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Introduction

Mathematical programming is a complex and versatile field with a wide array of
possible applications. The standard programming model assumes, that all the
quantities entering the model are known by the decision maker. This is often not
the case, since the real world is full of uncertainty. Simply replacing the random
element by its estimated value might result in a loss of important information
about the system at hand. A more refined approach is to utilize the stochastic
programming framework working directly with the probability distribution, which
is either known or estimated from available data. There is usually an implicit
assumption included with these models, that the underlying distribution is fixed
and does not depend on the decisions made within the model. There are many
cases, where it is not a valid assumption, usually when the uncertainty comes
from within the system. This phenomenon is called endogenous randomness (or
decision dependent randomness), as opposed to the classical case of exogenous
randomness. The actions of the decision maker can therefore alter the underlying
probability distribution in many different ways. Not only can the decisions influ-
ence the distribution itself, but in some multi-stage models they can also change
the times at which the decision maker obtains new information about the random
element.

Some mentions of endogenous randomness in stochastic programming could be
traced more than 70 years back, however, it is still a relatively new topic in liter-
ature. One of the earlier works can be found in Pflug (1990), where endogenous
randomness was incorporated into optimization of Markovian processes. One of
the first more general works is Jonsbråten et al. (1998), where a new class of prob-
lems was created. Through the years, mathematicians were searching for special
problem structures, which allow for efficient modelling of endogenous randomness.
A large multi-stage model was presented in Goel and Grossmann (2004), which
created an optimization framework for a large offshore oil field. The paper Du-
pačová (2006) mentioned the use of contamination and its importance for stress
testing. Lot of works were interested in robust formulations of these problems,
for example Basciftci et al. (2021) or Luo and Mehrotra (2020), which studied
the concept of ambiguity sets. Another robust technique was contamination, pre-
sented for example in Kopa and Rusý (2023). Searching for tractable problem
structures is still an ongoing process in literature. In the paper we also present
the newsvendor problem, which can be found in Hrabec et al. (2012) for example,
and the important CV aR risk measure found in Pflug (2000).

There are infinitely many options for how a decision variable can transform a prob-
ability distribution. The goal of this thesis is not to provide an exhaustive list of
them, but rather to try and find various tractable cases, which are computation-
ally viable and make sense in relation to possible applications.

The theoretical part of the thesis consists of the first two chapters. The first
chapter contains a summary of important stochastic optimization aspects, in-
cluding the basics of multi-stage problems. The second chapter is trying to set
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up a baseline mathematical foundation for endogenous randomness modelling.
The important concepts from classical stochastic programming with exogenous
randomness are extended and new types of problems are formulated for different
types of decision dependence. There are simple motivational examples included,
demonstrating the possible situations where such models can occur. The main
goal of the second chapter is to find and summarize important cases of endogenous
randomness using a unified notation and mathematical background.

In chapters 3 and 4 we extended the standard newsvendor model to include deci-
sion dependent demand and advertisement. After that we came up with a three-
stage formulation with recourse decisions. Both models are then presented on
a simple numerical example. Chapter 5 is dedicated to portfolio optimization
with respect to the CVaR risk measure. We included decision dependent ran-
domness in the asset losses after large investments into a company are made.
The goal of these models is merely to demonstrate the important concepts from
chapter 2. The values entering them are not intended to be perfectly realis-
tic, however we tried choosing them in a reasonable way, which does not violate
fundamental concepts of economics and finance.
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1. Stochastic programming

1.1 Short introduction

The goal of the field of mathematical programming is to search for optimal (or at
least acceptable) decisions in various problems. The classical case consists of an
objective function f : Rn → R and a set of feasible solutions X0. In this thesis we
will implicitly work with minimization problems, unless stated otherwise. The
maximization problem can always be easily transformed to a minimization prob-
lem. The general formulation of a classical deterministic programming problem
is

min
x∈X0

f(x).

Throughout the thesis, we will consider the feasibility set X0 to be closed, unless
stated otherwise. The deterministic programming framework comes in several
possible variations and is capable of handling many real world problems. However,
it assumes that all parameters within the model are known in advance (i.e. before
any decisions are made). In a world full of uncertainty, there are situations where
this assumption is not sound and another approach must be taken. This is where
the stochastic programming framework comes in.

1.2 Stochastic programming model

As mentioned earlier, there are cases where we encounter uncertain parameters
while constructing the optimization model. The most basic approach would be
to simply replace the random element by some sort of estimate and solve the
problem deterministically. However, that approach has many limitations. We
will start building the mathematical representation by defining a probability space
(Ω, A, PΩ). Let the uncertainty in the problem be represented by a d-dimensional
real random vector ξ : (Ω, A) → (Rd, Bd) (B being the Borel σ-algebra) with
a probability distribution P and a support Ξ ⊆ Rd, meaning the smallest set
such that P(ξ ∈ Ξ) = 1. A realization of the random vector ξ will be denoted
as ξ, this logic will be used throughout the whole thesis. Note that the random
element in the model does not necessarily have to be a numerical vector. For
example, the outcomes of a coin toss are either heads or tails, but we can code
them numerically as 0 and 1. Generally we will work with real vectors, but
even when it is not the case, we assume that we can code the scenarios by using
numerical values.

Stochastic programming generally handles situations, where the objective func-
tion or the constraints are somehow dependent on the realization of the random
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element. This makes the problem more nuanced apart from the deterministic
one. In the end we always have to reformulate the problems deterministically,
but there are several different ways to do that. The standard framework of
stochastic programming includes one core assumption, which is rarely explicitly
stated. However, it needs to be stated now, since the primary topic of this thesis
is the case where the assumption does not hold. The core assumption is, that the
distribution P of the vector ξ is fixed, in other words, it does not depend on the
decisions. This way we can think of the random element as an external influence,
which can not be affected by the decision maker and the decisions need to be
adjusted to it. This is the case of exogenous randomness and as we will see in
the next chapter, it is not always a good assumption to make. Throughout this
chapter, we will consider that it holds.

1.2.1 Model formulation

The general uncertain form of the problem is

” min
x∈X (ξ)

f(x, ξ)”, (1.1)

where the objective function and feasibility set depend on the random element.
Such uncertain formulations will be notated using quotation marks. For the sake
of simplicity, we will mostly work with the case (1.2), where the randomness in
the feasibility set is present through a finite number of equalities and inequalities.
This will be the main definition of a stochastic program in this thesis, generally
we would call it a nonlinear stochastic program.

Definition 1. Using the notations above, we define a Stochastic programming
model by a following uncertain formulation:

” min
x∈X0

f(x, ξ)”

s.t.

”gj(x, ξ) ≤ 0”, j = 1, ..., p,

”hk(x, ξ) = 0”, k = 1, ..., q,

(1.2)

where p, q ∈ N0, f, gj, hk : Rn × Ξ → R are given functions ∀i, j and X0 ⊆ Rn is
a set of hard constraints, which do not depend on the random element.

Remark. In relation to the general formulation (1.1), for each realization ξ ∈ Ξ
is the feasibility set defined as

X (ξ) = {x ∈ X0 : gj(x, ξ) ≤ 0 ∀j, hk(x, ξ) = 0 ∀k}.

The uncertain formulation with random elements needs to be reformulated de-
terministically, for which there are various methods. For simplicity, we will dis-
tinguish two cases, when the randomness is only in the objective function or only
in the constraints. If it is present in both, we just combine these methods.
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1.2.2 Randomness in the objective function

We will now assume that the set of feasible decisions does not depend on the
random parameter. Our goal is to reformulate the uncertain problem

” min
x∈X0

f(x, ξ)”.

We can look at this in the scope of multi-objective optimization. Basically, the
decision maker would like to minimize all the functions f(x, ξ) for all ξ ∈ Ξ, with
respect to x. The perfect solution would minimize the objective for all possible
realizations, but that is rarely possible. The simple way to handle this issue would
be to turn it into a deterministic programming model by replacing the random
parameter ξ by some estimate ξ̂ from available data. This would result in the
problem minx∈X0 f(x, ξ̂). This is not an ideal approach, since we lose valuable
information about the underlying random element. For example, if we replace the
parameter by its expected value, the result does not even have to lie inside the
support Ξ. Unfortunately, this approach may be necessary when the stochastic
makes the problem too computationally expensive.

Another approach of reformulating the problem is to use robust optimization.
This can be plausible when the decision maker wants to hedge against the worst
possible scenario. The method of choice is the min-max formulation shown in the
following program

min
x∈X0

sup
ξ∈Ξ

f(x, ξ),

which means searching for a decision which minimizes the objective under the
worst-case scenario. The solutions to this problem are usually very conservative
and should be used only in specific situations. A more sophisticated approach
is to aggregate the scenario specific functions into one. The most natural and
common way is to use the expected value of the objective. If we assume that
f(x, ξ) ∈ L1(Ω, A, PΩ) ∀x ∈ X0, the new objective function can be defined as

F (x, P) = EP [f(x, ξ)]

=
∫︂

Ω
f(x, ξ(ω)) dPΩ(ω)

=
∫︂
Rd

f(x, ξ) dP(ξ)

=
∫︂

Ξ
f(x, ξ) dP(ξ).

The full model reformulation will then be

min
x∈X0

EP [f(x, ξ)] = min
x∈X0

F (x, P). (1.3)

We will also make the assumption that the optimal solution of the problem (1.3)
exists. The expected value criterion possesses a useful property, since if the
functions f(x, ξ) are convex on X0 for all ξ ∈ Ξ , the objective function F (x, P)
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is also convex on X0. Additionally, if the set X0 is convex, it results in a convex
programming model.

In practice the true distribution P is usually not known and needs to be suitably
estimated. This often results in a discrete distribution on a finite support with
elements called scenarios. In other words, we consider the case Ξ = {ξ1, ..., ξS},
where S is a finite positive integer and the scenario probabilities are denoted ps.
The formulation of a stochastic optimization problem with a finite number of
scenarios is

min
x∈X0

S∑︂
s=1

ps · f(x, ξs).

Note that any positively weighted sum of the functions f(x, ξs) could be used, if
the decision maker has a different opinion about the importance of the scenarios.
Each unique optimal solution of such a problem would be efficient with respect
to the multi-objective program minx∈X0{f(x, ξ1), ..., f(x, ξS)}.

1.2.3 Randomness in the feasibility set

Now we are looking at the case, where the objective function does not depend on
the random element. The general uncertain formulation is

” min
x∈X (ξ)

f(x)”

and the nonlinear formulation is
min
x∈X0

f(x)

s.t.

”gj(x, ξ) ≤ 0”, j = 1, ..., p,

”hk(x, ξ) = 0”, k = 1, ..., q.

The feasibility set is now random and its exact shape is unknown prior to decision
making, therefore it is entirely possible to choose a solution which will turn out
to be infeasible. First let us formulate the simplest method to provide some
contrast. The decision maker can again use an estimate ξ̂ of ξ and solve the
problem minx∈X (ξ̂) f(x). It is a reasonable idea in the case of a random objective
function, but when used for the constraints, it is far from ideal. The following
motivation example demonstrates why.
Example. Let x ∈ R and ξ = (ξ1, ξ2)T , let ξ1 have a continuous uniform dis-
tribution U [−3, −1], ξ2 have a continuous uniform distribution U [1, 3] and let
them be independent. Let the objective function be f(x) = x and the set of
feasible solutions be determined by the random constraint ”ξ1 ≤ x ≤ ξ2”. We
can produce an estimate ξ̂ = (E[ξ1],E[ξ2])T = (−2, 2)T . The reformulated set of
feasible decisions is then determined by the constraint x ∈ [−2, 2]. If we solve
the problem minx∈[−2,2] x, we arrive at the optimal solution x∗ = −2. However,
P(ξ1 ≤ −2 ≤ ξ2) = 1

2 . This means that the chosen solution has a 50% chance of
being infeasible with respect to the original problem.
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More meaningful solutions should aim to control the probability of infeasibility.
The first option is to use the robust approach again, which amounts to finding
solutions from X0 that fulfill the random constraint at all times, i.e. ∀ξ ∈ Ξ.
In other words, the solution should lie in the set ∩ξ∈ΞX (ξ). These are called
permanently feasible solutions. The joint case for all the constraints would be to
solve the program

min
x∈∩ξ∈ΞX (ξ)

f(x).

The severe limitation of this approach is that the set ∩ξ∈ΞX (ξ) is often very small
or even empty. It should only be used in cases where it is absolutely necessary
for the solution to remain feasible, for example when optimizing the properties
of a populated building which has to withstand extreme weather in all cases.
Usually there are some constraints which can be relaxed and this brings us to the
second option.

The approach when the decision maker controls the probability of feasibility is
called probability constraints. The constraints can either be controlled indi-
vidually, or jointly. The two problem formulations are listed below.

Joint probability constraints:

min
x∈X0

f(x)

s.t.

P(x ∈ X (ξ)) ≥ 1 − ϵ,

where 0 ≤ ϵ ≤ 1 is a threshold constant chosen in advance (usually close to zero).

Individual probability constraints

min
x∈X0

f(x)

s.t.

P(gj(x, ξ) ≤ 0) ≥ 1 − ϵg
j , j = 1, ..., p,

P(hk(x, ξ) = 0) ≥ 1 − ϵh
k, k = 1, ..., q,

where ϵg
j , j = 1, ..., p and ϵh

k, k = 1, ..., q are threshold constants from [0, 1] chosen
in advance (usually close to zero).

Note that when some threshold constant is equal to zero, it is a type of robust
constraints, but we do not necessarily need the feasibility to hold for all ξ ∈ Ξ,
but only on a set of probability one. These two approaches can be combined
at will, the robust version can be used for more important constraints and the
rest can be handled using probability constraints. There is no universal way of
dealing with probability constraints reformulation, but we can list two important
examples. First is when the random element can be separated from the rest of the
constraint, second is when the random element has a finite number of scenarios.

9



Example. (Separated random element) Let us have a simple case of a probability
constraint P(x ≥ ξ) ≥ 0.95, where x ∈ R and ξ ∼ N(µ, σ2) for some known µ
and σ > 0. Then we can write P(x ≥ ξ) = P(x−µ

σ
≥ ξ−µ

σ
), where the variable

ξ−µ
σ

has a standard normal distribution N(0, 1) with a known quantile function
q : [0, 1] → R. Then the constraint P(x−µ

σ
≥ ξ−µ

σ
) ≥ 0.95 can be rewritten as

x−µ
σ

≥ q(0.95), or in other terms, x ≥ µ + q(0.95) · σ, which is a deterministic
inequality constraint.

Example. (big-M reformulation) Let us have a constraint P(g(x, ξ) ≤ 0) ≥ 0.95
for x ∈ Rn and assume that the random vector ξ has a finite number of scenarios,
i.e. Ξ = {ξ1, ..., ξS} with probabilities ps. Then we essentially obtain S scenario
specific constraints g(x, ξs) ≤ 0, s = 1, ..., S. We will create S binary variables
ys ∈ {0, 1}, s = 1, ..., S which will assess whether the specific constraint is ac-
tivated. The new set of S + 1 deterministic constraints replacing the random
constraint is

g(x, ξs) ≤ M · (1 − ys), s = 1, ..., S,
S∑︂

s=1
ps · ys ≥ 0.95,

where M is a large enough constant. We can see that if ys = 1 for some scenario
s, the constraint g(x, ξs) ≤ 0 is activated, but if ys = 0, we obtain g(x, ξs) ≤ M
which always holds as long as we take M ≥ supx∈X0 maxξ∈Ξ g(x, ξ). The last
constraint ensures that the desired proportion of cases is covered.

There exists a variety of assumptions which guarantee the convexity of the set of
feasible solutions for probability constraints, but they are out of the scope of this
thesis.

1.3 Multi-stage stochastic programming

The standard stochastic programming model assumes that all the decisions are
made before the random element reveals itself, this is what we call a single stage
model. The real life situations can be more complex than that and the ran-
domness may reveal itself sequentially, giving the decision maker an opportunity
to react in time. This is the framework of multi-stage stochastic programming.
A very common special case is the two-stage stochastic programming and it is
worth mentioning separately to understand the important principles. In the whole
section we will assume that all expectations exist and are finite and that optimal
solutions exist for each problem.

1.3.1 Two-stage models

Two-stage programming consists of three steps, initial decision, observation of
randomness and recourse decision based on the observation. The first and third
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steps are called decision stages. Let us now provide the general formulation of
such a problem. Let x ∈ Rn1 be the first stage decision vector, y ∈ Rn2 the second
stage decision vector and n1 +n2 = n. The random element ξ is defined the same
as before. The causal pathway of the decision process is illustrated below.

decide x⇝ observe ξ ⇝ decide y

An important observation is that the first stage decision variables are determinis-
tic, but the second stage decision variables are dependent on the random element,
therefore random. Now we are prepared to define the model.

Definition 2. (Shapiro et al. (2009)) Using the notations above, we define
a Two-stage stochastic programming model as

min
x∈X1

EP
[︂

min
y∈X2(x,ξ)

f(x, y, ξ)
]︂
,

where, X1 ⊆ Rn1 is a given compact set, X2: Rn1 ×Rd ⇒ Rn2 is an A- measureable
closed valued multifunction and f : Rn1 × Rn2 × Rd → R is a function.

The widely used approach for its numerical tractability and applicability is to
consider the distribution to have a finite number of scenarios, so we are again
in the situation Ξ = {ξ1, ..., ξS} with probabilities ps. We will create a separate
second stage decision vector ys ∈ Rn2 for each possible scenario ξs. The deter-
ministic reformulation from Shapiro et al. (2009) of the two-stage scenario based
stochastic program then is

min
x,y1,...,yS

S∑︂
s=1

ps · f(x, ys, ξs)

s.t. x ∈ X1, ys ∈ X2(x, ξs), s = 1, ..., S.

The optimal solution basically serves as a decision strategy, where we take the
initial optimal decision x and based on the realization ξs we choose the optimal
second stage decision ys. This framework gives the decision maker an ability to
react optimally to the random element. What if the randomness reveals itself
gradually at different points in time? It is possible to model that situation using
two stages and simply wait until every realization is known to make the next move.
However, a much more flexible solution would be to react to each realization
in real time, prior the next realization. This way we create an entire decision
process adapted to the underlying random process. This is the case of multi-
stage programming.
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1.3.2 Multi-stage models

General setting

As mentioned above, the decision process will consist of T decision stages and
T − 1 random realizations between them, which means that the first decision
vector is deterministic and the rest of the decision process is random. Note that
literature sometimes states the case, where there is one additional random element
taking place after the last decision, with no recourse action. To specify further, let
n1, ..., nT , d1, ..., dT −1 be positive integers, n = n1 + ...+nT and d = d1 + ...+dT −1.
The vector of all decisions will be denoted x ∈ Rn such that x = (x1, ..., xT )T ,
where xt ∈ Rnt , t ∈ {1, ..., T} is the decision vector in the t-th stage of the
program. By x[t] we will denote all the decisions made until the t-th stage, i.e.
x[t] = (x1, ..., xt)T .

The random element in the problem will be represented by a real stochastic pro-
cess ξ = (ξ1, ..., ξT −1)T , where for t ∈ {1, ..., T − 1} we have a random vector
ξt : (Ω, A) → (Rdt , Bdt) encapsulating the random element revealed to the de-
cision maker after the t-th stage decision. Same as for the decision process, we
denote by ξ[t] = (ξ1, ..., ξt)T the history of the process up to time t and by Zt ⊆ A
the σ-algebra generated by the process up to time t. {Zt}T −1

t=1 is then the canon-
ical filtration of the process. By ξ[0] we mean that no random information has
been revealed yet. The causal pathway of this model is illustrated below.

decide x1 ⇝ observe ξ1 ⇝ decide x2 ⇝ ...⇝ observe ξT −1 ⇝ decide xT

Remark. (Shapiro et al. (2009)) We can pose additional assumptions about the
underlying stochastic process. For example, we call it stagewise independent
when ξt is stochastically independent of ξ[t−1], or Markovian when the condi-
tional distribution of ξt|ξ[t−1] is the same as for ξt|ξt−1.

Model definition

Now we can present the general form of a multi-stage stochastic program.

Definition 3. (Shapiro et al. (2009)) Using the notations above, we define
a Multi-stage stochastic programming model as

minx1∈X1 f1(x1) + E

⎡⎣minx2∈X2(x1,ξ1) f2(x2, ξ1) + E
[︄
... + E

[︃
minxT ∈XT (xT −1,ξT −1) fT (xT , ξT −1)

]︃]︄⎤⎦,

where f1 : Rn1 → R is a deterministic function, X1 ⊆ Rn1 is a fixed compact set,
for t = 2, ..., T are ft : Rnt × Rdt−1 → R functions and Xt : Rnt−1 × Rdt−1 ⇒ Rnt

A-measureable closed-valued multifunctions. The expectation in the t-th stage is
taken with respect to the conditional distribution of ξt|ξ[t−1], t = 1, ..., T − 1.

In the case where some of the optimal solutions don’t exist, we could replace the
minima by infima.
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Scenario trees

The next two sections are partly drawn from Shapiro et al. (2009). The single
stage models did not include any possibilities for recourse action. Because of
that, it was simple to capture the scenario structure, we just approximated the
distribution P by a finite number of atoms. This situation is more delicate,
since we are dealing with a random process. We can again assume that the
element ξ has finitely many scenarios ξ1, ..., ξS, but we have to realize, that each
of these scenarios is a whole trajectory of the underlying random process, i.e.
ξs = (ξs

1, ..., ξs
T −1)T , where the t-th element is a vector from Rdt . We can think

of every scenario ξs as a path from a root node to a leaf node in a scenario tree.
The nodes of the tree are organized in levels corresponding to the decision stages
t = 1, ..., T . Each node corresponds to a specific situation the decision maker
might find themselves in. At level t = 1 we have one root node, marking the
beginning of the decision process, and at level t = T we have S leaf nodes, each
corresponding to one possible trajectory ξs. Nodes in the tree are connected via
arcs to nodes in the next level, signifying a causal pathway between them, defined
by the realizations of the process. We denote Nt for t = 1, ..., T the sets of nodes
in each level t. Each node ν ∈ Nt for t = 2, ..., T is connected to exactly one
node in the previous level, called the ancestor node a(ν) ∈ Nt−1 and each node
ν ∈ Nt for t = 1, ..., T − 1 has a set of descendants d(ν) ⊆ Nt+1 in the next level,
which all correspond to different continuations of the nodes history ξ[t−1]. It is
a simple observation that the set of nodes Nt+1 is a disjoint union of descendant
sets from the previous layer, i.e. Nt+1 = ∪ν∈Ntd(ν), and d(ν1) ∩ d(ν2) = ∅ if
ν1 ̸= ν2. In Figure 1.1 we can see an illustration of how such a scenario tree
would look like in a three-stage stagewise independent stochastic program, where
ξ1 has 3 possible realizations and ξ2 has 2 possible realizations, leading to 6
different trajectory scenarios ξ1, ..., ξ6 of the process (ξ1, ξ2)T in the last level. In
the figure we can also see one specific node ν in the second layer and his ancestor
and two descendants.

Figure 1.1: Example of a scenario tree for a three-stage stochastic program

After properly identifying the tree structure, the probability distribution needs to
be assessed. In order to do that, we have to specify the conditional distributions
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of ξt+1|ξ[t], t = 1, ..., T − 2. Generally, for an arbitrary node ν ∈ Nt at a time
t = 1, ..., T − 1, it is necessary to specify the probabilities pν,η ≥ 0 of moving to
different descendants η ∈ d(ν), such that ∑︁η∈d(ν) pν,η = 1. These probabilities
are in one-to-one correspondence with the arcs inside the tree and they represent
the conditional distributions of the process continuations. Each trajectory ξs

corresponds to a chronological sequence of nodes ν1, ..., νT , such that νt ∈ Nt

and a(νt) = νt−1. Utilizing that N1 = {ν1}, the probability of the scenario ξs is
then equal to ps = pν1,ν2 · pν2,ν3 · ... · pνT −1,νT

. Earlier on we mentioned possible
assumptions about the underlying process, such as stagewise independence or
Markovian property. These can make the probabilistic structure simpler. For
example, in the former case, we can calculate a nodes probability as a product of
marginal probabilities of the events leading up to that node. In the Markovian
case, we can calculate it by utilizing one step transition probabilities from the
ancestral node.

Nonanticipativity

Remember that for each trajectory scenario ξs = (ξs
1, ..., ξs

T −1)T there is a corre-
sponding decision process xs = (xs

1, ..., xs
T )T . It is extremely important to realize,

that until the last stage, the decision maker does not know in which scenario ξs

they are, since they only know the already observed part of the process. This is
why the model formulation needs to ensure that decisions must not be made based
on future realizations of the random process. In other words, we need the decision
xt to be Zt−1-measureable. The nested multi-stage formulation in Definition 3
included this principle implicitly, but it needs to be manually incorporated into
the deterministic reformulations via so called nonanticipativity constraints.
Specifically, let us look at Figure 1.1 one more time, and imagine we are now at
the second stage in the rightmost branch of the tree, waiting to make our second
stage decision. However, we have no way of knowing if we will end up in scenario
ξ5 or ξ6, since it depends on the realization of the random vector ξ2, which has
not been revealed yet. In order to have a correctly adapted decision process, we
need to ensure that scenarios ξ5 and ξ6 have the same decision policy up to the
second stage, since they share a common history. We need to look at each pair of
scenarios and compare their histories. Mathematically, for each stage t = 1, ..., T
and each pair of scenarios s1, s2, if ξs1

[t−1] = ξs2
[t−1], we enforce a constraint xs1

t = xs2
t .

A simple consequence is, that the root node is the same for all scenarios, meaning
that it must hold x1

1 = x2
1 = ... = xS

1 , i.e. the first stage decision is the same no
matter the scenario, since there is no randomness revealed yet.
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2. Endogenous randomness in
stochastic programming

In the beginning of the first chapter we stated a core assumption of classical
stochastic programming, that the random element is not affected by the decision
maker and its distribution is fixed. This situation was referred to as exogenous
randomness, indicating that the random element is somehow external to the deci-
sion process. There are actually many cases, where this assumption does not hold.
It is difficult to generalize them, but they usually arise when the randomness is
somehow coming from within the model framework, or at least partly. This is
why it is called endogenous randomness. Sometimes the term decision dependent
randomness will be used in the same meaning. We will see several examples of
such situations, but for a quick introduction, imagine a salesman pitching a new
product and deciding on the selling price. The demand for this product is surely
random, however, is it reasonable to assume that its distribution does not de-
pend on the price? We have to keep in mind, that incorporating endogenous
randomness into stochastic programming makes the models more complex and
computationally expensive, especially in multi-stage programming, where the de-
cisions may even change the structure of the underlying random process and the
times at which the realizations become known. This is sometimes called endoge-
nous randomness of the second type and it is a very complex topic, which will
not be covered in sufficient detail.

There is vast amount of possible ways how a variable can affect a probability
distribution and this thesis can not provide an exhaustive list of them. The goal
will be to search for tractable cases, which are suitable for real life applications.
The search for tractable cases is not only important from a modelling standpoint,
but also from a computational standpoint, as some models with endogenous ran-
domness can be extremely hard to solve or even formulate. Let us now lay out
some basic mathematical background, in which they can be formulated.

2.1 General setting

Let us consider the previously defined probability space (Ω, A, PΩ) and closed set
of feasible decisions X0 ⊆ Rn. Let us denote by P0 an arbitrary set of distribu-
tions on the measurable space (Rd, Bd). It could include all distributions on the
measurable space, but it also allows us to restrict to some specific subset. For
example, we might only want to include distributions with a finite expectation.
For now we will assume that every feasible decision yields exactly one probability
distribution, i.e. for every feasible decision x ∈ X0 is the underlying random
element represented by a random vector ξ(x) : (Ω, A) → (Rd, Bd) with a support
Ξ(x) ⊆ Rd and a probability distribution P(x) ∈ P0. The distribution function
of ξ(x) will be denoted ∆(x, ·) : Rd → [0, 1] and the density δ(x, ·) : Rd → [0, ∞).
We also denote P(X0) = {P(x) : x ∈ X0} ⊆ P0 the set of all distributions which
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can be determined by feasible decisions. Note that the random elements do not
need to have the same dimension for every decision, we can choose the constant d
as the maximal dimension of the random elements from {ξ(x) : x ∈ X0} and the
framework allows for some of the random variables inside each vector to degener-
ate to zero or some other constant. In order to not have to segregate the random
variables into exogenous and endogenous, some of the marginal distributions of
ξ(x) can be independent of decisions (possibly even all of them, which would
simply result in the classical stochastic programming framework).

2.1.1 Model formulation

The general uncertain form of a stochastic programming model with endogenous
randomness is

” min
x∈X0

f(x, ξ(x))”

s.t. (x, ξ(x)) ∈ Ψ,

where f : Rn × Rd → R is a function and the set Ψ expresses the random
constraints. In order to be consistent with the previous chapter, we will stay in
the framework of nonlinear optimization, where the set of random constraints
consists of a finite number of equalities and inequalities.

Definition 4. We define a Stochastic programming model with endoge-
nous randomness as

” min
x∈X0

f(x, ξ(x))”

s.t.

”gj(x, ξ(x)) ≤ 0”, j = 1, ..., p,

”hk(x, ξ(x)) = 0”, k = 1, ..., q,

(2.1)

where all the functions are defined the same as in the corresponding exogenous
formulation.

Remark. In the above case it holds that

Ψ = {(x, ξ(x)) : ”gj(x, ξ(x)) ≤ 0”, j = 1, ..., p,

”hk(x, ξ(x)) = 0”, k = 1, ..., q}.

Same as before, this is the uncertain form of the model, which needs to be refor-
mulated deterministically. The tractability of a stochastic programming model
with endogenous randomness depends a lot on its specific structure and searching
for such structures is still an ongoing process in literature.
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2.1.2 Deterministic reformulations

For simplicity, we will now assume a fixed feasibility set. In other words, we are
dealing with the problem

” min
x∈X0

f(x, ξ(x))”.

First option is to use the robust worst-case formulation

min
x∈X0

sup
ξ∈Ξ(x)

f(x, ξ),

which is much more complicated than the exogenous version, because the sup-
ports Ξ(x) are decision dependent and can differ for each x. This makes the
model viable only when the support dependence is simple, for example when the
decisions translate a common support by some decision dependent constant.

The standard approach is to use the expected value criterion, same as before.
Assume for each x ∈ X0 that f(x, ξ(x)) ∈ L1(Ω, A, PΩ). We can define a function
F : X0 × P0 → R by the following expressions.

F (x, P(x)) = EP(x)[f(x, ξ(x))]

=
∫︂

Ω
f(x, ξ(x)(ω)) dPΩ(ω)

=
∫︂
Rd

f(x, ξ) dP(x)(ξ)

=
∫︂

Ξ(x)
f(x, ξ) dP(x)(ξ).

(2.2)

The full model reformulation is

min
x∈X0

F (x, P(x)) = min
x∈X0

EP(x)[f(x, ξ(x))]. (2.3)

Remember that in the exogenous case, convexity of the function f implicated
the convexity of F (x, P). Dupačová (2006) mentioned that this property may be
lost in the endogenous case. This provides further limitations in the search for
tractable cases.

At this point we can not provide a general reformulation of the random con-
straints, instead we will search for specific model structures where the reformula-
tion can be done in a more general manner. Let us now proceed to cover some pos-
sible cases of decision dependence. Whatever reformulation of the general model
(2.1) we will consider in the future, we will always assume the existence of an opti-
mal solution. From now on, the assumption that f(x, ξ(x)) ∈ L1(Ω, A, PΩ) holds
for each x ∈ X0 will be implicitly considered, even when not explicitly stated.
Moreover, we will work with the expected value criterion F (x, P(x)) defined in
(2.2) as the objective function, unless stated otherwise.
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2.2 Common reference measure

Let us now look at one possible simplification of the general model with a fixed
feasibility set. As proposed in Dupačová (2006), assume that all the probability
measures P(x) ∈ P(X0) have existing densities δ(x, ·) : Rd → [0, ∞) with respect
to a common probability measure G. The objective function can be rewritten as

F (x, P(x)) =
∫︂
Rd

f(x, ξ) dP(x)(ξ) =
∫︂
Rd

f(x, ξ) · δ(x, ξ) dG(ξ)

and by defining f̃(x, ξ) = f(x, ξ) · δ(x, ξ) we can write the whole problem as

min
x∈X0

∫︂
Rd

f̃(x, ξ) dG(ξ)

with a decision independent distribution G. Unfortunately, this can lead to a loss
of convenient properties of the original objective function f (especially convex-
ity), which makes the evaluation of gradients and subgradients more challeng-
ing. The structure of the problem is of high importance here. For example, we
can formulate a special case of the dependence is proposed by Dupačová (2006):
P(x)(B) = G(B⨁︁

Hx), where B ∈ Bd is a Borel set, ⨁︁ is the direct sum and H is
a matrix of corresponding dimension. This situation yields an objective function

F (x, P(x)) =
∫︂
Rd

f(x, ζ − Hx) dG(ζ),

which retains the properties of the original objective function f .

As for the random constraints, we can formulate a special case proposed by Kopa
(2024). Let the random part of the feasibility set consist of constraints in the
shape EP(x)[gj(x, ξ(x))] ≤ 0 for each j = 1, ..., p. These can be equivalently writ-
ten as one constraint maxj=1,...,p EP(x)[gj(x, ξ(x))] ≤ 0. If we can find a function
l(x, ξ(x)) such that

max
j=1,...,p

EP(x)[gj(x, ξ(x))] = EP(x)[l(x, ξ(x))],

the whole problem (2.1) can be reformulated as

min
x∈X0

∫︂
Rd

f(x, ξ) · δ(x, ξ) dG(ξ)

s.t.
∫︂
Rd

l(x, ξ) · δ(x, ξ) dG(ξ) ≤ 0.

18



2.3 Finite cardinality of P(X0)

This type of decision dependence is discussed in detail in Kopa (2024). Let
there be an integer m ≥ 1 and random vectors ξ1, ..., ξm : (Ω, A) → (Rd,Bd)
with distributions P1, ..., Pm ∈ P0. Let there be a finite disjoint partition of
the feasibility set X0, such that each part has a common random element. In
mathematical terms, there is a disjoint partition X0 = ∪m

i=1Xi, such that ∀i =
1, ..., m and ∀x ∈ Xi : ξ(x) a.s.= ξi and P(x) = Pi. The simple observation is that
P(X0) = {P1, ..., Pm}. Assume that for each i = 1, ..., m is F (x, Pi) continuous
in x on the set clo(Xi), where F is defined in (2.2). This way we can split the
original problem into m subproblems, which all follow the classical stochastic
programming framework with exogenous randomness. For each i = 1, ..., m, the
uncertain form of the i-th subproblem is

” min
x∈clo(Xi)

f(x, ξi)”

s.t.

”gj(x, ξi) ≤ 0”, j = 1, ..., p,

”hk(x, ξi) = 0”, k = 1, ..., q.

Firstly, let us consider a fixed feasibility set. The subproblem for each i = 1, ..., m
can be reformulated using the expected value criterion into the shape

min
x∈clo(Xi)

F (x, Pi) = min
x∈clo(Xi)

EPi
[f(x, ξi)].

After solving all the subproblems, we can create an index set I∗ ⊆ {1, ..., m},
indicating which of the subproblems have a solution. This set will always be non-
empty, since we consider the whole problem to have a solution. The reformulated
model (2.3) with a fixed feasibility set is

min
i∈I∗

min
x∈clo(Xi)

F (x, Pi) = min
i∈I∗

min
x∈clo(Xi)

EPi
[f(x, ξi)].

The principle stays the same when we allow random constraints. For each of
the subproblems there is a common distribution Pi, therefore we can use prob-
ability constraints defined within the exogenous framework. Utilizing the same
definition of I∗, a reformulation of the full model (2.1) with individual probability
constraints is
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min
i∈I∗

Φ(Pi),

where
Φ(Pi) = min

x∈clo(Xi)
EPi

[f(x, ξi)]

s.t.

P(gj(x, ξi) ≤ 0) ≥ 1 − ϵg
j , j = 1, ..., p,

P(hk(x, ξi) = 0) ≥ 1 − ϵh
k, k = 1, ..., q.

The submodels could alternatively be formulated using joint probability con-
straints in the form

P
(︂
gj(x, ξi) ≤ 0, j = 1, ..., p, hk(x, ξi) = 0, k = 1, ..., q

)︂
≥ 1 − ϵ.

Remark. Note that it would also be possible to model this situation using binary
variables by defining y1, ..., ym ∈ {0, 1} such that yi = 1 ⇔ x ∈ Xi, the problem
with fixed feasibility set could be formulated as

min
x∈X0, y1,...,ym∈{0,1}

m∑︂
i=1

yi · EPi
[f(x, ξi)]

s.t. yi = 1 ⇔ x ∈ Xi, i = 1, ..., m.

2.4 Fixed parametric family

Let us consider an arbitrary parametric family of distributions {F(θ) | θ ∈ Θ}
where θ ∈ Rp is the parameter vector and Θ ⊆ Rp is the parametric space.
Example. Some of the well known parametric families are:

• {Nd(µ, Σ) | µ ∈ Rd, Σ ∈ Rd×d positive semi-definite} - Normal distribution
of general dimension d ∈ N

• {Exp(λ) | λ ∈ (0, ∞)} - Exponential distribution

• {Alt(p) | p ∈ [0, 1]} - Alternative or Bernoulli distribution

A very practical approach to endogenous randomness modelling is to keep the
possible distributions inside a fixed parametric family. In such a case, we assume
that the decisions only alter parameters, but not the type of the distribution.
Mathematically, let us consider a parametric family which fits into the previously
set space of distributions P0, i.e. F = {F(θ) | θ ∈ Θ ⊆ Rp} ⊆ P0. For each
distribution from the family, corresponding to the parameter vector θ, we denote
by ∆(θ, ·) : Rd → [0, 1] the cumulative distribution function and assume existence
of a density δ(θ, ·) : Rd → [0, ∞) with respect to a measure G. Then let us assume
the existence of a parametric function θ : X0 → Θ which serves as a mapping
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between the feasible decision space and parametric space. Then for each feasible
decision x ∈ X0 we assume that the distribution of ξ(x) is

P(x) = F(θ(x)).

Assuming a fixed feasibility set, we can utilize this shape of dependence and
existence of densities to rewrite the objective function as

F (x, P(x)) =
∫︂
Rd

f(x, ξ) dP(x)(ξ) =
∫︂
Rd

f(x, ξ) · δ(θ(x), ξ) dG(ξ),

therefore the full problem is

min
x∈X0

∫︂
Rd

f(x, ξ) · δ(θ(x), ξ) dG(ξ).

Example. Say there is a function λ : X0 → (0, ∞) and for each feasible decision
x the random element ξ(x) is univariate and follows an exponential distribution
with parameter λ(x), thus having a density with respect to the Lebesgue measure
and a support Ξ(x) = (0, ∞). The endogenous randomness stochastic problem
for a fixed feasibility set and an objective function f(x, ξ(x)) can therefore be
formulated as

min
x∈X0

∫︂ ∞

0
f(x, ξ) · λ(x) · e−λ(x)·ξ dξ.

As for the case of a random feasibility set, we will assume only inequality con-
straints in the uncertain form ”gj(x) ≥ ξ(x)” for all j = 1, ..., p. Assume that
ξ(x) has a distribution F(θ(x)) with a distribution function ∆(θ(x), ·) and a quan-
tile function ∆−1(θ(x), ·). Then we can, for example, use individual probability
constraints for each j = 1, ..., p in the form

P(gj(x) ≥ ξ(x)) ≥ 1 − ϵ

∆(θ(x), gj(x)) ≥ 1 − ϵ

gj(x) ≥ ∆−1(θ(x), 1 − ϵ),

which is a well defined deterministic constraint. Below we show a simple example
for one probability constraint with a separated random element.

Example. Let us consider a simple case of a probability constraint in the form
P(g1(x) ≥ ξ(x)) ≥ 0.95, where x ∈ R and for every feasible x ∈ X0 does ξ(x) have
a univariate normal distribution with the mean µ(x) and variance σ2(x) for some
correctly defined parametric mappings µ, σ. Assume that σ(x) > 0 for all feasible
solutions. Then we can write P(g1(x) ≥ ξ(x)) = P

(︂
g1(x)−µ(x)

σ(x) ≥ ξ(x)−µ(x)
σ(x)

)︂
, where

the variable ξ(x)−µ(x)
σ(x) has a standard normal distribution N(0, 1) with a known

quantile function q : [0, 1] → R. Then the constraint
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P
(︂

g1(x)−µ(x)
σ(x) ≥ ξ(x)−µ(x)

σ(x)

)︂
≥ 0.95 can be rewritten as g1(x)−µ(x)

σ(x) ≥ q(0.95), or in
other terms, g1(x) ≥ µ(x) + q(0.95) · σ(x), which is a deterministic inequality
constraint depending only on x.

Example. (Motivation) Say there is a farmer who wants to maximize the yield
of an arbitrary crop after planting n ∈ N seeds (each seed can yield one crop).
The random element entering the model is the number of crops, which can be
modeled by a binomial distribution with n trials and a probability of yield for
one seed. There are two influential non-negative continuous decision variables,
the amount of fertilizer used x1 and the amount of water for irrigation x2, denote
x = (x1, x2)T . These factors influence the probability of the seed yielding a crop.
Say there is a function p : [0, ∞)2 → [0, 1], which takes fertilization and irrigation
as inputs and determines the probability of yield. The goal could be to work
with a fixed budget and maximize the expected profit, computed as the gain from
crop sales minus the cost of fertilization and irrigation. The decision dependent
random element is the crop amount ξ(x) with a distribution P = Bi(n, p(x)).

2.5 Fixed and finite number of scenarios

Now we can move to arguably the most important case of endogenous randomness
modelling, which is widely used in practice. We already mentioned in the first
chapter, that an efficient way to work with a probability distribution is to assume
it has finitely many scenarios. This discretization allows us to formulate difficult
problems elegantly, without having to deal with complex shapes of the objective
function, and it can preserve useful properties of the function f . The reason why
this is a frequently used model is, that there are several situation in practise,
where me might need it. First situation is, when the true distribution itself is
discrete with finitely many scenarios. Second, when it is not discrete but can be
approximated by discrete using various methods for scenario generation. Third
but not last, when we observe a random sample from the true distribution and
work with sample estimates of the expected value and other quantities, then we
use arguments like the law of large numbers or central limit theorem to justify it.

2.5.1 Decision dependent probabilities

Either way, let us now assume that all the possible realizations of all the random
elements ξ(x), x ∈ X0 form a set of finite cardinality, i.e.

Ξ = ∪x∈X0Ξ(x) = {ξ1, ..., ξS}

for some integer S < ∞. Under this assumption, all distributions from P(X0)
can be represented by a vector of scenario probabilities, which can be decision
dependent. In other words, for each x ∈ X0 is the distribution P(x) discrete on
the set {ξ1, ..., ξS} with probabilities p1(x), ..., pS(x), which satisfy the conditions
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ps(x) ≥ 0 ∀s = 1, ..., S and ∑︁S
s=1 ps(x) = 1. Note that we purposely did not

restrict the probabilities from being zero, in order for this framework to allow the
distributions to degenerate to a smaller number of scenarios, but all in the set Ξ.
The reformulated problem (2.3) with a fixed feasibility set is

min
x∈X0

S∑︂
s=1

ps(x) · f(x, ξs).

Additional assumptions can be posed on the probability functions, like continuity.
An example of the use of this modelling technique can be seen in the paper Kopa
and Rusý (2021), where one of the random elements was whether a client accepts
a loan from a bank or not. This element obviously had two scenarios, and their
probabilities were dependent on the offered interest rate, which was one of the
decision variables. In this case of two scenarios, the probabilities can be modeled
by logistic regression for example, with the decision variables as predictors and
regression parameters estimated from data.

As for the random feasibility set, the probability constraints approach is available.
One possibility is to use the aforementioned big-M reformulation. Say we have
a constraint P(g(x, ξ(x)) ≤ 0) ≥ 1 − ϵ. We utilize the fact, that the scenario
set is independent of decisions, and for each s = 1, ..., S we create a constraint
g(x, ξs) ≤ 0 and a binary variable ys ∈ {0, 1}, which will assess, whether this
specific constraint is activated. Then we add the final constraint ensuring that
the desired probability is covered. The new set of S + 1 deterministic constraints
then is

g(x, ξs) ≤ M · (1 − ys), s = 1, ..., S,
S∑︂

s=1
ps(x) · ys ≥ 1 − ϵ,

where M ≥ supx∈X0 maxξ∈Ξ g(x, ξ). The principle is the same as before, only now
are the probabilities also functions of x.

2.5.2 Decision dependent scenarios

The last model assumed fixed scenarios and decision dependent probabilities.
This situation can also be considered in reverse. Let S be defined the same
as before. Assume that for each x ∈ X0 is the distribution P(x) concentrated
on S different decision dependent scenarios Ξ(x) = {ξ1(x), ..., ξS(x)} with fixed
probabilities p1, ..., pS > 0 such that ∑︁S

s=1 ps = 1. In other words, it is the
opposite of the last situation, the probabilities are fixed and scenarios are decision
dependent. Here we assume the probabilities to be non-zero, because we do not
want the distributions to degenerate. We also assume that for each feasible x and
two different scenarios s1, s2 = 1, ..., S it holds that ξs1(x) ̸= ξs2(x). Under these
circumstanes, we can reformulate the problem (2.3) with a fixed feasibility set as
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min
x∈X0

S∑︂
s=1

ps · f(x, ξs(x)).

We utilize the fact, that even though the scenarios are decision dependent, there
is a fixed number of them, otherwise the formulation would be complicated. This
way we can use the big-M reformulation again. Each probability constraint
P(g(x, ξ(x)) ≤ 0) ≥ 1 − ϵ can be replaced by S + 1 new constraints

g(x, ξs(x)) ≤ M · (1 − ys), s = 1, ..., S,
S∑︂

s=1
ps · ys ≥ 1 − ϵ,

where M ≥ supx∈X0 maxξ∈Ξ(x) g(x, ξ). This method can be used efficiently when
the dependence between the decisions and scenarios is simple. One option could
be that the decisions translate the scenarios by some constant.

2.6 Effect on dependence structure

So far we have considered cases, where the decisions influence the whole joint
distribution of the random element. What if we wanted the decisions to only alter
the marginal distributions, but not the dependence between them? For that we
need a mathematical tool which allows us to inspect these two concepts separately,
and that tool is called a copula. Unlike the classical measures of dependence,
mainly correlation, which only measures the rate of linear dependence, copulas
allow for flexible modelling of a wide variety of possible situations. In finance for
example, there can be two assets, whose returns are generally weakly correlated,
but they exhibit a similar behaviour in the most extreme cases.

2.6.1 Theoretical basics of copulas

Let us first define the notion of a copula. Assume we have real random vari-
ables ξ1, ..., ξd : (Ω, A) → (R, B) with continuous and strictly increasing
cumulative distribution functions ∆1, ..., ∆d : R → [0, 1] (this assumption can be
avoided in more advanced texts) and densities δ1, ..., δd : R → [0, ∞) with respect
to the Lebesgue measure. The assumption also grants the existence of inverses
∆−1

i : [0, 1] → R. We can denote the random vector consisting of these variables
as ξ : (Ω, A) → (Rd, Bd) with a multivariate distribution function ∆ : Rd → [0, 1]
and density δ : Rd → [0, ∞). It is a well known observation, that plugging a ran-
dom variable into its own distribution function results in a uniform distribution
on the interval [0, 1], i.e. ∆i(ξi) ∼ U [0, 1] for every i = 1, ..., d. We can proceed
to define the notion of a copula.
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Definition 5. (Ruppert and Matteson (2011) ) We define copula as a multivari-
ate cumulative distribution function, whose marginal distributions are all U [0, 1].
Under the assumption mentioned above, we can define the copula of a random
vector ξ as a function C : [0, 1]d → [0, 1], such that for each u1, ..., ud ∈ [0, 1] we
have

C(u1, ..., ud) = P(∆1(ξ1) ≤ u1, ..., ∆d(ξd) ≤ ud),

or equivalently, under the assumption which grants the inverse of distribution
functions ∆i,

C(u1, ..., ud) = P(ξ1 ≤ ∆−1
1 (u1), ..., ξd ≤ ∆−1

d (ud)),

As we can see from the definition, copula indeed contains no information about the
marginal distributions. This is a good thing, because by fixing a copula, we can
create joint distributions with the desired dependence structure only by specifying
their marginals. But how can we assemble these two parts together? The answer
lies within the famous Sklar theorem (see Ruppert and Matteson (2011)), which
combines the copula with marginal distributions. The joint distribution function
∆ of the random vector ξ for each z1, ..., zd ∈ R can be written as

∆(z1, ..., zd) = C(∆1(z1), ..., ∆d(zd)). (2.4)

Since the copula C is essentially a distribution function with nice properties, we
would also like to work with its density (with respect to the Lebesgue measure),
which can be computed for each u1, ..., ud ∈ [0, 1] as the derivative

c(u1, ..., ud) = ∂d

∂u1 · · · ∂ud

C(u1, ..., ud).

The whole multivariate density δ of the vector ξ for each z1, ..., zd ∈ R can then
be obtained by differentiating the formula (2.4):

δ(z1, ..., zd) = c(∆1(z1), ..., ∆d(zd)) · δ1(z1) · · · δd(zd). (2.5)

Example. (Ruppert and Matteson (2011)) Now that we have covered the basics,
let us show examples of some of the important copulas (or parametric families of
copulas).

• The independence copula, which is the copula of d independent random
variables.

Cind(u1, ..., ud) = u1 · · · ud.
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• The co-monotonicity copula, which is the copula measuring perfect pos-
itive dependence

CM(u1, ..., ud) = min(u1, ..., ud).

• The bivariate Gumbel copula for a parameter θ ∈ [1, ∞), which is a cop-
ula family modelling upper tail dependence.

CGu(θ, u1, u2) = e−((− log u1)θ+(− log u2)θ)
1
θ .

For θ = 1 it is the independence copula and for θ → ∞ it is the co-
monotonicity copula.

• The Gaussian copula for a correlation matrix Σ ∈ [0, 1]d×d, which is the
copula of a multivariate normal distribution with the correlation matrix Σ

CGauss
Σ (u1, ..., ud) = ΦΣ(Φ−1(u1), ..., Φ−1(ud)),

where ΦΣ is a distribution function of Nd(0, Σ) and Φ is a distribution
function of N(0, Id)

2.6.2 Endogenous randomness modelling

The theoretical basics are covered, now we return back to our problem set-
ting. For each feasible decision x ∈ X0 we have the random element ξ(x) =
(ξ1(x), ..., ξd(x))T in our programming model and we assume continuous and
strictly increasing distribution functions. Denoted by ∆(x, ·) is the joint distri-
bution function and δ(x, ·) the joint density with respect to the Lebesgue measure.
Moreover, ∆j(x, ·) is the marginal distribution function of ξj(x) and δj(x, ·) its
density. As for the dependence structure, there is a decision dependent copula
associated with ξ(x), denoted C(x, ·) with a density c(x, ·). This is a very general
case, let us break it down to two special cases.

Fixed copula

The first considered case of endogenous randomness is, that the decisions influence
only the marginal distributions, but preserve their dependence structure. This
means that we have a fixed copula C with density c for each decision x ∈ X0 and
decision dependent distribution functions. Now we can mend them together and
compute the density of ξ(x) using formulas 2.4 and 2.5. For an arbitrary feasible
decision x ∈ X0 and a realization ξ = (ξ1, ..., ξd)T ∈ Ξ(x), we obtain the value of
the decision dependent joint density δ(x, ξ) as

δ(x, ξ) = c
(︂
∆1(x, ξ1), ..., ∆d(x, ξd)

)︂
· δ1(x, ξ1) · · · δd(x, ξd).
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This object uniquely specifies the distribution P(x) for each feasible decision. As
for the shape of dependence of the marginal distributions, we can use an arbitrary
method from the previous sections. We can finally formulate the whole stochastic
optimization problem with a fixed feasibility set and fixed copula as

min
x∈X0

∫︂
Rd

f(x, ξ) · c
(︂
∆1(x, ξ1), ..., ∆d(x, ξd)

)︂
· δ1(x, ξ1) · · · δd(x, ξd) dξ.

Example. A useful example of this type of decision dependence are strictly in-
creasing transformations. Let us denote by ξ = (ξ1, ..., ξd)T some basic random
vector with a copula C. As we can see in Ruppert and Matteson (2011), un-
der the assumptions of this section, strictly increasing transformations preserve
copulas. Let us consider strictly increasing decision dependent transformations
T1(x, ·), ..., Td(x, ·) : R → R. We can set the dependence of distributions in the
following way:

ξ(x) = (ξ1(x), ..., ξd(x))T a.s.= (T1(x, ξ1), ..., Td(x, ξd))T .

Then, for different feasible decisions does ξ(x) generally have different marginals,
but the dependence structure defined by the copula stays the same.

2.6.3 Fixed marginals

Same as in Section 2.5, we can consider the previous case in reverse. Let us
now assume, that each feasible decision preserves the marginal distributions but
alters the copula. In mathematical terms, we have common marginal distribution
functions ∆1, ..., ∆d and densities δ1, ..., δd. For each x ∈ X0 does the element ξ(x)
have an associated copula C(x, ·) and copula density c(x, ·), joint distribution
function ∆(x, ·) and joint density δ(x, ·). Utilizing theses facts and formulas (2.4)
and (2.5), we arrive at the joint density of ξ(x) with respect to the Lebesgue
measure, whose value for a realization ξ = (ξ1, ..., ξd)T ∈ Ξ(x) is

δ(x, ξ) = c
(︂
x, (∆1(ξ1), ..., ∆d(ξd))

)︂
· δ1(ξ1) · · · δd(ξd),

which uniquely specifies the decision dependent distribution P(x). The whole
optimization problem for a fixed feasibility set and fixed marginal distributions
is written as

min
x∈X0

∫︂
Rd

f(x, ξ) · c
(︂
x, (∆1(ξ1), ..., ∆d(ξd))

)︂
· δ1(ξ1) · · · δd(ξd) dξ.

The question now is, how to model the dependence of copulas on decisions. The
most natural way is to keep the copulas inside some parametric family. One of
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them was mentioned in the example on page 25, the bivariate Gumbel copula,
which has a single parameter θ ∈ [1, ∞). The Gumbel copula is reserved for
positive dependencies between two variables, capable of modelling tail risk, and
the parameter value spans from absolute independence to perfect positive de-
pendence. We could create a parametric function θ : X0 → [1, ∞) and set the
dependence as C(x, ·) = CGu(θ(x), ·), so that the decisions influence the strength
of positive dependence between two random elements, but do not alter their
marginal distributions.

2.7 Set-valued dependence

Let us still consider the desired subset P0 of all distributions on (Rd, Bd). Up to
this moment, we have been operating under the assumption that for each feasible
decision x ∈ X0 there is a uniquely assigned probability distribution P(x) of the
random element. There are several types of situations, where this assumption
does not hold. The existence of endogenous randomness does not necessarily
implicate, that the decisions fully determine the distribution. There are cases,
where they only affect the distribution, but there is still some external influence
bringing additional uncertainty to the model, which the decision maker can not
control. However, this is not the whole story, because it can also happen that the
set is assigned by the decision maker themselves, in order to account for possible
uncertainty in the assigned distribution (the specific shape of the distribution
might depend on some parameters, that are hard to estimate or account for).
Our basic expected value formulation (2.3) does not make sense under the new
assumption. As we can see in Jonsbråten et al. (1998), the proposed generalized
shape, assuming a fixed feasibility set, is

min
x∈X0

∫︂
Rd

f(x, ξ) dP(ξ)

s.t. (P , x) ∈ K.

The set K ⊆ P0 × X0 is linking the distributions to feasible decisions. The
linking constraints can generally be very complex, so we have to limit ourselves
to manageable cases. Note that under our previous assumption of uniqueness,
the set K would be of the shape K = {(P(x), x) : x ∈ X0}, i.e. the graph of the
dependence mapping x → P(x). To proceed formulating new cases, we will now
assume that for every feasible decision x ∈ X0 there is an assigned set U(x) ⊆ P0
of possible distributions of the random element ξ(x). Under this assumption
we can consider the linkage set to be K = {(P , x) : x ∈ X0, P ∈ U(x)}. We
will focus on two methods for solving such problems. The first method is to use
robust reformulations, specifically the worst-case approach. The second method
is to aggregate the possible distributions into one distribution P(x) and proceed
to solve it the classical way. Let us present some of the new cases, useful under
our new assumption. Note that, same as before, this is not supposed to be an
exhaustive list of options, merely a demonstration of a few useful ones.
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2.7.1 Fixed and finite cardinality of U(x)

We will consider that the set U(x) is finite for all x ∈ X0 with a fixed cardinality
k ∈ N. In other words, we assume that for each x ∈ X0 it holds that

U(x) = {P1(x), ..., Pk(x)}.

The first option is to use the robust formulation

min
x∈X0

max
P∈U(x)

EP [f(x, ξ(x))] = min
x∈X0

max
P∈U(x)

∫︂
Rd

f(x, ξ)dP(ξ),

which amounts to minimizing the cost of the worst-case scenario. A possible
downside of this approach is that it is often too conservative. It is not always
wise to consider the worst possible case and it highly depends on the nature of
the problem and the risk aversion of the decision maker.

A more refined approach would be to aggregate the distributions from U(x) into
one. If the decision maker does not have any additional information about the
mechanism, which selects the true candidate distribution, the most natural choice
is to consider the simple average of the distributions. This means, that for every
feasible decision, the endogenous distribution will be chosen as

P(x) = 1
k

k∑︂
i=1

Pi(x).

This phenomenon is called a mixture distribution. The formula means that for
every measurable set B ∈ Bd it holds that P(x)(B) = 1

k

∑︁k
i=1 Pi(x)(B). We can

think of it as throwing a fair dice which tells us which distribution to use. The
upside of this approach is that its easy to work with and does not require any
additional information. The downside is that the mixture distribution likely does
not even belong to the set U(x).

Cases like this often arise when the decision maker can influence the random
element, but there is still some other exogenous random influence, which the
decision maker can not control. Let us now assume the existence of an exogenous
random element η : (Ω, A) → (E, E) with a finite set of scenarios η1, ..., ηk ∈ E,
whose realization has a direct influence on the random element ξ(x). Each feasible
decision x ∈ X0 then generates the set of candidate distributions, all of them
conditional on a realization of the external random element η. For each x ∈ X0
we consider

U(x) = {P(x|η1), ..., P(x|ηk)},

where P(x|ηi) denotes the conditional distribution of ξ(x) under the condition
η = ηi. Ideally, the decision maker should be aware of this external influence and
if there is no further information available about it, they can either use the worst-
case formulation or simply aggregate the candidate distributions by a simple

29



average. However, when the decision maker knows the scenario probabilities
pi = P(η = ηi), either true or estimated, they can naturally use them as weights
in the mixture distribution. The sum of the weights is one, so it is a correctly
defined probability distribution. The final assigned distribution is a weighted
average of the partial distributions and defined as

P(x) =
k∑︂

i=1
pi · P(x|ηi).

The full model formulation under this setting is the classical one and we can write
it as

min
x∈X0

EP(x)[f(x, ξ(x))]

= min
x∈X0

∫︂
Rd

f(x, ξ)dP(x)(ξ)

= min
x∈X0

k∑︂
i=1

pi ·
∫︂
Rd

f(x, ξ)dP(x|ηi)(ξ)

= min
x∈X0

k∑︂
i=1

pi · EP(x|ηi)[f(x, ξ(x))].

Note that it is also theoretically possible to work with distributions of the external
element η which have an infinite or even uncountable amount of scenarios. Instead
of a finite vector of probabilities, we use a sequence of them (for the countable
case) or a density function (for the uncountable case). This way we can create
a mixture distribution of infinitely many distributions.
Example. (Motivation) Imagine a vendor who wants to open an ice cream stand
for an outdoor weekend festival. The vendor wants to maximize profit by choosing
the optimal price for a scoop. Assume two positive-valued functions a, b. We
will consider the ice cream demand to be a source of endogenous randomness,
whose distribution is affected by the scoop price p. However, the price is not
the only influence on the demand, there is also an important external factor, the
weather. The vendor thinks about the weather as a categorical variable η with
three possible states: η1 = rainy, η2 = windy and η3 = sunny. Since the event
is outdoors, ice cream is more demanded in warmer weather. The vendor knows,
that for a price p, the demand has a uniform distribution, which

• in rainy weather is P(x|η1) = U [1
2a(p), 1

2b(p)],

• in windy weather is P(x|η2) = U [a(p), b(p)],

• in sunny weather is P(x|η3) = U [3
2a(p), 3

2b(p)].

Luckily, the vendor has studied the weather forecast and estimated the probability
of a rainy weather as p1 = 1

5 , windy weather as p2 = 3
10 and sunny weather
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occurring as p3 = 1
2 . Based on this information, the best course of action is to

optimize the model with endogenous random demand while using the distribution
P(x) = 1

3 · P(x|η1) + 3
10 · P(x|η2) + 1

2 · P(x|η3) for each price in question.

2.7.2 Ambiguity sets

Earlier on we were mentioning a potential problem with the robust worst-case
approach, that it can be too conservative to hedge against the worst of many
options. However, it can be a very reasonable method when the set of distribu-
tions is rather small, but not in terms of cardinality, but in terms of how different
the distributions inside the set are. In this context are the sets U(x) called am-
biguity sets and they are commonly used in robust formulations of stochastic
optimization problems. Ambiguity sets are usually constructed as neighborhoods
of some reference distribution. We have to realize that the true probability distri-
butions in question are rarely known by the decision maker, therefore they have
to be estimated. This always yields some sort of error and uncertainty about the
estimated quantities. But what if only a small deviation of the estimated distri-
bution from the true one gives us tremendously different results? This is why we
construct the neighborhood around the reference distribution and hedge against
the worst-case scenario, in order to mitigate the risk of highly suboptimal deci-
sions stemming from an incorrectly specified model. We could also understand
ambiguity sets as sets of distributions, which the decision maker deems plausible
for a given decision (hence the word ”ambiguity”). The thing we have not yet
specified is, what do we mean by the neighborhood of a distribution. To answer
that, we need to introduce some notion of distance between probability measures
(which is not necessarily a metric). This is where a wide variety of ambiguity sets
comes into form. Following the papers Luo and Mehrotra (2020) and Basciftci
et al. (2021), we present some useful examples of ambiguity sets, all of which
were demonstrated on practical examples in those papers. Let us say, that for
each feasible decision x ∈ X0 there is a reference distribution P(x) ∈ P0 of the
random element and we want to incorporate the uncertainty regarding its exact
shape. Note that we will provide only the raw shapes of the ambiguity sets, not
their reformulations for specific purposes.

Ambiguity sets induced by the Wasserstein metric

This type of ambiguity sets was taken from the paper Luo and Mehrotra (2020).
Let us first define the Wasserstein metric, which is a measure of probabilistic dis-
tance. It is going to be a function of two arguments, both of which are probability
distributions from P0. Denote by P(Rd, Bd) the set of distributions on this space.
The metric is denoted by W : P0 × P0 → R. First we need to define a function
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S(P1, P2) ={︂
P ∈ P(Rd+d, Bd+d)

⃓⃓⃓
∀B ∈ Bd : P(B × Rd) = P1(B), P(Rd × B) = P2(B)

}︂
,

where Bd+d = Bd ⊗ Bd. This essentially means that for two distributions P1, P2
we obtain a set of all joint probability distributions whose marginals are P1, P2.
Then, for an arbitrary norm || · || on Rd, we can define the Wasserstein metric as

W(P1, P2) = inf
P∈S(P1,P2)

∫︂
Rd×Rd

||ξ1 − ξ2|| dP(ξ1 × ξ2).

For x ∈ X0 we can finally define the ambiguity set as

UW (x) =
{︂
P ∈ P0

⃓⃓⃓
W(P , P(x)) ≤ ϵ(x)

}︂
,

which means that acceptable distributions for a feasible decision x lie in the
ϵ(x) neighborhood of the reference distribution P(x). In a special case we could
consider the diameter ϵ to be independent of the decisions.

Ambiguity sets induced by φ-divergence

This type of ambiguity set was taken from the paper Luo and Mehrotra (2020).
The principle will be the same, only using a different measure of probabilistic
distance. Let φ : (0, ∞) → R be a convex function such that φ(1) = 0 and
P1, P2 ∈ P0 two distributions such that P1 ≪ P2. Under the assumptions above,
we can define the φ-divergence as

Dφ(P1||P2) = EP2

[︃
φ
(︃

dP1

dP2

)︃]︃
,

where dP1
dP2

denotes the Radon-Nikodym derivative. Note that φ-divergence is not
a metric, since it is not symmetrical. A famous special case for φ(t) = t · log(t) is
the Kullback-Leibler divergence, also called relative entropy. The corresponding
ambiguity set can be defined as

Uφ(x) =
{︂
P ∈ P0

⃓⃓⃓
Dφ(P||P(x)) ≤ ϵ(x)

}︂
,

where we consider the neighborhood of the reference distribution with respect to
the new measure of distance.
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Scenario based ambiguity sets

This ambiguity set was inspired by the paper Basciftci et al. (2021) about a dis-
tributionally robust facility location problem. We will provide a highly simplified
version. This one was chosen because it assumes a fixed and finite number of
scenarios of the random element, i.e. ∪x∈X0Ξ(x) = {ξ1, ..., ξS}. For each feasible
decision is the reference distribution P(x) determined by the decision dependent
scenario probabilities p1(x), ..., pS(x). We want to incorporate uncertainty about
the exactness of the probabilities and for that we can design a simple ambiguity
set of the form

US(x) =
{︂
P ∈ P0 with probabilities {ps}S

s=1

⃓⃓⃓
|ps − ps(x)| ≤ ϵ(x) ∀s = 1, ..., S

}︂
.

Other types of ambiguity sets may rely on the Kolmogorov-Smirnov distance,
moment based inequalities and many others. All the possibilities require suitable
reformulations, which can be very complex, but the common approach to solving
problems of this type is called the distributionally robust approach. We can
reformulate the three problems with fixed feasibility sets as

min
x∈X0

max
P∈UW (x)

∫︂
Rd

f(x, ξ) dP(ξ),

min
x∈X0

max
P∈Uφ(x)

∫︂
Rd

f(x, ξ) dP(ξ),

min
x∈X0

max
P∈US(x)

∫︂
Rd

f(x, ξ) dP(ξ),

under their respective settings and assumptions. If the ambiguity set is reasonably
small (mainly the parameters ϵ(x)), the solution hedges well against inaccuracies
in the estimated distribution, but at the same time, it is not overly conservative.

2.7.3 Contamination

In the previous section we considered the sets of decision dependent distribu-
tions to be constructed as neighborhoods of some reference distribution. Another
very common shape of a decision dependent set is a line segment between two
distributions. To elaborate more, we often face the danger of misspecification
of the underlying distribution, since it is usually estimated from data and thus
vulnerable to errors. The contamination approach, as a method of stress testing,
provides a framework for assessing the solutions stability. It is crucial to study
how small changes in the distribution affect the optimal solution and its objective
value. If the problem is highly sensitive to the specific shape of the distribution,
any misspecification might have detrimental effects on the validity of the optimal
solution. As we will see in the following text, contamination can transform the
stability examination into a problem of one parameter λ.
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First, let us demonstrate the concept on a classical stochastic programs with
exogenous randomness. This section is heavily inspired by the paper Dupačová
(2006). In the first chapter we considered a random element ξ with a probability
distribution P . Now we want to evaluate the sensitivity of the optimal solution
with respect to changes in the underlying distribution. We can model that by
considering an alternative distribution P̃ . We will contaminate our distribution
with the alternative one by using their convex combination, i.e. for every λ ∈ [0, 1]
we consider the contaminated distribution

P(λ) = (1 − λ) · P + λ · P̃ .

These distributions for all values λ ∈ [0, 1] construct the line segment between P
and P̃ . For λ = 0 we obtain our reference distribution, and raising the parameter
slowly contaminates it by the alternative one. Under the assumption that the
optimal solution exists for every distribution on this line, we can denote the
objective function as

F (x, λ) = EP(λ)[f(x, ξ)] = (1 − λ) · EP [f(x, ξ)] + λ · EP̃ [f(x, ξ)].

Since it is linear in λ, by differentiating with respect to λ we get

∂

∂λ
F (x, λ) = EP̃ [f(x, ξ)] − EP [f(x, ξ)],

which is the change in the objective function after moving from P to P̃ . For
the optimal value function φ(λ) = minx∈X0 F (x, λ) and its unique minimizer x̂,
under some mild conditions there exist the one-sided derivative

φ′(0+) = EP̃ [f(x̂, ξ)] − EP [f(x̂, ξ)] = ∂

∂λ
F (x̂, λ).

This means that the local change of the optimal value after a slight movement
in the direction P̃ − P corresponds to the change of the objective function after
switching the distribution at the minimizer x̂. The function φ(λ) is also concave
in λ which gives us valid bounds for each λ ∈ [0, 1]

φ(λ) ∈
[︂
(1 − λ) · φ(0) + λ · φ(1), φ(0) + λ · φ′(0+)

]︂
,

which we can use to assess the stability of the optimal value, since it gives us
an interval in which the optimal value stays under each distribution on the
whole line segment. The decision dependent case is much more complicated.
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Let F (x, P(x)) = EP(x)[f(x, ξ(x))] be the standard objective function for en-
dogenous randomness and x̂ the true or approximate minimizer. Now for every
feasible solution x ∈ X0 we contaminate the distribution P(x) by P̃(x) and the
sensitivity can again be measured by the derivative of F (x̂, P(x)) in the direction
P̃(x) − P(x). There is no simple general assertion about the optimal value func-
tion anymore, only in special cases, hence there is a need for various algorithmic
methods. The goal is again to construct the bounds as before and literature offers
a variety of methods. More information on this topic can be found in Kopa and
Rusý (2023) for example.

In the context of the whole section, we can consider the set of viable distributions
for a decision x ∈ X0 to be

U(x) = {(1 − λ) · P(x) + λ · P̃(x) | λ ∈ [0, 1]}.

2.8 Multi-stage programs with endogenous ran-
domness

In Section 1.3.2 we considered T decision stages induced by the decision vec-
tors x = (x1, ..., xT )T , where xt ∈ Rnt and the histories were denoted x[t] =
(x1, ..., xt)T . The causal pathway of the decision process was

decide x1 ⇝ observe ξ1 ⇝ decide x2 ⇝ ...⇝ observe ξT −1 ⇝ decide xT .

The difference now is, that the random elements depend on the decisions. But
that’s not the whole story. Classical multi-stage programming is complicated and
computationally expensive as it is, but adding endogenous randomness brings
another layer of complexity. The simpler case we can consider is assumes, that
the decisions do not alter the nature of the decision process and the times at
which the random elements are observed. In relation to nonanticipativity, the
random element after the t-th stage decision depends on the history of decisions
up to that stage, meaning that the causal pathway is now

decide x1 ⇝ observe ξ1(x1)⇝ decide x2 ⇝ ...

⇝ observe ξT −1(x[T −1])⇝ decide xT .

The distributions can be affected in various ways that we considered in this chap-
ter. If we assume that the scenario tree has the same shape for each distribution,
it is usually tractable. The real trouble starts when these assumptions do not
hold anymore. There is a lot of practical problems which require more complex
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modelling techniques, because they include situations, where a decision might not
only change a distribution, but also the stages at which the decision maker ob-
tains new information about some of the random elements. This can result in the
decision maker dealing with completely different tree structures for each decision
and the need to look for special problem structures. This is highly non-trivial
and not really in the scope of this thesis, but it needs to be mentioned. Example
of such a case can be found in the paper Goel and Grossmann (2004), which deals
with optimization of an offshore gas field. The uncertainly lies, for example, in
the sizes of underground oil reservoirs. One of the decisions is whether to apply
a certain device, which can find out more about the amount of oil in a poten-
tial reservoir. Such a decision is costly, but provides valuable information, and
based on the decision, the scenario tree branches in different ways. There are
other practical cases like this and they all exhibit high complexity from both the
modelling and computational standpoint.
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3. Newsvendor problem

The newsvendor problem is one of the most famous models in all of stochastic
programming. It serves as a primary example of how randomness can be incor-
porated into an optimization problem. Note that its use is obviously not limited
to selling newspapers. The name stems from the fact that newspapers become
worthless after their relevance period expires, and the remaining stock has no
remaining value. This is foreshadowing the models key assumption, that the
product at hand loses all value after the selling period expires. We will generally
talk about a vendor selling some product. The standard formulation of this model
contains a random demand, which is treated like an external variable indepen-
dent of the decisions (exogenous). We will try extending this to an endogenous
case. The problem can be found in Hrabec et al. (2012) for example. First let us
formulate the basic model.

3.1 The standard case

Suppose that a vendor is selling some product and their goal is to choose the
optimal order quantity. Since the product becomes worthless after the selling
period, the vendor should not overstock, in order to avoid lost profit. The decision
variable x ≥ 0 is the ordered quantity of the product. The ordering cost per unit
is a finite number c > 0 and the selling price is p > 0. We assume that p > c, so
the trade is profitable. The uncertainty in the model is contained in the product
demand, which is represented by a random variable ξ : (Ω, A) → (R, B) with
a distribution P . The assumption is that the demand realization becomes known
after ordering the product stock, with no option of a recourse decision. The goal
is to maximize profit as a difference between the gains and costs.

max
x≥0

p · E[min(x, ξ)] − c · x, (3.1)

or equivalently

max
x≥0

(p − c) · x − p · E[x − ξ]+,

We will stick with the formulation (3.1) in the remainder of this chapter. It is
a known fact that for each demand distribution P this problem has an explicit
optimal solution x∗(P) = F −1

P (1− c
p
), which is the (1− c

p
) quantile of the demand

distribution. This is often called the critical fractile formula.

Another possible approach would be to use worst-case analysis instead of the ex-
pected value criterion, or using probability constraints to control the probability
of overstocking. The true shape of the demand distribution P is rarely known by
the vendor, so it needs to be estimated. Note that obtaining historical demand
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data could result in sampling from a censored distribution, since the observed
demands would be bounded from above by the available stock. To set the basis
for the rest of this chapter, let us assume that the demand follows a continu-
ous uniform distribution centered around the expected demand D = E[ξ] with
a volatility parameter σ ≥ 0, specifically

P = U
[︃
D − σ

2 , D + σ

2

]︃
.

3.2 Newsvendor problem with continuous price
selection

In the model above, we considered a fixed selling price p, but what if the vendor
would like to treat the price as a decision variable? This is a realistic concern,
but it comes with a complication. The demand will always be a random variable,
however, it is not sound to assume that its distribution does not depend on
the selling price. This sets the stage for a practical use of decision dependent
randomness. More information about this setting can be found in the paper
Hrabec et al. (2012).

Now the main question is, how to set the type of dependence. There are several
ways of approaching this issue, we could pick the selling price from some discrete
set, for example small−medium−large, and set the demand distribution for each
of these states separately. It would be simple from a computational standpoint,
however, we want to work with a continuous selection in order to demonstrate
the principles from the previous chapter.

The ordering unit price of the product will again be some finite number c > 0.
We will consider the possible selling prices from a bounded interval [a, b], where
c < a ≤ b < ∞ (the selling price always has to be larger than the ordering
one). Now we have to specify the demand distribution. For each price p ∈ [a, b]
is the demand a random variable ξ(p) : (Ω, A) → (R, B) with a distribution
P(p). We will assume that for each p ∈ [a, b] the demand has a continuous
uniform distribution over some bounded interval, where the bounds are decision
dependent. For each feasible price we will denote the expected demand as D(p) =
E[ξ(p)]. Then we consider a volatility function σ(p) : [a, b] → [0, ∞] (if σ(p) = 0,
we are solving a deterministic program with D(p) as the demand) determining the
variance of the demand. For now assume that the demand and variance functions
are correctly defined and D(p)− σ(p)

2 ≥ 0 for each p ∈ [a, b]. In order to not violate
basic economic principles, we will consider the expected demand function to be
non-increasing in price. The shape of the volatility function is more debatable,
but we will also assume it to be non-increasing, because for a larger price the
product attracts a smaller population, which narrows the spread. Finally, we set
the decision demand distribution for a price p ∈ [a, b] as
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P(p) = U
[︃
D(p) − σ(p)

2 , D(p) + σ(p)
2

]︃
,

meaning a continuous uniform distribution on the aforementioned interval con-
centrated around the expected demand. This is the type of dependence studied
in Section 2.4 about fixed parametric families. From the moment properties of
the uniform distribution, we obtain that the expected value is indeed D(p) and
the variance is equal to σ(p)2

12 for each feasible price. We will enforce a constraint
x ∈

[︂
D(p) − σ(p)

2 , D(p) + σ(p)
2

]︂
, which is a valid, because we assume that the

vendor knows the bounds of the demand interval and it does not make sense for
them to order more than the maximum possible demand, since that would surely
result in unsold goods and lost profit. It also does not make sense to order less
than the minimum possible demand, since the profit could always be increased
with no risk by ordering at least the lower bound D(p) − σ(p)

2 . This argument
would not be valid if the vendor could not afford to cover the minimal possible
demand, but the problem would lose all meaning in that case. This constraint
ensures that the vendor avoids overstocking and understocking and simplifies the
objective function. Note that there is a big assumption, that the demand esti-
mates are accurate, which can be difficult in real world. This serves merely as
a demonstrative example, but in real life, we could use ambiguity sets to handle
the possible error. The new model definition then is

max
p∈[a,b], x∈[D(p)− σ(p)

2 ,D(p)+ σ(p)
2 ]

p · E[min(x, ξ(p))] − c · x.

Let us realize that the uniform distribution is absolutely continuous with respect
to the one-dimensional Lebesgue measure and for a price p ∈ [a, b] it has a con-
stant density δ(p, z) = 1

σ(p) , z ∈
[︂
D(p) − σ(p)

2 , D(p) + σ(p)
2

]︂
(assuming σ(p) > 0).

The problem can then be reformulated as

max
p∈[a,b], x∈

[︁
D(p)− σ(p)

2 ,D(p)+ σ(p)
2

]︁ p

σ(p) ·
∫︂ D(p)+ σ(p)

2

D(p)− σ(p)
2

min(x, z) dz − c · x, (3.2)

and since x ∈
[︂
D(p) − σ(p)

2 , D(p) + σ(p)
2

]︂
, we can write
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∫︂ D(p)+ σ(p)
2

D(p)− σ(p)
2

min(x, z) dz

=
∫︂ x

D(p)− σ(p)
2

min(x, z) dz +
∫︂ D(p)+ σ(p)

2

x
min(x, z) dz

=
∫︂ x

D(p)− σ(p)
2

z dz +
∫︂ D(p)+ σ(p)

2

x
x dz

=
[︂z2

2
]︂x

D(p)− σ(p)
2

+ x ·
(︂
D(p) + σ(p)

2 − x
)︂

=1
2 ·
(︃

x2 −
(︂
D(p) − σ(p)

2
)︂2
)︃

+ x ·
(︃

D(p) + σ(p)
2 − x

)︃
= − 1

2 · x2 +
(︂
D(p) + σ(p)

2
)︂

· x − 1
2 ·
(︂
D(p) − σ(p)

2
)︂2

= − 1
2 · x2 +

(︂
D(p) + σ(p)

2
)︂

· x − 1
2 · D(p)2 + 1

2σ(p)D(p) − σ(p)2

8 .

After further simplification, we can write the full model (3.2) as

max
p∈[a,b], x∈

[︁
D(p)− σ(p)

2 ,D(p)+ σ(p)
2

]︁ α(p) · x2 + β(p) · x + γ(p), (3.3)

where
α(p) = − p

2 · σ(p) ,

β(p) = p

σ(p) ·
(︂
D(p) + σ(p)

2
)︂

− c,

γ(p) = p

σ(p) ·
(︃

− 1
2 · D(p)2 + 1

2 · σ(p) · D(p) − σ(p)2

8

)︃
.

Note that α(p) < 0 ∀p ∈ [a, b], because σ(p) > 0, which means that for every
feasible price is the objective function quadratic and strictly concave in x, thus
having a unique maximizer. For a fixed feasible price p, we can differentiate the
objective with respect to x and obtain the equation 2α(p) · x + β(p) = 0. We can
solve it in the following steps.

2α(p) · x + β(p) = 0

− p

σ(p) · x + p

σ(p) · (D(p) + σ(p)
2 ) − c = 0

p

σ(p) · (D(p) + σ(p)
2 ) − c = p

σ(p) · x

x = D(p) + σ(p)
2 − c · σ(p)

p

x = D(p) +
(︄

1
2 − c

p

)︄
· σ(p).
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Since our assumption was, that c ∈ (0, p) holds for all feasible prices (in order to
be able to generate profit), 1

2 − c
p

is a decreasing function in c which takes values
in
(︂
−1

2 , 1
2

)︂
. This means, that the optimal x always lies inside the feasible interval[︂

D(p) − σ(p)
2 , D(p) + σ(p)

2

]︂
and is therefore optimal and feasible. We can denote

the optimal ordering amount for price p ∈ [a, b] as x(p) = D(p) +
(︂

1
2 − c

p

)︂
· σ(p).

From this formula we can see, that for selling prices significantly larger than c
is the expected demand very small and, in order to generate profit, the vendor
is ordering an amount close to the maximal demand, since the profit from each
sold product is very high and the relative cost of unsold goods is not that big.
Conversely, for selling prices very close to c does each sold unit generate a small
profit and the vendor does not want to risk too much unsold goods, since the
relative ordering cost is high, which is why they order an amount close to the
minimal demand. The whole optimization problem can then be reformulated
using only the price variable as

max
p∈[a,b]

α(p) · x(p)2 + β(p) · x(p) + γ(p). (3.4)

After obtaining the optimal price p∗ from this program, the optimal order quantity
is equal to x∗ = x(p∗) = D(p∗) +

(︂
1
2 − c

p∗

)︂
· σ(p∗). Recall that in the standard

exogenous case, the optimal order quantity was the (1− c
p
) quantile of the demand

distribution. We can see that this also holds true in this case, i.e. for each feasible
price p is the optimal order quantity the (1− c

p
) quantile of P(p). This is why the

whole program can be reformulated as a problem of only the price variable and
the optimal quantity is automatically determined by the critical fractile formula.

3.3 Newsvendor problem with advertisement

Now that the base model is covered, let us add another decision, the option to
buy an advertisement for the product. The general idea can be found in the
paper Hrabec et al. (2017) for example. There will be a new binary decision
variable y ∈ {0, 1} determining whether the vendor buys the advertisement or
not. If yes, the advertisement is expected to reach additional 100 · ρ% of the
population for some value ρ > 0. For simplicity, we treat ρ as a deterministic
parameter, which is set beforehand (perhaps even estimated from data). There
is a one-time cost cA > 0 associated with the purchase. Since the product will
reach additional 100 · ρ% of potential customers under advertisement, we will
assume that the expected demand and volatility functions D, σ will be raised by
the same amount, i.e. by a multiplicative constant (1 + ρ), but only if y = 1. For
each price p ∈ [a, b] the new expected demand is D(p) · (1 + ρ · y) and volatility
is σ(p) · (1 + ρ · y). The new decision dependent distribution of the demand is
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P(p, y) ∼ U
[︃
(1 + ρ · y) ·

(︂
D(p) − σ(p)

2
)︂
, (1 + ρ · y) ·

(︂
D(p) + σ(p)

2
)︂]︃

.

Since there is only one binary variable in the model, we can simply solve two
separate models for y = 0 (without advertisement) and y = 1 (with advertise-
ment) and then pick the solution with the larger expected profit. The profitability
of advertisement will depend on the cost cA, which we will treat as a parame-
ter in the following numerical example. For notation convenience, let us denote
DA(p) = (1 + ρ) · D(p) and σA(p) = (1 + ρ) · σ(p) as the demand and volatility
functions in the advertisement model. The two competing models then are

max
p∈[a,b], x∈

[︂
D(p)− σ(p)

2 ,D(p)+ σ(p)
2

]︂ p

σ(p) ·
∫︂ D(p)+ σ(p)

2

D(p)− σ(p)
2

min(x, z) dz − c · x

and

max
p∈[a,b], x∈

[︂
DA(p)− σA(p)

2 ,D(p)+ σA(p)
2

]︂ p

σA(p) ·
∫︂ DA(p)+ σA(p)

2

DA(p)− σA(p)
2

min(x, z) dz − c · x − cA.

Now we need can simplify the new advertisement model. The process is ex-
actly the same as before, only now we need to change the price coefficients
α(p), β(p), γ(p) from the quadratic objective function (3.3). We will create new
coefficients αA(p), βA(p), γA(p) from the previous ones by plugging in the new
demand and volatility functions. Note their only difference, besides the change
of functions, is that the advertisement cost cA needs to be included in the new
absolute term γA(p). The advertisement model is then

max
p∈[a,b], x∈[DA(p)− σA(p)

2 ,DA(p)+ σA(p)
2 ]

αA(p) · x2 + βA(p) · x + γA(p),

where

αA(p) = − p

2 · σA(p) ,

βA(p) = p

σA(p) ·
(︂
DA(p) + σA(p)

2
)︂

− c,

γA(p) = p

σA(p) ·
(︃

− 1
2 · DA(p)2 + 1

2 · σA(p) · DA(p) − σA(p)2

8

)︃
− cA.

For a given feasible price p, the optimal order amount is again denoted
xA(p) = DA(p) +

(︂
1
2 − c

p

)︂
σA(p)

2 , therefore the final advertisement model is
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max
p∈[a,b]

αA(p) · xA(p)2 + βA(p) · xA(p) + γA(p).

We can compactly write down the whole model including advertisement choice
as

max
y∈{0,1}, p∈[a,b]

y·
(︂
αA(p) · xA(p)2 + βA(p) · xA(p) + γA(p)

)︂
+

(1 − y)·
(︂
α(p) · x(p)2 + β(p) · x(p) + γ(p)

)︂ (3.5)

and after obtaining an optimal solution y∗, p∗, the optimal ordering amount x∗

can be written as

y∗ ·
(︄

DA(p∗) +
(︄

1
2 − c

p∗

)︄
σA(p∗)

2

)︄
+ (1 − y∗) ·

(︄
D(p∗) +

(︄
1
2 − c

p∗

)︄
σ(p∗)

2

)︄
.

3.4 Numerical example

We will arbitrarily choose the currency to be american dollars ($). Let us assume
that the ordering unit price of the product is c = 10 and the unit selling price
will be chosen from the closed interval [a, b] = [12, 18]. This means that the unit
profit will vary between 2$ and 8$. As for the demand and volatility functions,
they are chosen in the following way.

D(p) = 1000 − 100 · (p − 12), p ∈ [12, 18],
σ(p) = 800 − 100 · (p − 12), p ∈ [12, 18].

(3.6)

From this we can see that the expected demand is linearly decreasing from 1000
to 400 and the volatility is also linearly decreasing from 800 to 200. We chose
both functions so they have the same derivative, since we expect the population
of potential customers to decrease in the same way in expectation and spread. In
Figure 3.1 we can see the demand structure. The x-axis covers the feasible unit
selling prices and the orange area for each price level shows the demand region.
The purple line shows the optimal ordering amounts for each price p ∈ [12, 18],
i.e. D(p) +

(︂
1
2 − c

p

)︂
· σ(p). See that the optimal ordering amounts all fall below

the centre of their respective demand intervals, since the critical quantile 1 − c
p

for our data spans between 1
6 and 4

9 .

First we will solve the problem without advertisement, i.e. the problem (3.4).
We have everything we need to compute the coefficients α(p), β(p), γ(p) for each
feasible price. The results for the optimal solution are summarized in Table 3.1.
In Figure 3.2 we can see the dependence of expected profit on unit selling price.
The curve is concave and hints us that the solution is a unique maximizer. At
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Figure 3.1: Structure of the demand distributions for various price levels

first, raising the price increases the expected profit, but the rate of increase is
gradually lowering until it reaches the optimal state. After that the expected
profit starts decreasing because of low demand.

Optimal Expected Profit 2889.03 $
Optimal Order Quantity 496.68
Optimal Unit Selling Price 16.71 $

Table 3.1: Optimal business strategy without advertisement

Now let us insert the binary option of buying an advertisement and solve the
problem (3.5). We will set ρ = 0.2, so the product reaches additional 20% people,
who we assume to have the same chances of buying the product. The demand
and volatility functions after purchasing the advertisement are

DA(p) = 1200 − 120 · (p − 12), p ∈ [12, 18],
σA(p) = 960 − 120 · (p − 12), p ∈ [12, 18].

In Figure 3.3 we can see the comparison of demand intervals with and without
advertisement. It is obvious that buying the advertisement can significantly boost
the expected profit, but the question is, how much is the vendor willing to pay
for it? We discussed earlier that we will consider the cost cA to be a one-time
payment taking place before any of the randomness reveals itself. Instead of
choosing an arbitrary advertisement price, we will treat it as a parameter. The
expected outcome should be, that if the advertisement is cheap enough, it will be
profitable, and after exceeding some turnover price, it will stop being profitable,
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Figure 3.2: Dependence of expected profit on unit price

Figure 3.3: Comparison of the demand structure for various price levels

since the costs will exceed the gains. In order to find out the turnover price, we
performed a simulation for various values of the advertisement cost, accurate up
to one dollar, where we computed the optimal expected profit and benchmarked
it against the optimal profit from the model without advertisement.

The result can be seen in Figure 3.4. Since the advertisement cost enters the
model as a linear term, the expected profit exhibits a linear decrease. After the
price surpasses roughly 577$, it is not profitable to use advertisement anymore,
since the profit increase is not enough to cover the costs.
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Figure 3.4: Comparison of optimal expected profits with respect to advertisement
price

This model was an extension of the the classical newsvendor problem. The goal
was to provide a practical formulation for continuous price selection and endoge-
nous randomness. The demand and volatility functions were chosen ad hoc, along
with other parameters. The possible downfall of the model simplification is in the
assumption that the vendor knows the demand bounds and can act accordingly.
In situations like this, it would be a good idea to incorporate uncertainty into the
model, possibly by using a distributionally robust formulation with respect to an
ambiguity set induced by suitable neighborhoods of the values D(p) and σ(p). In
the next chapter we will try to extend the situation into more decision stages,
giving the vendor an option to react to demand observations by restocking and
altering the selling price.
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4. Three-stage newsvendor
problem with recourse

4.1 Model formulation

In the previous model we assumed that each unsold product after the given selling
period becomes worthless. Because of that, the vendor had to think very carefully
about the ordered stock amount. Let us now assume that there are two selling
periods. At first, the vendor orders an initial amount of the product and sets
a selling price, same as before. However, now the vendor can react to the first
stage demand by restocking and altering the selling price, if need be, to prepare
for the following selling period. Any remaining product after the whole process
loses all value. The ordering price of the product will again be c > 0, constant
during the whole time horizon. The selling price set by the vendor for the first
period will be p1 and for the second period p2, both from the aforementioned
positive interval [a, b]. We denote p = (p1, p2)T the price process. The two
random demands will be represented by a decision dependent random vector
ξ(p) = (ξ1(p1), ξ2(p2))T : (Ω, A) → (R2, B2) with marginal distributions P1(p1)
and P2(p2) . We will reuse the same notion of expected demand and volatility
functions D and σ from the previous chapter. Since the final model will belong
to the multi-stage framework, we will use a discrete distribution this time. Each
random demand will have S possible scenarios for each feasible price, where S
is a chosen positive odd integer. The specific values of the demand scenarios
will differ for each price level. In the previous chapter it was stated, that for
each feasible price p, the distribution of demand was continuous and uniform on
the interval

[︂
D(p) − σ(p)

2 , D(p) + σ(p)
2

]︂
. To obtain the discrete scenarios, we will

split these demand intervals into S equidistant states (equidistant because of the
original distributions uniformity). The reason for choosing S as an odd number
is, that we would like the middle state to be the expected demand D(p). Finally,
for some p ∈ [a, b], both the random demands have a finite equidistant support
in the shape

Ξ(p) =
{︃

D(p) − σ(p)
2 + i · σ(p)

S − 1 : i ∈ {0, ..., S − 1}
}︃

.

With no additional information about the first stage demand, its distribution will
be assumed as uniform on the discrete support set Ξ(p), i.e. P1(p1) = U(Ξ(p1)).
We will represent the first stage scenarios by integers s1 = 1, ..., S and the first
stage probabilities will be denoted πs1 = 1

S
. These will be independent of the

price level, it is a case of endogenous randomness where the decisions only affect
the scenarios, not their probabilities. As for the second stage demand distribution
for an updated selling price p2, the scenarios will again come from the set Ξ(p2),
represented by integers s2 = 1, ..., S. Each joint scenario of the demand process
can be represented by a pair s1, s2. Unlike the first stage demand, the conditional
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distribution of the second stage demand will generally not be uniform. We will
assume that after a specific scenario s1 of the first stage demand occurs, more
probability will be concentrated around similar scenarios of the second stage
demand. For example, a higher demand in the first stage probably indicates
a higher demand in the second stage (by higher we mean relatively to the expected
demand for some price level). It is assumed that the prices levels only affect
the values of the scenarios, not the dependence structure between them. The
transition probabilities between demand scenarios are therefore assumed to be
decision independent and they can be stored inside a single matrix Π = (Πij)S

i,j=1,
where an element Πij = πsi,sj denotes the conditional probability of transitioning
from a first stage scenario s1 to a second stage scenario s2. For example, π3,5

denotes the conditional probability of observing the fifth lowest second stage
demand scenario (for price p2), knowing that the first stage demand was the
third lowest scenario (for price p1). This essentially means, that for an arbitrary
feasible choice of prices p1, p2 does the scenario tree of the model have the same
topological and probabilistic structure, only with differing scenario values. By
ξs1

1 (p1), s1 = 1, ..., S we will denote the s1-th scenario of the first stage demand
for price p1, analogously for ξs2

2 (p2).

We can now proceed to formulate the optimization model. The parameters en-
tering the model are c, a, b and the probabilistic structure π, Π, those are already
covered. As for the variables, there will be several. We have three decision stages
and two selling periods. We need to create separate decision variables for each
branching of the scenario tree, but luckily, our model is defined so that the tree
has a fixed shape and transition probabilities between nodes. In order to not vi-
olate the nonanticipativity principle, no decision variables can depend on future
demand realizations. Let us now summarize the causal pathway of this decision
process.

During the fist stage, the vendor chooses x1 ≥ 0, the ordered amount, and
p1 ∈ [a, b], the first selling price. After an arbitrary scenario ξs1

1 (p1) of the
first stage demand (with an initial probability πs1 = 1

S
) becomes known, the ven-

dor makes several second stage recourse decisions. First decision is how much of
the available product to sell, denoted by hs1

1 . This amount has to be non-negative
and it must not be larger than the minimum of the observed demand and avail-
able stock. Note that this model does not force the vendor to sell everything they
can during the second stage, instead they can keep some portion of the stock for
the second selling period, if they deem it a better decision. The amount kept is
denoted ss1 and it is the difference of the whole stock and the sold amount. Some
models also incorporate a unit holding cost, however, we will not incorporate it
here. After all the decisions, the vendor sets a new price ps1

2 ∈ [a, b] and orders
an additional amount xs1

2 ≥ 0 of the product.

After an arbitrary scenario ξs2
2 (ps1

2 ) of the second stage demand (with a conditional
probability πs1,s2) becomes known, the last decision is to sell a final amount
hs1,s2

2 ≥ 0. Obviously, the vendor can not sell more than they have, which is why
the amount sold must not be larger than the minimum of the current available
stock xs1

2 +ss1 and the second stage demand. All of the model variables and their
feasible regions for a scenario pair s1, s2 = 1, ..., S are summarized in Table 4.1.
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1. stage variables Constraints Meaning
p1 ∈[a,b] Selling price for first period
x1 ≥0 Order amount for first period

2. stage variables after s1 Constraints Meaning
hs1

1 ∈
[︁
0, min

(︁
x1, ξs1

1 (p1)
)︁]︁

Amount sold in the first period
ss1 = x1 − hs1

1 Amount kept after the first period
ps1

2 ∈[a,b] Selling price for second period
xs1

2 ≥0 Order amount for second period
3. stage variable after s1, s2 Constraints Meaning

hs1,s2
2 ∈

[︁
0, min

(︁
xs1

2 + ss1 , ξs2
2 (ps1

2 )
)︁]︁

Amount sold in the second period

Table 4.1: Three-stage newsvendor model decision variables with feasible regions

The objective of the problem is again to maximize the expected profit. For each
scenario pair s1, s2, the gain is the sum of gains from the two selling periods,
i.e. p1 · hs1

1 + ps1
2 · hs1,s2

2 . The costs are equal to c · (x1 + xs1
2 ), the total ordered

amount times the unit ordering price (we assumed the ordering price to be the
same in both stages, removing the assumption would be simple). We denote
all the decision variables using four vectors p, x, s, h, which are all non-negative.
Utilizing the discrete scenario structure, we formulate the whole problem (4.1) as

max
p,x,s,h≥0

−c · x1+
S∑︂

s1=1
πs1 ·

[︃
p1 · hs1

1 − c · xs1
2 +

S∑︂
s2=1

πs1,s2 · ps1
2 · hs1,s2

2

]︃
s.t.

p1 ∈ [a, b]
ps1

2 ∈ [a, b], ∀s1 ∈ {1, ..., S}
ss1 = x1 − hs1

1 , ∀s1 ∈ {1, ..., S}
hs1

1 ≤ x1, ∀s1 ∈ {1, ..., S}
hs1

1 ≤ ξs1
1 (p1), ∀s1 ∈ {1, ..., S}

hs1,s2
2 ≤ ss1 + xs1

2 , ∀s1, s2 ∈ {1, ..., S}
hs1,s2

2 ≤ ξs2
2 (ps1

2 ) ∀s1, s2 ∈ {1, ..., S}.

(4.1)

After inspecting the shape of the objective function and constraints, we can see
that it is a non-convex quadratic program. All the constraints are linear, therefore
the feasibility set is convex polyhedral.

4.2 Model extension with advertisement

Same as before, we will add the binary possibility of purchasing advertisement.
The notation stays the same as before, the one-time cost of advertisement is
cA > 0, y = 1 corresponds to buying and y = 0 not buying. For simplicity,
we will assume that the advertisement takes some time to reach the desired
effect, therefore it is only effective to buy it in the first decision stage, prior to
any demand realization. We will again create the effect parameter ρ > 0, such
that the demand in the first selling period is raised by a multiplicative factor
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(1 + ρ). However, we will now assume that the effect can weaken with time. For
this we create a decay parameter β ∈ [0, 1], such that the advertisement during
the second selling period is raising the demand only by a multiplicative factor
(1 + β · ρ). For example, if ρ = 0.2 and β = 0.5, the advertisement raises demand
by 20% in the first period and by 10% in the second period. Negative values of
the decay parameter would indicate that the advertisement lowers the demand,
and values higher than one would indicate that the effect of advertisement gets
stronger with time, which is also possible but omitted here. Note that in the
context of our definition of the demand distribution, raising the demand by some
percentage essentially means, that each scenario is raised by that amount and
the probabilistic structure stays the same. Unlike in the previous model (4.1), we
have to incorporate the cost of advertisement and change the demand scenarios
accordingly. The final model including advertisement can be defined as

max
p,x,s,h,y≥0

−cA · y − c · x1+
S∑︂

s1=1
πs1 ·

[︃
p1 · hs1

1 − c · xs1
2 +

S∑︂
s2=1

πs1,s2 · ps1
2 · hs1,s2

2

]︃
s.t.

y ∈ {0, 1}
p1 ∈ [a, b]

ps1
2 ∈ [a, b], ∀s1 ∈ {1, ..., S}

ss1 = x1 − hs1
1 , ∀s1 ∈ {1, ..., S}

hs1
1 ≤ x1, ∀s1 ∈ {1, ..., S}

hs1
1 ≤ ξs1

1 (p1) · (1 + ρ · y), ∀s1 ∈ {1, ..., S}
hs1,s2

2 ≤ ss1 + xs1
2 , ∀s1, s2 ∈ {1, ..., S}

hs1,s2
2 ≤ ξs2

2 (ps1
2 ) · (1 + β · ρ · y) ∀s1, s2 ∈ {1, ..., S}.

We could also choose a different incorporation of the advertisement effect. For
example, the advertisement could alter the scenario probabilities, instead of the
values. Moreover, instead of a binary option, we could create a continuous vari-
able, stating how much the vendor invests into advertisement, and model the
effect on demand continuously. We chose the binary option for its simplicity
and to demonstrate another type of decision dependence modelling. Let us now
proceed to a numerical example.

4.3 Numerical example

The values c = 10, a = 12 and b = 18 remain the same as before, for the sake
comparability. The demand and volatility functions will also be the same, as
defined in (3.6). As for the number of demand scenarios, we will choose S = 9
to avoid overwhelming numerical complexity. For each price p ∈ [12, 18], the
demand scenarios will be referred to by the following code names:
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D(p) − 1
2 · σ(p) = Lowest ,

D(p) − 3
8 · σ(p) = Very low ,

D(p) − 1
4 · σ(p) = Low ,

D(p) − 1
8 · σ(p) = Below average ,

D(p) = Average ,

D(p) + 1
8 · σ(p) = Above average ,

D(p) + 1
4 · σ(p) = High ,

D(p) + 3
8 · σ(p) = Very high ,

D(p) + 1
2 · σ(p) = Highest .

(4.2)

All the first stage probabilities are stored in the vector π shown in (4.3). For the
transition probabilities we chose the matrix Π, also shown in (4.3). We assume
that after a first stage scenario occurs, it is only possible for the demand to drop
or increase by two states or less. Remember that the states themselves depend on
the prices, but not the hierarchical structure (4.2) between them. For example,
transitioning from a state s1 = 1 to s2 = 2 means, that the first stage demand
was the Lowest with respect to price level p1, and the second stage demand was
Very low with respect to price level p1

2. After a first stage demand scenario
becomes known, we expect the same scenario in the next stage happening with
probability 4

10 , neighboring scenarios with 2
10 and further neighboring 1

10 . In cases,
where there are no more neighbors to either side, on the edges of the matrix, the
probabilities aggregate. This approach yields the multidiagonal matrix Π.

π =
(︃

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

)︃T

,

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
10

2
10

1
10 0 0 0 0 0 0

3
10

4
10

2
10

1
10 0 0 0 0 0

1
10

2
10

4
10

2
10

1
10 0 0 0 0

0 1
10

2
10

4
10

2
10

1
10 0 0 0

0 0 1
10

2
10

4
10

2
10

1
10 0 0

0 0 0 1
10

2
10

4
10

2
10

1
10 0

0 0 0 0 1
10

2
10

4
10

2
10

1
10

0 0 0 0 0 1
10

2
10

4
10

3
10

0 0 0 0 0 0 1
10

2
10

7
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.3)
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The model was fitted using the IPOPT solver, specialized in interior point meth-
ods. It uses gradient based optimization to navigate through the feasibility set.
Several combinations of feasible starting values were used, all of them yielded the
same result. In Figures 4.1 and 4.2 we can see the total optimal expected profits
for various combinations of first stage decisions p1, x1. We can see that with re-
spect to these starting values, the objective function is strictly concave and has
a unique maximizer. In the second surface plot we can also see the purple star
point corresponding to the optimal first stage strategy, which is described in the
following text. Note that these Figures are there just to demonstrate the shape of
the objective, there are always orientation problems when projecting into lower
dimensions and the optimal solution is not to be read from the plot. They serve as
a sort of an extension to Figure 3.2 from the single stage model, merely designed
for obtaining some visual context. Note that by ”initial values” or ”initialization
strategy”, we mean the first stage decisions, not the starting values entering the
solver.

Figure 4.1: Shape of the objective function for different first-stage values

Let us now look at the optimal solution of the model (4.1) without advertisement,
summarized in Table 4.2, and try to interpret it. The total optimal expected profit
is 6941.17$. Since we used the same price bounds and demand intervals as in the
single stage model from the previous chapter (except the previous distribution was
continuous, this is discrete), we can loosely compare the optimal profits. Since
now there are two periods, we would expect the optimal profit to be roughly
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Figure 4.2: The optimal initialization strategy

p1 x1 ξs1
1 (p1) hs1

1 ss1 ps1
2 xs1

2

395.45 395.45 390.91 16.18 $ 0.00

444.32 444.32 342.05 17.02 $ 44.12

493.18 493.18 293.18 16.79 $ 147.89

542.05 542.05 244.32 16.52 $ 260.61

16.09 $ 786.36 590.91 590.91 195.45 16.32 $ 372.97

639.77 639.77 146.59 16.16$ 485.10

688.64 688.64 97.73 16.04 $ 597.06

737.50 737.50 48.86 15.94 $ 708.92

786.36 786.36 0.00 15.86 $ 820.69

Table 4.2: Optimal business strategy in the three-stage model without advertise-
ment

twice as large as in the single stage model, however, the previous optimal profit
was 2889.03$, which is much less than a half. During the single stage business
model, the vendor made more conservative decisions about the order amount,
since any unsold goods would be discarded after the selling period. In this case,
the vendor knows, that unsold goods from the first period can potentionally still
be sold during the next one. As we can see, the optimal initial price is quite
similar to the previous model, but the order amount in the single stage model is
significantly smaller, being the more conservative decision. Table 4.2 has three
major parts, separated by double vertical lines. The first part is the first stage
strategy, before any demand is observed. The second part tells us how much does
the vendor sell and keep during the first selling period. Finally, the third part is
about setting the new price and ordering new stock.

The optimal strategy starts by setting the unit price to 16.09$ and ordering 786.36
units. Interestingly, the vendor chose the price in a way that the lowest demand
is almost exactly a half of the highest demand, and then ordered the highest
possible amount. This means, that while keeping the selling price constant during
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1. stage scenario s1 Most likely 2. stage demand Available stock xs1
2 + ss1

Lowest 391.00 390.91

Very low 386.25 386.17

Low 440.75 441.07

Below average 504.50 504.93

Average 568.00 568.36

Above average 632.00 631.69

High 695.00 694.79

Very high 744.5 757.78

Highest 821.0 820.69

Table 4.3: Comparison of available stock and the likeliest future demand

the process, they can sell off the whole stock in the long run, even if both the
demand realizations are the lowest possible. This is a strategy that hedges well
even against the worst-case scenario.

Let us inspect the vendors actions after observing a demand scenario s1. First
important thing to notice is, that the vendor satisfies the whole first stage demand
under each scenario, keeping only what they can not sell at the moment. The
updated selling prices are generally decreasing with increasing first stage demand
(except for the lowest scenario, where the vendor might not even be able to sell
the remaining stock ss1 if they set the price too high). We could interpret this in
a way, that when the vendor observes a high demand, they have less remaining
product on stock before the second stage, so they set a lower price to attract
more customers and order more product. We can also see, that when lower
demand scenarios happen, the price is raised from the initial one, and when the
demand is high, the price is lowered. To understand how the vendor chooses
the second stage ordering amounts xs1

2 , let us look at Table 4.3. For each first
stage demand scenario s1 we looked at the updated selling price ps1

2 and projected
the possible demand scenarios along with their conditional probabilities. Then
we looked at the most likely second stage demand scenario, which is always the
same as in the first stage (but with respect to a new price level), which can be
deduced from the matrix Π, where the largest probabilities are always on the
diagonal. Then we compared it to the available stock, planned by the vendor
before the second selling period, namely xs1

2 + ss1 . These values are compared
in the second and third columns of the Table 4.3 and as we can see, they are
basically the same. What this means is, that after the first selling period passes
and the vendor chooses a new price, they find out the most likely future demand
and refill the stock to that exact amount. The unsold product after the second
period becomes worthless, so the vendor wants the stock amount which exactly
satisfies the likeliest future demand. As for the third stage variables hs1,s2

2 , there
is no need to show all their values, since they are always equal to the minimum
of available stock and second stage demand. In other words, there is no reason
for the vendor to keep anything on stock after the second selling period, so they
sell what they can.

To summarize the strategy, the vendor first picks a price such that the lowest
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demand is half the highest demand, to be able to sell everything even in the
worst case. Then they order the highest scenario, so they can satisfy the first
demand at all times. After that, they set a new price based on the amount of
stock left, find out the likeliest future demand and refill the stock to this exact
value. No matter what happens then, the vendor sells everything they can in the
last stage and the unsold amount is discarded.

Now we will incorporate the advertisement choice. Same as in the previous chap-
ter, we will consider the effect ρ = 0.2, i.e. 20% demand raise. Previously we
computed the maximal advertisement price cA, such that it is still profitable to
buy it. We will do this again, but for various values the decay parameter β.
Lower values of β indicate a quicker decay of the advertisement, so the turnover
prices should be lower (by turnover price we mean the advertisement cost where
it stops being profitable). The results can be seen in Figure 4.3, which is the di-
rect extension of Figure 3.4 from the previous chapter. We include the turnover
prices for different decay parameters, which are summarized in Table 4.4. As we
can see, the profitability of advertisement heavily depends on how much its effect
withers in time. In the current setting, if the advertisement cost is lower than
696$, it is profitable no matter the decay speed, and if higher than 1389$, it does
not make sense to buy it at all (only if we omitted the assumption that β ≤ 1,
which ensures that the effect gets weaker in time).

Figure 4.3: Profitability of advertisement in the three-stage model

β 0 0.2 0.4 0.6 0.8 1

Turnover price 696$ 838$ 979$ 1121$ 1262$ 1389$

Table 4.4: Turnover prices of advertisement for different rates of effect decay
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5. Portfolio optimization with
Conditional Value at Risk

Endogenous randomness in stochastic programming deals with cases, where the
decision maker can influence or determine the shape of the underlying probability
distribution. As far as portfolio optimization problems go, the randomness usually
lies within the returns or losses of the assets of interest. Since we do not expect
a normal investor to influence the asset performance in any notable way, it is
usually considered a source of exogenous randomness. What if the investor had
a fairly large capital and wanted to invest into smaller companies or startups?
Investing a lot of money into such companies could give the investor a substantial
fragment of its stocks. For example, such large investments can influence the
market movement by raising the demand and showing confidence in the company,
and by owning a large fragment of the stocks, the investor can even make changes
in how the company operates and conduct large investments into innovation and
restructurization, thus influencing the profitability and risk profile of the stock.
The question is, how to model this mathematically. We will work under the mean-
risk portfolio optimization framework, assuming that the investor is primarily
interested in the trade-off between expected profit and risk, instead of personal
feelings for the company for example. The asset returns will be modelled by
the simple rate of return rt = Pt−Pt−1

Pt−1
, i.e. the percentage change of price after

some time period, by losses we will mean −rt. The risk modelling part is more
nuanced, since there is no universal notion for it. This is where risk measures come
in handy, functionals which assign a real number to a random variable, generally
interpreted as a quantificiation of risk associated with the random variable. In
this context, the random variable is the return or loss of some asset and the risk
measure serves for comparison of different investment options. In this chapter we
will utilize the arguably most famous measure Conditional Value at Risk (also
known as Expected shortfall), which we denote by CV aRα for a chosen confidence
level α ∈ (0, 1) (the value α = 1 can also be used after slight redefinition of the
measure, but we will not include it here). Let ξ : (Ω, A) → (R, B) be a random
variable with finite moments and a quantile function q : [0, 1] → R. During this
chapter, the random variable ξ will represent the random loss of an investment
during some fixed time period, −ξ will be the random return.

Definition 6. (Pflug (2000)) For a given confidence level α ∈ (0, 1), the risk
measure Conditional Value at Risk of the loss variable ξ ∈ L∞(Ω, A, PΩ) is
defined as

CV aRα(ξ) = 1
1 − α

·
∫︂ 1

α
q(p) dp.

The level α is usually taken to be 0.95 or 0, 99. In the case of 0.95, we can interpret
CV aR0.95 as an average of the 5% worst possible losses. It contains information
about the tail risk of the loss distribution as it is essentially the expected value
of the upper 1 − α tail. CV aR is one of the most fundamental risk measures
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and it satisfies the coherence property, which is a set of conditions defining what
a reasonable risk measure should have. In order to compute the measure, we need
to use the following important formula (see Pflug (2000)).

CV aRα(ξ) = min
a∈R

(︃
a + 1

1 − α
· E[ξ − a]+

)︃
.

Remark. Note that the set of optimal solutions to this problem is
[V aRα(ξ), V aRα(ξ)], i.e. the values between the lower and upper Value at Risk.
For continuous distributions of ξ it holds that a∗ = V aRα(ξ) = q(1 − α), i.e. the
(1 − α) quantile. Value at Risk is another fundamental risk measure, which is
unfortunately not coherent and does not include enough information about the
full upper tail of the loss distribution.

5.1 Basic model formulation

Let us have d ∈ N assets and we want to construct a portfolio of them. Note
that we will generally work with daily losses. A portfolio will be understood as
a vector of weights

λ ∈ Λ =
{︃

λ ∈ Rd
+ :

d∑︂
i=1

λi = 1
}︃

, (5.1)

where λi denotes the fraction of wealth invested into the i-th stock. These frac-
tions will serve as decision variables in our model and since we assume the exis-
tence of endogenous randomness, they will have an effect on the loss distribution.
Note that we do not allow for short positions by constraining the weights to non-
negative real numbers. For each feasible portfolio λ ∈ Λ, the asset losses are
stored in the random vector ξ(λ) = (ξ1(λ), ..., ξd(λ))T : (Ω, A) → (Rd, Bd) with
a distribution P(λ), where ξi(λ) is the random daily loss of the i-th asset under
portfolio choice λ. We assume all present variables to have a finite expectation.
The total portfolio loss can be computed as λT ξ(λ) = ∑︁d

i=1 λi ·ξi(λ). The general
CVaR model with endogenous randomness is then formulated as

min
λ∈Λ

CV aRα

(︂
λT ξ(λ)

)︂
s.t. − E[λT ξ(λ)] ≥ rmin,

or equivalently

min
λ∈Λ,a∈R

(︂
a + 1

1 − α
· E[λT ξ(λ) − a]+

)︂
s.t. − E[λT ξ(λ)] ≥ rmin.

where rmin is the minimal expected return we want the portfolio to have. Since
the expected value is linear, we can also write E[λT ξ(λ)] = ∑︁d

i=1 λi · E[ξi(λ)].
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In other words, we prescribe a minimal expected return and search for the least
risky portfolio which achieves it. A similar formulation of a decision dependent
stochastic programming model can be seen in Kopa (2018), but using expected
return maximization and stochastic dominance constraints.

The two most important questions are, how to obtain the loss distributions of our
stocks and how to model their dependence on the portfolio structure. We will be
using the empirical distribution of a basic decision independent random vector
ξ : (Ω, A) → (Rd, Bd) estimated from historical data. This means that we will
obtain S ∈ N observed loss scenarios and assign them equal probabilities 1

S
. This

distribution is decision independent and we can store its scenarios inside a matrix
L ∈ RS×d, where the i-th row ξi ∈ Rd is the i-th observation of the basic loss
vector. We will assume a case, where the decision dependent distributions ξ(λ)
only have transformed scenarios from the matrix L, but their probabilities remain
fixed. This is the type of dependence mentioned in Section 2.5.2. The scenario
matrix for a specific portfolio λ ∈ Λ will be denoted L(λ) ∈ RS×d and the i-th
loss scenario ξi(λ). The positive part expectation in the objective function can
then be rewritten as

E[λT ξ(λ) − a]+ =
S∑︂

i=1

1
S

·
[︂
λT ξi(λ) − a

]︂+
,

and using the classical optimization trick for the positive part function, we can
reformulate our problem into a linear program. For the expected return constraint
we decided to annualize the daily expected returns, so the parameter rmin can be
on a more intuitive scale (daily returns are very small numbers), but the rest is
still in the scope of daily losses. The annualization in the return constraint does
not change the model structure, only the scale of the parameter rmin. When we
consider the standard 252 trading days in a year, the expected annualized return
for a portfolio λ ∈ Λ will be denoted r(λ) = −252 · 1

S

∑︁S
i=1 ξi(λ). Now we can

formulate the general model of interest (5.2).

min
λ∈Λ,a∈R,z1,...,zm∈R

(︂
a + 1

1 − α
·

S∑︂
i=1

1
S

· zi

)︂
s.t. λT r(λ) ≥ rmin

zi ≥ λT ξi(λ) − a, i = 1, ..., S

zi ≥ 0, i = 1, ..., S.

(5.2)

5.2 Problem setting

The specific shape of the dependence requires information about the stocks at
hand. Remember we have d ∈ N stocks. We will denote by M1, ..., Md > 0 the
market capitalizations of the corresponding companies at the time of investment.
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Market capitalization will be understood as the total value of stocks for a com-
pany, i.e. the number of stocks times the price of the stock. As we mentioned ear-
lier, we are demonstrating endogenous randomness using the situation of a large
investor and small companies. This means that the investors budget B > 0 can
be large enough to be able to buy a considerable fraction of stocks for at least
one of the considered assets. We will utilize the important modelling technique
from Section 2.3, where we divide the set of feasible solutions into several disjoint
parts and define a new probability distribution on each one. In this model, two
arbitrary thresholds will be considered for each stock. The first threshold is hit,
when the investor obtains at least 10% of the company market capitalization,
then we will call them a significant owner. The second threshold is hit, when
the investor obtains at least 50%, then we will call them a majority owner. We
will assume that a significant owner can boost the market confidence in the stock
and create an incentive for other investors to buy, whereas the majority owner
can make significant structural changes inside the company and help it invest
into new technologies and other important factors. The exact form of the effects
will be specified later. To summarize, we assume that the investor has a positive
influence on the stocks performance, and the more they own, the better. Note
that this is a demonstrative example and is not meant to be perfectly realistic.

It was stated in the previous section that we have a basic loss matrix LS×d of
S equiprobable loss scenarios, observed in some past time horizon. The basic
distribution is then the empirical distribution of these past observations. The
endogenous randomness will be incorporated by suitable transformations of the
basic scenario matrix for different ownership levels. To define the model, let us
first obtain the desired quantities.

Let us consider an arbitrary stock i ∈ {1, ..., d} and its portfolio weight λi ∈ [0, 1].
We know that the present market capitalization is Mi and the budget is B. We
need to compute the ownership thresholds in terms of portfolio weights. The
amount of money invested into the stock is equal to λi · B. The basic threshold
will always be considered T 0

i = 0. The weight λi needed to hit the 10% threshold
solves the equation

λi · B = 0.1 · Mi.

The threshold will then be denoted T 1
i = 0.1 · Mi

B
> T 0

i .

Analogically for the 50% threshold

λi · B = 0.5 · Mi.

The threshold will be denoted T 2
i = 0.5 · Mi

B
> T 1

i .

The last threshold provides the maximum weight which can be invested into
the stock. The investor obviously can not buy more than the whole market
capitalization. The last threshold then solves the equation

λi · B = Mi.

The last threshold will be denoted T 3
i = Mi

B
> T 2

i for each stock i.
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From now on, we will assume for simplicity that T 3
i > 1 ∀i = 1, ..., d, i.e. none

of the market capitalizations can be completely covered by the investors budget.
The consequence of this assumption is, that we can still set the upper bound
for each weight to one. To summarize, there are three options for each asset,
which can be indexed by the set {0, 1, 2}. 0 stands for the case when the investor
owns less than 10% of the stocks, 1 stands for the case where they own at least
10% but less than 50%, and lastly ,2 stands for the case where they own at least
50% (but of course not more than 100%). We have d stocks and three options
for each one, which means a total of 3d ownership combinations, which can be
indexed by elements from the set K = {0, 1, 2}n. Remember that the set of all
possible weight vectors is Λ (i.e. non-negative and summing to one), as mentioned
in (5.1). The set of feasible weight vectors which also satisfy a combination of
thresholds k = (k1, ..., kn) ∈ K will be denoted by Λ(k) = Λ(k1, ..., kn). The
important thing to notice is, that under the previous assumption, these sets create
a disjoint partition of the set Λ, and we can create different loss distributions for
each combination of thresholds and separate the whole problem into 3d smaller
subproblems, while covering the whole Λ (it is important to assume that the upper
thresholds are larger than one and the weights can attain a value one, otherwise
the sets Λ(k) would not cover the whole Λ). See that this is the exact situation
as in Section 2.3. The set Λ(k) for each k ∈ K is defined by the ownership
constraints in the following way.

Λ(k) = Λ(k1, ..., kn) =
{︂
λ ∈ Λ : λi ∈ [T ki

i , T ki+1
i ) ∀i ∈ {1, ..., d}

}︂
. (5.3)

Strictly speaking, the last segment [T 2
i , T 3

i ) for each stock should be closed from
the right, but since the upper bound is always larger than one, we do not need
to include it, because it does not belong to the set Λ anyway. It is vital to
realize, that some of the thresholds can lie outside the interval [0, 1] (not just the
last ones), this happens if the investor does not have enough funds to hit them.
However, this does not violate the definition of the feasibility sets, since they also
contain the bounds on non-negativity and summing up to one, as they are subsets
of Λ. This just means that some of the sets Λ(k) will be empty, possibly most
of them, since the investor will not be able to fulfill all the constraints (mostly
because of insufficient budget). We chose this model in this way, because it reacts
to the changes of budget B and when the budget is raised, more ownership options
become feasible and affordable, because the thresholds are lower. To understand
the definition, let us take a quick example of n = 2 assets and k = (0, 2). Then
the set Λ(0, 2) contains weight pairs, where the investor buys less than 10% of
the first company stocks and more than 50% of the second.

For the final part of the model formulation, we need to set the scenario matrices on
each of the sets Λ(k). Generally, for a vector of weights λ, we denoted the decision
dependent scenario matrix as L(λ). Now we only consider a finite number of
distributions, induced by the partitioning Λ(k), k = K of the feasible weights set
Λ. For each of these sets we want a separate scenario matrix L(k) = L(k1, ..., kn).
In other words, it will hold L(λ) = L(k) for all λ ∈ Λ(k). We assumed earlier,
that the investor has a positive influence on the stock performance. For each
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stock we will create a translation factor, depending on its performance, and move
the loss scenarios down by some multiple of it, depending on the ownership level.
Denote the elements of the basic scenario matrix by Lj,i = ξj

i , j = 1, ..., S and
i = 1, ..., d, i.e. the j-th loss scenario of stock i. For an arbitrary stock i, the
translation factor will be computed as

τi =
⃓⃓⃓⃓ 1
S

·
S∑︂

j=1
Lj,i

⃓⃓⃓⃓
=
⃓⃓⃓⃓ 1
S

·
S∑︂

j=1
ξj

i

⃓⃓⃓⃓
,

i.e. the absolute value of the mean daily loss for the stock. The absolute value
is there because the factor is supposed to be positive at all times, in order to
lower the loss scenarios. Then we define three multiplicative constants for each
k = 0, 1, 2 denoted κ0, κ1, κ2 ≥ 0 and we set κ0 = 0. For each combination
k = (k1, ..., kn) ∈ K is the new scenario matrix defined as

L(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,1 − κk1 · τ1 · · · L1,n − κkn · τn

L2,1 − κk1 · τ1 · · · L2,n − κkn · τn

... . . . ...

Lm−1,1 − κk1 · τ1 · · · Lm−1,n − κkn · τn

Lm,1 − κk1 · τ1 · · · Lm,n − κkn · τn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We basically increase the expected performance of i-th stock by 100 · κk1% for
an ownership level ki. Previously we set κ0 = 0 so that the basic scenarios for
a specific stock remain unchanged if the investor owns less than 10% of the market
capitalization. We did not want to move all the columns by the same number, so
we created the translation factor to scale the change of scenarios for each stocks
average loss. For normal sized budgets of small investors, this will result in the
classical CV aR optimization problem, since all the non-trivial thresholds will be
far above one. The changes in loss scenarios occur only when the budget is large
enough so that some of the ownership thresholds fall below one and are therefore
affordable. Denote K∗ =

{︂
k ∈ K : Λ(k) ̸= ∅

}︂
, i.e. all the ownership combinations

which have a feasible solution (meaning that the investor can distribute the whole
budget in a way that satisfies the threshold constraints). Note that there is a total
of 3d subproblems, which is a number that can explode for a large amount of
stocks. However, in principle, many of them will have no feasible solutions, since
the sets Λ(k) are often empty (depending on the budget size). In order to save
resources, we can create a condition to cut combinations which are sure to result
in an empty feasibility set. Two situations can happen, which ensure there is no
solution for a specific constraint combination k ∈ K. First situation occurs, when
the investor does not have enough funds to satisfy the constraints (5.3). Second
situation occurs, when even after buying the maximum stock amounts allowed
by the constraints, the investor still has unallocated budget left. To summarize,
we know that if k ∈ K∗ both the conditions (5.4) must hold.
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d∑︂
i=1

T ki
i ≤ 1,

d∑︂
i=1

T ki+1
i > 1.

(5.4)

The first condition ensures, that the investor can afford to buy at least the min-
imum amount prescribed by the constraints. The second condition ensures, that
it is possible to distribute the whole budget while satisfying the constraints. If
it does not hold, the investor can buy the maximum possible amount and still
have unspent budget left. The strict inequality is there because of the strict up-
per bound in the constraints (5.3). Buying the exact upper bounds T ki+1

i would
result in leaving the set Λ(k). We can use condition (5.4) to filter out infeasible
combinations without having to solve the subproblem.

To summarize, for each k ∈ K∗ we have the scenario matrix L(k) ∈ RS×d with
rows (scenarios) ξi(k) of daily losses and a vector of annualized expected returns
r(k). Note that while implementing the model into a solver, we replace all the
constraints λi < T ki+1

i from (5.3) by λi ≤ T ki+1
i − ϵ for some very small positive

number ϵ. The notation and logic behind the quantities is the same as in the
general model (5.2) and everything is prepared to formulate the final model (5.5).

min
k∈K∗

min
λ∈Λ(k),a,z1,...,zm∈R

(︃
a + 1

1 − α
·

S∑︂
i=1

1
S

· zi

)︃
s.t. λT r(k) ≥ rmin

zi ≥ λT ξi(k) − a, i = 1, ..., S

zi ≥ 0, i = 1, ..., S,

(5.5)

or after including the weight constraints explicitly,

min
k∈K∗

min
λ∈Rd,a,z1,...,zm∈R

(︃
a + 1

1 − α
·

S∑︂
i=1

1
S

· zi

)︃
s.t. λT r(k) ≥ rmin

d∑︂
i=1

λi = 1

λi ≥ 0, i = 1, ..., d

λi ∈ [T ki
i , T ki+1

i ), i = 1, ..., d

zi ≥ λT ξi(k) − a, i = 1, ..., S

zi ≥ 0, i = 1, ..., S.

(5.6)

We can now proceed to a numerical example for real stock market data.
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5.3 Numerical example

Let us now set up the important model parameters. We will work under the
commonly used confidence level α = 0.95.. As for the dependency parameters,
we set κ0 = 0, κ1 = 0.1, κ2 = 0.25, which means that the loss scenarios remain
unchanged if the investor buys less than a tenth of the company stocks, a sig-
nificant owner can increase the performance by 10% and a majority owner by
25%. These values are best estimated from data about market reactions to large
investments, but obtaining such data is not simple. A possible way of obtaining
these values could be through expert opinion.

Since we need to estimate the Conditional Value at Risk by a sample estimate,
we would like at least 30 observations at the 1−α = 0.05 tail (to apply the law of
large numbers), which means around 600 observation in total. Startup companies
would be the best candidates, but there is not enough observations to estimate
from, whereas older companies with a small capitalization are often bankrupted.
We chose d = 5 viable stocks using the Yahoo Finance stock screener, filtering for
companies with a small market capitalization. We imported the daily adjusted
closing prices from January 1st 2022 to June 1st 2024, which (after computing the
daily losses) made for a total of S = 605 observations. The stocks will be referred
to by their tickers and relevant information about them are summarized in Table
5.1. Note that the market capitalizations in the Table were observed on July
17th 2024, which we consider to be the day of investment in this example. They
obviously vary with the stock price, so the updated values should be used when
applying the model at a different time. The Table 5.2 contains the estimated
yearly returns for each stock under each of the three ownership options. The first
is estimated from the data, the others are transformed using the method (5.2)
from the previous section. Note that those are the values r(k) later entering the
model, but in percentage terms.

Stock ticker Sector of interest Market cap. [mil. USD]

ALOT Computer Hardware / Technology 115.78

CAAS Auto Parts / Consumer Cyclical 114.67

HMENF Oil & Gas / Energy 122.13

INTT Semiconductor Equipment / Technology 119.53

ISSC Aerospace & Defense / Industrials 111.25

Table 5.1: Overview of the stocks of interest

Stock ticker Basic return Significant ownership Majority ownership

ALOT 18.55% 20.41% 23.19%

CAAS 34.99% 38.49% 43.74%

HMENF 34.70% 38.17% 43.37%

INTT 4.73% 5.21% 5.92%

ISSC 9.05% 9.95% 11.31%

Table 5.2: Estimated and adjusted annualized expected returns
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A portfolio is said to be efficient, when there is no other portfolio with a higher or
equal expected return and lower or equal risk (and at least one of the inequalities
strict). Mean-risk portfolio optimization is essentially a multi-objective program-
ming problem, which we deal with by adding one of the objectives (expected
return) in the constraints, using a minimal return parameter. For each attain-
able level of rmin is the optimal portfolio efficient (if the solution is unique).
Plotting these efficient portfolios on a two dimensional graph creates the efficient
frontier, which summarizes the risk-return trade-off for different levels of minimal
return. The minimal optimal expected return (the starting point of the frontier)
will be obtained by solving the optimization problem (5.6) without the minimal
return constraint, i.e. the expected yearly return of a portfolio with the abso-
lutely minimal CV aR, no matter the return. The main goal of this example is to
see how efficient frontiers change after introducing endogenous randomness into
the model. Do they keep the same properties? In order to present the quanti-
ties on a more intuitive scale, the expected returns will be yearly in percentage
terms and the Conditional Values at Risk will be daily, also in percentage terms.
All plots will also include the mean-risk profile of a thousand other portfolios
with weights randomly sampled from the Dirichlet distribution. For each ran-
domly generated portfolio will the loss scenarios be adjusted to the combination
of exceeded weight thresholds and the CV aR and expected yearly return will be
computed and plotted for comparison. Since the efficient frontier maps efficient
portfolios, all randomly generated portfolios should lie on or beneath the curve,
otherwise they would deny the efficiency property.

We will show efficient frontiers for investors with three different budgets, 1 million
USD, 30 million USD and 90 million USD. Judging from the market capitaliza-
tions in the Table 5.1, the first budget of 1 million USD was chosen so that the
investor can not afford to become a significant owner anywhere. This should
result in the classical portfolio optimization model, where the investor does not
have enough funds to change the behavior of the stocks at hand. In other words,
it corresponds to the portfolio optimization problem with exogenous randomness.
Figure 5.1 shows, that the efficient frontier has the classical non-decreasing and
concave shape. Let us now explore the frontiers for higher budgets, where the
investor has the means to alter the loss distribution. The medium budget of 30
million USD was chosen so that the investor can become a significant owner in
an arbitrary company, but never the majority owner. The efficient frontier is
shown in Figure 5.2. Finally, the large budget of 90 million USD is chosen so
that the investor can become a majority owner in a company of choice, resulting
in a higher number of non-empty sets Λ(k). The efficient frontier is shown in
Figure 5.3. All the three frontiers are compared in Figure 5.4.

To summarize, efficient frontier is always non-decreasing, since a higher return
requires higher risk. However, we can see that with a sufficient budget, the effi-
cient frontier is no longer the concave curve like in the classical case. On both the
purple and red curves, we can see spots with rapid changes in the direction, which
look like inflexion points, induced by the investor acquiring a higher ownership
level for some stock. The concave shape of the classical efficient frontiers comes
from the fact, that achieving a higher return gets progressively more difficult and
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Figure 5.1: The efficient frontier for a small budget

Figure 5.2: The efficient frontier for a medium budget

requires more and more investments into volatile stocks. As we can see, the con-
cavity property can be broken in situations, where the expected return increases
rapidly, without the need to raise the risk that much.

The expected return of the portfolio with the absolute smallest CVaR is 19.11%.
To show at least some specific optimal portfolio weights, let us pick two arbitrary
values for the minimal expected return rmin, namely 25% and 30%, and compute
portfolios for our three budget levels. The results are shown Table 5.3. Note that
we are dealing with small numbers here and we could lose too much information
if we rounded to the usual two decimal places, as in the rest of the thesis, so we
will use three digits here.

We can consult the Table 5.2 showing the expected annualized returns of the
stocks. For the higher required return of 30%, we can see that a lot more has to
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Figure 5.3: The efficient frontier for a large budget

Figure 5.4: The comparison of efficient frontiers

be invested into CAAS and HMENF, which have the highest expected returns.
The least profitable efficient portfolio has an expected return of 19.11%, which
is a lot more than the expected returns of INTT and ISSC. Those are the least
profitable stocks but their risk is obviously not that good either, which is why
INTT is rarely even present in the portfolios. We can also see that for larger
budgets the investor puts less into the most profitable stocks CAAS and HMENF,
since they are risky and it is easier to satisfy the minimal return without them,
because of the increased ownership levels. On the contrary, the ISSC stock has
an increasing optimal weight with increasing budget. It is not that profitable but
has a low risk, therefore with a higher budget the investor can afford to put more
in it, while still satisfying the minimal return.
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For the minimal expected return of 25%, most funds are always put into the stocks
HMENF (with the second highest return) and ALOT (third highest return).
CAAS and ISSC are similarly represented, the first having a larger return and
the other having a lower risk. When the budget is large, the investor can afford to
put more into the less profitable ISSC. The stock INTT is almost not represented.
For the minimal return of 30%, most funds are again put into the stocks HMENF
and ALOT. CAAS and ISSC are again similarly represented, but in this case the
investor needs to put more into CAAS, since the minimal return requirement is
larger. The stock INTT is not represented at all. To summarize, we can see
that having a larger budget allows the investor to raise the expected returns of
some of the stocks, which is why they can invest more into the less risky assets,
while still satisfying the minimal return requirement. The portfolios for the lowest
budget are essentially the portfolios we would obtain from the classical exogenous
problem. By comparing them to the ones corresponding to the highest budget,
we can see that the incorporation of endogenous randomness has a significant
effect on portfolio choice and the differences in weights are notable.

Budget rmin ALOT CAAS HMENF INTT ISSC

1 mil. 0.25 0.320 0.116 0.387 0.004 0.173

30 mil. 0.25 0.386 0.102 0.348 0.000 0.164

90 mil. 0.25 0.281 0.161 0.276 0.050 0.232

1 mil. 0.3 0.258 0.199 0.520 0.000 0.023

30 mil. 0.3 0.237 0.169 0.491 0.000 0.102

90 mil. 0.3 0.267 0.168 0.442 0.000 0.124

Table 5.3: Budget dependent optimal portfolios for two values of the minimal
expected return
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Conclusion

In this thesis we studied a very interesting subtopic of stochastic optimization.
The assumption that the underlying probability distribution is not dependent
on the decisions was challenged and removed. The goal of this thesis was to ex-
plain the concept of endogenous randomness in stochastic programming and think
about model types which are computationally and mathematically tractable.

In the first chapter we provided an overview of relevant stochastic optimization
topics, which might later be generalized and expanded into the new framework.
We provided a general uncertain form of the model and discussed various meth-
ods of deterministic reformulation. A significant topic was also the multi-stage
programming, including the basics of scenario trees and nonanticipativity con-
straints.

The second chapter was the core of this thesis, since it was dedicated to lay-
ing the groundwork for the modelling of endogenous randomness in stochastic
optimization. We tried to create a coherent overview of the basic methods and
formulations, using a unified notation and mathematical background, which is
not frequently found in literature on this topic. The most notable cases were: di-
vision of the feasibility set into subsets generating a single common distribution,
decisions affecting the parameters of a family of distributions, decisions affecting
the scenario or probabilistic structure for finitely many scenarios, and decisions
affecting the dependence structure or marginal distributions. Later we removed
the assumption of unique linkage between decisions and distributions and pre-
sented methods used for dealing with a set-valued dependence, mainly the robust
approach and aggregation using mixture distributions. Lastly, we talked a little
about the stability of optimal solutions and gave a brief introduction to multi-
stage optimization with endogenous randomness.

In the third chapter we presented the well known newsvendor model and provided
a custom extension for continuous price selection and advertisement choice. We
have set a parametric dependence on a continuous uniform distribution and de-
rived the deterministic reformulation. We presented the model on a numerical
example using ad hoc parameters and functions, provided plots and studied the
profitability of advertisement under varying cost.

In the fourth chapter we changed the distribution of demand and formulated
a three-stage extension for the newsvendor model, including advertisement choice
and recourse actions based on the observed demand. We pursued the tractable
case of a fixed shape of the scenario tree and demonstrated the model on a nu-
merical example using a predefined probabilistic structure. Then we provided
plots and studied the profitability of advertisement under different rates of effect
decay.

In the fifth chapter we expanded the classical CVaR portfolio optimization prob-
lem to a case where large investments can alter the loss distribution of the assets.
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The model reacted to budget by setting up ownership thresholds induced by the
obtained portions of the companies market capitalization. The model was demon-
strated on a numerical example for 5 small cap stocks and optimal portfolios were
computed. Most importantly, efficient frontiers were plotted for three budget lev-
els, where the first budget was too small to alter the loss distributions, and the
two larger budgets progressively changed the classical concave shape of the curve
and added inflexion points.

The main contribution of this thesis lies within the provided theoretical frame-
work, which contains various possible types of dependence. Another contribution
are the three models from chapters 3-5, on which we tried to demonstrate differ-
ent methods from chapter 2. The first model was an example of the distribution
having a fixed parametric family. The second example was the multi-stage case
with changing scenarios and conditional probabilities. Lastly, the third exam-
ple demonstrated the case of finite partition of the feasibility set using various
distributions, and also the altering of a set of scenarios with fixed probabilities.
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