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Introduction

Reserving is crucial for insurance companies as it typically represents a sig-
nifcant portion of the non-life insurers’ balance sheet and plays a vital role in
ensuring the company’s fnancial strength. However, it involves great uncertainty,
making it challenging to establish a precise mathematical model for estimating
the amount of loss reserves. Various approaches have been developed to provide
reasonable estimations, which can be categorized into two groups: deterministic
models and stochastic models.

Deterministic models, such as the chain ladder and Bornhuetter-Ferguson
methods, are simple and easy to operate but have certain limitations. At times,
they may overlook important information, such as random fuctuations. In con-
trast, stochastic models perform better in addressing these aspects. Generalized
linear models (GLM) are emerging as a popular statistical analysis method. Gen-
eralized linear mixed models (GLMM) extend GLM by incorporating random ef-
fects into the linear predictor, challenging the assumption of independence. This
paper focuses on using both GLM and GLMM to estimate loss reserves and com-
pares its performance with other traditional methods.

This paper is divided into four chapters. In the frst chapter, we discuss the
basic notation and the existing loss reserving estimation methods. First of all, it
introduces the basic notation of loss reserving and development triangle. Then
it introduces the methods and principles of the chain ladder method and B-F
method.

The second chapter frst discusses the theoretical basis of generalized linear
models and generalized linear mixed models. It focuses on the exponential fam-
ily of distributions, link functions, parameter estimation methods, and model
evaluation techniques.

In the third chapter, we establish the generalized linear models (GLM) and
generalized linear mixed models (GLMM) for loss reserving. We specify several
GLM and GLMM models separately for claim counts and average claim amounts,
each characterized by distributions that align with the theoretical framework
associated with actuarial practice.

Finally, in the fourth chapter, we apply both the current methods and general-
ized linear mixed models to real-life data. We use R software to ft the considered
models to the data and subsequently obtain the fnal calculated IBNR reserves.
The comparison of the ftted models, along with a discussion of their performance
and adequacy, is included.
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1. Introduction of claims
reserving

There are two main categories of claims reserves. The frst one is a reserve on
claims that have incurred but have not been reported, called IBNR reserve, and
the second is a reserve on claims that have been reported but have not yet been
settled, called RBNS reserve. Incurred but not reported reserves estimate the
liability for claim-generating events that have already taken place but have not
yet been reported to the insurer or self-insurer, as described by Tarbell (1934).
The IBNR reserve is the primary area of our concern. The defnition and notation
of the claims reserving problem, as well as the common methods stated in this
section, refer to Wüthrich and Merz (2008).

1.1 Notation of loss triangle

Before evaluating and calculating the outstanding claims reserve, it is essential
to organize and analyze the raw data, transforming it into a form so-called claims

development triangles or a run-of triangle. This is an important tool for assessing
outstanding claims reserves. We categorize loss data based on the accident year,
denoted as i, representing the year of occurrence, and the development year,
denoted as j. We assume i * {0, 1, . . . , I} and j * {0, 1, . . . , J}, where I represents
the most recent accident year, and J denotes the last development year. Note
that we further assume I = J. The incremental data is denoted as Xij.

Table 1.1: Claims Development Triangle
Development Year

Accident Year 1 2 ... j ... J-1 J
1 X1,1 X1,2 ... X1,j ... X1,J−1 X1,J

2 X2,1 X2,2 ... X2,j .... X2,J−1

... ... ... ... ... ...
i Xi,1 Xi,2 ... Xi,j

... ... ... ...
I-1 XI−1,1 XI−1,2

I XI,1

And then the data should be structured into a format known as the loss devel-
opment triangle. The loss triangle is illustrated in the Table 1.1. It is represented
as an upper triangular matrix, where each row corresponds to diferent accident
years, and each column represents diferent development years. The observations
available at time I are represented by the set

DU
I = {Xi,j : i + j f I, 0 f j f J} (1.1)

which corresponds to an upper triangle in table 1.1, and the outstanding payments
for the lower triangle can be denoted as

DL
I = {Xi,j : i + j > I, 0 f j f J} (1.2)
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The cumulative amount Ci,j for accident year i after j development years is
then given by

Ci,j =
j

X

k=0

Xik (1.3)

In this thesis, we assume no further developments after development year
J and consider the equivalence between I and J refer to Wüthrich and Merz
(2008). Thus, CiJ represents the aggregate loss from all claims that occurred in
accident year i, which is called the ultimate claims amount. For the cumulative
claims amounts, we can also represent the claims amounts as components of a
cumulative claims development triangle.

The outstanding loss liabilities for accident year i at time I are subsequently
determined by:

Ri =
J

X

k=j+1

Xik = Ci,J 2 Ci,I−i (1.4)

And the estimation of IBNR reserves depends on the estimate of ultimate loss
liabilities.

1.2 Basic methods of claims reserving

This section primarily introduces current methods for estimating outstanding
claim reserves. Commonly used estimation methods include chain ladder method,
Bornhuetter-Ferguson method, and others.

1.2.1 Chain-ladder method

The chain ladder method is one of the most widely used evaluation methods.
There are several stochastic models that justify the CL method, and one partic-
ularly well-known model is introduced by Mack (1993). Mack’s stochastic model
is specifed by three assumptions. We will initiate our discussion by outlining the
assumptions frst.
Model assumptions (CL)
CL1 Cumulative claims Cij of diferent accident years i are independent.

{Ci,0, ..., Ci,I} , {Cj,0, ..., Cj,I} for i ;= j are independent. (1.5)

CL2 The basic chain ladder assumption is that there exists development factors
or link ratios f1, ..., fJ−1 > 0 such that for all 0 f i f I and all 1 f j f J we have

E(Ci,j|Ci,0, ..., Ci,j−1) = E(Ci,j+1|Ci,j) = Ci,j−1fj−1. (1.6)

CL3 There exist parameters σ2
0, ..., σ2

J−1 > 0 such that for all 0 f i f I and all
1 f j f J we have

V ar(Ci,j|Ci,0, ..., Ci,j−1) = σ2
j−1Ci,j−1. (1.7)

Under the model assumptions we can derive that the ultimate claims amount Ci

for accident year i is then given by
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E(Ci,J |DI) = E(Ci,J |Ci,I−i) = Ci,I−ifI−i...fI−1 (1.8)

for all 1 f i f I. The chain ladder estimator for E(Ci,j|DI) motivated by this
equation is

CCL
i,j
ˆ = E [Ci,j|DI ]ˆ = Ci,I−ifI−i

ˆ ...fI−1
ˆ (1.9)

for i + j > I. The development factor can be estimated using arithmetic av-
erage method, volume-weighted method and so on. More specifcally, actuaries
often use data from only the most recent accident years to calculate in practice.
This thesis uniformly adopts the simple average method, where the development
factors are determined as the average values for each accident year.

fî =

PI−j−1
i=0 Ci,j+1

PI−j−1
i=0 Ci,j

(1.10)

which shows that fi is a weighted average of the individual development factors.
Based on equations 1.4 and 1.9, the estimated outstanding claims reserves for

accident year i in the chain-ladder method can be obtained by

R̂
CL

i = E(Ci,J |DI)ˆ 2 Ci,I−i = CCL
i,I
ˆ 2 Ci,I−i

= (fI−i
ˆ ...fI−1

ˆ 2 1)Ci,I−i

(1.11)

Mack (1993)shows that under model assumptions CL1 (1.5) and CL2 (1.6),

the estimated development factors fî are unbiased and uncorrelated estimators of
the true parameters fi. This implies that the Mack chain-ladder model provides

unbiased estimators R̂
CL

i of the outstanding loss liabilities Ri.

1.2.2 Bornhuetter-Ferguson method

The Bornhuetter-Ferguson method was frst described in the paper by Born-
huetter and Ferguson (1972). This method estimates the ultimate loss by consid-
ering both incurred losses and their expected development in the future. The fun-
damental steps of evaluating the outstanding claims reserve using the Bornhuetter-
Ferguson method begin with the computation of the ultimate loss. We will start
by presenting model assumptions.
Model assumptions (BFI)
BFI1 Cumulative claims Cij of diferent accident years i are independent.

{Ci,0, ..., Ci,I} , {Cj,0, ..., Cj,I} for i ;= j are independent. (1.12)

BFI2 There exists parameters µ0, ..., µI > 0 and a pattern β0, ..., βJ > 0 with
βJ = 1 such that

ECi0 = β0µi, (1.13)

E(Ci,j+k|Ci,0, ..., Ci,j) = Ci,j + (βj+k 2 βj)µi (1.14)

holds for all 0 f i f I, 0 f j f J 2 1 and 1 f k f J 2 j.
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Under the assumptions (BFI) it holds ECi,j = βjµi and ECi,J = µi for all
0 f i f I and 0 f j f J , while the sequence β0, ..., βJ denotes the claims

development pattern.
We summarize the weaker set of assumptions BFII as follows.

Model assumptions (BFII)
BFII1 Cumulative claims Cij of diferent accident years are independent.

{Ci,0, ..., Ci,I} , {Cj,0, ..., Cj,I} for i ;= j are independent. (1.15)

BFII2 There exists parameters µ0, ..., µI > 0 and a pattern β0, ..., βJ > 0 with
βJ = 1 such that

ECi0 = β0µi, (1.16)

holds for all 0 f i f I, 0 f j f J 2 1 and 1 f k f J 2 j.
Under the assumption BFI, the conditional expected value of aggregate loss

for a given accident year based on known historical data at the end of year I is
derived by

E(Ci,J |DI) = E(Ci|Ci,0, ..., Ci,I−i)

= Ci,I−i + E(Ci 2 Ci,I−i)

= Ci,I−i + (1 2 βI−i)µi

(1.17)

Under the weaker assumption BFII, we obtain the same result when assuming
the independence of incremental claims amount Ci,J 2 Ci,I−i of Ci,0, ..., Ci,I−i.

The BF estimator for E(Ci,J |DI) based on (1.16) is given by the following
formula.

CBF
i,J
ˆ = E(Ci,J |DI)ˆ = Ci,I−i + (1 2 βI−i

ˆ )µî (1.18)

for 0 f i f I, where βI−i
ˆ is an appropriate estimate for βI−i and µî is a given

prior estimate for the expected ultimate claim E(Ci,J).
Based on equations (1.4) and (1.18), the estimated outstanding claims reserves

for accident year i in the BF method can be obtained by

R̂
BF

i = Ê(Ci,J |DI) 2 Ci,I−i = Ci,I
ˆ 2 Ci,I−i = (1 2 βI−i

ˆ )µî

.
Both BF and chain-ladder method are used for estimating IBNR reserves,

and they can produce diferent results based on the assumptions made. But in
some cases, the BF method can be viewed as a generalization of the CL method
when certain parameters are set accordingly. Under the model assumption CL,
it follows for all 1 f j f J

E(Ci,j) = E(E(Ci,j|Ci,j−1)) = fj−1ECi,j−1 = ... = ECi,0

j−1
Y

k=0

fk (1.19)

E(Ci,J) = ECi,0

J−1
Y

k=0

fk (1.20)

Combining (1.19) and (1.20), we obtain

E(Ci,j) = ECi,J

J−1
Y

k=0

f−1
k (1.21)
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It corresponds to the model assumption BFII with

µi = E(Ci,J), βj =
J−1
Y

k=0

f−1
k , for j = 0, ..., J 2 1 and βJ = 1. (1.22)

When we derive the claim development pattern parameters β0, ..., βJ−1 using
the estimated CL development factors fĵ, we obtain

βCL
j
ˆ =

J−1
Y

k=j

1

fk̂

(1.23)

And consequently we can rewrite the BF estimator for E(Ci,J
ˆ )|DI) based on

the following formula.

CBF
i,J
ˆ = Ci,I−i + (1 2 βCL

I−i
ˆ )µî

= Ci,I−i + (1 2 1
QJ−1

k=I−i fk̂

)µî

(1.24)

And the Chain-Ladder estimator can be interpreted by the formula

CCL
i,J
ˆ = Ci,I−i

J−1
Y

j=I−i

fĵ

= Ci,I−i + Ci,I−i(
J−1
Y

j=I−i

fĵ 2 1)

= Ci,I−i +
CCL

i,J
ˆ

QJ−1
j=I−i fĵ

(
J−1
Y

j=I−i

fĵ 2 1)

= Ci,I−i + (1 2 βCL
I−i
ˆ )CCL

i,J
ˆ

(1.25)

We can see that the diference between the Chain-Ladder and BF estimators
is that in the Chain-Ladder method, the estimate is based only on observations,
while in the BF method, we use a prior estimate µî. In summary, Chain Ladder
relies on historical patterns with a deterministic approach, whereas BF introduces
stochastic elements and is more fexible in accommodating diferent assumptions.
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2. Gneralized linear mixed
models

The concept of Generalized Linear Models (GLM) was developed by Nelder
and Wedderburn (1972) in an extension of the classical linear model. GLM ex-
tended the normal distribution of response variables to exponential family dis-
tributions, which signifcantly advancing the application of statistical methods
in the actuarial feld. Subsequently, Generalized Linear Mixed Models (GLMM)
not only introduced random efects on the basis of GLM but also transformed
the mean of response variables into a linear form by linking with a link func-
tion. This transformation efectively expanded the linear form to nonlinear forms,
demonstrating excellent adaptability for non-independent data. In this section,
we introduce the basic assumptions and model structures of GLM and GLMM.

2.1 Generalized Linear Models

Gneralized linear models (GLM) is a generalization of linear regression to
response types other than Gaussian, as long as the distribution of that response
is a member of the exponential family. The defnition and basic assumptions of
the generalized linear models and the common forms of the distribution functions
stated in this section, refer to McCullagh and Nelder (1989).

2.1.1 Basic assumptions

Before discussing the structure of Generalized Linear Models (GLM), let us
frst discuss the distribution of the response variable, specifcally the exponential
distribution family. The exponential family implies that the density of a single
random variable y can be represented in the following form:

f(y) = exp{yθ 2 b(θ)

a(φ)
+ c(y, φ)} (2.1)

In (2.1), it typically takes a(φ) = φ

ω
, where ω > 0 is a given weight and φ is

called the dispersion parameter, representing the scale. θ represents the natural

parameter. The functions a(·), b(·), and c(·, ·) are some real-valued functions,
and function b(·) (cumulant function) is supposed to be twice-diferentiable. The
exponential distribution family, as represented in (2.1), includes many common
distributions by specifying the functionsa(·), b(·), and c(·, ·). These incorporate
various continuous distributions such as the normal distribution, exponential dis-
tribution, gamma distribution, and discrete distributions like the Poisson distri-
bution, binomial distribution, etc.

Assuming independent random variables y1, ..., yn have the form of (2.1), the
log-likelihood function for each random variable yi is:

li(θi, φ; yi) =
yiθi 2 b(θi)

a(φi)
+ c(yi, φi), i = 1, 2, ..., n (2.2)
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Then the log-likelihood function is typically takes the form:

l(θ, φ; y) =
n

X

i=1

l(θi, φ; yi) (2.3)

Integrating both sides of the probability density function (2.1), the following
equation holds.

Z

exp{yiθi 2 b(θi)

a(φi)
+ c(yi, φi)}dyi = 1, i = 1, 2, ..., n (2.4)

Based on (2.4), taking the frst and second derivatives with respect to θi on
both sides, we obtain:

Z

(yi 2 b
2

(θi))exp{yiθi 2 b(θi)

a(φi)
+ c(yi, φi)}dyi = 0, i = 1, 2, ..., n

the expectation can be expressed as

Z

yiexp{yiθi 2 b(θi)

a(φi)
+ c(yi, φi)}dyi = EYi, i = 1, 2, ..., n

and then the expectation have the form:

E [yi] = µi = b
2

(θi) (2.5)

in the same way it can be proved that the variance have the form:

V ar [yi] = a(φi)b
22

(θi) (2.6)

Let b
22

(θi) = V (µi), where V (µi) is referred to as the variance function. Typ-
ically, taking a(φi) = φi

ωi
where ωi represents a given weight, then V ar(yi) =

φi

ωi
b

22

(θi). The variance function V (µi) describes the relationship between vari-
ance and mean. For generalized linear models, having knowledge of the variance
function V (µi) allows the determination of the distribution type. Conversely,
if the distribution type is known, its variance structure is consequently defned.
Taking Poisson distribution as an example, its density function is given by

f(y) =
1

y!
e−λλy = exp(ylog(λ) 2 λ 2 log(y!))

corresponding to the density function of the form of exponential family (2.1):
θ = log(λ), b(θ) = eθ, φ = 1, c(y) = 2log(y!). And also the equation b

2

(θ) =
b

22

(θ) = eθ = λ holds. This shows that Poisson distribution satisfes the defnition
and propeety of the exponential family of distributions and that the variance
function is determined if the dictribution is determined and vice versa. Table
2.1 illustrates the common forms of distribution functions and their relationships
with the variance functions.
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Table 2.1: Generalized Linear Models and Their Variance Functions
Distribution Variance function
Normal distribution N(µ, σ2) 1
Poisson distribution Poi(λ) µ
Binomial distribution B(n, p) µ(1 2 µ)
Gamma distribution Gamma(v, µ

v
) µ2

Inverse Gaussian distribution µ3

Next we introduce the model components of generalized linear models. Gener-
alized Linear Models (GLM) consist of three components: the random component,
the systematic component, and the link function, which are shown below:

1. The random component: this refers to the probability distribution of the
response variable or the random error component. Generalized linear mod-
els assume that the response variables y1, ...., yn are mutually independent,
and their distribution belong to the same exponential distribution family.

2. The systematic component: the systematic component is also known as the
linear predictor part and the linear predictor η is given by

η =
p

X

j=1

xjβj

where xj , j = 1, ..., p are column vectors of the matrix X. The linear predic-
tion for the ith object can be represented as: ηi = xi1β1+xi2β2+...+xipβp =
XT

i · β, i=1,2,...,n, where β = (β1, β2, ..., βp)T , Xi = (xi1, xi2, ..., xip)T .

3. Link functions: link function g(µi) transforms the expected value of the
response variable to the linear predictor scale, allowing for a wider range of
distributions. The relationship is given by g(µi) = ηi = XT

i ·β. It is assumed
to be a sufciently smooth and strictly monotonic function. Therefore, g(·)
has an inverse function g−1(·), µi = g−1(ηi)

The link function plays a crucial role in Generalized Linear Models. Com-
monly used link functions include:

1. Identity link: ηi = g(µi) = µi

2. Log link: ηi = g(µi) = log(µi)

3. Logit link:ηi = g(µi) = log
�

µi

1−µi

�

4. Probit link: ηi = g(µi) = Φ−1(µi)

5. Complementory log-log link: ηi = g(µi) = log(2 log(1 2 µi))

10



The choice of link function depends on the nature of the response variable and
the characteristics of the data being modeled. For a given exponential family,
there exists a special link function called the canonical link function. As stated
in McCullagh and Nelder (1989), the canonical link function results from setting
the linear component of the model equal to the natural parameter θ.

η = g(µ) = θ

The canonical link function ofers a key advantage by rendering the canonical
parameter of the joint distribution equal to β. This simplifes the interpretation of
model parameters and facilitates maximum likelihood estimation. Additionally,
it often leads to more stable and reliable model estimation. However, despite the
mentioned statistical property, it is not always justifed to apply the canonical
link to specifc datasets. The use of the canonical link is entirely optional; in this
thesis, we consider both canonical link functions and other link functions.

The general form of generalized linear models and their canonical link func-
tions are shown in the table 2.2:

Table 2.2: Generalized Linear Models and Their Canonical Link Functions
Distribution Link function
Normal distribution N(µ, σ2) g(µ) = µ = η
Poisson distribution Poi(λ) g(λ) = log(λ) = η
Binomial distribution B(n,p) g(µ) = log( p

1−p
) = η

Gamma distribution Gamma(v, µ

v
) g(µ) = 1

µ
= η

Inverse Gaussian distribution g(µ) = 1
µ2 = η

2.1.2 Parameter estimation

Parameter estimation in generalized linear models (GLM) is based on the
Maximum Likelihood Theory. The log-likelihood function for each component
of the random vector Y takes the form as in 2.2, then the log-likelihood for all
components of Y is given by

l(θ, φ; y) =
n

X

i=1

l(θi, φ; yi) =
n

X

i=1

yiθi 2 b(θi)

a(φi)
+ c(yi, φi), i = 1, 2, ..., n (2.7)

The maximum likelihood estimators of model parameters β, which maximize
the log-likelihood, are the roots of the score function. From the chain rule, the
derivative of log-likelihood with respect β follows

∂l

∂β
=

n
X

i=1

(
∂li
∂β

) =
n

X

i=1

(
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂β
)

Using the derivative of the inverse function we have

∂θi

∂µi

= (
∂µi

∂θi

)−1 =
1

b22(θi)
=

1

V (µi)

∂µi

∂ηi

= (
∂ηi

∂µi

)−1 =
1

g2(µi)
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Then the maximum likelihood estimators of β0, ..., βk are obtained from the
solution of the equation

0 =
∂l

∂β
=

1

a(φ)

n
X

i=1

"

yi 2 µi

V (µi)

1

g2(µi)
xi

#

=
1

a(φ)

n
X

i=1

h

ω(µi)g
2

(µi)(yi 2 µi)xi

i

(2.8)

where

ω(µi) =
1

V (µi)(g
2(µi))2

> 0 for i = 1, ..., n

.
Adding (XT Ŵ X)β̂ =

h

Pn
i=1 w(µî)xix

T
i

i

β̂ to both sides of (2.8), the equa-
tion can be rewritten in a matrix form

(XT Ŵ X)β̂ = XT Ŵ Xẑ (2.9)

hence
β̂ = (XT Ŵ X)21XT Ŵ ẑ

whereẑ = (z1̂, ..., zn̂)T denotes an adjusted rsponse with

ẑi = xT
i β̂ + (yi 2 µî)(

∂ηî

∂µî

) for i = 1, ..., n.

and the matrix of weights Ŵ = diag{w(µ1̂), ..., w(µn̂)}.
In practice, obtaining an analytical solution for the above equation is challeng-

ing, and therefore numerical methods must be employed for solving. McCullagh
and Nelder (1989) demonstrated that by using the Newton-Raphson method in
conjunction with the Fisher scoring algorithm, the maximization of the logarith-
mic likelihood function can be transformed into an iterative weighted least squares

procedure (IWLS). The IWLS algorithm for generalized linear models is as follows.

1. Start with β̂(0) and the initial linear predictor ˆη(0) can be obtained based

on ˆη(0) = Xβ̂(0). The corresponding initial estimates for the mean of the

response ˆµ(0) based on the chosen link function ˆµ(0) = g−1( ˆη(0)).

2. Construct an adjusted response ˆz(0) and a matrix of weights Ŵ (0); The

vector ẑ(0) = (z
(0)
1
ˆ

, ..., z(0)
n
ˆ )T denotes the adjusted dependent variable, where

z
(0)
i

ˆ
= xT

i
ˆβ(0) + (yi 2 µ

(0)
i

ˆ
)(

∂η
(0)
i

∂µ
(0)
i

) for i = 1, ..., n. (2.10)

And the matrix of weights Ŵ (0) = diag{w(µ
(0)
1
ˆ

), ..., w(µ(0)
n
ˆ )}.

3. Calculate ˆβ(1) by weighted lease squares (WLS) method based on equation

(2.9); Use the constructed ˆz(0) and weights Ŵ (0) from step 2 to ft an

ordinary linear model, predicting new means ˆµ(1) and new linear predictors
ˆη(1).
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4. Repeat steps 2 and 3 till β̂ converges.

We obtained the iterative formula used for the GLM model

XT Ŵ (m)X ˆβ(m+1) = XT Ŵ (m)ẑ(m)

hence
ˆβ(m+1) = (XT ˆW (m)X)21XT ˆW (m)ẑ(m)

2.1.3 Statistical Tests for Parameter Signifcance

For a given set of data in generalized linear regression analysis, it’s common to
establish more than one model. We typically use statistical tests to validate the
appropriateness of the built models and assess the relative merits among them.
Next, we will elaborate on the calculation principles of the two most commonly
used statistical testing methods in generalized linear regression.

Likelihood ratio test

The Likelihood Ratio Test (LRT) is a generic hypothesis test that can also
be specifcally applied to GLM. LRT based on the comparison of the maximized
loglikelihood functions under the full model and its respective reduced model.

H0 : β1 = ... = βr = 0, which means the reduced model is adequate.
H1 : There are no constraints on βj, which means the full model is better.

The Likelihood Ratio Test (LRT) is employed to compare these two nested
models since the model under H0 represents a special or simplifed case of the
model under H1. The test statistic is given by:

LRT = 22(l1 2 l0)

where l0 and l1 are the maximum loglikelihoods under the two models corre-
sponding to H0 and H1. The LR statistic follows a chi-square distribution, with
degrees of freedom equal to the number of predictor variables removed in the
reduced model. If the p-value from the LRT is less than the chosen signifcance
level (typically 0.05), the null hypothesis is rejected, suggesting that the model
improvement is statistically signifcant.

Wald test

The Wald test is a statistical method to assess the signifcance parameters.
The test can be used to test whether the linear constraint Cβ = r holds:

H0 : Cβ = r

H1 : Cβ ;= r

where C is a k × p matrix and β is a column vector with p elements. The
test statistic is given in the following form:

Wn =
1

a(φ)
(Cβ̂ 2 r)T

h

C(XT W X)21
i−1

(Cβ̂ 2 r)
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The Wald test statistic under the null hypothesis follows a chi-square distribu-
tion with k degrees of freedom. A large Wn indicates a small p-value, leading to
the rejection of the null hypothesis. This suggests there is evidence of a signifcant
efect for the coefcient of interest.

2.1.4 Model Fitting and Evaluation

Goodness-of-ft test is a statistical method used to assess how well a statistical
model fts the observed data. It is commonly applied to compare the distribution
expected by the model with the actual distribution of the observed data. The
basic steps include: (1) Formulating the null hypothesis, assuming the model fts
the data well. (2) Classifying the data into categories and generating observed
frequencies. (3) Calculating expected frequencies based on the model. (4) Com-
puting the goodness-of-ft test statistic, such as chi-square or Deviance. (5) Using
the statistic for hypothesis testing. (6) Drawing a conclusion based on the p-value
or other criteria to decide whether to reject the null hypothesis. Goodness of ft
relies on choosing suitable statistic. In this thesis we introduce two common ones:
Pearson statistic and Deviance statistic.

Pearson statistic

This method compares the diferences between observed and expected frequen-
cies. In a goodness-of-ft test, data is frst classifed, and the observed frequencies
in each category are compared to the expected frequencies. The chi-square statis-
tic is used to measure the degree of ft between observed and expected frequencies,
and this statistic approximately follows a chi-square distribution under the null
hypothesis.

χ2 =
n

X

i=1

(yi 2 µî)
2

V (µî)

Deviance statistic

For models like generalized linear models (GLM), the Deviance goodness-of-
ft test is more widely used. Deviance measures the diference between the ft
of the observed data and a perfect ft. In a Deviance goodness-of-ft test, the
model’s ft is compared to a special model (often the saturated model), and the
test determines whether this diference is signifcant.

di = sign(yi 2 µî)

r

2
h

l(θ̂7, φ; y) 2 l(θ̂, φ; y)
i

2.2 Generalized Linear Mixed Models

A Generalized Linear Mixed Model (GLMM) is a combination of a Generalized
Linear Model (GLM) and a Linear Mixed Model (LMM), which can be used to
ft non-independent data, including discrete and other types of data. Refer to
McCulloch et al. (2001), the model structure is as follows.

Let Yij be the response variable, i=1,...,n represent n observations, and j=1,...,ni

denote the j-th observation of the i-th cluster. Assuming given the random efects
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υi, i = 1..., n for each observation, the response variables Yi,1, ..., Yi,ni
are assumed

to be independently distributed according to the density from the exponential
family.

f(yij|υi, β, θ) = exp{yijθij 2 b(θij)

a(φ)
+ c(yij, φ)} (2.11)

In Generalized Linear Mixed Models, the expected value and variance of the
response variable are respectively:

µij = E [yij|υi] = b
2

(θij)

V ar [yij|υi] = a(φ)b
22

(θij) = a(φ)V (µij)

The random and the fxed efects are combined to form the linear predictor

η = Xβ + Zυ

where X and Z are the design matrices for fxed efects and random efects,
respectively. β (p × 1) denotes the vector of the fxed efects parameter and υ

(q × 1) denotes the vector of random efects. The model requires the random
efects υi to be mutually independent and identically distributed with the density
function f(υi|α), where α is an unknown parameter. Generally, in GLMM model
one assumes the random efects υi follow a normal distribution N(0, Σi), where
the covariance matrix Σi is a positive defnite matrix defned by the parameter α,
with α representing the parameter in the density function of the random efects.
The random efect refects the homogeneity within the same group of variables
and the heterogeneity between diferent groups of variables, a relationship that
cannot be captured by fxed efects.

The expectation µij of the response variable yij is linked to the systematic
component through a monotonically diferentiable function g(·). In this context,
"monotonically diferentiable" indicates that g(·) changes smoothly and consis-
tently across its domain, ensuring a clear and well-defned relationship between
ηij and µij:

g(µij) = ηij = x
2

ijβ + z
2

ijυ

GLMMs allow for the modeling of both fxed efects and random efects, which
capture the variability associated with groups or clusters within the data. By
incorporating random efects, GLMMs provide more fexibility in modeling cor-
related data and hierarchical structures, thus ofering a more robust and fexible
framework for modeling a wide range of real-world datasets.

2.2.1 Parameter estimation

In GLMM, the construction of likelihood function is based on the marginal
density f(yij) and has the following form:

L(yij; φ, β, α) =
n

Y

i=1

f(yi; φ, β, α) =
n

Y

i=1

Z ni
Y

j=1

f(yij|φ, β, υi)f(υi|α)dυi (2.12)

In order to derive the likelihood solution, integration over the random-efects
distribution is essential. However, this task often involves complex numerical
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computations, and closed-form expressions for the integral are typically not avail-
able. The maximum likelihood estimation method frequently requires handling
high-dimensional integrals, which can be challenging, particularly when the re-
sponse variable is not normally distributed. In general cases, direct computation
of the integral becomes difcult, leading to the necessity of employing numerical
approximation methods. Commonly used techniques include Laplace approxima-
tion, penalized quasi-likelihood, and Gaussian Hermite methods.

Laplace approximation

Laplace Approximation employs a second-order Taylor expansion to approxi-
mate intricate integrals as Gaussian integrals, thereby streamlining computational
processes. Specifcally, in maximum likelihood estimation, Laplace approximation
approximates the function near its global maximum in parameter space using a
Taylor expansion, facilitating more efcient calculations. The Laplace approx-
imation can be employed to approximate the integral by rewriting the integral
term in (2.12) as:

Z ni
Y

j=1

f(yij|φ, β, υi)f(υi|α)dυi

=
Z

f(y|φ, β, υ)f(υ|α)dυ

=
Z

elogf(y|φ,β,υ)f(υ|α)dυ

=
Z

eg(υ)dυ

(2.13)

where g(υ) = logf(y|φ, β, υ)f(υ|α). Assuming g(υ) is diferentiable, we aim to
select υ̂ in a way that maximizes g(υ), ensuring that the necessary and sufcient
conditions g

2

(υ) = 0 and g
22

(υ) < 0 for achieving the global maximum of g(υ).
The second order Taylor expansion around υ̂ for g(υ) is given by:

g(υ) j g̃(υ) = g(υ̂) + (υ 2 υ̂)g
2

(υ̂) +
1

2
(υ 2 υ̂)2g

22

(υ̂)

= g(υ̂) 2 1

2
(υ 2 υ̂)2(2g

22

(υ̂))
(2.14)

It can be seen that eg̃(υ) is proportional to the normal distribution (µL, σ2
L) where

µL = υ̂ and σ2
L) = 2 1

g
22 (υ̂)

. Then, from (2.12) to (2.14), the Laplace approximation

for the likelihood L(yij; φ, β, α) can also be written as:
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L(yij; φ, β, α) =
n

Y

i=1

f(yi; φ, β, α) =
n

Y

i=1

Z ni
Y

j=1

f(yij|φ, β, υi)f(υi|α)dυi

=
Z

eg(υ)dυ j
Z

eg̃(υ)dυ

=
Z

eg(υ̂)− 1

2
(υ−υ̂)2(−g

22

(υ̂))dυ

=
Z

eg(υ̂)e
− 1

2σ2

L

(υ−µL)2

dυ

= eg(υ̂)
Z

e
− 1

2σ2

L

(υ−µL)2

dυ

= eg(υ̂)
q

2πσ2
L

(2.15)

When using the glmer function in the lme4 package in R software, Laplace ap-
proximation is employed as the default method for regression analysis. Moreover,
the accuracy of this approximation increases if higher order of Taylor expansion
is used. A more detailed explanation of Laplace approximation of generalized
linear mixed model could be found in Handayani et al. (2017).

Gauss-Hermite

Adaptive Gauss-Hermite quadrature is an extension of traditional Gaussian
quadrature that provides a method to numerically compute integrals involving
Gaussian weight functions. This method is particularly efective for integrals of
the form:

R ∞
−∞ e−z2

h(z) dz, where h(z) is a smooth function and e−z2

is the weight
function. The formula for Gauss-Hermite quadrature can be expressed as:

Z ∞

−∞
e−z2

h(z) dz j
Q

X

q=1

wq · h(zq) (2.16)

The zq denote the roots of the Qth order Hermite polynomial HQ(z), where Q
indicates the order of the approximation. And wq represents the corresponding
weights, the weights wq have a particular functional form involving lower-order
Hermite polynomials HQ−1(z) and the number of specifed nodes Q. Both the
nodes (or quadrature points) zq and the weights wq are tabulated in Abramowitz
and Stegun (1968).

Assuming a single random efect υi follows a normal distribution N(0,σ2
i ), the

contribution of the ith random efect to the marginal likelihood is represented as:

li(yi; φ, β, α) =
Z ni

Y

j=1

f(yij|φ, β, υi)f(υi|α)dυi (2.17)

In practice, maximum likelihood estimates are obtained from the log of the
quadrature approximation. After a reparameterization to δi = σ−1υi, we have
υi = δiσ, and the marginal likelihood function can be written as

li(yi; φ, β, α) =
Z ni

Y

j=1

f(yij|φ, β, υi)f(υi|α)dυi

=
Z ni

Y

j=1

f(yij|φ, β, δiσ)φ(δi; 0, 1)dδi

(2.18)
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In order to calculate (2.18), we consider integrating
R ∞

−∞ h(z) · φ(z; 0, 1)dz,
where φ(z; 0, 1) denotes the standard normal density. Let µ̂ and σ̂ be

µ̂ = mode [h(z) · φ(z; 0, 1)]

σ2̂ =

"

2 ∂2

∂z2
ln(h(z) · φ(z; 0, 1))|z=µ̂

#−1

then µ̂ and σ2̂ would be the mean and variance of the distribution with density
h(z) · φ(z; 0, 1). Let V (z) = h(z)·φ(z;0,1)

φ(z;µ,σ)
, then

Z ∞

−∞
h(z) · φ(z; 0, 1)dz

=
Z ∞

−∞
V (z)φ(z; µ, σ)dz

=
Z ∞

−∞
V (z)

1:
2πσ

exp{21

2
(
z 2 µ

σ
)2}dz

(2.19)

We introduce a new variable z̃ for reparameterization, where z̃ = z−µ√
2σ

. We

then substitute z with z = µ +
:

2σz̃ to continue.

Z ∞

−∞
V (z)

1:
2πσ

exp{21

2
(
z 2 µ

σ
)2}dz

=
Z ∞

−∞
V (µ +

:
2σz̃)

1:
2πσ

exp{2z̃2}
:

2σdz̃

=
Z ∞

−∞

V (µ +
:

2σz̃):
π

exp{2z̃2}dz̃

(2.20)

Based on Gauss-Hermite quadrature formula (2.16) and (2.20) we obtain

Z ∞

−∞

V (µ +
:

2σz̃):
π

exp{2z̃2}dz̃ j
Q

X

q=1

V (µ +
:

2σzq̃):
π

wq (2.21)

replacing µ and σ2 by µ̂ and σ2̂, we have

Z ∞

−∞
V (z)φ(z; µ, σ)dz j

Q
X

q=1

V (µ̂ +
:

2σ̂zq̃):
π

wq (2.22)

Based on the calculations above, it is sufcient to integrate
R ∞

−∞ h(z)·φ(z; 0, 1)dz.
The process is shown as follows.

Z ∞

−∞
h(z) · φ(z; 0, 1)dz

=
Z ∞

−∞

h(z) · φ(z; 0, 1)

φ(z; µ, σ)
φ(z; µ, σ)dz

=
Z ∞

−∞
V (z)φ(z; µ, σ)dz

j
Q

X

q=1

V (µ̂ +
:

2σ̂zq̃):
π

wq

(2.23)

18



By substituting V (z) = h(z)·φ(z;0,1)
φ(z;µ,σ)

and z = µ̂ +
:

2σ̂z̃ into the above equation

Q
X

q=1

V (µ̂ +
:

2σ̂zq̃):
π

wq

=
Q

X

q=1

:
2πσ̂:
π

exp{(
:

2σ̂zq̃)
2

2σ̂2 }φ(µ̂ +
:

2σ̂zq̃; 0, 1)wq · h(µ̂ +
:

2σ̂zq̃)

=
Q

X

q=1

:
2σ̂exp{z̃2

q}φ(zq; 0, 1)wq · h(zq)

=
Q

X

q=1

w∗
qh(zq)

(2.24)

where w∗
q =

:
2σ̂exp{z̃2

q}φ(zq; 0, 1)wq and z = µ̂ +
:

2σ̂z̃. (2.24) is called an
adaptive Gauss–Hermite quadrature formula and can be used to approximate the
integration

R ∞
−∞ h(z) · φ(z; 0, 1)dz. Full details and references for Gauss–Hermite

quadrature for generalized linear mixed models are in Antonio and Beirlant
(2007).

In Gauss-Hermite quadrature, the integration of the polynomial function h(z)
achieves high precision. Increasing the number of quadrature points can improve
the accuracy of integral approximations. Results from other methods are often
compared to adaptive Gauss-Hermite quadrature due to its high accuracy when
Q is large, refer to Kim et al. (2013). However,there are limitations to its us-
age: the computational burden increases with more quadrature points and grows
exponentially as the number of random efects increases. Complex models with
multiple, especially nested or crossed, random efects can become computationally
unmanageable, refer to Fitzmaurice et al. (2011).

The Laplace method approximates the objective function around its mode,
providing asymptotically unbiased estimates with lower computational burden
compared to adaptive Gauss-Hermite quadrature. As a result, Laplace approxi-
mation may yield less accurate estimates when dealing with datasets that have
small cluster sizes. Laplace approximation is more fexible and slightly less com-
putationally intensive than adaptive Gauss-Hermite quadrature (GHQ). For ap-
propriately structured data, adaptive GHQ is expected to produce more accu-
rate estimates. Additionally, Laplace approximation is numerically equivalent
to Adaptive Gauss-Hermite quadrature with a single quadrature node, refer to
Tuerlinckx et al. (2006). It might seem that adaptive Gauss-Hermite quadrature
(GHQ) should always be employed to obtain a more accurate approximation of
the likelihood integral.

In addition, PQL (Penalized Quasi-Likelihood) is a method proposed by Bres-
low and Clayton (1993) for estimating penalized quasi-likelihood, which describes
a linearization strategy for approximate inference in GLMM. The technique is
also known as ’pseudolikelihood’ approximation, utilizing Laplace approximation
based on quasi-likelihood. It aims to maximize the likelihood function (2.12).
While widely used, likelihood inference can be inaccurate, leading to biased esti-
mates in cases with large variances or small means. Further descriptions of the
pseudolikelihood approach, including derivations for the general case of GLMM,
the random intercept logistic regression, and other multilevel logistic regression
models, can be found in Handayani et al. (2017).
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3. Generalized linear mixed
models in claims reserving

In the previous chapter, we provided a detailed overview of the structure and
parameter estimation of generalized linear mixed models. In this chapter, we
will delve into a comprehensive discussion on the application of generalized linear
mixed models in the estimation of outstanding claims reserves.

In the estimation model for outstanding claim reserves, the frequency of claims
constitutes a pivotal factor, yet it is often disregarded in favor of directly assuming
and estimating claim amounts. The two-stage Generalized Linear Model (GLM)
delineated below presents a preferred methodology to address this issue. This
two-stage model facilitates a more comprehensive evaluation of various factors
within the claims process, encompassing the interplay between claim frequency
and claim amounts.

In this approach, we initially employ a GLM or GLMM model to model the
claim counts, followed by modeling the average claim amounts using another
GLM or GLMM model. In this way, we yield the beneft of better considering the
infuence of claim frequency on claim amounts, thereby augmenting the precision
of reserve estimation.

3.1 Generalized Linear Model

Assuming that the total number of accident years and the total number of de-
velopment years are related as I = J . The increments of number of claims for the
jth development year of the ith accident year are denoted as {nij, i, j = 1, ..., I}.
Here, the data difers from the aggregate data {Nij, i, j = 1, ..., I} where Nij =
Ni,j−1 + ni,j. Similarly, the settled claim amounts for the jth development year
of the ith accident year are denoted as {cij, i, j = 1, ..., I}, while the cumulative
claim amounts are denoted as {Cij, i, j = 1, ..., I} where Cij = Ci,j−1 + ci,j. Let
{yij, i, j = 1, ..., I} be the increments of average claim amounts for the jth devel-
opment year of the ith accident year and {Yij, i, j = 1, ..., I} be the cumulative
average claim amounts.

The basic idea of the model is as follows:

1. Based on the triangle of incremental claim counts {nij, i = 1, ..., I, j f
I + i 2 1}, establish a generalized linear model to estimate incremental
claim counts {nijˆ , i = 1, ..., I, j > I + i 2 1} within the lower right triangle,
and fll in the triangle.

2. Based on the triangle of incremental claim amounts {cij, i = 1, ..., I, j f
I + i 2 1} and the triangle of incremental claim counts {nij, i = 1, ..., I, j f
I + i 2 1}, calculate the incremental average settled claim amounts {yij, i =
1, ..., I, j f I + i 2 1} according to yij = cij

nij
. Then establish a generalized

linear model to estimate the incremental average settled claim amounts
{yiĵ, i = 1, ..., I, j > I + i 2 1} within the lower right triangle, and fll in the
triangle.
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3. According to ciĵ = nijˆ · yiĵ, obtain the total incremental claim amounts for
each cell in the incremental claim amounts triangle {ciĵ, i = 1, ..., I, j > I +

i21}. The cumulative claim amounts triangle {Cij
ˆ , i = 1, ..., I, j > I+i21}

could be obtained subsequently.

4. From Ci,j
ˆ = Ci,j−1

ˆ +ci,jˆ and (1.4), the cumulative outstanding claim reserves
can be obtained.

3.1.1 Modelling of claims counts

In the claims frequency model, we assume the incremental claims counts
{nij, i, j = 1, ..., I} is independent and follows a distribution from the exponential
family. Claim frequency is a type of discrete count data, commonly modeled using
distributions such as the Poisson distribution and negative binomial distribution.

Poisson model

The Poisson probability distribution function has the form

f(y) =
λy

y!
e−µ, y = 0, 1, 2, ...

with parameter λ > 0. The positive real number λij is equal to the expected
value of nij and also to its variance.

V ar(nij) = E(nij) = λij (3.1)

The linear predictor ηij is related to the mean λij by a logarithmic link

log(λij) = ηij = c + ai + bj (3.2)

The parameter ai represents the efects of the accident year i, bj represents
the efects of development year j on the expected value of the incremental claim
counts ni,j, and c is a constant term for all i and j, where a1 = b1 = 0.

In order to measure the deviation between observed and expected values,
Pearson chi-square statistic for Poisson distribution is shown below:

ϕ̂ =
1

n 2 p

I
X

i=1

I−i
X

j=1

(nij 2 µijˆ )2

V (µijˆ )

=
1

n 2 p

I
X

i=1

I−i
X

j=1

(nij 2 λij
ˆ )2

λij
ˆ

where n is the number of observations with n = I(I + 1)/2 and p is the number
of parameters with p = 2I + 1. nij is the observed increment count for the

accident year i and development year j and λij
ˆ is the predicted count for the nij

observation.
In order to measure the goodness of ft for Poisson distribution, the deviance

is computed by the formula:

D =
2

ϕ̂

I
X

i=1

I−i
X

j=1

"

nij log

 

nij

λ̂ij

!

2 (nij 2 λ̂ij)

#

The deviance statistic follows a χ2 distribution with n-p degrees of freedom.
If the deviance statistic is large compared to this chi-squared distribution, it
suggests that the model does not ft the data well.
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Negative binomial model

The negative binomial distribution is closely related to the Poisson distribu-
tion, serving as a generalization that allows for overdispersion. While the Poisson
distribution assumes constant variance equal to its mean, the negative binomial
distribution relaxes this assumption by introducing an additional parameter that
allows for variance greater than the mean.

The probability mass function of the negative binomial distribution is given
by

f(y) =

 

y + r 2 1

y

!  

µ

µ + r

!y  

r

µ + r

!r

, y = 0, 1, 2, ...

with parameters r, µ > 0. µij is the expected value of nij and the variance can
be expressed in terms of the mean:

E(nij) = µij

V ar(nij) =
µij + r

r
µij (3.3)

In negative binomial distribution for the generalized linear model, the loga-
rithmic link function is also typically used.

log(µij) = ηij = c + ai + bj (3.4)

where ai represents the efects of the accident year i, bj represents the efects of
development year j on the expected value of the incremental claim counts ni,j

with a1 = b1 = 0. Pearson chi-square statistic for negative binomial distribution
is shown in the following

ϕ̂ =
1

n 2 p

I
X

i=1

I−i
X

j=1

(nij 2 µijˆ )2

V (µijˆ )

=
1

n 2 p

I
X
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I−i
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j=1

(nij 2 µijˆ )2

µijˆ +r

r
µijˆ

where n is the number of observations with n = I(I + 1)/2 and p is the number of
parameters with p = 2I + 1. µij is the ftted expected value of nij. The deviance
measures how well the negative binomial regression model fts the observed data.
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nij
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2 (nij + r)log(
nij + r
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)

#

In this section, we introduced two diferent models to model the claim counts.
We can use these two models in R to predict the fnal claim counts and conduct
model testing and comparison. And in the following section, we continued to
model the average claim amounts.

3.1.2 Modelling of claims amounts

As we metioned at the begining of this chapter, we use the symbol yij to
represent the incremental average claim amounts, and Yij to denote the cumula-
tive average claim amounts. In this section, we use the average claim amounts
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data from the development triangle of incremental average claim amounts. When
modeling average claim amounts, continuous distributions should be considered.
The most commonly used models for average claim amounts are the gamma dis-
tribution and the inverse Gaussian distribution. Next, we will describe these two
distributions.

Gamma models

The probability density function of gamma distribution is defned as

f(y) =
1

Γ(k)θk
yk−1e− y

θ , y > 0

where k and θ are parameters, with k > 0 being the shape parameter and θ > 0
being the scale parameter. The random variable y with the probability density
function f(y) is used to represent the average claim amount.

The mean and variance functions of the gamma distribution are represented
as

E(yij) = µij = kθ

V ar(yij) = ϕµ2
ij = kθ2 (3.5)

where ϕ is defned as the dispersion parameter with ϕ = 1
k
. In the gamma distri-

bution, the inverse reciprocal link function, which is the canonical link function,
is used. The inverse link function is defned as:

ηij =
1

µij

= c + ai + bj (3.6)

for all i and j with a1 = b1 = 0. In addition, the logarithmic link function, al-
though not the canonical link for the gamma distribution, is commonly used be-
cause it models the multiplicative relationship between predictors and the mean,
which simplifes the interpretation of the model in terms of relative changes in
the mean. The logarithmic link for the gamma distribution is defned as:

log(µij) = ηij = c + ai + bj (3.7)

for all i and j with a1 = b1 = 0. The parameters of the given models are estimated
using the maximum likelihood method, as described previously.

After the model is ftted, to examine the goodness of ft, the deviance for the
ftted gamma distribution model is computed as follows:

D =
2

ϕ̂

I
X

i=1

I−i
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µ̂ij

2 log(
yij

µijˆ
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where yij is the observed increment average claim amount for the accident year i
and development year j and µijˆ is the predicted average claim amount for the yij

observation.
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Inverse Gaussian models

The inverse gaussian distribution is appropriate for modeling right-skewed
positive data and is applicable in situations where all observations are positive and
unbounded. The probability density function of the inverse gaussian distribution
is defned as

f(y) =

s

λ

2πy3
exp

 

2λ(y 2 µ)2

2µ2y

!

, y > 0

with parameters λ > 0 and µ > 0. The mean and variance functions of the
inverse gaussian distribution are represented as

E(yij) = µij

V ar(yij) = ϕµ3
ij (3.8)

where the dispersion parameter here is defned as ϕ = 1
λ
.

The canonical link function for the inverse Gaussian distribution is the recip-
rocal of the square of its mean parameter.

ηij =
1

µ2
ij

= c + ai + bj (3.9)

for all i and j with a1 = b1 = 0. Same as before, in practice, we also consider the
logarithmic link for the inverse Gaussian distributed response variables due to its
convenient properties.

log(µij) = ηij = c + ai + bj (3.10)

for all i and j with a1 = b1 = 0. The deviance for the ftted model of inverse
gaussian distribution is computed as follows:
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3.2 Generalized Linear Mixed Model

Generalized Linear Mixed Models (GLMMs) extend the capabilities of Gener-
alized Linear Models (GLMs) by incorporating random efects. The most signif-
cant improvement of GLMMs over GLMs is their ability to account for correlated
data and hierarchical structures. As we methioned in the previous chapter, glmm
has the form:

η = g(µ) = Xβ + Zυ

In this formulation, X and Z are typically constructed based on the structure
of the data and the specifed model. The random efects υ are often assumed to
be normally distributed.The residual errors are assumed to follow a distribution
from the exponential family, such as normal, Poisson, or binomial.

To build a more specifc GLMM model for predicting outstanding reserves, it
is necessary to align the elements of the GLMM with the corresponding claims
notation. It is evident that the incremental claim counts {nij, i, j = 1, ..., I}
and the incremental average claim amounts {yij, i, j = 1, ..., I} with accident
year i and development j will serve as the dependent variables Yij in the GLMM
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framework, respectively. The claims counts or average claim amounts originating
from the same accident year i are expected to be clustered together.

In the triangular dataset, observations within the same accident year may be
correlated. To model these correlations, an appropriate random efects structure
must be chosen. Properly identifying and incorporating random efects helps
the model account for these correlations by capturing variations across diferent
accident years or other grouping factors.

In loss reserving calculations, both accident year and development year can be
considered as factors susceptible to random efects. Accident year may be infu-
enced by external factors such as unpredictable natural disasters or fuctuations
in the macroeconomic environment. Development year may also be infuenced by
various factors such as the efciency of claims processing, adjustments in compen-
sation amounts, etc. Therefore, in our GLMM model, we consider two random
efect variables: the frst from accident year i and the second from development
year j. The vector form of random efects can be expressed as

υ = (d, u1, ..., uI , v1, ..., vJ)T

where ui represents the random efect of the accident year i, vj represents the
random efect of the development year j, and d is the constant term. The corre-
sponding design vector can be expressed as

zij = (1, δ1i, ..., δIi, δ1j, ..., δJj)
T

where the Kronecker’s delta δij represents the dummy variables. It equals 1 when
the indices i and j in δij are equal to the indices i and j in zij , and it equals 0
when the indices are diferent.

However, in practical applications, we should also consider the issue of over-
parameterization. Including random efects for each level of a grouping variable
in GLMMs can lead to overparametrization if there are too many levels of the
grouping variable or too few observations per level. When we are considering
the random efect for both row specifc and column specifc efects, the number
of random efect parameters in the ftted model equals to 2I 2 1. Therefore, to
address this issue, a simpler mixed model called the random intercept model is
often utilized in loss reserving analysis.

In random intercept model, we omit the column specifc efect vj and consider
only the row specifc efect ui. The random efects of the random intercept model
can be expressed as

υ = (d, u1, ..., uI)T

where ui represents the random efect of the accident year i and d is a constant
term. The corresponding design vector can be expressed as

zi = (1, δ1, ..., δI)T

where the Kronecker’s delta δi represents the dummy variables. It equals 1 when
the indices i in δi and in zi are equal, and it equals 0 when the indices are
diferent. Then the number of random efect parameters in the ftted random
intercept model reduced to I.
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The mean structure for claims associated with accident year i and development
year j is represented by the following form:

g(µij) = xT
ijβ + zT

i υ (3.11)

where β is the fxed coefcient vector for the predictor variable and υ is the ran-
dom intercept term for the ith accident year. These random efects are typically
assumed to follow a normal distribution with mean zero and a variance parameter
that needs to be estimated from the data. This model allows for the intercept
term to vary across diferent accident year i, which is captured by the random
efect.

We assume claim development patterns follow historical trends. Changes
are primarily due to infation, making column-specifc efects unnecessary in the
model. Thus, we can simplify the model by excluding these efects and focusing
solely on capturing infation-induced trends. In addition, we have also made
adjustments to the fxed efects of the model, and then (3.11) could be expressed
as

g(µij) = c + bj + ui (3.12)

where c is a constant term refects the baseline or average level of claims, the fxed
efect bj represents the infuence of the development year j with b1 = 0, and the
random efect ui represents the deviation or fuctuation of the claim for accident
year i from the expected level c. Assuming the random efect ui follows a normal
distribution.

In generalized linear mixed models, we adopt the same modeling approach as
GLMs to predict both the frequency of losses {nij, i, j = 1, ..., I} and the average
loss amounts {yij, i, j = 1, ..., I}.

3.2.1 Modelling of claims counts

Poisson model

The probability distribution function of the Poisson distribution is the same
as the pdf we mentioned in the previous section in GLMs. The diference is that
GLMMs introduces a random efect g(µ) = Xβ + Zυ. The logarithmic link
function of the Poisson GLMM model is shown as follows.

log(λij) = ηij = c + bj + ui (3.13)

where the parameter bj represents the fxed efect of development year j on the
expected value of the incremental claim counts ni,j, ui represents the random
efect of accident year i, and c is a constant term for all accident year i and
development year j, with b1 = 0.

Negative binomial model

The probability distribution function of the negative binomial distribution is
the same as the pdf we mentioned in the previous section in GLMs. In negative
binomial distribution for the generalized linear mixed model, the logarithmic link
function is also typically used.

log(µij) = ηij = c + bj + ui (3.14)
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for all i and j with b1 = 0. bj represents the fxed efects of development year j
and ui represents the random efects of diferent accident year i.

3.2.2 Modelling of claims amounts

Gamma models

The probability distribution function of the gamma distribution is the same
as the pdf we mentioned in the previous section in GLMs. Similarly, in gamma
distribution for the generalized linear mixed model, the inverse reciprocal link
function, which is the canonical link function, is used. The inverse link function
is defned as:

g(µij) = ηij =
1

µij

= c + bj + ui (3.15)

for all i and j with b1 = 0. The diference between the link functions of GLMs
and GLMMs is that in GLMMs there exists random efect for accident year i,
represented by the parameter ui.

Inverse Gaussian models

The probability distribution function of the inverse Gaussian distribution is
the same as the pdf we mentioned in the previous section in GLMs. The same
link function for the inverse Gaussian distribution, which is the reciprocal of the
square of its mean parameter, has been used.

g(µij) = ηij =
1

µ2
ij

= c + bj + ui (3.16)

for all i and j with b1 = 0. Similarly, the diference between the link functions
of GLMs and GLMMs is that the parameter ui represents the random efect of
accident year i.

3.2.3 Model Fitting and Evaluation

In addition to the statistical methods mentioned in section 2.1.4, information
criteria such as AIC (Akaike Information Criterion) and BIC (Bayesian Informa-
tion Criterion) are often used in practice to compare a fnite set of models. These
criteria help evaluate the relative quality of statistical models for a given claims
dataset.

Akaike’s Information Criterion (AIC) for a statistical model is given by:

AIC = 2p 2 2 ln(L)

where p represents the number of parameters in the model, and L denotes the
maximized value of the likelihood function. Another criterion, known as the
Bayesian Information Criterion (BIC), is computed as follows:

BIC = p ln(n) 2 2 ln(L)

where P is the number of parameters in the model, L is the maximized value
of the likelihood function and n is the number of observations in the dataset.
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These criterias allow for the comparison of GLMMs with GLMs or among dif-
ferent GLMMs, providing a way to select the model that best balances ft and
complexity.
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4. Real data analyze

In this chapter, we will calculated the INBR reserves based on the real data.
First we use the Chain Ladder method as traditional deterministic model. Then
we use double generalized linear models to model the claim counts and aver-
age claim amounts separately. The computational part of the analysis was con-
structed in a software R, and a complete source code is attached in the Appendix
A.

4.1 Data set

The dataset utilized in this chapter in the analysis is sourced from Chen
(2009). It illustrates seven years (1999-2005) of observations of paid losses with
seven development lags. The data is presented in two tables. They all have been
organized into the format of incremental triangles. Table 4.1 shows the incremen-
tal claim counts and Table 4.2 displays the incremental total claim amounts.

Table 4.1: Development triangle of incremental claim counts

Accident year i
Development year i

1 2 3 4 5 6 7
1 23355 8585 1348 572 231 156 47
2 22662 7632 1294 541 194 110
3 18951 6246 1017 368 195
4 16631 6263 912 423
5 17381 7200 1184
6 12666 4003
7 10592

Table 4.2: Development triangle of incremental claim amounts

Accident year i
Development year i

1 2 3 4 5 6 7
1 22607640 2455310 508196 150436 45276 19968 2961
2 22050126 3648096 527952 203957 34726 10010
3 20163864 2885652 410868 115920 40365
4 19291960 2956136 442320 192888
5 20561723 4046400 821696
6 16997772 2690016
7 11344032

The incremental triangle of total claim amounts is calculated as the product of
the incremental triangle of the number of claims and the incremental triangle
of the average claim amounts. Dividing Table 4.2 by Table 4.1, we obtain the
incremental triangle of average claim amounts, as shown in Table below.
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Table 4.3: Incremental average claim amounts triangle

Accident year i
Development year i

1 2 3 4 5 6 7
1 968 286 377 263 196 128 63
2 973 478 408 377 179 91
3 1064 462 404 315 207
4 1160 472 485 456
5 1183 562 694
6 1342 672
7 1071

Figure 4.1: Development of incremental claims amounts by year of origin

In order to better illustrate the data, fgure 4.1 displays the development of incre-
mental claims for each year individually, and the cumulative claims development
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Figure 4.2: Development of cumulative claims amounts

is visualised in fgure 4.2. From these fgures, we can observe that as the de-
velopment years increase, the incremental claims exhibit a trend of gradually
decreasing to zero, indicating that the cumulative claims increase at a slower
rate. This trend is attributed to the fact that the majority of insurance incidents
can be resolved relatively quickly, with only a few cases requiring more time to
settle.
In the next section, we will establish diferent models for the upper triangles of
both claim counts and average claim amounts separately based on real data, esti-
mating the values to fll the lower triangles. And then we will calculate the IBNR
values accordingly.

4.2 Chain Ladder method

The chain ladder method is based on cumulative claim data, so the frst step
is to convert all the incremental claim data provided in the previous section into
cumulative claim data, as shown in Table 4.4.

The development factors are calculated as the average cumulative claim values
{Ci,j, i = 1, ..., I, j f I + i 2 1} for each accident year based on equation (1.10).
The result for each year are shown in Table 4.5.

By multiplying the reported claim amounts for each accident year by the
corresponding claim development factors, we can obtain the future claims for
each accident year. This process flls in the total claim amount triangle. The
claims for the 7th development year, which represent the ultimate losses (UL),
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Table 4.4: Development triangle of cumulative claim amounts

Accident year i
Development year i

1 2 3 4 5 6 7
1 22607640 25062950 25571146 25721582 25766858 25786826 25789787
2 22050126 25698222 26226174 26430131 26464857 26474867
3 20163864 23049516 23460384 23576304 23616669
4 19291960 22248096 22690416 22883304
5 20561723 24608123 25429819
6 16997772 19687788
7 11344032

Table 4.5: Development factor for CL method

Accident year i Development factor
1999 1.153539
2000 1.022467
2001 1.006771
2002 1.001589
2003 1.000574
2004 1.000115
2005 1.000000

can be obtained by subtracting the reported losses (RL) for each accident year
from the reported losses for the calendar year 2005. This process yields the IBNR
reserves for each year, as shown in the following table.

Table 4.6: Observed values of claims reserves based on CL method
Accident year i UL RL IBNR

1999 25789787 25789787 0
2000 26474867 26477907 3040
2001 23616669 23632937 16268
2002 22883304 22935464 52160
2003 25429819 25660360 230541
2004 19687788 20312610 624822
2005 11344032 13501085 2157053

Total IBNR 3083884

Therefore, according to Table4.6, The total IBNR reserve is obtained by summing
the IBNR reserves for each year, resulting in 3,083,884.

4.3 Generalized Linear Models

The evaluation of IBNR using a double generalized linear model is a stochastic
model that not only provides point estimates of IBNR reserves with higher ac-
curacy than deterministic methods but also yields confdence intervals for IBNR
reserves. In this section, we employ generalized linear models to predict both the
claim counts and the average claim amounts.
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4.3.1 GLM for claim counts

First, we focus on forecasting future claim counts using Poisson and negative
binomial distributions for ftting. We will frst illustrate claim counts model with
Poisson distribution.

Poisson Models

The model results for predicting future claim counts using the Poisson dis-
tribution function in the generalized linear model are shown in the Table 4.7.

Table 4.7: Poisson Model Parameter Estimation Results
Parameters Estimate Std.Error z value P value

Intercept 10.06672 0.00567 1775.787 0.0000
a2 -1.02823 0.00583 -176.337 0.0000
a3 -2.84876 0.01355 -210.280 0.0000
a4 -3.75255 0.02316 -161.999 0.0000
a5 -4.64205 0.04033 -115.102 0.0000
a6 -5.14953 0.06146 -83.789 0.0000
a7 -6.21658 0.14598 -42.587 0.0000
b2 -0.05442 0.00775 -7.024 0.0000
b3 -0.24206 0.00816 -29.660 0.0000
b4 -0.33538 0.00840 -39.913 0.0000
b5 -0.25747 0.00826 -31.158 0.0000
b6 -0.65117 0.00948 -68.727 0.0000
b7 -0.79887 0.01125 -71.015 0.0000

Table 4.7 provides key information about the model: the maximum likelihood
estimation results for all parameters. The last column presents the associated
probabilities of signifcance for each parameter, and observing that they are all less
than 0.05 indicates that the estimates for these parameters are highly signifcant.
Next, we are going to perform model diagnostics.

Model Diagnostics

Table 4.8: Model diagnostics for Poisson model

dependent variables df
LR Test Wald Test

Chi-Square Pr>ChiSq Chi-Square Pr>ChiSq
Accident Years 6 -9878.40 0.00 9257.60 0.00

Development years 6 -228831.00 0.00 107418.10 0.00

Based on the table 4.8, both the LR test and the Wald test passing indicate
that the parameter estimates in the model are signifcant, suggesting that both
accident year and development year in the model have a statistically signifcant
impact on the incremental claim counts. And then we show scaled deviance
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and Pearson residuals for the Poisson model in fgures 4.3 and 4.4 respectively to
evaluate their adequacy of ft. From the fgures, the residuals have a mean of zero
but exhibit a decreasing trend in variance, it may indicate that the error structure
of the model varies across diferent predicted values. Specifcally, the decreasing
trend in variance may suggest that the predictive accuracy of the Poisson model
is higher within certain ranges of predicted values and lower within others. This
could be due to the model being overly conservative or aggressive in predicting
certain data points, resulting in the variance changing. It is also possible that
the trend in variance may be due to the small size of the dataset.

Figure 4.3: Deviance residuals Figure 4.4: Pearson residuals

Figure 4.5: Observed and ftted values of Poisson model

In fgure 4.14, another graphical tool is employed to evaluate the model ft. Points
indicating observed values in comparison to ftted values are anticipated to exhibit
a linear pattern along the main diagonal in the plot.
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Table 4.9: Negative Binomial Model Parameter Estimation Results

Parameters Estimate Std. Error z value P value
Intercept 10.08424 0.02864 352.145 0.0000

a2 -1.03511 0.02622 -39.478 0.0000
a3 -2.85703 0.03060 -93.358 0.0000
a4 -3.74986 0.03779 -99.241 0.0000
a5 -4.63273 0.05225 -88.673 0.0000
a6 -5.15231 0.07279 -70.779 0.0000
a7 -6.23409 0.15509 -40.197 0.0000
b2 -0.08741 0.03268 -2.675 0.0075
b3 -0.28952 0.03381 -8.563 0.0000
b4 -0.34484 0.03493 -9.872 0.0000
b5 -0.21773 0.03678 -5.919 0.0000
b6 -0.69216 0.04137 -16.733 0.0000
b7 -0.81638 0.05357 -15.239 0.0000

Negative Binomial Models

The last column of the table 4.9 displays the associated probabilities of signif-
icance for each parameter. Notably, all probabilities are less than 0.05, indicating
a high level of signifcance for the parameter estimates. Subsequently, model di-
agnostics will be conducted to evaluate the ft of the negative binomial model
and identify any potential shortcomings or areas for refnement.

Model Diagnostics

Table 4.10: Model diagnostics for negative binomial model

dependent variables df
LR Test Wald Test

Chi-Square Pr>ChiSq Chi-Square Pr>ChiSq
Accident Years 6 69.83 0.00 461.60 0.00

Development Years 6 191.93 0.00 21126.90 0.00

The results of the Wald test and likelihood ratio test are shown above in table
4.10. They primarily assess the signifcance of the statistical model. It can be
observed that the p-values are very small, indicating that the model is signifcant.

Then we will illustrate deviance residuals and Pearson residuals. From fgure
4.6 and 4.7, the residuals have a mean close to zero and a relatively constant
variance. This indicates that the counts predictions of negative binomial model
are generally accurate and consistent across the dataset. These conditions suggest
that the model’s assumptions regarding the mean and variance of the residuals
are being satisfed, which is crucial for the reliability of its predictions.

The plot of observed values against predicted values forms a straight line, it
indicates a linear relationship between the predicted and observed values. This
suggests that the negative binomial model fts well, and the predicted values can
efectively explain the variability in the observed values.
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Figure 4.6: Deviance residuals Figure 4.7: Pearson residuals

Figure 4.8: Observed and ftted values of negative binomial model

Claim Counts Model Evaluation

As we cannot know in advance whether the number of claims follows a Poisson
distribution, a negative binomial distribution, or another distribution form, to
choose the best distribution function for ftting the fnal claim count, we compared
the model selection criteria statistics of the test models for these two distributions.
The relevant data has been organized into the Table 4.11.

Table 4.11: Pearson χ2 statistic, deviance and AIC for claim counts under difer-
ent models

Model Poisson Negative Binomial
Deviance 271.2467 28.8649

Pearson Chi-square 271.8178 28.4318
AIC 558.8787 368.9500

It is clear that smaller values of model selection statistics in the table indicate
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better ft, as they measure the degree to which the model fts the observed data.
Both the Poisson and negative binomial distributions provide good fts, but based
on various statistics and indicators, it is evident that the negative binomial distri-
bution performs better than the Poisson distribution. Therefore, we can conclude
that among these three distribution functions, the negative binomial distribution
is the most suitable model for predicting future claim counts.

Table 4.12: Estimation values and confdence intervals for claim count parameters
under negative binomial model.

parameters Estimate 95% CI LL 95% CI UL
Intercept 10.08424 10.0281233 10.1409147

a2 -0.08741 -0.1514556 -0.0233745
a3 -0.28952 -0.3558459 -0.2231825
a4 -0.34484 -0.4133994 -0.2762186
a5 -0.21773 -0.2899933 -0.1452813
a6 -0.69216 -0.7730621 -0.6107506
a7 -0.81638 -0.9207803 -0.7104518
b2 -1.03511 -1.0865424 -0.9836759
b3 -2.85703 -2.9171536 -2.7969114
b4 -3.74986 -3.8239609 -3.6759199
b5 -4.63273 -4.7356809 -4.5308662
b6 -5.15231 -5.2966049 -5.0112432
b7 -6.23409 -6.5507923 -5.9413962

Table 4.13: Incremental claim counts ftted with negative binomial distribution

Accident year i
Development year i

1 2 3 4 5 6 7
1 23355 8585 1348 572 231 156 47
2 22662 7632 1294 541 194 110 43
3 18951 6246 1017 368 195 104 35
4 16631 6263 912 423 165 98 33
5 17381 7200 1184 453 188 112 38
6 12666 4003 689 282 117 69 24
7 10592 3762 608 249 103 61 21

The estimated values and confdence intervals for the model parameters of
the negative binomial model are shown in the Table 4.12. Using the parameters
in the table 4.12, we can predict the ultimate claim counts for each accident
year. For example, the ultimate claim counts for accident year 2 is calculated as
exp(Intercept + a2 + b7) = exp(10.08424 - 0.08741 - 6.23409) = 43.07.

The estimated values can be used to fll the claim counts triangle, as shown
in the Table 4.13. Table 4.13 represents the incremental claim counts ftted with
a negative binomial distribution. Adding up the claim counts for each accident
year in every row yields the ultimate claim counts for each accident year.
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4.3.2 GLM for average claim amounts

For the GLM model for average claim amounts, we followed the same approach
as the previous section for the GLMs for claim counts. We ftted the average claim
amounts using gamma distribution and inverse Gaussian distribution.

Gamma Models

The model results for predicting average claim amounts using the gamma
distribution function in the generalized linear model are shown in the table below.

Table 4.14: Gamma Model Parameter Estimation Results
Parameter Estimate Std.Error z value P value
Intercept 0.0012947 0.0001928 6.716 0.0000

a2 -0.0002281 0.0002411 -0.946 0.3591
a3 -0.0002661 0.0002391 -1.113 0.2832
a4 -0.0004481 0.0002275 -1.969 0.0677
a5 -0.0005622 0.0002232 -2.519 0.0236
a6 -0.0006104 0.0002257 -2.704 0.0163
a7 -0.0003610 0.0002623 -1.376 0.1890
b2 0.0011251 0.0001730 6.504 0.0000
b3 0.0011351 0.0001961 5.789 0.0000
b4 0.0017846 0.0002852 6.258 0.0000
b5 0.0040274 0.0005774 6.975 0.0000
b6 0.0079532 0.0012375 6.427 0.0000
b7 0.0145784 0.0030305 4.811 0.0002

From table 4.14, some of the accident years are not statistically signifcant
predictors based on the p-values. It indicates that certain levels of the accident
year variable may not have a substantial impact on the dependent variable in
the current model. This could be attributed to the small size of the dataset. In
small datasets, statistical tests may lack the power to detect signifcant efects,
resulting in larger p-values and potentially inconclusive results.

However, this does not directly imply that the accident year has no efect
on the average claim amounts. We will conduct model diagnostics to determine
whether this variable should be removed.

Table 4.15: Model diagnostics for gamma model

dependent variables df
LR Test Wald Test

Chi-Square Pr>ChiSq Chi-Square Pr>ChiSq
Accident Years 6 -0.41 0.08 10.80 0.09

Development years 6 -9.68 0.00 185.40 0.00

Based on the Wald and LR tests in table 4.15, the accident year is not consid-
ered as a predictor variable for the average claim amounts, possibly because, in a
specifc dataset or analysis, the accident year does not demonstrate a signifcant
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impact on the average claim amounts. This may be due to a lack of direct causal-
ity between the accident year and the average claim amounts, or the accident
year may no longer be a signifcant predictor after considering other variables.
Therefore, based on model evaluation and testing results, it is decided to exclude
the accident year and retain the development year variable to construct a new
model. The model diagnostic of the new model are showing in the following.

Model Diagnostics

Figure 4.9: Deviance residuals Figure 4.10: Pearson residuals

Figure 4.11: Observed and ftted values of gamma model

The linear relationship between predicted values and observed values is ap-
parent but not entirely clear, it may indicate that the model partially explains
the variation in the data, but there are still other factors or complexities not fully
captured. This could be because we removed one independent variable, and now
the average claim amounts depend solely on the development year.
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Inverse Gaussian Model

The model results for predicting average claim amounts using the inverse
gaussian distribution function in the generalized linear model are shown in the
following table. From table 4.16, based on the results of the inverse Gaussian

Table 4.16: Model Parameter Estimation Results
parameters Estimate Std. Error z value P value

Intercept 0.0000020 0.0000010 1.960 0.0688
a2 -0.0000008 0.0000012 -0.629 0.5388
a3 -0.0000009 0.0000012 -0.727 0.4783
a4 -0.0000013 0.0000011 -1.162 0.2635
a5 -0.0000015 0.0000011 -1.368 0.1914
a6 -0.0000015 0.0000011 -1.418 0.1767
a7 -0.0000011 0.0000012 -0.916 0.3743
b2 0.0000032 0.0000009 3.545 0.0029
b3 0.0000034 0.0000011 3.227 0.0056
b4 0.0000068 0.0000018 3.784 0.0018
b5 0.0000251 0.0000050 5.028 0.0002
b6 0.0000818 0.0000144 5.688 0.0000
b7 0.0002500 0.0000466 5.367 0.0001

model, it can be observed that some of the accident years are not statistically
signifcant predictors of the average claim amounts based on the p-values in the
table. Similarly, we will conduct model diagnostics to determine whether the
accident year should be removed.

Model Diagnostics

Table 4.17: Model diagnostics for inverse Gaussian model

dependent variables df
LR Test Wald Test

Chi-Square Pr>ChiSq Chi-Square Pr>ChiSq
Accident Years 6 -0.000468 0.75 3.00 0.81

Development years 6 -0.031687 0.00 115.60 0.00

The p-values of both the LR and Wald tests for the accident year variable
are greater than 0.05. The same conclusion is drawn from the average claim
amount models considered. Hence, we proceed to exclude the accident year as an
independent variable and conduct model diagnostics based on the revised model.

Figures 4.12 and 4.13 shown the deviance residuals and Pearson residuals
plots which are generated based on the reduced submodel. Figure 4.14 compar-
ing ftted values with observed values. The residual plot shows residuals close
to zero, indicating good model ft with random diferences between predicted
and observed values. There is also no noticeable variance trend, suggesting sta-
ble prediction errors across observed value ranges, ensuring consistent predictive
accuracy throughout the dataset.
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Figure 4.12: Deviance residuals Figure 4.13: Pearson residuals

Figure 4.14: Observed and ftted values of inverse gaussian model

Claim Amounts Model Evaluation

Similarly, to select the best function distribution for ftting the ultimate aver-
age claim amounts, we compared the model evaluation and selection criteria for
these two distributions to test the model ft, and organized the relevant data into
the following table:

Table 4.18: Pearson χ2 statistic, deviance and AIC for claim amounts under
diferent models

Model Gamma Inverse Gaussian
Deviance 0.95874 0.00253

Pearson Chi-square 0.95846 0.00245
AIC 339.84050 342.8222

As seen from the Table, both the gamma distribution and the inverse Gaus-
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sian distribution show good ft, with the inverse Gaussian distribution slightly
outperforming the gamma distribution. The estimated values for the model pa-
rameters and confdence intervals for the average claim amounts based on inverse
gaussian model are provided below.

Table 4.19: Estimation values and confdence intervals for average claim amounts
under inverse Gaussian model

parameters Estimate 95% CI LL 95% CI UL
Intercept 0.0000008 0.0000004 0.0000013

b2 0.0000034 0.0000018 0.0000052
b3 0.0000036 0.0000019 0.0000057
b4 0.0000072 0.0000043 0.0000108
b5 0.0000258 0.0000175 0.0000356
b6 0.0000826 0.0000585 0.0001108
b7 0.0002511 0.0001736 0.0003430

Using the parameters in the table 4.19, we can predict the average claim
amounts for each accident year based on the link function. The estimated values
can be used to fll the average claim amounts triangle, as shown in the Table 4.20.

Table 4.20: incremental average claim amounts ftted with inverse Gaussian dis-
tribution

Accident year i
Development year i

1 2 3 4 5 6 7
1 968.00 286.00 377.00 263.00 196.00 128.00 63.00
2 973.00 478.00 408.00 377.00 179.00 91.00 63.00
3 1064.00 462.00 404.00 315.00 207.00 109.50 63.00
4 1160.00 472.00 485.00 456.00 194.00 109.50 63.00
5 1183.00 562.00 694.00 352.75 194.00 109.50 63.00
6 1342.00 672.00 473.60 352.75 194.00 109.50 63.00
7 1071.00 488.67 473.60 352.75 194.00 109.50 63.00

Table 4.13 presents the fulflled incremental claim counts triangle ftted with a
negative binomial distribution, while Table 4.20 represents the fulflled incremen-
tal average claim amounts triangle ftted with an inverse Gaussian distribution.
Therefore, by combining the data from Tables 4.13 and 4.20 and multiplying the
corresponding values, we can estimate the incremental claim amounts for each
accident year in its development year, as shown in the table 4.21 below.

Subsequently, we may proceed to convert the incremental claim amounts into
cumulative totals. Following this, deduction of the claims reported in the calendar
year 2005 from the total claims is required. While this process involves summing
the incremental claims in the lower triangle, which have just been computed, row
by row. By undertaking this, we derive the IBNR reserves for each accident year.
The estimated IBNR reserves based on GLMs presented in Table 4.22.

At this point, the entire process of assessing IBNR reserves using two-stage
generalized linear models has been completed.
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Table 4.21: Estimated triangle of incremental claim amounts based on GLMs

Accident year i
Development year i

1 2 3 4 5 6 7
1 22607640 2455310 508196 150436 45276 19968 2961
2 22050126 3648096 527952 203957 34726 10010 2713
3 20163864 2885652 410868 115920 40365 11366 2217
4 19291960 2956136 442320 192888 32033 10754 2097
5 20561723 4046400 821696 159916 36375 12211 2382
6 16997772 2690016 326247 99506 22634 7598 1482
7 11344032 1838438 288135 87882 19990 6711 1309

Table 4.22: Estimated IBNR reserves based on GLMs
Accident year 1999 2000 2001 2002 2003 2004 2005 Total reserves

IBNR 0 2713 13582 44885 210884 457468 2242465 2971996

4.4 Generalized Linear Mixed Models

In this section on GLMMs, we continue to model both the frequency of losses
and the average claim amounts.

4.4.1 GLMM for claim counts

Poisson Mixed Efects Model

The fxed efect parameters of the Poisson model are presented in the following
table:

Table 4.23: Poisson Model Fixed Efects Estimation
Parameter Estimate Std.Error z value P value
Intercept 9.732560 0.103078 94.420 0.000

b2 0.103078 94.420 0.000 0.000
b3 0.005831 -176.330 0.000 0.000
b4 0.013547 -210.270 0.000 0.000
b5 0.023164 -162.000 0.000 0.000
b6 0.040330 -115.100 0.000 0.000
b7 0.061460 -83.780 0.000 0.000

The diagnostic results of the Poisson model are as follows. Figures 4.15 and
4.16 illustrate the model residuals for both deviance residuals and Pearson resid-
uals, both of which have a mean of zero and exhibit quite constant variance.
However there are some outlying observations. Figure 4.17 illustrates the ob-
served and ftted values of poisson mixed model, the ftted values closely align
with the observed values along a straight line, it typically indicates a strong
alignment between model predictions and actual observations.
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Figure 4.15: Deviance residuals Figure 4.16: Pearson residuals

Figure 4.17: Observed and ftted values of Poisson mixed model

Negative Binomial Mixed Efects Model

The fxed efect parameters of the negative binomial model are presented in
the following table:

Table 4.24: Negative Binomial Model Fixed Efects Estimation

Parameter Estimate Std.Error z value P value
Intercept 9.734630 0.105780 92.030 0.000

b2 -1.032090 0.032730 -31.540 0.000
b3 -2.852500 0.037220 -76.640 0.000
b4 -3.744890 0.044100 -84.910 0.000
b5 -4.625880 0.058050 -79.690 0.000
b6 -5.146200 0.078570 -65.500 0.000
b7 -6.229750 0.160080 -38.920 0.000
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From Table 4.24, all p-values for the estimated model parameters being 0.00
indicate that these estimated parameters are reliable and signifcant, with signif-
icant implications for model interpretation. Next, we will proceed to illustrate
the model diagnostics.

Figure 4.18: Deviance residuals Figure 4.19: Pearson residuals

Figure 4.20: Observed and ftted values of negative binomial mixed model

The diagnostic results for the negative binomial model are as follows. Figures
4.18 and 4.19 depict the model residuals, showing a mean of zero and constant
variance, indicating a well-ftted model. Additionally, Figure 4.20 demonstrates
the alignment between observed and ftted values, suggesting strong correspon-
dence between model predictions and actual observations.

Claim Counts Model Evaluation

This section involves comparing the model selection criteria statistics of the
test models for these two distributions. The relevant data has been organized
into Table 4.25.
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Table 4.25: Pearson χ2 statistic, deviance and AIC for claim counts under difer-
ent mixed models

Model Poisson Negative Binomial
Deviance 271.2527 21.3197

Pearson Chi-square 271.8148 20.9958
AIC 607.9548 396.8314

Based on various criteria statistics from Table 4.25, it can be observed that
the negative binomial distribution yields smaller values. Therefore, the negative
binomial distribution is more suitable for predicting claim counts. The predicted
random intercepts of negative binomial model are shown in the Table 4.26.

Table 4.26: Predicted random intercepts of negative binomial model

Accident year i Prediction uî

1 0.345040325
2 0.252900046
3 0.055087141
4 0.002412919
5 0.129866553
6 -0.337330978
7 -0.447541735

The parameter bj in Table 4.24 captures the efect of diferent development
year j and the intercept term refects the baseline or average level of the number
of claims, representing the expected level of claims before accounting for other
factors. As the development year increases, the estimated coefcients tend to
decrease, suggesting a decreasing trend in claim development over time.

The random intercepts ui in Table 4.26 captures the additional random vari-
ation specifc to each accident year i from the expected level. It accounts for
variations in claims that are not explained by the average level and the infuence
of the development year j. Based on the assumptions of normality, the estimated
intercepts are randomly scattered around zero. Such an arrangement implies no
signifcant deviations among the claims within one column of the incremental
triangle.

Using the fxed efect parameters from negative binomial mixed model in Table
4.24 and the random efect parameters in Table 4.26, we can predict the claim
counts for each accident year based on the log link function and formula (3.14).
The estimated values can be used to fll the claim counts triangle, as shown in
Table 4.27.

4.4.2 GLMM for average claim amounts

Gamma Mixed Efects Model

The fxed efect parameters of the Gamma model are presented in Table 4.28.
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Table 4.27: Incremental claim counts ftted with negative binomial mixed model

Accident year i
Development year i

1 2 3 4 5 6 7
1999 23355 8585 1348 572 231 156 47
2000 22662 7632 1294 541 194 110 43
2001 18951 6246 1017 368 195 104 35
2002 16631 6263 912 423 166 99 33
2003 17381 7200 1184 455 188 112 38
2004 12666 4003 696 285 118 70 24
2005 10592 3847 623 255 106 63 21

Table 4.28: Gamma Model Fixed Efects Estimation
Parameter Prediction b Std.Error z value P value
Intercept 7.03234 0.09614 73.15 0.00

b2 -0.83928 0.06822 -12.30 0.00
b3 -0.82419 0.07295 -11.30 0.00
b4 -1.05167 0.07905 -13.30 0.00
b5 -1.58419 0.08796 -18.01 0.00
b6 -2.12219 0.10325 -20.55 0.00
b7 -2.64224 0.13772 -19.18 0.00

From the model parameters, it appears that the model ftting is good. Next,
we will proceed with model diagnostics.

Figure 4.21: Deviance residuals Figure 4.22: Pearson residuals

From the residual plots, it can be observed that the variance of the resid-
uals exhibits a trend of increasing followed by decreasing. This suggests that
the predictions of gamma mixed model may be relatively inaccurate within cer-
tain ranges of the independent variables, while being more accurate within other
ranges. From fgure 4.23, apparent linear relationship between predicted values
and observed values may indicate that the model explains some of the variation
in the data.
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Figure 4.23: Observed and ftted values of gamma mixed model

Inverse Gaussian Mixed Efects Model

The fxed efect parameters of the Inverse Gaussian model are presented in
Table 4.29.

Table 4.29: Inverse Gaussian Model Fixed Efects Estimation
Parameter Prediction b Std.Error z value P value
Intercept 7.0676 0.1291 54.757 0.00

b2 -0.8375 0.1131 -7.403 0.00
b3 -0.8397 0.1171 -7.169 0.00
b4 -1.0563 0.1177 -8.974 0.00
b5 -1.5927 0.1146 -13.893 0.00
b6 -2.1435 0.1160 -18.473 0.00
b7 -2.7118 0.1238 -21.899 0.00

The residual plots in Figure 4.24 and 4.25 demonstrate a good model ft, with
residuals exhibiting a random distribution and no apparent trend or pattern.
Figure 4.26 demonstrates that ftted values closely align with observed values,
indicating a strong ft of the model. Next, we select one of the two average claim
amounts mixed models to forecast the average claim amounts.

Average Claim Amounts Model Evaluation

From Table 4.30, the inverse gaussian mixed model shows lower deviance and
Pearson Chi-square statistics. Since the aim of the model is to accurately capture
the variability in the data and predict, model with lower deviance and Pearson
statistics might be more appropriate. We choose the inverse gaussian mixed
model as the estimation model for the average claim amounts. The random in-
tercept of the model are shown Table 4.31.
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Figure 4.24: Deviance residuals
Figure 4.25: Pearson residuals

Figure 4.26: Observed and ftted values of inverse gaussian mixed model

Table 4.30: Pearson χ2 statistic, deviance and AIC for claim amounts under
diferent mixed models

Model Gamma Inverse Gaussian
Deviance 0.3993 0.0015

Pearson Chi-square 0.3806 0.0013
AIC 328.6740 339.2791

Based on the fxed efects in Table 4.29 from the inverse gaussian mixed model
and the random efects parameters in Table 4.31, the predicted incremental av-
erage claim amounts are shown in Table 4.32.
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Table 4.31: Predicted random intercepts of inverse gaussian model

Accident year i Prediction uî

1 -0.192882683
2 -0.222058683
3 -0.12556235
4 0.004730318
5 0.092594644
6 0.093018508
7 -0.014755184

Table 4.32: Estimated development triangle of incremental average claim amounts

Accident year i
Development year i

1 2 3 4 5 6 7
1999 968.00 286.00 377.00 263.00 196.00 128.00 63.00
2000 973.00 478.00 408.00 377.00 179.00 91.00 62.41
2001 1064.00 462.00 404.00 315.00 207.00 121.34 68.74
2002 1160.00 472.00 485.00 456.00 239.76 138.23 78.30
2003 1183.00 562.00 694.00 447.60 261.77 150.92 85.49
2004 1342.00 672.00 556.09 447.79 261.89 150.98 85.53
2005 1071.00 500.41 499.28 402.04 235.13 135.56 76.79

As we can see from the table, diferent development and accident years gener-
ate varying values, which difer from those of the inverse Gaussian GLM model in
the previous section. In the GLMM, we introduced the random intercept, lead-
ing to slight variations between diferent accident years. This suggests that the
GLMM predictions may be more reliable for the prediction.

Combining the incremental claim counts triangle ftted using the negative
binomial mixed model from Table 4.27 and the incremental average claim amounts
triangle ftted using the inverse Gaussian mixed model from Table 4.32, we obtain
the incremental total claim amounts triangle, which is shown in Table 4.33.

Table 4.33: Estimated triangle of incremental claim amounts based on GLMMs

Accident year i
Development year i

1 2 3 4 5 6 7
1999 22607640 2455310 508196 150436 45276 19968 2961
2000 22050126 3648096 527952 203957 34726 10010 2675
2001 20163864 2885652 410868 115920 40365 12608 2417
2002 19291960 2956136 442320 192888 39767 13626 2612
2003 20561723 4046400 821696 203520 49321 16900 3240
2004 16997772 2690016 386829 127611 30925 10596 2031
2005 11344032 1924973 311064 102617 24868 8521 1633

The estimated IBNR reserves based on GLMMs presented in Table 4.34.
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Table 4.34: Estimated IBNR reserves based on GLMMs
Accident year 1999 2000 2001 2002 2003 2004 2005 Total reserves

IBNR 0 2675 15025 56005 272980 557993 2373677 3278355

By comparing the estimation results from Table 4.6 with those from Tables
4.21 and 4.33, it is observed that the estimated IBNR reserves using the chain
ladder method are 3,083,884, while the calculated result from the generalized
linear model is 2,971,996, lower than that of the chain ladder method. The
estimated IBNR using the generalized linear mixed model is 3,278,355, which
is higher than the estimates obtained using the chain ladder method and the
generalized linear models.
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Conclusion

The main goal of the thesis was to apply stochastic models, including GLM
and GLMM models, to estimate claims reserves and compare them with tradi-
tional deterministic methods. In this thesis, the claim amounts were divided into
two sets of data: claim counts and average claim amounts. The thesis focused on
modeling and predicting each of them separately. Finally, a practical application
of the developed models to a real dataset is performed.

In the frst chapter, a brief summary of non-life insurance was provided, includ-
ing basic notation and techniques for outstanding claim reserves. The concept
of the loss triangle was introduced frst, followed by a description of the most
commonly used methods for calculating insurance reserves, including the chain
ladder method and the Bornhuetter-Ferguson method. However, these traditional
deterministic methods may overlook important information, such as random fuc-
tuations. Therefore, it is advisable to consider stochastic models, which perform
better in addressing these aspects.

When calculating claim reserves, the most commonly used stochastic meth-
ods are GLM and GLMM. Therefore, it was important to include the theory of
generalized linear models. In the second chapter, we frst presented the expo-
nential family distribution and the most commonly used link functions. Then
we introduced the basic concepts of these two models, including model formulas,
parameter estimation methods, and model diagnostic methods.

The third chapter presents the application of GLM and GLMM for claims
reserving. It outlines how the classical structure of GLM and GLMM was trans-
formed and adjusted to create a suitable framework for both claim counts and
average claim amounts, utilizing the notation from the previous chapter. Addi-
tionally, it provides a list of the most commonly used distributions, mean struc-
tures, and link functions for application to the claims reserving datasets.

Finally, the application of diferent models to a real dataset was presented.
We select the most appropriate GLM and GLMM models to estimate reserve
amounts respectively, and compare them with the chain ladder method. The
obtained results were summarized and compared in the fnal section of the this
chapter.
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Source code

The source code used to perform the analysis for the last chapter is included
in this appendix.

library ( ChainLadder )

library (lmtest )

library (MASS)

library (readxl )

library (lme4)

library (Matrix )

library (aod)

## prepare data

a=read.csv( choose.files (),header =TRUE)

count.tri <-as. triangle (as. matrix (count),origin="ay",

dev="dev",value="count")

amount .tri <-as. triangle (as. matrix( amount ),origin ="ay",

dev="dev",value="amount ")

cum.tri <-as. triangle (as. matrix(cum),origin="ay",

dev="dev")

incre.tri <-cum2incr (cum.tri)

#plot the data

plot(cum.tri , main = " Claims development by origin

year")

plot(cum.tri , lattice =TRUE , main = " Claims development

by origin year")

plot(incre.tri , main = " Claims development by origin

year")

plot(incre.tri , lattice =TRUE , main = " Claims

development by origin year")

## chainLadder method

mack <-MackChainLadder (cum.tri ,est.sigma = "Mack")

fullprediction <-mack$ FullTriangle

developmentfactors <-mack$f

## Generalized Linear Models

#for claim counts

m1 <- glm(value ~ as. factor (dev)+as. factor(ay), data =

count.tri , family = poisson ("log"))

m2 <- glm.nb(value ~ as. factor(dev)+as.factor (ay),

data = count.tri)

#for claim amounts

m3 <- glm(value ~ as. factor (dev)+as. factor(ay), data =

amount .tri ,

family = Gamma(" inverse "))
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m4 <- glm(value ~ as. factor (dev)+as. factor(ay), data =

amount .tri ,

family = inverse . gaussian ("1/mu^2"))

m=m1 ,m2 ,m3 ,m4

summary (m)

confint (m)

## Genralized Linear Mixed Models

#for claim counts

gm1 <- glmer(Freq ~ as.factor (dev) + (1 | ay), data =

flat_count , family = poisson ("log"))

gm2 <-glmer.nb(Freq ~ as. factor (dev) +(1 | ay),

data=flat_count)

#for average claim amounts

gm3 <-glmer(Freq ~ as.factor (dev) +(1 | ay),

data=flat_amount ,family = Gamma("log"))

gm4 <-glmer(Freq ~ as.factor (dev)+(1 | ay) ,

data=flat_amount ,

family = inverse . gaussian ("log"))

m=gm1 ,gm2 ,gm3 ,gm4

summary (m)

ranef(m)

##Model Diagnostics

#LR test

m11 <- glm(value ~ as.factor (dev), data = count.tri ,

family = poisson ("log"))

m12 <- glm(value ~ as.factor (ay), data = count.tri ,

family = poisson ("log"))

m21 <- glm.nb(value ~ as. factor (dev), data = count.tri)

m22 <- glm.nb(value ~ as. factor (ay), data = count.tri)

M31 <- glm(value ~ as.factor (dev), data = amount .tri ,

family = Gamma(" inverse "))

M32 <- glm(value ~as. factor (ay), data = amount .tri ,

family = Gamma(" inverse "))

M41 <- glm(value ~ as.factor (dev), data = amount .tri ,

family = inverse . gaussian ("1/mu^2"))

M42 <- glm(value ~ as.factor (ay), data = amount .tri ,

family = inverse . gaussian ("1/mu^2"))

anova(m1 , m11 , test = "Chisq")

anova(m1 , m12 , test = "Chisq")

anova(m2 , m21 , test = "Chisq")

anova(m2 , m22 , test = "Chisq")

anova(m3 , m31 , test = "Chisq")

anova(m3 , m32 , test = "Chisq")

anova(m4 , m41 , test = "Chisq")

anova(m4 , m42 , test = "Chisq")

#Wald test
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m=m1 ,m2 ,m3 ,m4

wald.test(Sigma = vcov(m), b = coef(m), Terms = 2:7)

wald.test(Sigma = vcov(m), b = coef(m), Terms = 8:13)

# Model deviance

m=m1 ,m2 ,m3 ,m4 ,gm1 ,gm2 ,gm3 ,gm4

mDeviance <- sum( residuals (m, " deviance ")^2)

# Scaled Pearson Chisq statistic

mPearson <- sum( residuals (m, " pearson ")^2)

#AIC and BIC

mAIC <-AIC(m)

mBIC <-BIC(m)

# residuals plot

resid(m)

plot(resid(m),xlab="",ylab=" residuals ")

abline (h=0,lty=2,col="red")

# scaled deviance and Pearson residuals plots

mderesid <- residuals (m, " deviance ")

plot( mderesid ~ fitted(m),

ylab=" Deviance residuals ", xlab=" Fitted

values ",ylim=c(-1,1))

abline (h=0, "lty"=2, col="red")

mperesid <- residuals (m, " pearson ")

plot( mperesid ~ fitted(m),

ylab=" Pearson residuals ", xlab=" Fitted

values ",ylim=c(-1, 1))

abline (h=0, "lty"=2, col="red")

# Fitted value vs observed value plot

flat_count <- as.data.frame(as.table(count.tri))

observed _ counts <- na.omit(flat_count$Freq)

flat_amount <- as.data.frame(as.table( amount.tri))

observed _ amounts <- na.omit(flat_ amount $Freq)

plot( observed _ counts~ fitted (m),xlab="Fitted

values ",ylab=" Observed values ",

main=" negative binomial model")

abline (0, 1, col = "red", lwd = 1)

plot( observed _ amounts ~ fitted (m),xlab="Fitted

values ",ylab=" Observed values ",

main="gamma model")

abline (0, 1, col = "red", lwd = 1)

##Model predictions

newdata <- expand .grid(dev = 1:7, ay = 1:7)

# predicted claim counts

predictions2 <- predict (m2 , newdata , type = " response ")

predictions2

60



matrixm2 <- matrix (predictions2 , nrow = 7, byrow =

TRUE)

incre_count.pre <-as. triangle ( matrixm2 )

# predicted claim amounts

predictions4 <- predict (m4 , newdata , type = " response ")

predictions4

matrixm4 <- matrix (predictions4 , nrow = 7, byrow =

TRUE)

incre_ amount .pre <-as. triangle ( matrixm4 )

cum_count.pre <-incr2cum (incre_count.pre)

# calculating total claim amounts development triangle

cum_ matrix <- matrixm2 * matrixm4

cum.tri <-as. triangle (cum_ matrix)

reserves <- sum(cum.tri[lower.tri(cum.tri , diag =FALSE

)])
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