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Introduction
In the current data-driven landscape, there is a multitude of available database

systems, each offering their own unique features and benefits, as well as their
cons. Therefore we need to be able to choose the correct database system for our
requirements. Often the default choice was to use relational database systems such
as PostgreSQL 1 due to its strong reputation and robust performance, however new
database systems based on “Not only SQL” (NoSQL) approaches have emerged
and were used successfully in variety of tasks with various requirements, such as
the need for highly scalable system.

These new approaches required both the users and database system vendors
to rethink their database systems, as there were pros and cons to them. The users
would need to consider which features they want and which features they can
lack, however the main task that users require from their database systems is to
perform queries on their data and get the desired results within acceptable time
limits, thus the query performance is critical.

The choice of which database system to use is dependant on many factors and
in general, it is not an easy one. Therefore we will try to make a comparison
between various factors:

• Static features of database systems and their analysis.
We need to know what data model can we work with in a database system,
how do we query our data, is the system scalable, is the system consistent,
does it offer replication or sharding, are our desired queries even supported.

• Data integration.
Before we can use our database system, we need to prepare our data into
correct formats that can be used to load into the database system.

• Database drivers.
What database drivers exist for our database system, can we use it in our
client application that is written in some programming language, or do we
need to make adapters, or switch languages, do these drivers even work and
do they support all the features we want?

• Query expressiveness.
Is it possible to create a query that gives us a desired result directly without
the need for in-application processing, or are the operations we require not
supported.

• Query performance.
A query that takes too long may be useless, therefore we require certain
performance characteristics from each query type, which will differ in the
time each query takes.

1https://www.postgresql.org/
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Outline This thesis is then structured as follows: In this chapter we give an
introduction to various features we will compare between the database systems.
In Chapter 1 we discuss the static features of database systems, and then compare
them among a chosen selection of database systems. In Chapter 2 we discuss data
integration, that is, extraction of data, transformation, and loading into database
systems, we create a helper library for the extraction and transformation part
and we discuss available database drivers for our choice of systems. In Chapter
3 we detail query types with examples, describe the environment used to set up
our database systems, introduce the data loading mechanisms and measure the
time taken to import our data, and finally perform our queries and measure their
performance. In Chapter 4 we review existing related work. Finally, we conclude.
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1 Static analysis of databases
Before choosing a database, we must first confirm whether it is able to fit

our needs, as different databases are often created with different requirements in
mind. Some databases are easier to use with certain types of data, others are able
to scale up to much higher amounts of data, therefore we must compare various
databases and their properties and compose a static analysis to find our desired
database for our needs.

On a static analysis level we compare database systems in several criteria: (1)
what is the data model used in the database, e.g., does it model data into tables
or into documents, (2) how do we talk to the database, that is what is the query
language used to manipulate and retrieve data, (3) what is the consistency level
of the queries, (4) how do the databases scale, is data partitioned, sharded, or
replicated, and (5) what entity types are used in the database, what is the support
of data aggregates, is the data structure rigid or loose, and how do we reference
other related data. All of these questions require a deep dive into the marketing
material, documentation, and community forums as each database vendor has
their own language and methods that they use to communicate the answers.

Data Model. Database systems can support one or multiple data models [1],
on a high level they are usually sorted into relational databases [2] and NoSQL
databases [3, 4], the former stores data into structured tables with rows and
columns, often with a rigid schema that defines and limits the structure, while
the latter usually has no rigid schema and structure of data can vary between
different data points, i.e., one document or row of data.

• Relational database consists of tables with columns and rows.

• Object-oriented database consists of data represented as objects as used in
object-oriented programming.

• Object-relational database is a hybrid of relational and object databases,
where objects are supported inside tables.

• Document store database model stores data directly as semi-structured
documents, e.g., JavaScript Object Notation (JSON) or eXtensible Markup
Language (XML).

• Resource Description Framework (RDF) store consists of subject-predicate-
object triples which can be composed into more complex expressions.

• Graph database are similar to relational database stores with the added
key concept of relationships (edges), which allows related data to be linked
directly together.

• Wide-column store (also known as columnar stores) is similar to document
database system, where the columns are not required to be present for each
of the row.

• Key-value store models data as key and value, where the key is some identifier
and value not further specified and can be of any type.
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Query Language. Query languages are created to interact with the database
such as inserting, updating, deleting, and retrieving data, therefore they play the
main role of being the interface to work with data in a database system. Rela-
tional databases usually use the widespread language Structured Query Language
(SQL) [5], whilst NoSQL databases each have their own query languages, often
similar or based on SQL [6].

Consistency. Databases offer various levels of data and index consistency,
that is how reliable transactions are, whether they support ACID [7] (Atomicity,
Consistency, Isolation, Durability), or are BASE [8] (Basically Available, Soft state,
Eventually consistent). Users need to consider their requirements and choose a
database that best fits their needs, although many database systems nowadays are
able vary their consistency levels between transactions (e.g., ScyllaDB, Couchbase,
RavenDB).

Scalability. Depending on the usage and the amount of data, users will need to
consider how databases scale as the user applications grow. Databases can scale
vertically with more system resources and with faster components, usually CPU
cores, memory, faster disk, or they can scale horizontally with multiple nodes
acting as one, where data may replicated or sharded across multiple smaller and
cheaper servers.

Partitioning. Partitioning of data allows related data to be divided into multiple
physical structures for faster and parallel query executions and retrievals of data,
whilst still acting as one logical unit. This is sometimes called vertical partitioning.

Sharding. Whilst vertical partitioning of data is segmenting data on one system,
sharding is the horizontal scaling equivalent. Data is segmented into multiple
shards and each shard is then stored on different physical system.

Replication. To backup data, make system resistant to server outages, and
allow load balancing, data is often replicated among multiple servers, where each
server can either standby, or participate in queries.

Schema. Whether a database is schema-first or schema-later determines the
requirement to first define the schema, and then allow importing of data (e.g., in
PostgreSQL we first need to create a table which defines our schema, and then
we can insert data), that is schema-first, sometimes also called schema-full, or
in the case of schema-later database, we can insert data immediately, and if the
schema is needed, then it is inferred from the data, which is sometimes also called
schema-less or schema-hybrid.

As a consequence in schema-first database systems the structure of data is
rigid and required to be the same across all of data (e.g., all rows of data in
PostgreSQL table contain all columns), whilst schema-later database systems
allow for unstructured data, which can vary in their defined properties.
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Aggregates. As opposed to normalized data in relational database systems,
databases might support aggregating commonly accessed data into one unit. Some
database models inherently support aggregates, such as documents, others offer
some limited support, which may not be as efficient as a native support.

Entity types. Database entities are the building blocks used to represent data,
they are often tables, documents, vertices and edges in a graph, and others.

References. Some databases allow users to refer to different data inside the
database, such as a value inside a different table via a foreign key, or referencing a
different document by its ID, or linking vertices together with edges, where each
such reference enables more complex manipulation of related data.

Absence of value. Sometimes certain values are optional or make no sense for
a given document, and as such these values may be either omitted or replaced
with a metavalue that signifies its absence, thus often requiring different way of
handling of data.

1.1 PostgreSQL
PostgreSQL1 is open source object-relational database system that uses SQL

language to store and retrieve data. It features transactions with ACID properties,
contains multiple data types and can be extended with user defined types (UDT),
stored functions and procedures and through foreign data wrappers PostgreSQL
can connect to other data sources such as other databases or streams with
SQL/MED specification.

Data management is done with SQL – Structured Query Language, which
was initially developed at IBM and now is in use in many relational databases,
and is often adapted to be used in other non relational databases. Whilst SQL
language has ISO and ANSI standards, often different database vendors have
minor differences, either in the implementation or in its conformance to said
standards [9] [10] [11].

Data itself is stored in tables, which are made up of columns that define the
type of value, and rows that contain the values. The number and order of columns
in a table is fixed and rows order is often implementation defined, however it
can be sorted by column values if requested. Relational databases often require
that each table must be first defined before it can be used, and PostgreSQL as a
schema-full database is no exception to this.

Model: Multi-model, i.e., object-relational and document (namely JSON, XML)
store.

Query Language: SQL.

Consistency: ACID.
1https://www.postgresql.org
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Scalability: Supports both vertical and horizontal scaling. In the former case,
one or more CPU cores can serve more clients concurrently and can be used with
automatic parallel queries, OS memory caching and tweaking settings to use more
memory, disk sequential or random access costs and concurrency can be hinted at.
In the latter case, hot standby replicas for read only queries or sharding supported
by extensions.

Partitioning: Table partitioning, i.e., what is logically one table is split into
multiple physical ones based on partition key by range, by listing values, or by
hashing.

Replication: Supports multiple replication strategies, namely:

• Log shipping, i.e., replicas asynchronously receive Write-Ahead Logging
(WAL) file segments in blocks to update themselves.

• Streaming replication, i.e., WAL records are streamed to standbys.

• Cascading standby, i.e., a standby can act both as receiver and sender to
other replicas.

• Asynchronous replication, i.e., replicas can fall behind master.

• Synchronous replication, i.e., primary can be forced to wait until all replicas
commit.

Sharding: Supported manually, e.g., by foreign-data wrappers or extensions
such as Citus[12].

Schema: Schema-first.

Aggregates: Support of JSON and XML documents as value types.

Entity types: Relation (table), i.e., a set of tuples (rows) with the same
attributes (columns).

References: Foreign key.

Absence of value: Metavalue Null.

1.2 Virtuoso
Virtuoso Universal Server2 is a cross-platform server that implements multiple

server-side protocols as part of a single product.
Virtuoso offers web services and applications, content management, email

services, but most importantly it is also a virtual database engine that provides
the ability to search across different databases with a single query and natively

2https://virtuoso.openlinksw.com/
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implements a traditional object-relational database engine with SQL functionality.
Virtuoso also manages to support user defined types and through its native support
of XML documents with use of standard XML languages [13], such as XQuery [14],
XPath [15], XSLT [16] and SQLX [17], XML documents can be stored and queried.
Despite being an object-relational database, Virtuoso also offers support of RDF
data which can be accessed and managed with SPARQL Protocol and RDF Query
Language (SPARQL) queries [18].

All of these features are already offered in the OpenSource edition of Virtuoso
and more features such as data replication and clustering can be found in the
Enterprise edition.

Model: Multi-model, i.e., object-relational, column-wise table (columns are
stored contiguously physically), XML document storage, RDF store.

Query Language: SQL.

Consistency: ACID.

Scalability: Supports both vertical and horizontal scaling. In the former case,
more ram for more caching and less disk IO operations, more CPU cores for query
parallelism and more concurrent queries. In the latter case, cluster operation with
replicas and sharding (partitioning).

Partitioning: No.

Replication: One-way and bi-directional replication between external databases.
Replication on nodes in a cluster.

Sharding: Partitioning on nodes in a cluster.

Schema: Schema-first.

Aggregates: Supports XML documents and RDF data.

Entity types: Tables, XML documents, RDF data.

References: Foreign keys, RDF references.

Absence of value: Null metavalue, RDF blank node.

1.3 OrientDB
OrientDB3 is a multi-model document-graph database that aims to provide

flexible and high-performance operations in one database.
3https://orientdb.org/
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It offers full native graph and document capabilities, such as data stored in so
called Classes that can be configured as schema-full, schema-free, or with mixed
schema, and can be further organized into clusters, which optimizes how the data
is stored. These clusters are the base units that enable powerful scaling and
distributed architecture of OrientDB. In contrast with rows, data in OrientDB is
stored in so called Records, which can be in the form of BLOB(s) for binary data,
Vertices and Edges for Graphs, and Documents, often with links other documents.
Graphs are created using the Vertex and Edge classes from which user-defined
types can inherit. To make querying easier on users who are often familiar with
relational databases, OrientDB makes use of SQL like language which is extended
to support graph data.

Model: Multi-model, i.e., document and graph database.

Query Language: SQL with graph extensions.

Consistency: ACID.

Scalability: Both vertical and horizontal. In the former case, classes are clus-
tered into physical partitions, each core gets a cluster. Faster disk means faster
reading and writing and data gets cached in available memory. In the latter case,
multi-master distributed architecture, each replica can read and write and clusters
can be assigned to different replicas.

Partitioning: Classes can be partitioned using class clusters.

Replication: Multi-master replication on multiple nodes.

Sharding: Class clusters can be assigned to servers and each server has its own
local cluster.

Schema: Schema-first, i.e., class fields are mandatory, schema-less, i.e., records
can have arbitrary fields, and schema-hybrid (or schema-mixed), where some fields
are mandatory, others can be arbitrary added.

Aggregates: Documents, that is, fields are handled in a flexible manner. Vertex
as a unit of data in a Graph and Edge connecting vertices. Vertices and edges are
also documents and so can store arbitrary properties.

Entity types: Documents, vertices and edges in a graph.

References: Links to documents, edges are represented as links on the connected
vertices. Documents can also be embedded.

Absence of value: Null metavalue and absence of value.

14



1.4 ScyllaDB
Scylla4 is a fast and scalable NoSQL database supporting key-value store

and wide-column data, it is also a drop-in replacement for Apache Cassandra 5,
with higher performance that comes from highly scalable approach of clustering
servers per CPU cores via so called shards. This performance can be leveraged
through Scylla’s first-party shard-aware drivers 6 that connect clients directly to
the correct shard server, which can also be replicated to offer high availability and
fault tolerance.

As a Cassandra replacement, ScyllaDB supports the Cassandra Query Language
(CQL) [19], which is similar to SQL language, with extra add-ins and improved
features, such as select and insert statements that interpret JSON documents.
Data is stored in tables, which define the layout of data, and are grouped into
keyspaces, with configuration options that apply to all tables inside it, such as the
replication strategy. Despite its sharded approach to performance and availability,
Scylla also offers the clients the possibility to choose consistency levels on a per
operation basis.

ScyllaDB is also able to replace Amazon DynamoDB 7, another NoSQL
database, although managed and closed source, through its Scylla Alternator open
source DynamoDB compatible API, however notable differences exist.

Model: Multi-model, i.e., wide-column store and key-value store.

Query Language: CQL, i.e., SQL-like query language

Consistency: BASE, consistency is tunable for a given query.

Scalability: Both vertical and horizontal scaling. In the former case, ScyllaDB
is designed to scale linearly with CPU core count with its shard-per-core approach,
uses available memory for caching and recommends at least 2 GB per logical
core, the more memory available, the better the performance. Recommended
storage/memory ratio is 30:1 per node, the faster the drive, the better performance.
In the latter case, entire dataset is sharded across cluster into individual nodes.

Partitioning: No.

Replication: Data is replicated on multiple nodes based on the chosen Replica-
tion Factor.

Sharding: Data is sharded using hashes.

Schema: Schema-first.
4https://www.scylladb.com/
5https://cassandra.apache.org/
6https://www.scylladb.com/product/scylla-drivers/
7https://aws.amazon.com/dynamodb/
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Aggregates: ScyllaDB supports conversions to JSON for insertions and retrieval,
but does not natively support them.

Entity types: Column family tables, columns can be added to a family, each
row does not need to have all columns.

References No explicit references between tables.

Absence of value Null metavalue or unset column.

1.5 Couchbase
Couchbase8 is a distributed database that combines strengths of relational

databases such as SQL and ACID transactions into a document store of flexible
JSON documents. For data manipulation it uses its own SQL++ language [20],
which is an SQL-compatible query language extended for use with JSON docu-
ments.

Couchbase’s offerings include distributed multi-document ACID transactions,
auto-sharding, inter-cluster and cross-data center replication and multi-dimensional
scaling, in which the basic services such as querying or indexing can be scaled
independently.

To speed up write operations, Couchbase allows them to happen in memory
cache while asynchronously processing replication, persistence and index manage-
ment, although it is possible for users to configure consistency level for the each
independent operation.

Data in Couchbase is stored as individual documents comprising key and value,
where the the value can be JSON formatted to enable rich access capabilities. Such
JSON documents are highly flexible and can be of varied schemas and contain
nested structures, therefore Couchbase does not enforce any uniformity require-
ments and the structuring into Bucket-Scope-Collection-Document hierarchy is
dependant upon the application, though internally each Bucket is implemented by
vBuckets, which are akin to shards in other database systems, and are distributed
evenly across the cluster.

Model: Multi-model, i.e., document and key-value store.

Query Language: SQL++ (SQL extended for use with JSON documents).

Consistency: Data transactions have ACID properties, indexes have BASE
properties, i.e., queries can tune their consistency level requirements.

Scalability: Each Couchbase service (i.e., Data, Query, Index, Search, Analytics,
Eventing, Backup) can be configured per node basis to optimize utilization of
hardware resources. In particular, vertical and horizontal scaling can be combined.
In the former case, some services (e.g., Index, Query) benefit from faster or more

8https://www.couchbase.com/
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CPU cores, more memory for cache, faster disk. In the latter case, data and
services are shared across a cluster, data is stored in vBuckets and can have up to
three replicas, i.e., in Intra-Cluster replication. Cross Data Center Replication
allows replicating across multiple data clusters, that is, can be in both directions.

Partitioning: No.

Replication: Intra-Cluster across nodes and Cross Data Center across clusters.

Sharding: Automatic hash based sharding according to vBuckets.

Schema: Schema-later, i.e., based on JSON documents.

Aggregates: Aggregate-oriented, i.e., data is stored in JSON documents.

Entity types: Documents, indexes.

References: No explicit references between tables.

Absence of value: Null metavalue, absence of value.

1.6 RavenDB
RavenDB9 is a high performance, distributed, NoSQL document database

that stores data as JSON documents, which are the primary use case, and has
extensions for binary data, time series and counters. RavenDB can run on a cluster
of nodes which gives the user high availability, load balancing, and geo distribution
of data, while still using ACID compliant transactions, meaning that operations
on a document using its ID to put, modify or delete are always consistent, the
indexes are eventually consistent (that is, BASE), and can lag behind document
updates, however clients can also choose to wait for replication and index changes
confirmations. A single cluster can store multiple databases each of which can
span some or all of the nodes in the cluster.

RavenDB can be used as a key-value store for information caching with
automatic document expiration. It is encouraged to use independent, isolated and
coherent documents, where embedding is usually the default approach, however
data belonging to other documents can also be referenced with IDs, making many
domain driven design techniques highly useful and recommended.

Model: Multi-model, i.e., document and key-value store.

Query Language: Raven Query Language (RQL), i.e., SQL-like query language.

Consistency: Documents are stored and accessed in an ACID manner. Queries
are handled with BASE. User can tune the behaviour on a case-by-case basis.

9https://ravendb.net/
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Scalability: Allows both vertical and horizontal scaling. In the former case,
prefer faster cores rather than more cores, RavenDB will use all available memory
to cache, and prefers high performance and exclusive storage. In the latter case,
replication into external clusters, or internally among nodes in cluster based on
Replication Factor, and sharding of data among nodes.

Partitioning: No.

Replication: External, that is, among different database instances, or internal,
i.e., among nodes in a cluster (either each shard, or whole database).

Sharding: Data is sharded among nodes in a cluster.

Schema: Schema-later, i.e., RavenDB operates on JSON documents.

Aggregates: Aggregate-oriented, i.e., documents are aggregates.

Entity types: Document, indexes.

References: No explicit references to other documents, but referenced docu-
ments can be preloaded.

Absence of value: Null metavalue and absence of value.

1.7 Summary comparisons
Comparisons of the features can be summarized into the following tables that

compare static database system features, the Data Definition Language (DDL),
and the Data Modeling Language (DML) between the various database systems.

Static database system features The static database features, such as the
used model, language, or scaling aspects, can be compared between various
database systems, which can help with choosing the best database system for our
needs. If we for example need all or nothing transactions that are consistent across
all replicas, we might want to choose a database system with ACID properties,
which could be useful for financial systems [21], on the other hand, if we were
designing a chat application, we would want fast scalable queries with BASE
properties [22]. This comparison can be found in the table 1.1.

Comparison of Data Definition Language features Data Definition Lan-
guage can usually be summed up into few various concepts, for schema-full
database systems we create, alter, or drop the schema (e.g., a table, or class),
but for schema-less database systems there is no such thing. However what all
kinds of database systems needs is the creation of data, its update, and deletion.
And since the query languages of compared databases are based on SQL, the
commands are therefore similar in wording, and the comparison can be viewed in
table 1.2.
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Comparison of Data Modeling Language features It is not often that
we need to view all of our data, if we did, we could just use plain data files and
not bother with any database systems, thus we use the Data Modeling Language
features to transform our data into our desired representation. Since SQL is
one of the most common query languages, and the compared databases were
made based on this, the data modeling is therefore done in a similar way, albeit
some database vendors’ choices of database features limit what can be done. For
example ScyllaDB does not support joins between different tables, which is also
mirrored in the fact that its CQL language is unable to select from multiple tables
to form joins or sub-queries. Though sometimes different ways, to do the same
things are available, however they may not be optimal or wanted, e. g. data
denormalization. The full comparison can be found in table 1.3.
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Table 1.1 Comparison of individual database features

PostgreSQL Virtuoso OrientDB ScyllaDB Couchbase RavenDB

Model object-relational,
document

object-relational,
column-wise, document,
RDF

document-graph wide-column, key-value document store,
key-value

document store,
key-value

Language SQL SQL SQL with extensions for
graph concepts

CQL SQL++ RQL

Consistency ACID ACID ACID BASE – tunable queries Data-ACID, BASE
queries – tunable

Data-ACID, BASE
queries – tunable

Scalability vertical and horizontal vertical and horizontal vertical and horizontal vertical and horizontal vertical and horizontal vertical and horizontal

Partitioning table partitioning no class clusters no no no

Replication external external, cluster cluster cluster external, cluster external, cluster

Sharding manual or extensions yes yes yes yes yes

Schema full full full, free, hybrid full free free

Aggregates supported supported oriented some support oriented oriented

Entity types tables tables, RDF data documents, graph
vertices and edges

column family tables documents documents

References foreign keys foreign keys, RDF
references

links to documents,
edges, embedded
documents

denormalized data
modelling

denormalized data
modelling

denormalized data
modelling

Absence of value null metavalue null metavalue, RDF
blank node

null metavalue, absence
of value

null metavalue, absence
of value

null metavalue, absence
of value

null metavalue, absence
of value
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Table 1.2 Comparison of Data Definition Language (DDL) features

PostgreSQL Virtuoso OrientDB ScyllaDB Couchbase RavenDB

CREATE CREATE TABLE CREATE TABLE CREATE CLASS 1 CREATE TABLE 2 3

ALTER ALTER TABLE ALTER TABLE CREATE PROPERTY 1 ALTER TABLE 2 3

DROP DROP TABLE DROP TABLE TRUNCATE CLASS
<class> UNSAFE 1

DROP TABLE 2 3

INSERT INSERT INTO INSERT INTO INSERT INTO INSERT INTO INSERT INTO Store 4

UPDATE UPDATE UPDATE UPDATE UPDATE UPDATE Load 4

DELETE DELETE FROM DELETE FROM DELETE
VERTEX/EDGE

DELETE FROM DELETE FROM Delete 4

1 Schema-full Enables strict-mode at a class-level and sets all fields as mandatory. Schema-less Enables classes with no properties. Default is non-strict-mode Schema-hybrid Enables classes
with some fields
2 Flexible, Dynamic Schema In the document model a schema is the result of an application’s structuring of its documents: schemas are entirely defined and managed by applications. A
document’s structure consists of its inner arrangement of attribute-value pairs. Documents can be grouped in collections which can be grouped in scopes.
3 Schema-free documents – web UI or client application SDKs (C#, Java, …)
4 Store, Load and update, or Delete the document using client SDKs, and then SaveChanges to send it to the database.
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Table 1.3 Comparison of Data Modeling Language (DML) Features

PostgreSQL Virtuoso OrientDB ScyllaDB Couchbase RavenDB

Projection SELECT SELECT SELECT #1 SELECT SELECT select

Source FROM FROM FROM FROM FROM from

Selection (search
condition)

WHERE WHERE WHERE WHERE WHERE where

Aggregation GROUP BY GROUP BY GROUP BY GROUP BY GROUP BY group by

Aggregation
selection

HAVING HAVING - - HAVING Multi-Map-Reduce
indexes 2

Join JOIN JOIN Represented by LINKs - JOIN Multi-Map indexes 2

Graph Traversal JOIN (multiple tables) JOIN (multiple tables) MATCH, TRAVERSE,
SELECT

- JOIN (multiple tables) Multi-Map-Reduce
indexes 2

Unlimited Traversal WITH RECURSIVE - - - - Multi-Map-Reduce
indexes 2

Optional OUTER JOIN OUTER JOIN - - OUTER JOIN Multi-Map-Reduce
indexes 2

Union UNION UNION unionall() - UNION -

Intersection INTERSECT INTERSECTION intersect() - INTERSECT -

Difference EXCEPT EXCEPT difference() - EXCEPT -

Sorting ORDER BY ORDER BY ORDER BY ORDER BY 1 ORDER BY order by

Skipping OFFSET TOP SKIPINTNUM,
INTNUM

SKIP - OFFSET limit {skip},{limit}

Limitation LIMIT / FETCH TOP SKIPINTNUM,
INTNUM

LIMIT LIMIT LIMIT limit {skip},{limit}

Distinct DISTINCT DISTINCT DISTINCT DISTINCT DISTINCT distinct

Aliasing AS AS AS AS AS as

Nesting ( select ) ( select ) ( select ) - ( select ) -

MapReduce GROUP BY GROUP BY GROUP BY GROUP BY GROUP BY Map-Reduce indexes 2

1 ScyllaDB possible orderings are limited by clustering order
2 Multi-Map-Reduce indexes need to be created manually [23]
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2 Data integration
Data usually comes in various formats and contain various parts, some of

which we might need to extract, modify or transform before we can then load
them into a desired database with its own formats and loading mechanisms. To
make this data integration step easier, users can use different libraries to help.
We make our own library to help us with the extraction and transformation part.

2.1 Extract, Transform, Load
Extract, Transform, Load (ETL) process is a data integration process that

extracts data from one data source, transforms it as specified by the user, and
then loads it into a target database.

ETL processing is executed using tools or libraries (e.g. Oracle Data Integrator
1, IBM DataStage 2). Many ETL vendors offer additional data profiling and
analysis capabilities, such as investigating metadata, row sizes, value uniqueness,
exploring relationships between entities, or data compliance checks or rules [24].
Common use case for ETL tools include extracting raw data from source locations
(such as SQL or NoSQL servers, JSON, CSV, or XML files), transforming them
(e.g. filtering, aggregating, de-duplicating, formatting, etc.) and formatting them
to match target database and loading them inside [25].

2.2 ETL using Python
Many programming languages offer easily accessible building blocks to create

one’s own specialized ETL tools. Python3 is a common environment for such
tools, with its ease of use and many importable libraries.

2.2.1 Functional requirements
Such a tool should offer a variety of features such as:

• Reading and writing data in CSV, XML, and JSON format

• Projections of columns by index or name

• Selections of rows by value or regex

• Join multiple data tables into one based on a key

• Add surrogate key

• Substitution – map values onto other values

• Number formatting
1https://www.oracle.com/middleware/technologies/data-integrator.html
2https://www.ibm.com/products/datastage
3https://www.python.org/
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• Data normalization

• Split a column into multiple

• Extract from a column into multiple by pattern matching

• Combine multiple columns into one

• Apply a transformation to values in a column

• Apply a transformation to all values

• Concatenation of rows and columns

• Return first N rows (head)

• Return last N rows (tail)

• Get a row count

• Get a column count

• Duplicate rows until a specified row count is reached

2.2.2 Non-functional requirements
This tool should also desire the following properties:

• Performance, i.e., ability to handle larger amounts of data

• Usability, i.e., simple and intuitive usage, ease of use

• Maintainability and Extensibility, i.e., functions should be easy to maintain
and extend

2.2.3 Programmer’s documentation
etlpy library is a single-file python library that eases the manipulation and

transformation of data files, it reads data from various file formats, such as CSV,
JSON, and XML. In addition, data can be extracted, transformed and saved into
these file formats.

Supplied library functions can be easily modified and the library can be easily
extended with more desired functions. The library is dependant on the pandas
framework, which is a Python package that provides fast, flexible, and expressive
data structures to simplify usage with relational data. Although it aims to simplify,
the users can often find themselves in pitfalls, either through highly technical
naming of functions and parameters, or due to its technical and sometimes difficult
to understand documentation. Therefore etlpy library aims to further simplify the
use into simple functions providing common features for use with relational data.

2.2.4 User’s documentation
This part of documentation defines the software requirements, and the instal-

lation steps, following with the API documentation.
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Figure 2.1 Framework dependency graph

Figure 2.2 Usage flowchart
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Software Requirements: Python4, Pandas5

etlpy library depends on the Python programming language and thus requires
that Python is downloaded and installed, futher etlpy depends on the pandas
library, which can be installed by following the instructions in the pandas docu-
mentation from the Python Package Index6 via pip7 which may come preinstalled
with Python or may need to be installed separately.

Installation: As the etlpy is a single-file library, installation is as easy as copying
the etlpy.py file into the desired project folder, and importing the desired (or all)
functions:

from etlpy import *

API Documentation. etlpy library provides the following functions to read,
manipulate or transform, and save data.

First the user needs to load data from the CSV, XML, or JSON files:

def read_csv(file_path, sep=",", nrows=None) -> pd.Dataframe
def read_xml(file_path) -> pd.Dataframe
def read_json(file_path) -> pd.Dataframe

file_path: str = path to the csv, xml, or json file
sep: str = separator used in csv file, by default "," (comma)
nrows: int = number of rows to read from a csv file, by default

None (all rows)

Resulting data type is of pd.Dataframe type, which is supplied into further
data manipulation functions or it can also be manipulated with directly using
pandas library.

On the other end, there are functions to save the data into files, into CSV,
XML, or JSON files:

def save_csv(df, file_path, index=False, sep=",") -> None

df: pd.DataFrame = pandas DataFrame with the data to save
file_path: str = file path of the resulting csv file
index: bool = whether to write row names (indexes), by default

False
sep: str = separator character, by default "," (comma)

def save_xml(df, file_path, index=False) -> None

4https://www.python.org/downloads/
5https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
6https://pypi.org/
7https://pip.pypa.io/en/stable/
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df: pd.DataFrame = pandas DataFrame with the data to save
file_path: str = file path of the resulting xml file
index: bool = whether to write row names (indexes), by default

False

def save_json(df, file_path, orient="records") -> None

df: pd.DataFrame = pandas DataFrame with the data to save
file_path: str = file path of the resulting xml file
orient: str = indication of expected JSON format, by default

"records" which is list-like, other values are split, index,
columns, values, table, which can be found in pandas
documentation

Dataframe is then saved into the given file_path, index variable controls
whether to include row indices inside the file, and orient variable in JSON
describes how the data is translated into JSON types, that is, value of records
mean that data is saved as a list of rows, where each row is an object of key-value
pairs. Pandas also allows other possible JSON formats, which are described in
Pandas documentation[26].

After loading the data, user can use following transformation functions:

def project_columns_by_name(df, cols) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
cols: list[str]: list of columns to project by name

def project_columns_by_index(df, cols) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
cols: list[int]: list of columns to project by index

Supply a list of column names or column integer indexes cols to keep inside data.

def select_rows(df, column_name, value) -> pd.DataFrame
def select_rows_regex_contains(df, column_name, pattern) ->

pd.DataFrame↪→

df: pd.DataFrame = pandas DataFrame with the data
column_name: str = name of the column to select in
value = value to select rows by
pattern: str = select rows by this regex pattern

Execute a selection over data by equality with value or by regex matching with
pattern.
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def join(left_df, right_df, on, how) -> pd.DataFrame

left_df: pd.DataFrame = left data table to join
right_df: pd.DataFrame = right data table to join
on: list[str] = list of columns to join on
how: str = type of merge to be performed: left, right, outer,

inner, cross

Perform a join over two DataFrames, supplying a list of column names to perform
a merge over with a description of how, e.g., left, right, inner, outer, cross.

def add_surogate_key(df, new_column_name, loc = None, inplace =
True) -> pd.DataFrame↪→

df: pd.DataFrame = pandas DataFrame with the data
new_column_name: str = name of the newly added column with the

key
loc: int = column index, or at end if equal to None
inplace: bool = add column in place or return a copy instead

Add a surrogate sequential key to each row, in column specified by loc value.

def substitute(df, column_name, mapping, inplace = True) ->
pd.DataFrame↪→

df: pd.DataFrame = pandas DataFrame with the data
column_name: str = column name in which to perform the

substitution
mapping: dict = mapping of values, e.g. {"M": "Male", "F":

"Female"}
inplace: bool = perform inplace or return a copy

Perform a substitution with a given mapping in the form of dictionary.

def format_numbers(df, column_name, inplace = True) ->
pd.DataFrame↪→

df: pd.DataFrame = pandas DataFrame with the data
column_name: str = column in which to perform the number

reformatting
inplace: bool = perform inplace or return a copy

Perform number formatting, replacing multiple whitespaces with just one, and
replacing decimal comma with a decimal point.
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def normalize(df, columns, new_column_name) -> tuple[pd.DataFrame,
pd.DataFrame]↪→

df: pd.DataFrame = pandas DataFrame with the data
columns: list[str] = list of column names which are to be

normalized
new_column:_name: the name of replacement column

Performs a normalization of data in supplied columns. Distinct tuples of values
are mapped onto integers, which are then used in the new column named as
new_column. The merged and newly created normalized tables are returned as a
tuple.

def split(df: pd.DataFrame, column, pattern, n=-1, regex=True,
expand=True) -> pd.DataFrame↪→

df: pd.DataFrame = pandas DataFrame with the data
column: str = which column to split
pattern: str = how to split the column, either by delimiter or

regex
n: int = limit the number of columns in the result, use -1 for no

limit
regex: bool = split either by regex or by string delimiter
expand: bool = true to return multiple columns, false to return

one column of list of values

Splits values in a column into multiple columns based on supplied pattern and
returns a table of the split columns or column with a list of values.

def extract(df, column, pattern) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
column: str = column name to extract from
pattern: str = regex pattern to extract values out

Extracts values from one column into multiples based on supplied regex pattern,
returns a DataFrame with a column per capture group.

def combine(df: columns, sep=" ") -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
columns: list[str] = list of columns to combine together
sep: str = separator inbetween values from columns

Combines values from multiple columns into one using given separator.
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def apply(df, column, func) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
column: str = name of column to apply given function on
func: function that gets applied on the values

Apply a function transformation func on values inside given column named by
the variable column.

def applyall(df, func) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
func: function that gets applied on the whole dataframe

Apply a function transformation func on values inside each column.

def concat_columns(dfs: list[pd.DataFrame]) -> pd.DataFrame

df: list[pd.DataFrame] = pandas DataFrames with the data

Concatenates columns, that is adds more columns to one DataFrame.

def concat_rows(dfs: list[pd.DataFrame]) -> pd.DataFrame

df: list[pd.DataFrame] = pandas DataFrames with the data

Concatenates rows, that is adds more rows to one DataFrame, values in columns
available only in one DataFrame are filled with NaN values.

def head(df, n) -> pd.DataFrame
def tail(df, n) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
n: int = number of values to keep

Returns the top n rows – head, or bottom n rows – tail.

def row_count(df: pd.DataFrame) -> int
def column_count(df: pd.DataFrame) -> int

df: pd.DataFrame = pandas DataFrame with the data

Returns the row count or column count.

def duplicate_until_rows(df, n) -> pd.DataFrame

df: pd.DataFrame = pandas DataFrame with the data
n: int = desired number of rows

Duplicates rows inside a DataFrame, until a desired number n of rows is reached.
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Usage example The library can be easily used, and its usage is demonstrated
on the following example. Let’s use an example of hypothetical data about churner
clients in a bank, the data includes various information about the client and their
account.

Include the library:

from etlpy import *

First we load our data:

data = read_csv("BankChurners.csv")

This file contains a lot of data that we do not need so we project the desired
columns – we keep the ones we want, and get rid of the others:

desired_data = project_columns_by_name(data, ["CLIENTNUM",
"Customer_Age", "Gender", "Income_Category", "Card_Category"])↪→

Next we select only certain data from the dataset, for example, customers
whose age is 50 and their card category is Blue:

desired_data = select_rows(desired_data, "Customer_Age", 50)
desired_data = select_rows(desired_data, "Card_Category", "Blue")

Lastly to demonstrate how we can join tables, we project different columns
and then join the tables:

join_data = project_columns_by_name(data, ["CLIENTNUM",
"Marital_Status", "Education_Level"])↪→

out = join(desired_data, join_data, on="CLIENTNUM", how="inner")

The original data contained gender in the form of M or F, we can substitute
this data with Male and Female:

out = substitute(out, "Gender", {"M": "Male", "F": "Female"})
out1, out2 = normalize(out, ["Education_Level", "Income_Category"],

"Education_and_Income_Category")↪→

out1 = add_surogate_key(out1, "Surrogate_Key")

We expect the data or perhaps we inspected the data and saw the limited
domain of education level and income category, and we can save some space by
normalizing this data:

out1, out2 = normalize(out, ["Education_Level", "Income_Category"],
"Education_and_Income_Category")↪→

out1 = add_surogate_key(out1, "Row Index")

We also added a surrogate key Row Index that indexes the data sequentially
from one.

At last we can save our data into desired files:
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save_csv(out1, "BankChurners1.csv")
save_csv(out2, "BankChurners2.csv")

save_xml(out1, "BankChurners1.xml")
save_xml(out2, "BankChurners2.xml")

save_json(out1, "BankChurners1.json", indent=2)
save_json(out2, "BankChurners2.json", indent=2)

2.2.5 Database drivers
Database drivers are used by client applications to communicate with the

database, send query requests, upload data, and otherwise interact with the
database.

PostgreSQL

PostgreSQL offers a C library called libpq8 that clients can use to connect
and interact with PostgreSQL, it is also the underlying engine for several other
libraries used in other programming languages, such as the open source python
driver psycopg9 used in the experiments. Whilst libpq or psycopg is the driver used
to connect and interact with PostgreSQL, there are other libraries simplifying the
usage of such drivers, one of them is SQLAlchemy10 that provides a comprehensive
set of tools for working with databases in Python.

Importing bulk data into PostgreSQL can be done using the SQL COPY in-
struction, or COPY from client-side using the
copy command inside psql, the PostgreSQL interactive terminal. Bulk importing
with the COPY command can be done from various formats, usually from csv files,
into an already existing table.

Virtuoso

Virtuoso as a universal server provides plenty database drivers, among them
are drivers adhering to the Open Database Connectivity (ODBC)11, Java Database
Connectivity (JDBC)12, and Microsoft’s ADO.Net13 and OLE-DB14 data providers.
Connecting to Virtuoso database from Python can be achieved using SQLAlchemy
and the open source Python ODBC bridge library pyodbc15.

Since virtuoso supports mapping csv files as tables and querying in files without
loading them into the database or they can be imported into a table, however
the bulk loader SQL scripts may need to be first run manually to create the
procedures needed.

8https://www.postgresql.org/docs/current/libpq.html
9https://www.psycopg.org/

10https://www.sqlalchemy.org/
11https://docs.openlinksw.com/virtuoso/odbcimplementation/
12https://docs.openlinksw.com/virtuoso/virtuosodriverjdbc/
13https://docs.openlinksw.com/virtuoso/virtclientrefintro/
14https://docs.openlinksw.com/virtuoso/virtoledb/
15https://github.com/mkleehammer/pyodbc
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OrientDB

As OrientDB is a database management system written in Java16, the most
up to date drivers with the most features are the native Java APIs, the Java
Multi-Model API17 providing unified API for both document and graph related
queries, Apache TinkerPop API18, i.e., an interface for handling graphs, and
OrientDB also provides a JDBC driver19 that can be used to interact with the
database using the standard way in Java.

There are also other drivers written in multiple programming languages, such
as PHP20, Python21, Ruby22, C23, and others, but they’re community made, and
often have not been updated in years, therefore they either lack new features, or
are completely incompatible with newer versions of OrientDB.

Importing into OrientDB is a bit more complex than in other databases,
since it is also a graph database, there may be a need to further specify relations
between data. Therefore OrientDB contains an ETL module that allows to extract,
transform and load data as described in a JSON configuration file from CSV and
JSON files or other databases using JDBC drivers.

ScyllaDB

ScyllaDB offers first party-drivers in multiple languages such as Python24,
Java25, and others, all of them are shard-aware and provide additional benefits
over third-party drivers used with Apache Cassandra/CQL driver.

ScyllaDB is also DynamoDB compatible with the so called Scylla Alternator,
however notable differences exist and new DynamoDB features may take time
to implement, therefore Alternator is not configured to be used by default and
usually not recommended unless already using applications or libraries written for
DynamoDB.

Importing into Scylla from a csv file into a predefined table is straightforward
using the COPY command using the command-line interface cqlsh, the CQL shell.

Couchbase

Couchbase provides several SDKs26 to access the Couchbase cluster, all of
them are available with documentation, API reference and examples, however
some features are shipped as separate SDK extension libraries that may be less
available in a given programming language. Couchbase SDKs offer both traditional
synchronous API as well as scalable asynchronous APIs in programming languages

16https://www.java.com/
17https://orientdb.com/docs/3.2.x/java/Java-MultiModel-API.html
18https://orientdb.com/docs/3.2.x/tinkerpop3/OrientDB-TinkerPop3.html
19https://orientdb.com/docs/3.2.x/jdbc-driver/index.html
20https://github.com/orientechnologies/PhpOrient
21https://github.com/orientechnologies/pyorient
22https://github.com/topofocus/active-orient
23https://github.com/tglman/orientdb-c
24https://python-driver.docs.scylladb.com/stable/
25https://java-driver.docs.scylladb.com/stable/
26https://www.couchbase.com/developers/sdks/
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such as C27, .NET28, Python29, Java30, and a lot more others, and is also compatible
with ODBC and JDBC standards.

Bulk loading data into Couchbase is done using the cbimport utility tool,
which can import data from csv or json files into specified bucket and scope with
specified key expression.

RavenDB

RavenDB offers multiple client drivers, however the main ones are written in
C#31, Java32, Python33, and Node.JS34, and in addition to these there are drivers
in few other programming languages and even a REST API is provided.

RavenDB comes with a management studio inside a browser, that is used
to define various parameters, or perform maintenance actions. Importing into
RavenDB can be done through this studio and can be done from either other
RavenDB servers, or RavenDB file dumps, from SQL using available drivers for
databases such as PostgreSQL, MySQL Server35 and others, or from NoSQL
databases such as MongoDB36 or CosmosDB37.

RavenDB Studio also allows importing from CSV files, albeit with limited
configuration, therefore it is often better to use available drivers with BulkInsert
operations.

27https://docs.couchbase.com/c-sdk/current/hello-world/overview.html
28https://docs.couchbase.com/dotnet-sdk/current/hello-world/overview.html
29https://docs.couchbase.com/python-sdk/current/hello-world/overview.html
30https://docs.couchbase.com/java-sdk/current/hello-world/overview.html
31https://www.nuget.org/packages/RavenDB.Client/
32https://central.sonatype.com/artifact/net.ravendb/ravendb
33https://github.com/ravendb/RavenDB-Python-Client
34https://www.npmjs.com/package/ravendb
35https://www.mysql.com/
36https://www.mongodb.com/
37https://azure.microsoft.com/en-us/products/cosmos-db
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3 Experiments
To compare the performance of the various database systems we need to set up

some experiments, that can give us some information, first we look at what kind
of queries there are, that is, what kind of results do we want from the systems,
then we look into setting up our database systems, preparing the environment
and installing them. Afterwards we need to know how to import our data, what
file formats do the systems accept, and then we compare the database disk sizes
between systems and the data in text format, we also measure how long each
database takes when importing the datasets. Finally we take a look at query
execution times and summarize the results.

3.1 Queries
How databases are designed and created often has an effect on which queries

are supported and how fast querying for data is. Therefore we often want to find
the best database for our needs.

3.1.1 Query categories
Our queries come in a few categories.

Projection We want to define which parts of dataset we want returned in the
query, i.e. which column in a table, or key-value pair from an object.

Therefore for a person we might want only his last name.

SELECT lastName FROM people

This query will return last names of all people in our table. We might want to
use the symbol * to project all columns.

Selection We want to select only certain people depending on our selection
criteria.

So we might want to select only people born on a certain year.

SELECT lastName FROM people WHERE birthYear = 1963

This query will return the last names of all people born in the year of 1963.

Aggregation Aggregation is used to return a single value calculated from the
collection of values, such as the average birth year of our customers, or the total
count of customers.

SELECT COUNT(*) FROM people

This query will return the total count of all people in our database.

SELECT AVG(birthYear) FROM people

This query will return the average birth year of all people in our database.
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Join

SELECT people.id, people.name, homes.ownerid, homes.address
FROM people INNER JOIN homes
ON people.id = homes.owner.id

This query will fetch records from people and buildings and return a combined
results of people and their own homes.

Union

SELECT address FROM shopping_centres
UNION
SELECT address FROM department_stores

This query will fetch addresses from two different tables and join them into one
result set.

Intersection

SELECT address FROM shopping_centres
INTERSECT
SELECT address FROM department_stores

This query will fetch addresses from two different tables and only keep those that
are in both.

Difference

SELECT address FROM shopping_centres
EXCEPT
SELECT address FROM department_stores

This query will keep only those addresses from the first table, that are not in the
second.

Sorting

SELECT * FROM people ORDER BY last_name

Return all people ordered in the result set by their last name.

Limiting the total values returned and offsetting

SELECT * FROM people ORDER BY last_name LIMIT 10;
SELECT * FROM people ORDER BY last_name OFFSET 10;
SELECT * FROM people ORDER BY last_name LIMIT 10 OFFSET 5;

Select those people when ordered by last name are either the first ten (limit), all
after the first ten (offset), or a combination of both (limit and offset)
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Map-reduce

SELECT last_name, COUNT(*) AS last_name_holder_count FROM
people GROUP BY last_name↪→

This query will group all people by their last name and count how many people
share a last name.

3.2 Experiments environment
This section covers how to replicate the environment used in the experiments,

and how can anyone use the databases for their own needs.

3.2.1 Server details
Databases were set up on a virtual server, running the operating system Ubuntu

22.04.4 LTS with Linux version 5.15.0-105-generic. The hardware configuration
was 8 cores of Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and 32 GB of ram,
and an SSD with 80 GB of disk space.

3.2.2 Docker
The easiest way to reliably use many software packages and products is through

virtualization. One of the common available options is through Docker1 products,
which offer light weight containerization. Software is then packaged into docker
containers, which act like a standardized unit, that is portable and ready to use
on multiple systems.

Docker itself is supported on all platforms, Windows, macOS, and Linux, where
it is available on multiple distributions such as CentOS 2, Debian 3, Fedora 4,
Ubuntu 5 and others.

As it is a widely used and supported virtualization platform, it is often installed
through the standard procedures, such as apt 6 on Debian or through .deb package,
or yum 7 on CentOS or through .rpm package, or dnf 8 on Fedora, or through
installation files on Windows or Mac. We can also mount additional data drives
or folders, which will be used to help importing our data sets.

3.2.3 PostgreSQL
To download PostgreSQL version 16.3 docker image based on debian-bookworm

simply use:
1https://www.docker.com/
2https://www.centos.org/
3https://www.debian.org/
4https://fedoraproject.org/
5https://ubuntu.com/
6https://wiki.debian.org/AptCLI
7http://yum.baseurl.org/
8https://rpm-software-management.github.io/
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docker pull postgres:16.3

And to set-up an image:

docker run --name some-postgres -e
POSTGRES_PASSWORD=mysecretpassword -d --mount
type=bind,source=/data,target=/appdata postgres:16.3

Where the name some-postgres is the container name, POSTGRES_PASSWORD is
the required password parameter, and the option -d launches the container in
detached state, then we mount the host folder /data that will be available in the
container as /appdata, and finally we specify that we want to use the postgres
image.

Starting and stopping the container can be done with simple commands:

docker start some-postgres
docker stop some-postgres

And using the the terminal-based front-end to PostgreSQL, psql, is easily done
with this command:

docker exec -it some-postgres psql -U postgres

where -it specifies interactive execution of the psql command by the linux user
postgres. The database is then ready to use.

To install the PostgreSQL Python3 client psycopg and the Python SQL toolkit
SQLAlchemy we can simply use pip

pip install "psycopg[binary]"
pip install sqlalchemy

After that we can simply use python to connect to our database and run our
queries.

3.2.4 Virtuoso
Using docker we download the opensource edition version 7:

docker pull openlink/virtuoso-opensource-7:7

Setting up the image is a bit more complicated, because we also need to
create an additional mount point where our data will be stored, which simplifies
migration.
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mkdir /my_virtdb

docker run --name my_virtdb --env DBA_PASSWORD=mysecret
--publish 1111:1111 --publish 8890:8890 --volume
/my_virtdb:/database --mount
type=bind,source=/data,target=/appdata
openlink/virtuoso-opensource-7:7

Our data and config files will be stored in our folder my_virtdb, we also
publish the port 8890 to the host system, where we can connect to the Virtuoso
web server and the port 1111 to provide external driver access, although if we
connect from inside the container, we might not need this. We also set up the
user dba password which we can use to manage the database.

If we want to use the Virtuoso interactive SQL interface, iSQL, we can connect
with this command:

docker exec -it my_virtdb isql 1111

To connect with our Python clients we need to install the SQLAlchemy toolkit
and the pyodbc module that is used to connect to ODBC databases:

pip install pyodbc
pip install sqlalchemy

To connect via ODBC we also need to set up ODBC Data Source, we can
use /etc/odbc.ini file and name our data source as VOS, which we will use to
connect:

[VOS]
Description = Open Virtuoso
Driver = /opt/virtuoso-opensource/lib/virtodbcu_r.so
Database = CSV
Address = localhost:1111
WideAsUTF16 = Yes

We also specified database CSV, where we will later import our data.

3.2.5 OrientDB
We use docker to install OrientDB version 3.2.30:

docker pull orientdb:3.2.30

And then we set up our docker container:

docker run -d --name orientdb -p 2424:2424 -p 2480:2480 -e
ORIENTDB_ROOT_PASSWORD=rootpwd --mount
type=bind,source=/data,target=/appdata orientdb:3.2.30
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where we configure our root password and we publish ports, where the database
listens on, port 2424 for binary connections, and port 2480 for http connections,
where we can also reach the OrientDB Studio web server.

We can use the console inside the docker container to connect to the database:

docker exect -it orientdb /orientdb/bin/console.sh

There are plenty of client drivers in multiple languages, but some of them
are community made and may not be updated to latest versions, however the
database itself is made in Java and offers both a standard JDBC driver and a
specialized interface, we can grab both from either OrientDB directly, or through
various Java repositories.

3.2.6 ScyllaDB
We download the Scylla image onto our docker system:

docker pull scylladb/scylla:5.4.6

And we create our ScyllaDB container:

docker run --name some-scylla -d --mount
type=bind,source=/data,target=/appdata
scylladb/scylla:5.4.6

We can connect using cqlsh inside our container:

docker exec -it some-scylla cqlsh

Or we can use the Python client to connect, once we install the driver:

pip install scylla-driver

After that we can use the Scylla driver inside our client application by importing
from the cassandra namespace.

3.2.7 Couchbase
We pull our docker image from the docker hub:

docker pull couchbase:7.6.1

And set up our container:

docker run -d --name couchbasedb -p 8091-8097:8091-8097 -p
9123:9123 -p 11207:11207 -p 11210:11210 -p 11280:11280 -p
18091-18097:18091-18097 --mount
type=bind,source=/data,target=/appdata couchbase:7.6.1
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Couchbase uses a variety of ports to communicate between nodes and its
services, and the docker image description tells us to publish many of these ports,
however the most crucial port is 8091, where we can connect to the Web Console
and set up and administrate our cluster.

To install our Python client we again use pip:

pip install couchbase

And we can now use our Couchbase database.

3.2.8 RavenDB
We pull our RavenDB image using:

docker pull ravendb/ravendb:6.0.103-ubuntu.22.04-x64

And set up our container with the port 8080 published:

docker run --name ravendb -d --mount
type=bind,source=/data,target=/appdata -p 8080:8080
ravendb/ravendb:6.0.103-ubuntu.22.04-x64

Then we go to the web interface on port 8080 and set up our cluster using the
installation wizard.

Finally for the Python client we again install it through pip:

pip install ravendb

And now our client applications can make use of RavenDB.

3.3 Importing data into the databases from local
files

3.3.1 PostgreSQL
Importing data into PostgreSQL table is done using the COPY command from

the psql client:

\copy my_table_name FROM '/appdata/my_data.csv' DELIMITER '|'
HEADER CSV NULL as '\N'

Where we can choose the delimiter and the way we represent null values, our
table must also be already created and the data must fit into this table.
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3.3.2 Virtuoso
To import data into Virtuoso we can use the CSV File Bulk Loader, which

can be pre-loaded in some versions of Virtuoso, or we import the script found in
documentation [27] ourselves.

We first register our CSV files using the csv_register function which creates
an entry into the table DB.DBA.csv_load_list, if we want to reload a CSV file,
we will have to delete this entry and the data table where it was imported and
start again.

By default the CSV file is loaded into the csv.DBA. schema of the database,
but we can create a .tb file to use the schema location and table name inside.

We can also create a .cfg file if we need to describe our CSV file:

[csv]
csv-delimiter=|
csv-quote="
header=0
offset=1

After that we use csv_register(path, mask) to register files inside single
directory, or csv_register_all(path, mask) to recursively register files inside
a directory, and then we use csv_loader_run() to load our data.

3.3.3 OrientDB
Importing into OrientDB is done with the oetl.sh script provided with the

database, where we specify a single JSON ETL configuration file which controls
the ETL process. Using specified extractor options which handles data extraction
from source, e.g. JSON, CSV or others, transformer options to transform data
before insertion, and loader options where we specify our database and classes,
we can do import whatever data we want.

How to specify the configuration file we can find in the ETL section of OrientDB
documentation [28] and the basic structure of the configuration file looks like the
following:
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{
"config": {

<name>: <value>
},
"begin": [

{ <block-name>: { <configuration> } }
],
"source" : {

{ <source-name>: { <configuration> } }
},
"extractor" : {

{ <extractor-name>: { <configuration> } }
},
"transformers" : [

{ <transformer-name>: { <configuration> } }
],
"loader" : { <loader-name>: { <configuration> } },
"end": [
{ <block-name>: { <configuration> } }

]
}

To start the ETL process we then simply call the oetl script:

oetl.sh config-mydata.json

3.3.4 ScyllaDB
Loading CSV data into ScyllaDB is very easy and quite the same as loading

data into PostgreSQL, we just need to define our table structure and then load
data using the COPY command, where we need to specify the columns:

COPY my_data (id, first_name, last_name, address) FROM
'/appdata/my_data.csv' WITH DELIMITER='|' AND HEADER=TRUE AND
NULL='NULL';

Again we can specify additional options such as the delimiter, whether our
CSV file contains a header, and how we specify null values.

3.3.5 Couchbase
To import data into Couchbase we use the cbimport tool [29] which can extract

data from CSV or JSON files, however the handling of null values works only in
JSON files, which are then preferred.
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cbimport json -c couchbase://127.0.0.1 -u Administrator -p
Password -b my_bucket -d file:////appdata/my_data.json -f
list -g key::name::%id% --scope-collection-exp
my_scope.my_data -t 4

We can specify plenty of options, mainly our database cluster URL, our user
name and password, the bucket and scope collection we import into, the key
generator expression, which describes how will our key look like, the data set
format, whether our JSON file is a list of values, or just plain lines of values, and
lastly the dataset file.

3.3.6 RavenDB
Importing data into RavenDB can be done using the Management Studio,

where we can import data from our previous RavenDB dump files or other
RavenDB servers, from NoSQL databases (MongoDB and CosmosDB), from
SQL databases (Microsoft SQL Server9, MySQL Server, PostgreSQL, and Oracle
Database), and lastly from a CSV file, where we can specify some options, such
as the delimiter, although limited to predefined values.

However loading large collections using the CSV File import option inside the
Management Studio seems to get stuck and fail, therefore the best way to load
data is to use Bulk Insert functions directly from client applications.

3.4 Dataset
The dataset we will use to test our queries will come from the IMDb10 which

is a searchable database including millions of movies, TV and entertainment
programs[30]. It offers a subset of this data for non-commercial use which can
be downloaded directly from their developer portal 11. The dataset is then
transformed using etlpy from Chapter 2 into datasets of lenghts 1000, 64000,
256000, and 1024000. Depending on the database, it is then saved as .csv file
for use with PostgreSQL, Virtuoso, and ScyllaDB, and as .json file for use with
OrientDB, Couchbase, and RavenDB.

The process is in Figure 3.1. To prepare the names datasets, we read the
data from tsv - tab separated value format, which can be read with read_csv
with specified separator, then we get the top n values using head, where n is the
desired dataset size, we add in a surrogate key, and then using apply_all we
change the representation used for null values from \N to NULL in each table cell,
finally, we duplicate rows if we do not have the desired row count already, we save
the dataset into csv file format, and for json we change NULL to None type, to
ensure actual null values inside json file.

Similarly, the Figure 3.2 depicts the process of titles transformation. To get
the titles datasets, first get the top n values, add a surrogate key, change the null

9https://www.microsoft.com/en-us/sql-server/
10https://www.imdb.com/
11https://developer.imdb.com/non-commercial-datasets/
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Figure 3.1 Names transformation diagram

representation, and duplicate rows, afterwards we save the datasets in csv files
and json files with actual null values.

In the following table 3.1 the file sizes are shown for both .csv and .json
format so that further comparison about used disk space can be made.

Table 3.1 Raw file size comparison

Dataset size names.csv names.json titles.csv titles.json

1000 104 kB 203 kB 50 kB 122 kB

64000 6 MB 12 MB 4 MB 8 MB

256000 22 MB 47 MB 15 MB 33 MB

1024000 86 MB 185 MB 58 MB 130 MB

PostgreSQL It is very easy to get the table size in PostgreSQL, as it offers
the pg_total_relation_size function which computes the total disk space used
by the specified table, including all indexes and TOAST data, The Oversized-
Attribute Storage technique, responsible for certain data types, that can contain
very large values directly.

Virtuoso Unfortunately Virtuoso does not offer any functions that would make it
easy to calculate the table sizes, however it offers a view that we can select from and
find out the total size for each table (namely DB.DBA.SYS_INDEX_SPACE_STATS),
since the index also contains the row data, therefore the total size is the sum of
the size of the primary index and the size of all secondary indexes [31].
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Figure 3.2 Titles transformation diagram

Table 3.2 PostgreSQL table sizes

Dataset size names titles

1000 240 kB 160 kB

64000 9 MB 7 MB

256000 34 MB 27 MB

1024000 132 MB 108 MB

OrientDB Even more lacking is OrientDB which offers no way to get the size
of our classes or the whole database, although several outdated drivers do hint
at a binary protocol command for whole database size, such a command is not
present in either of the up to date drivers, and unfortunately the old drivers are
not compatible with the current database system version.

However at least the database system file structure was easy enough to navigate
and all the files corresponding to a database were in the folder of database name,
therefore at first I measured this folder size, i.e., database size, with all the files
present, such as the Write-Ahead Log file. Afterwards, I measured the database

Table 3.3 Virtuoso table sizes

Dataset size names titles

1000 91 kB 35 kB

64000 5 MB 3 MB

256000 21 MB 11 MB

1024000 76 MB 43 MB
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folder without inserted data, and any data that needed to be flushed to disk
after creating the database, then I inserted the data, and measured again, and
calculated the size corresponding to the inserted data.

Table 3.4 OrientDB database sizes

Dataset size names1 titles1 names2 titles2

1000 3 MB 5 MB 5 MB 8 MB

64000 144 MB 152 MB 22 MB 27 MB

256000 198 MB 358 MB 83 MB 83 MB

1024000 580 MB 627 MB 319 MB 368 MB

1 Database size with Write-Ahead Log files
2 Database size without Write-Ahead Log files and without common files

ScyllaDB The database size was easily obtained using nodetool12, the provided
admin utility tool with command line interface, using the tablestats command,
which immediately gave us the total disk size of each of our tables.

Table 3.5 ScyllaDB table sizes

Dataset size names titles

1000 821 kB 774 kB

64000 6 MB 4 MB

256000 23 MB 16 MB

1024000 91 MB 60 MB

Couchbase Using the Couchbase Web Console interface we can easily find the
disk size used for each of our collections and their scopes separately, alternatively,
we can also use the Couchbase cbstats13 with its collections and scopes
commands to get information about our collections or scopes.

Table 3.6 Couchbase scope sizes

Dataset size names titles

1000 339 kB 260 kB

64000 15 MB 11 MB

256000 58 MB 43 MB

1024000 229 MB 171 MB

RavenDB Using the RavenDB Management Studio, the web interface, we can
find the disk usage of our database, and find out how it is divided into our datasets
and indexes, however RavenDB is quite lax in deleting temporary files, which

12https://opensource.docs.scylladb.com/stable/operating-scylla/nodetool.html
13https://docs.couchbase.com/server/current/cli/cbstats-intro.html
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can be quite large, at 256 MB, furthermore RavenDB is also reserving quite a lot
of extra free space, which gets included into the total database size, fortunately
we can still see how big our actual datasets or indexes are, be they manual, or
automatic, which were generated due to our queries. Moreover, RavenDB also uses
lot of metadata, such as Etags14, which are used to track changes of documents,
and Tombstones15, which are used as deletion markers to speed up apparent
deletion and get periodically cleaned up, and other miscellaneous data.

Table 3.7 Ravendb database sizes

Dataset size indexes metadata1 names titles

1000 2778 kB 352 kB 2600 kB 2360 kB

64000 8 MB 12 MB 27 MB 29 MB

256000 25 MB 49 MB 110 MB 98 MB

1024000 97 MB 196 MB 420 MB 387 MB

1 This column contains the most direct metadata relating to documents, their Etags and Tombstones,
although there were also other miscellaneous metadata, their disk size was comparably negligible.

Summary To compare between different database systems, the sizes of import
files, be it in csv or json format, and the database systems that used these files
were summarized into tables for each dataset.

In the following table 3.8, the dataset names was used in its csv format, which
was used to import it into PostgreSQL, Virtuoso, and ScyllaDB.

Table 3.8 Names dataset and database systems with import from csv file

Dataset size names.csv PostgreSQL Virtuoso ScyllaDB

1000 104 kB 240 kB 91 kB 821 kB

64000 5662 kB 9 MB 5 MB 6 MB

256000 22 MB 34 MB 21 MB 23 MB

1024000 86 MB 132 MB 76 MB 91 MB

The table 3.9 was the titles dataset imported from the csv format into the
same database systems, PostgreSQL, Virtuoso, and ScyllaDB.

Table 3.9 Titles dataset and database systems with import from csv file

Dataset size titles.csv PostgreSQL Virtuoso ScyllaDB

1000 50 kB 160 kB 35 kB 774 kB

64000 4 MB 7 MB 3 MB 4 MB

256000 15 MB 27 MB 11 MB 16 MB

1024000 58 MB 108 MB 43 MB 60 MB

On the other hand, database systems OrientDB, Couchbase, and RavenDB
worked better with json file format, which is shown in the table 3.10 for the
dataset names, and in the table 3.11 for the dataset titles.
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Table 3.10 Names dataset and database systems with import from json file

Dataset size names.json OrientDB1 Couchbase RavenDB2

1000 203 kB 5 MB 339 kB 2600 kB

64000 12009 kB 22 MB 15 MB 27 MB

256000 47 MB 83 MB 58 MB 110 MB

1024000 185 MB 319 MB 229 MB 420 MB

1 This is the database size when ignoring the WAL and common files
2 This is just the data size, without indexes and extra metadata

Table 3.11 Titles dataset and database systems with import from json file

Dataset size titles.json OrientDB1 Couchbase RavenDB2

1000 122 kB 8 MB 260 kB 2360 kB

64000 8220 kB 27 MB 11 MB 29 MB

256000 33 MB 83 MB 43 MB 98 MB

1024000 130 MB 368 MB 171 MB 387 MB

1 This is the database size when ignoring the WAL and common files
2 This is just the data size, without indexes and extra metadata

From the summary tables 3.8, 3.9, 3.10, 3.11 we can see that databases that
were imported from csv files, that is, PostgreSQL, Virtuoso, and ScyllaDB, could
store the data in an optimized way, with Virtuoso being the smallest, closely
followed by ScyllaDB and then by PostgreSQL, whilst the databases OrientDB,
Couchbase, and RavenDB that worked with json documents were storing the
data in a less optimized way, with Couchbase being the smallest, followed by
OrientDB and RavenDB.

Import times Measuring import times in PostgreSQL were easy, we just need
to enable it in psql with \timing on. Measuring time in virtuoso was also easy,
isql was already doing it for us. In OrientDB the ETL tool oetl was once again
measuring the time for us. As for ScyllaDB, the COPY command also gave us the
elapsed times. Importing into Couchbase was using the command-line cbimport
tool, therefore we could easily use the linux time command to measure our import
times. And finally for RavenDB using bulk insert from the Python driver and
timing how long it took using Python time16 library’s text_counter functions.

Each import was performed into empty tables or databases, and was performed
5 times and the average results are for names dataset in table 3.12 and for titles
dataset in table 3.13.

In summary we can see that PostgreSQL, Virtuoso, ScyllaDB, and Couchbase
were comparably fast in the range of seconds, whilst RavenDB and parallelized Ori-
entDB imports were an order of magnitude slower, and ultimately non-parallelized
OrientDB import was yet another order of magnitude slower.

14https://ravendb.net/docs/article-page/6.0/csharp/glossary/etag
15https://ravendb.net/docs/article-page/6.0/csharp/glossary/tombstone
16https://docs.python.org/3/library/time.html
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Table 3.12 Names dataset import times in seconds

Dataset
size

PosgreSQL1 Virtuoso1 OrientDB2 ScyllaDB1 Couchbase3 RavenDB

1000 0,011 0,020 1,008 0,422 0,326 0,215

64000 0,174 0,667 4,561 0,739 0,784 4,286

256000 0,635 2,530 15,484 2,792 1,635 16,946

1024000 2,268 8,532 58,033 10,460 4,979 66,960

1 PostgreSQL, Virtuoso and ScyllaDB used internal commands, that were not possible to tune further.
2 It is possible to set parallel mode for oetl import, and it was used in this names dataset.
3 Couchbase’s cbimport tool allows setting thread count, and recommends it to be no higher than cpu count, so
it was set to cpu count.

Table 3.13 Titles dataset import times in seconds

Dataset
size

PosgreSQL1 Virtuoso1 OrientDB2 ScyllaDB1 Couchbase3 RavenDB

1000 0,009 0,015 1,377 0,392 0,334 0,192

64000 0,146 0,609 18,410 0,752 0,806 4,395

256000 0,556 2,270 78,855 2,715 1,873 17,433

1024000 2,259 8,002 441,541 10,449 5,028 68,914

1 PostgreSQL, Virtuoso and ScyllaDB used internal commands, that were not possible to tune further.
2 It is possible to set parallel mode for oetl import, but during importing titles dataset with edge links to names
dataset, the tool was having internal errors, therefore this import was not parallel.
3 Couchbase’s cbimport tool allows setting thread count, and recommends it to be no higher than cpu count, so
it was set to cpu count.

3.5 Results
We use the same categories as defined in 3.1.1 to sort the following results,

we usually performed each query 20 times and discarded the outliers, then we
averaged over the rest. Usually the first query was among the outliers, due to
various software and hardware reasons, such as not yet allocated memory, or some
data not yet read from disk, or cold execution of machine code with untrained
CPU branch predictors. Other outliers could have been due to general system
jitter, such as the operating system performing its own task, or other users on the
system performing their own tasks.

Projection In the first query we project two text attributes primaryName and
primaryProfession with results in Figure 3.3.

We can see that object-relational databases such as PostgreSQL and Virtuoso
can handle projection queries quickly, PostgreSQL more so, as it focuses heavily
on performance. OrientDB, ScyllaDB and Couchbase come next, though it can
be seen that the queries can take a lot of time with larger datasets.

Selection First we use selection on an exact value equality on birthYear and
get results in Figure 3.4.

PostgreSQL and Virtuoso were on par with each other, with RavenDB being
close, even for large datasets, the former take around 50 milliseconds, whilst the
latter takes under 200 milliseconds. OrientDB then takes up to 3 seconds, whilst
Couchbase and Scylla take around 10-12 seconds.
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Figure 3.3 Projection

And in Figure 3.5 we select values of birthYear in between two years.
True to its performance claims, PostgreSQL still takes around 50 milliseconds

for the large dataset, Virtuoso slows down to just under 300 milliseconds, but
noteworthy RavenDB does not like this kind of query for values in between, it
slow down to the same level of OrientDB, which along with Scylla and Couchbase
do not distinguish between the two kinds of queries.

Aggregation Here in Figure 3.6 we aggregate the rows and count the number
of rows in dataset.

PostgreSQL, Virtuoso, Couchbase, and RavenDB both comfortably return the
result count under 50 milliseconds, yet ScyllaDB takes up to half a second, and
OrientDB above 2 seconds.

Afterwards we have a query, where we get the maximum of birthYear in all
rows resulting in Figure 3.7.

Selecting the max value yielded similar results, except with Couchbase, which
instead of previous instant results, took almost 11 seconds. Unfortunately selecting
a Max value in RavenDB is not supported out of the box, but may be possible
with user defined map-reduce indexes.

Join A join query is used to gather for all names identified by an nconst all
the titles (their tconst) where there is the same nconst, that is all titles each
name was mentioned in, and the time taken is graphed into Figure 3.8.

Join queries are supported only in PostgreSQL, Virtuoso, and Couchbase,
being the slowest on Couchbase, and up to dataset size of 256 000 rows, Virtuoso
was almost up to par with PostgreSQL, which can handle even larger datasets
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Figure 3.4 Selection 1
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Figure 3.5 Selection 2

without significant slowdown.

52



Dataset Size

1000 64000 256000 1024000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Ti
m

e 
ta

ke
n 

[m
illi

se
co

nd
s]

OrientDB

ScyllaDB

Virtuoso

Database
Couchbase
OrientDB
PostgreSQL
RavenDB
ScyllaDB
Virtuoso

Figure 3.6 Aggregation 1 – Count
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Figure 3.7 Aggregation 2 – Max

Union A query for union of all names identified by nconst found in names and
titles, first with deduplication in Figure 3.9, then with duplicates (UNION ALL)
inside Figure 3.10.

Unions best scale on Virtuoso and PostgreSQL, unexpectedly, on every system

53



Dataset Size

1000 64000 256000 1024000
0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

22K

24K

26K

28K

30K

Ti
m

e 
ta

ke
n 

[m
illi

se
co

nd
s]

Couchbase

Virtuoso

PostgreSQL

Database
Couchbase
PostgreSQL
Virtuoso

Figure 3.8 Join
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Figure 3.9 Union 1 – de-duplicated

beside PostgreSQL did union with duplicates fare worse, and RavenDB slowed
significantly, and ScyllaDB does not support any unions.
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Figure 3.10 Union 2 – all

Intersection Here we get an intersection, that is names identified by nconst
that are in both tables, and again we try both variants, with (Figure 3.11) and
without (Figure 3.12) de-duplication.
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Figure 3.11 Intersect 1 – de-duplicated
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Figure 3.12 Intersect 2 – all

Both variants perform similarly, with PostgreSQL and Virtuoso performing
under a second, RavenDB and OrientDB in matter of seconds, but Couchbase
taking tens of seconds, again ScyllaDB has no support for intersection queries.

Difference Here we only get names identified by nconst found in names but
not in titles in Figures 3.13 and 3.14.

Both variants with and without de-duplication perform similarly, however
Couchbase is an order of magnitude slower than Virtuoso and PostgreSQL, and
OrientDB could not give results before a 5 minute timeout, for anything other
than dataset of size 1000.

Sorting First we try sorting by a text attribute nconst with results in 3.15.
And then we try sorting by non-unique integer attribute, birthYear, in Figure

3.16.
We see a dramatic increase in sort times as we go from dataset of size 25600

to dataset of size 1024000 in database systems RavenDB, OrientDB, and similarly
in Couchbase, PostgreSQL is the most performant and Virtuoso second.

Limiting the total values returned and offsetting Here in Figure 3.17 we
first try getting only a small number of 10 of results in specified order by nconst.

Then in Figure 3.18 we try the same query but only offsetting by a small value
of 10.

And finally in Figure 3.19 we try both limiting by 10 and offsetting by 5.
When limiting values we see that each database system, except Couchbase,

could give us our top 10 values almost immediately, and as expected, when we
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Figure 3.13 Difference 1 – de-duplicated
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Figure 3.14 Difference 2 – all

only skip a few values, we get similar results as when we sorted all the values.
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Figure 3.15 Sorting 1 – by text attribute
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Figure 3.16 Sorting 2 – by integer attribute

Map-reduce And lastly we calculate the number of appearances of each name
in titles, with the results in Figure 3.20.

We only compared PostgreSQL and Virtuoso, as other systems would need
careful crafting of correct aggregates, however that would mean a lot of redundant
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Figure 3.17 Limit 1 – top 10
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Figure 3.18 Limit 2 – skip 10

data, and no ad-hoc queries, as we would need to know the queries beforehand.

Summary If we take a look at the different datasets, we can see that usually
we only need to look at the largest dataset to get a measure of how performant
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Figure 3.19 Limit 3 – skip 5 top 10
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Figure 3.20 Map-reduce

a system was, therefore if we order the results, lowest time taken first, and sum
them up over all the queries we get a number that reflects overall how well each
database system handled itself, in relation to the others.

With the results in Table 3.14, we can see that PostgreSQL and Virtuoso did
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well in almost all queries, with OrientDB and RavenDB following next, and lastly
Couchbase and ScyllaDB, where in the case of the former, the performance was
lacking, while in the case of the latter, its supported features for queries were
lacking, and together they were suffering from not well optimized data structures
and aggregates.

Table 3.14 Ranking comparison between database systems based on query perfor-
mance

Query
Type

Post-
greSQL

Virtuoso OrientDB RavenDB Couchbase ScyllaDB

aggrega-
tion1

1 1 2 1 1 2

aggrega-
tion2

1 1 3 1 4 2

difference1 2 1 4 4 3 4

difference2 2 1 4 4 3 4

distinct1 2 1 4 3 5 5

distinct2 1 2 3 4 5 5

intersect1 1 2 4 3 5 6

intersect2 1 2 4 3 5 6

join1 1 2 4 4 3 4

limit1 1 1 1 1 2 1

limit2 1 4 3 3 2 4

limit3 1 1 1 1 2 1

mapre-
duce1

2 1 3 3 3 3

project1 1 2 3 6 5 4

select1 1 1 3 2 5 4

select2 1 2 3 3 5 4

sorting1 1 2 4 5 3 6

sorting2 1 2 3 5 4 6

union1 2 1 3 5 4 6

union2 1 2 3 5 4 6

Total
Points1

25 32 62 66 73 83

1 Lower is better
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4 Related work
As many database systems are nowadays designed to be multi-model, it is often

the case that they aim to provide a single unified query language, in particular,
SQL with extensions, a comprehensive survey have been made in [32].

For RDF data the query language SPARQL has been in use, and there are both
native storage solutions, as for example Virtuoso offers, or SPARQL endpoints over
relational databases, a benchmark and an evaluation of these virtual endpoints
have been made in [33].

As data is represented in various ways in multi-model database systems, so is
the querying of the data different, a universal approach to simplify this has been
introduced in [6].

To help with evaluation of multi-model database systems, a performance and
usability benchmark has been presented in [34].

A similar work of experimental analysis of query languages has been also made
for SQLite1, MySQL, Neo4j2, ArrangoDB3, Cassandara, and MongoDB in [35].

1https://sqlite.org/
2https://neo4j.com/
3https://arangodb.com/
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Conclusion
We tasked ourselves to compare a select choice of database systems and choose

the best one among them, to do so we made comparisons of their static features,
query languages, database drivers for use with client applications, and finally what
kind of queries can we make on the systems and how fast do they perform.

To help with our analysis, we also created a client library to extract and
transform data from the IMDb datasets, so that we could load them into our
systems and start performing the queries.

We first performed a static analysis of various database system features, such
as the database model, various kinds of horizontal and vertical scaling, and what
level of consistency levels can we achieve within the databases.

Then using our library we prepared our dataset to be imported into the
database systems, where commonly used formats such as CSV, JSON, and XML
were often used for data imports and some database systems even offered imports
with direct connections to other database systems.

As for the database drivers, that we will want to use in our client applications,
the compared database systems usually had multiple, and in commonly used
programming languages. Some databases had a just one first-party driver, for
example, libpq in PostgreSQL, however plenty of community made and open source
adaptations or alternatives were available, although they may stop being main-
tained as was the case with many third-party drivers for OrientDB. Other database
systems had multiple first-party drivers, as was the case in Scylla, Couchbase,
OrientDB, and RavenDB, or also supported ODBC and JDBC connectors.

To create our desired quires in relational databases was quite easy, however
other databases were either missing some features, as was mainly the case with
Scylla, and or would require an experienced user to design the data model to work
with the desired queries. Such an approach would usually incur some other costs,
for example, redundancy of data, or complex update queries.

Finally measuring our queries yielded results such as PostgreSQL and Virtuoso,
the only relational database systems on the list, outperforming other database
systems, sometimes by orders of magnitude, therefore we expect these databases
to be quite well suited to any chosen kind of queries. However as we already
mentioned, careful planning with other database systems could find tasks that
work quite well or better in those systems.

As for extending this work, interesting topics could be finding the tasks in
which each database system does the best, or try searching for hidden correlations
between different queries, that could when performed together yield faster results
than when performed apart. Further work could go in performance tuning of the
database systems, as they quite often have tens or hundreds of various performance
knobs. As it is nowadays quite common for database systems to be multi-model,
comparison between different logical representation of data in one database system
could be of interest, as well as comparison of same logical representation of data
between multiple systems.

From our work we conclude that as single servers PostgreSQL and Virtuoso
offered great performance out of the box, however the NoSQL databases lagged
behind, as they were designed from the ground up to take greater benefits from
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horizontal scaling with multiple server nodes [36][37][38][39], therefore a comparison
in a multi-server environment could also be of further interest.
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A Attachments
A.1 etl

Folder etl contains the etlpy library file, and the dataset transformation script.

A.2 imports
Folder imports contains folders 1000, 64000, 256000, 1024000, which contain

the datasets in CSV, and JSON file formats, plus config file for Virtuoso, and
ETL config files for OrientDB. Next imports folder contains the folder scripts
with Java Maven project for OrientDB, and python scripts for other databases for
measuring the query performance.

A.3 results_data
Folder results_data contains measured results of query performances.

A.4 PostgreSQL queries
1 SELECT primaryName, primaryProfession FROM name_basics;
2 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear

= 1963;↪→

3 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear
BETWEEN 1950 AND 1970;↪→

4 SELECT COUNT(*) FROM name_basics;
5 SELECT MAX(birthYear) FROM name_basics;
6 SELECT name_basics.nconst, name_basics.primaryName,

title_principals.tconst, title_principals.nconst FROM name_basics
INNER JOIN title_principals ON name_basics.nconst =
title_principals.nconst;

↪→

↪→

↪→

7 SELECT nconst FROM name_basics UNION SELECT nconst FROM
title_principals;↪→

8 SELECT nconst FROM name_basics INTERSECT SELECT nconst FROM
title_principals;↪→

9 SELECT nconst FROM name_basics EXCEPT SELECT nconst FROM
title_principals;↪→

10 SELECT * FROM name_basics ORDER BY nconst;
11 SELECT * FROM name_basics ORDER BY birthYear;
12 SELECT DISTINCT primaryProfession, pk_id FROM name_basics ORDER BY

pk_id;↪→

13 SELECT primaryProfession, pk_id FROM name_basics ORDER BY pk_id;
14 SELECT * FROM name_basics ORDER BY pk_id LIMIT 10;
15 SELECT * FROM name_basics ORDER BY pk_id OFFSET 10;
16 SELECT * FROM name_basics ORDER BY pk_id LIMIT 10 OFFSET 5;
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17 SELECT name_basics.pk_id, COUNT(*) AS name_count FROM name_basics JOIN
title_principals ON title_principals.nconst = name_basics.nconst
GROUP BY name_basics.pk_id;

↪→

↪→

18 SELECT nconst FROM name_basics UNION ALL SELECT nconst FROM
title_principals;↪→

19 SELECT nconst FROM name_basics INTERSECT ALL SELECT nconst FROM
title_principals;↪→

20 SELECT nconst FROM name_basics EXCEPT ALL SELECT nconst FROM
title_principals;↪→

A.5 Virtuoso queries
1 SELECT primaryName, primaryProfession FROM CSV.DBA.name_basics_csv
2 SELECT primaryName, primaryProfession FROM CSV.DBA.name_basics_csv

WHERE birthYear = 1963↪→

3 SELECT primaryName, primaryProfession FROM CSV.DBA.name_basics_csv
WHERE birthYear BETWEEN 1950 AND 1970↪→

4 SELECT COUNT(*) FROM CSV.DBA.name_basics_csv
5 SELECT MAX(birthYear) FROM CSV.DBA.name_basics_csv
6 SELECT CSV.DBA.name_basics_csv.nconst,

CSV.DBA.name_basics_csv.primaryName,
CSV.DBA.title_principals_csv.tconst,
CSV.DBA.title_principals_csv.nconst FROM CSV.DBA.name_basics_csv
INNER JOIN CSV.DBA.title_principals_csv ON
CSV.DBA.name_basics_csv.nconst =
CSV.DBA.title_principals_csv.nconst

↪→

↪→

↪→

↪→

↪→

↪→

7 SELECT nconst FROM CSV.DBA.name_basics_csv UNION SELECT nconst FROM
CSV.DBA.title_principals_csv↪→

8 SELECT nconst FROM CSV.DBA.name_basics_csv INTERSECT SELECT nconst FROM
CSV.DBA.title_principals_csv↪→

9 SELECT nconst FROM CSV.DBA.name_basics_csv EXCEPT SELECT nconst FROM
CSV.DBA.title_principals_csv↪→

10 SELECT nconst FROM CSV.DBA.name_basics_csv EXCEPT ALL SELECT nconst
FROM CSV.DBA.title_principals_csv↪→

11 SELECT * FROM CSV.DBA.name_basics_csv ORDER BY nconst
12 SELECT * FROM CSV.DBA.name_basics_csv ORDER BY birthYear
13 SELECT DISTINCT primaryProfession FROM CSV.DBA.name_basics_csv ORDER BY

nconst↪→

14 SELECT primaryProfession FROM CSV.DBA.name_basics_csv ORDER BY nconst
15 SELECT TOP 10 * FROM CSV.DBA.name_basics_csv ORDER BY nconst
16 SELECT TOP 5, 10 * FROM CSV.DBA.name_basics_csv ORDER BY nconst
17 SELECT nconst FROM CSV.DBA.name_basics_csv UNION ALL SELECT nconst FROM

CSV.DBA.title_principals_csv↪→

18 SELECT nconst FROM CSV.DBA.name_basics_csv INTERSECT ALL SELECT nconst
FROM CSV.DBA.title_principals_csv↪→

19 SELECT CSV.DBA.name_basics_csv.pk_id, COUNT(*) AS name_count FROM
CSV.DBA.name_basics_csv JOIN CSV.DBA.title_principals_csv ON
CSV.DBA.title_principals_csv.nconst =
CSV.DBA.name_basics_csv.nconst GROUP BY
CSV.DBA.name_basics_csv.pk_id

↪→

↪→

↪→

↪→
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A.6 OrientDB queries
1 SELECT primaryName, primaryProfession FROM NameBasic TIMEOUT 300000
2 SELECT primaryName, primaryProfession FROM NameBasic WHERE birthYear =

1963 TIMEOUT 300000↪→

3 SELECT primaryName, primaryProfession FROM NameBasic WHERE birthYear
BETWEEN 1950 AND 1970 TIMEOUT 300000↪→

4 SELECT COUNT(*) FROM NameBasic TIMEOUT 300000
5 SELECT MAX(birthYear) FROM NameBasic TIMEOUT 300000
6 SELECT EXPAND( $c ) LET $a = ( SELECT nconst FROM NameBasic ), $b = (

SELECT nconst FROM TitlePrincipal ), $c = UNIONALL( $a, $b )
TIMEOUT 300000

↪→

↪→

7 SELECT EXPAND( $c ) LET $a = ( SELECT nconst FROM NameBasic ), $b = (
SELECT nconst FROM TitlePrincipal ), $c = INTERSECT( $a, $b )
TIMEOUT 300000

↪→

↪→

8 SELECT EXPAND( $c ) LET $a = ( SELECT nconst FROM NameBasic ), $b = (
SELECT nconst FROM TitlePrincipal ), $c = DIFFERENCE( $a, $b )
TIMEOUT 300000

↪→

↪→

9 SELECT * FROM NameBasic ORDER BY nconst TIMEOUT 300000
10 SELECT * FROM NameBasic ORDER BY birthYear TIMEOUT 300000
11 SELECT DISTINCT primaryProfession FROM NameBasic ORDER BY nconst

TIMEOUT 300000↪→

12 SELECT primaryProfession FROM NameBasic ORDER BY nconst TIMEOUT 300000
13 SELECT * FROM NameBasic ORDER BY nconst LIMIT 10 TIMEOUT 300000
14 SELECT * FROM NameBasic ORDER BY nconst SKIP 5 TIMEOUT 300000
15 SELECT * FROM NameBasic ORDER BY nconst LIMIT 10 SKIP 5 TIMEOUT 300000
16 SELECT EXPAND( $c.asSet() ) LET $a = ( SELECT nconst FROM NameBasic ),

$b = ( SELECT nconst FROM TitlePrincipal ), $c = UNIONALL( $a, $b )
TIMEOUT 300000

↪→

↪→

17 SELECT EXPAND( $c.asSet() ) LET $a = ( SELECT nconst FROM NameBasic ),
$b = ( SELECT nconst FROM TitlePrincipal ), $c = INTERSECT( $a, $b
) TIMEOUT 300000

↪→

↪→

18 SELECT EXPAND( $c.asSet() ) LET $a = ( SELECT nconst FROM NameBasic ),
$b = ( SELECT nconst FROM TitlePrincipal ), $c = DIFFERENCE( $a, $b
) TIMEOUT 300000

↪→

↪→

A.7 ScylllaDB queries
1 SELECT primaryName, primaryProfession FROM name_basics
2 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear

= 1963 ALLOW FILTERING↪→

3 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear
>= 1950 AND birthYear <= 1970 ALLOW FILTERING;↪→

4 SELECT COUNT(*) FROM name_basics
5 SELECT MAX(birthYear) FROM name_basics
6 SELECT * FROM name_basics LIMIT 10
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A.8 Couchbase queries
1 SELECT primaryName, primaryProfession FROM name_basics
2 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear

= 1963↪→

3 SELECT primaryName, primaryProfession FROM name_basics WHERE birthYear
BETWEEN 1950 AND 1970↪→

4 SELECT COUNT(*) FROM name_basics
5 SELECT MAX(birthYear) FROM name_basics
6 SELECT name_basics.nconst as nbnconst, name_basics.primaryName,

title_principals.tconst, title_principals.nconst as tpnconst FROM
name_basics INNER JOIN title_principals ON name_basics.nconst =
title_principals.nconst

↪→

↪→

↪→

7 SELECT nconst FROM name_basics UNION SELECT nconst FROM
title_principals↪→

8 SELECT nconst FROM name_basics UNION ALL SELECT nconst FROM
title_principals↪→

9 SELECT nconst FROM name_basics INTERSECT SELECT nconst FROM
title_principals↪→

10 SELECT nconst FROM name_basics INTERSECT ALL SELECT nconst FROM
title_principals↪→

11 SELECT nconst FROM name_basics EXCEPT SELECT nconst FROM
title_principals↪→

12 SELECT nconst FROM name_basics EXCEPT ALL SELECT nconst FROM
title_principals↪→

13 SELECT * FROM name_basics ORDER BY nconst
14 SELECT * FROM name_basics ORDER BY birthYear
15 SELECT * FROM name_basics ORDER BY nconst LIMIT 10
16 SELECT * FROM name_basics ORDER BY nconst OFFSET 10
17 SELECT * FROM name_basics ORDER BY nconst LIMIT 10 OFFSET 5

A.9 RavenDB queries and indexes
1 from Name.basics select primaryName, primaryProfession
2 from Name.basics where birthYear = 1963 select primaryName,

primaryProfession↪→

3 from Name.basics where birthYear between 1950 and 1970 select
primaryName, primaryProfession↪→

4 from Name.basics order by nconst
5 from Name.basics order by nconst select distinct primaryProfession
6 from Name.basics order by nconst select primaryProfession
7 from Name.basics order by nconst limit 0, 10
8 from Name.basics order by nconst offset 5
9 from Name.basics order by nconst limit 5, 10

10 from Name.basics limit 0, 0
11 from index union1
12 from index union2
13 from index intersect1
14 from index intersect2
15 from Name.basics order by birthYear
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union1

from n in docs["Name.basics"]
select new
{

nconst = n.nconst
}

from t in docs["Title.principals"]
select new
{

nconst = t.nconst
}

from result in results
group result by result.nconst into g
select new
{

nconst = g.Key
}

intersect1

from n in docs["Name.basics"]
select new
{

nconst = n.nconst,
source = 1

}

from t in docs["Title.principals"]
select new
{

nconst = t.nconst,
source = 2

}

from result in results
group result by result.nconst into g
let namecount = g.Count(x => x.source == 1)
let titlecount = g.Count(x => x.source == 2)
where namecount > 0 && titlecount > 0
select new
{

nconst = g.Key,
source = 3

}
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union2

from n in docs["Name.basics"]
select new
{

nconst = n.nconst
}

from t in docs["Title.principals"]
select new
{

nconst = t.nconst
}

intersect2

from n in docs["Name.basics"]
select new
{

nconst = n.nconst,
source = 1

}

from t in docs["Title.principals"]
select new
{

nconst = t.nconst,
source = 2

}

from result in results
group result by result.nconst into g
let namecount = g.Count(x => x.source == 1)
let titlecount = g.Count(x => x.source == 2)
where namecount > 0 && titlecount > 0
from repeated in Enumerable.Repeat(new { nconst = g.Key, source =

2 }, namecount > titlecount ? titlecount : namecount)
select repeated
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