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Introduction

Reconstructing programming systems from the past helps us see the history of
modern programming paradigms, but it also serves as a way to explore ideas
that were abandoned. One such system is Pygmalion, which was a program-
ming system described in the 1970s that was “a computational extension of the
brain’s short term memory”[1]. The primary idea to facilitate this design was
Programming by Demonstration. If a user of Pygmalion wanted to create a function
capable of running some algorithm, they would have to do every step themselves
on some concrete values. The system would record all of these steps and would
be capable of playing them back later to run said algorithm. This would work
even on different data than the ones the user used to build the algorithm initially.
Programming by demonstration, according to the author, results in programmers
creating bug-free programs [1]. The original paper describes use cases such as a
data structure visualizer, a function computing the factorial of a number, a circuit
simulator and a Smalltalk language interpreter.

The goal of this thesis is to reconstruct a small subset of Pygmalion, primarily
focusing on the Programming by Demonstration aspect of the orignal system.
Specifically, we will reconstruct the above mentioned example from the original
thesis [1], that describes how to create a reusable function capable of computing
the factorial of an integer. The reconstruction will not be a fully featured system,
rather, we are trying to create a program that will help us understand how the
original system might have worked, and allow users to experience the style of
interaction presented in the original paper.

The main difficulty of the reconstruction is the limited amount of information
available about Pygmalion. There are two major sources available. First is the
original thesis [1] and second, a book that describes Programming by Demonstra-
tion systems called Watch what I do: programming by demonstration[2]. The book
contains a chapter dedicated to Pygmalion that reiterates information from the
original thesis and shows a slightly more detailed factorial example, but not much
more than that. The full Smalltalk-72 source code of Pygmalion is available at the
end of the original thesis. However, because Smalltalk-72 uses several non-ascii
symbols for regular actions[3], the code cannot just be copied straight from the
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thesis and it would be necessary to fill in these symbols manually. Then there is
the problem of actually running a Smalltalk-72 program. Because of these issues,
we did not consider running the program as a viable option to understanding it.

This thesis describes two approaches to recreating Pygmalion. The first one
was based on our initial understanding of the factorial example. The core of the
design was interpreting user actions as operations that build a representation of
the underlying program. This means that when a user performs an action, an
internal representation of the program is modified. The internal representation is
then used when the program is run. Although this appears as a natural imple-
mentation methodology, it suffers from a number of conceptual limitations that
we will discuss. The second version was developed to address these limitations.
It represents the underlying program as a sequence of user actions. Instead of
modifying an internal program representation, whenever a user performs an
action it is applied to immediate state and saved to a list of actions. When the
program is then run, these actions are applied sequentially to a base state, which
in practice recreates the computation of the program.

The thesis follows the following structure. In the first chapter, we will describe
what software recreations are and their purpose. We will also describe Program-
ming by Demonstration, as it is the underlying principle behind Pygmalion. In
the second chapter, we will describe Pygmalion based on our understanding of it,
and highlight some aspects that are lacking in explanation. The third and fourth
chapters will describe the first and second designs explained above, respectively.
Both chapters contain explanations of the underlying data structures, and a clar-
ification of the designs respective core principles. The fifth and final chapter
contain a comparison of our final design and the original system, highlighting
the main similarities and differences between the two.
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Chapter 1

Background

In this chapter we will start by touching upon the ideas behind reconstructing
software and why software reconstruction is important. We will then describe the
concept of programming by demonstration (PbD), and explore examples of this
programming paradigm. Finally, we will discuss the libraries and tools that we
have used to implement our reconstruction, along with the iterative methology
we have followed.

1.1 Software reconstruction
Interlisp is a programming environment built around a version of the Lisp pro-
gramming language. This system had many features for its time, but the one we
will talk about is Do-What-I-Mean, or DWIM for short[4]. DWIM was a part of
the Interlisp programming environment that automatically corrected common
and easily fixable errors. This included errors such as a misspelling of a function
or variable name, a missing paranthesis. These fixes were done straight to the
source code, not just during runtime, and the user might not even know that
DWIM fixed something.

In this example we can see that historical programming systems can contain
interesting concepts and ideas that are rarely seen elsewhere. However, this
leads us to a logical question. How many of these ideas have been lost to time?
DWIM from Interlisp is a well documented example that still sees some use today.
But there most likely exist countless systems and ideas that were never further
explored. Some of these ideas might even be beneficial in modern programming
systems. This is why we think that preserving programming systems (and soft-
ware in general) is important. It prevents interesting ideas that may even prove
beneficial from being forgotten, and allows us to play with these ideas ourselves.

Software reconstruction is a method of preserving software. The main idea
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behind reconstructing software is creating new software that closely mimics the
user and environemnt interactions and potentially the UI design of the original
software. However, we do not necessarily have to replicate implementation
details such as the programming language used, the environment in which the
software ran or the architecture of the original software. Doing these things
would complicate running the software on modern hardware, which is one of the
goals of software preservation.

We have found two primary methods of reconstructing software. The first is
creating software that runs nearly identically. An example of such a reconstruction
is Smalltalk Zoo [5]. Smalltalk Zoo is a website hosting a reconstructed Smalltalk
environment along with many examples of software written in the early versions
of Smalltalk. Most of the software on the site runs the same as it would when it
was created.

Another way to achieve the goals of a reconstruction, atleast partially, is to
create software that is similar to the orignal, but simpler. This can be done to
highlight an interesting part of the software without having to deal with details
that are not important to the demonstration. Petříček [6] created a reconstruction
of the BASIC programming environment to showcase its unique ability to program,
test, debug and run code at the same time. The author decided to not fully
implement the feature set of BASIC, as that would not add anything to the feature
the author was trying to showcase. This method is the one that we chose for our
reconstruction of Pygmalion.

1.2 Programming by demonstration
To explain the concept of Programming by Demonstration, it is useful to first
review the widely accepted understanding of what program and programming
are. The definition of a computer program is “[a] detailed plan or procedure for
solving a problem with a computer; more specifically, an unambiguous, ordered
sequence of computational instructions necessary to achieve such a solution.”
[7] If we look at programs as a “sequence of computational instructions”, we
can understand coding as someone writing down this sequence of instructions,
while potentially using some abtractions. Abstractions are mechanisms that allow
programmers to keep these sequences relatively short. The two most important
aspects of abstractions are “removing detail to simplify and focus attention” and
“the process of generalization to identify the common core or essence”. [8]

Computers understand and operate on simple instructions. Programming
languages can be viewed as abstractions over said instructions. A natural next
step is to create abstractions over programming languages. This means creating
methods that allow development using little to no code. Today, we call these
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methods low-code or no-code development, and they are slowly but surely rising
in popularity [9, 10].

The no-code approach to programming that we will focus on appeared from a
simple question: What if we could perform the actions a program does, instead
of writing them down beforehand using code? This is the main idea behind
programming by demonstration, or PbD for short.

1.2.1 Contemporary example
Programming by demonstration is a concept still in use today, as showcased
by Wrangler. Wrangler is software used for data analysis that implements a
programming by demonstration component capable of creating/reusing data
transformations [11].

Figure 1.1 Wrangler interface. On the left is a menu showing previously applied
transforms and suggestions on what transforms to apply to the selection [11].

The main method of interaction with wrangler is applying the suggested
simple transforms, or performing some ourselves, which builds a reusable script
for applying the same compound transform later. The user can use the suggested
operations to transform the data into various formats. The transforms can include
things like removing a row, removing all empty rows, extracting common text
into a new column, etc.

An example in “Wrangler: Interactive visual specification of data transfor-
mation scripts” [11] is used to clean up data of housing crime in the U.S. First,
the user imports a CSV table with the data into the program. Wrangler then
recognises the format, and automatically splits it into rows and columns. The
user then selects an empty row and uses a suggestion to delete all empty rows in
the document. Then, the user uses another suggestion to extract names of states
from text and creates a new column for them. The rows with the original text are
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then deleted. All of these actions combined then create a script that can be run
on any CSV file and does these same steps.

The main benefit of this approach to editing data is the fact that all changes
show a preview of what will happen. This allows the user to check whether the
action they are about the perform is actually what they wanted, and helps speed
up the editing task.

1.2.2 Historical example
The book Watch what I do: programming by demonstration [2] compiles the most
prominent PbD systems that were created up until 1993. The first of these exam-
ples is Pygmalion, which is the focus on this thesis. We will discuss Pygmalion
later on. Other examples include systems such as Metamouse or TELS. We will
discuss Metamouse next.

Metamouse

Figure 1.2 Excerpt from the Metamouse manual [2].

Metamouse is a prototype drawing program with a ”helper” called Basil. The
original version of the program only supports drawing lines and boxes. The main
purpose of Basil is the user teaching (showing) it how to perform a certain task.
Basil would then ask the user if it could take over once it detects that an action
it knows is being performed. Showing Basil how do do something is done by
performing actions on the screen, such as moving a box or drawing a line. This
creates ”tacks” on the intersections between objects, and the user can show Basil
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which of these intersections are important to preserve and which are concidental.
The user can draw new shapes as helpers to make relationships more explicit.
For example, a line can be drawn to signify how two points on different object
must be placed in relation to eachother. The original article calls shapes like these
”tools” [12].

In an example from Watch what I do: programming by demonstration [2], the
program was used to teach Basil how to sort boxes of differing heights, provided
their base is on the same line. The user could do that by first drawing a spacer
and a sweep line. The sweep line would be moved to the top of the lowest block,
and the intersections with said block would be marked as important. Then, Basil
would be shown how to use the spacer to place a block next to the last sorted one.
When the user moves the sweep line to the second lowest block, Basil asks to
take over, because he understands what to do now. If the user lets Basil take over,
the boxes are then sorted one by one until there are no boxes left. The created
procedure would then sort boxes of any height and count.

In some cases, Basil can incorrectly understand what the users intentions are.
In this case, the user can undo what Basil did, and show it what it was actually
expected to do [12].

1.2.3 Conclusions
As we could see from the examples above, most programming by demonstration
systems operate on one core design principle. They act as a tool to simplify inter-
actions within a single problem domain. This is understandable, as implementing
a useful programming by demonstration system is a challenge in and of itself.
This, however, is why Pygmalion is so interesting. The author imagined it as a
generic programming tool using programming by demonstration. While exam-
ples such as Wrangler or TELS operated on spreadsheets and text respectively,
Pygmalion allows us to interact with and create programs. This is a powerful
idea. A generic programming by demonstration system could be made to support
operations on spreadsheets or text as well. Pygmalion is not advanced or user
friendly enough to achieve this, but it’s an interesting starting point for such an
idea.

1.3 Our implementation
We chose to implement our reconstruction as a web application. The main reason
for this are easy access, and programming simplicity.

Putting the application on a website makes it more accessible to the user.
When we upload the program on the internet, accessing it is possible from any
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device with a modern web browser. If we were to create a computer application,
the user would either have to compile it themselves from source, or we would
have to publish pre-compiled binaries for multiple systems. This way, we can just
share the URL to the application and anyone can access it.

The application is hosted on GitHub Pages, and is configured to automatically
recompile and update on every push to the underlying repository1.

1.3.1 Programming language choice
Our program is coded using the F# language. We also used CSS to help build the
UI.

The first language that we considered was JavaScript. JavaScript is a weakly
typed object-oriented lanugage, that is natively implemented in modern web
browsers. This makes it a great fit for web development. However, because of our
personal preferences and experience, we decided that we would prefer to write
the software using a strongly typed language.

Our second pick was Haskell, a purely functional programming language.
Due to the nature of functional programming languages, creating our program in
Haskell would enable us to easily create understandable and maintainable code.
The fact that Haskell is a purely functional language is also a downside in some
cases. We expected that our project would be easier if we allowed mutability or
an object-oriented approach in some places. This would be impossible to do with
Haskell. That, combined with our unfamiliarity with the web development scene
of Haskell, we decided to search for another language.

Our final pick was F#, a primarily functional programming language running
on .NET, that also supports an object-oriented programming style. Similarly to
Haskell, the functional programming aspects of the language allow us to easily
create readable, maintainable code, while also allowing mutable variables and
object-oriented design principles where necessary. The deciding factor for our
decision was the fact that a transpiler from F# to JavaScript exists. The project is
called Fable [13]. Since we can transpile our F# code into JavaScript, we can make
use of the extensive suite of development tools that exist for JavaScript projects.

1.3.2 Tools and libraries
We already mentioned Fable, a program that can transpile F# code into various
languages, primarily JavaScript [13]. There is a number of different libraries that
simplify web development that were used in this project.

1https://github.com/A-Habusta/Pygmalion-Like-Reimplementation
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Elmish

Figure 1.3 The flow of data in an Elmish application [14].

To go along with Fable, we used the Elmish library for our program structure.
The library implements a model, view, update design pattern that is inspired by
the Elm programming language. The basic idea of the library are three functions:
update, view and init. The init function creates an initial state. The view function is
responsible for drawing the current state to the screen. It receives a function called
dispatch as a parameter. This function is supplied by the library. The function
can then be called by UI elements to signal to the program that something is
happening. When a message is dispatched, it is passed to the update function,
along with the current state. This function takes care of updating the state based
on the message that was dispatched [14].

We chose this library because themodel described above is a good fit for simple
interactive web applications that are built around an immutable representation of
the application state.

Aether

Aether is an F# library that adds optics to the language [15]. While there
are multiple concepts that can be categorized as optics, we will only talk about
lenses and prisms, since those are the optics that we used the most. According to
Steckermeier [16], “lenses in functional programming offer a way of focusing on
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// Create simple data types
type Address = {

Street: string
City: string
PostalCode: string

}
type Person = {

Name: string
Address: Address

}

// Create simple lenses
let personAddressLens =

(fun p -> p.Address),
(fun address p -> { p with Address = address })

let addressCityLens =
(fun a -> a.City),
(fun city a -> { a with City = city })

// Create a composed lens used to modify the nested City
// field within a Person instance
let personCityLens =

Lens.compose personAddressLens addressCityLens

// Create a modified copy of person using the composed lens
let updatedPerson = Lens.set personCityLens "New City" person

Figure 1.4 Simple use case of lenses.

a particular part of a, possibly nested, data structure or container.” This means
that lenses allow us to work with a specific part of a data structre. Lenses are
also composable, meaning that we can create a lens that looks at a member of a
nested data structure. The usage of lenses is illustrated in figure 1.4.

In our system, we use the term Prism to refer to something akin to a lens
but capable of handling the potential unavailability of the data its pointing to.
An example of this is accessing the n-th index in a list. If the list has more than
𝑛 + 1 members then the access works fine, but if it has less than or equal to 𝑛
members, the access would fail. Prisms deal with this by returning the accessed
type wrapped in the Option type. An Option<T> type has two states. It can either
contain a value of type T, or None2. In the case of the above mentioned example,
acessing a list index outside of the range of the list using a prism would return
None, while a valid access would return the normal value wrapped in Some.

2This is similar to std::optional in C++ or nullable types in C#
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Feliz

Feliz is another F# library. It provides a DSL for simple, type safe creation of React
elements inside F# [17]. We used this library to build the basic structure of our
application. Fable provides its own library for this, but the official repository of
the Fable project mentions that users should prefer to use Feliz instead [18].

Vite

Vite is a web development build tool that bundles web applications for pro-
duction [19]. It is also capable of running a dev-server and hot reloading the
application on file changes. This was very useful during development, as we could
see the changes we made to the code in real time. We also use Vite to bundle the
transpiled F# code into a single JavaScript file before it is uploaded to the project
website.

GitHub

We used GitHub for version control of both the software and this thesis. We also
used GitHub Pages to host the application, since it is static and does not require a
server to run. Lastly, we used GitHub Actions to automatically recompile and
update the published application on every push to the repository. The same was
done for the thesis.

1.3.3 Methodology
One of the goals of our application was to understand how Pygmalion could have
been implemented. To achieve this, we followed an iterative development process.
This meant that we would implement a design, see what we learned from it, and
then transfer our knowledge to the next design. We only created two designs
from this process, as we felt that we had learned enough for our purposes.
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Chapter 2

Pygmalion

Pygmalion is a visual programming system created in the year 1975 by David
Canfield Smith. The main goal of Pygmalion was to “develop a system whose
representational and processing facilities correspond to and assist the mental
processes that occur during creative thought.” [1] The author wanted Pygmalion to
serve as an intuitive translation medium between a users mind and the computer.

This chapter serves as the main introduction of the Pygmalion programming
system. We will discuss a high level overview of the system and then move on to
aspects of the design that are unclear from the original document [1].

2.1 Introduction
According to Smith [1], Pygmalion is ”a two-dimensional, visual programming
system implemented on an interactive computer with graphics display. Commu-
nication between human being and computer is by means of visual entities called
’icons’, subsuming the notions of ’variable’, ’reference’, ’data structure’, ’function’
and ’picture’. The heart of the system is an interactive ’remembering’ editor for
icons, which executes and (optionally) saves operations for later re-execution.”
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Figure 2.1 The Pygmalion programming environment [1].

Pygmalion was programmed using Smalltalk 72 [1]. Smalltalk 72 is an object-
oriented language, that uses ”messages” to communicate between instances of
classes. These messages are passed around using strings of characters. The
messages that a class can respond to define the semantics of said class [3]. At the
time of writing this thesis, Smalltalk-72 is only usable through emulators. An
example of such an emulator is Smalltalk Zoo [5]. Even though we have the full
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source code of Pygmalion available through a scan, it cannot be easily run in such
an emulator. This is because there is no way to easily copy the source code from
the original thesis, due to special Smalltalk symbols.

2.1.1 Icons
The main focal point of Pygmalion are icons. Like mentioned in the earlier
citation, icons can represent variables, data structures and even functions. The
user can manipulate icons by selecting various menu entries and then clicking on
the canvas or on icons. This menu can be seen in figure 2.1. The entries allow
the user to move icons, create new ones, define their shape, etc. Icons can also be
nested within one another. This can be used to represent nested data structures,
or function parameters, function results, etc.

Icons can be thought of as objects that havemultiple attributes. The interesting
ones are SHAPE and BODY. Both of these hold a list of actions that the icon can
perfrom. This list is called the code list. While SHAPE and BODY are functionally
identical1, they should be used for different purposes. As their names suggest,
the SHAPE attribute should be used for drawing the visual representation of the
icon. The BODY attribute should be used for the actual functionality of the icon, if
there is any. When an icon is evaluated, the body is executed by replaying all the
actions in the body list. Similarly, when an icon is drawn, the shape is drawn by
replaying all the actions in the shape list.

Other attributes are expected things such as X and Y for the position of the
icon on the canvas, NAME for the name of the icon, etc.

2.1.2 Modes of operations
Pygmalion has two modes of operation. The first is the display mode, and the
second is the remembering mode. These modes seem to be mutually exclusive,
but it also seems that we don’t have to have either of them turned on.

Display mode

This mode is not very well explained. According to Smith, “[d]isplay mode
provides a means for communicating the semantics of operations visually.” [1]
and that “[i]t is also turned on when an iconic trace of a program is desired.”
From these descriptions, we can assume that display mode can be used for a
visual replay of an operation. The mode can also be turned off to gain execution
speed [1].

1The author specifies that the SHAPE attribute may be used as another function body for an
icon, but does not explain how.
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Remember mode

This mode is the used for defining the BODY or SHAPE attributes of an icon. When
remember mode is turned on, most, if not all, actions that the users perform are
saved in the correct code list of a specific icon. Remember mode can then be
turned off using the done operation, or by pressin a “Stop remembering” button.

To enter remember mode, the user either has to explicitly turn it on, or the
system will automatically turn it on when a trap is hit. Traps are special actions
that are saved at the end of unfinished code lists. They represent a branch of the
code list that is not yet defined fully. When they are executed, remember mode is
turned on and the screen is cleared of all icons that are not part of the icon that
hit the trap. This allows us to continue defining the unfinished branch.

2.1.3 Pre-defined operations
Some of the entries in the menu, specifically the ones under the fields opcodes
and control allow the user to put pre-defined icons on the screen.

Opcodes

The opcodes are simple operations, such as basic arithmetic. Internally within
Pygmalion, evaluating one of these pre-defined icons sends a Smalltalk message
to the first parameter, containing the textual representation of the opcode and the
second parameter. The operation that is then executed depends on the response
to the message defined in the first parameter. For example, this allows the +
operation function as addition for integers and as concatenation for strings. The
author however, does not specify how custom Smalltalk objects could be created
for reusing these default opcodes with different underlying operations.

Control

The control tab of themenu contains operations that affect the flow of the program.
Only two of the entries in this tab are icons, specifically the if and the repeat
entries. Both icons can be seen in figure 2.2 and figure 2.3, respectively. We will
discuss these icon in more detail in later sections.

Other operation within this menu are not icons, but rather special operations.
The eval operation executes the BODY of an icon. The done operation finishes
the definition of an icons BODY while in remembering mode. The other operations
are not explained in the original document.
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Figure 2.2 ’If’ icon in Pygmalion [1].

Figure 2.3 ’Repeat’ icon in Pygmalion [1].

2.2 Factorial example
The example that is best explained in the original thesis is the factorial example.
We used this example as the basis for our reconstruction.

The example starts off by creating a new icon, which will represent the
factorial function, with one subicon that serves as the parameter of the function.
A 6 is placed within the parameter subicon and the icon is evaluated. This hits a
trap within the icons body, which causes the program to automatically turn on
remembering mode, and hide everything that is not part of the icon. The author
then starts defining the factorial by creating the necessary icons and using them
for the calculation. One of these icons is the If icon, which is used to check if
we are evaluating the factorial of 1. This icon is not very well explained, so we
will discuss it later. A part of this process can be seen in figure 2.4. An important
step in this process is the usage of a recursive factorial icon. The author creates
another factorial icon, places the original parameter minus 1 into its parameter
box and evaluates it. The definition if this recursve factorial is skipped, and we
only see the result of the evaluation being placed into a multiplication icon. This
can be seen in figure 2.5. Our understanding of this operation will be explained
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later. Afterwards, the result of the multiplication is placed into the original icon
and the calculation is finished.
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Figure 2.4 One step of the definition of factorial, placing the parameter of the factorial
into another icon. Notice the dashed arrow that represents picking up a value and placing
it elsewhere.
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Figure 2.5 Another step of the definition of factorial, taking the result of the nested
call and placing in in the multipliction icon.
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Issues

There are some aspects of this that are not well explained in the original thesis.
The first is the creation of the nested factorial icon. In the example images, the
icon just appears on the screen. According to the author, creation of multiple
identical icons is done using the COPY operation. The copy operation copies
by value and not by reference, so the nested factorial would have its own body
and shape attributes. This would mean that defining the nested factorial would
not affect the original factorial icon. Another issue that arises is that the copied
factorial icon will only contain the actions that were performed up until the copy
itself. With these two problems combined, we would basically have to define
every single recursive call of the factorial function until we hit the base case of 1,
which in our opinion is not feasable.

In Watch what I do: programming by demonstration [2], specifically in the
chapter that discusses Pygmalion, the author used the CALL operation to create
the nested factorial icon. This operation is not explained in the original thesis
nor in the book where it was used, so it is not clear how it works. We can only
assume that is somehow creates a new icon by reference, not by value.

If we assume that the definition of the nested factorial also defines the original
factorial, we run into another problem. The screen shown in figure 2.5 shows the
result of the nested factorial being placed into the multiplication icon. This would
not make sense if the nested factorial shared the body with the main factorial.
Since the nested factorial is already evaluated, that means that its body already
has the necessary actions to evaluate a factorial. This would then mean that even
our main icon should already have these actions, so we would not need to repeat
them.

In the following subsections, we will discuss some of the issues that we
encountered when trying to understand the Pygmalion system in more detail.

Factorial base case

We will assume that there is a way to have nested icons share the BODY attribute
with their parent. We will also assume that step show in figure 2.5 is just for
demonstration purposes. With these two assumptions, we can now discuss our
understanding of how the factorial of 5 is defined in the original example.

When the factorial of 1 is evaluated, the If icon will evaluate to true, and the
code list for a different branch will be executed. Since this would be the first time
that this branch is evaluated, we can assume that it only contains a trap. When
this trap is hit, the program shows us the state of the screen as it was when the
trap was hit.

This would only contain the comparison and If icons, both evaluated to
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True. We then just have to place 1 into the result of the factorial icon, and finish
the definition. Since the factorial of 1 is now defined, we can assume that the
execution continues. The next trap will be hit in the case of the factorial of 2,
since that was where the factorial of 1 was evaluated. We will again see the state
of the screen as it was when the trap was hit, which will be similar to figure 2.5,
but with the parameter being 2 and the result of the factorial being 1. We can
then place the result of the nested factorial into the multiplication icon and finish
the definition of the factorial. Since the factorial is now fully defined, we can
assume that the execution continues until the factorial of 6 is evaluated and the
final result is shown.

A similar example of this can be seen in Watch what I do: programming by
demonstration [2], where the steps the author performs are very similar to the
ones we specifed here.

Alternative factorial base case

If our assumptions are wrong, and the nested factorial does not share the body
with the main factorial, we would have to define each nested factorial separately.
Our first steps would be the same as they were in the section above. When we
create the nested factorial icon, it will copy the BODY from the original, which
includes all the actions up until the creation of the nested factorial. We fill in the
parameter of the nested factorial and evaluate it. This will hit a trap at the point
where the copied body ends, which is right before we created the nested factorial.
We then would have to repeat the steps of creating the nested factorial, filling in
the parameter and evaluating it. This would happen with every nested factorial
until 1. The factorial of 1 just requires us to place 1 into the result of the factorial
icon and finish the definition. We would then have to go back to the factorial of
2 and place the result of the nested factorial into the multiplication icon. This
would have to be repeated for every nested factorial until we reach the factorial
of 6 and finish its definition.

Subsequent evaluations of this icon with values greater than 1 would mostly
work. The BODY of the factorial icon now contains all the actions that copy a new
factorial icon, evaluate it and multiply its result with the parameter. However,
the original factorial icon does not know about the actions that were performed
in the nested factorials, so it does not know what to do when a 1 is encountered.
Even if we define the steps for this case again after hitting a trap, they would not
be saved within the original factorial icon. The only way to fix this would be to
run the original icon with a 1 as a parameter and then finish defining it that way.

Because of these issue, we think that our assumptions from the previous
sections are more likely to be correct, and that the definition of the factorial that
we described in the previous section is the correct one.
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If icon

The If icon is only explained briefly, but we can assume that it contains two
branches of actions, one for when the condition is true and one for when it is
false. The paramter that is evaluated is a boolean. When the If icon is evaluated,
the corresponding branch is chosen, and any further actions are appended to
this branch. The Pygmalion example from Watch what I do: programming by
demonstration [2] shows an updated version of the If, which better highlights
which branch is currently chosen. This feature is not present in the original
system. We have to read the parameter of the If icon to know which branch is
currently chosen.

2.3 Other examples
The original document shows four potential use cases of Pygmalion. One of them
was the factorial, which we discussed in section 2.2. There are three other exam-
ples that were shown in the original document. The first was a circuit simulator.
The other two were a Smalltalk-72 Interpreter and a LISP 70 memory organization
visualizer. These examples are less well-documented then the factorial example,
and they are out of scope of our thesis, so we will not delve too deep into their
explanation.

24



Figure 2.6 A circuit simulator/visualizer within Pygmalion, notice the base icons on
the right. [1].

This example shows a circuit simulation beingmade. It can be seen in figure 2.6.
The user starts off with some custom icons representing simple components of a
circuit, such as a power source, a resistor, a capacitor and multiple types of traces.
The user then copies these icons multiple times and arranges them to create a
simple circuit. What is vague about this example is whether these icons actually
form a circuit that can be simulated, or are just used to create a sketch of circuit.
There is no detailed explanation on how these icons might communicate with
one another.
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The rest of the examples mentioned in the thesis are even less well-explained,
and we will not talk about them in detail.
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Chapter 3

First System Design

In the previous chapter, we described the Pygmalion system and its main features.
We also saw that there is a very limited amount of information about Pygmalions
actual implementation. Because of this, the first design was mostly used for
exploration of the system and how it might have worked internally. We later
abandoned the first design in favor of a different one.

Building upon the knowledge of Pygmalion from the second chapter, we
will first explain the terminology that we use and the main idea behind our
representation. Then, we will move on to data structures used to represent a
program in our system and how the program is evaluated. This will be illustrated
by using an example program that computes the absolute value of an integer.
Finally, we will discuss the various issues around this implementation and why
we ultimately decided to move on to a different design.

Our reconstruction was created with the goal of allowing users to experience
a small subset of the proposed Pygmalion use cases. The choice we ended up with
is an example showing how to create a custom operation computing the factorial
of an integer [1]. This resulted in both designs only containing functionalities
necessary for reproducing said example, meaning that we only support using
operations with integer parameters.

3.1 Important terms
An icon is a single object that is drawn on the screen. It takes some parameters
and can perform an operation on them. This operation is set when the icon is
created. It can be a simple mathematical operation, or something more complex,
like an if branching operation, or calling a user-defined operation.

We call these user-defined operations custom operations. Custom operations
can be thought of as functions in a traditional programming language. They
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take some parameters and return a value. Custom operations are defined by the
user. The user can use icons to perform various simple and custom operations.
The results of these operations can be used in the evaluation of further icons,
leading to a complete definiton of a new operation. The icons, together with the
connections between them, are stored within the custom operation, forming a
tree-like structure. This tree-like structure defines the custom operation.

That is the main idea behind the first design. The tree-like structure that we
build could be considered an expression. When we evaluate this expression, we
end up with the same result as the one the user ended up with when they initially
defined the behaviour of a custom operation (if we use the same inputs). This
metaphor will be explored in more detail later.

Wewill explain the implementation of the first design in the following sections.
We will use F# types, because they offer a clear understanding of how the data is
structured.

3.2 Data Structures
The most basic type in our representation is the IconOperationParameter type,

or IOP for short. It represents a single parameter of an icon. It has four possible
values:

• Trap - This value represents a parameter which is empty or not yet defined.
The name is taken straight from the original system.

• Constant - This value represents a constant integer value.

• BaseIconParameter - Represents a reference to a parameter of the custom
operation that the icon is a part of.

• LocalIconReference - Represents a reference to another icon within the same
custom operation.

The next important type is the IconOperation type. It represents the operation
that an icon performs. The parameters for each kind of operation are stored using
the necessary amount of instances of the IOP type. The IconOperation type
also has four possible values:

• Unary - Represents a unary operation, like negation.

• Binary - Represents a binary operation, like addition.

• If - Represents an if branching operation. It only has one parameter, and
the reason for this will be explained later.
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type IconTable = Map<IconID, Icon>

type CustomOperationType =
{ ParameterCount : int

SavedIcons : IconTable
EntryPointIcon : IconID option}

type CustomOperations = Map<string, CustomOperationType >

type IconResultsTable = Map<IconID, int>
type Icon =

{ Operation : IconOperation
X : int
Y : int }

type IOP =
| Trap
| Constant of int
| BaseIconParameter of int
| LocalIconReference of IconID

// Shortened type name for brevity
type IconOperationParameter = IOP

type IconOperation =
| Unary of operator : string * IOP
| Binary of operator : string * IOP * IOP
| If of IOP
| CallCustomOperation of customOpName : string * IOP list

Figure 3.1 Types used for representing icons and custom operations

• CallCustomOperation - Represents a call to a custom operation. The first
parameter is the name of the custom operation, and the second is a list of
parameters.

Following this type in the hierarchy is the Icon type. Its only purpose is
to wrap an IconOperation along with information necessary for drawing the
icon to the screen. Since most of the usefulness of this type comes from the
IconOperation contained within, we won’t spend much time on it.

The last type we will talk about is the CustomOperation type. It represents,
as the name suggests, a custom operation. It only contains three fields. The
number of parameters the custom operation requires, a map of all the contained
icons , and the ID of the entry point icon. The entry point icon is the icon whose
result is treated as the result of the entire custom operation evaluation. Custom-
Operation instances are stored within the program state inside a map, where
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Binary +

Constant 3Binary +

Constant 2BaseIconParameter 0

LocalIconReference

Figure 3.2 Expression tree for a custom operation that sums a parameter with 2 and 3

they are addressable by name.

Expression metaphor

We now have all the pieces necessary to understand the metaphor introduced in
section 3.1. We mentioned that the internal program of a custom operation can
be understood as an expression. With the insight gained in this section, we can
elaborate on this further. The main building blocks of this expression are icons
and IOPs. The icons act as nodes with 0 or more children, which are IOPs. In the
case of the LocalIconReference type, the child of the node is not the IOP itself,
but the node to which the reference points to. This is illustrated in 3.2, which
shows a program computing the expression (𝑋 + 2) + 3, where X is a parameter
of the parent custom operation.

To reiterate the main idea behind the first design, this expression is built
internally for each custom operation when the user performs actions within it. It
is then used when the custom operation is evaluated.

3.3 Example - Absolute Value
This section contains an example of how a custom operation computing the
absolute value of an integer would be defined internally in our system. This is
not something that the user would do themselves, it is just a showcase of how
the data structures work. It is split into three figures: figure 3.3 contains the
definition of the custom operation itself, figure 3.4 contains the definitions of the
two branches of the if icon, and figure 3.5 contains the custom operation table
definition.
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let compareIconId = newIconID()
let compareIcon =

{ X = 40
Y = 200
IconOperation =

Binary("<", BaseIconParameter(0), Constant(0)) }

let ifIconId = newIconID()
let ifIcon =

{ X = 40
Y = 120
IconOperation =

If(LocalIconReference(compareIconId)) }

let mainIconTable =
Map.empty
|> Map.add ifIconId ifIcon
|> Map.add compareIconId compareIcon

let absoluteValueCustomOperation =
{ ParameterCount = 1

SavedIcons = mainIconTable
EntryPointIcon = Some ifIconId }

Figure 3.3 A single custom operation definition using handwritten code
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let negationIconId = newIconID()
let negationIcon =

{ X = 40
Y = 40
IconOperation = Unary("-", BaseIconParameter(0)) }

let falseBranchIconTable =
Map.empty
|> Map.add negationIconId negationIcon

let absoluteValueCustomOperationFalse =
{ ParameterCount = 1

SavedIcons = falseBranchIconTable
EntryPointIcon = Some negationIconId}

let identityIconId = newIconID()
let identityIcon =

{ X = 40
Y = 40
IconOperation = Unary("+", BaseIconParameter(0)) }

let trueBranchIconTable =
Map.empty
|> Map.add identityIconId identityIcon

let absoluteValueCustomOperationTrue =
{ ParameterCount = 1

SavedIcons = trueBranchIconTable
EntryPointIcon = Some identityIconId}

Figure 3.4 Definitions used for the true and false branches of an If icon
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let absoluteValueCustomOpName = "absoluteValue"
let falseBranchCustomOpName , trueBranchCustomOpName =

// This function generates custom operations names for
// an if icon within a specific custom operation
getCustomIfIconNames absoluteValueCustomOpName ifIconId

let customOperations =
Map.empty
|> Map.add

absoluteValueCustomOpName
absoluteValueCustomOperation

|> Map.add
falseBranchCustomOpName
absoluteValueCustomOperationFalse

|> Map.add
trueBranchCustomOpName
absoluteValueCustomOperationTrue

Figure 3.5 Custom operation table definition for the absolute value example
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Example shown in program

The following example will show a brief overview of how such a custom operation
would be created in the program itself by an actual user.

We first create a new custom operation with the name Abs and 1 parameter.
We place this new icon on the screen and add a -20 to its parameter.

Figure 3.6 Program with Abs icon placed
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After clicking the Eval button, we immediately hit a trap and are shown a
new tab to define the Abs custom operation. The first icon we create is saved as
the entry point icon, so we first place an If icon. Then, we place a comparison
icon, to compare the input to 0.

Figure 3.7 Start of definition of Abs, note the false and true internal custom opera-
tions
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We then evaluate the comparison, place its result into the parameter of the If
icon and evaluate the If. This starts evaluating the true branch custom operation
(because -20 < 0). Because we have not touched it yet, we immediately hit a trap.
Since we are doing the absolute value, we add a negation icon for this case, and
place the parameter of this custom operation call into it.

Figure 3.8 State of program inside the true branch, as evident by the call stack on the
bottom of the screen.
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We then have to evalute the negation, return to the call site and retry evalu-
ation. In this case, this means the evaluation of the If, and then the evaluation
of the Abs itself. As we can see in figure 3.9, the absolute value now works for
negative values, but we still have to finish defining it for positive values.

Figure 3.9 Finished Abs icon for negative values.
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The last step is to define the absolute value for positive integers. We just have
to add a new Abs icon to the screen, place a positive value into its parameter and
hit the Eval button. Because our number is now positive, the comparison with
zero evaluates to false, and the If executes the false branch. We have not defined
that yet, so we hit a trap and are shown the false branch custom operation. We
only have to add a unary + to the screen and evaluate it with the single parameter
of our icon to finish the definiton of the absolute value.

Figure 3.10 State of the program inside the false branch.
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3.4 Evaluation
There are two different types of evaluation within our system. Evaluation of a
custom operation, and evaluation of an icon. We will now briefly cover both.

3.4.1 Icon evaluation
icon evaluation is done by using a recursive evaluation function. The parameters
of the function are the ID of the icon we want to evaluate, and the context
necessary for the evaluation. This context contains various helper fields, but the
most important are

• a list of parameters for the current custom operation

• the name of the current custom operation

• a map used for looking up custom operations

Before we can continue, we also need to specify how parameters are evaluated.
Parameters are stored using the IconOperationParameter type. Evaluating
parameters is simple:

• Trap → Throws an exception with the current state.

• Constant → Returns the number contained within the type.

• BaseIconParameter → Contains an index, returns the item at said index
in the custom operation parameter list in the context.

• LocalIconReference → Evaluates and returns result of referenced icon.

In reality, all of these evaluations also return a results table. This is just a map
from icon ID to a number, which is the result of the specific icon. This is necessary
for drawing the results of intermediate evaluations, and also for recreating the
state when a trap is thrown. The evaluation of an icon combines the result tables
from the parameters and then adds its own result to it at the end. The table is
then returned as the output of the icon evaluation.

Evaluation of different IconOperation types

The first step of any evaluation is to evaluate all the parameters. As mentioned
above, each evaluated parameter also returns a result table, so we combine these
tables into one.

Evaluation of the Unary and Binary icon operations is simple. We just apply
the appropriate function to the evaluated parameters. Both of these types store
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a string that represents the operation. This string is used to choose the correct
operation. Afterwards, we save the result of the operation in the results table
with the current ID as the key, and return the table.

Evaluating an If icon operation is a bit more complex. After evaluating
its single parameter, the result is interpreted as a boolean value, and the corre-
sponding branch is then evaluated. Creating an icon with an If operation also
automatically creates two internal custom operations with names that cannot be
replicated by the user, because they contain invalid input characters. The name
of these icons s the name of the parent custom operation, concatenated with true
or false. These internal custom operations have the same number of parameters
as the parent. When the only If parameter is evaluated, the boolean result of it is
converted to a string and appended to the current custom operation name. This
string is then the name of the correct branch to evaluate. A mockup of this can
be seen in figure 3.3 and figure 3.4.

The evaluation of the correct branch itself just runs custom operation eval-
uation, with copied parameters. This is mostly equivalent to evaluating Call-
CustomOperation with the correct branch. Since both If and CallCustom-
Operation perform custom operation evaluation, we will move on to explaining
it now.

3.4.2 Custom operation evaluation
Custom operation evaluation builds on icon evaluation. This evaluation requires
the name of the custom operation we want to evaluate, and a list of numerical
parameters. The evaluation itself is performed by running icon evaluation on the
entry point icon of our custom operation. The icon evaluation returns a table of
results. We extract the result of the entry point icon and return it as the result of
our evaluation. The key difference from icon evaluation is that we do not have to
store the temporary results of the icons anywhere1. Because of this, we do not
have to return the entire table, just the result of the single icon.

3.4.3 Traps
Traps are a concept used for defining operations that have not yet been encoun-
tered. Whenever we try to preform an action that is not defined, such as evaluating
an icon with an empty parameter, or evaluating a new custom operation, an ex-
pection is thrown with the current state. The system uses this state to show us
where the trap was encountered and allows us to define the missing actions. As
mentioned prior, this is the main method for defining custom operations.

1This is not always true, we do return the temporary state through an exception if we encounter
a trap at any point
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3.5 Issues

3.5.1 The issue
Our first system evaluates things based on an icon tree. An icon is evaluated
only if it is in this tree. The tree root is the entry point icon. In other words,
an icon is only evaluated if it is reachable from the entry point icon through
LocalIconReference parameters. This reachability is transitive. To preserve
the interaction style of Pygmalion, our system only allowed the user to pickup a
reference to an icon after it has been evaluated. If this reference is then placed
inside the parameter of another icon, that icon becomes its parent in the tree.
This style of interaction forces us to build computations from bottom up, since
we first have to compute operations This is what caused the main issue however.
Since we build the computation from bottom-up, but icons have to be evaluated
to be added to the tree, recursive calls within our implementation cannot work
properly, because we cannot connect a recursive call to our tree before its defined.

We can look at this from a different perspective. Logically, we need to have
the action of evaluating the recursive call saved immediately, so it is performed
within that recursive call again. However, because the recursive call needs to
successfully evaluate before it can be saved, there is no simple way to achieve
this. The only way to do this without changing anything within the system is to
painstakingly step through every recursive call until we reach the base case of
the recursion. Then, the base case can be defined. After that, we can finally add
the factorial call to the tree in the second to last recursive call.

3.5.2 Possible fixes
We considered a number of possible fixes, which we will explain in the following
text:

• Fix #1 → Allow the user to pick up a reference to an icon before it is
evaluated

• Fix #2 → Change how If behaves

• Fix #3 → Try evaluating most icons on the screen

• Fix #4 → Save the order of evaluation

Fix #1

Fix #1 is actually implemented in the last version of the first design, to allow the
system to create a factorial custom operation. This, however, went against the
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Figure 3.11 Recreation of the recursive issue in an older version of the software. There
is no way for the user to connect the ”Factorial” icons result to the false branch of the
”If” icon prior to evaluation.

core ideas of Pygmalion. We wanted to retain the interaction of moving an icons
result to the parameter of a different icon. Having an explict ”Get Reference”
button felt too disconnected from this. So we searched for a different fix. Our
implementation of this is visible in figure 3.11. We didn’t remove the fix when
trying the other ones to allow for experimentation.

Fix #2

Fix #2 is also implemented in the most recent version of the first design. Since we
encountered this issue for the first time with an If icon, we thought that it was a
inherent problem of the If operation. Our idea to fix this was simple. If we can’t
connect something to the If before it is evaluated, force that connection somehow.
We force a connection by creating mock custom operations for both the true and
false branch. It follows then, than the entry point icon within the false and true
branch custom operations is ”connected” to the If even without it being evaluated.
This fix did not help, it only managed to move the issue elsewhere.

It could work if we made every parameter of every icon its own custom
operation. This would basically allow us to add items into the tree before their
evaluation. This approach is clearly unusable, and in the end only does the same
thing as fix #1.
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Fix #3

When thinking about fix #3, it very quickly runs into issues. If we have, for
example, a recursively defined icon, it would get evaluated on every level of
recursive nesting. This means it would run into an infinite loop. So a simple
extension of this idea is only evaluating all icon trees on the screen. A tree being
a structure composed of icons connected by the LocalIconReference parameter
type. This also runs into issues, because we don’t know what order to evaluate
the trees in. For example, in figure 3.11, if the system were to evaluate the ”If”
icon first, it would hit a trap, because the branches are not defined, and stop
immediately. If it were to evaluate the tree with the recursive ”!” call first, we
might have successfully recursed, but we would never stop at the base case, since
the ”!” icon would just get evaluated over and over forever. There might be a way
to get around this issue, but we moved on to try a different idea.

Fix #4

This was the last fix we considered. We would a have list of which icons were
evaluated and in what order. It seems that this fix would work, since it would fix
the main issue of the recursive call not evaluating. We did not implement this
fix however. This is because we decided to pursue a different design altogether
instead of trying to fix this one. We will discuss our reasoning for this in later
sections.

3.6 Conclusions
We first created the first design with the core idea of building an expression tree to
represent the computations done within custom operations. After implementing
it, we ran into the issue discussed above. We then noticed a connection between
fix #4 and Pygmalion itself.

3.6.1 How Pygmalion does it
When a user performs an action within Pygmalion when it is in ”remembering”
mode, the action is saved inside its data structure for further use. In this section,
we will call this data structure an action list2 When a user-defined icon is later
evaluated, these actions are played back internally to get the result of the eval-
uation. In the case when a user tries to evaluate a custom operation ”A” while

2In reality, Pygmalion creates a representation of user actions with its own internal language
and adds them to a code list. For our purposes however, understanding it as a list of actions with
occasional branching is enough.
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defining said custom operation, the action ”Evaluate A” is immediately saved into
the action list of A and played back during that same evaluation. This causes
the program to recurse, until some input leads us down a different action path.
An example of this is if some input results in the program moving down a false
branch instead of a true branch. This other path could then result in the end of
the evaluation, or it could contain a trap, requiring the user to continue defining
the icon. Either way, the key idea here is that for recursive definition to work,
the action of trying to evaluate a recursively defined icon must be saved into
the action list immediately, so it is played back in said evaluation. Otherwise,
evaluating an icon within itself would just cause the action list to end right before
the evaluation, causing the user to hit a trap. This would mean that they would
have to redo said evaluation for every recursive iteration. This is exactly the issue
with our implementation.

3.6.2 Conclusions continued
Creating a list of icon evaluations would be similar to the action list in Pygmalion
with everything except evaluations removed. We then arrived to the conclusion
that using an idea similar to an action list for every action instead of just for
evaluations would be a simpler representation of the program. Such a change
would also fix the main issue with the first design. These factors combined led
us to abandon this design in favor of implementing the proposed idea. That
implementaion will be discussed in the following chapter.
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Chapter 4

Second System Design

Similarly to the previous chapter, we will describe the second iteration of our
system. We will first start by describing the core differences between the second
design and the first one. Afterwards, we will discuss the data structures that are
used within the systems, their evaluation, and show their usage by manually
building a program that can compute the absolute value of an integer.

4.1 Core differences
At the end of the last chapter, we discussed why we switched to a different design.
Now we will talk about what we changed in more detail.

The core idea of the first design was using user actions to modify and build
something akin to an expression. That expression was then used to replicate the
same calculation that the user performed by hand. The second design does not
build an expression, it just saves most user actions into a list to be replayed when
a computation is replicated (e.g. when a custom operation is being evaluated).
When we talk about user actions, we mean something that the user does that
changes the state of the program. This includes things like creating a new icon,
evaluating an icon, picking up a constant etc.

4.1.1 State simplification
The idea of storing user actions directly greatly simplifies the architecture of our
program. Because we use the Elmish framework[14] for our implementation, we
already need to have a state, multiple message types, an update function that
takes the current state and updates it based on the received message and a view
function that renders the current state. In short, messages are sent everytime
the user interacts with the UI, and we get to decide what messages with what
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data get sent during which interaction. When a message is received, the state is
updated with the update function.

If we want to define a custom operation, we could just save all the messages
that were received during its creation, and replay them when we evaluate it. This
replaying could be done by repeatedly applying the update function to some base
state for every saved message. In reality, the process is slightly more complicated,
but this is the main idea behind it.

Since the users actions don’t have to be saved as an expression anymore, we
can make their effects a lot simpler. The first major change was to the Icon-
OperationParameter (IOP for short) type. In the first design, this type was
used by icon operations to know where and how to source their parameters. For
example, if we placed the result of one icon into anothers parameter, it would
create a LocalIconReference instance and save it into the parameter. This
reference would then followed and recursively evaluated by the program when
evaluating the icon. In the second design, this is greatly simplified. The IOP
type is now either a number or a None. We will discuss this in greater detail in
the following sections. With the second design, we can just store the action of
the user picking up the result of one icon, and the action of placing the result
into a parameter of another icon. When this is replayed later, the same actions
are performed and the end state is the same (if we used the same inputs). The
action of placing the result of one icon into the parameter of another can be
generalized into an action of placing a number into a parameter. This number
placement action in combination with ”pick-up number” and ”pickup custom
operation parameter” actions cover every previous use of the IOP type.

The evaluation of icons is also simplified. We only have to check if all param-
eters contain a number, and if so, we can immediately perform the computation
defined by the icon operation. In other words, we don’t have to do any recursive
icon evaluation (except evaluating custom operations).

4.2 Data structures
In this section we will explain the main data structures used for the logic of
the system. Similarly to the first design, we will talk about the data structures
representing icons and custom operations first. An analogous explanation will
follow for data structures representing user actions and the core system state.

4.2.1 Icons and custom operations
The IOP type represents the parameters of icons, which can have two states.

It either holds a number or nothing. This is represented by the int option type.
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type IOP = int option

type IconOperation =
| Unary of operator : UnaryOperation * IOP
| Binary of operator : BinaryOperation * IOP * IOP
| If of IOP
| CallCustomOperation of CustomOperationPrism * IOP list

type IconOperationParameter = IOP

type Icon =
{ X : int

Y : int
Operation : IconOperation
Result : int option }

type CustomOperation =
{ Name : string

ParameterCount : int
ActionTree : ExecutionActionTree }

Figure 4.1 Types used for representing icons and custom operations

The IconOperation type is mostly equivalent to its counterpart from the
first design. The only difference is the usage of the CustomOperationPrism
type. This will be a common theme in the second design, because we replaced
most usages of indices with optics. Optics are a way to access and modify data
structures in a functional way, as discussed in section 1.3.2. Another change is in
the behaviour of If, but that will be discussed along with evaluation.

The Icon type is also similar to the first design, with one key difference. The
result of the icon is now contained within it, instead of a disconnected table. Due
to the simplification of evaluation, evaluating an icon will not affect any other
icon. Because of this, we do not need a results table anymore.

The final type is the CustomOperation type. It contains the name of the
custom operation, the number of parameters it takes, and an action tree. In the
previous sections, we mentioned that we could save actions in an action list. This
was a simplification. In reality, we actually need a tree-like structure, to save
multiple branches of actions, because of If icons. This will be discussed in the
next subsection.

4.2.2 State and actions
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type MovableObject =
| NoObject
| ExistingIcon of IconPrism
| NewIcon of IconOperation
| Number of UnderlyingNumberDataType

type MovableObjectTarget =
| Position of x : int * y : int
| IconParameter of target : IconPrism * position : int

// Some actions ommited for brevity
type SimpleExecutionAction =

| EvaluateSimpleIcon of IconPrism
| PickupNewIcon of IconOperation
| PickupIcon of IconPrism
| PickupNumber of UnderlyingNumberDataType
| PickupExecutionStateParameter of parameterIndex : int
| PickupIconResult of IconPrism
| PlacePickup of MovableObjectTarget

type BranchingExecutionAction =
| EvaluateBranchingIcon of IconPrism

type FinalExecutionAction =
| SaveResult
| Trap

type ExecutionActionTree =
| Linear of SimpleExecutionAction * ExecutionActionTree
| Branch of

action : BranchingExecutionAction *
falseBranch : ExecutionActionTree *
trueBranch : ExecutionActionTree

| End of action : FinalExecutionAction

type ExecutionState =
{ HeldObject : MovableObject

LocalIcons : Icon list
CurrentBranchChoices : bool list
Parameters : int list
Result : int option }

Figure 4.2 Types used for representing state and actions applicable to it.
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As we can see in figure 4.2, the SimpleExecutionAction type is used to
store relevant user actions. An instance of this type is passed as a message to the
program when the corresponding user action is performed. This type contains
more actions than are shown, such as the action of picking up an existing icon to
move it, or removing an existing icon. Basically, every action that is necessary to
reproduce a custom operation is present in this type. For example, the action of
changing the text inside a number input is not contained within this type, but
the action of picking up a number from said number input is. This is because
we do not need to replay the actions of typing out every digit of a number one
by one, we just need the action of picking up the resultant number. There are
two more types of actions in figure 4.2. The first is the BranchingExecution-
Action type, which encompasses actions that can divert the flow of the program.
This will be discussed further when talking about how actions are stored. The
only value this type can have is EvaluateBranchingIcon. There is only one
type of branching icons in our system, icons with the If operation.

The last action type is FinalExecutionAction. This type is used for actions
that end the evaluation of a custom operation. The only two actions which do so
are traps and saving (returning) the result of a custom operation. Traps represent
paths in the custom operation that have not yet been defined. Naturally, this
means that a finished custom operation returns a result in every branch.

Storing actions

Actions in our system are stored using the above mentioned types saved inside a
tree-like structure. This structure is built using the ExecutionActionTree type.
The values of this type wrap the already mentioned action types and allow them
to connect as a tree. They work in the following way:

• Linear → SimpleExecutionAction | always has one child

• Branching → BranchingExecutionAction | always has two children

• End → FinalExecutionAction | has no children, marks end of current
branch

State

The last data structure we will talk about is the ExecutionState. This structure
represents the current state of a calculation. The items it holds are the current
held object, a list of all the icons on the screen, a record of choices for the branches,
and a list of parameters and result for the current custom operation call.
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4.3 Example - Absolute Value
Again, we will create a manually written example of an operation computing the
absolute value of an integer. This is mainly to show the vast difference between
the first and second designs. To reiterate, this is not something the user will do
themselves. This is just for showcase purposes. Note that this will be simplified.
We will use indices instead of prisms for icons. Unary and binary operations will
be defined just by using functions. Finally, we will omit most of the tree structure
wrappers and store actions in plain lists. This is not how these data structures
work, but writing out a tree manually is confusing and cumbersome. The code is
available in figure 4.3. The resultant tree of actions can be seen in figure 4.4.

UI Example

We will not provide a UI example as the user interaction is very similar to the
example in section 3.3. The only major difference is the usage of the If icon. A
better example of how the second design works can be found in section 5.1

4.4 Evaluation
Similarly to the first design, we could split the evaluation into icon evaluation and
custom operation evaluation. However, due to design changes, icon evaluation is
now very simple. It consists of checking if every parameter has a number. If all of
them do, the internal IconOperation instance is evaluated. Due to this simplicity,
we will only talk about evaluation of pre-defined and custom operations.

4.4.1 Pre-defined operation evaluation
The simplest type of evaluation is the evaluation of Unary and Binary operations.
Both contain a function with the correct amount of arguments. The function is
applied to the parameters and its result is the result of the evaluation.

Evaluation of the If operation is a bit different. The single integer parameter
is first converted into a boolean. This is done by understanding anything non-zero
as true and zero as false. Then, this boolean is saved into the CurrentBranch-
Choices table of the state. Afterwards, this list of branch choices is used when
traversing the action tree. For example, this is done when a new action is being
saved.

Lastly, CallCustomOperation triggers custom operation evaluation, which
we will talk about now.
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4.4.2 Custom operation evaluation
Evaluation of custom operations is done by taking a base execution state and
applying actions from the tree to it sequentially. When a branching icon is
encountered, its parameter is interpreted as a boolean and the evaluation continues
with the corresponding branch. Due to how the action tree is structured, the end
of branches in the tree always end with either a trap or the action of returning a
number. Because of this, every custom operation evaluation ends in two ways.
Either the evaluation succeeds, and it returns a number as the result, or it hits a
trap. When a trap is encountered, an exception is thrown with the current state.
This state is then rendered to the screen to allow the user to continue defining
the current branch of actions.

An interesting observation is that the only thing that can change the outcome
of a custom operation evaluation is the PickupExecutionStateParameter
action, since all the other actions deal with constants. This action is the only one
that is ”impure” so to speak.
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let absoluteValueCustomOperation =
{ Name = "Absolute Value"

ParameterCount = 1
ActionTree = absoluteValueActionTree }

let absoluteValueActionTree = [
// Create new icon with id 0
PickupNewIcon(Binary((<), None))
PlacePickup(Position(40, 40))
// Place operation parameter into '<' icon
PickupExecutionStateParameter(0)
PlacePickup(IconParameter(0, 0))
// Place 0 into '<' icon
PickupNumber(0)
PlacePickup(IconParameter(0, 1))
// Evaluate the '<' icon
EvaluateSimpleIcon(0)
// Create if icon with id 1
PickupNewIcon(If(None))
PlacePickup(Position(40, 80))
// Move result of '<' into 'If'
PickupIconResult(0)
PlacePickup(IconParameter(1, 0))
// Evaluate the If and pick correct branch
Branch( EvaluateBranchingIcon(1),

falseBranchActions ,
trueBranchActions )

]

let falseBranchActions = [
// Value is positive , just return
PickupExecutionStateParameter(0)
SaveResult

]

let trueBranchActions = [
PickupNewIcon(Unary((~-), None))
// Creates icon with id 2
PlacePickup(Position(40, 120))

PickupExecutionStateParameter(0)
PlacePickup(IconParameter(2, 0))
EvaluateSimpleIcon(2)
PickupIconResult(2)
SaveResult

]

Figure 4.3 A single custom operation definition using handwritten code
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PickupNewIcon(Binary((<), None))

PlacePickup(Position(40, 40))

PickupExecutionStateParameter(0)

PlacePickup(IconParameter(0, 0))

PickupNumber(0)

PlacePickup(IconParameter(0, 1))

EvaluateSimpleIcon(0)

PickupNewIcon(If(None))

PlacePickup(Position(40, 80))

PickupIconResult(0)

PlacePickup(IconParameter(1, 0))

EvaluateBranchingIcon(1)

PickupExecutionStateParameter(0)

SaveResult PickupNewIcon(Unary(( -), None))

PlacePickup(Position(40, 120))

PickupExecutionStateParameter(0)

PlacePickup(IconParameter(2, 0))

EvaluateSimpleIcon(2)

PickupIconResult(2)

SaveResult

False
True

Figure 4.4 Action tree for absolute value custom operation
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Chapter 5

Evaluation

This final chapter serves as an evaluation of our design. First, we will demonstrate
how a factorial icon can be created using our system. We will follow the steps
outlined in the original article [1, pp. 126-138] as closely as possible. Afterwards,
we will discuss the differences between the style of interaction with the two
systems and what we have learned from these differences. Finally, we will share
some closing thoughts about Pygmalion as a programming system.
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5.1 Factorial example
First, we create a custom operation with the name factorial and with 1 parameter.
We then create an ican with this custom operation, and save a constant of 6 in its
parameter box.

Figure 5.1 Main tab with a new factorial icon and a constant 6 as a parameter
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After we click the evaluate button on the factorial icon, we hit a trap. This
is because the custom operation is new and there are no steps defined within it.
Hitting a trap opens the custom operation which caused it so we can define the
missing steps. In the bottom of the screen we can see the current nesting level,
which confirms we are defining the factorial operation. We also can see that the
6 we input as a parameter is available to pick up from the top of the screen.

Figure 5.2 Program displaying the current nesting level (bottom) and the parameter
of the factorial operation(top)
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We then add the equality and branching icons. We use these icons together
to check if we are evaluating the base case of the recursive factorial. The steps
we need to perform to get to this state from the last one are as follows:

• Picking up the 6 from the top of the screen and placing it in one of the
parameter boxes of the equality icon.

• Picking up a constant 1 and placing it in the other parameter box of the
equality icon

• Evaluating the equality icon and placing its result into the branching icon

• Evaluating the branching icon

After evaluating the branching icon, the program will save all of our steps within
the correct branch. In this case, this is the false branch.

Figure 5.3 ’If’ icon is evaluated to 0 (false)
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Now that we are in the false branch, we can start defining the recursion. We
create a subtraction icon and another factorial icon. We use the subtraction icon
to subtract 1 from the parameter, and place its result into the recursive factorial
icon. This leaves us with the screen shown in figure 5.4.

Figure 5.4 Icon ready for recursive evaluation
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When we try evaluating the nested factorial icon, all of the steps we have
already done have been saved, and start being played back internally. This results
in the factorial custom operation being evaluated with the parameter of 5 first,
which evaluates the custom operation with the parameter 4. This continues until
the recursion reaches the value of 1. When this happens, the branching icon we
added in figure 5.3 evaluates to true. Because we have only been defining the
false branch up until now, we immediately hit a trap, and are placed within the
offending custom operation call. We can see that the parameter in figure 5.5 is
now 1 instead of 6, showing us that we have been stopped at the true branch.

Figure 5.5 State of the program when the base case of the recursion is reached
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The factorial of 1 is 1. We use the result box on the top left of the screen
to save the constant 1 as a return value for this base case. This means that the
factorial icon now returns the correct result when called with the parameter of 1.

After we save the result, the evaluation we started at the beginning continues.
Since the factorial is now defined for a parameter of 1, it sucessfully evaluates
in the evaluation of the factorial of 2. Since we haven’t had the chance to define
anything after this point, we hit a trap in the evaluation of the factorial of 2. As
before, the program shows us the custom operation with the parameters that
caused the trap, waiting for us to finish defining it.

In figure 5.6, we can see that the factorial icon evaluated to 1.

Figure 5.6 State of the program after the base case of the recursion is defined
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Now, the only thing left is to create a multiplication icon, and multiply the
parameter with the result of the recursive factorial call. We the save this result
into the result box, finishing the definition of the factorial.

We now have an operation capable of computing the factorial for integers ≥
1

Figure 5.7 Working factorial icon

5.2 Discussion
In this discussion we will look at how our system compares to Pygmalion, and
what we left out from our implementation. Then, we will look at Pygmalion itself,
and discuss if its a user friendly and/or useful tool.
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Figure 5.8 Snippet of a factorial step within Pygmalion[1]
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5.2.1 Comparison
For a comparison of the user interface between our system and Pygmalion, we
can use figure 3.9 which depicts our system and figure 5.8 which is a snippet from
the original thesis. Both of these screenshots are at a similar step in the factorial
definition in their respective systems. We will not discuss the differences between
the respective UIs, as that was never our main concern.

There are many other differences between Pygmalion and our reconstruction.
First of all, many actions from the menu in Pygmalion were moved to other places.
Icon movement, deletion and evaluation was all moved to a small menu near the
icons. We felt that this would make it a bit easier to use these operations. Another
big change is the introduction of custom operations as a concept. In Pygmalion, a
user-defined operation was created by creating a new icon, turning on ”remember
mode” and performing actions. When we were done, we would use the ”Done”
action to signify that the current branch of our operation is finished. The created
operation would then be saved within the icon. To create more icons capable of
doing the same operation, we had to use the ”copy” operation on the original. In
our implementation, all this is done using custom operations. Instead of having
to copy icons, we just create a new icon with the requested custom operation.

Another major change we made was treating icons more like functions. We
made icons have a set number of parameters and an explicit result value to be
picked up. Pygmalion had no such concepts, at least not canonically. Icons
that behaved like functions could be created by adding subicons representing
parameters to the icon. An operation on this icon could then use these subicons to
perfrom some calculation, and finally drag the resultant value into the icon. This
is the type of interaction that we recreated. However, this was not a requirement
in Pygmalion. As seen in Cypher and Halbert [2], an icon could also have another
subicon that would hold the result after the operation was finished. For our
purposes however, we decided to make the result and parameters explicit, as it
made the system easier to understand.

The most promiment similarity between the two systems is the style and
flow of interaction when creating a factorial icon. If we follow the steps from
the original thesis, we can mostly create a factorial icon in our system. The only
thing we cannot recreate is one of the last steps, which multiplies the result of the
factorial of 5 and returns the result. As discussed in section 2.2, we think that this
step does not make sense, and was likely included for demonstration purposes.
Except this step, we can recreate the factorial icon in our system, which fulfills
the main goal of our project.
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let rec factorial n =
if n = 1 then 1
else n * factorial (n - 1)

Figure 5.9 Factorial functaion written in F#.

5.2.2 Evaluation of Pygmalion
In this final section, we will talk abouthow Pygmalion holds up from a usability
and usefulness perspective.

A recursive factorial definition in a regular language can be found in figure 5.9
We can see that it took 3 lines of code to create this function, and even beginner
programmers can reasonably be expected to write a factorial funcion in a few
minutes at most. In Pygmalion however, creating such a function is a much more
cumbersome process.

Take for example the expression factorial (n - 1). In the code example,
this is a simple expression that could be written in 7 characters when using F#.
In Pygmalion however, emulating this same expression would require at least
7 actions. We would first have to create the - and factorial icons, then place
the n and 1 into the - icon, evaluate it, move its result into the factorial icon and
evaluate that. This is a lot of work for a simple expression.

Another aspect to consider is that thinking about problems in a way that is
compatible with Pygmalion is hard. The user has to think about programs in a
depth first aproach. What we mean by that is that in a branching program, the
user can only define one branch at a time. The branch that the user can define
is the one that corresponds to their current input data. In the factorial example,
even if the even if the user knows that the factorial of 1 is 1, they cannot define
this if they are currently defining the factorial of any higher number. This fact can
make defining deeply branching operations very hard. The user would have to
think of input to reach every possible branch to end up with a complete program.

Another problem with Pygmalion is how the user interacts with the system.
The user has to constantly switch operations to perform different actions. These
operations can only be switched using a menu on the left of the screen. Pygmalion
was created during a time when the computer mouse just started being used.
This explains why the UI of Pygmalion can be considered cumbersome to work
with. Since it was one of the early adopters of the computer mouse, there were
very little guidelines and best practices on how to create a user interface that
works well with it. Combined with the fact that Pygmalion could be considered a
prototype, it is not surprising that the user interface is not very user friendly.
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Usefulness

As we mentioned when talking about user experience in the section above,
Pygmalion is very cumbersome to work with. However, we think that factorial
is also not a very good measure of the usefulness of Pygmalion. We chose this
example for our reconstruction to showcase the programming by demonstration
aspect. However, creating a mathematical function does not tap into the ability
of Pygmalion to create interesting looking icons, since we only need simple icons
representing functions.

Creating icons is an important part of Pygmalion. Icons can be defined by the
user to have any shape that they wish, and with programming by demonstration
can be made to perform various operations. We think that this idea is very
interesting, and could even be useful in a modern setting. Creating a system that
allows the same interactions as Pygmalion with a modern user interface would
be an interesting project.

In our opinion, the most powerful aspect of Pygmalion are its ”display” mode,
and visualization capabilities. For example, ”display” mode could be used as an
algorithm visualization tool. It might even be possible to create a generic graph
algorithm that operations on icons representing nodes and edges. ”Display” mode
could then be used to visualize the algorithm as it runs on the graph.

We propose that Pygmalion is infact a useful tool, but it needs a modern user
interface to be useful in a modern setting.
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Conclusion

The goal of this thesis was to develop a system that resembles Pygmalion, and
allows a user to experience the style of interaction the original system presented.
The system is not meant to be a fully fledged tool. It should serve as a way to
experience the interaction style of Pygmalion. We first started by creating an
initial design that used user actions to create a reusable expression. This design
ran into issues. While these issues were fixable, we deemed another approach
better suited for the system. Thus, our second design was created. The second
design stored user actions in a tree structure. When the user request a calculation
to be repeated, maybe even with different parameters than the initial definition,
these actions were played back to get the result. This second design ended up
being the one we used to develop our final reconstruction. Our final program
allows the user to replicate the factorial example from the original document
with very minor deviations. Other aspects of the original system are not included.
The program is deployed to the internet using GitHub Pages to allow for public
access1.

From our reconstruction, we learned that replaying user actions is a more
natural way to represent a system such as Pygmalion, as opposed to building an
underlying expression. However, this comes with performance costs since all
actions have to be internally replayed. It might occur that an icon is evaluated
but its result is never used. An expression approach might be easier to optimize
in such situations.

Limitations and further work

From the start of this thesis, we did not want to reconstruct the entirety of
Pygmalion. We only reconstructed the factorial example. This means that we
left out several aspects of the original system. The first and most obvious is that
we limited the type of values to integers. This was done because the factorial
example only used integers and booleans. Booleans can also be represented as
integers, so we only kept those in. Another aspect that we left out is drawing

1https://a-habusta.github.io/Pygmalion-Like-Reimplementation/
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the shape of icons. Pygmalion allowed you to draw the shape of your icon inside
the software. Our version only allows you to change the name. We also did not
implement ”display mode”. As far as we understand, this mode would display the
resulting state after every operation, turning a computation into a ”movie” [1].

There is much further work to be done on this subject. To our knowledge,
there is no runnable full reconstruction of Pygmalion available. Creating such a
reconstruction would allow us to experience more of what the software had to
offer. Another direction to explore would be the original source code written in
the thesis. Extracting and running this code would offer all the same benefits as a
full reconstruction would, but would also be fully authentic.

Our reconstruction could be extended to support more types of values, and
recreate more of the original built-in operations, such as the ”repeat” operation.
Another aspect that would be useful for understanding the program would be the
”display mode”.

In conclusion

Pygmalion is an example of historical software that was lost to time. It contains
very interesting ideas that are seldom used today. We think that reconstructing
and, by extension, perserving such software is an important part of computer
science, to prevent the loss of ideas which may even be beneficial to the field as a
whole.
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Appendix A

Using Pygmalion-Like-
Reimplementation

The second design of the software is available on the project GitHub pages
site1. The first design must be built manually from source, available on the
first_design branch in the project repository2.

To compile and run the software, you need to have dotnet and npm available
on your system. The required .NET Runtime version is 8.X. Compilation can be
done using these commands (run in the root directory of the project):

dotnet tool install fable
dotnet tool restore
dotnet restore
npm update
npm run build

The webpage is then available in the dist directory. It can be run by opening
index.html in your browser.

In case your browser refuses to open the script and stylesheet files, you can
run a local server by running the command:

npm run server

This will open a local HTTP server on http://127.0.0.1:5173/ which hosts
the software.

1https://a-habusta.github.io/Pygmalion-Like-Reimplementation
2https://github.com/A-Habusta/Pygmalion-Like-Reimplementation
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