful because it allows for a sparse representation of
certain polynomials. This results in numerous beneĄts, such as faster polynomial
evaluation.

DeĄnition 7 (Vanishing polynomial). Denote ZH(x) the vanishing polynomial
for the domain H such that ∀x ∈ H : ZH(x) = 0 and deg deg(ZH) = ♣H♣.

Since the vanishing polynomial has roots as the elements of H, it could be written
as:

ZH(x) = (x− 1)(x− ω)(x− ω2) . . . (x− ωn−1).

However, the domain H also allows for a sparse representation of this polynomial
ZH(x) = xn − 1. To observe that this holds, we verify

∀x ∈ H : xn − 1 = (ωi)n − 1 = (ωn)i − 1 = 1i − 1 = 0.

2.2.3 Lagrange basis

In the PlonK paper, interpolation is performed using the Lagrange basis.

16

DeĄnition 8 (Lagrange basis). We denote by Li the ith polynomial of the
Lagrange basis over H as:

Li(x) =

⎧
⨄︂
⋃︂

1 x = ωi

0 otherwise

Given a vector v = [v0, v1, . . . , vn−1], we interpolate it over the domain H via the
polynomial:

v(x) =
n−1∑︂

i=0

viLi(x).

The Lagrange basis can be expressed as:

Li(x) =
∏︂

k∈H,k ̸=ωi

x− k

ωi − k
.

The properties of this polynomial are easy to observe. When x ∈ H \ ¶ωi♢ is
plugged into Li(x), then there is exactly one fraction for which k = x, which
makes the product 0. If x = ωi, the consequence is even more trivial because all
of the fractions would result in ωi−k

ωi−k
= 1, and since k ̸= ωi, Li(ωi) results in 1.

Due to the choice of the evaluation domain, the Lagrange basis also has a sparse
representation as presented in [12].

Li(x) =
biZH(x)

x− ωi
,

bi =
∏︂

k∈H,k ̸=ωi

1

xi − xk
.

Notice that each bi depends only on the elements of the domain H. So, all of the
values bi could be precomputed.

2.3 Polynomial Commitment Scheme

A commitment scheme is a cryptographic primitive that makes it possible to
commit to a piece of information, ensuring that it remains unchanged throughout
the veriĄcation process. One motivation for this mechanism is to prevent the
prover from generating proofs depending on the veriĄerŠs queries. In the context
of PlonK, we will rely on the polynomial commitment scheme, where the prover
knows the coefficients of some polynomial f(x) and wants to prove the evaluation
of f at a point given by the veriĄer.

A standard polynomial commitment scheme has the following procedures:

1. Setup(1n)→ pp: generate public parameters.

2. Commit(f, pp)→ c: calculate commitment c which binds P to the polynomial
f(x).

17

3. Open(z, pp)→ (v, π) : given the challenge z, P returns a pair (v, π), where
π is the proof that v = f(z).

4. Verify(pp, c, z, v, π)→ accept/reject: V checks validity of the claim f(z) = v.

Polynomial Commitment Scheme

Prover P VeriĄer V

. Scheme Setup .

Commit c

z z ← Fp

Open (v, π)

Verify

return accept/reject

We will require that Polynomial Commitment Scheme is binding and hiding.
Loosely speaking, binding means that the commitment binds the prover to a
speciĄc polynomial. Hiding property suggests that the prover does not discover
the coefficients of the polynomial f(x). We will deĄne it more formally.

DeĄnition 9. Evaluation binding guarantees that any efficient prover cannot
generate a convincing π for v = f(z) and π′ for v′ = f(z).

Computational hiding property says that for polynomial f(x) and its commitment
c and any efficient A, the polynomial f(x) is computationally indistinguishable
from a randomly chosen polynomial. We will achieve the hiding of the scheme in
Section 2.3.2 with a stronger property Ů zero-knowledge.

The next notion we formalize ensures that if the veriĄer accepts the proof, the
prover needs to have knowledge of the committed polynomial.

DeĄnition 10. Extractable scheme guarantees that for all efficient provers P

that takes as input public parameters, degree bound d and outputs commitment
c ∃ efficient extractor algorithm Ext that has the same input as P and produces
polynomial f(x) of bound d explaining all of P answers to evaluation queries.

The extractability of a polynomial commitment is stronger than binding as it was
with soundness and knowledge soundness in Chapter 1. It guarantees that for
any efficient prover capable of passing all of the checks, the prover must actually
ŞknowŤ a polynomial p of the claimed degree that explains its answers to all
evaluation queries.

2.3.1 KZG Polynomial commitment scheme

The KZG polynomial commitment scheme, based on the pairing (elliptic curve)
group, was introduced in [2]. It has constant proof size and requires a trusted

18

setup. There are other ways to design polynomial commitment schemes, such
as [13] based on hash functions. We will explain KZG since it is used in the
PlonK protocol. This section is heavily inspired by the work of Justin Thaler in
Proofs, Arguments, and Zero-Knowledge [4]. We will try to explain an imperfect,
non-extractable KZG polynomial commitment and provide ideas of the proofs,
but for the proper security analysis of KZG, we refer the reader to the Section
15.2 Proofs, Arguments, and Zero-Knowledge [4].

The public parameters pp of the KZG is the structured reference string SRS

consisting of evaluations ¶G,Gτ , Gτ2
, ..., Gτd−1

, Gτd

♢, where d is degree bound of
committed polynomial and τ is uniformly randomly chosen τ ← Fp. The setup
of the protocol needs to be trusted because if the prover discovers the value τ ,
it will allow him to forge proofs and, thus, prove any evaluation. So naturally,
the setup either needs to be computed by the veriĄer or via a secure multiparty
computation. Below, we list all public information for the KZG scheme:

1. G1,G2 are pairing friendly groups both under the Ąeld Fp for p prime

2. G1, G2 are generators of G1,G2

3. e: is a symmetric bilinear map meaning in G1 × G2 → G′ the groups G1 and
G2 are equal.

4. d is the upper bound on the polynomial degree

5. SRS evaluations ¶G,Gτ , ..., Gτd

♢

Before we proceed to describe the procedures, we need to introduce an observation
that allows us to effectively transform equality checks into divisibility checks. The
polynomial we get from the division will be used as the proof of evaluation.

Lemma 2. For any degree d univariate polynomial f ∈ Fp[x] the assertion
f(z) = v is equivalent to checking if there exists a polynomial w(x) ∈ Fp[x] of

degree at most d− 1 such that: w(x) = f(x)−v
x−z

.

Proof. In the forward directions, we have a polynomial f(x), and we know that
f(z) = v. We can construct ˜︁f(x) = f(x)− v which is 0 at z. If ˜︁f(z) = 0 then z is
the root of ˜︁f(x) so ˜︁f(x) could be also written as ˜︁f(x) = (x − z)w(x). Now we
just reorder the expression:

˜︁f(x) = (x− z)w(x),

w(x) =
˜︁f(x)

x− z
,

w(x) =
f(x)− v

x− z
.

In the opposite direction, we have polynomial w(x) = f(x)−v
x−z

and want to show
that f(z) = v. If we have w(x) it means that ˜︁f(x) is divisible by x− z, so z is
the root of ˜︁f(x) which implies f(z) = v.

19

Commitment

To commit to f(x) over Fp P sends c ∈ G1 which he claims is f(τ) encoded as
elliptic curve point Gf(τ)

1 . We use the notation G
f(τ)
1 = [f]1. However, above, we

have said that the prover should not be able to discover τ under any circumstance,
so how does he compute f(τ)? The trick is that he does not have to know τ to
compute the commitment. Recall from Section 2.1.1 that function evaluation
f(τ) only requires to know the coefficients of f(x) and ¶G,Gτ . . . Gτd

♢ which is
provided as the SRS public key. This way, the prover is able to compute Gf(τ)

without knowing τ .

Opening

To open for challenge z, the prover computes the opening proof polynomial:

w(x) =
f(x)− v

x− z
.

By Lemma 2, we know that proving the existence of w(x) is equivalent to f(z) = v.
Assuming P knows f(x), he is able to calculate Gw(τ) = [w1] and evaluate f(z) = v.
Finally, the prover sends (v, [w]1) to the veriĄer.

VeriĄcation

The veriĄer knows c, v, gw(ω) provided by the prover, z generated by himself and
the public SRS. The only check that needs to be done by V is:

e(cG−v1 , G2)
?
= e(G

w(ω)
1 , Gω

2G
−z
2).

Note that from the whole SRS, only (G1, G2, G
ω
2) are needed for the evaluation,

which is why in many works, SRS is referred to as a prover key and (g, gω) as a
veriĄcation key.

To prove correctness:

e(G
w(ω)
1 , Gω

2G
−z
2) = e(G

f(ω)−v

ω−z

1 , Gω−z
2)

= e(G1, G2)
f(ω)−v = e(G

f(ω)−v
1 G1, G2) = e(cG−v1 , G2).

The last step of this expansion is true if and only if c = gf(ω). For an honest prover
who knows f(x), the veriĄcation procedure would accept with probability 1, which
shows the correctness of the protocol. The complete scheme is summarized below.

20

KZG polynomial commitment scheme

Prover P Verifer V

Commit [f]1

z z ← Fp

f(z) = v

w(x) = (f(x)− v)/(x− z)

Open ([w]1, v)

Verify

e(cG−v1 , G2)
?
= e(G

w(ω)
1 , Gω

2 G−z2)

Why does this commitment scheme need to use pairing groups? Notice that
the veriĄer is not able to calculate Şmultiplication in exponentŤ Gw(τ)×(ω−z). As
suggested in the Section 2.1.1, it is possible to solve this by using pairing.

2.3.2 KZG analysis

Hiding

The veriĄer gets the commitment c = G
f(τ)
1 , which is one evaluation of the

commitment polynomial, and the real value is infeasible to extract due to DLP. The
prove also sends tuple (v,Gw(τ)) where w(τ) cannot be obtained from the proof of
opening also because of DLP. However, the evaluation v = f(z) is sent in plaintext
form. This means that the veriĄer discovers some information about the committed
f(x). The KZG commitment scheme could be potentially computationally hiding
if executed just once. If we do not limit the number of openings, the veriĄer might
eventually get d evaluation of the committed polynomial f(x), which would allow
him to reconstruct the polynomial by interpolation.

We cannot rely on the KZG polynomial commitment scheme to sufficiently hide
the committed polynomial f(x). Therefore, we will use blinding in Section 2.3.2
to achieve zero-knowledge for speciĄc cases.

Binding

Binding property is a little harder to establish. First, we introduce the crypto-
graphic assumption SDH.

DeĄnition 11. Strong Diffie Hellman Assumption SDH assumes that, given pp,
P has no efficient way of computing a pair (z,G

1
τ−z).

This assumption is stronger than DLP itself. We will show that this assumption
needs to hold. Otherwise, P would be able to give two different openings for the
same challenge, which breaks the evaluation binding property.

21

Lemma 3. Assuming the Strong Diffie-Hellman assumption holds, P can provide
only one valid opening v for any challenge z in the KZG scheme.

Proof. For a contradiction, we can say that P is able to prove two different openings
v ≠ v′ of committed f(x) at a challenge z. This would require calculating two
different proofs of opening w(ω), w′(ω):

w(τ) = f(τ)−v
τ−z

w′(τ) = f(τ)−v′

τ−z

w(τ)− w′(τ) =
v′ − v

τ − z

1

τ − z
=
w(τ)− w′(τ)

v′ − v

G
1

τ−z =
1

v′ − v
Gw(τ)−w′(τ)

We get a contradiction because we can use such a prover to break the SDH
assumption.

Extractable scheme

To make KZG extractable, we need to modify it. The SRS will be twice as long
containing pairs

¶(G1, G
ψ
1), (Gτ

1, G
τψ
1), (Gτ2

1 , G
τ2ψ
1) . . . (Gτd

1 , G
τdψ
1)♢ for ψ ← Fp, τ ← Fp

DeĄnition 12 (Power Knowledge of Exponent assumption). For any efficient
A given access to SRS, whenever A outputs group elements a, b ∈ G such that
a = bψ then A needs to know the coefficients that explain a =

√︃d
i=0 = Gciτ

i

and
b =

√︃d
i=0 = Gciτ

iψi

.

Now, the commitment will be a pair c = (G
f(τ)
1 , G

f(τψ)
1). The calculation of the

witness polynomial remains the same, and the veriĄer now needs to perform two
checks:

e(G
f(τ)
1 G−v1 , G2)

?
= e(G

w(τ)
1 , Gτ

2G
−z
2) (2.1)

e(G
f(τ)
1 , Gψ

2)
?
= e(G

f(τψ)
1 , G2) (2.2)

The correctness of Equation (2.1) holds based on the correctness of the previous
KZG explanation and the correctness of Equation (2.2) holds because of:

G
f(τ)
1 G

f(τψ)
1

√︃
i(G

τ i

1)ci
√︃
i(G

τ iψ
1)ci

√︃
i(G

τ i

1)ci
√︃
i(G

τ i

1)ciψ

[f]1 [f]ψ1

22

Very intuitively, this variant of the KZG polynomial commitments scheme remains
binding because the modiĄcation scheme only extends to one more veriĄcation
check, but the Ąrst one already binds the commitment to a speciĄc polynomial.
To prove the extractability of the scheme, we rely on the second veriĄcation check,
which simpliĄes to gq(ψω) = gωgψ. From the PKoE, it needs to follow that A has
knowledge of the coefficients and, therefore, knows the polynomial f(x). More
details about the proof can be found in Proofs, Arguments, and Zero-Knowledge
[4].

Blinding

We have discussed the KZG commitment scheme, which is not zero-knowledge.
Openings clearly reveal some information about the committed polynomial. To
make PlonK zero-knowledge, we will randomize the committed polynomial. The
PlonK protocol suggests to blind a polynomial f(x) as follows:

˜︁f(x) = ZH(x)× some expression + f(x)

Notice that the polynomials f(x), ˜︁f(x) agree on all points of domain H because
ZH evaluates to zero over H. The checks of the PlonK protocol only verify
properties on the evaluation domain H, which is why it does not matter that
f(x), ˜︁f(x) might not match outside of H.

Consider that some polynomial f(x) should be opened at challenge points (z1 . . . zk)
randomly chosen by the veriĄer. We alter the committed polynomial with uniformly
randomly and independently chosen blinding scalars (b1, b2, . . . , bk+1)← Fp as

˜︁f(x) = (b1 + b2x+ b3x
2...+ bk+1x

k)ZH(x) + f(x)

Notice that the degree of the blinding polynomial depends on k, the number of
openings. Does the opening of ˜︁f(x) reveal any information about f(x)? Well,
of course, it does, because for ∀x ∈ H : f(x) = ˜︁f(x). However, ♣H♣ is orders of
magnitude smaller than ♣Fp♣, and the probability of randomly choosing an element
of H is considered to be negligible. LetŠs examine the case when x ̸= H.

DeĄnition 13 (k-blinded polynomial). A polynomial ˜︁f(x) is constructed as

˜︁f(x) = bk(x)ZH(x) + f(x)

where bk(x) = b1 + b2x + b3x
2 . . . + bk+1x

k + bk+2x
k+1 is a blinding polynomial

with coefficients chosen independently and uniformly randomly and ZH(x) is
polynomial vanishing on domain H.

We would like to show that proving at most k polynomial evaluation of k-blinded
polynomial using the KZG polynomial commitment scheme is honest veriĄer
zero-knowledge as captured by DeĄnition 5. In the context of KZG, the transcript
of k opening proofs for committed polynomial f(x) with an evaluation proof
polynomials w1(x), . . . wk(x) will be denoted as

(C = G
f(τ)
1 , z̄ = ¶z1, . . . , zk♢, v̄ = ¶v1, . . . , vk♢, W̄ = ¶G

w1(τ)
1), . . . , G

wk(τ)
1)♢.

23

DeĄnition 14 (Honest Transcript). The honest transcript is (C, z̄, v̄, W̄) generated
from the interaction of a non-malicious prover and veriĄer where the prover knows
the committed polynomial and the veriĄer accepts the provided openings.

To prove that blinding guarantees honest veriĄer zero-knowledge, we need to show
the construction of a simulator that produces an indistinguishable transcript from
an honest transcript. First, we describe a few useful observations. We will again
deĄne the zero-knowledge property speciĄc to this case.

DeĄnition 15 (Honest VeriĄer Zero-Knowledge for KZG analysis). The poly-
nomial commitment scheme (Setup,Commit,Open,Verify) is honest veriĄer zero-
knowledge (HVZK) if there is an efficient simulator Sim for any combination of a
function f(x) such that the distribution:

(C, z̄, v̄, W̄) :

pp← Setup(1n)

C ← Commit(f, pp)

(v,W)← Open(z, pp)

is computationally indistinguishable from

(C, z̄, v̄, W̄)← Sim(pp)

Lemma 4. ∀x ∈ Fp, a← Fp where a is non-zero element the function fa(x) = x+a
deĄnes a random permutation of elements of Fp.

Proof. To show that fa(X) is a permutation we want:

¶0, 1, 2, . . . , p♢ = ¶0 + a, 1 + a, 2 + a, . . . , p+ a♢

Assume there exist x1, x2 ∈ Fp, x1 ̸= x2 : fa(x1) = fa(x2). Then x1 + a =
x2 + a =⇒ x1 = x2, which is a contradiction. Therefore we can say that fa(x) is
injective. Since adding two Ąeld elements of the Ąeld results in another element of
the same Ąeld the fa needs to be subjective. From there it follows that fa(x) is a
permutation function determined by the randomness of a.

Lemma 5. For the generator G1 of a group G1 and a random element a← UFp

the group element Ga
1 is a uniformly random element of the group generated by

G1.

Proof. Since a is chosen uniformly at random from the Ąeld, and Ga
1 maps each

element in the Ąeld to a unique element in the group G1, the image of this function
must also be uniformly distributed across the group.

Lemma 6. Given prime p and a polynomial over a Ąnite Ąeld Fp of degree
bound k with independently randomly chosen coefficients we can evaluate it at k
independently randomly chosen values and get k independent uniformly random
Ąeld elements.

24

The above lemma is used in constructing k-wise independent hash functions
Ąrst described by [14], therefore we do not include the proof. The intuition is
that a polynomial of degree k is uniquely deĄned by k + 1 points, which can be
interpolated. When provided only k points, each polynomial of degree k is equally
probable. Since each of the polynomials has a uniform probability, we get that
any k-tuple of distinct arguments is equally likely to be mapped to any k-tuple of
evaluations.

Lemma 7. Evaluating k-blinded polynomial at values (x1, . . . , xk) ∈ Fkp \H gives
independent uniformly randomly distributed evaluations.

Proof. We know that k evaluations of the blinding polynomial b(x) will give k
independent uniformly random evaluations based on the Lemma 6. If those are
added to some Ąxed polynomial f(x), then the blinded polynomial ˜︁f(x) produces
evaluations that are independently random based on lemma Lemma 4.

With all of the tools needed, we can Ąnally show that commitment to a blinded
polynomial ˜︁f(x) reveals no information about the former polynomial f(x).

Theorem 2 (KZG Blinding). KZG commitment scheme with k-blinded polynomial
is honest veriĄer zero-knowledge for k openings.

The principle of this proof is to construct a simulator Sim that can produce
honest-looking transcripts (C, z, v,W). More formally, the transcripts generated
by the simulator Sim need to be indistinguishable from actual honest transcript. In
this construction, we rely on the honesty of V to independently sample challenges
from UFp

. The zero-knowledge property could be broken by challenging P only on
points from the evaluation domain H. That would undo the blinding, and the
veriĄer would get an evaluation of p(x), which clearly leaks some information. If
the veriĄer was honest, then sampling x ← UFp

such that x ∈ H happens only
with probability ♣H♣

♣Fp♣
which is negligible.

Proof. First, we analyze the distribution of the honest execution.

• C: We know that evaluation of ˜︁f(X) give independent uniformly distributed

results and thanks to lemma Lemma 5 G
˜︁f(X)
1 is also uniformly randomly

distributed.

• z: By deĄnition of the protocol z ← UFp
.

• v: Since z ← UFp
we know that ˜︁f(z) will be also uniformly distributed

thanks to Lemma 7.

• W : Is uniquely determined by C, z, v. LetŠs Ąrst look at the distribution
of w(τ) =

˜︁f(τ)−v
τ−z

. In the numerator, we calculate C − v, and we already
know that both are uniformly distributed. This is divided by τ − z where τ
is Ąxed and z ← UFp

. Therefore, w(τ) is the division of two random Ąeld
elements, by Lemma 5, W will also be random.

The construction of the simulator Sim(d) is surprisingly simple. Sim can create
random polynomial r(x)← Fdp[X] by independently sampling random coefficients.
By the Lemma 6 r(x) can give up to d random evaluations, which are sufficient

25

because d≫ k. Consequently, the Sim will just run the prescribed prover algorithm
for polynomial r(x), and all elements of the generated transcript will be as well
uniformly randomly distributed. We know that the veriĄcation of the veriĄer
would accept this solution because Sim can calculate the witness for r(z) = v in
the prescribed way.

The simulator can generate a valid transcript indistinguishable from a honest
transcript just by picking a random function. This means that the veriĄer does
not discover anything about the committed blinded polynomial, and the only
thing V can tell is if the evaluation of the committed polynomial is correct. That
is exactly what we wanted to achieve.

You might be concerned about the honesty assumption about the veriĄer. However,
in a practical scenario, the PlonK protocol is run in a non-interactive way where
the prover interacts with a random oracle using the Fiat-Shamir heuristic. The
randomness of the challenges is guaranteed by this oracle, which is assumed to be
trusted and not by a veriĄer that can be potentially malicious.

Batched Multivariate PCS

Say that the committer knows polynomials f1, f2 and wants to prove evaluations
at randomly selected challenge f1(z) = v1, f2(z) = v2. Rather than checking each
claim independently, it is possible to batch them. We can perform a batched check
using uniformly randomly selected u.

uf1(z) + f2(z)
?
= uv1 + v2 (2.3)

Naturally, this approach is correct because if f1(z) = v1, f2(z) = v2, then for any
u, the Equation (2.3) holds. Notice that we can think of both uf1(z) + f2(z)
and uv1 + v2 as linear functions with variable u. If two linear functions are not
identical, they have at most one intersection point, so the soundness error of the
batching is at most 1/Fp, which is sufficiently low. With a very high probability,
it holds that:

f1(z) = v1, f2(z) = v2 ⇐⇒ uf1(z) + f2(z) = uv1 + v2

This suggests that it is sufficient to verify the opening of the batched polynomial.
The commitment [fbatch]1 can be computed by the veriĄer as u[f1]1 + [f2]1. There-
fore, the prover just needs to send commitments [f1]1, [f2]1, opening fbatch(z) and
proof to the opening. Why is this better? The prover only needs to calculate one
proof of the opening for the batched polynomial fbatch. If we performed separate
polynomial commitment schemes for f1(x), f2(x), there would need to be two
opening proofs. The additional work put on the veriĄer and the prover is far lower
than computing and verifying the opening proof.

26

Batched Multivariate PCS

Commit [f]1, [f]2

z, u z, u← Fp

fbatch(x) = uf1(x) + f2(x)

fbatch(z) = uf1(z) + f2(z)

compute opening proof π

Open (fbatch(z), π)

[fbatch] = u[f]1 + [f]1

Verify opening fbatch(z)

2.3.3 KZG in the evaluation form

The standard KZG polynomial commitment scheme was described using polyno-
mials in the evaluation form. However, one can bypass interpolation and work
entirely in the evaluation representation as explained by Justin Drake [15]. In
this section, we will show how it is possible to use the polynomial commitment
scheme with polynomials in the evaluation form.

Sparse Lagrange Basis

As mentioned in the PlonK paper, the Lagrange basis has sparse representation
over the evaluation domain generated by a primitive n-th root of unity. It could
be written ∀1 ≤ i ≤ ♣H♣ as:

∀1 ≤ 1 ≤ ♣H♣ : Li(x) =
biZH(x)

x− ωi
.

From the Ąndings in Barycentric Lagrange interpolation [12], the constant terms
bi are

bi =
∏︂

j ̸=i

1

ωi − ωj
.

Notice that bi depend only on the domain H and thus can be precomputed in the
protocol setup.

Commitment

Let f(x) be a function with a degree bound n. We will consider it in evaluation
form on H as ¶f(1), f(ω), f(ω2) . . . f(ωn−1)♢, which means that it could be written
as:

f(x) =
n−1∑︂

i=0

f(ωi)Li(x).

27

Now, the commitment could be calculated as follows:

[f]1 = Gf(τ) = G
√︂n−1

i=0
f(ωi)Li(τ) =

n−1∏︂

i=0

(GLi(τ))f(ωi)

Notice that GLi(τ) are actually commitment to the Lagrange basis [Li(τ)]1. Again,
since the Lagrange basis is dependent just on the domain H, this commitment
could be precomputed.

Evaluation proof

In the standard form, the opening proof is computed as

f(X)− f(z)

x− z
.

As a result, the opening proof polynomial can be computed as:

w(τ) =
n−1∑︂

i=0

f(ωi)− f(z)

ωi − z
Li(τ),

[w]1 =
n−1∏︂

i=0

f(ωi)− f(z)

ωi − z
[Li]1,

where f(z) =
n−1∑︂

i=0

biZH(z)

z − ωi
f(ωi).

2.4 Fiat-Shamir transform

A SNARK by deĄnition must be non-interactive. The PlonK protocol achieves this
by applying the Fiat-Shamir heuristic [5] to an interactive protocol. Essentially,
the prover uses a random oracle to generate the challenges instead of the veriĄer.
Incorrect application of this transform may introduce vulnerabilities as described
in Weak Fiat-Shamir Attacks [6].

In the case of PlonK, the random oracle is a cryptographic hash function H,
which takes variable length input and gives Ąxed length output. The input to the
hash is the protocol transcript, which is a concatenation of:

• common preprocessed input described in setup

• public input PI

• polynomial commitments computed by the prover so far

• polynomial openings computed by the prover so far

Given the protocol transcript and access to the random oracle, anyone can
reconstruct the challenges. Therefore the veriĄer can easily recognize if the prover
used challenges generated by the determined random oracle.

28

gate that we want to use. For example, if we are dealing with gate i, that is a
multiplication gate, then qmi

= 1; otherwise, it is always set to 0. The selectors
could be combined to obtain the equation for gate i:

wliwri
qmi

+ wl1qli + wri
qri

+ woi
qoi

+ qci
+ PIi = 0. (2.6)

Consider the example circuit and variable assignment x1 = 2, x2 = 1, s1 = 3, and
for simplicity, all unassigned selectors will have value 0. Then, it is possible to
perform these operations:

• addition: qli = qri
= 1, qoi

= −1
For the addition gate, we want to keep only the addition and output terms
of the equation. The rest will cancel out, thanks to the remaining selectors
being 0.

• multiplication: qmi
= 1, qoi

= −1
To engage a multiplication gate, we assign the selector such that only the
multiplication and output terms of the equation remain.

• constant assignment:
Besides the operations of addition and multiplication, it is possible to do
constant assignments (not illustrated on the example circuit). Say that we
want the left input of a gatei to be equal to some constant c. To construct
the equation for this gate, we can assign qli = 1, qci

= −c, and the equation
then simpliĄes to wli = c, checking exactly what we want. This works also
for the right input, we just set the selectors as qri

= 1, qci
= −c.

PIi is public input, which is engaged only for the public input nodes (leaves of the
graph). For all inner nodes, PIi = 0. Notice that using the selector polynomial,
some terms are canceled out so that we get to the separate gate constraints
described in the beginning (2.4). Below is a table with the explicit assignment of
the selector for the speciĄc example.

wl wr wo qm ql qr qo qc

gate0 2 1 3 0 1 1 -1 0

gate1 1 3 3 1 0 0 -1 0

gate2 3 3 9 1 0 0 -1 0

2.5.2 Transcription into polynomials

It is possible to write express computation of each gate in the circuit as Equa-
tion (2.6). But a much more elegant way is to condense all of the constraints into
a single equation by interpolating the vectors.

30

a(x) =
√︂
i=0 Li(x)wli b(x) =

√︂
i=0 Li(x)wri

c(x) =
√︂
i=0 Li(x)woi

ql(x) =
√︂
i=0 Li(x)qli

qri
(c) =

√︂
i=0 Li(x)qri

qm(x) =
√︂
i=0 Li(x)qmi

qci
(x) =

√︂
i=0 Li(x)qci

PI(x) =
√︂
i=0 Li(x)PIi

This enables to represent gate constraints for the whole circuit C as:

a(x)b(x)qm(x) + a(x)ql(x) + b(x)qr(x) + c(x)qo(x) + qci
+ PI(x) = 0 (2.7)

2.6 Circuit checks

We can encode arbitrary circuits with polynomials. The following objective is
to convince the veriĄer that the prover knows a secret witness w, for which
C(x,w) = 0. The prover needs to guarantee the integrity of computing the circuit,
and it turns out the veriĄer needs a lot of convincing since there are numerous
ways to cheat. The prover needs to show the following:

1. Correct public inputs are provided (input check).

2. Gates are computed correctly (gate check).

3. Gates are wired correctly (wiring check).

4. The output of the circuit is zero (output check).

Most of the checks are descriptive, besides the wiring check. Considering the
example circuit (2.2), this check ensures that outputs of gate0, gate1 are indeed
provided as inputs to gate2. This is also referred to as copy constraints because
we want to make sure that the output of some gate is correctly copied to the input
of another gate. Before proceeding to the implementation of this check, we will
show how to perform zero tests on some domains.

2.6.1 Zero Test

Observe that if some polynomial f(x) is zero on H, then every element of H
has to be its root. The vanishing polynomial that has roots in all elements of
the domain was denoted as ZH(x). That means we can factor the polynomial
as f(x) = g(x)ZH(x). In other words, if a polynomial is zero on H, it has to be
divisible by the vanishing polynomial ZH(x).

This idea test can be transformed into a standalone Zero Test protocol using a
polynomial commitment scheme. Below is a sketched diagram of how it works.
In the PlonK protocol, we will use this check, but the zero checks are not run
independently on each polynomial. Instead, they are batched into the quotient
polynomial t(x) in Section 3.4.

31

Zero test

Prover P Verifer V

f(x), g(x) = f(x)/ZH(x) [f]1, [g]1

z z ← Fp

evaluate f(z), g(z)

compute opening proofs π1, π2

f(z), g(z), π1, π2

verify KZG openings π1, π2

ZH(z) = zn − 1

f(z)
?
= g(z)ZH(z)

Theorem 3. Zero-test is correct and computationally sound, assuming d
p

is
negligible.

Proof. We have already discussed the properties of KZG in section 2.3.2 and the
Schwartz-Zippel lemma in Section 2.2.1.

This check satisĄes the correctness because if f(x) is zero on H, then it can be
factored into ZH(x)g(x). The veriĄer can check the KZG opening and compare
polynomials using the Schwartz-Zippel lemma.

The zero test is also sound because if the polynomial f(x) is not zero on the whole
domain H, then it cannot be divided by ZH(x). As a result, the prover cannot
provide g(x) that would satisfy f(z) = g(z)ZH(z) with non-negligible probability,
which follows from the Schwartz-Zippel lemma.

2.6.2 Output Check

Notice that the output of the circuit is always the output of the last gate of the
circuit. This means that the output of the circuit will be encoded as the last
element of the witness. All the prover needs to do is show that C(ωn−1) = 0. This
can be performed in a secure way using a polynomial commitment scheme where
the veriĄer asks to open the polynomial c(x) at ωn−1.

Lemma 8. The output check is correct and sound.

The properties of this check depend on the polynomial commitment scheme, and
we have already discussed the validity of KZG in Section 2.3.2.

2.6.3 Gate Check

We have managed to encode the gate constraints by the equation Equation (2.7).
Using the zero test, it is possible to verify that ∀x ∈ H :

a(x)b(x)qm(x) + a(x)ql(x) + b(x)qr(x) + c(x)qo(x) + qci
+ PI(x) = 0

32

Lemma 9. The gate check is correct and computationally sound

Proof. This follows from the properties of the zero test Section 2.6.1

2.6.4 Input Check

We have encoded the public input is encoded using Equation (2.7). That means
checking if correct public inputs were provided to the circuit can be encoded in
the gate equation.

Lemma 10. The public input check is correct and sound

This follows from Lemma 9.

2.6.5 Wiring Check

The structure of a circuit requires some values to be identical. The edges (wires)
indicate that the output of the gate at one side should be passed as the input
to the other gate. To ensure that the program is computed correctly, the prover
needs to show that the values were copied correctly.

This check is performed using permutations. The structure of the circuit induces
some equivalence classes. We will try to show that the copy constraints are
satisĄed by performing a permutation on the equivalence classes. For this purpose,
we will choose rotation because it changes the position of every element. The
diagram below Section 2.6.5 shows how the permutation function would look for
Figure 2.2.

33

3 The PlonK protocol

With the knowledge from the previous chapter, we can get to the description of the
protocol itself. PlonK protocol has a trusted setup in the form of the structured
reference string SRS that can be reused for proofs on multiple circuits. The
natural beneĄt is that the setup parameters could be used indeĄnitely, enabling
PlonK to be a multi party protocol. This fundamental property makes the
protocol valuable and promising for application in blockchain technologies. It is
essential to mention that the security is based on the hardness of the discrete
logarithm problem on elliptic curves. The original paper uses KZG [2] (Kate,
Zaverucha, Goldberg) commitments, but the protocol could be altered to use
another polynomial commitment scheme. The KZG commitments have constant
size.

protocol proof size public parameters veriĄer time trusted setup

Groth16 O(1) O(♣C♣) O(1) per circuit

Plonk O(1) O(♣C♣) O(1) universal

Bulletproofs O(log ♣C♣) O(1) O(♣C♣) no

STARK O
(︂
log2 ♣C♣

)︂
O(1) O(log ♣C♣) no

DARK O(log ♣C♣) O(1) O(log ♣C♣) no

Table 3.1 Comparison of protocols

The table above presented on Dan BonehŠs lecture [17] compares the PlonK
protocol against other protocols. The big beneĄt is that the protocol has a
constant size of the proof composed of 9 polynomial commitments and 6 polynomial
openings. The public parameter SRS is directly proportional to the size of the
proof, as we will show in Section 3.7. The trusted setup is universal in the sense
that the public parameter can be used for any circuit of a given bound on the
number of gates.

In addition to the trusted one-time setup, the protocol has a setup phase for
computing common preprocessed input for a circuit. The rest of the protocol
is split into Ąve rounds. Finally, there is an algorithm for the veriĄer, but we
will not get into the details as the veriĄer simply checks all parts of the proof.
The Ąnal proof is the batched KZG polynomial commitment that proves multiple
evaluations on multiple points. So the veriĄer algorithm does some trivial validity
checks to verify that elements of the correct Ąeld and groups were provided, then
reconstructs proof fragments and Ąnally does batch veriĄcation. The simpliĄed
protocol is shown in the diagram below. In the next chapter, we will show a
complete prover algorithm diagram.

35

• n number of gates in the arithmetic circuit

• k1, k2 ∈ Fp are needed to create cosets k1H, k2H such that the union H ′ =
H∪k1H∪k2H) contains 3n distinct elements. This will be further explained
in the Section 3.3.

• permutation function: σ∗ : [3n]→ H ′ which is rotation of equivalence classes
in the witness w as described in Section 2.6.5

• selector polynomials: qm(x), ql(x), qr(x), qo(x), qc(x) interpolated from selec-
tor vectors qm, ql, qr, qo, qc introduced in Section 2.5

qm(x) =
√︂n
i=1 Li(x)qmi

qo(x) =
√︂n
i=1 Li(x)qoi

ql(x) =
√︂n
i=1 Li(x)qli qc(x) =

√︂n
i=1 Li(x)qci

qr(x) =
√︂n
i=1 Li(x)qri

• permutation polynomials: Sσ1 , Sσ2 , Sσ3 : [n]→ H ′ interpolated from σ∗

Sσ1(x) =
√︂n
i=1 Li(x)σ∗(i)

Sσ2(x) =
√︂n
i=1 Li(x)σ∗(n+ i)

Sσ3(x) =
√︂n
i=1 Li(x)σ∗(2n+ i)

3.2 Round 1

3.2.1 Computing wire polynomials

The proof generation starts by computing the wire polynomials and committing
to them. Recall that we get the witness values in the arithmetization as columns
of the computational table. The domain is chosen as H = ¶1, ω, ω2, . . . , ωn−1♢
where ωn = 1. Choosing such a domain allows for a sparse representation of the
vanishing polynomial as ZH(x) = xn − 1.

By pairing this domain with the witness w, we get the wire polynomials in the
evaluation domain. To make commitments, the polynomial needs to be in the
coefficient form to evaluate it at the point τ . Conversion to the coefficient form
can be achieved by applying the Lagrange interpolation.

Finally, they should be blinded to ensure that the commitment to the wire
polynomials does not leak information about the wire polynomial. As described
in Theorem 2, this construction maintains the zero-knowledge property. The
prover must uniformly randomly sample 9 blinding scalars (b1, b2, . . . , b9). In
round 1, there are nine sampled blinding scalars, even though we only need 6.
The remaining will be used in the following rounds.

37

Round 1

1 : (b1, . . . , b9)← F
9
p

2 : a(x) = (b1x + b2)ZH(x) +
n−1∑︂

i=0

wiLi(x)

3 : b(x) = (b3x + b4)ZH(x) +
n−1∑︂

i=0

wn+iLi(x)

4 : c(x) = (b5x + b6)ZH(x) +
n−1∑︂

i=0

w2n+iLi(x)

5 : return [a]1, [b]1, [c]1

3.3 Round 2

This round ensures the circuitŠs copy constraints. We will start by showing that
constraints hold for inter-vector checks and then extend them to intra-vector
checks.

3.3.1 Permutation check

Say that an adversary gives you two vectors p = [p1, p2 . . . pn], q = [q1, q2 . . . qn],
and you need to decide if they are permutations of each other. So we check if
there is a σ such that ∀i ∈ [n]∃j ∈ [n] : σ(pi) = qj. You could compare elements
one by one, but that is too slow. There is a smarter way to do this. A good start
is to contract the vectors into a single value. So, we can perform, for example,
something like a product check where we compare:

p1 · p2 . . . · pn
?
= σ(q1) · σ(q2) . . . · σ(qn)

This approach is correct because multiplication is commutative but not sound,
meaning the check can pass even if the vectors are not equal. For example, the
vectors [1, 6] and [2, 3] have both products of element 6. However, they are not
permutations of each other. What if we sample uniformly randomly an element γ
and check:

(p1 + γ) · (p2 + γ) . . . (pn + γ)
?
= (σ(q1) + γ) · (σ(q2) + γ) . . . (σ(qn) + γ)

n∏︂

i=1

pi + γ
?
=

n∏︂

i=1

σ(qi) + γ

This check is also correct regarding the commutativity of the multiplication,
but what about the soundness? The trick is to think of this expression in
terms of polynomials where each side of the equation is a polynomial evaluated
at a randomly selected point γ. Recalling the Section 2.2.1 about comparing
polynomials, we already know that this check has only negligible failure probability.
Therefore, we can say that the check is sound and has a high probability.

38

3.3.2 Intra-vector check

Now we would like to enforce a speciĄc permutation speciĄc permutation is enforced.
How can we enforce a permutation deĄned as rotation on the equivalence classes?
We will again have two vectors a and permutation σ : H → H. The trick is to
encode the elements as (index, value) where for the index, we will use the elements
of evaluation domain H. Below, we show an example where the permutation
swaps the last two elements.

Figure 3.2 Enforcing speciĄc permutation

So, we will be comparing tuples (ωi−1, wi) to ensure that the speciĄed permutation
was applied:

[(1, w1), (ω,w2) . . . (ω
n−1, wn)]

?
= [(σ(1), w1), (σ(ω), w2) . . . (σ(ωn−1), wn)]

The general permutation check 3.3.1 relied on the fact that we were comparing
polynomials, so now we somehow need to write the tuples as polynomials. We
will construct a linear combination evaluated at a random point, so (ωi−1, w1) will
become wi + βωi−1 where β is randomly sampled.

Why can we use this encoding? To use this check safely in the protocol, we need
to be sure that

(a, b) = (a′, b′) ⇐⇒ a+ βb = a′ + βb′

Once again, the answer is polynomials. Notice that a+ βb is a linear polynomial
with coefficients a, b evaluated at β, and so is a′+βb′ just with different coefficients.
If the random linear combinations are equal, then with very high probability,
the tuples will also be equal. Now, we put everything together and Ąnalize the
intra-vector check for a particular permutation.

(w1 + β1 + γ) . . . (wn + βωn−1 + γ)
?
= (w1 + βσ(1) + γ) . . . (wn + βσ(ωn−1) + γ)

n∏︂

i=1

wi + βωi−1 + γ
?
=

n∏︂

i=1

wi + βσ(ωi−1) + γ

1
?
=

√︃n
i=1 wi + βωi−1 + γ

√︃n
i=1 wi + βσ(ωi−1) + γ

In summary, we have shown that the copy constraints of the arithmetic circuit
could be represented as a permutation and found an effective way to ensure that
these constraints are satisĄed. Once again, the answer lay in converting everything
to polynomials. The last obstacle in constructing the permutation polynomial is
that we need to be able to check the permutation across multiple vectors.

39

3.3.3 Inter-vector check

In this case, we will want to check the permutation across vectors wl, wr, wo, which
are columns of the computation table described in Section 2.5. Each of wl, wr, wo
has size n and we will concatenate them into

w = ¶wl1 , . . . , wln , wr1 , . . . , wrn
, wo1 , . . . , won

♢

which will have size 3n. Now that we have changed the vector size, the domain
H is no longer sufficient for indexing w because it has size n. We will solve
this by using H ′ = H ∪ (k1H) ∪ (k2H), where k1, k2 ∈ Fp are chosen such that
H, k1H, k2H are distinct meaning ∀p, q, r : ωp ≠ ωqk1 ̸= ωrk2. The permutation
function σ∗ will create mapping [1, 2, . . . , 3n]→ H ′ which means i→ ωi, n+ i→
k1ω

i, 2n+ i→ k2ω
i. This is the permutation function that we mentioned in the

protocol setup, and it also implements rotation on the equivalence classes. Using
the same idea as before, we can extend the check to inter-vector cases.

1
?
=

n∏︂

i=1

f(i)

g(i)

f(i) = (wi + βωi + γ)(wn+i + k1βω
i + γ)(w2n+i + k2βω

i + γ) (3.1)

g(i) = (wi + βσ∗(i) + γ)(wn+i + βσ∗(n+ i) + γ)(w2n+i + βσ∗(2n+ i) + γ) (3.2)

This expression might be undeĄned when g(i) is 0; however, it can be proven that
this only happens with negligible probability. When it happens, the protocol is
instructed to abort and repeat with other randomly sampled β, γ.

3.3.4 The Permutation Polynomial

We know how to perform the permutation check, but we want to convince the
veriĄer that it is correct. We cannot give him the values to compute the check
because he would discover w, which violates zero-knowledge, and the computation
would also be too heavy for the veriĄer. We will solve this problem by constructing
the permutation polynomial, which is deĄned as:

z(x) =

⎧
⨄︂
⋃︂

1 x = ω0

√︃i
j=1

f(j)
g(j)

x = ωi where i ∈ ¶1, 2, 3, . . . , n− 1♢
(3.3)

The essential idea of the permutation check remains the same. We are taking
the product of ratios, where the numerator represents the former set and the
denominator represents the permuted set. If each of these ratios is 1, the copy
constraints are satisĄed. How do we construct this polynomial? We will proceed
as usual and perform Lagrange interpolation with the evaluation domain H:

⎛
∐︂f(1)

g(1)
,
f(1)f(2)

g(1)g(2)
,
f(1)f(2)f(3)

g(1)g(2)g(3)
, . . . ,

j∏︂

i=1

f(i)

g(i)

∫︁
ˆ︁

40

That means the (almost Ąnal) permutation polynomial could be written as:

z′(x) =
n−1∑︂

i=1

Li(x)
i∏︂

j=1

f(j)

g(j)

This polynomial satisĄes just the condition for x = ωi where i ∈ ¶1, . . . n− 1♢ and
to enforce that permutation polynomial evaluates to 1 on ω0 we add the Lagrange
basis L0(x). To Ąnish it up, just add blinding scalars, but this time, we will need
a blinding polynomial of degree 2 because later, there will be two openings of
z(x).

z(x) = (b7x
2 + b8x+ b9)ZH(x) + L0(x) + z′(x)

Now, the prover needs to convince the veriĄer that it evaluates to 1 over H. If
we do not include any addition checks, the prover could interpolate the following
polynomial [(1, 1), (ω, 1), (ω2, 1) . . . (ωn−1, 1)].

Round 2

1 : β = H(transcript, 0), γ = H(transcript, 1)

2 : compute permutation polynomial z(x)

3 : return [z]1

3.4 Round 3

The prover needs to combine checks from the previous rounds as well as convince
the prover that the permutation polynomial was computed as speciĄed by the
protocol. But that is not all. We also need to handle the problem with polynomials
exceeding the degree bound n.

In the last round, we computed and committed to z(x); however, we did not prove
that it was computed correctly. SpeciĄcally we have promised that z(ω) = 1,
otherwise for x = ωi it is cumulative product

√︃i
j=1 f(i)/g(i). This is the same as

checking:

(z(x)− 1)L0(x) = 0 (3.4)

z(x)f̃(x) = g̃(x)z(xω) (3.5)

f̃(x) = (a(x) + xβ + γ)(b(x) + xβk1 + γ)(c(x) + xβk2 + γ)

g̃(x) = (a(x) + βSσ1(x) + γ)(b(x) + βSσ2(x) + γ)(c(x) + βSσ3(x) + γ)

This is not immediately obvious. The proof is in Section 3.4.1. The quotient
polynomial denoted as t(x) in the paper consists of the sum of 3 expressions
t = t1 + t2 + t3:

t1(x) = (a(x)ql(x) + b(x)qr(x) + c(x)qo(x) + a(x)b(x)qm(x) + PI(x) + qci
)

1

ZH(x)
(3.6)

41

t2(x) = (f ′(x)z(x))
α

ZH(X)
− (g′(x)z(ωx))

1

ZH(x)
(3.7)

t3(x) = (z(x)− 1)L1(x
1

ZH(x)
(3.8)

t(x) = t1(x) + t2(x)α+ t3(x)α2

The quotient polynomial might be long but comprises elements that make sense.

3.4.1 Computing quotient polynomial

3rd term

This corresponds to checking the Ąrst part of the z(x) deĄnition.

Lemma 12 (First property of permutation polynomial). ∀x ∈ H : (z(x) −
1)L1(x) = 0 =⇒ z(ω) = 1

Proof. For x ̸= ω, the Lagrange basis evaluates to 0, and there is no constraint
for z(x). However for x = ω we get z(ω)− 1 = 0 meaning that z(ω) indeed must
be equal to 1.

2nd term

Theorem 4 (First property of permutation polynomial). ∀i ∈ [n] : z(ωi)f ′(ωi) =

g′(ωi)z(ωi+1) =⇒ ∀i ∈ [n] : z(ωi) =
√︃i−1
j=1

f ′(ωj)
g′(ωj)

Lemma 13. We will show this by induction. For the base case i = 1 we get:

z(ω)f(ω) = g(ω)z(ω2)

z(ω2) =
f(ω)

g(ω)

We know that z(ω) = 1 is already checked for that; the rest simpliĄes easily. For
the case i = k + 1

z(ωk+1)f(ωk+1) = g(ωk+1)z(ωk+2)

k∏︂

j=1

f(ωj)

g(ωj)
f(ωk+1) = g(ωk+1)z(ωk+2)

k∏︂

j=1

f(ωj)

g(ωj)

f(ωk+1)

g(ωk+1)
= z(ωk+2)

z(ωk+2) =
k+1∏︂

j=1

f(ωj)

g(ωj)

42

1st term

These are the gate constraints introduced in the overview (2.5). Including them
in the quotient polynomial makes sure they hold for each gate.

Each check passes if the designated polynomial is zero on the evaluation domain.
We want to combine to batch these checks such that t(x) = 0 ⇐⇒ t1(x) =
0∧t2(x) = 0∧t3(x) = 0. To achieve this, we will construct the quotient polynomial
using random challenge α:

t(x) = t1(x) + t2(x)α+ t3(x)α2

.

This technique is standard for batching checks in cryptography. The intuition on
why this approach is secure is that the challenge is determined by the transcript,
which contains the commitments to the polynomials that construct t(x). So, the
prover cannot make assumptions about the challenge before the commitment.

3.4.2 Splitting quotient polynomial

Finally, we can construct the quotient polynomial t(x). However, the problem
is that the polynomial degree is too big. We want our polynomials to have the
maximum degree of n to be able to commit to them. While creating SRS, we
assumed so in the setup, and the whole KZG commitment scheme relies on it. We
can split t(x) into < n degree polynomials t′lo(x), t′mid(x) and t′hi(x) of degree at
most n+ 5 such that:

t(x) = t′lo(x) + xnt′mid(x) + x2nt′hi(x).

Why does thi have degree bound n+ 5? The degree of t(x) is determined by t2(x)
where we multiply wire polynomials a(x), b(x), c(x) and permutation polynomial
z(x). Each of the wire polynomials has degree bound n+ 1, and the permutation
polynomial has n+ 2, which makes it 4n+ 5, but t2(x) is also divided by ZH(x) of
degree n. Therefore, the degree bound of the quotient polynomial t(x) is 3n+ 5.
This means t(x) can be written as t(x) = c0 + c1x . . . c3n+5x

3n+5. Then we can
split as:

t′lo(x) = c0 + c1x+ c2x
2 . . . cn−1x

n−1

t′mid(x) =
cnx

n + cn+1x
n+1 . . . c2n−1x

2n−1

xn

t′hi(x) =
c2nx

2n + c2n+1x
2n+1 . . . c3n−5x

3n−5

x2n

Blinding with b10, b11 ∈ Fp is performed as follows: tlo(x) = t′lo(x)+b10x
n, tmid(x) =

t′mid(x)− b10 + b11x
n, thi(x) = t′hi(x)− b11. Now we are ready to calculate commit-

ments with a degree at most n+ 5: [tlo(s)]1, [tmid(s)]1, [thi(s)]1.

Round 3

1 : α← Fp

2 : t(x) = t1(x) + t2(x)α + t3(x)α2

3 : t(x)− > tlo, tmid, thigh

4 : return [tlo]1, [tmid]1, [thigh]1

43

3.5 Round 4

In this round, the prover computes evaluation openings, denoted with a horizontal
line above. The openings are performed at a random point z. In an interactive
case, z is chosen by the veriĄer. In non-interactive variant it is given by a hash
function applied to a transcript of the prover computation. All the prover has
to do is calculate and output: a = a(z), b = b(z), c = c(z), zω = z(ωz), Sσ1 =
Sσ1(z), Sσ2 = Sσ2(z). It is as simple as that. Now, letŠs look at ways to minimize
the number of openings to reduce protocol communication costs.

3.5.1 Linearization trick

Imagine that the prover wants to show that h1(x)h2(x)−h3(c) = 0 over a speciĄed
domain. Then he sure needs to commit to these polynomials and send their
openings at a random z, resulting in 3 commitments and three openings. The
veriĄer needs to check ∀x ∈ H : h1(x)h2(x) − h3(c) = 0, which simpliĄes to
checking just at a single random point z.

Standard approach

Prover P Verifer V

f1(x), f2(x), f3(x)

get challenge z

f1, f2, f3

[f1]1, [f2]1, [f3]1

f1, f2, f3

verify openings

f1f2 + f3
?
= 0

There is a better approach, sketched as the Linearization trick, where the prover
sends 3 commitments but just two 2 openings. This minimizes both the com-
munication load and the proof size. The trick is to construct a linearization
polynomial: l(x) = f1f2(x)− f3(x). As before, the prover needs to send commit-
ments [f1]1, [f2]1, [f3]1, but the openings are f1 = f1(z) and l = l(z) = f1f2 − f3.

Why is the prover not sending commitment to the linearization polynomial l(x)?
Simply because the veriĄer can calculate [l]1 on his own. Recall that commitments
are deĄned as [f]1 = G

f(τ)
1 elements of a group deĄned by points on an elliptic

curve over a Ąnite Ąeld Fp. In the group, only one operation is deĄned between
the group elements: addition. This means that we can add commitments but not
multiply them. However, it is possible to multiply a group element by a constant
so we can calculate [l]1 = f1[f2]1− [f3]1. This means that to calculate commitment
to the linearization polynomial, there can be only the addition of polynomials but
not multiplication.

44

So, if the prover can reconstruct the commitment to the linearization polynomial
[l]1, he can also check that the opening l is a correct evaluation at z. Since the
linearization polynomial is constructed as l(x) = f1f2(x)−f3(x) it means checking
l

?
= is equivalent to checking f1f2 − f3

?
= 0.

Linearization trick

Prover P Verifer V

f1(x), f2(x), f3(x)

get challenge z

l(x) = f1f2(x) + f3(x)

[f1]1, [f2]1, [f3]1

l, f1

[l]1 = f1[f2]1 + [f3]1

verify openings

l
?
= 0

Why is it not possible to use pairings? We have deĄned curve pairing as a mapping
e : G1 × G2 → Gt, it is possible to perform Şmultiplication in the exponentŤ as
described in Section 2.1.2. In the context of KZG, the veriĄer performs the check
in the target group as

e(CG−v1 , G2)
?
= e(W,Gτ

2G
−z
2).

However this operation can be performed only once because we end up with points
in the target group where we cannot use the mapping e. So, a very high-level
explanation for why we do not use the curve pairings in the linearization trick is
that the pairing can be used only once in the protocol, and we reserve this for the
veriĄer to do the KZG veriĄcation.

Round 4

1 : z = H(transcript)

2 : a = a(z), b = b(z), c = c(z), zω = zω(x), Sσ1 = Sσ1(x), Sσ2 = Sσ2(x)

3 : return zω, Sσ1 , Sσ2

3.6 Round 5

3.6.1 Linearisation polynomial

Recall from Section 3.4 that the quotient polynomial t(x) was split into 3 parts
to reduce the degree. So, it must hold:

tlo + xntmid(x) + x2nthi =
t1(x) + αt2(x) + α2t3(x)

ZH(x)
= t(x).

45

This means that over the whole evaluation domain H, it holds that:

0 = t1(x) + αt2(x) + α2t3(x)− ZH(x)(tlo + xntmid(x) + x2nthi). (3.9)

This is the base of how we will construct the linearisation polynomial r(x). Some of
the terms in t1(x), t2(x), t3(x) are substituted with the openings a, b, c, zω, Sσ1 , Sσ2

calculated in Section 3.5. The linearisation polynomial can be written as:

r(x) =abqm(x) + aql(x) + bqr(x) + cqo(x) + PI(z) + qc(x)

+ α[(a+ βz + γ)(b+ βk1z + γ)(c+ βk2z + γ)z(x)

− (a+ βsσ1 + γ)(b+ βsσ2 + γ)(c+ βSσ3(x) + γ)zω]

+ α2[(z(x)− 1)L0(z)]

− ZH(z)(tlo(x) + zntmid(x) + z2nthi(x))

The whole polynomial corresponds to the quotient polynomial minus ZH(z)(tlo(x)+
zntmid(x) + z2nthi(x)).

• The Ąrst line represents the arithmetic gate check corresponding to the t1(x)
3.6 in the quotient polynomial t(x).

• Lines 2 and 3 represent the second check of the permutation polynomial 3.5,
which is described by t2(x) in t(x).

• Line 4 is the Ąrst check of the permutation polynomial 3.4, which corresponds
to t3(x) in t(x).

• The last line is from the expression above 3.9.

Since we ŞderivedŤ the linearization polynomial from the expression 3.9, it should
hold that r(x) is zero over the whole domain H. Notice which polynomials are
evaluated (denoted with the horizontal line). As described in the previous round,
the linearization polynomial can contain polynomial additions and multiplication
of polynomials by a constant, but not multiplication of two polynomials. And
that is exactly what we are trying to achieve here. The openings are picked so
that there is a single multiplication of polynomials. The terms ZH(z), L0(z) are
in fact constants. This allows us to use the linearization trick, and as a result,
the prover does not send the commitment [r]1 because the veriĄer can calculate it
independently.

The big picture is that the prover is trying to prove: 0 = t1(x)+αt2(x)+α2t3(x)−
ZH(x)(tlo + xntmid(x) + x2nthi). If he did it naively, he would need to send an
opening to every single polynomial. However, thanks to the linearization trick, we
are able to minimize the number of openings, thus also reducing the proof size.

3.6.2 Opening proof polynomial

The prover needs to send a proof of the opening for a, b, c, Sσ1 , Sσ2 at z and zω at
zω. This is captured by the polynomials Wz(x),Wzω(x).

46

First opening proof polynomial

The opening proof polynomial is constructed by batching opening proof polyno-
mials from the KZG polynomial commitment scheme in Section 2.3.2. We have
proof polynomials:

r(x)

x− z

proves
−−−→ r(z) = 0

a(x)− a

x− z

proves
−−−→ a(z) = a

b(x)− b

x− z

proves
−−−→ b(z) = b

c(x)− c

x− z

proves
−−−→ c(z) = c

Sσ1(x)− Sσ1

x− z

proves
−−−→ Sσ1(z) = Sσ1

Sσ2(x)− Sσ2

x− z

proves
−−−→ Sσ2(z) = Sσ2

These are batched using random challenge v ∈ Fp given by H(transcript).

Wz(x) =
1

x− z

⎛
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

r(x)

+ v(a(x)− a)

+ v2(b(x)− b)

+ v3(c(x)− c)

+ v4(Sσ1(x)− Sσ1)

+ v5(Sσ2(x)− Sσ2)

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

Second opening proof polynomial

Prover calculates Wzω(x). Recall that in the quotient polynomial t(x), both
z(x), z(zω) appear. Thanks to the linearization trick in (3.5), it is sufficient to
compute zω. However, as z(x) is opened at zω instead of z, we need a separated
opening polynomial Wzω(x), which is the Ąnal polynomial that the prover needs
to calculate.

Wzω(x) =
z(x)− zω
x− zω

This polynomial checks that z(zω) = zω in the same way as described for the
opening polynomial Wz(x). Now the prover can Ąnally send the whole proof:

π = ([a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wωz]1, a, b, c, zω, Sσ1 , Sσ2)

Round 5

1 : v = H(transcript)

2 : Compute linearisation polynomial r(x)

3 : Compute opening proof polynomial Wz(x)

4 : Compute opening proof polynomial Wzω(x)

5 : return π

47

3.7 VeriĄcation

The veriĄer has its own preprocessed input and performs multiple sanity checks
on the proof. The interesting part is the batched veriĄcation of KZG. Essentially,
the prover needs to validate Wz(x),Wzω(x). The polynomials can be written in a
simpliĄed way as Wz(x) = F (x)/(x− z), Wzω(x) = E(x)/(x− zω) and, after some
rearranging, we get:

xWz(x) = zWz(x) + F (x) (3.10)

xWzω(x) = zωWzω(x) + E(x) (3.11)

Now, we can batch the expressions as in Equation (3.11).

x(Wz(x) + uWzω(x)) = zWz(x) + uzωWzω(x) + F (x) + uE(x) (3.12)

In the last steps of the veriĄcation algorithm, the veriĄer calculates the com-
mitments to [E]1, [F]1. The Ąnal step checks the above identity using batched
KZG-style veriĄcation with commitments and pairings.

48

4 Security and Efficiency

The role of the prover is to convince the veriĄer about the valid execution of
a speciĄed arithmetic circuit by showing that conditions form Section 2.6 are
satisĄed. This is done by constructing speciĄc polynomials and proving their
evaluation at uniformly randomly selected points using the KZG polynomial
commitment scheme. It might not be directly clear from the diagram in Figure 4.1,
but the whole protocol is basically a batched KZG for polynomials that prove
valid execution of the circuit.

Degree bound on the polynomials constructed by the prover:

• Wire polynomials deg(a(x)) = deg(b(x)) = deg(c(x)) = n + 1 determined
the multiplication of blinding polynomial of degree 1 and the vanishing
polynomial of degree n.

• Permutation polynomial deg(z(x)) = n+ 2 determined by multiplication of
blinding polynomial of degree 2 and vanishing polynomial of degree n

• Quotient polynomial deg(t(x))3n+ 5 described in the round 3 Section 3.4.2

• Split quotient polynomials deg(tlo(x)) = deg(tmid(x)) = n, deg(thi(x)) =
n+ 5 quotient polynomial is split into 3 smaller polynomials

• Linearisation polynomial deg(r(x)) = n + 5 as described in round 4 Sec-
tion 3.5 the linearisation polynomial cannot contain polynomial multiplica-
tion. Therefore, the degree is determined by the polynomial of the highest
degree, which is thi(x)

• Opening proof polynomial deg(Wz(x)) = n+ 4 degree is determined by t(x)
and consequently divided by (x− z)

• Opening proof permutation polynomial deg(Wzω(x)) = n + 1 degree is
determined by z(x) and divided by (x− zω)

4.1 Advantages and limitations

The PlonK protocol can run for a general circuit of some size that is bounded
by the KZG setup. The setup, in the form of common preprocessed input, is
updatable, and the trusted KZG setup can be reused for any circuit of a given
size bound. Moreover, the size of the proof is constant.

As stated in the article on pipeMSM [10], the calculation of the commitments
seems to be a major bottleneck of PlonK and other SNARK protocols. Another
major bottleneck is FFT. There is a lot of effort to make the prover algorithm
more effective. Possible ways for the protocol optimization are mentioned in the
Section 5.1.

49

4.2 Properties of the protocol

Theorem 5. The PlonK protocol is a succinct, non-interactive, complete, knowl-
edge sound, and zero-knowledge.

Succinctness: The proof π consists of 9 commitments and 6 openings, so for
an arbitrarily large circuit, the proof size remains constant. The veriĄcation
algorithm must perform sanity checks, evaluate 3 public polynomials, calculate 3
additional commitments, and perform a single batched KZG veriĄcation procedure.
The number of operations does not change with respect to the size of the circuit,
so we can conclude that the protocol is succinct.

Non-Interactivity: Non-interactivity is achieved by the Fiat-Shamir heuristic,
where the prover can effectively generate challenges by accessing a random oracle
H. We will not show the correctness of the application of this heuristic.

Completeness: Correctness of PlonK is dependant on many building blocks.
Correctness of the checks for the arithmetic circuit was established by Lemma 10,
Lemma 8, Lemma 9, Lemma 11, and we also showed the correctness of the KZG
polynomial commitment scheme in Section 2.3.1.

Knowledge Soundness: We showed the soundness of each of the checks for
the arithmetic circuit Lemma 10, Lemma 8, Lemma 9, Lemma 11. We did not
properly show the soundness of KZG but referred to Proofs, Arguments, and
Zero-Knowledge [4].

Zero-Knowledge: Since the proof contains only commitments and polyno-
mial opening, it is sufficient to show that masking polynomial makes the KZG
polynomial commitment scheme zero-knowledge, which was proven in Theorem 2.

The formal proof of the Theorem 5 follows from the above discussion.

51

5 Optimizations

Upon publishing, PlonK became a popular SNARK, and variants of the protocol
have been implemented in many cryptocurrency projects. This led to efforts to
make the protocol more efficient. The optimizations can be done on three fronts:

• Polynomial commitment scheme

• Interactive protocol

• Recursive proof composition

5.1 Possibilities for optimization

5.1.1 Polynomial commitment scheme:

The PlonK protocol was initially described with the KZG [2] polynomial com-
mitment scheme, but other polynomial commitment schemes like FRI [13] could
be used as well. As mentioned, commitments realized by MSM place a large
computational load on the prover. One of the authors of PlonK has already
written a follow-up article on the construction of efficient polynomial commitment
schemes for multiple points and polynomials [18] that can be used in PlonK.

5.1.2 Interactive protocol:

This covers the rest of the protocol that is not about the polynomial commitment
scheme. The possibilities for optimization range from more effective arithmetiza-
tion to constructing faster polynomial checks. The major work in this area was
done on the use of custom gates and the construction of lookup tables. By using
more complex custom gates, it is possible to reduce the degree of the circuit, which
determines the complexity of the prover. Custom gates are described in detail
in TurboPlonK [19]. The lookup tables from plookup [20] enable to precompute
values for inputs x and then prove that the witness w exists in that table. These
two approaches are independent and can be combined, as shown in HyperPlonK
[3].

5.1.3 Recursive proof construction:

SNARKs place most of the computational load on the prover. Since the veriĄer
is considered computationally weak, the veriĄcation algorithm is designed to be
lightweight and effective. Nevertheless, optimizing the veriĄer for multiple proofs
is possible. The technique of recursive proof composition can aggregate several
proofs into a single one and provide proof that each of the sub-proofs is valid. This
approach is formalized in the Halo protocol [21], where the authors introduced an
accumulation layer of the proof system.

52

would mean the checks could be encoded more efficiently with fewer polynomial.
This task is complex, but there are other ways to improve the performance. For
example, it is possible to reduce the size of MSM in some of the commitments.

5.3 Wire polynomials degree reduction

In this work, I aimed to give a detailed explanation of the prover algorithm in
the interactive protocol and decided to think of possible improvements in this
area. I led a discussion on potential improvements with Tomáš Krňák [25], who
suggested looking at the construction of wire polynomials a(x), b(x), c(x), which
are interpolated from the witness w.

ZK-Garage interpolates a(x), b(x), c(x) using inverse Fast Fourier transform (iFFT)
implemented in arkworks. The library calculates iFFT using a variant of the
CooleyŰTukey algorithm [26], which requires the number of evaluations to be a
power of two. The wire polynomial computed in round 1 also determines the
degree of the polynomials computed in the following rounds. Reducing the degree
of a(x), b(x), c(x) naturally speeds up the computation of [a]1, [b]1, [c]1, but the
construction and commitment of the quotient polynomial should also be faster.
This makes it a meaningful candidate for optimization.

I have tried to reduce the degree of a(x), b(x), c(x) in two ways suggested by
Tomáš Krňák. It is possible to perform the reduction by polynomial division
in coefficient form and also by pairwise division in evaluation form. The two
approaches are sketched in Figure 5.2.

5.3.1 Problem statement

The problem with the current implementation is that wire polynomials may be
at most twice as big as the size of the circuit because of the padding to the next
power of two. We denote the wire vector as w = ¶w0, w1 . . . wm−1♢. The closest
power of two to m is n. To interpolate w using iFFT, it needs to be padded to
size n, which means that the size of SRS needs to be at least n. In the ZK-Garage,
w is padded with n−m zeros. We denote the interpolated polynomial as:

W (x) = w(x)pad0(x),

where w(x) is deĄned by w on the evaluation domain H = ¶1, ω, . . . ωm−1♢ and
pad0(x) is polynomial which has roots on ¶ωm, ωm+1, ωn−1♢. We can write the
padding polynomial as:

pad0(x) = (x− ωm)(x− ωm + 1) . . . (x− ωn−1). (5.1)

The reference implementation wire vector is padded and interpolated. There is no
further degree reduction which means that a(x), b(x), c(x) have degree n− 1. It is
also worth noting that the protocol does not perform any checks on the padding
domain [ωm, ωn−1], which means we can pad the vectors with arbitrary values. As
shown in the Chapter 2, the prover needs to show the following checks hold:

54

5.3.2 ZK-Garage implementation

Reference implementation in ZK-Garage

1 : construct padding vector [0]n−m

2 : concatenate [w, [0]n−m]

3 : interpolate W (x) = iFFT(w, [0]n−m)

4 : return W (x)

The prover algorithm receives wire vectors wl, wr, wo. These are padded with zeros
and interpolated by iFFT over the domain H to get polynomial a(x), b(x), c(x).
Padded wire vectors are further used to calculate the permutation polynomial
in Section 3.3 because, according to the protocol, the permutation polynomial is
computed in the evaluation form.

Time analysis: The complexity of this approach is dominated by iFFT, which
has complexity O(n log n).

5.3.3 Polynomial division

Reduction by polynomial division

1 : construct padding vector [0]n−m

2 : evaluate [pad0(1), pad0(ω), . . . , pad0(ωm−1)]

3 : concatenate [w, [0]n−m]

4 : pair-wise multiplication w̃ = [w0pad0(1), . . . wm−1pad0(ωm−1), 0 . . . 0]

5 : interpolate W (x) = iFFT(w̃)

6 : reduce degree by polynomial division w(x) = W (x)/pad0(x)

7 : return w(x)

The most straightforward approach when reducing the degree is to perform polyno-
mial division by the polynomial deĄned by the padding values on ¶ωm, . . . , ωn−m♢.
Note that [w0, w1 . . . wm] Ąrst needs to be pair-wise multiplied by [pad0 . . . padm]
so that it holds W (x) = w(x)pad(x). In this approach, I have used the standard
algorithm for long polynomial division. As a result, it is possible to retrieve
w(x) of degree m and use it in the following approach. The padded vector
[w1, . . . wm−1, 0 . . . 0] is again used in the round 2 to calculate z(x).

The zero padding polynomial could be written as pad0(x) =
√︃n−1
i=m(x− ωi). Com-

puting values [pad0(1), pad0(ω) . . . pad0(ωm−1)] requires signiĄcant number of Ąeld
operations. There are n−m Ąeld multiplications needed to calculate value pad(ωi).
To compute values on [1 . . . ωm−1], it is needed to perform n−m×m = nm−m2

Ąeld multiplication, which introduces non-negligible overhead. Luckily there is a
better approach and evaluation of pad0(x) on [1, . . . ωm] can be calculated using
recursive formula:

pad0(x) =

⎧
⨄︂
⋃︂

√︃n−1
j=m(1− ωj) x = 1,

ωn−m−1 ωi−1−ωm−1

ωi−1−ωn−1 pad0(ω
i−1) x = ωi : i ∈ [m] \ ¶1♢

(5.2)

56

To conĄrm the correctness of this formula:

pad0(ω
i)

pad0(ωi−1)
=

n−1∏︂

j=m

ωi − ωj

ωi−1 − ωj
= ωn−m

n−1∏︂

j=m

ωi−1 − ωj−1

ωi−1 − ωj

= ωn−m
ω(ωi−1 − ωm−1)

ωi−1 − ωn−1
= ωn−m

ω(ωi−1 − ωm−1)

ωi−1 − ωn−1

pad0(ω
i) = ωn−m

ω(ωi−1 − ωm−1)

ωi−1 − ωn−1
pad0(ω

i−1)

Time analysis: Calculating evaluations of pad can be done in m iteration
thanks to the recursive formula Equation (5.2) and pairwise multiplication in step
4 of the algorithm could be trivially parallelized. Naive polynomial division, which
has complexity deg(w(x)) × deg(pad0(x)) = n × n −m, which makes the total
complexity n2 − nm+ n log n. Since m < n/2 we can conclude O

(︂
n2 − 3

2
n

)︂
.

From the analysis, we can already conclude that this approach will be much
slower in round 1 than the former implementation. However it is questionable
what is the performance beneĄt in rounds 2 - 5. As suggested by Tomáš Krňák
[25], padding the circuit with a sparse polynomial might slightly speed up the
polynomial division. One possibility is to use padding polynomial padcyclic(x) that
is zero on every k-th element of H instead of pad0(x) which is zero on [ωm . . . ωn−1],
i.e.,

padcyclic(x) = x
n
k − 1. (5.3)

The domain H is generated by the n-th root of unity, so for every ωki it holds
that:

padcyclic(ω
ki) = ωki

n
k − 1 = ωni − 1 = 1i − 1 = 0.

This variant reduces the degree of the wire polynomial to n − n
k

instead of m.
Moreover it requires changing the structure of the circuit. The witness wl, wr, wo
selector qm, ql, qr, qo, qc and public input PI need to be shifted in such way that
every k-th index is 0, otherwise Equation (2.7) fails. We also need to change the
permutation function σ∗ accordingly. This would require a major change in the
repository protocol. Therefore, I did not implement this alternative.

As mentioned earlier, any value could be used as padding. We can try to Ąnd a
different sparse polynomial to pad with. For example, we could pad by values of
the polynomial that has a root at ωm padm0(x− ω

m). However, this polynomial
has only a degree 1, which means after the division, we get a reduction of degree
by 1. This is not useful, so we have to state rough conditions for the polynomial
we are searching for:

1. polynomial is relatively sparse

2. has a high enough degree

3. is not zero on [1, ωm−1]

57

Condition 1. should potentially achieve better performance in the polynomial
division, and condition 2. should make sure that the division is worth it. One might
ask if we could use a polynomial xk for padding. This polynomial is sparse, does not
zero out on the domain H, and could have a sufficient degree. First, let us examine
the case for k = 1. If we divide a polynomial W (x) = c0 + c1x+ c2 +x2 . . . cnx

n by
x we reduce the degree of each monomial as c0/x+ c1 + c2 +x . . . cnx

n−1. However,
the problem is that c0 is likely not divisible by x, which invalidates this approach.
The same problem arises for larger k.

In the end, I did not succeed in Ąnding a suitable polynomial. Even if such
polynomial existed, it is unclear whether there is any reasonable performance
gain. I have tried to measure naive polynomial division by polynomial pad0(x)
and compare the time to other sparse polynomials on n = 214

pad0 xn/8 xn/4 xn/2

Time (s) 152.1 47.32 85.84 114.3

Degree 32766 8192 163681 32768

Division by all of the sparse polynomials is faster than division by the zero-pad
polynomial pad0(x). However, the efficiency mainly depends on the polynomial
degree. In the case of this optimization, we would like to divide by a polynomial
with a high degree to reduce the degree of the wire polynomial as much as possible.
While division by xn/4 is two times faster than division by pad0(x), this variant is
still pretty slow, as seen in the Section 5.4.

5.3.4 Pairwise division

Reduction by pairwise division in domain coset

1 : construct padding vector [0]n−m

2 : interpolate padding polynomial pad0 = iFFT([0]n−m)

3 : calculate coset evaluations cFFT(pad0(x)) = [pad0(k1), . . . , pad0(kωm−1)]

4 : concatenate [w, [0]n−m]

5 : pair-wise multiplication w̃ = [w0pad0(1) . . . wm−1pad0(ωm−1), 0 . . . 0]

6 : interpolate W (x) = iFFT(w̃)

7 : calculate coset evaluations cFFT(W (x)) = [W (k1) . . . , W (kωm−1)]

8 : reduce degree by pairwise division ŵ =

[︃
W (k)

pad0(k)
,

W (kω)

pad0(kω)
. . .

W (kωn)

pad0(kωn)

]︃

9 : interpolate w(x) = ciFFT(ŵ)

10 : return w(x)

With the hope of bypassing the costs introduced by the polynomial division, we
introduce the Ąnal approach, where the division is performed in the evaluation of
the form. It is not possible to perform this computation on the domain H because
pad0(x) is zero on [ωm . . . ωn−1], which is why the division is performed in a coset

58

of the domain H. As in the previous approach, both multiplication by the pad0(x)
in H and division by pad0(x) in the coset of H could be trivially parallelized.

It might be a bit unclear why the reduction actually works since we interpolate
n values in step 6. We will not go into details about the FFT algorithm, but we
provide an intuition. The vector w comes from a speciĄc distribution determined
by the circuit C, public input x, and the witness w, but we will assume that it is
uniformly random. If we take m evaluation of w(x) and interpolate them over H,
then with high probability, the evaluation on [ωm . . . ωn] would not be zero. To
be more speciĄc, for a uniformly random polynomial, the probability would be

1
♣Fp♣

n−m. This is why simply padding w with zeros and using the iFFT returns a
polynomial W (x) of degree n− 1. However, if we instead divide by the evaluation
of the padding polynomial in the coset of the evaluation domain, then all the n
evaluations correspond to the evaluations of w(x), which has degree m− 1. As a
result, we get a polynomial of the degree m− 1 from the interpolation.

Another trick that could make this approach faster is to precompute evaluations
of pad0(x) on H and the cost of H in the protocol setup. The polynomial pad0(x)
depends on m which is determined by the size of w and deg(pad0(x)) could be
anywhere in the interval (n

2
, n). The important thing is that deg(pad(x)) ≤ m

because otherwise, the multiplication in step 5 of the algorithm would zero out
part of w. So, we have to precompute evaluation for multiple sizes of pad0(x) and
then use the suitable one. Although this approach does not completely reduce the
degree to m, it is sufficient to gain performance beneĄts. In the implementation,
we decided to precompute log n/2 evaluation of pad0(x). This precomputation can
save time when we are interested in a SNARK for the general circuit. However,
when we want to run the prover only on a single circuit, we know the m in advance
and can precompute speciĄc padding for m.

Time analysis: Evaluation of pad0(x) can be computed using the recursive
formula Equation (5.2). However, this needs to be done only once in the protocol
setup. Pairwise, multiplication, and division could be parallelized. The wire
polynomial needs to be interpolated by iFFT, evaluated at coset by cFFT and also
interpolated on the coset using coset-iFFT. The total complexity is 3n log n =
O(n log n).

5.4 Benchmarks

5.4.1 Implementation description

The optimization we implemented focuses solely on reĄning the prover algorithm
in Round 1, described in Section 3.2. Instead of direct interpolation of the values
from the circuit, we implement algorithms from Section 5.3.3 and Section 5.3.4.
The procedures use data types created to work with polynomials over Ąnite Ąeld
implemented in the ark-works library. The decision to use ark-works was deliberate,
given that it is a popular open-source library for cryptographic primitives, and
the implementation of ZK-Garage already heavily relied on it.

SpeciĄcally, the polynomials are stored in a vector where the coefficient of xi is

59

stored at location i. In the ark-works, this structure is DensePolynomial, and the
elements of the vector are Ąeld elements. It is possible to choose from a variety of
elliptic curves, all of the measurements were conducted with BSL 12-381. Opera-
tions on the domain are carried out using structure GeneralEvaluationDomain.
It supports efficient FFT operations, enabling transformation between polynomial
evaluation and coefficient forms. The algorithm in the Section 5.3.4 also introduced
additional optimization in the form of precomputation to minimize computational
overhead during proof generation. This is achieved in the preprocessing stage,
and the information is stored in ProverKey. Throughout the implementation,
standard dynamic arrays were predominantly used for storing variables and we
did not Ąnd use for specialized data structures.

5.4.2 Local benchmarks

In the benchmarks, I compared two working implementations against the ref-
erence implementation. All measurements were taken on BenchCircuit, which
benchmarked ZK-Garage PlonK. The circuit contains only dummy constraints
and can be constructed with a variable number of gates. To verify the correctness
of my code, I ran it on other example circuits included in the repository. If the
veriĄer accepts the proof produced, there is a good chance that the changes will
not break the implementation. We provide a link to a public repository with the
implemented optimization.

I compared the two implementations from Section 5.3.3 and Section 5.3.4 against
the reference implementation. At Ąrst, I ran the benchmarks locally on a consumer-
grade notebook. The major limitation was the memory capacity due to the size
of SRS. I measured the total proving time and the time needed to construct
the wire polynomials. The plot in Figure 5.3 shows that the version with a
naive polynomial division is unsurprisingly much worse than the ZK-Garage
implementation. Construction of the wire polynomials alone takes 3 times the
construction of the proof in ZK-Garage. Therefore, I will not consider this
approach in further benchmarks.

The alternative with pairwise division Section 5.3.4 introduces overhead in the
construction of the wire polynomials because it introduces additional FFTs. The
improvement raises with the size of the circuit, which follows from the fact that
the increased size of the circuit leads to greater padding. And the bigger the
padding is, the more we can reduce the degree of the wire polynomials, resulting
in improvements in rounds 2-5. So, for circuits of bigger size, the performance
beneĄt becomes more pronounced. However, the improvement is much lower than
what we were hoping for. To get insight into the problem, I measured what was
happening in rounds 2-5.

5.4.3 Remote benchmarks

The rest of the measurements were taken on servers of the Department of Applied
Mathematics of the Faculty of Mathematics and Physics of Charles University.
The machine has CPU type Intel Xeon E5-2630 v3 with 16 cores and a frequency
of 3200 MHz. The memory usage after the setup of the protocol for the circuit of

60

https://github.com/benbencik/plonk-polynomial-degree-reduction

size 220 reached 50GB, and the whole protocol Ąlled the entire memory of 125GB
on the circuit of size 221. In addition to the proving time and the construction
of wire polynomial a(x), b(x), c(x), I have also measured commitments to these
polynomials [a]1, [b]1, [c]1 and also commitments to the quotient polynomial that
is split into multiple parts as described in Section 3.4. Table 5.4.3 shows the exact
comparison (in seconds) between the reference implementation and the degree
reduction described by pairwise division in the coset from Section 5.3.4. These
results are plotted on Section 5.4.3.

ZK-Garage Reduced Degree

Circuit

size

a(x)

b(x)

c(x)

[a]1

[b]1

[c]1

[t]1
Proof

time

a(x)

b(x)

c(x)

[a]1

[b]1

[c]1

[t]1
Proof

time

215 0.023 0.413 0.466 7.393 0.102 0.260 0.467 7.000

216 0.039 0.834 0.856 14.325 0.183 0.491 0.883 13.882

217 0.061 1.499 1.487 27.369 0.341 0.843 1.489 26.035

218 0.133 2.894 2.954 54.144 0.692 1.642 2.972 52.479

219 0.244 5.393 5.110 106.628 1.268 3.182 5.310 103.123

220 0.499 9.166 9.166 201.599 2.615 5.555 10.817 198.667

It is again evident that the improvement in the proof time is negligible. Time
for the commitment of the wire polynomial decreased signiĄcantly as it should;
however, the commitment of the quotient polynomial did not change at all. In
this optimization, we wanted to reduce the degree of the wire polynomial with the
hope the polynomial t(x) constructed from the wire polynomials would also have a
smaller degree. Since commitments to the quotient polynomial take approximately
the same time and the complexity of commitment is dominated MSM, it must
mean that the degree of the quotient polynomial t(x) does not change at all.

Going back to the ZK-Garage implementation, I found out that the quotient
polynomial is computed in the evaluation form, unlike the protocol description
in the original paper [27]. First, all of the required polynomials are transformed
into a coset of the domain H of size 8n. This is due to a similar reason as in
Section 5.3.4 to avoid division by 0. Each of the parts of the quotient polynomial
is computed in the evaluation form. Finally, they are merged and interpolated
through coset-iFFT. The resulting polynomial is split into 8 parts, and the prover
calculates the commitment to each of them. The reason why the polynomial needs
to be split into 8 parts is that the Equation (2.7) is extended with checks for
custom gates, and there is also an additional polynomial proving the validity of
the lookup table. As a result, the degree of t(x) is determined by interpolation,
and the reduction of the wire polynomial does not affect the degree of the quotient
polynomial.

62

ZK-Garage Round 3

1 : evaluate polynomial on coset of domain of size 8n

2 : calculate t1(x)3.6, t2(x)3.7t3(x)3.8 in the evaluation form

3 : calculate polynomial t4(x) for proving correctness of the lookup table

4 : merge and interpolate t(x) = ciFFT(t1(x) + t2(x) + t3(x) + t4(x))

5 : split the result into 8 polynomials and calculate corresponding commitments

We can conclude that the only performance beneĄt of the optimization from
Section 5.3.4 is in the computation of commitments [a]1, [b]1, [c]1 and the quotient
polynomial is computed from evaluations of wire polynomials. We know that it
is possible to compute the commitment form a polynomial in evaluation form
as explained in Section 2.3.3, so if it even needed to construct the polynomials
a(x), b(x), c(x)? Round 3 uses the evaluation wire polynomials in the cost of the
domain, which is easy to compute. The problem is that there are 8n evaluations
instead of n. We have described how to compute a new evaluation with precom-
puted barycentric weights in n operation. That means calculating the evaluations
on the domain of size 8n will take 8n2, which is slow. However, if there is a smarter
way to do this that is comparable to n log n, we could skip the computation of
a(x), b(x), c(x) together.

In conclusion, the optimization with degree reduction of the wire polynomials did
not bring the desired performance beneĄt for this implementation of the PlonK
protocol due to the reason that round 3 is computed in another way than in the
description of the protocol.

5.4.4 Engineering approach

Designing a more efficient variant of the PlonK protocol is undoubtedly a hard
task, and sometimes, an engineering approach might produce good results. Even
though this was not the purpose of the work, there are many possible improvements
on the software side. The most notable difference was produced by parallelized
computations in round 2 and round 3. As already discussed, the construction of
the wire protocol takes a signiĄcant portion of the proving time, which becomes
even more pronounced for circuits of larger size. Since the quotient polynomial is
computed in the evaluation form, the whole computation is trivially parallelizable.
We improved the function for computing t(x) by a parallelized approach to
computing the evaluation of the polynomial for gate constraints, permutation
constraints, and lookup table constraints. A similar approach also helped to speed
up the construction of the permutation polynomial z(x) in round 2. This approach
was implemented using the parallel iterator in rayon [28], which is a lightweight
data parallelism library. In the next measurement, we compared the approach
Section 5.3.4 with parallel computation of t(x) and z(x). As can be seen from the
results Figure 5.5, this change yields a signiĄcantly faster prover algorithm.

64

permutaiton polynomial quotient polynomial total proof time

Degree zkg. par. imp. zkg. par. imp. zkg. par. imp.

215 0.23 0.05 76.52% 3.72 1.41 62.13% 6.84 4.18 38.88%

216 0.46 0.10 77.73% 7.40 2.77 62.58% 13.39 8.13 39.28%

217 0.89 0.18 79.42% 14.72 5.56 62.25% 25.55 15.16 40.66%

218 1.80 0.33 81.58% 29.56 11.64 60.63% 51.02 30.48 40.26%

219 3.55 0.66 81.44% 59.56 23.24 60.99% 100.75 59.26 41.18%

220 7.11 1.37 80.71% 120.17 47.00 60.89% 195.09 112.38 42.40%

While we have mentioned other design optimizations of the protocol, it might
be also meaningful to work on an engineering solution. There have already been
multiple attempts for hardware optimization of computationally expensive tasks
like MSM, one of which is covered in the paper [10].

65

Conclusion

This work introduces SNARKs and provides a high-level overview of the core
concepts underlying PlonK. The main focus is on explaining the PlonK protocol
in detail and making it more accessible. Additionally, we explored potential
optimization techniques, focusing on reducing the degree of wire polynomials.
We discussed various approaches and their potential effectiveness and achieved a
slight performance improvement. Ultimately, we discovered that a straightforward
software optimization yielded a more notable speed-up.

67

Bibliography

1. Xing, Zhibo; Zhang, Zijian; Liu, Jiamou; Zhang, Ziang; Li, Meng; Zhu,
Liehuang; Russello, Giovanni. Zero-knowledge Proof Meets Machine Learn-
ing in VeriĄability: A Survey. 2023. Available from arXiv: 2310 . 14848

[cs.LG].
2. Kate, Aniket; Zaverucha, Gregory M.; Goldberg, Ian. Constant-Size

Commitments to Polynomials and Their Applications. In: Advances in Cryp-
tology - ASIACRYPT 2010 - 16th International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2010,
vol. 6477, pp. 177Ű194. Lecture Notes in Computer Science. Available from
doi: 10.1007/978-3-642-17373-8_11.

3. Chen, Binyi; Bünz, Benedikt; Boneh, Dan; Zhang, Zhenfei. HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates [Cryptology
ePrint Archive, Paper 2022/1355]. 2022. Available also from: https://

eprint.iacr.org/2022/1355. https://eprint.iacr.org/2022/1355.
4. Thaler, J. Proofs, Arguments, and Zero-Knowledge. Now Publishers, 2022.

Foundations and Trends in Privacy and Security. isbn 9781638281252. Avail-
able also from: https://books.google.cz/books?id=imSazwEACAAJ.

5. Fiat, Amos; Shamir, Adi. How to Prove Yourself: Practical Solutions
to IdentiĄcation and Signature Problems. In: Advances in Cryptology -
CRYPTO Š86, Santa Barbara, California, USA, 1986, Proceedings. Springer,
1986, vol. 263, pp. 186Ű194. Lecture Notes in Computer Science. Available
from doi: 10.1007/3-540-47721-7_12.

6. Dao, Quang; Miller, Jim; Wright, Opal; Grubbs, Paul. Weak Fiat-
Shamir Attacks on Modern Proof Systems [Cryptology ePrint Archive, Paper
2023/691]. 2023. Available also from: https://eprint.iacr.org/2023/691.
https://eprint.iacr.org/2023/691.

7. Petkus, Maksym. Why and How zk-SNARK Works. CoRR. 2019. Available
from arXiv: 1906.07221.

8. Bellés-Muñoz, Marta; Urroz, Jorge Jiménez; Silva, Javier. Revisiting
cycles of pairing-friendly elliptic curves [Cryptology ePrint Archive, Paper
2022/1662]. 2022. Available also from: https://eprint.iacr.org/2022/

1662. https://eprint.iacr.org/2022/1662.
9. Henry, Ryan; Cheriton, David R.; Ontario, Northeastern. PippengerŠs

Multiproduct and Multiexponentiation Algorithms (Extended Version). In:
2010. Available also from: https://api.semanticscholar.org/CorpusID:

168527.
10. Xavier, Charles. F. PipeMSM: Hardware Acceleration for Multi-Scalar

Multiplication [Cryptology ePrint Archive, Paper 2022/999]. 2022. Available
also from: https://eprint.iacr.org/2022/999. https://eprint.iacr.

org/2022/999.
11. Agrawal, M.; Biswas, S. Primality and identity testing via Chinese remain-

dering. In: 40th Annual Symposium on Foundations of Computer Science
(Cat. No.99CB37039). 1999, pp. 202Ű208. Available from doi: 10.1109/

SFFCS.1999.814592.

68

https://arxiv.org/abs/2310.14848
https://arxiv.org/abs/2310.14848
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://books.google.cz/books?id=imSazwEACAAJ
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2023/691
https://arxiv.org/abs/1906.07221
https://eprint.iacr.org/2022/1662
https://eprint.iacr.org/2022/1662
https://eprint.iacr.org/2022/1662
https://api.semanticscholar.org/CorpusID:168527
https://api.semanticscholar.org/CorpusID:168527
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://doi.org/10.1109/SFFCS.1999.814592
https://doi.org/10.1109/SFFCS.1999.814592

12. Berrut, Jean-Paul; Trefethen, Lloyd N. Barycentric Lagrange Interpola-
tion. SIAM Review. 2004, vol. 46, no. 3, pp. 501Ű517. Available from doi:
10.1137/S0036144502417715.

13. Ben-Sasson, Eli; Bentov, Iddo; Horesh, Yinon; Riabzev, Michael.
Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In: Electron.
Colloquium Comput. Complex. 2017. Available also from: https://api.

semanticscholar.org/CorpusID:5637668.
14. Wegman, Mark N.; Carter, J.Lawrence. New hash functions and their

use in authentication and set equality. Journal of Computer and System
Sciences. 1981, vol. 22, no. 3, pp. 265Ű279. issn 0022-0000. Available from
doi: https://doi.org/10.1016/0022-0000(81)90033-7.

15. Drake, Justin. PLONK without FFTs. 2020. Available also from: https:

/ / www . youtube . com / watch ? v = ffXgxvlCBvo & t = 2146s. Presented at
zkSummit5.

16. Bellés-Muñoz, Marta; Isabel, Miguel; Muñoz-Tapia, Jose Luis; Rubio,
Albert; Baylina, Jordi. Circom: A Circuit Description Language for Building
Zero-Knowledge Applications. IEEE Transactions on Dependable and Secure
Computing. 2023, vol. 20, no. 6, pp. 4733Ű4751. Available from doi: 10.1109/

TDSC.2022.3232813.
17. Boneh, Dan. Building a SNARK (Part I). [N.d.]. Available also from: https:

//zkhack.dev/whiteboard/module-two/. Table retrieved from slide 18.
18. Boneh, Dan; Drake, Justin; Fisch, Ben; Gabizon, Ariel. Efficient poly-

nomial commitment schemes for multiple points and polynomials [Cryptol-
ogy ePrint Archive, Paper 2020/081]. 2020. Available also from: https:

//eprint.iacr.org/2020/081. https://eprint.iacr.org/2020/081.
19. Ambrona, Miguel; Schmitt, Anne-Laure; Toledo, Raphael R.; Willems,

Danny. New optimization techniques for PlonKŠs arithmetization [Cryptology
ePrint Archive, Paper 2022/462]. 2022. Available also from: https://eprint.

iacr.org/2022/462. https://eprint.iacr.org/2022/462.
20. Gabizon, Ariel; Williamson, Zachary J. plookup: A simpliĄed polynomial

protocol for lookup tables [Cryptology ePrint Archive, Paper 2020/315]. 2020.
Available also from: https://eprint.iacr.org/2020/315. https://

eprint.iacr.org/2020/315.
21. Bowe, Sean; Grigg, Jack; Hopwood, Daira. Recursive Proof Composition

without a Trusted Setup [Cryptology ePrint Archive, Paper 2019/1021].
2019. Available also from: https://eprint.iacr.org/2019/1021. https:

//eprint.iacr.org/2019/1021.
22. contributors, zk-garage. zk-garage: PlonK Implementation by zk-Garage.

[N.d.]. Available also from: https://github.com/ZK-Garage/plonk.
23. contributors, arkworks. arkworks: zkSNARK ecosystem. [N.d.]. Available

also from: https://arkworks.rs.
24. Ivanov, Nikolay. Is Rust C++-fast? Benchmarking System Languages on

Everyday Routines. 2022. Available from arXiv: 2209.09127 [cs.PL].
25. Krňák, Tomáš. Personal Conversation about PlonK acceleration. 2024.
26. Cooley, James W.; Tukey, John W. An algorithm for the machine calcu-

lation of complex Fourier series. Mathematics of Computation. 1965, vol. 19,
pp. 297Ű301. issn 0025Ű5718. URL: http://cr.yp.to/bib/entries.html#

1965/cooley.

69

https://doi.org/10.1137/S0036144502417715
https://api.semanticscholar.org/CorpusID:5637668
https://api.semanticscholar.org/CorpusID:5637668
https://doi.org/https://doi.org/10.1016/0022-0000(81)90033-7
https://www.youtube.com/watch?v=ffXgxvlCBvo&t=2146s
https://www.youtube.com/watch?v=ffXgxvlCBvo&t=2146s
https://doi.org/10.1109/TDSC.2022.3232813
https://doi.org/10.1109/TDSC.2022.3232813
https://zkhack.dev/whiteboard/module-two/
https://zkhack.dev/whiteboard/module-two/
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://github.com/ZK-Garage/plonk
https://arkworks.rs
https://arxiv.org/abs/2209.09127

27. Gabizon, Ariel; Williamson, Zachary J.; Ciobotaru, Oana. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge [Cryptology ePrint Archive, Paper 2019/953]. 2019. Available
also from: https://eprint.iacr.org/2019/953. https://eprint.iacr.

org/2019/953.
28. contributors, rayon. rayon: A data parallelism library for Rust. [N.d.].

Available also from: https://github.com/rayon-rs/rayon.

70

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://github.com/rayon-rs/rayon

	Introduction
	Preliminaries
	Arithmetic circuits
	Argument systems
	Correctness
	Soundness
	Zero-Knowledge

	Succinctness
	Interactive and Non-interactive protocols
	zk-SNARK

	Building Blocks
	Elliptic curves
	Elliptic Curve Arithmetic
	Elliptic curve pairing
	Multi-scalar Multiplication

	Polynomial toolkit
	Comparing polynomials
	Evaluation domain
	Lagrange basis

	Polynomial Commitment Scheme
	KZG Polynomial commitment scheme
	KZG analysis
	KZG in the evaluation form

	Fiat-Shamir transform
	Arithmetization
	Gate equations
	Transcription into polynomials

	Circuit checks
	Zero Test
	Output Check
	Gate Check
	Input Check
	Wiring Check

	The PlonK protocol
	Setup algorithm
	Public Information
	Preprocessed Input

	Round 1
	Computing wire polynomials

	Round 2
	Permutation check
	Intra-vector check
	Inter-vector check
	The Permutation Polynomial

	Round 3
	Computing quotient polynomial
	Splitting quotient polynomial

	Round 4
	Linearization trick

	Round 5
	Linearisation polynomial
	Opening proof polynomial

	Verification

	Security and Efficiency
	Advantages and limitations
	Properties of the protocol

	Optimizations
	Possibilities for optimization
	Polynomial commitment scheme:
	Interactive protocol:
	Recursive proof construction:

	ZK-Garage PlonK
	Wire polynomials degree reduction
	Problem statement
	ZK-Garage implementation
	Polynomial division
	Pairwise division

	Benchmarks
	Implementation description
	Local benchmarks
	Remote benchmarks
	Engineering approach

	Conclusion
	Bibliography

