
BACHELOR THESIS

Andrei Lupasco

Deep Neural Networks for Graph Data
Processing

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: doc. RNDr. Iveta Mrázová, CSc.
Study programme: Computer Science with

specialization in Artificial
Intelligence

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

To my supervisor, doc. RNDr. Iveta Mrázová, CSc., for her guidance and support
throughout the work on the thesis.
To Fabiana, my dearest friend, for her encouragement and help with the graphics
in the thesis.

Title: Deep Neural Networks for Graph Data Processing

Author: Andrei Lupasco

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Graph Neural Networks (GNNs) are a powerful tool for handling
machine-learning tasks on graph-structured data. Because of the distinct nature
of graph data, traditional neural networks are not directly applicable to it. Most
GNNs are based on the Weisfeiler-Lehman (WL) algorithm for graph isomorphism
testing. However, just like the WL algorithm, they are incomplete and incapable
of distinguishing certain graph structures. In this thesis, we provide an overview
of the current state of the art in GNNs, focusing on their application to molecular
data. We then present a novel approach to GNNs based on an algorithm for
planar graph isomorphism testing, which produces a unique, learnable graph
representation. Any sequential model can then use this representation, thus
bringing together the fields of GNNs and modern deep-learning techniques. We
evaluate the performance of our model on a dataset of molecules and compare it
against existing models.

Keywords: Graph Neural Networks, Deep Neural Networks, Graph Isomorphism,
Planar Graphs, Molecular Data

Contents

Introduction 6

1 Graphs 7
1.1 Graph Theory 101 . 7
1.2 Why Planar Graphs? . 8

2 Deep Learning 10
2.1 Multilayer perceptron . 10
2.2 Convolutional neural networks . 11
2.3 Recurrent neural networks . 14
2.4 A Primer on Graph Neural Networks 17

2.4.1 What are graph neural networks? 17
2.4.2 Why are graphs different? 18
2.4.3 Scarselli’s graph neural network 18
2.4.4 Message-passing neural networks 19
2.4.5 Graph Autoencoders . 22

2.5 GNNs and Graph Isomorphism 24

3 Learnable Planar Graph Representations 28
3.1 The KHC algorithm . 28

3.1.1 Why KHC? . 28
3.1.2 An overview of the KHC algorithm 28

3.2 A modification of the KHC algorithm 40
3.2.1 C-KHC: Handling disconnected graphs 40
3.2.2 L-KHC: KHC for learnable representations of planar graphs 42

3.3 Planar GNN . 43

4 Implemented Software 46
4.1 GraphMindKeras . 46
4.2 L-KHC implementation . 55

5 Supporting Experiments 57
5.1 NCI109 Dataset . 57
5.2 ZINC Dataset . 60

Conclusion 63

Bibliography 65

List of Figures 70

List of Abbreviations 72

A Attachments 73
A.1 Source Code . 73
A.2 Datasets . 73

5

Introduction
Recent research has proven Graph Neural Networks (GNNs) to be highly

effective for processing graph-structured data, showcasing their ability to capture
the intricate relationships and interactions within these data structures. As
graphs arise naturally in a wide range of domains, from social networks to
molecules, developing efficient algorithms and models for processing them is of great
importance. In particular, the field of chemoinformatics and bioinformatics, which
often treat molecules as graphs, can significantly benefit from the advancements
in graph neural networks, as advances in this field could lead to breakthroughs in
drug discovery, drug analysis, etc., which in turn could have a significant beneficial
impact on the healthcare industry and, ultimately, on human health.

In this thesis, we explore the current state of the art in graph neural networks,
with a focus on their application on molecular data. They have been already
successfully applied to solve real-world problems [1], [2], [3]. We will explore the
various types of graph neural networks, examining their benefits and addressing
their limitations. Moreover, we will present a novel approach to graph neural
networks, specialized in planar graphs, aiming to address some of the limitations of
existing models, as well as constructing a bridge between the fields of graph neural
networks and modern deep learning techniques. It achieves this by producing a
graph representation that can be fed into a traditional deep learning model, thus
benefiting from the advancements in the field of deep learning while still being
able to process graph data.

The thesis is structured as follows: in Chapter 1, we provide a quick introduc-
tion to graph theory and planar graphs. Chapter 2 is dedicated to the theoretical
background of deep learning, as well as the basics of graph neural networks. In
Chapter 3, we present an algorithm for testing isomorphism of planar graphs,
which is a crucial part of our research. We then proceed to explain our modification
of this algorithm, which is used to generate a learnable graph representation, as
well as the architecture of the model that uses this representation. Chapter 4
provides an overview of the software accompanying this thesis. Finally, in Chapter
5, we compare the performance of our model against existing models on a dataset
of molecules and discuss the results.

6

1 Graphs
1.1 Graph Theory 101

Graphs represent a powerful mathematical tool for modeling relational data.
They can naturally describe complex relationships between entities in a wide
range of domains, from social networks to molecules. We define a graph as a tuple
G = (V,E), where:

• V is a set of vertices, also called nodes.

• E ⊆ V × V is a set of edges, i.e., connections between vertices.

In this thesis, we will consider only undirected graphs, which have the property
that (vi, vj) ∈ E ⇔ (vj, vi) ∈ E. We say that 2 vertices vi, vj ∈ V are adjacent if
there is an edge between them, i.e., (vi, vj) ∈ E. The neighborhood of a vertex is
a set N(vi) = {vj ∈ V |(vi, vj) ∈ E}. The degree of a vertex is the number of its
neighbors, i.e., d(vi) = |N(vi)|. We call a path a sequence of vertices v1, v2, . . . , vk

such that vi is adjacent to vi+1 for all i ∈ {1, 2, . . . , k−1}. 2 vertices are connected
if there exists a path between them. A graph is connected if all pairs of vertices
are connected. A graph is biconnected if it cannot be disconnected by removing a
single vertex. Respectively, a graph is triconnected if it cannot be disconnected by
removing any 2 vertices.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V ,
E ′ ⊆ E. A connected component of a graph is a maximal connected subgraph, i.e.,
a subgraph that is connected and cannot be extended by adding more vertices
from the original graph. A biconnected component, and respectively a triconnected
component, is a maximal biconnected, and respectively triconnected, subgraph.
An articulation point of a graph is a vertex whose removal disconnects the graph.

A subdivision of a graph is a graph resulting from the subdivision of its edges.
The subdivision of an edge (v, u) ∈ E is the operation of adding a new vertex w
and replacing the edge (v, u) with the edges (v, w) and (w, u).

We say that a graph is planar if it can be drawn in the plane without any
edges crossing, and such a drawing is called a planar embedding.

An isomorphism between 2 graphs G1 = (V1, E1) and G2 = (V2, E2) is a
bijective function φ : V1 ↦→ V2 such that (vi, vj) ∈ E1 ⇔ (φ(vi), φ(vj)) ∈ E2.

The graph isomorphism problem in computer science is the problem of, given
2 graphs, determining whether they are isomorphic.

For general graphs, the graph isomorphism problem is not an easy one. Despite
the amount of research on this topic, to this day, there is no known polynomial-
time algorithm for solving the graph isomorphism problem, nor is it known to
be NP-complete. Thus, the graph isomorphism problem is believed to be in the
complexity class NP-intermediate. Another known problem in this class is the
integer factorization problem. However, for certain classes of graphs, the graph
isomorphism problem can be solved in polynomial time. One such instance is the
case of planar graphs, for which the problem can be solved in logarithmic time [4].

Traditionally, there are 2 approaches to storing graphs into the memory of a
computer: the adjacency matrix and the adjacency list. The adjacency matrix is

7

a |V | × |V | matrix, where the entry Aij is 1 if there is an edge between vertices
vi and vj, and 0 otherwise. The adjacency list is a list of lists, where each list
corresponds to a vertex, and contains the vertices adjacent to it.

1.2 Why Planar Graphs?
Bioinformatics and cheminformatics often treat molecules as graphs, where

atoms are vertices and bonds are edges. Using this representation, the vast
majority of molecules, albeit not all, can be represented as planar graphs [5]. This
is due to the fact that, by Kuratowski’s theorem [6], a graph is planar if and
only if it does not contain a subgraph that is a subdivision of K5 or K3,3, where
K5 is the complete graph on 5 vertices and K3,3 is the complete bipartite graph
on 3 vertices in each partition. It is difficult to synthesize a molecule with such
a property, and thus for most practical purposes, molecules can be considered
planar.

Figure 1.1 The structure of caffeine (C8H10N4O2), a molecule that can be represented
as a planar graph.

The planarity of molecules’ graphs is a property that can be exploited in
the development of algorithms, since the restriction to planar, as opposed to
general graphs, often allows for more efficient algorithms. One such example is the
above-mentioned polynomial-time algorithm for the graph isomorphism problem
on planar graphs [4]. Thus, specializing in planar graphs could allow the usage of
techniques unsuitable for general graphs, which could help improve the healthcare
industry by simplifying the process of drug discovery, drug analysis, etc., a benefit
that can not simply be overlooked.

8

Figure 1.2 Examples of non-planar molecules. All contain subdivisions of K3,3.
Atoms and bonds included in the subdivisions are drawn in heavy lines. Image source:
[5].

9

2 Deep Learning
2.1 Multilayer perceptron
The perceptron

Artificial neural networks are computational models inspired by the structure
of the human brain, which is made out of interconnected neurons. A neuron is a
cell consisting of several organelles. However we’ll focus on only two of them: the
dendrites and the axon. The dendrites recieve input signals from some neurons
(in the form of electrical impulses), and the axon transmits the output signal to
other neurons or to the muscles. See Figure 2.1 for a visual representation of a
neuron.

axon terminals

axon

dendrites

Figure 2.1 The structure of a neuron.

A historically important attempt at modeling the behavior of neurons was
the perceptron model [7]. The perceptron is a simple model of a single neuron,
which takes a vector of inputs x ∈ Rn, and produces a single output y ∈ {0, 1},
i.e., a binary classification of the data. The output is computed by the following
formula:

y =

⎧⎨⎩1 if ∑︁n
i=1 wixi + b > 0

0 otherwise

where wi are the weights of the inputs, and b is the bias term.
Back to the analogy with the neuron, the input vector x corresponds to the

strength of the electrical impulses received by the dendrites, while the weights w
and the bias b correspond to the sensitivity of the said dendrites to the impulses.

The advantage of the model is that the weights (as well as the bias) are
learnable, i.e., they can be adjusted during training in order to minimize the
classification error.

10

However, the perceptron model has its limitations, as it can only classify
linearly separable data. It was shown it cannot learn the XOR function [8], which
is a simple example of a non-linearly separable function.

The multilayer perceptron

The limitations of the perceptron model have motivated the development of
more complex models. The multilayer perceptron (MLP) [9] is a generalization of
the perceptron model, which consists of multiple layers of perceptrons arranged
in a feed-forward manner. The output of a perceptron in the i-th layer is used as
input for the perceptrons in the (i+ 1)-th layer. The output of the last layer is the
output of the network. See Figure 2.2 for an example. Moreover, to increase the
expressive power of the model and to overcome the limitations of the perceptron,
the output of each layer is passed through a non-linear activation function, such
as the sigmoid, the hyperbolic tangent, or the rectified linear unit (ReLU).

The behavior of the i-th layer of an MLP can be described by the following
formula:

hi = σ(Wihi−1 + bi)
where hi is the output of the i-th layer, Wi are the learnable weights of the layer
(in the form of a matrix), bi is the learnable bias vector, and σ is the activation
function.

Contrary to the perceptron model, MLPs can be trained for a variety of tasks
besides binary classification, such as regression, multi-class classification, etc. The
training of an MLP can be performed in multiple ways, but by far, the most
popular is the backpropagation algorithm, which is a form of the gradient descent
algorithm [10]. It adjusts the weights and biases of the network in order to
minimize a loss function, which quantifies the error of the network on the training
data. The weights are adjusted by computing the gradient of the loss function
with respect to the weights and updating the weights in the opposite direction of
the gradient.

2.2 Convolutional neural networks
Convolutional Neural Networks (CNNs) [11], [12] have become a cornerstone

of modern machine learning, particularly in tasks involving structured data, e.g.,
image, signal, and natural language processing. Structured data is data that has
additional, hidden relationships between its elements. For example, in an image,
neighboring pixels have highly correlated values. In a text, the meaning of a
word depends more heavily on the words in the immediate vicinity rather than
on the words that are far away. Convolutional neural networks are designed to
exploit these relationships and do so efficiently. Despite the fact that CNNs were
primarily developed for image processing, and they have been most successful in
this domain, we will rather focus on convolutions applied to 1D data, such as time
series, as they are more relevant to the topic of this thesis.

The efficiency of CNNs is best illustrated by the following example. Consider
a sequence of 124 words, each represented by a vector of size 124. We want to
map the whole sequence to a feature vector of size 124, which would represent
the semantic meaning of the sequence. A valid option would be to flatten the

11

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

Output
layer

Figure 2.2 A multilayer perceptron consisting of 5 layers. We call the first 4 layers
the hidden layers and the last layer the output layer.

sequence into a vector of size 124 × 124, and to pass it to a fully connected layer
(MLP) with 124 outputs. However, this approach requires 1243 parameters and
quickly becomes infeasible for larger sequences.

We can improve the above method by exploiting the structure of the data.
More specifically, connections between words that are far away from each other
are less important than the connections between neighboring words, and thus, we
may omit them. This is exactly what the convolution operation does. One way to
think of this operation is that we’re sliding a filter over the input sequence. For
each position of the filter, we multiply the overlapping values of the sequence and
the filter and sum up the results. Figure 2.3 provides a visual representation of
the convolution operation.

Formally, given an input sequence of shape (L,Cin), where L is the length of
the sequence and Cin is the number of channels (features) of the sequence, and
a filter of shape (K,Cin), where K is the length of the filter, the output of the
convolution operation is a sequence of shape (L−K + 1, 1), and is computed as
follows:

yi =
K−1∑︂
j=0

xT
i+jfj =

K−1∑︂
j=0

Cin−1∑︂
k=0

xi+j,kfj,k

where x is the input sequence, f is the filter, and y is the output sequence.
If we want multiple output channels, we can simply use multiple filters and

stack their results. The output of the convolution operation is then a sequence of
shape (L−K + 1, Cout), where Cout is the number of filter channels.

Sometimes, we want to keep the length of the output sequence the same as the
input sequence. This can be achieved by using padding. Padding is the process of
adding zeros to the beginning and the end of the input sequence, which allows us
to get an output of shape (L,Cout).

For extremely long sequences, we can use a technique called strided convolution.
Strided convolution is the process of skipping some of the positions of the filter,

12

Filter (kernel)Input Output

(a)

Filter (kernel)Input Output

(b)

Figure 2.3 A visualization of the sliding convolution operation.

13

which allows us to reduce the length of the output sequence. This can be useful
when we want to reduce the computational cost of the convolution operation. It
is important to note that as long as the size of the filter is larger than the stride,
each position of the input sequence will be used in the computation of at least
one output position.

Back to the example of the sequence of words, we can use a convolutional layer
with a filter of size 3 (a matrix of shape (3, 124) to account for the input channels).
To achieve the desired number of channels in the output, we simply use 124 different
filters. We also use padding to keep the length of the output sequence the same as
the input sequence. This way, we only have 3 × 124 × 124 = 3 × 1242 parameters,
which is a significant improvement over the previous method. Moreover, contrary
to the previous method, the number of trainable parameters does not depend on
the length of the input sequence, but only on the size of the filter and the number
of input/output channels.

2.3 Recurrent neural networks
Recurrent neural networks (RNNs) [13], [14], are a family of neural networks

designed to work with sequential data, i.e., data that has a temporal structure.
Examples of sequential data include time series, text, and audio. RNNs achieve
this by introducing a hidden state, which is a lossy summary of the data seen so
far and is computed at each time step alongside the output of the network. The
hidden state is then used as input for the next time step (thus the name recurrent
neural networks), which allows the network to remember the information from the
previous time steps. Consult Figure 2.4 for a visual representation of the RNN
neuron.

Formally, given a sequence of inputs x(1), x(2), ..., x(T), and an initial hidden
state h(0), the outputs of the RNN, and the next hidden states are computed as
follows:

(y(t), h(t+1)) = f(x(t), h(t))

where f simulates the RNN cell, which is a learnable differentiable function that
takes the input x(t) and the current hidden state h(t), and produces the output
y(t) and the next hidden state h(t+1). The output y(t) is then used for the task at
hand, e.g., classification, regression, etc.

This model provides several advantages over traditional MLPs for sequential
data:

1. The same transition function f with the same parameters can be used at
each time step.

2. The size of the model is independent of the length of the sequence. This is
because the same weights are used at each time step, and the hidden state
is used to remember the information from the previous time steps.

RNNs are also trained using the backpropagation algorithm. To be able to
use it, we need to unfold the RNN, i.e., unroll the network for a fixed number of
time steps, and treat it as a feed-forward neural network (see Figure 2.5).

14

ƒ

x

y

h

Figure 2.4 The structure of a single RNN neuron.

ƒ

x(0)

y(0)

ƒ

x(1)

h(1)

h(0)
h(2) h(T)

…

y(1)

ƒ

x(T)

y(T)

h(T+1)

Figure 2.5 The unfolded RNN for T time steps. The same weights and function f
are used at each time step.

However, when the input sequence gets too long, simple RNNs suffer from the
vanishing gradient problem, or its counterpart, the exploding gradient problem. In
other words, the gradients of the loss function with respect to the weights of the
network become too small or too large, which makes the training of the network
unstable. To this day, the most efficient RNN architecture addressing this issue is
the gated RNN, which we will discuss further.

LSTM

The Long Short-Term Memory (LSTM) [15] architecture elegantly solves the
problem of vanishing/exploding gradients by introducing a more complex cell
structure (gates), and a second hidden state, called the cell state. The gates
correspond to matrix multiplications with the learnable weights, followed by a
sigmoid or a hyperbolic tangent activation function. The output of the gates is
then used to control the flow of information in the cell.

15

The behavior of the LSTM cell is described by the following formulae:

ft = σ(Wf · [ht, xt] + bf)
it = σ(Wi · [ht, xt] + bi)
ot = σ(Wo · [ht, xt] + bo)
C̃t = tanh(WC · [ht, xt] + bC)

Ct+1 = ft ∗ Ct + it ∗ C̃t

ht+1 = ot ∗ tanh(Ct)

where ft, it, ot are the forget, input, and output gates, respectively, C̃t is the
candidate cell state, Ct is the cell state, and ht is the hidden state, as well as the
output of the cell. Wf ,Wi,Wo,WC are the learnable weights of the gates, and
bf , bi, bo, bC are the learnable biases.

The forget gate ft controls how much of the previous hidden state ht is kept
in the new cell state Ct+1. The input gate it controls how much of the previous
hidden state ht is added to the new cell state. The output gate ot controls how
much of the previous hidden state is used to compute the new one, ht+1. Figure
2.6 depicts in detail the structure of the LSTM cell.

Figure 2.6 The structure of the LSTM cell.

GRU

The Gated Recurrent Unit (GRU) [16] is a simpler version of the LSTM
cell, which has been shown to be as expressive as the LSTM, while having fewer
parameters. The GRU cell has only 2 gates, the reset gate rt and the update gate
zt, and a single hidden state ht.

16

The behavior of the GRU cell is described by the following formulae:

zt = σ(Wz · [ht, xt] + bz)
rt = σ(Wr · [ht, xt] + br)
h̃t = tanh(Wh · [rt ∗ ht, xt] + bh)

ht+1 = (1 − zt) ∗ ht + zt ∗ h̃t

where zt is the update gate, rt is the reset gate, h̃t is the candidate hidden
state, and ht is the hidden state, as well as the output of the cell. Wz,Wr,Wh are
the learnable weights of the gates, and bz, br, bh are the learnable biases. Figure
2.7 depicts in detail the structure of the GRU cell.

Figure 2.7 The structure of the GRU cell.

2.4 A Primer on Graph Neural Networks

2.4.1 What are graph neural networks?
Graph Neural Networks (GNNs) are a family of neural networks designed to

work with graphs. Unless we’re talking about generative GNNs, the input of a
GNN is a graph. In the deep learning setting, a graph is usually represented by
its adjacency matrix. Moreover, in order to correspond with real-world data, the
graph may have additional information. For example, each vertex of the graph
may have a feature vector, which represents its properties. Analogously, the same
can be true about edges, but we will restrict our discussion to the case where

17

the edges have no features. A GNN aims to learn a function on the graph, i.e.,
its structure and its node features, and to produce an output, which is usually a
classification, regression, or clustering of the graph.

Formally, for a graph G = (V,E), with the adjacency matrix A, and the node
feature matrix X (each row of X is a feature vector of a vertex), the goal of a
GNN is to learn a function f such that y = f(A,X), where y is the output of the
network.

2.4.2 Why are graphs different?
In computer science, graphs are usually represented via their adjacency matri-

ces. One way to make it an input for a neural network is to flatten the adjacency
matrix into a vector. Formally, given a graph G = (V,E), and its adjacency
matrix A, we could use as input the vector x = A[1] ⊕ A[2] ⊕ ...⊕ A[|V |], where
A[i] is the i-th row of the adjacency matrix, and ⊕ is the concatenation operator.
The issue with this approach is that x depends on the ordering of the vertices
that was chosen when constructing A, which was completely arbitrary and bears
no information about the structure of the graph itself. In other words, given a
permutation matrix P , a second adjacency matrix A′ = PAP T would produce a
completely different vector x′, even though they represent the same graph. The
deep learning models that we have described so far are not invariant to the ordering
of the input, and thus they would not be able to learn from such a representation.

Formally, a function f that takes an adjacency matrix as input, and produces
a vector z = f(A), has to obey one of the following properties:

• Permutation invariance: f(PAP T) = f(A) for any permutation matrix
P .

• Permutation equivariance: f(PAP T) = Pf(A) for any permutation
matrix P .

Intuitively, permutation invariance means that the function f is indifferent
to the ordering of the vertices, while permutation equivariance means that the
function f cares about the ordering, but the output is permuted in a consistent
way with the input.

The same is true for graph neural networks. Since their goal is to approximate
a given function on a graph (or its adjacency matrix), they have to be invariant
or equivariant to the ordering of the vertices.

2.4.3 Scarselli’s graph neural network
The first graph neural network was proposed by Scarselli et al. [17]. Its

innovative idea was to introduce a hidden state for each vertex of the graph and
update the hidden state of each vertex by using the hidden states of its neighbors.
Initially, the hidden state of each vertex is its feature vector. The hidden state is
then used to compute the output of the network. The model is then a composition
of two functions: the transition function and the output function. Let G = (V,E)
be a graph with the adjacency matrix A and the node feature matrix X. Let hv

and xv be the hidden state and the feature vector of the vertex v, respectively.
The model can then be formalized as follows:

18

1. Transition function f : h(t)
v = f(h(t−1)

v , {h(t−1)
u |u ∈ N(v)}, xv, {xu|u ∈

N(v)})

2. Output function g: y(t)
v = g(h(t)

v , xv)

Intuitively, the transition function f computes the new hidden state of the
vertex v by aggregating its neighbors’ hidden states and features. The output
function g then computes the output corresponding to the vertex v based on its
hidden state and its feature vector.

The transition function f is of special interest, as it has inspired the develop-
ment of many other GNNs. It is defined as:

h(t)
v =

∑︂
u∈N(v)

φ(h(t−1)
u , xu),

where φ is a learnable parametric function.
The permutation invariance of the model is obtained by the fact that the

transition function f is a sum of the hidden states of the neighbors, and summation
is permutation invariant. Many other GNNs are based on this idea, and they
differ in the choice of the function φ.

Moreover, to assure that hv is uniquely defined, the transition function f has to
be a contractive mapping, i.e., ||f(h(t−1)

v , {h(t−1)
u |u ∈ N(v)}, xv, {xu|u ∈ N(v)}) −

f(h(t−1)
v′ , {h(t−1)

u |u ∈ N(v′)}, xv′ , {xu|u ∈ N(v′)})|| ≤ ||h(t−1)
v − h

(t−1)
v′ ||∀v, v′ ∈ V ,

where || · || is the Euclidean norm. By Banach’s fixed-point theorem, a contractive
mapping has a unique fixed point, which is going to be the unique hidden state of
the vertex v. To obtain the said fixed point, the transition function f is applied
iteratively on the hidden states of the vertices, until convergence. This makes the
model recurrent in nature. However, this idea, unlike the previous ones, was not
adopted by the later GNNs.

2.4.4 Message-passing neural networks
The model proposed by Scarselli et al. [17] was the first of its kind, and it has

inspired many other models. Despite their differences, most of them share the
ideas present in Scarselli’s model, and they can be generalized via the paradigm
of message-passing neural networks [18], [19].

The idea behind message-passing neural networks is once again to introduce
a hidden state for each vertex of the graph. The hidden state will be iteratively
updated during each learning step (epoch). The message-passing update rule can
be formalized in the following way:

h(t+1)
v = UPDATE(t)(h(t)

v ,AGGREGATE(t)({h(t)
u |u ∈ N(v)}))

UPDATE(t)(h(t)
v ,m

(t)
N(v)),

where h(t)
v is the hidden state of the vertex v at the t-th iteration, UPDATE

is a differentiable function, and AGGREGATE is a differentiable, permutation
invariant function. m(t)

N(v) represents the message being passed from the neighbors
of the vertex v to it at the t-th iteration. Both UPDATE and AGGREGATE

19

are learnable functions that are continuously updated during the training of the
network, and the superscript (t) denotes their version at the t-th iteration.

During the k-th iteration of the training algorithm, for a vertex v, the
AGGREGATE function computes, based on the set of hidden states of the neigh-
bors of v, a message m(k)

N(v). The message is supposed to summarize the information
present in v’s neighborhood. The UPDATE function then computes the new hid-
den state of v based on the message m(k)

N(v) and the current hidden state h(k)
v . This

way, the state of v is updated to contain the information its neighbors had at
k − 1-th iteration. Moreover, its neighbors’ hidden states at k − 1-th iteration are
containing the information from their respective neighbors at k − 2-th iteration,
and so on. In such a manner, the information is propagated through the graph, and
if done long enough, the hidden states of the vertices are updated to contain the
information from the whole graph. Note that we have defined the AGGREGATE
function to take a set as input, which means that it is permutation invariant.
Figure 2.8 provides an overview of the message-passing scheme.

Figure 2.8 Overview of how a vertex aggregates information from its neighbors during
multiple iterations. Source: [19].

The basic message-passing model

Many implementations of the AGGREGATE and UPDATE functions are
possible. One of the simplest models is the following:

m
(t)
N(v) =

∑︂
u∈N(v)

h(t)
u

h(t+1)
v = σ(φ(h(t)

v) + ψ(m(t)
N(v))),

where σ is a non-linear activation function, and φ and ψ are learnable functions
(usually MLPs). The AGGREGATE function is a simple sum of the hidden states
of the neighbors. Since summation is commutative, the function is permutation
invariant.

Graph Convolutional Neural Networks

One of the most successful models obeying the message-passing paradigm is
the Graph Convolutional Neural Network (GCN) [20]. It adds two ideas to the
message-passing model:

20

1. Self-loops: An edge is added from each vertex to itself, thus extending the
definition of a neighborhood of a vertex to include it as well. This allows
the vertex to propagate its own information in the AGGREGATE phase.

2. Normalization: The aggregation operation is normalized by the degree
of the vertex. The intuition behind this is to prevent vertices with many
neighbors from having hidden states with too large magnitudes and thus
dominating the learning process.

The GCN model can be formalized as follows:

m
(t)
N(v) =

∑︂
u∈N(v)∪{v}

1√︂
|N(v)||N(u)|

h(t)
u

h(t+1)
v = ψ(m(t)

N(v)),

where |N(v)| is the degree of the vertex v, and ψ is a learnable function. Notice
that the UPDATE function is now a simple MLP, which takes the aggregated
message as input. Because of the self-loops, there is no need for the UPDATE
function to take the hidden state of the vertex as input, as it is already included in
the message. Moreover, the AGGREGATE function is normalized by the square
root of the product of the degrees of the vertices.

Graph Attention Networks

Another popular model based on the message-passing paradigm is the Graph
Attention Network (GAT) [21]. It was inspired by the success of the attention
mechanism in the field of natural language processing [22], [23], and it expands
the idea of attention to graph neural networks. The model is trying to assign an
attention coefficient, i.e., a weight, for each neighbor of a vertex, which denotes
its importance. These coefficients are then used during the aggregation phase as
follows:

m
(t)
N(v) =

∑︂
u∈N(v)

αv,uh
(t)
u

h(t+1)
v = ψ(m(t)

N(v)),

where ψ is a learnable function, and αv,u is the attention coefficient between
the vertices v and u.

There are many approaches to computing the attention coefficients. One of
the most popular is the following:

αv,u = exp(φ(hv, hu))∑︁
t∈N(v) exp(φ(hv, ht))

,

where φ is a learnable function, usually an MLP, and exp is the exponential
function. It is important to note that the attention coefficients are normalized
by the sum of the exponential of the similarities between the vertex v and its
neighbors. This way, the attention coefficients are in the range [0, 1], and they
sum up to 1.

21

In addition to this, as inspired by the transformers architecture [23], the
GAT model can be extended to use multiple attention heads. In brief, each
attention head has its individual learnable parameters, and thus its individual
attention coefficients. On the other hand, they all compute a hidden state of lower
dimensionality. The hidden states of the attention heads are then concatenated
and passed through an MLP to produce the final hidden state of the vertex.

Graph Pooling

The message-passing paradigm we have described, together with all its vari-
ations, are computing a hidden state for each vertex of the graph. However, in
many cases, we are interested in the whole graph, rather than in its individual
vertices, e.g., to perform a graph classification task. Thus, the following question
arises naturally: “How can we summarize the information from the hidden states
of the vertices into a single vector, which represents the whole graph?”.

The techniques that address this question are called graph pooling methods.
The main principle they must obey is that they have to work in a permutation
invariant fashion, just like the message-passing models. As seen previously, a
simple yet efficient way to summarize the information from the hidden states of
the vertices would be to simply sum them up, or perform a normalized sum, e.g.,
the average. We will stick to the summation pooling technique.

2.4.5 Graph Autoencoders
One more task we’re interested in when it comes to graphs is the task of graph

reconstruction, which itself is closely related to the task of graph generation.
Generative graph neural networks were also inspired by successes in the field

of deep generative models. One such prominent example are the variational
autoencoder models (VAEs) [24], which have inspired the development of the
Graph Autoencoders (GAEs) and Variational Graph Autoencoders (VGAEs) [25],
[19]. The goal of the VGAE model is to train a probabilistic decoder model p(A|Z),
which would be able to construct the adjacency matrix A (and thus a graph),
given some information Z about the graph, which we call a latent variable. Figure
2.9 provides a visual representation of the VGAE model.

log

exp(log)

,

*

Figure 2.9 The structure of the Variational Graph Autoencoder model.

However, to be able to train the decoder model, we need to have a probabilistic
encoder model q(Z|G), which would be able to infer the latent variable Z from the

22

graph G. The encoder model is usually a graph neural network, which computes
the hidden state of the graph, and then maps it to the latent variable Z. When
the training is done, the decoder model p(A|Z) can then act independently, and
generate new graphs by sampling Z ∼ p0(Z) from some prior distribution p0(Z).
More formally, the VGAE model consists of the following components:

• A probabilistic decoder model p(A|Z), which takes as input a latent
variable Z, and outputs the adjacency matrix A.

• A probabilistic encoder model q(Z|G), which takes as input a graph G,
and outputs the latent variable Z.

• A prior distribution p0(Z) over the latent space of the variable Z. A
common choice is the standard normal distribution, i.e., Z ∼ N (0, I).

Then, given a dataset of graphs D = {G1, G2, ..., GN}, the goal of the VGAE
model is to minimize the following loss function, called the evidence likelihood
lower bound (ELBO):

L =
∑︂

Gi∈D

Eq(Z|Gi)[p(Gi|Z)] − KL(q(Z|Gi)||p0(Z)),

where KL is the Kullback-Leibler divergence between the encoder distribution
q(Z|G) and the prior distribution p0(Z). The intuition behind the ELBO loss is
that it is trying to maximize the similarity between the decoder and the encoder,
while minimizing the divergence between the encoder and the prior distribution.

The encoder model

The encoder uses two separate GNNs (as discussed in the previous section),
usually Graph Convolution Networks. They aim to learn the parameters of the
distribution q(Z|G), which is a Gaussian distribution with the mean µ and the
variance σ2. The encoder model is then defined as follows:

µ = GNNµ(A,X)
log σ = GNNσ(A,X),

where GNNµ and GNNσ are arbitrary graph neural networks, and A and X
are the adjacency matrix and the node feature matrix of the graph G = (V,E)
taken as input, respectively. In this case, µ ∈ R|V |×d and σ ∈ R|V |×d, are matrices,
where d is the dimension of the latent variable Z. They are matrices instead of
vectors to allow for the latent variable to be different for each vertex of the graph.

Next, the latent variable Z is computed as:

Z = ϵ ∗ exp(log σ) + µ,

where ϵ is a random sample from the standard normal distribution, i.e.,
ϵ ∼ N (0, I), and ∗ denotes the element-wise multiplication.

23

The decoder model

Given the latent variable Z ∈ R|V |×d, the decoder model is learning the
posterior distribution of adjacency matrices conditioned on the latent variable. In
other words, its goal is to predict the likelihood of the presence of an edge between
each pair of vertices, given the latent variable Z. In the original paper [25], the
authors have used a fairly simple technique for the decoder. The likelihood of the
presence of an edge between the vertices v and u is computed as:

p(A′[v, u] = 1|zv, zu) = σ(zT
v zu),

where σ is the sigmoid function, and zv and zu are the latent variables of the
vertices v and u, respectively.

Next, we assume that the presence of an edge between each pair of vertices is
independent, and we compute the likelihood of the adjacency matrix A as:

p(A′|Z) =
∏︂

v,u∈V

p(A′[v, u] = 1|zv, zu).

Non-probabilistic graph autoencoders

A simplification of the VGAE model is the Graph Autoencoder (GAE) model.
The latent variable Z, and the reconstructed adjacency matrix A′ are computed
as follows:

Z = GNN(A,X)
A′ = σ(ZZT),

where GNN is a graph neural network, and σ is the sigmoid function.

2.5 GNNs and Graph Isomorphism
Graph Isomorphism

Recall that an isomorphsim between two graphs G1 = (V1, E1) and G2 =
(V2, E2) is a bijective function φ : V1 ↦→ V2, s.t. (vi, vj) ∈ E1 ⇔ (φ(vi), φ(vj)) ∈ E2.
The problem of testing for graph isomorphism in computer science is the problem
of determining whether such a bijection exists between 2 given graphs. Intuitively,
for two graphs to be isomorphic, they must be essentially identical. Isomorphic
graphs represent the same underlying structure, the same relationships between
vertices, but they may have a different ordering of the vertices. Formally, we may
say that two graphs G1, G2, with their adjacency matrices A1 and A2, as well as
node feature matrices X1 and X2, are isomorphic if there exists a permutation
matrix P , such that A1 = PA2P

T and X1 = PX2.
It is important to note that the ordering of the vertices we choose when

representing a graph via its adjacency matrix (or any other permutation-sensitive
representation) is completely arbitrary, and it bears no information about the
structure of the graph itself. Despite the simple definition of the graph isomorphism
problem, it is computationally difficult to solve. One naive approach would be

24

to check all possible permutation matrices P , and stop when we find one that
satisfies the above conditions. However, the time complexity of such an approach
would take O(|V |!) time, which makes the algorithm infeasible for graphs on more
than a few dozen vertices.

Moreover, no polynomial-time algorithm is known for the graph isomorphism
problem, nor is it known for it to be NP-complete, and therefore it is believed to
be in the complexity class NP-intermediate (NPI) [26]. For example, the integer
factorization problem is another problem suspected to be in NPI. However, there
are practical algorithms that can solve the graph isomorphism problem for many
classes of graphs. Most of them do so by computing a canonical code for a graph,
such that two graphs are isomorphic if and only if they have the same canonical
code. One of the most well-known algorithms for this is the Weisfeiler-Leman
(WL) test [27].

Graph Isomorphism and the power of GNNs

The idea of graph isomorphism is helpful for quantifying the power of graph
neural networks. Most GNNs, at some point during the execution (usually in the
late stages), compute a representation of the input graph zG ∈ Rd, where d is the
dimension of the representation. This representation is then used for the task at
hand, such as node classification, graph classification, etc. We may then pose the
question: “Can this representation zG be used in testing for graph isomorphism?”.
More specifically, a “perfect” GNN would be able to compute a representation zG

such that zG1 = zG2 if and only if G1 and G2 are isomorphic. In other words, the
representation zG would be a canonical code for the graph G.

Clearly, such a “perfect” practical GNN can’t exist unless P=NP. Nevertheless,
the idea of asserting the expressivity of GNNs by testing for graph isomorphism may
be useful, especially in the context when most isomorphism tests are specifically
producing canonical codes for the graphs.

The Weisfeiler-Leman Algorighm

The Weisfeiler-Leman (WL) algorithm [19] is a simple, yet efficient way of
testing graph isomoprhism. For a given graph G, the algorithm computes a
canonical code of the graph, such that two graphs are isomorphic if and only if
they have the same canonical code. We will present an outline of a version of the
algorithm, which ignores edge features, and requires discrete vertex features, e.g.,
vertex labels. Figure 2.10 provides an example of the iterative labeling process of
the WL algorithm.

The algorithm works as follows:
1. Given graph G as input, we assign an initial label to each vertex, l0(vi) =
ζ(vi), where ζ(vi) is the initial feature vector of the vertex vi. If the graph
does not have vertex features, or they are not discrete, set l0(vi) = deg(vi),
where deg(vi) is the degree of the vertex vi, i.e., the number of neighbors of
vi.

2. Iteratively assign a new label to each vertex. We compute the label of the
vertex vi at iteration t as follows:

lt(vi) = Hash(lt−1(vi), {lt−1(vj)|vj ∈ N(vi)})

25

where N(vi) is the set of neighbors of vi, and Hash is a hash function that
produces a new, unique label from the previous labels.

3. Repeat step 2 until convergence, i.e., until no new labels are assigned.

4. Construct the canonical code of the graph as the multiset of the labels of
the vertices.

Figure 2.10 Example of the iterative labeling process of WL. Source: [19].

While the WL algorithm is quite successful, it is not complete. There are
known examples of non-isomorphic graphs that the algorithm fails to distinguish.
Figure 2.11 provides an example of such graphs.

Figure 2.11 Example of non-isomorphic graphs that WL fails to distinguish. Source:
[19].

Limitations of Message-passing neural networks

The Weisfeiler-Leman algorithm is similar to a message-passing neural network.
Both of them iteratively use the features of a vertex, together with its neighbors, to
compute a new feature for the vertex. The Hash function from the WL algorithm
can be seen as a combination of both Aggregate and Update functions from the
message-passing neural networks. In fact, message-passing neural networks have
been heavily inspired by the WL algorithm, and are an attempt to generalize it
to continuous and differentiable vertex features.

However, just like the WL algorithm, message-passing neural networks have
their limitations. This can be formalized by the following theorem:

Theorem ([19], [28], [29]). Define a message-passing graph neural network to
be any GNN that consists of K message-passing layers of the following form:

h(k+1)
v = UPDATE(k)(h(k)

v ,AGGREGATE(k)({h(k)
u |u ∈ N(v)})),

26

where UPDATE is a differentiable function, and AGGREGATE is a differen-
tiable, permutation invariant function. Moreover, assume that the initial vertex
features are discrete and the edges have no features. Then, for any K, h(K)

v ̸= h(K)
u

only if the vertices v and u have different labels after K iterations of the WL
algorithm.

In other words, the expressive power of message-passing neural networks is
upper-bounded by the power of the Weisfeiler-Leman algorithm. This means
that, just like the WL algorithm, message-passing based GNNs can’t distinguish
between certain non-isomorphic graphs. This result is motivating the development
of other types of GNNs, such as the one presented in this thesis.

27

3 Learnable Planar Graph
Representations
3.1 The KHC algorithm

3.1.1 Why KHC?
Recent research has produced many polynomial time algorithms for planar

graph isomorphism [30], [4], with the best-known result being in log space [4].
Most of them do so by computing a canonical code for a graph, such that two
graphs are isomorphic if and only if they have the same code. Despite these
thrilling theoretical results, the practicality of these algorithms is often limited,
as they are not easily implementable in practice. Moreover, these algorithms
actively modify the input graph during execution, which makes adapting them to
a learnable setting difficult.

Contrary to these algorithms, the one proposed by Kukluk, Holder, and Cook
[31], hereafter referred to as the KHC algorithm, is simpler in both its original
form, as well as modifying it to output a representation of the graph suitable for
deep learning. Just like other algorithms, it computes a canonical code for a graph.
Its downside, however, is the fact that for a graph G = (V,E), the algorithm
runs in O(|V |2), which is theoretically worse than the best-known algorithms. We
believe that this is a negligible downside, as most molecule datasets contain graphs
with a number of vertices in the order of tens. Thus, a quadratic time complexity
is reasonable, while the exponential time complexity of naive algorithms is not.

A recent paper [32] has also taken inspiration from the KHC algorithm by
building a neural network that mimics the algorithm’s behavior. However, we take
a different approach by modifying the algorithm itself to output a representation
of the graph, which can then be fed into a traditional deep learning model.

3.1.2 An overview of the KHC algorithm
The KHC algorithm for constructing the canonical code of a connected graph

can be summarized as follows:

Algorithm 1: A short summary of the KHC algorithm
Input: A connected graph G = (V,E)
Output: The canonical code of the graph, a list of symbols

1 Decompose G into a tree of biconnected components;
2 Decompose each biconnected component into an SPQR-tree and its

triconnected components;
3 Compute the canonical code of each triconnected component;
4 In a bottom-up manner, merge the codes of the triconnected components

of each SPQR-tree node to get the code of the biconnected compoennts;
5 Still, in a bottom-up manner, merge the codes of the biconnected

components to get the code of G;

28

In what follows, we will describe each algorithm step in more detail. However,
feel free to refer to the original paper [31] for a more in-depth explanation.

Decomposing into biconnected components

The first step of the KHC algorithm is to decompose the input, a connected
graph, into its blocks-and-cuts tree [33]. This data structure is a tree, where
the nodes can be of 2 types: blocks and cut vertices. A block is a biconnected
component of the graph, and a cut vertex is an articulation point, i.e., a vertex
whose removal would disconnect the graph. It is important to note that the
articulation points appear both in cut vertices and blocks, as they may also be a
part of a biconnected component. There is an edge between a block and a cut
vertex if the articulation point corresponding to the cut vertex is also part of the
block. See Figures 3.1 and 3.2 for an example of a graph and its blocks-and-cuts
tree.

43

1

2

Figure 3.1 An example of a graph and its single articulation point, namely the vertex
labeled “3”.

3 3 43

1

2

B0 B1

Figure 3.2 The blocks-and-cuts tree of the graph from Figure 3.1. The blocks are
labeled as B0 and B1. The middle “3” is the cut vertex.

29

The code of a graph from the codes of its articulations and biconnected
components

The algorithm computes the code of the input graph by merging the codes
of its biconnected components and articulation points. However, their respective
codes are computed in different ways. The biconnected components will be
further decomposed into triconnected components to compute their codes. On the
other hand, the articulation points will serve as a way to merge the codes of the
biconnected components into the code of the whole graph. Thus, we will store
the codes of the articulation points in a dictionary and will incrementally build
their codes as we merge the codes of the biconnected components. The codes of
the biconnected components will be computed and immediately added to their
respective cut vertices. This step of the algorithm can be summarized as follows:

Algorithm 2: Merging the codes of the biconnected components
Input: A connected graph G = (V,E)
Output: The canonical code of the graph, a list of symbols

1 Build T , the blocks-and-cuts tree of G;
2 Initialize a dictionary A, from the articulation points to their codes;
3 Initialize a dictionary B, from the biconnected components to their codes;
4 while Number of nodes in T > 1 do
5 foreach C - leaf in T , a biconnected component do
6 B[C] = FindBiconnectedCode(C, A);
7 end
8 foreach a - articulation point adjacent to a leaf C in T do
9 A[a]append(“(A”);

10 Append the codes of a’s neighbors which are leaves in T to A[a] in
lexicographical order;

11 A[a]append(“)A”);
12 end
13 Delete all leaves from T ;
14 Delete from T all the cut vertices with degree 1;
15 end
16 v = the remaining node in T ;
17 if v is a cut vertex then
18 return A[v];
19 if v is a block then
20 return B[v];

SPQR-trees

A SPQR-tree [34] is a tree data structure used to decompose a biconnected
graph into triconnected components. In the KHC algorithm, it is used to compute
the canonical code of a biconnected component by merging the codes of its tricon-
nected components. We will follow Gutwenger’s definition and implementation of a
linear time construction of SPQR-trees [35]. The first step of this implementation
is to make the graph directed by replacing each edge with a pair of directed edges
in opposite directions.

30

Depending on its type (to be elaborated later), a vertex of the SPQR-tree
represents a class of triconnected components. The component it refers to is called
the skeleton of the vertex. The skeletons are directed multigraphs, i.e., they can
have multiple edges between the same pair of vertices. It is important to note that
the same vertex can appear in multiple skeletons. The edges of the skeletons of the
SPQR-tree are of two types: real and virtual. A real edge connects two vertices
inside a skeleton if and only if the said edge was present in the original graph.
A virtual edge, on the other hand, is meant to represent a deeper connection
between two vertices, see [35] for more details. Moreover, each virtual edge inside
a skeleton has a twin virtual edge in the skeleton of another, connecting the same
two vertices, in the same direction. The edges of the SPQR-tree are edges in
between pairs of twin edges.

The nodes of the SPQR-tree are of three types:

• S-nodes represent a cycle graph on three or more vertices. “S” stand for
“Series”.

• P-nodes represent a dipole multigraph, i.e., a graph on two vertices with
one or more parallel edges. “P” stand for “Parallel”.

• R-nodes represent a triconnected component other than the above 2. “R”
stand for “Rigid”.

Originally, there was also a Q-node type associated with a trivial graph on
two vertices with a single edge. The implementation we use omits this type since
it is redundant, as it can be thought of as a special case of a P-node. See Figure
3.3 for an example of a biconnected graph and its corresponding SPQR-tree.

The code of a biconnected component from the codes of its triconnected
components

The algorithm will compute the canonical code of a biconnected component
by traversing its corresponding SPQR-tree. We start from the center of the tree,
which is defined as the middle node in every longest path in the tree. There may
be two centers, in which case we compute the codes for both centers and choose
the lexicographically smallest one.

The algorithm will then traverse the SPQR-tree from the center to the leaves,
in order to compute the codes of the triconnected components. Depending on
the type of the node, and whether it is a center or not, we will compute the code
of the triconnected component in different ways. Figure 3.4 shows the codes of
the triconnected components of the graph from Figure 3.1. Figure 3.5 shows the
codes of the biconnected components of the same graph.

Weinberg’s algorithm

The KHC algorithm uses as a subroutine Weinberg’s algorithm [36] for com-
puting the canonical code of a triconnected planar graph, and thus we will also
present an overview of Weinberg’s algorithm.

Recall that a planar embedding of a graph is a drawing of the graph in the plane
such that no edges cross. In computer science, we represent such an embedding

31

1

9

8

7

6
3

4

5

2

0

(a) A biconnected graph

S0

P1

T01 T02

T13 T14 T25

P2

S3 S4 R5

(b) SPQR-tree

3

10

12

2

20

20

20

98
5

S0

P1 P2

S3 S4

7

1 6

2 4

R5

T01 Tr01

T13 Tr13 T14 Tr14
T25 Tr25

T02 Tr02

(c) Detailed view of the skeletons and the edges of the SPQR-tree

Figure 3.3 An example of a biconnected graph and its corresponding SPQR-tree

32

Figure 3.4 The codes of the triconnected components of the graph from 3.1.

3 3 43

1

2

B0 B1

(B (S 6 1 *)S)B (B (P 2 0 *)P)B

Figure 3.5 The codes of the biconnected components of the graph from 3.1.

as a dictionary, where each vertex is associated with a list of its neighbors. In
this list, the neighbors are ordered in the counterclockwise order in which they
appear in the embedding. Figure 3.6 shows an example of the two unique planar
embeddings of the same graph.

By Whitney’s theorem [37], a triconnected planar graph (which is not a cycle
graph or a dipole graph) has a unique planar embedding, up to equivalence.
Weinberg’s algorithm [36] takes advantage of this fact to compute a canonical
code for a triconnected planar graph.

The algorithm starts by substituting every edge of the graph with a pair of
directed edges in opposite directions. This way, we obtain a directed, strongly
connected graph, for which the in-degree of each vertex is equal to its out-degree.
According to Kőnig [38], this is a necessary and sufficient condition for a directed
graph to have an Eulerian circuit, i.e., a path that visits every edge exactly once
(in the direction of the edge), and returns to the starting vertex. We use this fact
to compute two codes (to exhaust the equivalence of embeddings) for each edge
of the digraph, each code being associated to a particular Eulerian circuit. We
call these codes code going right and code going left for the edge in question. We
will describe the procedure of computing the code going right for an edge; the

33

Figure 3.6 Two unique planar embeddings of the same graph. Source: [31].

computation of the code going left is symmetric. We define the first neighbor to
the right of a vertex v after reaching it via an edge (u, v) to be the neighbor of v
in the adjacency list of v from the planar embedding that appears immediately
after u.

While traversing the Eulerian circuit, we will assign new labels to the vertices,
and add them to the code, obeying the following rules:

• The starting vertex is labeled 1.

• When we traverse an edge, if the target vertex has not been labeled yet, we
assign it the smallest natural number that has not been used yet.

• Otherwise, we assign the target vertex the label it already has.

The Eulerian circuit for an edge (v1, v2) is travered in the following way:

• Start ar v1 and first traverse the edge (v1, v2).

• When reached a vertex vi via the edge (vi−1, vi), we do the following:

– If vi has not been visited yet, exit it via the first neighbor to the right.
– If vi has been visited, and the reverse edge (vi, vi−1) has not been

traversed yet, traverse it.
– Otherwise, exit vi via the first unused neighbor to the right.

Obviously, we stop when we have traversed all the edges of the digraph.
This way, we compute the codes going right and going left for each edge of the

digraph. We choose the lexicographically smallest code to be the canonical code
of the whole triconnected graph. It is able to uniquely identify the graph, up to
isomorphism. Figure 3.7 shows an example of the application of the algorithm on
a planar embedding.

34

Figure 3.7 An example of a triconnected planar graph and its canonical code computed
by Weinberg’s algorithm. Source: [31].

35

Algorithm 3: Computing the code of an edge inside a S-node
1 def code_S_edge(e_in, stop_edge, virtual_edge_codes, skeleton, A):

Input: The starting edge e_in of the tour of the S-node,
the edge stop_edge where the tour stops, the precomputed codes of
the virtual edges,
the skeleton of the S-node,
the dictionary of articulation points
Output: The code associated to the edge e_in

2 Initialize code as an empty string;
3 code.append(“(S”);

/* The number of edges in the skeleton */
4 code.append(skeleton.size());
5 Initialize tour_edge_codes as an empty list;
6 Initialize tour_counter as 0;
7 while True do
8 if e_in is a virtual edge then
9 code.append(tour_counter);

10 tour_edge_codes.extend(virtual_edge_codes[e_in]);
11 end
12 v = the end vertex of e_in;
13 if v is an articulation point then
14 code.append(tour_counter);
15 code.append(“∗”);
16 code.append(A[v]);
17 end
18 e_in = the next edge from v in the same direction as e_in;
19 tour_counter += 1;
20 if e_in == stop_edge then
21 break;
22 end
23 end
24 code.extend(tour_edge_codes);
25 code.append(“)S”);
26 return code;
27 end

36

Algorithm 4: Computing the code of a S-node
1 def code_S_center(center, A, spqr_tree):

Input: A central S-node,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a central S-node

2 Initialize virtual_edge_codes as an empty dictionary;
3 foreach e - virtual edge in the skeleton of center do
4 virtual_edge_codes[e] = code_virtual(e, center, A, spqr_tree);
5 end
6 return min{code_S_edge(next edge after e, next edge after e,

virtual_edge_codes, center, A) | edge e ∈ skeleton of center}
7 end
8 def code_S_non_center(e_in, node, A, spqr_tree):

Input: An S-node that is not a center,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a non-central S-node

9 Initialize virtual_edge_codes as an empty dictionary;
10 foreach e - virtual edge in the skeleton of node do
11 virtual_edge_codes[e] = code_virtual(e, node, A, spqr_tree);
12 end
13 return code_S_edge(next edge after e_in, e_in,

virtual_edge_codes, node, A)
14 end

37

Algorithm 5: Computing the code of a vertex inside a P-node
1 def code_P_vertex(source_vertex, virtual_edge_codes, skeleton, A):

Input: The source vertex of the tour of the P-node,
the precomputed codes of the virtual edges,
the skeleton of the P-node,
the dictionary of articulation points
Output: The code associated to the vertex source_vertex

2 Initialize code as an empty string;
3 code.append(“(P ”);

/* The number of edges in the skeleton */
4 code.append(skeleton.size());
5 code.append(Number of virtual edges in the skeleton);
6 tour_codes = codes of virtual edges from virtual_edge_codes that are

going out of source_vertex;
7 Append the codes from tour_codes to code in lexicographical order;
8 if source_vertex is an articulation point then
9 code.append(“∗”);

10 code.append(A[source_vertex]);
11 end

/* The other vertex of the dipole */
12 if sink_vertex is an articulation point then
13 code.append(“∗”);
14 code.append(A[sink_vertex]);
15 end
16 code.append(“)P ”);
17 return code
18 end

38

Algorithm 6: Computing the code of a P-node
1 def code_P_center(center, A, spqr_tree):

Input: A central P-node,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a central P-node

2 Initialize virtual_edge_codes as an empty dictionary;
3 foreach e - virtual edge in the skeleton of center do
4 virtual_edge_codes[e] = code_virtual(e, center, A, spqr_tree);
5 end
6 return min{code_P_vertex(source vertex of e, virtual_edge_codes,

center, A) | vertex source_vertex ∈ skeleton of center}
7 end
8 def code_P_non_center(e_in, node, A, spqr_tree):

Input: A P-node that is not a center,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a non-central P-node

9 Initialize virtual_edge_codes as an empty dictionary;
10 foreach e - virtual edge in the skeleton of node do
11 virtual_edge_codes[e] = code_virtual(e, node, A, spqr_tree);
12 end
13 return code_P_vertex(source vertex of e_in, virtual_edge_codes,

node, A);
14 end

Algorithm 7: Computing the code of an edge inside a R-node
1 def code_R_edge(e_in, virtual_edge_codes, skeleton, A):

Input: The starting edge e_in of the tour of the R-node,
the precomputed codes of the virtual edges,
the skeleton of the R-node,
the dictionary of articulation points
Output: The code associated to the edge e_in

2 Initialize code as an empty string;
3 code.append(“(R”);
4 Apply Weinberg’s algorithm to the skeleton of the R-node to get the

canonical code of the triconnected component;
5 Compute both the code going right and the code going left starting

from e_in;
6 if at any vertex v during Weinberg’s algorithm we encounter an

articulation point then
7 code_weinberg.append(“∗”);
8 code_weinberg.append(A[v]);
9 end

10 code.extend(min{code going right, code going left});
11 code.append(“)R”);
12 return code;
13 end

39

Algorithm 8: Computing the code of a R-node
1 def code_R_center(center, A, spqr_tree):

Input: A central R-node,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a central R-node

2 Initialize virtual_edge_codes as an empty dictionary;
3 foreach e - virtual edge in the skeleton of center do
4 virtual_edge_codes[e] = code_virtual(e, center, A, spqr_tree);
5 end
6 return min{code_R_edge(e, virtual_edge_codes, center, A) | edge

e ∈ skeleton of center}
7 end
8 def code_R_non_center(e_in, node, A, spqr_tree):

Input: An R-node that is not a center,
the dictionary of articulation points,
the SPQR-tree
Output: The code of a non-central R-node

9 Initialize virtual_edge_codes as an empty dictionary;
10 foreach e - virtual edge in the skeleton of node do
11 virtual_edge_codes[e] = code_virtual(e, node, A, spqr_tree);
12 end
13 return code_R_edge(e_in, virtual_edge_codes, node, A)
14 end

The output of the KHC algorithm is a list of integers and special symbols,
which can then be used to test for graph isomorphism.

Each element of the list represents one of the following:

• A natural number. Depending on the context, it may represent different
things, e.g., the number of vertices in the skeleton of a S-node, the id of a
virtual edge, etc.

• A special symbol, as follows:

– (S,)S - the beginning and end of the code of a S-node
– (P ,)P - the beginning and end of the code of a P-node
– (R,)R - the beginning and end of the code of a R-node
– (B,)B - the beginning and end of the code of a biconnected component
– (A,)A - the beginning and end of the code of an articulation point
– ∗ - the encounter of an articulation point

3.2 A modification of the KHC algorithm

3.2.1 C-KHC: Handling disconnected graphs
Many datasets of graphs, and even molecules, contain disconnected graphs.

This may seem counterintuitive, as a molecule should be connected, but it depends

40

on what an edge represents in the corresponding datasets. For example, some
datasets may consider only covalent bonds to be edges, thus an abundance of
other types of bonds may lead to a disconnected graph.

The KHC algorithm is designed to work on connected graphs; therefore, we
must modify it to handle disconnected graphs. We achieve this in the following
way:

Algorithm 9: C-KHC: Adjusted KHC for disconnected graphs
Input: A graph G = (V,E)
Output: The canonical code of the graph, a list of symbols

1 Decompose G into connected components G1, G2, . . . , Gk;
2 for i = 1 to k do
3 Compute the canonical code of Gi using the KHC algorithm;
4 Add special symbols (C ,)C to the beginning and end of the code to

mark the code of a connected component;
5 end
6 Sort the codes of the connected components in lexicographical order;
7 Concatenate the codes of the connected components, in the order of the

sorted list;

Theorem 1. Let G1, G2 be 2 planar graphs, and let z1, z2 be their canonical codes
computed using the adjusted KHC algorithm. Then G1 is isomorphic to G2 if and
only if z1 = z2.

Proof. Clearly, by adding the special symbols (C ,)C to the beginning and end of
the code of each connected component, the KHC algorithm maintains the property
that the code of a graph is unique up to isomorphism.

⇒: Let C1 be the set of connected components of G1, and C2 the set of
connected components of G2. Since G1 is isomorphic to G2, there exists a bijection
f : C1 ↦→ C2 such that for each connected component ci ∈ C1, f(ci) is isomorphic
to ci. Let khc(ci) be the canonical code of a connected component ci computed
using the modified KHC algorithm. By the correctness of the KHC algorithm,
we have that khc(ci) = khc(f(ci))∀ci. Thus, the sets Z1 = {khc(ci)|ci ∈ C1}
and Z2 = {khc(ci)|ci ∈ C2} are equal, and therefore a string made out of the
concatenation of their elements in a lexicographical order is the same for both G1
and G2.

⇐: Let z1 = z2. Each substring of both z1 and z2 that is enclosed in (C ,)C ,
without any of these two characters inside the respective substring, represents the
canonical code of a connected component. Let Z1 be the list of these substrings
in z1, and Z2 the list of these substrings in z2, in the order of their appearance in
the respective string. Since z1 = z2, we have that Z1 = Z2. Each element of Z1 is
the canonical code of a connected component of G1, and each element of Z2 is the
canonical code of a connected component of G2. Thus, by the correctness of the
KHC algorithm, and because Z1 = Z2, we have that each connected component of
G1 is isomorphic to the corresponding connected component of G2. Therefore, G1
and G2 are unions of isomorphic connected components and thus are isomorphic
themselves.

41

3.2.2 L-KHC: KHC for learnable representations of planar
graphs

The canonical code computed by the KHC algorithm is a list of integers and
special symbols, which is unsuitable for deep learning techniques. We propose one
more modification to the KHC algorithm, which will be called L-KHC, which will
output a representation of a planar graph that is suitable for deep learning, and
which still maintains the property that two graphs are isomorphic if and only if
they have the same representation. We achieve this in 2 steps:

• Whenever adding a symbol C to the code, be it an integer or a special
symbol, we instead add a pair of the form (C,F), where F is a feature vector
associated with the symbol C. For example, when adding a special symbol
(S, we instead add ((S, F), where F is a feature vector (a one-hot encoding)
associated with the special symbol (S. The KHC algorithm, however, needs
its elements to be totally ordered, as it uses lexicographical orders of sub-
codes to compute the canonical code. To achieve this, we define a total
order on the set of all pairs. Thus, for 2 pairs (C1, F1) and (C2, F2), we
have that (C1, F1) < (C2, F2) if and only if C1 < C2, and (C1, F1) = (C2, F2)
if and only if C1 = C2. In other words, the second element of the pair is
completely ignored during the computation of the canonical code, and will
only be used in the deep learning model. We then define the total order of
the codes in the following way: 2 codes z1 and z2 are equal if and only if
they have the same length, and for each i, the i-th element of z1 is equal to
the i-th element of z2.

• The codes of S, P , and R nodes encompass a traversal of the associated
triconnected component, where each vertex is visited at least once. We
may thus add the features of all nodes to the code, by adding a pair of the
form (0, Fv) for each vertex v visited during the traversal, where Fv is the
feature vector associated with the vertex v. Since 0 is the same key for
all vertices, and because 0 cannot be produced anywhere else in the code,
this addition will not affect the code, and we will prove it formally in the
following theorem.

Theorem 2. Let G1, G2 be two planar graphs, and let z1, z2 be their representations
computed using the modified, learnable version of the KHC algorithm. Then G1
is isomorphic to G2 if and only if z1 = z2.

Proof. It is clear that the first item of the modification maintains this property,
for the second member of the pair is completely ignored during the computation
of the canonical code. We will then focus on the second item of the modification,
more specifically on the addition of the features of the vertices to the code.

Let A be the set of possible codes that the original version of the KHC
algorithm can output. Let B be the set of possible codes that C-KHC can output.
We’ll prove that our modification, namely f : A ↦→ B, is a bijection. Let z1, z2 ∈ A
be 2 codes such that z1 ̸= z2. Since for any z ∈ A, f(z) is obtained by adding
elements of the form (0, F), we have that f(z1) ̸= f(z2). Thus, f is injective. Let
t ∈ B. t is obtained by adding elements of the form (0, F) to the code during the
traversal of a triconnected component, without changing the lexicographical order

42

of the respective code. Thus, there exists a code z ∈ A such that f(z) = t, and
therefore f is surjective. Since f is both injective and surjective, it is a bijection.
By the correctness of the original KHC algorithm, it then follows the statement
of the theorem.

To obtain a learnable representation of a planar graph, we will simply use
L-KHC algorithm, which outputs a list z of pairs for a graph G. We then define
the feature vector associated with G to be x = [F1, F2, . . . , Fk], where Fi is the
feature vector associated wtih the i-th element of z, and k is the length of z.

Since the graph level feature x consists of a vector of features of both vertices
and special symbols, we need a way to map them to a common vector space. We
will use simple one-hot embeddings for the special symbols. Assume a dataset of
graphs contains vertex features of dimension dv. Then, the dimension of Fi ∈ x is
dv + 14, as there are 13 special symbols, and the 14-th additional dimension is for
integers. Figure 3.8 shows the feature vector associated with the special symbol
of the beginning of a P-node, and Figure 3.9 shows the feature vector associated
with a vertex.

(A*)A (B)B (P)P (S)S (R)R (C)C Integer

. . .F1 =

dv

Vertex features

14

0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 3.8 The feature vector associated with the special symbol of the beginning of
a P-node.

(A*)A (B)B (P)P (S)S (R)R (C)C Integer

. . .F2 =

dv

Vertex features

14

0 0 0 0-0.25 -0.72 0.54 0.81 0.19 0 0 0 0 0 0 0 0 0 0

Figure 3.9 The feature vector associated with a vertex.

3.3 Planar GNN
Traditional GNNs are a separate branch of deep learning. Although some GNN

architectures were inspired by advances in deep learning, e.g., the graph attention
networks, graph convolutions, etc., the branch was developing independently of
the whole field of machine learning. The novelty of the Planar GNN architecture
that we propose is that it can help reunifying the fields of graph neural networks
and the rest of deep learning. This is because L-KHC outputs a representation of
a planar graph, which is analogous to the adjacency matrix or adjacency vector
representations, but which can then be used by any sequential neural network
architecture, e.g., RNNs, transformers, etc.

43

The Planar GNN pipeline consists of 2 steps: preprocessing and the Planar
GNN architecture itself. The preprocessing step is the L-KHC algorithm, which
for a given graph dataset, outputs a vector of the representations of the graphs in
the dataset. This step is visualized in Figure 3.10. This procedure must be done
only once for any given dataset, as the representations can be saved and reused
for further experiments. As for the Planar GNN architecture, its only requirement
is to be able to process sequential data. The architecture we propose is shown in
Figure 3.11. It can briefly be described as follows:

1. An input to the model is a sequence of vectors of shape (L, Fin), where L is
the length of the sequence, and Fin is the dimension of the input features.

2. Several linear layers are applied to the input sequence in order to obtain a
sequence of vectors of shape (L, Fl), where Fl is the dimension of the output
features. This is done in order to increase the dimensionality of the input
features and to allow the model to learn more complex patterns.

3. The sequence of vectors is then passed through a recurrent neural network,
e.g., an LSTM, GRU, etc. We then discard all but the last hidden state of
the RNN, which is a vector of shape (Fr, 1). This vector summarizes all the
information about the input graph.

4. The vector is then passed through a series of linear layers in order to obtain
the desired output. The output can be a vector of shape (Fout, 1), where
Fout is the dimension of the output features. Alternatively, the output can
be a scalar, a binary value, etc., depending on the task.

Back to the relationship between graph isomorphism and graph neural networks,
the Planar GNN architecture is a so-called “Perfect GNN”, as it can perfectly
distinguish between non-isomorphic graphs. This is because the L-KHC algorithm,
which serves as the preprocessing step of the architecture, outputs a representation
of a planar graph that is unique up to isomorphism.

Graph
Dataset

Processing
 step

encoding of an
element of the

code
code length

Processed dataset

L - KHC
of
graphs

Figure 3.10 The preprocessing step of the Planar GNN architecture.

44

Fully connected layers

Processed graph dataset

Fully connected layers

Output

Convolutional layers

Recurrent layers

Figure 3.11 The Planar GNN architecture.

45

4 Implemented Software
4.1 GraphMindKeras
Introduction

This text outlines the software package called ”GraphMindKeras,” (A.1) that
we have developed as a support tool for this Bachelor’s thesis. This software
project aimed to provide a toolkit for the study and development of Graph Neural
Networks. It consists of well-known, classical GNN models, such as the Graph
Convolutional Network (GCN) and Graph Attention Network (GAT).

The toolkit is written in Python 3 [39], uses the Keras framework [40], and is
implemented with the help of only Keras operations. We chose Keras, because we
wanted to address a large pool of potential users, and not limit it to a specific
back-end framework, e.g., PyTorch [41] or TensorFlow [42]. In conclusion, we
didn’t choose a back-end, at least at this stage. On the contrary, Keras is back-end
agnostic, meaning it can run on top of any of the aforementioned frameworks, which
boosts sustainability in the realm of rapidly evolving deep learning frameworks.
Thus, the users of GraphMindKeras can choose the back-end that best suits their
needs, and the code will run just fine regardless. The choice of the back-end is
done simply by specifying an environment variable. We provide examples for both
TensorFlow and PyTorch back-ends (A.1). Despite other back-end agnostic GNN
libraries, such as DeepGraph [43], GraphMindKeras is better integrated with its
back-end, providing the user more flexibility and control over the training process.

We focus on data from TUDataset [44], which is a collection of graph datasets,
but any dataset of graphs obeying the same format (to be specified later) can be
used.

Memory layout

Traditionally, in machine learning, graphs are represented via their adjacency
matrix, which facilitates the implementation of many algorithms. The drawback
of this representation is that it is not memory efficient, as it requires Θ(N2)
memory (i.e., both worst-case and best-case), regardless of the number of edges in
a graph, where N is the number of nodes in the graph. In practice, however, most
graphs are sparse, and thus the adjacency matrix is mostly empty, leading to a
waste of memory. To address this issue, we have used a more memory-efficient
representation, the edge list, which requires Θ(E) memory, where E is the number
of edges in the graph. Therefore, when taking into account the requirements for
machine learning, a graph is represented via the following tensors:

• Node features: a tensor of shape (N,Fv), where N is the number of nodes
in the graph, and Fv is the dimension of the node features.

• Edge list: a tensor of shape (E, 2), where E is the number of edges in the
graph, and each row represents an edge, with the first element being the
source node, and the second element being the target node.

• Node degrees (only for convolution): a tensor of shape (N, 1), where each
element represents the degree of the corresponding node.

46

When working with a dataset of graphs, the hardware usually requires that
all graphs are of the same size. This considerably facilitates computations on a
GPU. We achieve this by padding the corresponding tensors with zeros. Thus,
we pad the edge list with zeros, and its final shape is (Emax, 2), where Emax is
the maximum number of edges in the dataset. Now, since we have used the 0-th
vertex to denote the padding, i.e., the lack of a connection in the edge list, we
require that the 0-th (first) row of the node features and node degrees tensors to
be filled with zeros as well. This is because the dummy 0-th vertex shouldn’t have
any features. Additionally, we still have to pad the latter two tensors with zeros,
to account for the variable size of graphs, and their final shapes are (Nmax + 1, Fv)
and (Nmax + 1, 1), respectively, where Nmax is the maximum number of nodes in
the dataset, and ”+1” is due to empty 0th row.

To facilitate the loading of datasets into memory, we provide the
read_dataset() function. It reads a dataset in the TUDataset format [44] from
the hard-disk, processes it, and returns the node features, edge list, node degrees,
and graph features tensors representing the dataset.

A graph dataset in the TUDataset format consists of multiple files, as follows:

• A.txt: each line corresponds to an edge, and the first element is the source
node, and the second element is the target node.

• graph_indicator.txt: the value on the i-th line is the graph id of the i-th
node.

• graph_labels.txt: the value on the i-th line is the class label of the i-th
graph.

• node_labels.txt: the value on the i-th line is the class label of the i-th
node.

• more optional files, adding more properties to the nodes or edges, or even
the graphs.

Figure 4.1 provides an example of the above-discussed TUDataset format
encoding.

Keras GNN layers

The main building block of Keras models is layers (keras.layers). They
represent an abstract operation on some tensors, e.g., a matrix multiplication,
concatenation of tensors, an activation function, etc. Keras layers can form
complex networks, together forming a model (keras.Model), which in turn
orchestrates the layers.

To obey this framework, we have implemented all our GNN operations as
classes inheriting from keras.layers.Layer. This allowed them to be integrated
into the whole Keras ecosystem, and thus their API is the same as the one of
traditional Keras layers.

A goal of of this project was to keep the memory footprint minimal, and to
achieve this, the layers operate in a gather-scatter fashion. They first gather the
necessary information from the input tensors, perform the intended operations,
and scatter the results back into output tensors. At no point during the execution

47

A.txt graph_labels.txt
1,2
1,3
2,3
3,4
4,5
3,5
6,7
7,8
8,9
7,9
9,10

1
0

graph_indicator.txt node_labels.txt
1
1
1
1
1
2
2
2
2
2

0
1
2
1
0
0
1
1
1
0

Figure 4.1 An example of a dataset consisting of the butterfly and bull graphs in the
TUDataset format. Different colors represent different node labels.

48

of the layers, a data structure of size Θ(N2) is created, e.g., the adjacency matrix,
attention coefficients, etc.

The following GNN layers are implemented. They all accept the common
Keras layer arguments, such as name, trainable, etc.:

• GatherNodes(). The constructor accepts no additional arguments (other
than the default Keras layer arguments). The call() method accepts as
input a tuple of 2 tensors. The first tensor is the node features tensor of
shape (N,Fv), and the second tensor is the edge list tensor of shape (E, 2).
The method returns a tensor of shape (E, 2, Fv), where each row represents
the source and target node features of an edge.

• ReduceGatheredNodesSum(). The constructor accepts no additional
arguments. The call() method accepts as input a tuple of 3 tensors. The
first tensor is the tensor returned by the GatherNodes layer, the second
tensor is the node features tensor of shape (N,Fv), and the third tensor is
the edge list tensor of shape (E, 2). The method returns a tensor of shape
(N,Fv), where each row represents the sum of the features of the neighbors
of the node at the corresponding index.

• ReduceNodesSum(). The constructor accepts no additional arguments.
The call() method accepts as input a single tensor: the node features
tensor of shape (N,Fv). The method returns a tensor of shape (Fv, 1), which
represents the sum of the node features of the whole graph.

• ApplyOverBatch(layer). The constructor accepts an instance of a Keras
layer as an argument. The call() method accepts as inputs the same
arguments as the input layer, but with an additional dimension at the
beginning, which represents the batch size. ApplyOverBatch unstacks
the batch of graphs, and iteratively applies the input layer over each graph.
It then stacks the results back together.

• SingleGraphConvolution(units, activation, use_bias). The con-
structor accepts three additional arguments: the number of output units
(the output dimension), the activation function to be applied to the output,
and a boolean flag indicating whether to use a bias term. The call()
method applies the convolution operation [20] over a single graph. It accepts
as input a tuple of 3 tensors: the node features tensor of shape (N,Fv), the
edge list tensor of shape (E, 2), and the node degrees tensor of shape (N, 1).
The method returns a tensor of shape (N,units). It uses internally the
GatherNodes and ReduceGatheredNodesSum layers.

• SingleHeadAttention(output_dim, activation, use_bias).
The constructor accepts three additional arguments: the output dimension,
the activation function to be applied to the output, and a boolean flag
indicating whether to use a bias term. The call() method applies the
attention operation [21] over a single graph. It accepts as input a tuple of 2
tensors: the node features tensor of shape (N,Fv), and the edge list tensor
of shape (E, 2). The method returns a tensor of shape (N,output_dim).
It uses internally the GatherNodes and ReduceGatheredNodesSum
layers.

49

• MultiHeadAttention(output_dim, num_heads, activation,
use_bias). The constructor accepts 4 additional arguments: the output
dimension, the number of heads, the activation function to be applied to
the output, and a boolean flag indicating whether to use a bias term. The
call() method applies the multi-head attention operation [21] over a single
graph, by internally applying num_heads SingleHeadAttention layers,
and concatenating the results. It accepts as input a tuple of 2 tensors: the
node features tensor of shape (N,Fv), and the edge list tensor of shape
(E, 2). The method returns a tensor of shape (N,output_dim).

Examples

A few examples of how to use the toolkit on a dataset of graphs from TUDataset
are provided in the examples folder (A.1). It includes examples of both the
GCN and GAT layers, as well as the read_dataset() function. To prove that
the toolkit is back-end agnostic, we have provided examples for both TensorFlow
(filenames with a “tf” suffix) and PyTorch (filenames with a “torch” suffix) back-
ends.

Demo

A typical usage of “GraphMindKeras” looks as follows:

1. Download a dataset from the TUDataset website (A.2). Alternatively, use a
dataset of graphs obeying the same format.

2. Load the dataset using the read_dataset() function.

3. Define the inputs to the neural network by specifying their shapes via the
keras.Input layer.

4. Build the model via the Keras API, by specifying all the layers and their
connections.

5. Compile the model by specifying the optimizer, loss function, and metrics.

6. Train the model by calling the .fit() method.

7. Test the model on unseen data by calling the .evaluate() method.

8. Save the model by calling the .save(path) method.

9. Load the model by calling the keras.models.load_model(path)
method.

10. Use the model for inference by calling the .predict() method.

50

Figure 4.2 A diagram of the workflow of GraphMindKeras. TUDataset depicts a
dataset stored in the TUDataset format. read_dataset() is the function that reads the
dataset from the hard-disk. To create a Keras model, we utilize both built-in layers,
as well as GraphMindKeras layers. The model is then compiled and trained on the
respective dataset.

51

Here, we’ll also provide a simple example of reading a dataset, building a
model, and training it on a dataset of graphs, while using PyTorch as the back-end.

import os
os.environ["KERAS_BACKEND"] = "torch"

import keras
import numpy as np
from keras import ops
from keras import optimizers
from model. layers.convolution import *
from model. layers.common_layers import *
from model.data.read_dataset import read_dataset

Load the dataset
dataset_path = "data/NCI109"

(
node_features_ds,
edge_list_ds,
degrees_ds,
graph_features_ds,

) = read_dataset(
dataset_path,
include_node_attributes=False ,
include_node_labels=True,

)

define the model via the functional API
first, define the input layers
edge_list_inputs = keras.Input(

shape=edge_list_ds[0].shape,
name="adjacency_inputs",
dtype="int32",

)
node_features_inputs = keras.Input(

shape=node_features_ds[0].shape,
name="node_inputs",

)
degrees_inputs = keras.Input(

shape=degrees_ds[0].shape, name="degrees"

52

)

convolution1 takes as input the node features ,
the edge list, and the degrees
convolution1 = ApplyOverBatch(

SingleGraphConvolution(
256,
activation=ops.relu ,
name="convolution1",

)
)(

[
node_features_inputs,
edge_list_inputs ,
degrees_inputs,

]
)

convolution2 takes as input the output of
convolution1 , the edge list, and the degrees
convolution2 = ApplyOverBatch(

SingleGraphConvolution(
256,
activation=ops.relu ,
name="convolution2",

)
)(

[
convolution1 ,
edge_list_inputs ,
degrees_inputs,

]
)

create a residual connection
residual = keras. layers.Add()(

[convolution1 , convolution2]
)

reduce the node features to a single graph feature
graph_features = ReduceNodeSum()(residual)

a few fully connected layers
graph_features = keras. layers.Dense(

256, activation="relu", name="dense"
)(graph_features)

graph_features = keras. layers.Dense(

53

256, activation="relu", name="dense2"
)(graph_features)

the output layer
outputs = keras. layers.Dense(

graph_features_ds.shape[1] ,
activation="sigmoid",
name="output",

)(graph_features)

build the model by specifying the inputs and outputs
model = keras.Model(

inputs=[
edge_list_inputs ,
node_features_inputs,
degrees_inputs,

],
outputs=outputs,

)

compile the model
model.compile(

optimizer=optimizers.Adam(learning_rate=1e 4) ,
loss ="binary_crossentropy",
metrics=["accuracy"],

)

Train the model
model. f i t (

[edge_list_ds, node_features_ds, degrees_ds],
graph_features_ds,
batch_size=32,
epochs=10,

)

Testing

To ensure the correctness of the implementations, we have generated a bunch
of random graphs, and compared the outputs of our layers against the expected
results, obtained by manually computing the operations in pure Python + NumPy
[45] (A.1).

Keras also provides tools for hyperparameter optimization, such as the
keras_tuner package. For testing the performance of a model on a dataset, the
method .evaluate() can be used. For performing statistical model validation
tests, traditionally the sklearn.model_selection [46] package is used, e.g.,
train_test_split, cross_val_score, etc.

54

Future work

The toolkit could be improved in several ways: adding more GNN architectures
in the form of Keras layers, adding support for more dataset formats, etc.

4.2 L-KHC implementation
Introduction

The same package, GraphMindKeras, hosts the implementation of the L-KHC
algorithm, which we have developed to be able to build learnable representations
of planar graphs, as described in Chapter 3.

In order to develop the extended L-KHC algorithm, we first needed an imple-
mentation of the original KHC algorithm [31]. However, to our big surprise, we
have found no implementation of the KHC algorithm on the web, regardless of
the language, and thus we had to implement it ourselves, based on the paper.

Both the KHC and L-KHC algorithms can be accessed at (A.1). They are
implemented in Python 3, with the help of the Sage library [47] for efficient graph
operations, as well as an implementation of the SPQR-tree [35].

We have tested the correctness of our implementations on a few datasets of
planar molecular graphs from the TUDataset collection (e.g., NCI109, FRANKEN-
STEIN, etc.). It has correctly labeled each pair of graphs as isomorphic if and
only if they were in fact so.

The file khc.py contains the implementation of the KHC algorithm. The
function find_planar_code(G) takes as input a Sage graph object, and returns
a list of integers, which represents the code of the graph. For better readability, we
also provide the function code_to_string(code), which converts the output of
find_planar_code(G) to a string, by replacing the ids of the special symbols
from the code with their corresponding names. Below, we also provide a simple
Python script that demonstrates the invocation of our implementation.
import sage.all as sageal l
from khc import find_planar_code, code_to_string

G = sageal l .Graph()
G.add_vertices(range(1, 5))
G.add_edges([(1, 2), (1, 3), (2, 3), (3, 4)])

code = find_planar_code(G)

print(code_to_string(code))

Output:
(C (A (B (P 2 0 *)P)B (B (S 6 1 *)S)B)A)C

The file l_khc.py, on the other hand, contains the implementation of the
L-KHC algorithm. However, as this algorithm makes sense only when applied
on a whole dataset of graphs, rather than a single instance, it provides the func-
tion l_khc(dataset, node_labels, node_attributes, regression). The
function takes as input the path to a dataset in the TUDataset format, and

55

has two outputs: the list of the codes of the graphs in the dataset (ready to be
used as input to a GNN), and the target outputs of the graphs. The argument
node_labels is a boolean flag indicating whether the dataset contains node
labels, and node_attributes is a boolean flag indicating whether the dataset
contains node attributes. The argument regression is a boolean flag indicating
whether the task is a regression task or a classification task.

The example below shows how to use the L-KHC algorithm on a dataset of
graphs from the TUDataset collection, and later store the results in a file via the
pickle module.

from khc.l_khc import l_khc
import pickle

dataset_path = "./data/NCI109"

codes, labels = l_khc(dataset_path, True, False , False)

with open("processed_dataset_NCI109.pkl", "wb") as f :
pickle.dump((codes, labels), f)

56

5 Supporting Experiments
In order to evaluate the performance of the L-KHC algorithm and the Planar

GNN we have proposed, we have conducted a series of experiments. We have
chosen three different graph datasets, each representing a set of molecules (and
thus planar graphs). The datasets were arbitrarily selected from the TUDataset
collection [44]. We have focused on datasets that focus on the binary classification
of molecules, as it is one of the most common tasks in chemoinformatics. We have
preprocessed the datasets with the L-KHC algorithm to generate codes for the
graphs. The neural network models were then trained on the codes to predict the
properties of the molecules.

The architecture we have used for the Planar GNN is the same across all
experiments, but we have used different hyperparameters for each dataset. The
best hyperparameters were found by performing a grid search on the validation
set. The architecture of the Planar GNN is as follows:

• 2 fully connected layers with ReLU activation function. We have limited
ourselves to 2 layers because they are universal approximators [48]. The
number of hidden units in each layer is a hyperparameter. The goal of these
layers is to generate a rich representation of the input.

• a 1D convolutional layer with ReLU activation function, kernel size 6 and
stride 3. The number of filters is a hyperparameter. The goal of this layer
is to compress the code in order to speed up the execution of the recurrent
layers, which is inherently sequential and thus slow.

• a layer of bidirectional GRU units. The number of units is a hyperparameter.
During experimentations, we found that there was no significant difference
between using GRU and LSTM units, and thus, we chose GRU units for
their simplicity.

• 2 fully connected layers with ReLU activation function, in order to generate
the output.

• a layer of 1 hidden unit with sigmoid activation function, for classification.

• a few dropout layers across the network, to prevent overfitting.

In all cases, we have used the Adam optimizer [49], binary cross-entropy loss,
and a batch size of 32. As it is usually accepted, we have split the dataset into
training and test sets, with a ratio of 80% and 20%, respectively. We have used
TensorFlow [42] to implement the models and Tensorboard to monitor the training
process.

5.1 NCI109 Dataset
The NCI109 dataset [50] is a dataset of graphs representing organic molecules,

provided by the National Cancer Institute (NCI, hence the name). The dataset
contains two classes of compounds: active or non-active against human ovarian

57

cancer. Therefore, advances on this dataset may have a direct impact on the
development of new anti-cancer drugs. The classes are evenly distributed in the
dataset. The dataset contains 4127 graphs, with an average of 29.6 vertices and
32.1 edges per graph. The only additional information provided is the class of
each vertex(atom), and there are 38 different classes of vertices in the dataset.
We have encoded these node features as one-hot vectors.

After preprocessing the dataset with the L-KHC algorithm, we have obtained
a tensor of shape (4127, 1526, 52), where the first dimension represents the number
of graphs in the dataset, the second - the length of the largest code (the shorter
codes are padded with zeros to match this length), and the third - the size of an
element of the code (38 classes + 14 special symbols from the L-KHC algorithm).

The best hyperparameters we have found for the Planar GNN are forming the
following network:

1. A fully connected layer with 256 hidden units and ReLU activation function

2. A dropout layer with a dropout rate of 0.5

3. A fully connected layer with 64 hidden units and ReLU activation function

4. A dropout layer with a dropout rate of 0.5

5. A 1D convolutional layer with 256 filters, kernel size 6 and stride 3

6. A bidirectional GRU layer with 256 units

7. A dropout layer with a dropout rate of 0.5

8. A fully connected layer with 512 hidden units and ReLU activation function

9. A dropout layer with a dropout rate of 0.5

10. A fully connected layer with 64 hidden units and ReLU activation function

11. A fully connected, output layer, with 1 hidden unit and sigmoid activation
function

The model was trained for 50 epochs, with a learning rate of 8.3e − 4, and
exponential decay with a rate of 0.96. On a computer with a Nvidia P100 GPU,
the training took around 10 minutes. Figure 5.1 shows the training and test
accuracy of the model, while Figure 5.2 shows the training and test loss. The
model achieved a test accuracy of 74.92 ± 1.53% (the higher, the better) when
performing a 5-fold cross-validation.

58

Figure 5.1 Training (black) and test (blue) accuracy of the Planar GNN on the
NCI109 dataset

Figure 5.2 Training (black) and test (blue) loss of the Planar GNN on the NCI109
dataset

Comparison to State-of-the-Art

This result is comparable to the state-of-the-art results on the dataset, as can
be seen in the table 5.3. Our Planar GNN typically outperforms message-passing
neural networks, such as graph convolution variants, e.g., GCN [20], EigenGCN-3
[51], and combinations of graph convolutional networks with graph attention, e.g.,
SAGPool_g [52] and GraphSage [53]. Nevertheless, it is still outperformed by
more complex models, such as WKPI-kC [54].

59

Method Accuracy (%)
Planar GNN 74.92 ± 1.53

SAGPool_g [52] 74.06 ± 0.78
SAGPool_h [52] 67.86 ± 1.41
GCN [20], [51] 70.7

GraphSage [53], [51] 70.3
EigenGCN-3 [51] 74.9
WKPI-kC [54] 87.4 ± 0.3

Figure 5.3 Comparison of the Planar GNN to state-of-the-art models on the NCI109
dataset (the higher, the better).

Overfitting

If we let the same model train for longer, i.e., 100 epochs, we can observe some
curious behavior. The training accuracy continues to increase, reaching close to
100%, while the test accuracy stagnates at around 75%, but it does not decrease.
However, as the loss on the training set continues to decrease, the loss on the
test set starts to increase. This behavior can be seen in Figures 5.4 and 5.5. We
believe this indicates that we have overachieved our initial goal: to help GNNs
better differenciate between graphs. In other words, the missclassified graphs, or
more specifically their representation, differs significantly from the graphs in the
training set, which leads to the model overfitting on the training set.

Figure 5.4 Training (black) and test (blue) accuracy of the Planar GNN on the
NCI109 dataset, trained for 100 epochs

5.2 ZINC Dataset
The second dataset we have tested our Planar GNN on is the ZINC dataset [55],

which is an incredibly popular benchmark for graph neural networks. Similarly to
the NCI109 dataset, the ZINC dataset contains graphs representing molecules;
however, here, the task is to regress the solubility of the molecules, which is a
real scalar. The dataset contains 250k graphs, but we have only used a subset of

60

Figure 5.5 Training (black) and test (blue) loss of the Planar GNN on the NCI109
dataset, trained for 100 epochs

12k graphs, as the dataset is too large to process on a single GPU. The average
number of vertices in the graphs is 23.15, and the average number of edges is
24.90. The dataset contains 20 different classes of vertices, which we have encoded
as one-hot vectors. The dataset also has classes for the edges, but we have not
used them in our experiments.

After preprocessing the dataset with the L-KHC algorithm, we have obtained
a tensor of shape (12000, 478, 34), where the first dimension represents the number
of graphs in the dataset, the second - the length of the largest code, and the third
- the size of an element of the code (20 classes + 14 special symbols from the
L-KHC algorithm).

The best hyperparameters we have found for the Planar GNN architecture on
the ZINC dataset are:

1. A fully connected layer with 256 hidden units and ReLU activation function

2. A dropout layer with a dropout rate of 0.5

3. A fully connected layer with 256 hidden units and ReLU activation function

4. A dropout layer with a dropout rate of 0.5

5. A convolutional layer with 256 filters, kernel size 6 and stride 3, and ReLU
activation function

6. A bidirectional GRU layer with 256 units

7. A dropout layer with a dropout rate of 0.5

8. A fully connected layer with 512 hidden units and ReLU activation function

9. A dropout layer with a dropout rate of 0.5

10. A fully connected layer with 256 hidden units and ReLU activation function

11. A fully connected, output layer, with 1 hidden unit and no activation
function (regression)

61

The model was trained for 50 epochs, using a MAE (mean absolute error) loss,
with a started learning rate of 1e− 3, with a reduce factor of 0.5 every 20 epochs.
The training took around 10 minutes on a Nvidia P100 GPU. After performing
a 5-fold cross-validation, the model has achieved a MAE of 0.3355 ± 0.009 (the
lower, the better). This is a decent result, outperforming most message-passing
neural networks. Table 5.6 provides a detailed comparison of the Planar GNN to
state-of-the-art models on the ZINC dataset. The results in the table (other than
the Planar GNN) are the result of a study conducted by Vijay et al. [56].

Method Accuracy (%)
Planar GNN 0.335 ± 0.009

GCN [20] 0.278 ± 0.003
GAT [21] 0.384 ± 0.007

GraphSage [53] 0.398 ± 0.002
GatedGCN [57] 0.435 ± 0.011

GIN [29] 0.526 ± 0.051

Figure 5.6 Comparison of the Planar GNN to state-of-the-art models on the ZINC
dataset (the lower, the better).

Discussion

The Planar GNN architecture has achieved promising, competitive results on
both the NCI109 and ZINC datasets, outperforming most message-passing neural
networks. This proves that the L-KHC algorithm is able to generate codes that
are useful for distinguishing between different graphs, and that the Planar GNN
is able to effectively process these codes.

62

Conclusion
Summary

In this thesis, we have studied the field of graph neural networks, with a focus
on their application to molecular data. Later on, we presented a novel approach
to graph neural networks based on the concept of graph isomorphism testing. Its
goals were to:

• Address the limitation of the current state-of-the-art graph neural networks
in the form of message-passing networks, which is the inability to distinguish
certain graph structures.

• Present a model capable of overcoming this limitation by producing a unique
representation of a graph based on the KHC algorithm for planar graph
isomorphism testing.

• Produce a graph representation that can be fed into a traditional deep
learning model, thus benefiting from the advancements in the field of deep
learning while still being able to process graph data.

• Construct a bridge between the fields of graph neural networks and modern
deep learning techniques.

• Develop a state-of-the-art graph neural network architecture capable of out-
performing existing models on the task of graph classification and regression.

We have achieved this by modifying the KHC algorithm for planar graph
isomorphism testing and introducing the Planar GNN architecture, which is
based on the former. The Planar GNN architecture has shown promising results
on the tasks of graph classification and regression, outperforming most existing
message-passing graph neural network architectures on the evaluated datasets.
Breakthroughs in the field of graph neural networks, and consequently chemoin-
formatics and bioinformatics, since graph-structured data is frequent in these
domains, could have a significant impact on the healthcare, materials industry,
and other fields. We hope the Planar GNN architecture will be a step in this
direction.

Moreover, we have developed a memory-efficient and portable toolkit for
building and training traditional graph neural networks.

Further Research

The Planar GNN architecture is a novel approach to graph neural networks,
and as such, there are many directions in which it can be further developed, for
example:

• Extension of the L-KHC algorithm to be able to process edge features.

• Exploration of other structures of the network capable of learning sequential
data, such as transformers.

63

• Extension of the architecture to a generative model capable of generating
graphs. This can be achieved by training the model to generate a L-
KHC representation of a graph based on some desired properties and then
reconstructing the molecule from this representation.

• Exploration of the architecture in other areas where planar graphs are
common, such as computer vision.

64

Bibliography
1. Wu, Yongji; Lian, Defu; Xu, Yiheng; Wu, Le; Chen, Enhong. Graph

Convolutional Networks with Markov Random Field Reasoning for Social
Spammer Detection. Proceedings of the AAAI Conference on Artificial
Intelligence. 2020, vol. 34, no. 01, pp. 1054–1061. Available from doi: 10.
1609/aaai.v34i01.5455.

2. Fout, Alex; Byrd, Jonathon; Shariat, Basir; Ben-Hur, Asa. Protein
Interface Prediction using Graph Convolutional Networks. In: Guyon,
I.; Luxburg, U. Von; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; Garnett, R. (eds.). Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2017, vol. 30. Available also from:
https://proceedings.neurips.cc/paper_files/paper/2017/file/
f507783927f2ec2737ba40afbd17efb5-Paper.pdf.

3. Khalil, Elias; Dai, Hanjun; Zhang, Yuyu; Dilkina, Bistra; Song, Le.
Learning Combinatorial Optimization Algorithms over Graphs. In: Guyon,
I.; Luxburg, U. Von; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; Garnett, R. (eds.). Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2017, vol. 30. Available also from:
https://proceedings.neurips.cc/paper_files/paper/2017/file/
d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf.

4. Datta, Samir; Limaye, Nutan; Nimbhorkar, Prajakta; Thierauf, Thomas;
Wagner, Fabian. A Log-space Algorithm for Canonization of Planar Graphs.
CoRR. 2008, vol. abs/0809.2319. Available from arXiv: 0809.2319.

5. Rücker, Christoph; Meringer, Markus. How many organic compounds
are graph-theoretically nonplanar? Match-communications in Mathematical
and in Computer Chemistry. 2002, vol. 45. Available also from: https:
//api.semanticscholar.org/CorpusID:115878158.

6. Kuratowski, Casimir. Sur le problème des courbes gauches en Topologie.
Fundamenta Mathematicae. 1930, vol. 15, no. 1, pp. 271–283. Available also
from: http://eudml.org/doc/212352.

7. Rosenblatt, Frank. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review. 1958, vol. 65
6, pp. 386–408. Available also from: https://api.semanticscholar.org/
CorpusID:12781225.

8. Minsky, M.; Papert, S. Perceptrons. Cambridge, MA: MIT Press, 1969.
9. Bishop, Christopher M.; Bishop, Hugh. Deep Neural Networks. In: Deep

Learning: Foundations and Concepts. Cham: Springer International Pub-
lishing, 2024, pp. 171–207. isbn 978-3-031-45468-4. Available from doi:
10.1007/978-3-031-45468-4_6.

10. Bishop, Christopher M.; Bishop, Hugh. Gradient Descent. In: Deep Learn-
ing: Foundations and Concepts. Cham: Springer International Publishing,
2024, pp. 209–232. isbn 978-3-031-45468-4. Available from doi: 10.1007/978-
3-031-45468-4_7.

65

https://doi.org/10.1609/aaai.v34i01.5455
https://doi.org/10.1609/aaai.v34i01.5455
https://proceedings.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://arxiv.org/abs/0809.2319
https://api.semanticscholar.org/CorpusID:115878158
https://api.semanticscholar.org/CorpusID:115878158
http://eudml.org/doc/212352
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://doi.org/10.1007/978-3-031-45468-4_6
https://doi.org/10.1007/978-3-031-45468-4_7
https://doi.org/10.1007/978-3-031-45468-4_7

11. Bishop, Christopher M.; Bishop, Hugh. Convolutional Networks. In: Deep
Learning: Foundations and Concepts. Cham: Springer International Pub-
lishing, 2024, pp. 287–324. isbn 978-3-031-45468-4. Available from doi:
10.1007/978-3-031-45468-4_10.

12. Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

13. Aggarwal, Charu. Recurrent Neural Networks. In: Neural Networks and
Deep Learning: A Textbook. Cham: Springer International Publishing, 2023,
pp. 265–304. isbn 978-3-031-29642-0. Available from doi: 10.1007/978-3-
031-29642-0_8.

14. Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

15. Hochreiter, Sepp; Schmidhuber, Jürgen. Long Short-Term Memory.
Neural Comput. 1997, vol. 9, no. 8, pp. 1735–1780. issn 0899-7667. Available
from doi: 10.1162/neco.1997.9.8.1735.

16. Cho, Kyunghyun; Merrienboer, Bart van; Gulcehre, Caglar; Bah-
danau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. 2014. Available from arXiv: 1406.1078 [cs.CL].

17. Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner,
Markus; Monfardini, Gabriele. The Graph Neural Network Model. IEEE
Transactions on Neural Networks. 2009, vol. 20, no. 1, pp. 61–80. Available
from doi: 10.1109/TNN.2008.2005605.

18. Gilmer, Justin; Schoenholz, Samuel S.; Riley, Patrick F.; Vinyals,
Oriol; Dahl, George E. Neural Message Passing for Quantum Chemistry.
CoRR. 2017, vol. abs/1704.01212. Available from arXiv: 1704.01212.

19. Hamilton, William L. Graph Representation Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. [N.d.], vol. 14, no. 3, pp. 1–
159.

20. Kipf, Thomas N.; Welling, Max. Semi-Supervised Classification with
Graph Convolutional Networks. 2017. Available from arXiv: 1609.02907
[cs.LG].

21. Veličković, Petar; Cucurull, Guillem; Casanova, Arantxa; Romero,
Adriana; Liò, Pietro; Bengio, Yoshua. Graph Attention Networks. 2018.
Available from arXiv: 1710.10903 [stat.ML].

22. Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. Available from
arXiv: 1409.0473 [cs.CL].

23. Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob;
Jones, Llion; Gomez, Aidan N.; Kaiser, Lukasz; Polosukhin, Illia. At-
tention Is All You Need. 2023. Available from arXiv: 1706.03762 [cs.CL].

24. Kingma, Diederik P; Welling, Max. Auto-Encoding Variational Bayes.
2022. Available from arXiv: 1312.6114 [stat.ML].

66

https://doi.org/10.1007/978-3-031-45468-4_10
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-031-29642-0_8
https://doi.org/10.1007/978-3-031-29642-0_8
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1312.6114

25. Kipf, Thomas N.; Welling, Max. Variational Graph Auto-Encoders. 2016.
Available from arXiv: 1611.07308 [stat.ML].

26. Grohe, Martin; Neuen, Daniel. Recent Advances on the Graph Isomorphism
Problem. 2021. Available from arXiv: 2011.01366 [cs.DS].

27. Weisfeiler, Boris; Leman, Andrey. The reduction of a graph to canonical
form and the algebra which appears therein. Nauchno-Technicheskaya Infor-
matsia, vol. 2(9):12-16, 1968. Available also from: https://www.iti.zcu.
cz/wl2018/pdf/wl_paper_translation.pdf.

28. Morris, Christopher; Ritzert, Martin; Fey, Matthias; Hamilton, William
L.; Lenssen, Jan Eric; Rattan, Gaurav; Grohe, Martin. Weisfeiler and
Leman Go Neural: Higher-order Graph Neural Networks. 2021. Available
from arXiv: 1810.02244 [cs.LG].

29. Xu, Keyulu; Hu, Weihua; Leskovec, Jure; Jegelka, Stefanie. How Pow-
erful are Graph Neural Networks? 2019. Available from arXiv: 1810.00826
[cs.LG].

30. Hopcroft, J. E.; Tarjan, R. E. Isomorphism of Planar Graphs (Working
Paper). In: Complexity of Computer Computations: Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20–22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, and sponsored by the Office of Naval Research, Mathematics Pro-
gram, IBM World Trade Corporation, and the IBM Research Mathematical
Sciences Department. Ed. by Miller, Raymond E.; Thatcher, James W.;
Bohlinger, Jean D. Boston, MA: Springer US, 1972, pp. 131–152. isbn
978-1-4684-2001-2. Available from doi: 10.1007/978-1-4684-2001-2_13.

31. Kukluk, Jacek P. Algorithm and experiments in testing planar graphs for iso-
morphism. Vol. 8. The University of Texas at Arlington, 2003. No. 2. Available
also from: https://ailab.wsu.edu/subdue/papers/KuklukJGAA05.pdf.

32. Dimitrov, Radoslav; Zhao, Zeyang; Abboud, Ralph; Ceylan, İsmail
İlkan. PlanE: Representation Learning over Planar Graphs. 2023. Available
from arXiv: 2307.01180 [cs.LG].

33. Harary, F.; Prins, G. Publicationes Mathematicae Debrecen. In: 1966,
chap. The block-cutpoint-tree of a graph., pp. 103–107.

34. Di Battista, G.; Tamassia, R. Incremental planarity testing. In: 30th
Annual Symposium on Foundations of Computer Science. 1989, pp. 436–441.
Available from doi: 10.1109/SFCS.1989.63515.

35. Gutwenger, Carsten; Mutzel, Petra. A Linear Time Implementation
of SPQR-Trees. In: International Symposium Graph Drawing and Network
Visualization. 2000. Available also from: https://api.semanticscholar.
org/CorpusID:14338454.

36. Weinberg, L. A Simple and Efficient Algorithm for Determining Isomor-
phism of Planar Triply Connected Graphs. IEEE Transactions on Circuit
Theory. 1966, vol. 13, no. 2, pp. 142–148. Available from doi: 10.1109/TCT.
1966.1082573.

67

https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/2011.01366
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://arxiv.org/abs/1810.02244
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://doi.org/10.1007/978-1-4684-2001-2_13
https://ailab.wsu.edu/subdue/papers/KuklukJGAA05.pdf
https://arxiv.org/abs/2307.01180
https://doi.org/10.1109/SFCS.1989.63515
https://api.semanticscholar.org/CorpusID:14338454
https://api.semanticscholar.org/CorpusID:14338454
https://doi.org/10.1109/TCT.1966.1082573
https://doi.org/10.1109/TCT.1966.1082573

37. Whitney, Hassler. Congruent Graphs and the Connectivity of Graphs.
American Journal of Mathematics [online]. 1932, vol. 54, no. 1, pp. 150–
168 [visited on 2024-06-08]. issn 00029327, issn 10806377. Available from:
http://www.jstor.org/stable/2371086.

38. Kőnig, Dénes. Theory of finite and infinite graphs. In: [online]. Boston
: Birkhäuser, 1990, chap. Euler trails and hamiltonian cycles, pp. 90–91
[visited on 2024-06-08]. Available from: https://archive.org/details/
theoryoffinitein0000koni/page/422/mode/2up.

39. Van Rossum, Guido; Drake, Fred L. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn 1441412697.

40. Chollet, Francois et al. Keras. GitHub, 2015. Available also from: https:
//github.com/fchollet/keras.

41. Paszke, Adam; Gross, Sam; Massa, Francisco; Lerer, Adam; Bradbury,
James; Chanan, Gregory; Killeen, Trevor; Lin, Zeming; Gimelshein,
Natalia; Antiga, Luca; Desmaison, Alban; Köpf, Andreas; Yang, Ed-
ward; DeVito, Zach; Raison, Martin; Tejani, Alykhan; Chilamkurthy,
Sasank; Steiner, Benoit; Fang, Lu; Bai, Junjie; Chintala, Soumith. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. 2019.
Available from arXiv: 1912.01703 [cs.LG].

42. Martín Abadi; Ashish Agarwal; Paul Barham; Eugene Brevdo;
Zhifeng Chen; Craig Citro; Greg S. Corrado; Andy Davis; Jef-
frey Dean; Matthieu Devin; Sanjay Ghemawat; Ian Goodfellow;
Andrew Harp; Geoffrey Irving; Michael Isard; Jia, Yangqing;
Rafal Jozefowicz; Lukasz Kaiser; Manjunath Kudlur; Josh Lev-
enberg; Dandelion Mané; Rajat Monga; Sherry Moore; Derek
Murray; Chris Olah; Mike Schuster; Jonathon Shlens; Benoit
Steiner; Ilya Sutskever; Kunal Talwar; Paul Tucker; Vincent
Vanhoucke; Vijay Vasudevan; Fernanda Viégas; Oriol Vinyals;
Pete Warden; Martin Wattenberg; Martin Wicke; Yuan Yu;
Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. 2015. Available also from: https://www.tensorflow.org/.
Software available from tensorflow.org.

43. Traxl, Dominik; Boers, Niklas; Kurths, Jürgen. Deep Graphs - A general
framework to represent and analyze heterogeneous complex systems across
scales. Chaos. 2016, vol. 26, no. 6. Available from doi: http://dx.doi.org/
10.1063/1.4952963.

44. Morris, Christopher; Kriege, Nils M.; Bause, Franka; Kersting, Kris-
tian; Mutzel, Petra; Neumann, Marion. TUDataset: A collection of bench-
mark datasets for learning with graphs. In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020). 2020. Available from
arXiv: 2007.08663.

45. Harris, Charles R.; Millman, K. Jarrod; Walt, Stéfan J. van der; Gom-
mers, Ralf; Virtanen, Pauli; Cournapeau, David; Wieser, Eric; Tay-
lor, Julian; Berg, Sebastian; Smith, Nathaniel J.; Kern, Robert; Picus,
Matti; Hoyer, Stephan; Kerkwijk, Marten H. van; Brett, Matthew;
Haldane, Allan; Río, Jaime Fernández del; Wiebe, Mark; Peterson,

68

http://www.jstor.org/stable/2371086
https://archive.org/details/theoryoffinitein0000koni/page/422/mode/2up
https://archive.org/details/theoryoffinitein0000koni/page/422/mode/2up
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://arxiv.org/abs/1912.01703
https://www.tensorflow.org/
https://doi.org/http://dx.doi.org/10.1063/1.4952963
https://doi.org/http://dx.doi.org/10.1063/1.4952963
https://arxiv.org/abs/2007.08663

Pearu; Gérard-Marchant, Pierre; Sheppard, Kevin; Reddy, Tyler;
Weckesser, Warren; Abbasi, Hameer; Gohlke, Christoph; Oliphant,
Travis E. Array programming with NumPy. Nature. 2020, vol. 585, no. 7825,
pp. 357–362. Available from doi: 10.1038/s41586-020-2649-2.

46. Buitinck, Lars; Louppe, Gilles; Blondel, Mathieu; Pedregosa, Fabian;
Mueller, Andreas; Grisel, Olivier; Niculae, Vlad; Prettenhofer,
Peter; Gramfort, Alexandre; Grobler, Jaques; Layton, Robert; Van-
derPlas, Jake; Joly, Arnaud; Holt, Brian; Varoquaux, Gaël. API design
for machine learning software: experiences from the scikit-learn project. In:
ECML PKDD Workshop: Languages for Data Mining and Machine Learning.
2013, pp. 108–122.

47. The Sage Developers. SageMath, the Sage Mathematics Software System
(Version x.y.z). YYYY. https://www.sagemath.org.

48. Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert. Multilayer feed-
forward networks are universal approximators. Neural Networks. 1989, vol. 2,
no. 5, pp. 359–366. issn 0893-6080. Available from doi: https://doi.org/
10.1016/0893-6080(89)90020-8.

49. Kingma, Diederik P.; Ba, Jimmy. Adam: A Method for Stochastic Optimiza-
tion. 2017. Available from arXiv: 1412.6980 [cs.LG].

50. Wale, Nikil; Watson, Ian; Karypis, George. Comparison of Descriptor
Spaces for Chemical Compound Retrieval and Classification. Knowl. Inf. Syst.
2008, vol. 14, pp. 347–375. Available from doi: 10.1109/ICDM.2006.39.

51. Ma, Yao; Wang, Suhang; Aggarwal, Charu C.; Tang, Jiliang. Graph
Convolutional Networks with EigenPooling. 2019. Available from arXiv: 1904.
13107 [cs.LG].

52. Lee, Junhyun; Lee, Inyeop; Kang, Jaewoo. Self-Attention Graph Pooling.
2019. Available from arXiv: 1904.08082 [cs.LG].

53. Hamilton, William L.; Ying, Rex; Leskovec, Jure. Inductive Represen-
tation Learning on Large Graphs. 2018. Available from arXiv: 1706.02216
[cs.SI].

54. Zhao, Qi; Wang, Yusu. Learning metrics for persistence-based summaries
and applications for graph classification. 2019. Available from arXiv: 1904.
12189 [cs.CG].

55. Sterling, Teague; Irwin, John J. ZINC 15 – Ligand Discovery for Everyone.
Journal of Chemical Information and Modeling. 2015, vol. 55, no. 11, pp. 2324–
2337. Available from doi: 10.1021/acs.jcim.5b00559. PMID: 26479676.

56. Dwivedi, Vijay Prakash; Joshi, Chaitanya K.; Luu, Anh Tuan; Laurent,
Thomas; Bengio, Yoshua; Bresson, Xavier. Benchmarking Graph Neural
Networks. Journal of Machine Learning Research. 2023, vol. 24, no. 43, pp. 1–
48. Available also from: http://jmlr.org/papers/v24/22-0567.html.

57. Bresson, Xavier; Laurent, Thomas. Residual Gated Graph ConvNets.
2018. Available from arXiv: 1711.07553 [cs.LG].

69

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICDM.2006.39
https://arxiv.org/abs/1904.13107
https://arxiv.org/abs/1904.13107
https://arxiv.org/abs/1904.08082
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1904.12189
https://arxiv.org/abs/1904.12189
https://doi.org/10.1021/acs.jcim.5b00559
http://jmlr.org/papers/v24/22-0567.html
https://arxiv.org/abs/1711.07553

List of Figures

1.1 The structure of caffeine (C8H10N4O2), a molecule that can be
represented as a planar graph. 8

1.2 Examples of non-planar molecules. All contain subdivisions of K3,3.
Atoms and bonds included in the subdivisions are drawn in heavy
lines. Image source: [5]. 9

2.1 The structure of a neuron. 10
2.2 A multilayer perceptron consisting of 5 layers. We call the first 4

layers the hidden layers and the last layer the output layer. 12
2.3 A visualization of the sliding convolution operation. 13
2.4 The structure of a single RNN neuron. 15
2.5 The unfolded RNN for T time steps. The same weights and function

f are used at each time step. 15
2.6 The structure of the LSTM cell. 16
2.7 The structure of the GRU cell. 17
2.8 Overview of how a vertex aggregates information from its neighbors

during multiple iterations. Source: [19]. 20
2.9 The structure of the Variational Graph Autoencoder model. . . . 22
2.10 Example of the iterative labeling process of WL. Source: [19]. . . 26
2.11 Example of non-isomorphic graphs that WL fails to distinguish.

Source: [19]. 26

3.1 An example of a graph and its single articulation point, namely
the vertex labeled “3”. 29

3.2 The blocks-and-cuts tree of the graph from Figure 3.1. The blocks
are labeled as B0 and B1. The middle “3” is the cut vertex. . . . 29

3.3 An example of a biconnected graph and its corresponding SPQR-tree 32
3.4 The codes of the triconnected components of the graph from 3.1. . 33
3.5 The codes of the biconnected components of the graph from 3.1. . 33
3.6 Two unique planar embeddings of the same graph. Source: [31]. . 34
3.7 An example of a triconnected planar graph and its canonical code

computed by Weinberg’s algorithm. Source: [31]. 35
3.8 The feature vector associated with the special symbol of the begin-

ning of a P-node. 43
3.9 The feature vector associated with a vertex. 43
3.10 The preprocessing step of the Planar GNN architecture. 44
3.11 The Planar GNN architecture. 45

4.1 An example of a dataset consisting of the butterfly and bull graphs
in the TUDataset format. Different colors represent different node
labels. 48

70

4.2 A diagram of the workflow of GraphMindKeras. TUDataset depicts
a dataset stored in the TUDataset format. read_dataset() is the
function that reads the dataset from the hard-disk. To create a
Keras model, we utilize both built-in layers, as well as Graph-
MindKeras layers. The model is then compiled and trained on the
respective dataset. 51

5.1 Training (black) and test (blue) accuracy of the Planar GNN on
the NCI109 dataset . 59

5.2 Training (black) and test (blue) loss of the Planar GNN on the
NCI109 dataset . 59

5.3 Comparison of the Planar GNN to state-of-the-art models on the
NCI109 dataset (the higher, the better). 60

5.4 Training (black) and test (blue) accuracy of the Planar GNN on
the NCI109 dataset, trained for 100 epochs 60

5.5 Training (black) and test (blue) loss of the Planar GNN on the
NCI109 dataset, trained for 100 epochs 61

5.6 Comparison of the Planar GNN to state-of-the-art models on the
ZINC dataset (the lower, the better). 62

71

List of Abbreviations
• GNN - Graph Neural Network

• MLP - Multi-Layer Perceptron

• CNN - Convolutional Neural Network

• RNN - Recurrent Neural Network

• GCN - Graph Convolutional Network

• GAT - Graph Attention Network

• GAE - Graph Autoencoder

• VGAE - Variational Graph Autoencoder

• WL - Weisfeiler-Lehman algorithm

• KHC - An algorithm for planar graph isomorphism testing presented by
Kukluk, Holder, and Cook [31]

• C-KHC - A modification of the KHC algorithm to handle disconnected
graphs

• L-KHC - A modification of the KHC algorithm to produce a learnable
graph representation

72

A Attachments
A.1 Source Code

• Source code of the package “GraphMindKeras”:
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model

• Examples of usage of the package:
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/
tree/master/model/examples?ref_type=heads

• Tests of the package:
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/
tree/master/model/tests?ref_type=heads

• Source code of the KHC and L-KHC algorithms:
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/
tree/master/khc?ref_type=heads

A.2 Datasets
• Homepage of the TUDataset website:

https://chrsmrrs.github.io/datasets/docs/datasets/

73

https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/model/examples?ref_type=heads
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/model/examples?ref_type=heads
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/model/tests?ref_type=heads
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/model/tests?ref_type=heads
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/khc?ref_type=heads
https://gitlab.mff.cuni.cz/lupascoa/graph-neural-network-model/-/tree/master/khc?ref_type=heads
https://chrsmrrs.github.io/datasets/docs/datasets/

	Introduction
	Graphs
	Graph Theory 101
	Why Planar Graphs?

	Deep Learning
	Multilayer perceptron
	Convolutional neural networks
	Recurrent neural networks
	A Primer on Graph Neural Networks
	What are graph neural networks?
	Why are graphs different?
	Scarselli's graph neural network
	Message-passing neural networks
	Graph Autoencoders

	GNNs and Graph Isomorphism

	Learnable Planar Graph Representations
	The KHC algorithm
	Why KHC?
	An overview of the KHC algorithm

	A modification of the KHC algorithm
	C-KHC: Handling disconnected graphs
	L-KHC: KHC for learnable representations of planar graphs

	Planar GNN

	Implemented Software
	GraphMindKeras
	L-KHC implementation

	Supporting Experiments
	NCI109 Dataset
	ZINC Dataset

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Source Code
	Datasets

