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Abstract: With the aim to better understand the solidification process of igneous
intrusions, we develop a numerical model for computing crystal size distributions
in an under-cooled magma. Assuming a magma chamber that consists of a well-
mixed bulk, capped by a thermal boundary layer, we simulate crystal nucleation,
growth, and settling, hence sediment formation within the system. The model
is endowed with realistic, temperature-dependent crystallization kinetics, and in-
corporates complex dynamics of inertial particles in a convecting fluid, i.e. crystal
settling, in a parametrized form. We developed a custom-made numerical code
in Python 3 and performed a series of simulations studying the imprint of con-
vection vigor in the resulting distributions, and compared some basic aspects of
the obtained microstructure with observations. Finally, we outline a theoretical
concept of how to couple the presented model with a self-consistently computed
thermal evolution of the temperature inside the chamber.

Keywords: magma crystallization intrusion parametrized model

ii



I want to express my gratitude to my supervisor doctor Vojtěch Patočka for his
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Introduction
The idea that bodies of liquid magma reside beneath the Earth’s surface

can be traced back more than a century ago and has evolved significantly over
time. Initially, the concept of subsurface magma chambers was created to ex-
plain geological observations such as volcanism, the origin of igneous rocks, or
the existence of calderas. Eventually, the concept of a magma chamber as a large
tank-like reservoir, either supplying volcanoes or being emplaced in crustal rock,
gained widespread recognition (big tank hypothesis). With the advent of seismic
measurements, however, it became evident that fully liquid chambers in the crust
are far less frequent than anticipated (e.g., Sinton and Detrick [1992]). Instead,
it is now believed that most magma chambers comprise isolated lens of magma,
connected by mushy regions and veined piping. Nevertheless, there are exam-
ples of large igneous intrusions (e.g., the Sierra Nevada batholith) and a number
of layered intrusions (e.g., Skaergaard in Greenland) that fulfill the traditional
definition of a magma chamber.

Magma is typically generated in the upper mantle or lower crust (e.g., Frank
Press [2000]), where temperature and pressure are high enough to partially melt
the antecedent rock. The less dense melt slowly ascends upwards through cracks
and faults until it eventually becomes trapped in a pre-existing cavity or a weak
zone. Once emplaced, magma starts to cool and solidify. Eventually, it reaches
the ambient temperature, and the solid igneous rock (e.g., sill, dike, batholith,..)
can either remain buried beneath the surface of Earth, or become exposed at the
surface through the process of erosion.

When hot magma is emplaced, it loses heat to the surrounding host rock, and
a question arises as to whether thermal convection occurs within the liquid. This
very question was investigated several decades ago in a number of studies. At the
turn of the 1990s, renowned petrologist and geologist Bruce D. Marsh published a
series of exhaustive papers addressing fluid dynamics in magma chambers and its
implications for their thermal evolution (Marsh [1990], Marsh [1989a], and Marsh
[1989b]). His conclusions sparked a discussion by geophysicists and fluid dynami-
cists Herbert E. Huppert and J. Stewart Turner on the vigor of thermal convection
in magma chambers (Huppert and Turner [1991] and Marsh [1991]). While Marsh
argued that convection in nearly all magma chambers is weak or ceases within a
short time and is thus limited to the very early stage of the solidification process,
and grounded his arguments in low-temperature analogue experiments (Bran-
deis and Marsh [1989]), Huppert and Turner based their stance purely on the
axiomatic concepts of fluid mechanics and pointed out several physical inconsis-
tencies in Marsh’s thesis and they show, to the contrary, that the convection style
inside a typical magma chamber is long-lived and highly turbulent. Both sides
agreed that of key interest are the temperature and/or compositional contrasts
driving convection within the magma, and that the contrasts are expected to be
small. The question of how small, however, remains unresolved as there are no
direct measurements of the system. The estimates in the aforementioned compet-
ing papers differ by orders of magnitude, with Marsh arguing for the temperature
contrast being only a tiny fraction of one degree Kelvin.

The aim of this thesis is to address magma chamber dynamics through the size
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distribution of crystals in the cumulate, i.e. through the micro-structure of the al-
ready solidified intrusions. Once nucleated, solid crystals are expected to undergo
gravitational settling, and the settling dynamics are quite different depending on
whether the background magma is convecting or not. When the crystal size dis-
tribution is predicted for magmas with a different convective vigor, ranging from
static to highly turbulent, one can make comparisons with observations and infer
the magma dynamics a posteriori.

Despite the fact that igneous complexes host deposits of economically impor-
tant resources, our understanding of their solidification remains strikingly poor.
Two fundamentally different formation mechanisms are typically considered: i)
solidification via crystal settling: nucleated crystals are suspended in the interior
fluid where they grow in size and settle at the base of the chamber, and ii) in-situ
crystallization, a scenario in which the chamber solidifies from the walls inwards
and no crystal transport is involved. The latter scenario is favoured by many
petrologists. In order to distinguish between the two, one must know what sort
of signature the different mechanisms leave in the observable microstructure. To
this end, we investigate the first scenario in this thesis.

Since observations from layered intrusions were inconclusive and no experi-
mental work on particle settling in vigorously convective systems had been per-
formed at that time, D. Martin and R. Nokes conducted their own experiments
at the end of the 1980s (Martin and Nokes [1988] and Martin and Nokes [1989]).
They studied the settling of tiny polystyrene particles in turbulent systems (with
Rayleigh numbers Ra ≳ 107, see Fig. 1) cooled from above, and discovered a
simple yet robust theory, which could be applied to small crystals in magmas
with low kinematic viscosities.

Figure 1: Photograph of one of the experiments by Martin and Nokes showing
convecting style for Rayleigh number Ra = 2 × 108 and Prandtl number Pr = 7,
cooled from above. Adopted from Martin and Nokes [1989].
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Later, Patočka et al. [2022] performed 3D numerical experiments and derived a
formula that captures the residence time of both turbulently mixed particles and
those with nearly vertical trajectories, with the free parameter being the ratio of
particle Stokes velocity to the mean velocity of the background flow. With an
analytical formula that describes the settling dynamics of variously sized particles
at hand, one can construct a parametrized model of the solidification process.

During the solidification, the composition of magma evolves in time, following
Bowen’s reaction series, which predicts what mineral phases form concurrently.
The widespread recognition of Bowen’s reaction series in natural samples was
one of the reasons why the big tank hypothesis became a popular concept in the
textbook explanation of igneous intrusions.

While much literature is devoted to the petrology and to the crystallization
sequence of magma in particular, less common are works that address the solidi-
fication dynamics with the help of a physics-based model. To our knowledge, the
only attempt to build a parameterized model of a convecting magma chamber
that accounted for crystal growth kinetics – thus having the ability to predict the
crystal size distribution of the resulting intrusion – can be attributed to Jarvis
and Woods [1994]. They combine a theoretical model of thermal convection with
the settling theory of Martin and Nokes, and employ linear kinetic laws for crystal
nucleation and growth. Their study, however, was limited to a qualitative anal-
ysis of the system and the results were presented in a dimensionless form, which
prohibited the paper from reaching a broader geological audience. Moreover, the
settling dynamics and the crystal growth kinetics were too simplistic in view of
the present-day understanding of these phenomena. In this thesis, we expand the
work of Jarvis and Woods, in particular by accounting for more realistic crystal
growth kinetics and settling dynamics.

The model presented here uses boundary layer theory to predict the tem-
perature profile in a convecting magma (following Jarvis and Woods [1994]), and
employs realistic kinetic laws (Hort [1997]) to estimate the nucleation and growth
of crystals within the liquid. To compute how the crystal size distribution in the
convecting bulk is filtered in the process of sediment formation, the settling dy-
namics after Martin and Nokes [1988] and Patočka et al. [2022] are invoked.

It should be noted here that the solidification process of natural magma cham-
bers is extremely complex and there is a list of effects that our model does not
account for - e.g., petrological evolution, (periodic) injection of magma with a
different composition, re-entrainment (crystals from the uppermost layer of the
sediment pile may get swept back into the suspension). There is also a number of
post-cumulus effects such as Oswald ripening (smaller particles tend to dissolve
because they have a higher surface energy compared to larger particles) or solid-
ification of the interstitial melt, which makes the hypothetical signature of the
crystal settling more difficult to identify. Some magma chambers might have also
been impacted by catastrophic scenarios (e.g., roof collapse) in the past – such
events can completely throw the settling dynamics signature into disarray.

Nevertheless, analysis of microstructure seems to be a promising tool to gain
insight into the processes that formed igneous rocks. For example, the measure-
ment and counting of olivine crystals in a series of samples from the Shiant Isle
Main Sill lead Holness et al. [2017] to speculate that the olivine cargo was stirred
by convecting motions before forming the deposit (Fig. 2, cf. also Holness [2022]).
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Moreover, with the recent advancements in machine learning and image recogni-
tion, microstructural analysis may potentially experience significant progress in
the upcoming years, but without predicted signatures to look for, its ability to
decipher the formation history will be limited.

Figure 2: Microstructure of the Shiant Isles Main Sill. Right panel shows how the
crystal size distribution in the sediment varies with height, adopted from Holness
et al. [2017].

In conclusion, the here constructed model attempts to do the following: if the
primary mechanism of sediment formation is crystal settling, we seek answers to
the subsequent queries:

• What is the crystal size distribution in the sediment for a given convective
vigor in a magma chamber of a given height? What values of the mean
crystal radius do we predict?

• Do we observe a unique signature of convective vigor in the sediment? Can
we distinguish different modes of crystal settling dynamics?

• What are the typical time scales of the individual processes taking part?
What is the predicted rate of sedimentation?

• How does the mean crystal radius evolve with depth in the cumulate pile?
Does it tell us anything about the thermal history of the body?

The following text is split into four chapters. The first chapter establishes the
parameterized model and introduces kinetic laws, the second chapter describes the
numerical implementation of individual phases of the model, followed by the third
chapter, which covers our results and basic interpretation. In the fourth chapter,
we outline the future ambitions and propose a theoretical model to realistically
model the thermal evolution of the chamber.
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1. Parametrized model
In this chapter, the physical model is introduced. In the initial state, the

entire volume of the chamber of height H0 contains a fully liquid magma. As
the liquid cools down, thermal convection inside the chamber is initiated and
eventually there will be regions with undercooling sufficient for crystal nucleation.
The nucleated crystals will grow in size and eventually settle at the base of the
chamber, forming a sediment pile of height h. The Rayleigh-Bénard convection
of the fluid can be described by the following dimensionless quantities - Rayleigh
and Prandtl numbers, defined as

Ra = g0α∆T (H0 − h)3

νκ
, (1.1)

Pr = ν

κ
, (1.2)

where g0 is the gravitational acceleration, α denotes the thermal expansivity, κ
and ν denote the diffusivity and kinematic viscosity of the liquid magma, respec-
tively. The Rayleigh number measures the ratio of buoyant forces to viscous and
thermal diffussion, i.e. it is a ratio of the forces driving the flow to the forces
opposing it and hence it determines the convective vigor. The Prandtl number
is essentially a material parameter comparing the kinematic viscosity and ther-
mal diffusivity of the substance, relating the diffusion of inertia with the thermal
diffusion.

Due to the low viscosity of magma, Rayleigh number may attain high values
in magma chambers (evaluating Eq. (1.1) for sample values H0 − h ∼ 103 m
and ∆T ∼ 1 K yields Ra ∼ 1015, other material constants are listed in Tab.
3.1). In vigorously convecting systems, strong temperature gradients develop in
thin thermal boundary layers at horizontal walls, while the convecting interior
(henceforth termed convecting bulk) maintains a uniform temperature TB due to
efficient mixing (e.g., Turcotte and Schubert [2014]).

When magma is emplaced into the host rock, the host rock is colder and
therefore a thermal boundary layer should develops at both the top and bottom
boundaries of the chamber. However, we assume that the sediment pile accumu-
lates fast enough such as to insulate the liquid from the wall rock at the base.
Therefore, we assume the temperature profile to resemble that of a system cooled
solely from above, with zero heat flux at the bottom (see Fig. 1.1). The thermal
contrast driving convection is defined as ∆T = TB − TR, where TR is the temper-
ature at the roof of the chamber. Throughout most of the thesis, TB and ∆T are
free parameters that we prescribe and study how the resulting crystal distribu-
tion depends on the selected values. In Chapter 4, where future perspectives are
outlined, we discuss how to obtain TB and ∆T self-consistently as a function of
time throughout the solidification process.

Since the chamber’s characteristic spatial size lies in the interval of 101 to 104

meters, the effect of pressure is of little importance here so the convective bulk
can be assumed to be isoviscous. Our model focuses predominantly on tank-like
chambers, but since the model is developed in one dimension (1D), it can be
applied also to systems with a large aspect ratio such as sills.
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The key quantity that enters the crystal settling dynamics is the characteris-
tic velocity of the convective flow. We will employ Grossman-Lohse theory (i.e.,
scaling laws for Nusselt and Reynolds numbers) after Ahlers et al. [2009], who
summarize results of both theoretical and experimental works for the isoviscous
Rayleigh-Bénard convection. Ahlers studies the Pr × Ra model space and dis-
tinguishes between two kinetic- and thermal-energy dissipation modes dominated
either by the boundary layer region or the interior bulk region. In a system with
Prandtl number greater than unity (Pr > 1), always satisfied in our application,
the thermal boundary layer is thinner than the viscous boundary layer. For the
intended range of Prandtl and Rayleigh numbers (i.e., Pr ∈ [103 − 105], Ra un-
constrained), we will always find ourselves in the the regime dominated by the
bulk energy dissipation with thin thermal boundary layer nested in the viscous
boundary layer. The scaling laws for this setup read

Re(Ra, Pr) ∼ Ra4/9Pr−2/3 , (1.3)
Nu(Ra, Pr) ∼ Ra1/3 , (1.4)

where the Reynolds number Re(Ra, Pr) is defined by the volume-averaged root
mean square velocity Wrms. Recalling the traditional definition of the Reynolds
number gives

Wrms(Ra, Pr) = νRe(Ra, Pr)
H0 − h

. (1.5)

By invoking the definition of the Nusselt number and Fourier’s law of heat con-
duction,

Nu = F
k∆T/(H0 − h) , (1.6)

F ∼ k∆T/hb , (1.7)

where k is the thermal conductivity of magma, hb the thermal boundary layer
thickness, and F the heat flux through the roof, one obtains the thermal boundary
layer thickness from the scaling law Eq. (1.4):

hb ∼ Ra−1/3(H0 − h) . (1.8)

The reader should note that the thermal boundary layer thickness does not scale
with the remaining height of the chamber, H0 − h.

1.1 Thermal boundary layer

1.1.1 Geometry, nucleation and growth
While the thermal boundary layer (TBL) is assumed to be a non-deforming

fluid layer through which all crystals fall via classic Stokes sinking, the settling dy-
namics in the convective bulk are more complicated. The following section deals
with processes in the TBL. Nucleation of crystals is controlled by the nucleation
delay, a temperature drop below the liquidus that is necessary for crystallization
to occur. Since the temperature gradient is confined to the thermal boundary
layer, nucleation will commence in this region and the segment of the boundary
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layer with sufficient undercooling shall be, henceforth, termed the nucleation sub-
layer (see Fig. 1.1). Both crystal nucleation and growth are thermally activated
processes. Their rates, G and N , are temperature dependent and thus vary across
the TBL. The thickness of the boundary layer can be calculated as

hb = (Racr/Ra)−1/3 (H0 − h) , (1.9)
where Racr is the critical Reyleigh number necessary for the onset of thermal
convection (typically, Racr ∼ O(103), but the exact value depends on the geom-
etry of the system and imposed boundary conditions). We assume a constant
temperature gradient in the thermal boundary layer, which allows us to write the
temperature profile as

T (z) = (TB − TR) z

hb

+ TR , (1.10)

which immediately implies that the thickness of the nucleation sublayer, hn, is
given by

hn =
⎧⎨⎩hb TB ≤ TL − ε ,

hb(TL − ε − TR)/(TB − TR) otherwise ,
(1.11)

where TL denotes the liquidus temperature.

TR

TL − ε

TB

hn Nucleation and growth

Growth
only

hb

∆T

h

Φtbl(a, t)

Φsed(a, t)

Φblk(a, t)

sediment pile

TBL

Convective
bulk

Figure 1.1: Sketch of a magma chamber with delineated temperature profile
(dashed line), marked spatial dimensions, and corresponding temperatures (the
sketch is not to scale, and the profile is smooth in the TBL/bulk transition area).
Crystal size distribution Φtbl(a) falls into the (convecting) bulk, where their pop-
ulation is described by Φblk(a), and crystals eventually settle at the base of the
chamber with their size distribution given by Φsed(a) and gradually form a sedi-
ment pile with increasing height h.

Crystals are extracted from the layer by gravitational settling - a spherical
crystal with radius a falls through the layer with the Stokes settling velocity
given by

WS(a) = 2g0∆ρ

9ρF ν
a2 , (1.12)
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where ρF is the density of the liquid magma and ∆ρ = ρC −ρF denotes the density
contrast between crystals and magma (ρC is the density of the solid phase). Now,
let us conduct a simple analysis to estimate the characteristic residence time scale
tb for crystals in the boundary layer. As a crystal progresses through the fluid
layer, it grows in size at the rate of G(T ) and it will attain radius ab ≈ G̃tb upon
its extraction, where G̃ denotes the averaged growth rate across the boundary.
The corresponding average Stokes settling velocity over the boundary segment
then reads

W S ≈ 1
ab

∫︂ ab

0

2g0∆ρ

9ρF ν
a2da = 2g0∆ρ

27ρF ν
G̃2

t2
b , (1.13)

tb ≈ hb/W S , (1.14)

which implies the residence time of crystals in the boundary layer is of the order
of

tb ∼
(︂
27νhbρF /2g0∆ρG̃2)︂1/3

. (1.15)
This time scale can be later used to estimate the size of the time step in the
numerical code. The nucleation process in the boundary layer is continuous -
crystals are nucleated, they grow in size, and eventually fall into the convect-
ing bulk. This prompts us to introduce a crystal size distribution function for
extracted crystals Φtbl(a, t), which gives us the number of crystals with radius be-
tween a and a+da at time t per unit volume as Φtbl(a, t)da. We will demonstrate
later that this distribution quickly saturates and is no longer time-dependent (it
reaches the steady state).

1.2 Bulk processes and crystal settling
Now, let us shift our attention to the bulk and processes operating therein.

We employ the assumption of a dilute suspension (a premise we can easily check
at any time during the simulation) so any crystal-driven convection is omitted. In
accordance with the definition of Φtbl(a, t), we can analogously introduce crystal
size distributions for crystals in suspension Φblk(a, t) and the sedimented crystals
Φsed(a, t). The fate of each crystal in the bulk is determined by its Stokes’ settling
velocity (and thus its radius) in comparison to the background flow velocity. If
WS ≪ Wrms holds (limit of tiny crystals in vigorously convecting fluid), the crys-
tal gets swept by the convective flows and essentially becomes a passive tracer
of the fluid movement. The convection in magma chambers is generally assumed
to be turbulent, and therefore, we employ a simplification that the crystals are
distributed in the suspension uniformly. As mentioned in the introduction, this
end-member was investigated by Martin and Nokes who experimentally (Mar-
tin and Nokes [1988]) and theoretically (Martin and Nokes [1989]) derived the
following exponential settling law

dK(t)
dt

= −AWSCbot , (1.16)

where A is the base area of the chamber, K(t) is the time-varying crystal popu-
lation (for the definition of a crystal population, see Chapter 2), and Cbot is the
volumetric concentration of crystals at the bottom of the chamber. For crystals
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uniformly distributed throughout the convective bulk, the concentration simply
follows

Cbot(t) = K(t)
A(H0 − h) . (1.17)

The interpretation of this mode is as follows: Whenever a crystal happens to
be transported close to the base of the chamber, the likelihood of its settling
is directly proportional to the particle Stokes’ velocity, because the convective
velocity tends to zero at the boundary and the crystals can separate from the
liquid in the near-boundary layer.

On the contrary, if WS ≫ Wrms holds (the limit of nearly static magma), the
fluid appears nearly motionless to the crystals and they continue in gravitational
settling. We will follow Patočka et al. [2022], who propose the implementation
of the shrinking velocity, vsh, that describes how the volume with K(t) encased
particles decreases with time. This leads to a modification for the expression of
the crystal concentration at the bottom of the chamber to

Cbot(t) = K(t)
A(H0 − h − vsht) . (1.18)

Evidently, sedimentation becomes more effective with increasing shrinking veloc-
ity. Integration of Eq. (1.16) upon inserting Eq. (1.18) gives a compact analytical
formula,

K(t) = K0

(︃
1 − tvsh

H0 − h

)︃WS
vsh

. (1.19)

with vsh defined by

vvsh =
⎧⎨⎩WS − γWrms if WS > γWrms ,

0 if WS ≤ γWrms ,
(1.20)

where γ = 0.7 (Patočka et al. [2022]). Martin and Nokes reported that their
settling law exhibits a discrepancy of only 20% for WS/Wrms ≈ 0.5. For the sake
of simplicy, we adhere to using γ = 1 in Chapter 3. In the limit of a gravitationally
settling crystal in static fluid, the shrinking velocity follows vsh −→ WS, on the
contrary, the shrinking velocity tends to zero for a crystal with negligible size,
thus vsh −→ 0. Two limiting cases of Eq. (1.19) yield

K0

(︃
1 − tvsh

H0 − h

)︃WS
vsh =

⎧⎨⎩K0 exp
(︂

−WSt
H0−h

)︂
vsh −→ 0 ,

K0
(︂
1 − WSt

H0−h

)︂
vsh −→ WS .

(1.21)

Following Patočka et al. [2022], we shall address these two end-members respec-
tively as dust-like and stone-like regimes. The concept of shrinking velocity can
be easily visualized as the advance of a sedimentary front, see Fig. 1.2 below.

The system of equations Eq. (1.16)–Eq. (1.19) was solved in Patočka et al.
[2022] for olivine crystal cargo, i.e., for a set of crystals of with predefined radii,
injected uniformly into the convective bulk. Here, the model is expanded to
crystals that self-consistently nucleate and grow within the chamber. Eq. (1.16)
is modified to account for the influx of crystals from the TBL, and the shrinking
velocity of each crystal population evolves with time, since WS ∝ a2 and a(t) =
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Dust-like Regime

Shrinking velocity vsh

Transitional Regime
Stokes Velocity

Stone-like regime

Figure 1.2: Visualization of individual regimes - pure dust-like regime (panel 1),
transitional regime via the concept of the shrinking velocity (red line, panel 2),
and pure stone-like regime, i.e., limit vsh −→ WS (red line, panel 3).

a0+G(TB)t, where a0 is the radius to which the crystal has grown in the TBL. The
governing equation for the coupled model of crystal sedimentation and continuous
influx of crystals can be written as

dΦsed(a, t)
dt

= −AWS(a)Cbot + Φtbl(a) , (1.22)

where Cbot reflects the volume, in which crystals of each family are mixed effec-
tively. This volume intrinsically depends on the radius of the family, hence, Cbot
depends on the bulk distribution Φblk(a, t). Unless the fluid conditions change,
we can expect a steady state to arise, in which the bulk and sediment crystal
size distribution become time-independent again (the validity of this assumption
will be discussed later). Naturally, crystals can (and under certain conditions,
we expect them to) undergo smooth transition from one end-member described
in Eq. (1.21) to the other.

Once we calculate the steady state distributions Φsed(a) and Φblk(a), the crys-
tal fraction in the bulk, ϕ, (auxiliary quantity so we can check the assumption
of a dilute suspension is satisfied, ϕ ≪ 1), and the mean crystal radius in the
sediment, ād, can be evaluated as

ϕ = 4π

3(H0 − h)

∫︂ amax

0
a3Φblk(a)da , (1.23)

ād =
∫︂ amax

0
aΦsed(a)da

/︄ ∫︂ amax

0
Φsed(a)da , (1.24)

where amax denotes the maximum radius contained in the distribution.

1.2.1 Single zero-sized crystal population
It is instructive to first perform an exercise in which a population of K0 crystals

with a negligible initial radius (a0 = 0, for simplicity) is suspended in the bulk,
and settles in accord with the dust-like end-member regime. Crystals grow at a
constant rate G0 and they reach radius a = G0t at time t. The number of crystals
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follows

dK(t)
dt

= − λG2
0t2

H0 − h
K(t) , (1.25)

K(t) = K0 exp
(︄

− λG2
0t3

3(H0 − h)

)︄
, (1.26)

where λ = 2g0∆ρ/9ρF ν is the constant of proportionality from the Stokes formula.
Because time and crystal radius are uniquely related in this exercise, a = G0t, we
can express how the population decreases as the crystal radius increases,

K(a) = K0 exp
(︄

− λa3

3G0(H0 − h)

)︄
. (1.27)

Any change in the number of suspended crystals results in sediment formation.
Hence, the crystal size distribution of the sediment, Φsed(a), is given as dK =
Φsed(a)da and can be obtained by taking the derivative of Eq. (1.25),

Φsed(a) = dK

da
= 3K0a

2

(H0 − h)G0
exp

(︄
− λa3

3G0(H0 − h)

)︄
. (1.28)

Altogether, we expect the distribution functions to scale as

Φsed(a) ∼ a2 exp
(︂
−a3

)︂
, (1.29)

K(a) ∼ exp
(︂
−a3

)︂
. (1.30)

This quick analysis predicts a result equivalent (in terms of a scaling) to the one
reported by Jarvis and Woods [1994], who completely neglect dynamics in the
TBL and work with the zero initial radius approximation. A question arises as
to whether how the predicted size distribution Φsed modifies when an influx of
crystals from TBL continuously re-populates the bulk. In Chapter 3, we will
compare these scalings with results predicted by the full model.

1.3 Nucleation and growth laws
For the purpose of comparison with previous work and in order to familiarize

ourselves with the basic features of crystallization kinetics, we first employ the
relationships from Jarvis and Woods [1994]. In their work, the crystal growth
and nucleation rate are given as:

Gpow(T ) = da

dt
= Vpow

(︃
TL − T

TL − Tr

)︃p

, (1.31)

Kpow(T ) = dK

dt
= Npow

(︃
TL − ε − T

TL − ε − Tr

)︃q

, (1.32)

where Vpow and Npow are the reference growth and nucleation constants, respec-
tively. Moreover, for the sake of simplicity we will restrict ourselves to using only
p = q = 1 (linear laws). Subsequently, we will replace these laws by a more
realistic model by Hort [1997], the model (henceforth termed the Hortian curves)
is based on a simplified physico-chemical foundation (for details, see Hort [1997],
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Dowty [1980] and Spohn et al. [1988]) and predicts the nucleation and growth
rate depending solely on the temperature in the form of bell-shaped curves (i.e.,
with decreasing temperature T , the rates first increase, but then decrease again,
following a long attenuation tail). The mathematical form of the nucleation rate
automatically predicts a certain nucleation lag while the onset of the growth rate
occurs immediately at the liquidus temperature. Both rates have a maximum and
then they plummet rapidly for high undercoolings. The adopted crystal growth
rate and the nucleation rate are given by

GHort(T ) = G0

(︄
T ∗

G(TL − T )
T (1 − TG∗)

)︄
exp

⎛⎜⎝−
TL
(︂
TG∗ − T

TL

)︂
T (1 − TG∗)

⎞⎟⎠ , (1.33)

KHort(T ) = K0 exp
(︄

TG∗

1 − TG∗

(︄
T − TLT ∗

I
T ∗

I T
− (1 − T ∗

I )3

1 − 3TI∗
(1.34)

×

⎛⎜⎝ 1
TI∗(1 − TI∗)2 − TL

T
(︂
1 − T

TL

)︂2

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠ ,

where G0 and K0 are amplitudes of the crystal growth rate and nucleation rate,
respectively. The characteristic shape of Hortian curves is displayed in Fig. 1.3.
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Figure 1.3: Hortian curves for T ∗
G = 0.95 and T ∗

I = 0.92 - crystal nucleation (red)
and crystal growth (black) rates as functions of temperature after Eq. (1.33) and
Eq. (1.34) norma. The temperature axis normalized by the liquidus temperature.

Temperatures T ∗
I and T ∗

G denote the normalized values of temperature, at
which maxima of each rate occurs, defined as

T ∗
I := TI,max

TL
, T ∗

G := TG,max

TL
. (1.35)
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where TI,max and TI,max are the dimensional values at which the nucleation and
growth activities peak. Note that the nucleation lag ε does not enter the Hor-
tian kinetic equations per se. Nucleation lag is an intrinsic consequence of the
equation and its value thus scales with the normalized temperature of the max-
imum nucleation rate (technically, the nucleation rate is always non-zero, it just
becomes negligible close to the liquidus temeprature). Throughout the thesis, we
consider the nucleation in the TBL to be heterogeneous, however, manipulation
with the kinetic law parameters allows us to reach arbitrarily low nucleation lags,
thereby simulating the homogeneous nucleation.

1.4 Time scales and quasi-steady approach
At first glance, coupling the processes of chamber cooling with the temper-

ature dependent nucleation and growth kinetics, together with the settling dy-
namics and sediment formation, looks complicated. However, the model sim-
plifies greatly if we look at the typical time scales of the individual processes,
which allows us to isolate them and treat them individually. We already esti-
mated the residence time scale in the boundary layer, tb (see Eq. (1.15)). Fur-
thermore, Eq. (1.26) gives the characteristic residence time scale for dust-like
particles (stone-like particles differ in a constant of proportionality) in the bulk
as

tres ∼
(︂
3ρF ν(H0 − h)/g0∆ρG2

)︂1/3
. (1.36)

Earlier, we postulated that after a transient phase that is needed to fill the TBL
and the convective bulk with crystals, the crystal size distributions equilibrate and
reach a steady state. When crystals first nucleate in the TBL, it takes time ttbl

s

to reach the steady state, at which the crystal distribution Φtbl(a, t) is no longer
time-dependent, and analogously, we introduce the time tblk

s after which Φsed(a, t)
and Φblk(a, t) become steady. These time scales are linked to the residence time
scales as ttbl

s ≳ tb and tblk
s ≳ tres. The above estimates address the dynamics

of crystal populations that form in a chamber with a given temperature profile.
The estimate for the convective time cooling scale, i.e. for the time evolution of
the temperature profile within the chamber, comes from the energy balance (see
Eq. (4.8)):

tc ∼ (H0 − h)ρF cp(TB − TR)/F . (1.37)
Therefore, all temperature-dependent quantities vary over time scale ∼ O(tc).
Provided that tc ≫ tblk

s , all time- and temperature-dependent parameters (roof
and bulk temperatures TR and TB, growth rate G) vary negligibly over times
∼ O(tblk

s ). In comparison, the time necessary for the onset of the steady state
in the TBL is ephemeral. This is to be termed the quasi-steady approach and
it represents a key assumption for this thesis. Yet another integral consequence
of this approach is a balance between the production rate by crystallization (i.e.,
the number of crystals nucleated in the thermal boundary layer per time unit)
and the sedimentation rate (i.e., the number of crystals leaving the suspension
per time unit): In the steady state, the flux of crystals falling into the bulk from
TBL must even out the flux of crystals from the bulk into the sediment. When
the temperature conditions change, the steady state distribution will reflect the
change with a response time that is expected to be ∼ O(tblk

s ) at most.
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1.5 Onset of solidification
Right after the magma emplacement, heat flux through the roof is significant

and the fluid cools rapidly. Naturally, if any crystals (nucleated in the boundary
layer, or injected as cargo) were to find their way to the convecting bulk whilst
it is still superheated (i.e., TB > TL), they would start remelting. We omit this
stage of cooling and always set the bulk temperature to TB ≤ TL.

Solidification of the body is hindered either by the nucleation or by the growth
process, and it is the value of the nucleation lag that determines which is the case.
With regard to ∆T , we must distinguish two cases, i) ∆T < ε and ii) ∆T ≥ ε, the
respective onset of solidification is depicted in Fig. 1.4. In the first case, the roof
temperature is exactly at the nucleation threshold and the nucleation in the TBL
occurs with the slightest shift below this temperature. In the latter, the bulk
temperature is exactly at the liquidus, the slightest shift above this temperature
would result in crystals remelting in the bulk.

TL = TBTN

ε

TR

∆T

TLTN = TR

ε

TB

∆T

Figure 1.4: Two initial conditions: i) ∆T < ε (top image), the nucleation com-
mences as soon as the roof temperature drops down to nucleation temperature
TN = TL − ε, ii) ∆T ≥ ε (bottom image), the nucleation starts the moment the
bulk temperature drops down to TL.

When ∆T > ε holds, the nucleation commences right off the bat in the TBL.
On the contrary, for large nucleation lags (exceeding the temperature contrast
∆T ), the initial undercooling in the TBL is insufficient for the solidification to
start. Later in Section 3.3, where a parametric study is performed, we refer to
the two possible scenarios from Fig. 1.4, because they provide a constraint on the
meaningful choices on TB and ∆T .
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2. Numerical implementation
To solve the governing equations, we developed a numerical code 1DNGMC,

written in Python3 (see Attachment). While Python3 is not an ideal language
for computationally demanding simulations, such as when 2D or 3D partial dif-
ferential equations are solved, the problem at hand is of statistical nature – we
chose Python3 to utilize its perks in the domain of data storage and data manip-
ulation. This section describes our numerical implementation of the crystal size
distribution computation.

2.1 Boundary layer processes
The nucleation sub-layer (which comprises a fraction of or the whole thermal

boundary layer) is split into N − 1 layers by N interfaces discretized evenly by
spatial step ∆h. Within each layer, nucleation occurs with a uniform probability
density µi, see Fig. 2.1 for details. Processes within the boundary layer operate
on a time scale tb (see Eq. (1.15)), thus, the time step ∆tb can be taken as a
sufficiently small fraction of this estimate. At each time step, N − 1 families
of crystals are born, one in each layer (a “generation of families”). The j−th
crystal family (1 ≤ j ≤ N − 1) is nucleated at the depth z0

j with a population of
K = N (T 0

j )∆z∆tb crystals (the temperature T 0
j corresponds to z0

j ). The crystal
radius – same for each crystal family – increases by ∆a = G(Tj)∆tb, where Tj

corresponds to the current depth coordinate zj of the family, and sinks a depth
of ∆z = WS(aj)∆tb. Note that, the number of crystals K is treated as a real
number (not integer), and that the radius upon nucleation is zero.

To compute the size distribution of crystals falling into the bulk from the
TBL, Φtbl, two methods were implemented, coined as the 0-generation and step-
by-step methods, respectively. The latter method advances in time just as a
natural system is expected to: each time step, a generation of new families are
born, and all the crystals from older families are inflated in size by ∆a and
transported down by ∆z. Crystals that have reached the base of TBL then form
the desired Φtbl(a, t) distribution.

∆hzi−1

zi

zi+1

WS(t1; a1)

WS(t2; a2)

Figure 2.1: Evolution of a crystal family (red dot) in the thermal boundary layer.
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After a transient period, we expect a steady state situation to arise, in which
the number of crystals nucleated per time step in the boundary layer balances
the crystal flux into the convecting bulk - the step-by-step method was used to
confirm this expectation and to evaluate the transient time. The 0-generation
method benefits from the observation that in the steady-state, Φtbl(a) is identical
to the size distribution of crystals from a single generation, when only the final
radius a of each family is recorded. Therefore, we only have to nucleate one
generation of families and make them all sink through the entire TBL to obtain
the steady state distribution. Since both methods yield the same results, we later
adhere to the computationally faster 0-generetaion method.

The reader should also take note that in cases where the nucleation sub-
layer makes up only a portion of the boundary layer, nucleation does not happen
elsewhere in the layer. Nevertheless, crystals do naturally continue to grow there.
All of the N −1 crystal families are subsequently sorted into a discrete histogram
with nb bins (N > nb), each bin represented by mean radius (it is advised to
superpose the process for ng ∼ O(10) generations to reach a sufficiently smooth
final distribution, alternatively, we can drastically increase N). Following the
notation from the previous chapter, we denote the steady state crystal distribution
Φtbl(a).

2.2 Bulk processes
Processes inside the bulk operate on a much longer time scale. In accord

with Section 1.4, we can estimate the appropriate time step for this phase, ∆ts,
as a sufficient small fraction of Eq. (1.36) (∆ts ≫ ∆tb). Consequently, the dis-
tribution falling into the convective bulk at each time step ∆ts is simply given
as Φtbl(a)∆ts/∆tb (the TBL distribution is normalized by the total number of
crystals here). Generally, the bulk temperature TB is below the liquidus tem-
perature, and so the crystals in each family grow in size and some of them are
lost to the sediment at each time step. We have implemented two ways of han-
dling the sedimentation process, i) method, in which one only works with discrete
histograms representing Φblk(a, t) and Φsed(a, t), without storing any information
about the individual crystal families that form these distribution (this method
requires very little CPU memory), and ii) method, in which all individual crystal
families are traced (computationally more demanding, but allowing us to handle
more complex settling dynamics, as described below).

The first method, termed the method of distributions, is straightforward in
nature as all we need to do is to pour crystals into corresponding bins whilst
gradually changing the bin size of the bulk and sedimentation histograms, as
the largest obtained radius amax evolves with time (for a fixed number of bins,
nb, the bin size is amax/nb). The method is outlined below in Fig. 2.2. The
sedimentation loop either runs with a fixed number of time steps or we can stop
it the moment a steady state is reached (i.e., the influx of crystals is compensated
by the sedimentation process and distributions Φblk(a, t) and Φsed(a, t) no longer
evolve in time).

We assume that, within each bin, the crystal sizes are distributed uniformly.
During each time step, we pour distribution Φtbl(a)∆ts/∆tb into the bulk dis-
tribution, and let the crystals settle by applying Eq. (1.16). If the number of

17



Φtbl

Φblk

Φsed

∆K = −WSACbot∆ts

Sedimentation by

Figure 2.2: Visualisation of the method of distributions at an early phase of the
sedimentation loop - pouring Φtbl(a) into histogram bins. While TBL bins remain
constant, bulk and sedimentation bins (displayed above) gradually increase and
they are of the same size.

crystals in the last bin is non-negligible, we extend a max and hence the the size
of the bins, and reshuffle crystals from the antecedent bins into the new ones.
Implementing the crystal pouring for gradually changing bin size is a bit tricky,
but overall this method is advantageous when we are only interested in dust-like
sedimentation.

When applying Eq. (1.16), i.e. the sedimentation law, the quantity of key
interest is the concentration of crystals near the base of the liquid magma, Cbot.
It is this quantity that captures the mixing and settling of crystals in the bulk
described in Section 1.2. Problem of the method of distributions is that it does
not keep track of the volume in which a family of crystals is contained. When a
family falls into the bulk, the volume in which it is effectively mixed shrinks with
time. To compute this volume, one must know when the family has fallen into the
bulk, but such an information is lost in the method of distributions. Moreover,
this method offers no way of introducing, e.g., depth-dependent growth laws,
making it less attractive for future development of our numerical tool.

On the contrary, the tracing method requires a lot of CPU memory and seems
complicated. We can, however, simplify it by realizing another consequence of
the quasi-steady approach: any two distributions that had fallen into the con-
vecting bulk within the same sedimentation loop follow the same evolutionary
path. The tracing method is outlined below, we follow the history of a distri-
bution Φtbl(a)∆ts/∆tb (marked in red) until it completely settles down. At the
i−th time step, each family splits into Φ̄tbl,(i) = Φ̄tbl,(i+1) + Φ̃tbl,(i+1) (tilde de-
notes settled crystals, bar then its complement remaining in the bulk, the lower
index denotes the number of time steps the distribution had spent in the bulk
so far). Naturally, it will take L steps (we do not know this number apriori) for
all families to settle completely (since we are working with non-integer numbers
of crystals, we have to impose an approprite cut-off, typically one/few tenths of
a crystal), increasing the fixed number of time steps M (we set M high enough
so that M ≫ L always holds) increases the accuracy. By keeping track of the
individual crystal families, we are provided with a way of introducing the con-
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cept of the shrinking velocity as well as purely stone-like particles into the model
(cf. Fig. 1.2).

1 × ∆ts : Φblk (start) = [Φtbl]
Φsed =

[︂
Φ̃tbl

]︂
Φblk (end) =

[︂
Φ̄tbl

]︂
2 × ∆ts : Φblk (start) =

[︂
Φtbl, Φ̄tbl,(1)

]︂
Φsed =

[︂
Φ̃tbl, Φ̃tbl,(1)

]︂
Φblk (end) =

[︂
Φ̄tbl, Φ̄tbl,(2)

]︂
... ... ...
... ... ...

L × ∆ts : Φblk (start) =
[︂
Φtbl, Φ̄tbl,(1), . . . , Φ̄tbl,(L−1)

]︂
Φsed =

[︂
MΦ̃tbl, (M − 1)Φ̃tbl,(1), . . . , (M − L + 1)Φ̃tbl,(L−1)

]︂
Φblk (end) =

[︂
Φ̄tbl, Φ̄tbl,(1), . . . , Φ̄tbl,(L)

]︂
To mimic the transition between dust-like and stone-like particles, the shrink-

ing velocity vsh described in Section 1.2 is implemented. We recall that vsh cap-
tures the behaviour of the settling front once a population of crystals falls into
the bulk, i.e. it allows one to assess Cbot. We assume that each crystal family
follows the exponential settling law until its radius exceeds the transition radius,

atr = (9WrmsγρF ν/2g0∆ρ)1/2 . (2.1)

for which the Stokes velocity of crystals becomes comparable to the mean velocity
of the background flow, WS = γWrms. Upon reaching the transition radius, the
crystal family starts to settle down with gradually changing particle concentration
given by Eq. (1.18), in which the shrinking velocity vsh continuously evolves with
time. In addition, if a crystal happens to already have a radius larger than this
transient one upon entering the bulk, it will simply continue in the Stokesian fall,
this time across the entire height of the chamber, H0 − h.

In Chapter 3, we will sometimes make references to individual regimes: pure
dust-like regime simply means that crystals settle according to the Martin and
Nokes sedimentation law. Stone/dust transition then refers to the situation dis-
cussed above, i.e., WS = γWrms is satisfied at some point of the crystal family’s
history. Pure stone-like regime then refers to particles that spend their whole
life in the Stokesian fall. In our code, the pure dust-like regime is the default
mechanism of sedimentation. Both stone/transition and pure stone-like regimes
can be manually turned on/off. Also note that the pure stone-like regime can be
enforced in the algorithm by simply setting the transitional radius to zero.

Naturally, there is a coupling between the height of the sediment and settling
dynamics. Here, we are assuming that the sediment varies with the cooling time
scale ∆tc (i.e., we are decoupling sediment growth and crystal settling, this can
be viewed as as extension of the quasi-steady state employed here).
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n̄tbl

Φb(a), Φs(a)φ, δh, ḣ, ād

Figure 2.3: One time step ∆tc of the solidification loop - algorithm flowchart for
the implementation of the quasi-steady state solver.

The flowchart of the proposed computational algorithm presented here is
shown in Fig. 2.3. In the presented algorithm, the input variables are Pran-
dlt number, temperature contrast ∆T , bulk undercooling β (i.e., β = TL − TB

and β ≥ 0 K), and the initial height of the chamber H0.
Moreover, we shall note that we developed the model in 1D and only the

one-dimensional volume ∆z came into play in spite of the nucleation amplitude
having the spatial unit of inverse cubic meter. This implies the sediment height
increment δh after one sedimentation iteration (for simplicity, we assume the
sediment pile is perfectly packed) and the estimated rate of sedimentation shall
be calculated as

δh = ∆tc

∆ts

n̄s
4
3π

nb∑︂
i=1

nia
3
i = ∆tc

∆tb

n̄tbl
4
3π

nb∑︂
i=1

nia
3
i , (2.2)

ḣ = δh

∆tc

, (2.3)

where n̄s and n̄tbl are steady-state numbers of crystals leaving the suspension and
boundary layer per time steps ∆ts and ∆tb, respectively, and (ni, ai) denotes one
bin of the normalized crystal size distribution in the sediment.
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3. Results
This chapter is divided into three sections. In the first section, we investigate

the boundary layer processes. Subsequently, we demonstrate several numerical
tests and benchmarks. In the third section, we study different end-members and
perform a reference run, followed by an exploration of the space of physical pa-
rameters (chamber height, temperature contrast, Prandtl number, undercooling,
growth and kinetic laws amplitudes). Last but not least, we embark on a brief
discussion in regard of the obtained results. Physical parameters and their ranges
are listed in Table 3.1 below.

Table 3.1: Physical parameters

Parameter Notation Value Unit
Initial height of the chamber1 H0 101–104 m
Temperature contrast ∆T 102–10−6 K
Density of liquid phase2 ρF 2700 kg m−3

Density of solid phase2 ρC 2800 kg m−3

Thermal diffusivity 3 κ 5 × 10−7 m2 s−1

Thermal expansivity4 α 5 × 10−5 K−1

Gravitational acceleration g0 9.8 m s−2

Latent heat of crystallization2 L 4 × 105 J kg−1

Thermal capacity2 cp 1.3 × 103 J kg−1 K−1

Prandtl number 5 Pr 103–105 −
Critical Rayleigh number 6 Racr 660 −
Kinematic viscosity ν Pr · κ m2 s−1

Liquidus temperature7 TL 1400 K
Solidus temperature7 TS 1200 K
Nucleation delay ε 10–60 K
Bulk undercooling β 0–250 K
Nucleation amplitude7 N0 101–105 m−3 s−1

Growth amplitude7 G0 10−4–10−10 m s−1

Nucleation maximum7 T ∗
I 0.81–0.92 −

Growth maximum7 T ∗
G 0.93–0.95 −

Scaling factor (Nusselt number)8 cNu 0.16 −
Scaling factor (Reynolds number)8 cRe 0.43 −

Adapted from:
1 Frank Press [2000].
2 Jarvis and Woods [1994].
3 Ni et al. [2015].
4 Solomatov [2004].
5 Martin and Nokes [1989].
6 Turcotte and Schubert [2014].
7 Hort [1997].
8 Ahlers et al. [2009], Kraichnan [1962].
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3.1 Boundary layer
First, we are going to investigate the behavior of crystals in the TBL. Due

to temperature contrast ∆T , the growth rate varies across the whole layer. In
Fig. 3.1, the residence time of each crystal family is plotted against its nucle-
ation depth (i.e., the depth at which the family was nucleated, measured from
the chamber roof) for two values of the temperature contrast ∆T . Depending on
the magnitude of the nucleation delay ε, hb/hn ratio, temperature contrast ∆T ,
and their mutual relationship (i.e., ∆T ≥ ε or ∆T < ε), the TBL residence time
against nucleation depth can exhibit substantially different behavior. For certain
setups, we observe counter-intuitive behavior: Crystals closer to the bottom of
the nucleation sublayer need more time to gravitationally fall out of the thermal
boundary layer when compared to crystals nucleated closer to the roof (see the
black line in Fig. 3.1). This is because undercooling decreases with increasing dis-
tance from the roof, resulting in smaller hence slower crystals there. Surprisingly,
the final crystal size distribution Φtbl(a) does not seem to reflect it.
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Figure 3.1: Residence time in the thermal boundary layer against nucleation
depth: demonstration of the paradox for Hortian laws (for T ∗

I = 0.92 and T ∗
G =

0.95, corresponding lag ε ≈ 23 K, G0 = 1×10−8 m s−1, N0 = 1×103 m−3 s−1) for
∆T = 60 K (black line) and ∆T = 1 K (red line), and β = 0 K. Results obtained
for one generation (i.e., the 0-generation method), H0 = 103 m and Pr = 1× 103.

In Fig. 3.2, we demonstrate how the steady state is reached for the TBL pro-
cesses by studying the crystal flux into the bulk with the step-by-step method.
Subsequently, Fig. 3.3 displays the steady state distribution Φtbl(a). Even when
∆T is very small and the growth rate is effectively contrast across the layer, the
TBL distribution spans over a relatively large interval of radii and the shape does
not change due to the scaling of the boundary thickness as ∆T −1/3.

Now, a brief aside: the TBL concept in the thesis is idealized - we are assuming
a spatially uniform boundary layer of constant thickness, but this is not what is
actually occurring. In reality, the boundary layer is expected to be spatially
heterogeneous, experiencing local episodes of diffusive growth following hb(t) ∼
(κt)1/2. Upon reaching the critical thickness hb,cr, a segment of the boundary
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layer breaks off thereby becoming a cold downwelling plume. The characteristic
plume release time scale (e.g., Turcotte and Schubert [2014]) follows

tp ∼ 1
κ

(︄
νκRah,crit

αg∆T

)︄2/3

, (3.1)

where Rah,crit is the critical Rayleigh number (Table 1).
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Figure 3.2: Crystal flux entering the bulk (black) as a function of time. After
a transient period, that is needed by the first crystals to fall through the entire
TBL, the flux converges to the average number of crystals nucleated in the TBL
per time unit (red). Same setup as in Fig. 3.1 and ∆T = 102 K.
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Figure 3.3: Steady-state TBL crystal size distribution falling into the convecting
bulk for the growth and nucleation laws after Hort (see Eq. (1.33) and Eq. (1.34)).
The minimum size of crystals is non-zero, because, when hb > hn, all crystals cross
a region where nucleation does not occur but crystal growth does. Same setup
as in Fig. 3.3.
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A weak point of our theoretical model is that the TBL is considered to be
a stable layer with a perfectly flat boundary, while in reality it undergoes local
periodic collapses related to downwelling formations. This seems troubling in
particular when the time scale tp from Eq. (3.1) is (significantly) shorter than tb

in Eq. (1.15). For setups predicting tb > tp, we measured the residence time of
each crystal and we mimic the plume advection by extracting the crystal as soon
as the residence time reaches the time of the cold plume release. This approach
strictly applies the transient boundary layer theory described in Turcotte and
Schubert [2014], Chapter 8.6. We observe two consequences: a) radii of TBL
crystals are (significantly) decreased, which brings us closer to the zero TBL
crystal radius limit, and b) the TBL distribution is distorted or even collapsed
into a quasi-Dirac distribution. In Section 3.3.1, we discuss the impact of the
inflow distribution TBL on the results. Overall, such a modification has only
little effect on the crystal size distribution in the sediment, which is our primary
target. On this account, we deem it acceptable to work within the gravitational
settling framework.

3.2 Numerical tests

3.2.1 Distribution benchmark (special case)
To test the implementation of bulk processes, we first study the limiting case

of dust-like particles with zero growth inside the convecting bulk (i.e., TB = TL,
β = 0). In this case, the crystal growth occurs only in the TBL. For G(TB) =
0, the quasi-steady approach implies that the size distributions falling into the
bulk and leaving the suspension shall match. Moreover, dust-like crystals settle
preferentially as ∼ a2. The numerical simulation is therefore expected to yield
the following:

Φtbl(a) = Φsed(a) , (3.2)
Φsed(a) = a2Φblk(a) . (3.3)

We carried out two benchmark simulations (for sample values H0 = 102 m
and ∆T = 102 K) for linear nucleation and growth laws (Fig. 3.4) and laws after
Hort (Fig. 3.5). In both cases, the expected result is obtained. Note that the two
benchmarks were conducted for greatly different growth amplitudes and different
nucleation lags, and also ∆T was large such that the Hortian curves cannot be
approximated by linear laws over the TBL temperature range, hence the overall
different distributions.

3.2.2 Crystal tracing vs. Method of distributions
In Chapter 2, we introduced two ways of handling the sedimentation process

inside the bulk, the method of distributions (mDis) and the method of crys-
tal tracing (mTac). The latter allows us to implement stone-like particles into
the system and is therefore applicable to a broad range of natural settings. The
method of distributions employs discretized histograms and is not capable of stor-
ing information about the volume in which the a crystal family remains effectively
mixed (cf. Eq. (1.18)). For the method comparison, see Fig. 3.6 below.
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Figure 3.4: Zero bulk crystal growth run for linear laws, Npow = 5 × 106 m−3 s−1

and Gpow = 1 × 10−3 m s−1 and nucleation lag ε = 10 K.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Radius a [mm]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

# 
pa

rti
cle

 (n
or

m
al

ize
d)

blk a 2
sed

TBL
Sediment
Bulk

Figure 3.5: Zero bulk crystal growth run for laws after Hort (for T ∗
I = 0.92 and

T ∗
G = 0.95, corresponding lag ε ≈ 23 K), N0 = 1 × 103 m−3 s−1 and growth

amplitude G0 = 1 × 10−8 m s−1.

There is a small discrepancy between both distributions, which can be min-
imized by the time step size, the number of time steps, and crystal cut-off (see
Section 2.2). There is a numerical artefact at the tail of the distribution stem-
ming from the nature of implementation for the histogram bin size adjustment.
In contrast, the tracing method exhibits a longer tail that smoothly attenuates
to zero. The mean radii predicted by these methods are typically within a 1%
relative error.
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Figure 3.6: Computed bulk and sediment crystal size distributions Φblk(a) and
Φsed(a): comparison of the method of distributions (purple and red) and crystals
tracing (black and blue) for the pure dust-like settling regime for the sample
values H0 = 103 m, ∆T = 102 K, and β = 5 K for nucleation and growth laws
after Hort.

3.3 Parametric study

3.3.1 Dust-like regime: Analytical formula?
In the spirit of Section 1.2.1, we fitted the scaling functions to the computed

crystal size distributions in the bulk and sediment (see Figs. 3.7–3.8), thus

Φblk = A1 exp
(︂
−A2a

3
)︂

, (3.4)

Φsed = A1a
2 exp

(︂
−A2a

3
)︂

. (3.5)

Both coefficients A2, thus the exponential weight factors, are in a very good
accord with the form predicted in Eq. (1.28). In addition, A

−1/3
2 matches the

calculated ād perfectly for the bulk distribution and with a 12% deviation for the
sediment distribution. Here, we do not make an attempt to map A1 to a particular
combination of parameters. Given the nature of the problem, however, A1 is most
likely influenced by the growth rate and nucleation rate in the TBL. Beware,
we are not doing this with the expectation of a perfect agreement agreement -
continuous influx of TBL crystals with non-zero radius clearly distorts the result
(the following section addresses the question of how much); we merely wish to
ascertain how closely we align with this theoretical result derived for the the
single zero-sized population in Chapter 1.

3.3.2 Dust-like regime: Impact of TBL distribution?
On the previous page, we demonstrated that the characteristic shape of the

steady state distribution in the sediment for purely dust-like settling regime is a
quasi-Gaussian (for G(TB) > 0). In Fig. 3.9, the effect of the inflow distribution
Φtbl(a) on Φsed(a) is studied.
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Figure 3.8: Fit of f(a) = A1 exp(−A2a
3), the calculate coefficient A2 matches

λ/3G(TB)(H0 − h) with a deviation of 0.30 %. Parameters same as in Fig. 3.7.

As we mentioned at the beginning of this chapter, the TBL thickness scales
as ∆T −1/3. When we reduce the temperature contrast (and consequently the
Rayleigh number), the radius of TBL crystal increases as they need to travel a
longer distance. As a result, the signature of the TBL distribution becomes more
pronounced for small temperature contrasts.
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Figure 3.9: Demonstration of the impact of TBL distribution when a0 ≪
G(TB)tres is not satisfied. Dashed line labels the maximum crystal radius falling
into the bulk. Stone/dust transition is manually turned off.

3.3.3 Dust-like regime: What factors influence the mean
radius?

The fits conducted earlier insinuated that mean radius is directly linked to the
system parameters. In this section, we investigate how the mean crystal radius in
the sediment scales with various model parameters. Figs. 3.10–3.13 demonstrate
that the sediment distribution does not respond to the temperature contrast
∆T , unless the maximum crystal radius attained in the thermal boundary layer
becomes comparable to the mean crystal radius in the bulk (satisfied for small
chambers and low temperature contrasts, hence low Rayleigh numbers). We
observe that the mean crystal radius of Φsed scales as

ād ∼ [(H0 − h)PrG]1/3 ∼ [(H0 − h)νG]1/3 , (3.6)

which is, again, consistent with Eq. (1.28), i.e., with the exercise in which zero-
sized crystals are uniformly distributed in the bulk. Considering the small devi-
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Figure 3.10: Mean radius of Φsed as
a function of the temperature contrast
∆T . Other parameters fixed at the val-
ues H0 = 1 × 102 m, Pr = 1 × 104, and
G0 = 1 × 10−6 m s−1.
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Figure 3.11: Mean radius of Φsed as
a function of the height chamber H0.
Other parameters fixed at the values
∆T = 1 K, Pr = 1 × 104 and G0 =
1 × 10−6 m s−1.
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Figure 3.12: Mean radius of Φsed as
a function of the Prandtl number Pr .
Other parameters fixed at the values
∆T = 1 K, H0 = 1 × 102 m and
G0 = 1 × 10−6 m s−1.
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∆T = 1 K, Pr = 1 × 104, and H0 =
1 × 102.

29



ation we observed in the fit, the constant of proportionality is expected to be of
order ∼ O(λν). Again, lower temperature contrasts are associated with the TBL
distribution being visible in the shape of Φsed, but the impact on the mean radius
is marginal.

3.3.4 Impact of stone-like settling on the resulting distri-
butions
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Figure 3.14: Run with the i) pure dust-like regime, stone/dust turned off (red -
Φsed(a), purple - Φblk(a)), and ii) stone/dust transition turned on (green - Φsed(a),
yellow - Φblk(a)) for the following parameters: ∆T = 1 K, H0 = 102 m, β = 29
K, Pr = 1 × 104, and G0 = 1 × 10−6 m s−1 (i.e., G = 7 × 10−7 m s−1). The
transitional growth rate predicted by Eq. (3.8) gives Gtr ≈ 1 × 10−7 m s−1, so we
can already see a minor skew.

When the Stokes velocity of a crystal becomes comparable to the mean flow
velocity Wrms, the exponential decay law of Martin and Nokes is no longer applica-
ble. With the onset of stone/dust transitional behavior, crystal settling becomes
more effective. Consequently, we observe a downtick in the population of large
crystals, manifested by a skew and a cut-off of the characteristic quasi-Gaussian
(Fig. 3.14). It is useful to have an apriori insight as to whether or not stone-like
settling is expected for a given set of model parameters. To this end, we conduct
the following analysis: Crystals settle in the dust-like regime when Wrms ≳ WS(a),
as we argued earlier, the exponential decay law is a good approximation even for,
e.g., WS/Wrms ∼ 0.5. Invoking Eq. (1.3) and Eq. (1.5) yields

κ1/9α2/9∆T 2/9(H0 − h)1/6ν4/9ρ
1/2
F ∆ρ−1/2g−5/18 ≳ a . (3.7)

Relaxing this constraint for crystals with the mean radius given by Eq. (3.6)
gives the following condition for the growth rate that must be satisfied for the
stone-like regime to be neglected:

κ1/3∆ρ−1/2(H0 − h)−1/2ρ
1/2
F g1/6ν1/3α2/3∆T )2/3 ≳ G . (3.8)
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3.3.5 The influence of ∆T and G0

As explained in Introduction, the main focus of this work is to predict how
the magma dynamics are imprinted in the microstructure of the sediment. We
discussed the role of ∆T as the quantity driving convection, and that its value
is poorly constrained. Motivation for varying the growth amplitude is explained
in Section 3.3.7. Figs. 3.15–3.16, we perform a series of simulations for a broad
range of ∆T and for two values of G0, with the remaining parameters being set
to values centred in the middle of expected ranges: H0 = 103 m, β = 29 K, and
Pr = 1 × 104). We choose ∆T from the interval ∈ [102 − 10−6] K and the two
growth amplitude are G0 = 1 × 10−6 m s−1 and G0 = 1 × 10−8 m s−1 (N0, T ∗

G,
and T ∗

I same as in Fig. 3.5). We compute the steady-state (normalized) bulk
and sediment crystal size distribution. Each run is characterized by the mean
radius ād, temperature contrast ∆T and the corresponding transition radius atr.
As crystals fall into the bulk, their radii are first small compared to the transition
radius and they are thus effectively mixed within the entire liquid volume. As
soon as they reach the transition radius, the volume they occupy begins to shrink.
The portion of time that crystals spent in the dust-like regime (averaged over all
crystals), is labeled as dust-duration in Figs. 3.15–3.16.

3.3.6 End-member scenarios
A quick inspection of the case study above gives us an insight into the shape

of the resulting distributions. We can identify four distinct end-members:
i) Pure dust-like.

ii) Dust-like dominance.

iii) Stone-like dominance.

iv) Pure stone-like.
Ad i), see panel 1 in Fig. 3.15 and panels 1–3 in Fig. 3.16, this end-member

is characterized by the already well-established quasi-Gaussian distribution. For
large enough chambers, the influence of the inflow TBL distribution is negligible
and the distribution is symmetric. The mean radius then does not depend on the
temperature contrast.

Ad ii), see panel 2–3 in Fig. 3.15 and panel 4–6 in Fig. 3.16, crystals following
this end-member gradually transition from dust-like to stone-like regime. As the
amount of time spent as dust particles decreases, the deformation of the quasi-
Gaussian becomes more substantial, the distribution peak eventually diminishes.
The mean radius exhibits a weak declining trend with the temperature contrast.

Ad iii), see panels 4–5 in Fig. 3.15 and panel 7 in Fig. 3.16, crystals in this
regime settle predominantly as stone-like particles. They do, however, behave as
dust-like particles for a brief moment, thereby become well mixed upon entering
the bulk. The volume they effectively occupy begins to shrink shortly after, as
their radius quickly reaches the transition radius. This end-member is charac-
terized by a distribution akin to the one we observe in the thermal boundary
layer.

31



0 20 40 60 80 100 120
Radius a [mm]

0.00

0.01

0.02

0.03

0.04
# 

pa
rti

cle
 (n

or
m

al
ize

d) T = 1.00E+02
= 7.091E-07

 ad = 57.02 [mm]
atr = 103.94 [mm]
Dust duration:79.5%

Sediment
Bulk
ad (sediment)

0 20 40 60 80 100
Radius a [mm]

0.00

0.01

0.02

0.03

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E+01

= 7.091E-07
 ad = 56.26 [mm]
atr = 62.31 [mm]
Dust duration:64.2%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60 70 80
Radius a [mm]

0.00

0.01

0.02

0.03

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E+00

= 7.091E-07
 ad = 53.31 [mm]
atr = 37.35 [mm]
Dust duration:44.5%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60 70
Radius a [mm]

0.00

0.01

0.02

0.03

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E-01

= 7.091E-07
 ad = 50.67 [mm]
atr = 22.39 [mm]
Dust duration:26.9%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60
Radius a [mm]

0.00

0.01

0.02

0.03

0.04

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E-02

= 7.091E-07
 ad = 49.21 [mm]
atr = 13.42 [mm]
Dust duration:13.0%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60
Radius a [mm]

0.0

0.2

0.4

0.6

0.8

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E-03

= 7.091E-07
 ad = 62.47 [mm]
atr = 8.05 [mm]
Dust duration:2.9%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60
Radius a [mm]

0.0

0.2

0.4

0.6

0.8

1.0

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E-04

= 7.091E-07
 ad = 63.99 [mm]
atr = 4.82 [mm]
Dust duration:0.2%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60
Radius a [mm]

0.0

0.2

0.4

0.6

0.8

1.0
# 

pa
rti

cle
 (n

or
m

al
ize

d) T = 1.00E-05
= 7.091E-07

 ad = 63.76 [mm]
atr = 2.89 [mm]
Dust duration:0.0%

Sediment
Bulk
ad (sediment)

0 10 20 30 40 50 60
Radius a [mm]

0.0

0.2

0.4

0.6

0.8

1.0

# 
pa

rti
cle

 (n
or

m
al

ize
d) T = 1.00E-06

= 7.091E-07
 ad = 63.69 [mm]
atr = 1.73 [mm]
Dust duration:0.0%

Sediment
Bulk
ad (sediment)

Pr = 1.0E+04
 = 29.0 [K]

 H0 = 1.0E+03 [m]
G0 = 1.0E-06 [m/s]

Figure 3.15: Reference run for G0 = 1 × 10−6 m s−1 investigating dependence of the mean radius and final distributions shape on the
temperature contrast ∆T .
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Figure 3.16: Reference run for G0 = 1 × 10−8 m s−1, investigating dependence of the mean radius and final distributions shape on the
temperature contrast ∆T .
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Ad iv), see rest of the panels in Figs. 3.15–3.16, radii of crystals extracted
from the boundary layer are already greater than the transitional radius. The
crystal growth occurs primarily in the bulk and the radius difference amongst
incoming crystals is small, which results in all crystals having nearly the same
radius upon reaching the base of the chamber. It is characterized by a sudden
noticeable uptick in the mean radius (in comparison to cases ii) and iii), where
we observe a declining trend).

3.3.7 Model space exploration
The following section covers a thorough exploration of the model space, with

a focus on the mean radius and the sedimentation rate. The considered ranges
for the height of the chamber and temperature contrast are H0 ∈ [102 − 104] m,
∆T ∈ [102 − 10−6] K. We performed simulations for two different values of the
bulk temperature TB (corresponding to undercooling β = 29 K and β = 200 K),
two values of the growth amplitude (G0 = 1 × 10−6 m s−1 and G0 = 1 × 10−8

m s−1), two values of Prandtl numbers (Pr = 1×103 and Pr = 1×105), and with
the nucleation rate being fixed N0 = 1 × 103 m−3 s−1. The results are presented
in the form of contour plots (see Figs. 3.18–3.19) for the mean radius ad and
the sedimentation rate ḣ, and 3D surface plots (see Figs. 3.17) displaying how
dust-duration varies in the model parameter space.

Inspection of Figs. 3.18–3.19 indicates that the sedimentation rates obtained
for some models are very high. If we invoke the scaling expression for the mean
crystal radius in the sediment,

ād ∼ [(H0 − h)GPr ]
1
3 , (3.9)

and summon the scaling relation for the increase in sediment height, ḣ ∼ ā 3
d ,

we can see that the sedimentation rate is very sensitive to any change in ād,
and hence strongly responds to changes in the following parameters: the cham-
ber height, growth rate amplitude, and Prandtl number. Height of the intrusion
is an inherent characteristic, Prandtl numbers are well-measured, so we are left
with the uncertainty in the growth amplitude. A number of older papers from
the 1970s (e.g., Scherer and Uhlmann [1976]) dedicated to the study of crystal
kinetics demonstrate that a change in the chemical composition of a laboratory
prepared sample can lead to orders of magnitude difference in the growth rate. It
should also be noted that the sedimentation rate depends linearly on the nucle-
ation amplitude N0, a shift in N0 is therefore equally impactful. Large values of
the sedimentation rates, stemming from large predicted mean crystal radii, lead
to vanishingly small solidification times, often violating the assumption of the
quasi-steady approach. While it is difficult to constrain the solidification time of
an intrusion from geological and petrological measurements, seismic tomography
indicates that the solidification time is rather short when compared to geological
time scales (e.g., Sinton and Detrick [1992]). Note, however, that the solidifica-
tion rates obtained within the quasi-steady framework employed here cannot be
directly extrapolated to estimate the solidification time of the entire intrusion.
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Figure 3.17: Mean radius in the sediment against temperature contrast ∆T (log
scale) and chamber height H0 (log scale), the surface is colored in accordance to
the average dust-duration, for Pr = 1×104 and G0 = 1×10−8 m s−1, (top image)
and Pr = 1 × 105 and G0 = 1 × 10−6 m s−1 (bottom image).
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Figure 3.18: Parametric study (mean radius, transient radius, sedimentation rate) against chamber height, temperature contrast, Prandtl
number (kinematic viscosity), and undercooling for growth amplitude G0 = 1 × 10−6 m/s. Each contour figure comprises 8×8 models.
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Figure 3.19: Parametric study (mean radius, transient radius, sedimentation rate) against chamber height, temperature contrast, Prandtl
number (kinematic viscosity), and undercooling for growth amplitude G0 = 1 × 10−8 m s−1. Each contour figure comprises 8×8 models.
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This is because, as the chamber begins to solidify, its chemical composition
begins to evolve, and this is not accounted for in Chapter 3. If fractional crys-
tallization takes place, the liquidus temperature of the residual magma evolves
with time, and it is the time evolution of TL and TB that controls the solidifi-
cation progress. In the next chapter, we outline how the model developed here
could be used in future to capture the microstructure of a progressively solidifying
chamber, whose temperature profile evolves self-consistently with time.

In contrast, the mean radii can be analyzed in the microstructure records
- the characteristic crystal size observed in the sediment ranges around 1 mm,
with 1 cm being the upper bound (e.g., Holness et al. [2017], Holness [2022]).
The parametric study above provides us with a way to impose lower bounds for
the growth amplitude or undercooling reached during the chamber history. To
match the observed mean radii, the growth rate should be of order G ∼ 1 × 10−8

m s−1 or lower (cf. Figs. 3.18–3.19).
We also observe that the dust-like regime dominance is restricted to higher

temperature contrasts. If ∆T driving the thermal convection is truly as small as
Martin and Nokes [1988] argues, stone-like settling dynamics should dominate.
The pure stone-like regime and the collapse of the distribution into a quasi-Dirac
distribution is associated with extremely small temperature contrasts. However,
this is not what is observed in real intrusions! Records of microstructure are
always characterized by non-trivial distributions. This observation favors Turner
and Huppert and insinuates convection in magma chambers is truly vigorous.
Since each settling dynamics leave a characteristic footprint in the sediment mi-
crostructure, we believe the results presented here could help to guide future
microstructure analysis to unravel the workings of the solidification process.
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4. Outlook: Full solidification

4.1 Temporal evolution of temperature inside
the chamber

The model presented above was built to capture the crystal size distribution of
the sediment when the temperature profile inside the magma chamber is given.
Both temperature-related variables, ∆T and TB, governing the crystallization
kinetics and thermal convection vigor were free and chosen ad hoc from a wide
range. In a real system, heat is gradually extracted from the reservoir and both
∆T (t) and TB(t) are time-dependent. In this chapter, it is outlined how we plan
to compute the thermal history of the body, in order to evaluate how the crystal
size distribution in sediment evolves with height of the sediment, i.e. with the
progress of solidification.

In the big-tank hypothesis, a large volume of magma is injected into a host
rock, whose temperature profile can be estimated by solving the 1D heat equation,

∂Tbg(z, t)
∂t

= κbg(z)∂2Tbg(z, t)
∂z2 , z ∈ D, t ∈ (0, t0) . (4.1)

where D denotes the studied domain (crust or lithosphere) and κ = k/ρcp is
the depth-dependent thermal diffusivity of the host rock. The initial condition
Tbg(0) = T 0

bg and imposed boundary conditions (Dirichlet/Neumann) correspond
to the geological setting. The background profile is computed at an arbitrary
time of magma emplacement t0.

Once the liquid magma of temperature Tm > Tbg fills a formed cavity, the
temperature profile drastically changes (Fig. 4.1).

0 200 400 600 800 1000 1200 1400
Temperature [K]

Heat flux 
Top BC
Tbg = 0

Bottom BC
Tbg

z = 0

bg

Geothermal gradient Tbg(z, t)
Emplaced magma (T > Tbg)

Figure 4.1: Sketch of the geothermal profile after the magma emplacement (red
skew). By measuring the temperature gradient at the top of the chamber, we can
directly calculate the extracted heat flux and link it to the temperature contrast
driving the thermal convection inside the chamber.
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When thermal convection in the low-viscosity magma is initiated, the heat
transfer across the chamber is no longer via conduction. To mimic convection
within the framework of Eq. (4.1), one can introduce an “effective” thermal dif-
fusivity κeff in the liquid region, for which it holds that κeff ≫ κmagma, where
κmagma is the actual material parameter describing heat diffusivity of the em-
placed liquid. To account for the release of latent as the liquid gradually solidi-
fies, Eq. (4.1) needs to be modified also by adding a heat source. Altogether, the
1D temperature evolution after magma emplacement can be estimated by solving
the following equation,

∂T (z, t)
∂t

= κmod(z, t)∂2T

∂z2 + 1
cp

L(z, t) , (4.2)

κmod(z, t) =

⎧⎪⎪⎨⎪⎪⎩
κeff liquid region ,

κsed formed sediment ,

κbg(z, t) elsewhere ,

(4.3)

where T (z, t) denotes the temperature profile after the formation of the chamber,
cp thermal capacity, L(z, t) is the released latent heat of crystallization per time
unit, and κsed is thermal diffusivity of the cumulate. As the sediment pile grows,
the region, where κmod = κeff holds, shrinks in volume.

In order to couple our microstructural model (Chapters 1–3) with the thermal
history model, we need to compute TB, ∆T , and TL at any time t. The bulk tem-
perature TB(t) can be obtained by averaging T (z, t) over the liquid region. When
thermal convection is mimicked by thermal diffusion with enhanced diffusivity,
the temperature profile in the liquid region will not resemble the one depicted
in Fig. 1.1 (TBL will not form). To determine the temperature contrast in the
TBL, ∆T , one can assume that the convective vigor in the liquid is controlled
by the amount of heat extracted by the host rock Carrigan [1988]. By measuring
the temperature gradient, and thus the heat flux, in the vicinity of the roof of the
chamber, we obtain the heat flux based Rayleigh number (e.g., Carrigan [1988])
for the convecting liquid magma as

RaF = αgF(H0 − h)4

kκν
. (4.4)

By comparing Eq. (4.4) with Eq. (1.1), we obtain a formula linking the numeri-
cally measured heat flux to the temperature contrast ∆T as

∆T = F(H0 − h)
k

. (4.5)

Magma is a multicomponent liquid and hence its solidus and liquidus temperature
differs. We label the liquidus temperature of the initial bulk composition as T 0

L,
and the solidus temperature TS. Assuming fractional crystallization, the liquidus
temperature varies with time as the liquid composition is modified as the solid
crystals are stored in the sediment pile, thereby isolated from the remaining liquid.
Let us define the solid fraction χ(h) = h/H0. We assume that the liquidus
temperature decreases linearly with χ from the initial liquidus temperature to
the solidus temperature, and that the released latent heat of crystallization is
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proportional to the rate of change of the solid fraction, χ̇,

TL(χ) = T 0
L − χ(T 0

L − TS) . (4.6)
L = χ̇L , (4.7)

where L denotes the latent heat of crystallization per unit mass of fluid. Note
that χ denotes the solid fraction in the original volume of the chamber, i.e. it
accounts for the sediment pile, not to be confused with current crystalinity in
the dominantly liquid region. Eq. (4.6) provides the last desired quantity, TL(t),
when χ(h(t)) is evaluated as a function of time. The evolution of the sediment
pile height, h(t), couples the thermal model with the previously described model
of crystal growth kinetics.

4.1.1 Energy balance
We can obtain a rough first order estimate for the evolution of temperature

variables TB(t) and ∆T (t) by addressing the energy balance inside the chamber,
which can be compactly written as

(H0 − h)ρF cp
dTB

dt
= −F + ρF Lḣ , (4.8)

where we employed the quasi-steady state implication equating the production
rate of crystals with the sedimentation rate. By imposing an ad hoc constant
heat flux F (heat flux estimate from volcanic calderas can be found in, e.g.,
Carrigan [1988]), we can consistently solve Eq. (4.8) with supplied increasing
sediment height h and rate of sedimentation ḣ, and thus decreasing temperature
contrast ∆T following Eq. (4.5)), and decreasing liquidus temperature according
to Eq. (4.6). Varying fluid conditions will be reflected in the evolution of the
mean crystal radius with the height of the sediment.
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Conclusion
In this thesis, we revisited the problem of thermal convection inside magma

chambers through the optics of microstructural records of igneous intrusions.
We have built upon theoretical groundwork laid by Jarvis and Woods and have
endowed the parametrized model of a magma chamber with TBL dynamics, a
more complex parametrization of settling dynamics, and more realistic nucleation
and growth kinetics. We developed a quasi-steady state solver that computes the
crystal size distributions in TBL, bulk, and sediment for a given setup of the
chamber.

We analyzed the TBL process and found out that the inflow distribution sig-
nature is observable in the sediment merely for small temperature contrasts (i.e,
∆T < 1 K) and has a marginal impact on the mean crystal radius. Furthermore,
we performed a thorough parametric study, which led to the identification of four
distinct end-members (pure dust-like, dust-like dominance, stone-like dominance,
and pure stone-like regimes) for the distribution in the sediment, each directly
reflecting the prevailing settling mechanism. This is a key result as it indicates
that it is necessary to look not only at the characteristic crystal size (i.e., the
mean radius) but rather at the shape of the observed distributions. The de-
pendence of the mean radius on the convective vigor, controled by the unknown
temperature contrast ∆T , is rather weak - this is a disappointing result, but the
absence of the predicted quasi-Dirac distribution, associated with purely stone-
like regime (essentially Stokes sinking), suggests that thermal convection inside
magma chambers is vigorous.

Furthermore, we outlined our future ambitions - the presented model is ready
to be coupled with the thermal evolution of the overlying region through a 1D heat
equation. This will allow us in the future to capture the evolution of the mean
crystal radius with the depth of the sediment, something that can be directly
compared to observations.
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Attachment
The code 1DNGMC is written in Python 3 and is divided into several modules:

• module mPar.py: contains classes with parameters, constants, and boolean
switches for individual computational methods (0-generation vs. step-by-
step, method of distributions vs. crystal tracing, linear vs. Hortian kinetic
laws, settling dynamics)

• module mFunc.py: contains auxiliary functions, developed data structures,
classes, and saving procedures

• module mPhase.py: contains solvers for the TBL and bulk processes, com-
putes steady state crystal size distributions Φtbl(a), Φsed(a), and Φblk(a)

• module mPlot.py: responsible for the post-processing of an individual run

• module main.py: unit containing the main solidification loop, responsible
for all apriori and aposteriori calculations

The developed code either computes the snapshot (or evolution, for constant
∆T and TB so far) for a given setup. Additionally, the code is automatized for
parallel computations of an arbitrary number of models, including automatized
post-processing (modules mCombs.py and mRuns.py), in the bash script exe.sh.
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