
MASTER THESIS

Martin Procházka

Classification in data streams
with abrupt concept drift in a subset

of features

Department of Algebra

Supervisor of the ster thesis: doc. Mgr. Viliam Lisý, MSc., Ph.D.
Study programme: Mathematics for Information

Technologies

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I am very grateful to my supervisor, doc. Mgr. Viliam Lisý, MSc., Ph.D., for his
guidance, the opportunity to consult, and his invaluable feedback on this thesis.
I am also profoundly grateful to my family for their unwavering support and
encouragement throughout my studies.

ii

Title: Classification in data streams
with abrupt concept drift in a subset
of features

Author: Martin Procházka

Department: Department of Algebra

Supervisor: doc. Mgr. Viliam Lisý, MSc., Ph.D., Computer Science, FEE, Czech
Technical University in Prague

Abstract: Malware detection is a crucial aspect of cybersecurity, presenting sev-
eral challenges, particularly in data stream scenarios that experience strong con-
cept drift and label delay. The concept drift is characterized by the presence of
highly influential yet rapidly changing features, such as specific filenames or mu-
texes, alongside stable features, such as connection types or monetization meth-
ods, which remain relatively consistent over time. In this thesis, we formalize this
scenario and further exploit the hypothesis that the adaptive removal of severely
drifting subsets of features may have a great impact on procedure performance.
We indeed demonstrate that current methods exhibit shortcomings connected
with these features, especially during short periods following the arrival of a
new concept. To validate the hypothesis of performance improvement through
adaptive feature elimination, we propose two solutions: one based on Hellinger
distance concept drift detection and the other on an incremental Gaussian Mix-
ture Model algorithm. We evaluate both approaches using real-life data and our
synthetic dataset, showing significant improvements on the synthetic dataset and
promising results on real-life data. Additionally, we provide a comprehensive
explanation of the techniques employed in the thesis.

Keywords: malware detection, concept drift, data stream, concept drift detection,
Gaussian Mixture Models

iii

Contents

Introduction 5

1 Background 6
1.1 Concept drift . 6

1.1.1 General definitions . 6
1.1.2 Probabilistic concept drift illustration 7
1.1.3 Location of drift . 9

1.2 Background of related work . 11
1.2.1 Dynamic Weighted Majority 11
1.2.2 Gaussian Naive Bayes classifier 13

1.3 Concept drift detection . 15
1.3.1 Window strategy . 16
1.3.2 Hellinger distance . 17

1.4 Dirichlet distribution . 19
1.5 Clustering algorithms . 23

1.5.1 Algorithms introduction 23
1.5.2 K-means algorithm . 24
1.5.3 Mahalanobis distance . 24
1.5.4 Gaussian Mixture Model algorithm 26

1.6 Incremental clustering algorithms 28
1.6.1 Incremental Gaussian mixture model 28
1.6.2 Fast Incremental GMM . 30

1.7 Outlier detection in incremental GMM 32
1.7.1 Outlier and novelty definition 32
1.7.2 Detection techniques . 33

1.8 Cluster management . 35
1.8.1 Management of existing clusters overview 35
1.8.2 Creation of a new cluster 37

2 Problem formalization 39
2.1 Formalization of scenario . 39

2.1.1 Scenario motivation . 39
2.1.2 Scenario formalization . 39

2.2 Concept drift specifics . 41
2.2.1 Severe drift . 41
2.2.2 Sudden drift . 42

2.3 Formalization of the problem . 43

3 Related work 45
3.1 Related work introduction . 45
3.2 The DWM accuracy drops . 45

3.2.1 DWM and severe drift . 46
3.3 Solution outline . 46

1

4 Proposed solutions 48
4.1 Modified DWM . 48
4.2 Solution based on concept drift detection 48

4.2.1 Hellinger distance proposed algorithms 48
4.3 Solution based on GMM algorithm 51

4.3.1 Clustering algorithm . 51
4.3.2 Algorithm scheme . 53
4.3.3 Sample fit and update of mixture 53
4.3.4 Cluster creation . 59
4.3.5 Deletion of cluster . 63

5 Implementation and experiments 67
5.1 Datasets . 67

5.1.1 "SEA" dataset . 68
5.1.2 12 Concepts dataset . 68
5.1.3 DREBIN dataset . 68

5.2 Replication of DWM results . 69
5.2.1 Evaluation hypothesis . 69
5.2.2 Evaluation setting . 69
5.2.3 Evaluation results and discussion 70

5.3 Evaluation of DWM algorithm . 70
5.3.1 Evaluation hypothesis . 70
5.3.2 Evaluation setting . 71
5.3.3 Evaluation results and discussion 71

5.4 Evaluation of Hellinger subcomponent 71
5.4.1 Evaluation hypothesis . 72
5.4.2 Evaluation setting . 73
5.4.3 Evaluation results and discussion 73

5.5 Evaluation of overall process on 12 Concepts dataset 74
5.5.1 Evaluation hypothesis . 74
5.5.2 Evaluation setting . 74
5.5.3 Evaluation results and discussion 75

5.6 Evaluation on DREBIN dataset 75
5.6.1 Evaluation hypothesis . 77
5.6.2 Evaluation setting . 77
5.6.3 Evaluation results and discussion 79

6 Future work 82

Conclusion 83

Bibliography 84

A Attachments 88
A.1 Other types of concept drift . 88
A.2 Location of drift lemma . 89
A.3 Feature selection . 90
A.4 EM algorithms . 91
A.5 Adaptive window size . 91

2

A.6 Confidence intervals . 93
A.7 Abnormality detection . 96
A.8 Exponential prior probability threshold 97
A.9 Domain generalization . 97
A.10 Evaluation of Hellinger detection 101
A.11 TF-IDF . 101
A.12 F1-score, recall and precision . 103
A.13 GMM-based sub-procedure and label imbalance 104
A.14 Implementation and used software 104

A.14.1 Used software . 104
A.14.2 Code structure . 107

3

Introduction
Many prediction computation models are based on an assumption of stable data
distribution, a premise that often does not hold in real-world scenarios. The
presented thesis is inspired by detection of malicious software (malware), which
is software intentionally created to disrupt its target, usually a user, computer,
or computer network. In this context, the stable data assumption is highly in-
appropriate due to constant evolution and development of malware by attackers.
This leads to a dynamic environment of data streams, associated with the term
concept drift, referring to the general change of data over time (Lu et al. [2019]).
An important aspect of the dynamic data distribution is that we need to evolve
our model constantly. Numerous data stream algorithms aim to address this chal-
lenge (Wankhade et al. [2020], Gomes et al. [2017], Ceschin et al. [2022]). One
such algorithm is the Dynamic Weighted Majority (DWM), introduced by Kolter
(Kolter and Maloof [2007]), which is a robust procedure based on an evolving
ensemble of experts. This thesis will demonstrate that the DWM algorithm has
certain limitations and, in specific scenarios, may suffer from unnecessary drops
in accuracy.

The scenario formulated and presented in Chapter 2 is based on malware
detection. Samples from this subject have some specific properties, which we
discuss in Section 2.1. One of the specifics of malware detection is quite usual
presence of features that enable quick and valid decisions about the harmful-
ness of software. One possible example of such features is the mutex used by
a well-known malware family. However, these features tend to change rapidly,
sometimes with each new iteration of the malware. This change often results
in a deterioration of detection model performance, as the model becomes overly
reliant on these highly relevant, strongly decisive features, which, once altered,
lead to inaccurate predictions. On the other hand, it is also quite usual that there
are aspects of malware that are difficult or even impossible to change as type of
connection, used protocol, or way of monetization. This motivates definitions
of severe concept drift and relevant stable information presented in Definition 8.
This scenario highlights the existence of feature subsets that provide relatively
good decisive information, which machine learning algorithms often overlook due
to excessive focus on highly informative, strongly drifting features. This focus,
after drift, leads to severe decreases in prediction accuracy. In this thesis, we
formalize this scenario.

We will develop two sub-procedures to address the above scenario. These
sub-procedures will complement the underlying algorithm, in our case, the DWM
algorithm, by providing information about drift in feature vector subsets. The
first procedure is based on Hellinger distance concept drift detection (Ditzler and
Polikar [2011]), and the second on the incremental Gaussian Mixture Models
algorithm (Engel and Heinen [2010]). These techniques are then evaluated and
compared with the usual DWM algorithm using both synthetic and real-life data
(Arp et al. [2014]).

The organization of the thesis is as follows: Chapter 1 provides the back-
ground of concepts used in the thesis, including an overview of concept drift
and key aspects of related work and our solutions. It explains the DWM algo-

4

rithm and its setting, basic Hellinger concept drift detection together with its
important principles, and derives the Fast incremental Gaussian Mixture Model
algorithm. In Chapter 2, we present the motivation, formalization of the scenario
and main objectives together with our definitions and assumptions. Chapter
3 discusses possible shortcomings of DWM algorithm in Subsection 3.2.1 and
outlines our general solutions in Section 3.3. Chapter 4 presents our proposed
solutions. Section 4.2 describes our sub-procedure algorithm based on Hellinger
distance. Section 4.3 introduces the sub-procedure based on the GMM algorithm
and discusses possible parameter settings. Chapter 5 presents experiments and
evaluations made in this thesis. Chapter 6 offers a brief discussion of potential
future work.

The main focus of this thesis lies in formalizing the described scenario and
developing methods that extend the general procedure (using the DWM algo-
rithm), which are capable of improving performance in this setting, as tested on
both synthetic and real-life data.

5

1. Background
In this chapter, we describe various techniques that form the foundation of our so-
lutions and formalizations. We present existing procedures, which we supplement
with details, pictures, and examples.

Despite our efforts to maintain continuity, the relevant background informa-
tion spans multiple scientific fields. Therefore, the sections introduced here pri-
marily serve to offer in-depth explanatory information, which will be referenced
in other chapters.

The chapter structure is as follows. Section 1.1 defines and widely discusses
the term concept drift as the underlying principle of non-stationary data distri-
bution. Section 1.2 focuses on the Dynamic Weighted Majority algorithm and its
settings. Section 1.3 presents the background for our solution from Section 4.2
based on Hellinger concept drift detection. Section 1.4, Section 1.5 and Section
1.6 describe ground principles of our proposed solution presented in Section 4.3,
which is based on Gaussian Mixture Models algorithm.

1.1 Concept drift
Many predictive computational models operate under the assumption of a stable
data distribution, which often contrasts with real-world data. In this section, we
present the general definitions, notations, and basic properties of learning under
the assumption of a non-stationary data distribution, a phenomenon known as
concept drift.

The term concept drift is crucial for this thesis, so we will begin by defining
it in Subsection 1.1.1. Then we will focus on a wider understanding of the term.
First, we will show some illustrations of possible drifts in Subsection 1.1.2. This
will better contextualize our future approach to tracking changes in feature vector
distribution. In Subsection 1.1.3, we will examine the location of the drift. The
most important intuition given in this subsection is that it can be natural that
there exists non-trivial information that is stable during the drift and also gives
hints as to why we later chose to track the changes at feature subsets level.

1.1.1 General definitions
The general objective of this thesis is to study dynamic environments. All pre-
sented algorithms together with problem formalization from Chapter 2 are built
in this setting. Therefore, we consider the best to start with a definition of the
dataset change during time, which is called concept drift.

In the thesis, we will often refer to a model. This term can generally refer to
a wide range of methods and approaches in machine learning. To stay rigorous
we present the definition of this term in Definition 1.

Definition 1. We define model "M" as a function M(X, θ) together with param-
eters θ, which for feature vector X ∈ Rd gives label y ∈ Y, where Y is label
space.

6

As previously mentioned, one of the primary focuses of this thesis is the
study of non-stationary data distribution, commonly referred to as concept drift,
which is defined in Definition 2, which follows [Lu et al., 2019, Subsection 2.1].
According to this definition, concept drift is generally understood as a change
in the joint probability distribution of the feature vector and the corresponding
label over time.

Definition 2. Given time period [0, t1], 0 < t0 < t1 ∈ N, sets of time steps
S0,t0 = {e0, . . . , et0}, St0+1,t1 = {et0+1, . . . , et1}, where ei ⊆ Rd × Y is a sample
arrived in time step i. Each sample ei consists of feature vector Xi ∈ Rd and
label yi ∈ Y, for Y be a label space. S0,t0 follows a certain distribution P0,t0(X, y),
same St0+1,t1 follows a certain distribution Pt0+1,t1(X, y). Concept drift in time
t0 is property P0,t0(X, y) ̸= Pt0+1,t1(X, y).

Since Definition 2 is quite complex, we give some more illustration behind it
in Subsection 1.1.2. Also, it is usual to divide concept drift into types and assume
specific properties. This we do in Section 2.2.

1.1.2 Probabilistic concept drift illustration
The definition of concept drift presented as Definition 2 is quite complex. There-
fore, we consider it appropriate to give some intuition behind it. In this section,
we present a basic probabilistic types of concept drift which provide us with a
better understanding of the problem and give us some intuition behind the term
concept drift. Section is based on information from [Lu et al., 2019, Subsections
2.1] and [Bayram et al., 2022, Sections 4].

As seen in Definition 2 the concept drift is generally defined as the change
in joint probability of feature vectors X and labels y in time t0, Pt0(X, y) ̸=
Pt0+1(X, y). The joint probability can be easily decomposed to

Pt0(X, y) = Pt0(X|y)Pt0(y) = Pt0(y|X)Pt0(X). (1.1)

First observation we can make is that a change in each of the four parts of de-
composition, that means label posterior probability distribution Pt0(y|X), feature
vectors distribution Pt0(X), label-conditional density distribution Pt0(X|y) and
prior label distribution Pt0(y), is connected with change in at least one another
of these distributions. This can be seen using the Bayesian rule from which it
follows that if

Pt0(X|y) ̸= Pt0+1(X|y) then Pt0(y|X)Pt0(X)
Pt0(y) ̸= Pt0+1(y|X)Pt0+1(X)

Pt0+1(y) .

We showed the dependency for Pt0(X|y), approach for the three rest distributions
would be similar. Based on the implication we illustrate basic concept drift on
changing of Pt0(y|X), Pt0(X) and Pt0(y). In Figure 1.1, which is mostly based
on [Lu et al., 2019, Figure 3.], we demonstrate the changes using two feature
scenarios and some of the possible probability drifts.

In this subsection, we provided some intuition behind Definition 2, primarily
using Figure 1.1, which depicts possible drift scenarios based on the decomposi-
tion of joint probability using Bayes’ rule. An important aspect of concept drift,

7

X1

X2

X1

X2

X1

X2

X1

X2

X1

X2

Decision boundary.

Two dimensional feature vector X = {X1, X2}.

Two element label space Y = {blue circle, green cross}.

After drift only in P (X). After drift in P (X) and P (y|X).

Only P (X) remains.

P (X) , P (y|X) and P (y) are drifting.

Original distribution.

Concept drift.

P (y) remains same.

Figure 1.1: Illustration of the possible data distribution drift if specific probability
aspects changes.

8

as illustrated in the figure, is its potential complexity. The figure also presents
the intuition behind the main approaches for tracking concept drift, which in-
volve studying changes in the distribution of samples and monitoring the decision
boundary as an aspect fundamentally linked to model accuracy. All presented
approaches will utilize one or a combination of these two ideas.

1.1.3 Location of drift
In this subsection, we provide some intuition behind our approach. We will
present an example that demonstrates how, even after a significant general con-
cept drift, a non-negligible amount of unaffected information can remain. Identi-
fying this stable information is crucial to the algorithms presented in this thesis.
Specifically, we achieve this by identifying drifted feature subsets. The rationale
behind this approach is elaborated upon in the rest of this subsection.

Our approach is primarily based on [Lu et al., 2019, Subsections 4.3], where the
authors analyse the location of the drift by examining whether arriving samples
deviate from the current distribution. Throughout this thesis, we focus on feature
subsets rather than entire feature vectors. This choice is due to the specifics of
our problem presented in Section 2.3, which generally involves the highly variable
influence of drift on different feature subsets. In this subsection, we provide
intuition for the general approach of studying concept drift by concentrating on
its localization.

X2 X2

X1 X1

Concept drift

Two dimensional feature vector X = {X1, X2}.Two element label space Y = {blue circle, green cross}.
Decision boundary.Red circles are samples inside drift region.

Figure 1.2: Illustration of location of drift region on the task of rotating hyper-
plane.

Similarly as [Lu et al., 2019, Fig 12], we present Figure 1.2. In the figure, we
can see that concept drift can naturally create some segments of the dataset that
do not drift and some for which the drift is severe. These segments of data, where
the drift occurs are called drift regions. In Figure 1.2 we can see the problem of
rotating hyperplane. A decision boundary for original concept is X1 + X2 = 11
and for drifted concept is X1 + X2 = 13, where X1, X2 ∈ N, X1, X2 ≤ 10 are
randomly sampled, which means that distribution does not drift. Therefore, we
represent the distribution both before and after the drift by the same sampled
points. The change of decision boundary reveals the drift region to be set by

9

11 ≤ X1 + X2 < 13. The rest of the samples, ones out of the drift region, are
completely unaffected by the drift.

For a better illustration of how the process can be simplified by considering
single features, we give Figure 1.3, where we can see the drift of a two-dimensional
vector X = {X1, X2}. Considering the drift of the whole feature vector, due
to severe drift in X2 a model learned on original data can struggle with a right
prediction on the drifted ones. On the other hand, when observing single features
we see that the severe drift is connected with feature X2 and feature X1 drifts
only slightly. This could be valuable information when constructing a model. For

X2

X1

X2

X1

X2 X2

X1

X1

Drift for feature X2. Drift for feature X1.

Drift for feature vector X = {X1, X2}.

Two dimensional feature vector X = {X1, X2}.

Two element label space Y = {blue circle, green cross}.

Concept drift.

Region of drift.

Figure 1.3: Illustration of the concept drift of two dimensional feature vector
X = {X1, X2}. Upper scheme is the drift of entire feature vector X. The lower
ones are scheme of drift in single features of feature vector X.

a demonstration of basic intuition behind possible dealing with the concept drift
by removing the effect of the most drifting features, we present Lemma 1, where
we use the strong assumption of mutually independent features. Proof of this
lemma is presented in Attachment A.2.

Lemma 1. Let X = {X1, . . . , Xd} be a feature vector, where d ∈ N and all
features in the vector are mutually independent, conditional on the label y ∈ Y.
That means P (X i|X1, . . . , X i−1, y) = P (X i|y). Then it holds that
P (X1, . . . , Xd, y) = P (y)1−d ∏︁d

i=1 P (X i, y).

In generally known Lemma 1 we showed that using certain assumptions, joint
probability can be estimated by single margin probabilities. Thus when consid-
ering change in joint probability it can be beneficial to lower the effect of most
drifting features in the feature vector. Note also, that assumptions and ideas
from the last lemma are highly connected with the approach called Naive Bayes
classifier which we present in Subsection 1.2.2.

10

1.2 Background of related work
In this section, we describe methods, which we will discuss later in Chapter 3
as related to our problem (Section 2.3) and which will be also used as a base
component of our overall solution outlined in Section 3.3. The main objective of
this section is Dynamic Weighted Majority (DWM) algorithm as the technique
we will use for demonstration of the usefulness of our procedure. But we will
also derive the Gaussian Naive Bayes classifier and present some of its properties
since we will use it as part of the DWM algorithm.

.

1.2.1 Dynamic Weighted Majority
This subsection is based on Kolter and Maloof [2007] and we will describe the
Dynamic Weighted Majority algorithm, in the following text just DWM, together
with its possible settings.

DWM algorithm is based on ensemble learning developed for data stream
scenarios. The properties of this algorithm stand primarily in its robustness and
ability to quickly adapt to a completely different concept. Therefore, we choose
this algorithm as the suitable algorithm on which we can show the advantages of
our solutions presented in Section 4.2 and Section 4.3.

We describe the DMW algorithm similarly as is presented in [Kolter and
Maloof, 2007, Section 3]. The DWM algorithm is well-known, robust, and flexible.
Therefore, we choose it as our baseline. The process described in Algorithm 1
is based on an ensemble of experts (models), where each has its variable weight.
These experts are removed and added according to their prediction performance.

In Algorithm 1 we can see that we start with the single expert of weight 1.
Then we proceed by looping over all samples. Every sample is classified by each
expert we have at this moment. If the classification by an expert is wrong and
at the same time we meet updating period (i mod p = 0) then we decrease the
weight of the expert by decreasing factor β. The global ensemble prediction is
made by summing up all the weighted classifications and the largest of them is
selected. Finally, if the updating period is met we normalize the weights so that
the greatest of them is 1, then we use a threshold for removing outdated experts
and if the global prediction is wrong we add a new expert with a weight of 1. In
the end, we provide the sample to experts for training.

Note that the experts need not be the same model type. The algorithm is
flexible and if the scheme of choosing the suitable expert is provided, models
used as experts can shift accordingly. It is also possible to improve the procedure
against specific concept drift types (see Subsection 2.2.2). We can keep discarded
experts and check their performance on newly arrived concepts and possibly in-
clude them back into the ensemble. This is especially connected with reoccurring
concept drift.

The properties of the DWM algorithm are connected to the type of used
expert. In this thesis, we choose the Gaussian Naive Bayes classifier, which we
describe in the next subsection.

11

Algorithm 1 Dynamic Weighted Majority ([Kolter and Maloof, 2007, Figure 1])
Notation

{(ei, wi)}m
i=0 - Set of experts ei and according weights wi.

Λ - Global prediction, Λ ∈ Y .

λ - Local prediction, λ ∈ Y .

σ - Sums of local predictions, σ ∈ R|Y|.

Inputs

{(Xi, yi)}n
i=0 - Samples, feature vector X ∈ Rd and according label y ∈ Y ,

where Y = {1 . . . , c} for c ∈ N.

β - Factor of decreasing weights, where 0 ≤ β < 1.

θ - Removing expert threshold.

p - Period of ensemble and weights update, p ∈ N.

m← 1
em ← Create new expert
wm ← 1
for i← 1, . . . , n {over all samples} do

σ ← 0
for j ← 1, . . . , m {over all current experts} do

λ← Classification of Xi by ej

if λ ̸= yi and i mod p = 0 then
wj ← βwj

σλ ← σλ + wj

Λ← argmaxjσj

if i mod p = 0 {the updating period is met} then
w ← Normalize weights w
{(e, w)} ← Remove experts using threshold θ
if Λ ̸= yi {global prediction is wrong} then

m← m + 1
em ← Create new expert
wm ← 1

for j ← 1, . . . , m do
ej ← ej with provided (Xi, yi)

output Λ

12

1.2.2 Gaussian Naive Bayes classifier
The DWM algorithm presented in the previous subsection needs the experts for
its run. Similarly as in [Kolter and Maloof, 2007, Subsection 3.1] we choose these
experts to be Gaussian Naive Bayes classifiers. This is mostly for its ability to
fast adaptation, sufficiently convincing accuracy, and natural way of excluding
features from the classification process. First, we describe the method according
to Murphy et al. [2006], and then we present intuition behind the ability of fast
adaptation in Lemma 3 which is based on Ng and Jordan [2001].

Naive Bayes classifiers are based on the Bayes rule and use probability rewrit-
ing P (y|X) = P (X|y)P (y)

P (X) . A usual approach based on maximizing P (y|X), which
could be interpreted as which class label y is the most probable for the given
feature vector X, can be rewritten as

argmaxyP (y|X) = argmaxy

P (X|y)P (y)
P (X) = argmaxyP (X|y)P (y). (1.2)

As we can see in Equation (1.2) for the classification we will be modelling only
distributions P (X|y) and P (y). Using received data it is easy to model the
distribution P (y). On the other hand, modelling P (X|y) can be incomparably
more difficult. Therefore there is an assumption similar to one made for Lemma
1. We assume that given label y all features of feature vector X are mutually
independent. We can mathematically rewrite this as

P (X|y) = P (X1|y)P (X2|X1, y) · · ·P (Xd|X1, . . . , Xd−1, y) =
d∏︂

i=1
P (X i|y).

This means that we model distribution for each feature alone which is much
easier.

Based on the way of modelling this distribution there are several possible Naive
Bayes classifiers such as Bernoulli, Multinomial, or Gaussian. The difference is
in the assumption how would the distribution look like. For our tests we choose
similarly to Kolter and Maloof [2007] the Gaussian Naive Bayes classifier, which
we will now describe in detail using information from Bishop [2006].

Suppose i-th feature of feature vector X, 1 ≤ i ≤ d and j-th class label,
1 ≤ j ≤ |Y|, then we model P (X i|yj) as normal distribution

N (µi,j, σ2
i,j) = 1√︂

2πσ2
i,j

e

−(Xi−µi,j)2

2σ2
i,j ,

where µi,j is the mean and σ2
i,j is the variance. Let assume we have X1, . . . , XN

training feature vectors corresponding to label yj. Using maximum likelihood
estimation for these N samples drown from normal distribution N (µi,j, σ2

i,j) we

13

get

argmaxµi,j ,σi,j

N∏︂
s=1

1√︂
2πσ2

i,j

e

−(Xi
s−µi,j)2

2σ2
i,j

= argmaxµi,j ,σi,j
log

N∏︂
s=1

1√︂
2πσ2

i,j

e

−(Xi
s−µi,j)2

2σ2
i,j

= argmaxµi,j ,σi,j

N∑︂
s=1

log 1√︂
2πσ2

i,j

e

−(Xi
s−µi,j)2

2σ2
i,j

= argminµi,j ,σi,j

N∑︂
s=1
− log 1√︂

2πσ2
i,j

e

−(Xi
s−µi,j)2

2σ2
i,j

= argminµi,j ,σi,j

N∑︂
s=1
− log 1√︂

2πσ2
i,j

N∑︂
s=1
− log e

−(Xi
s−µi,j)2

2σ2
i,j

= argminµi,j ,σi,j

N

2 log 2πσ2
i,j +

N∑︂
s=1

(X i
s − µi,j)2

2σ2
i,j

.

In the above formula we used that logarithm is a strictly increasing function
which provides us with the property that if x > y > 0 then log(x) > log(y).
Then we used a transition from looking for the maximum of a formula to looking
for the minimum of the negative formula. The rest comes from straightforward
work with logarithms.

Now we study the derivative of the derived formula

argminµi,j ,σi,j

N

2 log 2πσ2
i,j +

N∑︂
s=1

(X i
s − µi,j)2

2σ2
i,j

with respect to µi,j and σ2
i,j in order to find the extremes. First, we set the

derivative with respect to µi,j to zero. We obtain

0 =
N∑︂

s=1
−2X i

s − µi,j

2σ2
i,j

which is equivalent to

µi,j = 1
N

N∑︂
s=1

X i
s.

By the same procedure for σ2
i,j we get

0 = 1
2

1
σ2

i,j

N − 1
2

1
(σ2

i,j)2

N∑︂
s=1

(X i
s − µi,j)2, (1.3)

which is equivalent to

σ2
i,j = 1

N

N∑︂
s=1

(X i
s − µi,j)2. (1.4)

14

From Equations (1.3) and (1.4), we can see that for incremental learning, which
is needed in the DWM algorithm (Algorithm 1), it is generally sufficient to store
the derived sums which makes the procedure efficient.

The need for incremental learning is no problem for operating with mean,
where we will store the number of samples and their sum. More problematic is
computing the variance especially together with general stream scenario demand
that we should not remember too many samples and ideally we should see each
of them only once. This problem is solved in [Chan et al., 1982, Section 2.] and
we sum it up in Lemma 2.
Lemma 2. Let xi ∈ R for all 1 < i < m ∈ N. Denote Tk,m = ∑︁m

i=k xi and
Sk,m = ∑︁m

i=k(xi − 1
m

Tk,m)2, then it holds that

S1,m+n = S1,m + Sm+1,m+n + m

n(m + n)

(︃
m + n

m
T1,m − T1,n+m

)︃2
. (1.5)

Lemma 2 gives us clear insight into what our incremental learning would look
like. All parameters we will have to keep in memory are a number of samples for
each class and for each feature both T and S, which we will increment according
to Equation (1.5).

The concept drift brings the possibility of a fast change in the probability dis-
tributions. Therefore, we need to have a model which is capable of fast learning.
A small number of samples needed for reasonably good performance is the key
ability why we chose the Naive Bayes classifier. This important power of this
procedure is deeply studied in Ng and Jordan [2001]. There are presented results
on a number of needed samples for reaching an optimal error of the classifier.
These theorems are unfortunately quite technically demanding. Therefore, we
will not state them in this thesis but at least we formulate the continuous case
of [Ng and Jordan, 2001, Lemma 3] as Lemma 3, which gives us good intuition
behind Gaussian Naive Bayes classifier ability of fast learning.
Lemma 3. Suppose Gaussian Naive Bayes classifier, where X ⊆ Rd and Y =
{y0, y1}. Then let any ϵ, δ > 0 be fixed and assume that for some fixed ρ > 0
it holds that ρ ≤ P (y = y0) ≤ 1 − ρ. Let number of training samples N =
O(1

ϵ2 log(d
δ
)), then with probability at least 1− δ it holds that |µ̂i|y=b − µi|y=b| ≤ ϵ,

|σ̂2 − σ2| ≤ ϵ and | ˆ︁P (y = b) − P (y = b)| ≤ ϵ for all i = 1, . . . , d and b ∈ Y =
{y0, y1}. µ̂ and σ̂ are mean and variance produced by the classifier estimating real
values µ and σ.

In Lemma 3 we can generally see the speed of parameters approximation,
which is in some sense connected with the logarithm of the number of features.

In this subsection, we described the procedure that we will use as part of the
DWM algorithm used in this thesis as the main related work and baseline. In the
second half of this subsection, we gave some intuition about the ability of fast
learning of Gaussian Naive Bayes classifier as one of the reasons for choosing this
procedure.

1.3 Concept drift detection
This section serves as the main background for the solution based on concept
drift introduced in Section 4.2. First, we will show some basic techniques used

15

for studying the change in the data stream. Then we will present one of the
possible approaches for concept drift detection based on measuring distance be-
tween distributions using Hellinger distance. This approach is then transformed
in Section 4.2.1 into an algorithm solving the setting formalized in Section 2.3.

1.3.1 Window strategy
In this subsection, we describe window-based strategy, which is one of the leading
approaches for studying distribution in the stream scenarios. We use this method
many times in this thesis but it is especially important for the solution introduced
in Section 4.2, which is very much based on this approach.

When analysing changes in distribution within the data stream, the most
common and straightforward method is to divide the stream into smaller segments
and examine their properties. This method can be considered a specific form of
sampling that takes into account the sequential nature of the data. It involves the
creation of sets, each consisting of a predefined number of consecutive samples
based on their positions in the stream. This technique is referred to as the window
strategy. In this subsection, we describe this procedure, primarily following the
discussions in [Dasu et al., 2006, Section 2] and [Bayram et al., 2022, Section 2].

window 1 window 2

Xt Xt+w1
Xt+w1+w2

Window strategies in data stream

window 1 window 2

window 2

window 1 window 2

window 1

Xt Xt+w1 Xt+ds Xt+w1+ds Xt+w1+w2+ds

After d moves One stable one sliding window

Two adjacent sliding windows

One growing one sliding window

window 1 of original size w1

window 2 of size w2

Each move of a window is over s samples X

Figure 1.4: Illustration of the basic options of the window strategy in the data
stream.

We define window Wi,n as sequence of n samples of the data stream ending
in Xi, Wi,n = {Xi−n+1, . . . , Xi}. When we refer to window strategy we mean a
process on a data stream consisting of a set of windows and a function which
for each time step and possibly other given information defines how the windows
change. Generally, a window strategy is used for comparing specific properties
and distances of multiple windows. Some of the possible window strategies can
be seen in Figure 1.4, and each of them will be briefly discussed in what follows.

The exact approach for using windows can vary based on different types of
drift (see Subsection 2.2.2 and Attachment A.1), algorithm complexity, and the
properties being studied. For instance, incremental drift can be better detected
using two windows: one stable and one moving. Conversely, for sudden drift, it
is more effective to use two adjacent sliding windows, as they provide data points
showing severe changes in distribution. With incremental drift, adjacent sliding
windows may repeatedly detect only small changes, despite an overall large drift.

Typically, sliding windows move by a single sample at a time. However, when
handling large datasets or computationally demanding procedures, the window

16

strategy that moves by more samples in each step can be used. Commonly,
this involves moving by the size of the window itself, effectively segmenting the
stream into windows used as needed in each step. This approach is utilized in
Algorithm 2 in Subsection 1.3.2. Another strategy, employed in Algorithm 4,
involves a growing and sliding window. Here, as the sliding window moves, the
second window incorporates its old values to enhance generalization. However,
keeping all samples in a growing window can be memory-intensive. Thus, it’s
more efficient to incorporate new samples in a way that optimizes memory usage,
as seen in Algorithm 4, where growth is managed by adjusting a histogram.

Finally, many other window approaches exist, with both size and step chang-
ing during the process. One such approach is described in Attachment A.5, where
we present a method for creating windows with adaptive sizes.

1.3.2 Hellinger distance
In this subsection, we describe the Hellinger distance and the algorithm for con-
cept drift detection based on this distance. This subsection and especially Algo-
rithm 2 will serve as a basis on which we will build our Algorithm 4 in Section
4.2.

General drift detection can be understood as estimating the severity of drift,
which can naturally be used to highlight the most drifting feature subsets. It can
also provide an estimate of the breaking point, the time step of a new concept’s
arrival. To measure feature drift, we use the well-known Hellinger measure, which
is widely used for drift detection. This measure is well-studied and offers a natural
way to focus on the drift in individual features or their subsets, as it combines
their measured properties.

In this subsection, we present the general idea of histograms as discussed
in [Liu et al., 2021, Section II. B]. We describe the Hellinger distance based
on [Goldenberg and Webb, 2019, Subsection 4.1.1.1] and then illustrate the use
of this measure for concept drift detection using information from [Ditzler and
Polikar, 2011, Section III, A and C].

Hellinger distance is, the same as most drift detection techniques, based on
distribution change measuring. These approaches usually use histogram density
estimations. For building a histogram we divide the feature space into partitions
and count the number of elements in each of them. When examining each feature
separately, the bins of the histogram are intervals. To be more precise, N -bin
histogram of interval I is N element partition denoted as {Ik}N

k=1, where Ik is
interval satisfying Ik ⊂ I, ∪N

k=1Ik = I and Ii ∩ Ij = ∅ for each i, j ∈ {1, . . . , N},
i ̸= j. This approach uses the important assumption of finite distribution support.
In other words, for each feature, there exist finite real numbers Bmin and Bmax

such that P (X ≤ x) = 0 for x ≤ Bmin and P (X ≥ x) = 0 for x ≥ Bmax. Note
that according to Ditzler and Polikar [2011] when we have no prior knowledge
of data and constructing a histogram for w sampled values, it is usual to set the
number of bins equal to ⌊

√
w⌋.

Now, we present a definition of Hellinger distance which is almost fully
adopted from [Goldenberg and Webb, 2019, Subsection 4.1.1.1].

Definition 3. Let (Ω, B, ν) be a measure space and P and Q be probability mea-
sures that are absolutely continuous with respect to ν. The Hellinger integral (or

17

Bhattacharyya coefficient) of P and Q is defined as HI(P, Q) =
∫︁

Ω

√︂
dP
dν

√︂
dQ
dν

dν.
The Hellinger distance is then defined as

DH(P, Q) =
√︂

1−HI(P, Q). (1.6)

Formula 1.6 can be rewritten using⌜⃓⃓⎷1−
∫︂

Ω

√︄
dP

dν

√︄
dQ

dν
dν =⌜⃓⃓⃓

⎷1
2

∫︂
Ω

⎛⎝√︄dP

dν

⎞⎠2

dν + 1
2

∫︂
Ω

⎛⎝√︄dQ

dν

⎞⎠2

dν − 1
2

∫︂
Ω

√︄
dP

dν

√︄
dQ

dν
dν =

⌜⃓⃓⃓
⎷1

2

∫︂
Ω

⎛⎝√︄dP

dν

⎞⎠2

+
⎛⎝√︄dQ

dν

⎞⎠2

− 2
√︄

dP

dν

√︄
dQ

dν
dν =

⌜⃓⃓⃓
⎷1

2

∫︂
Ω

⎛⎝√︄dP

dν
−
√︄

dQ

dν

⎞⎠2

dν.

We used basic rules for computing with integrals and a definition of probability
from which it comes that for any probability measure P it holds that

∫︁
Ω

√︂
dP
dν

dν ≡
1.

Since we would be mostly interested in discrete data, the formula important
for us is as follows.

Definition 4. Let P and Q be a discrete distributions defined on the same space.
We define Hellinger distance DH(P, Q) as

DH(P, Q) = 1√
2

⌜⃓⃓⎷ N∑︂
k=1

(︃√︂
Pk −

√︂
Qk

)︃2
. (1.7)

For concept drift detection Hellinger distance is usually used as a metric quan-
tifying the distribution difference of multiple windows, always two at a time.
When no prior knowledge is available, the number of partitions N is usually set
to the square root of the window size. The formula for the concept drift detection
in the d dimensional case is

1
d

d∑︂
i=1

⌜⃓⃓⃓
⎷ N∑︂

j=1

⎛⎝⌜⃓⃓⎷ Pj,i∑︁N
k=1 Pk,i

−

⌜⃓⃓⎷ Qj,i∑︁N
k=1 Qk,i

⎞⎠2

, (1.8)

where Pj,i is number in bin j of feature i. Note that Formula 1.8 for one-
dimensional feature vector is the same as Formula 1.7 except for the normal-
ization. In Formula 1.8 we can see that overall drift is measured as the normal-
ized sum of square roots of the single feature drift score. This fact is one of the
reasons why we consider it natural to use the Hellinger distance for analysing
single-feature drift.

The practical application of the Hellinger distance is illustrated in [Ditzler and
Polikar, 2011, Section III, A and C]. It shows that while this distance measures

18

the difference between two distributions, the difference tested on samples from
the same distribution does not necessarily become zero. Instead, the differences
between the same distributions remain nearly constant. Therefore, to detect a
drift, we monitor deviations from these previously observed differences. This
approach leads to the procedure described in [Ditzler and Polikar, 2011, Fig. 4],
which we present as Algorithm 2.

1.4 Dirichlet distribution
In this section, we present Dirichlet distribution which is the key part in the
process of establishing adaptive cluster prior probability threshold presented in
Subsection 4.3.5. We briefly introduce Dirichlet distribution together with its
derivation mostly according to [Lin, 2016, Sections 2.2-2.4], where we just add
some more details.

Since Dirichlet distribution is a generalized Beta distribution we introduce
this distribution first. For this, we briefly remind Gamma distribution which is
highly connected with both previous distributions.

Definition 5. It is said that random variable Y has a Gamma distribution with
parameters α and β, denoted as G(α, β), if it has a probability density function
f(x) of the form

f(x) =
⎧⎨⎩

1
Γ(α)βα xα−1e− x

β if 0 < x <∞
0 otherwise

where α > 0, β > 0 and Γ(α) =
∫︁∞

0 tα−1e−tdt is the Gamma function.

Gamma distribution is often used in cases where we are interested in waiting
time until a certain number of events occur. In this scenario, α would stand for
the aspect of how quickly those events are likely to happen and β for the average
rate of event occurrences. From this intuition, we can see that Gamma distribu-
tion is highly connected with Binomial distribution and the problem discussed
in Subsection 4.3.4. Closely related to the Binomial distribution is also Beta
distribution, which is defined in Definition 6.

Definition 6. It is said that random variable Y has a Beta distribution with
parameter α and β if it has a probability density function f(y) of the form

f(y) =
⎧⎨⎩

Γ(α+β)
Γ(α)Γ(β)y

α−1(1− y)β−1 if 0 < y < 1
0 otherwise

,

where α > 0, β > 0.

One of the possible views on Beta distribution is that it gives success prob-
ability of the Bernoulli experiment when we are given its outcome. Hence, as
the Bernoulli distribution takes the probability of positive observation as a pa-
rameter and models the number of successes, the Beta distribution works with
this probability as input y and can be considered as modelling the probability of
success. This point of view would imply that parameters α and β could be set

19

Algorithm 2 Hellinger distance concept drift detection ([Ditzler and Polikar,
2011, Fig. 4])

Inputs

• {Di}nD
i=1 - Distributions, each is finite, non-empty subset of feature space

Rd.

• γ - standard deviation parameter for drift threshold, γ ∈ R

λ← 1
Dλ ← D1
for t← 2, . . . , nD {over all distributions} do

Generate a histogram P from Dt and a histogram Q from Dλ. Each with
b = ⌊

√
N⌋ bins, where N is cardinality of Dt

Calculate Hellinger distance δH(t) as distance between P and Q which is
eqaul to

1
d

d∑︂
i=1

⌜⃓⃓⃓
⎷ N∑︂

j=1

⎛⎝⌜⃓⃓⎷ Pj,i∑︁b
k=1 Pk,i

−

⌜⃓⃓⎷ Qj,i∑︁N
k=1 Qk,i

⎞⎠2

(Formula (1.8)

Compute the difference in Hellinger distance:

ϵ(t) = δH(t)− δH(t− 1)

Update the adaptive threshold:

ϵ̂ = 1
t− λ− 1

t−1∑︂
i=λ

|ϵ(i)|

σ̂ =
√︄∑︁t−1

i=λ(|ϵ(i)| − ϵ̂)2

t− λ− 1

β(t)← ϵ̂ + γσ̂
if |ϵ(t)i| > β(t)i {Check if drift is present} then

λ← t
Dλ ← Dt

else
D

(i)
λ ← {D

(i)
λ , D

(i)
t }

20

as α is equal to a number of positive observations while β is assigned with the
number of negative observations.

Now, we will derive the Dirichlet distribution from the previous two distri-
butions. Let X1, . . . , Xk be an independent random variables where each Xi is
from the G(αi, 1) for each i = 1, . . . , k. Now, we consider their joint probability
density function, which is of the form

f(x1, . . . , xk) =
⎧⎨⎩
∏︁k

i=1
1

Γ(αi)x
αi−1e−xi if 0 < xi <∞

0 otherwise
.

This formula is provided by independence and by setting β = 1. Now, we consider
Yi = Xi

X1+X2+···+Xk
for each i = 1, . . . , k− 1 and Zk = X1 + X2 + · · ·+ Xk. We use

change of variables with mapping {(x1, . . . , xk) : 0 < xi <∞, i = 1, . . . , k} onto
{(y1, . . . , yk−1, zk) : yi > 0, i = 1, . . . , k − 1, 0 < zk < ∞, y1 + · · · + yk−1 < 1}.
The inverse functions are given by x1 = y1zk, x2 = y2zk, . . . , xk−1 = yk−1zk, xk =
zk(1 − y1 − · · · − yk−1). Hence the determinant of the Jacobian matrix is of the
form

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

∂x1
∂y1

· · · ∂x1
∂yk−1

∂x1
∂yk...

∂xk−1
∂y1

· · · ∂xk−1
∂yk−1

∂xk−1
∂yk

∂xk

∂y1
· · · ∂xk

∂yk−1

∂xk

∂zk

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

zk 0 · · · 0 y1

0 zk
. y2

... 0 ...
0 · · · 0 zk yk−1
−zk −zk · · · −zk (1− y1 − · · · − yk−1)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

zk 0 · · · 0 y1

0 zk
. y2

... 0 ...
0 · · · 0 zk yk−1
0 0 · · · 0 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
= zk−1

k ,

where for the penultimate equality we used that the addition of one row of the
matrix to another does not change its determinant. The result is then derived
by the simple computation of the triangular matrix determinant. Now, we can
use theorem from Taboga [2021], formulated as Theorem 4, which presents the
formula of joint probability density function of one-to-one transformation.

Theorem 4. Let Y be a k continuous random vector with support SY and joint
probability density function fY (y). Let g : Rk−1 → Rk−1 be one-to-one and
differentiable on the support of Y . Denote Jg−1(x) the Jacobian matrix of g−1(x).
If the determinant of the Jacobian matrix satisfies that it is non-negative for all
x from SX , where X = g(Y) and SX = {x = g(y) : x ∈ SY }, then the joint
probability density function of X is

fX(x) =
{︄

fY (g−1(x))|det(Jg−1(x))| if x ∈ SX

0 if x /∈ SX

.

Using Theorem 4, we get that probability density function of Y1, . . . , Yk−1, Zk

21

is

f(y1, . . . , yk−1, zk)

= 1∏︁k
i=1 Γ(αi)

(︄
k−1∏︂
i=1

zαi−1
k yαi−1

i

)︄
e

(︂
−
∑︁k−1

i=1 zkyi

)︂
(︄

zk

(︄
1−

k−1∑︂
i=1

yi

)︄)︄αk−1

e

(︂
−zk

(︂
1−
∑︁k−1

i=1 yi

)︂)︂
zk−1

k

= 1∏︁k
i=1 Γ(αi)

(︄
k−1∏︂
i=1

yαi−1
i

)︄(︄
1−

k−1∑︂
i=1

yi

)︄αk−1

z

(︂∑︁k

i=1 αi

)︂
−1

k e−zk

=yα1−1
1 · · · yαk−1−1

k−1 (1− y1 − · · · − yk−1)αk−1

Γ(α1 · · ·Γ(αk

e−zkzα1+···+αk−1
k .

Now, we can integrate out zk and obtain

f(y1, . . . , yk−1) =
∫︂ ∞

0
f(y1, . . . , yk−1, zk)dzk

= 1∏︁k
i=1 Γ(αi)

(︄
k−1∏︂
i=1

yαi−1
i

)︄(︄
1−

k−1∑︂
i=1

yi

)︄αk−1 ∫︂ ∞

0
z

(︂∑︁k

i=1 αi

)︂
−1

k e−zkdzk

= 1∏︁k
i=1 Γ(αi)

(︄
k−1∏︂
i=1

yαi−1
i

)︄(︄
1−

k−1∑︂
i=1

yi

)︄αk−1

Γ
(︄

k∑︂
i=1

αi

)︄
,

which is exactly the density of the Dirichlet distribution with parameters
α1, . . . , αk as can be seen in Definition 7. Note that for last equality we used
definition of Gamma function, which we presented in Definition 5.

Figure 1.5: Illustration of influence of various choices of alphas on Dirichlet dis-
tribution. Each of the graphs represents 1000 random samples from Dirichlet
distribution with according values of alpha.

22

Definition 7. Let Y k be a vector with k components, where Yi ≥ 0 for i =
1, 2, . . . , k and ∑︁k

i=1 Yi = 1. Also, let αk = (α1, α2, . . . , αk), where αi > 0 for each
i. Then the Dirichlet probability density function, denoted as Dir(α1, α2, . . . , αk),
is

f(yk) = Γ(α0)∏︁k
i=1 Γ(αi)

k∏︂
i=1

yαi−1
i

where α0 = ∑︁k
i=1 αi, y1 + · · ·+ yk−1 < 1 and yk = 1− y1 − · · · − yk−1.

We can see that an important part of the Dirichlet distribution presented in
Definition 7 is parameter α. In Figure 1.5 we give some examples of Dirichlet
distribution for various choices of α. This parameter can be generally considered
as some kind of weight. The higher αi the greater the influence of the according
component Y i. On the other hand, if αi < 1 then we can consider it as an
aspect of decreasing the effect of Y i. If all alphas are the same, then we call
the distribution flat and it holds that it is symmetric. The case where all alphas
have value 1 represents a scenario where all points are distributed uniformly.
In Subsection 4.3.5, we propose a prior probability threshold based on Dirichlet
distribution. In this approach, alphas would be the key part since they will
represent our assumption on cluster probabilities.

1.5 Clustering algorithms
Our solution presented in Section 4.3 is based on the incremental Gaussian Mix-
ture Models (GMM) algorithm. In this section, we describe the derivation of the
original non-incremental form of the algorithm, which provides the best insight
into the underlying principles of the process.

First, we present a brief introduction of techniques in Subsection 1.5.1. In
Subsection 1.5.2, we introduce the K-means algorithm, a simpler variant of the
GMM algorithm, which effectively illustrates the core concept of the process.
Next, in Subsection 1.5.3, we briefly discuss the Mahalanobis distance, a crucial
component of the GMM algorithm. Finally, in Subsection 1.5.4, we present the
non-incremental form of the GMM algorithm, which will serve as the foundation
for describing its incremental form in Section 1.6.

1.5.1 Algorithms introduction
In this subsection, we provide a brief introduction to the techniques discussed in
this section, contextualizing them within the scope of the thesis.

A prominent approach in data stream outlier detection (see Subsection 1.7.1)
is, according to Tamboli and Shukla [2016], the clustering approach. The general
idea of this approach is to partition the feature space into clusters and assess how
well new incoming samples fit into these clusters. There are various methods to
perform this partitioning, and we will describe two well-known techniques: the
K-means algorithm and the Gaussian Mixture Model (GMM) algorithm. Both
methods are based on distance measurement and optimization principles.

The K-means algorithm is relatively straightforward as it assigns each data
point to a specific cluster based on distance. In contrast, the GMM algorithm

23

generalizes this concept by allowing each data point to contribute to multiple
clusters, resulting in more precise clustering.

Both algorithms were originally designed for a traditional scenario where all
training samples are available during the training phase. This is significantly
different from the stream scenario described in Subsection 2.3, where we receive
and must utilize one sample at each time step. However, explaining these al-
gorithms in their original form, without data stream constraints, can help to
understand their fundamental workings. Therefore, we begin our discussion of
these approaches in this more traditional setting, primarily based on [Bishop,
2006, Chapter 9].

1.5.2 K-means algorithm
In this subsection, we describe the K-mean algorithm for a non-stream scenario
together with its derivation. The presented information will serve for a better
understanding of a more general process called the Gaussian Mixture Models
algorithm which we introduce in Subsection 1.5.4.

The idea of the K-means algorithm is to shift the centers of the clusters to
minimize the distance from the observed points. To be more precise let X1, . . . , Xn

be feature vectors (points) and K be the number of clusters, where each is defined
by its center µi and let zi,k ∈ {0, 1} be an indicator of assigning Xi to cluster k.
We want to minimize the formula

n∑︂
i=1

K∑︂
k=1

zi,k∥Xi − µk∥2.

For given centers µ1, . . . , µK the best possible zi,k is the one assigning Xi to cluster
j for which ∥Xi − µj∥2 is minimal. For computing the optimal centers satisfying
µj = argminµ

∑︁
i zi,k∥Xi − µ∥2, we make derivative of the latter formula with

respect to µ and we get
∂f

∂µ
=
∑︂

i

zi,k2(Xi − µ)(−1).

Now, we set the derivative equal to zero, then

0 = −
∑︂

i

zi,k2(Xi − µ) (1.9)

µ =
∑︁

i zi,kXi∑︁
i zi,k

, (1.10)

which is the mean of the points in the cluster.
Note that up to this point in this section, we have utilized L2 norm as the

measure of distance. This metric is typically insufficient for the more advanced
approach. Therefore, in the following subsection, we will briefly introduce the
Mahalanobis distance, which will be frequently employed throughout the thesis.

1.5.3 Mahalanobis distance
In this subsection, we will briefly describe Mahalanobis distance as a key part of
measuring the distances for the GMM algorithm used in our solution in Section
4.3.

24

Most drift detection techniques have a problem in that they, similarly as
presented in Subsection 1.3.2), measure the drift between two distributions. This
means that in a stream scenario we need to collect enough arriving samples to
produce the distributions, which results in a detection delay. Contrary to this,
we want to be able to get some information about the drift of just incoming data.
For this task, we choose well-known and well-studied Mahalanobis distance. The

Figure 1.6: Illustration of cluster shapes given by Mahalanobis distance for dif-
ferent covariance matrix approximation.

Mahalanobis distance DM(D, X), where D is distribution given by mean value µ
and covariance matrix Σ and X is feature vector, is defined (as can be seen in
[McLachlan, 1999, Section 2]) as

DM(D, X) =
√︂

(X − µ)T Σ−1(X − µ).

The squared Mahalanobis distance is a crucial component of the GMM algo-
rithm. For a clearer illustration of this distance, we present Figure 1.6. In high-
dimensional cases, calculating the full covariance matrix can be computationally
demanding. Therefore, approximations are often employed.

In Figure 1.6, we observe that in two dimensions, a cluster formed using
the Mahalanobis distance takes the shape of a circle when Σ is a scaled identity
matrix. When Σ is approximated by a diagonal matrix, the cluster shape becomes
an ellipse with its semi-minor and semi-major axes aligned with the x and y axes,
respectively. If the matrix is full, the ellipse can have any orientation.

In our scenario, we will utilize both the full covariance matrix and its diagonal
approximation, as these matrices will be computed incrementally. This approach
is detailed in Subsections 4.3.3 and 4.3.4.

25

1.5.4 Gaussian Mixture Model algorithm
In this subsection, we describe the Gaussian Mixture Model (GMM) algorithm
for the non-stream scenario. This subsection serves as a base for the incremental
version of the procedure described in Section 1.6, which is crucial for our solution
presented in Section 4.3.

Based on [Bishop, 2006, Section 9.2], we will present the GMM algorithm,
which can be understood as a generalization of the K-means algorithm described
in Subsection 1.5.2. GMM algorithm supposes that each cluster in feature space
can be modelled by the normal distribution, which for d dimensional vector X
has form

N (µ, Σ) =
√︄

1
(2π)d|Σ|exp(−1

2(X − µ)T Σ−1(X − µ)),

where µ is the mean and Σ is covariance matrix. Note the relation of the formula
with Mahalanobis distance presented in Subsection 1.5.3. The Gaussian mixture
of K clusters is defined as their combination of the form

K∑︂
k=1

πkN (µk, Σk),

where πk represents the weights of the clusters and if they form a distribution
then they can be seen as prior probabilities of belonging to each cluster.

Let z be a K dimensional binary random variable standing for assigning of
feature vector to each cluster. This means, the variable of a form that for exactly
one i, zi = 1 and for the rest it equals to 0. We can rewrite the prior probability
of the vector X, P (X), to obtain above formula as follows

P (X) =
∑︂

z

P (X, z) =
∑︂

z

P (z)P (X|z) =
K∑︂

k=1
πkN (µk, Σk).

Generally, we can interpret the above probability as the measure of how well the
feature vector X fits in the model composed of the clusters and their weights.
Maximization of this probability for all available data in the dataset would there-
fore create optimal clustering. The logarithm of this probability is equal to

n∑︂
i=1

log
K∑︂

k=1
πkN (µk, Σk),

then we can use the maximum likelihood estimation to minimize

L(X) = −
n∑︂

i=1
log

K∑︂
k=1

πkN (µk, Σk) (1.11)

to find the optimal parameters. In order to find the minimum, we set the deriva-
tive of L(X) with respect to µk to zero and proceed with the equation in the
following way.

∂L
∂µk

= −
n∑︂

i=1

1∑︁K
j=1 πjN (Xi; µj, Σj)

πkN (Xi; µk, Σk)Σ−1(Xi − µk) (1.12)

0 = −
n∑︂

i=1

πkN (Xi; µk, Σk)∑︁K
j=1 πjN (Xi; µj, Σj)

Σ−1(Xi − µk), (1.13)

26

where we used that the derivative of N (µ, Σ) with respect to µk is of the form√︄
1

(2π)d|Σ|e
− 1

2 (Xi−µk)T Σ−1(Xi−µk)(−(−1
2)Σ−1(Xi − µk)− (−1

2)(Xi − µk)T Σ−1)

=N (µ, Σ)Σ−1(Xi − µk).

Note that equality holds since Σ−1 is a covariance matrix and hence it is symmet-
ric. Denote r(zi,k) = πkN (Xi;µk,Σk)∑︁K

j=1 πjN (Xi;µj ,Σj)
, this term is called responsibility and can

be interpreted as probability of Xi belonging to k-th cluster, then using Equation
(1.12) we get

0 = −
n∑︂

i=1
r(zi,k)Σ−1(Xi − µk) (1.14)

µk =
∑︁

i r(zi,k)Xi∑︁
i r(zi,k) . (1.15)

It is important to realize that Equation (1.15) is not an analytical solution since
r(zi,k) depends on µk. Also note the similarity of this equation with Equation
(1.9), where we generalized the mean of the points assigned to a specific clus-
ter by a combination of all points where each contributes with weight given by
responsibility to this cluster.

When considering the value of πk, we need to add constraint that ∑︁K
i=1 πk = 1

since we want π to create a distribution. Therefore, the Lagrangian is of the form
L(X)− λ(∑︁k πk − 1) and its derivative with respect to πk is equal to

∑︂
i

N (Xi; µk, Σk)∑︁K
j=1 πjN (Xi; µj, Σj)

− λ.

When we set the derivative to zero we get

0 =
∑︂

i

N (Xi; µk, Σk)∑︁K
j=1 πjN (Xi; µj, Σj)

− λ

0 =
∑︂

i

πkN (Xi; µk, Σk)∑︁K
j=1 πjN (Xi; µj, Σj)

− λπk

0 =
∑︂

i

r(zi,k)− λπk

πk = 1
λ

∑︂
i

r(zi,k).

Then if we assign every point and we want π to be a distribution we set λ = n.
By the same approach, which means by setting the derivative of L(X) −

λ(∑︁k πk − 1) with respect to covariance matrix Σ to zero, we get the formula for
Σ, which is of the form

Σk =
∑︁

i r(zi,k)(Xi − µk)(Xi − µk)T∑︁
i r(zi,k) .

The problem of the non-existence of the easy analytical solution for Formula
1.11 results in an approach where we update the function in two separate steps.
This approach is generally known as the EM algorithm, which is presented in
Attachment A.4.

27

1.6 Incremental clustering algorithms
In Section 1.5, we derived the clustering algorithm known as Gaussian Mixture
Models (GMM) in its usual non-incremental form. Now, we will describe the in-
cremental form of the GMM algorithm, adapted for use in a data stream scenario.
This incremental GMM algorithm serves as the foundational algorithm for our
solution presented in Section 4.3.

First, we adapt GMM into its incremental form in Subsection 1.6.1, and then
we describe a faster version achieved by slight modifications of the incremental
equations in Subsection 1.6.2.

1.6.1 Incremental Gaussian mixture model
In this subsection, we describe an incremental version of the Gaussian Mixture
Model algorithm. This will be in a slightly modified version, which we present in
Subsection 1.6.2, used in Section 4.3 as the ground underlying algorithm of our
solution. In the following text, we present the algorithm and also give insight
into how it is derived.

The form of the incremental version of the Gaussian mixture model is pre-
sented in Engel and Heinen [2010]. For the following sections, we will adopt the
notation from Section 1.5. For a proper incremental version, we need to develop
the recurrent formulas for the mean µk, covariance matrix Σk, and the prior πk.
Such equations are given in [Engel and Heinen, 2010, Equation 11.-14.] and for
k-th cluster and feature vector Xi, they are of the form

spk = spk + r(zi,k) (1.16)

µk = µk + r(zi,k)
spk

(Xi − µk) (1.17)

Σk = Σk − (µk − µold
k)(µk − µold

k)T + r(zi,k)
spk

((Xi − µk)(Xi − µk)T − Σk) (1.18)

πk = spk∑︁K
j=1 spj

, (1.19)

where µold
k refers to value µk in previous step. The formula for the covariance

matrix is based on the sample covariance matrix and it is used in situations
where we want the full covariance matrix approximation (see Subsection 1.5.3).
A scenario where we would track only diagonal approximation of the covariance
matrix would very much simplify into tracking variances, which is done in Sub-
section 1.2.2 during the run of Gaussian Naive Bayes classifier.

Rather than detailing the entire parameter estimation process, we provide an
overview of the techniques and the overall procedure. This summary draws on
information from [Heinen, 2011, Subsection 2.5.2].

The process follows a general incremental version of the EM algorithm (see
Attachment A.4). There is estimation step which consists of computing posterior
probabilities of component membership r(zi,k) (P (zk = 1|Xi)) and maximization
step where we use computed posterior probability to produce new estimates of
mean µk, covariance matrix Σk and prior πk (P (zk = 1)).

28

Since the approach is based on Robinson-Monroe algorithm, we briefly de-
scribe this technique according to [Bishop, 2006, Subsection 2.3.5]. The approach
supposes that we have function f(θ) = 0, which has a unique root θ∗. We as-
sume that we can not directly observe the value of f(θ), but instead, we have
access to measurements of the random variable F (θ) for which it holds that
E(F (θ)) = f(θ). Now suppose that we observe one value of F (θ) at a time. The
general structure of the incremental algorithm is then of a form

θn+1 = θn − anF (θn), (1.20)

where coefficients {ai} represent positive step sizes that satisfy conditions

lim
i→∞

ai = 0
∞∑︂

i=1
ai =∞

∞∑︂
i=1

a2
i <∞.

Then Equation (1.20) converges to the root with probability one. To be more
detailed, the procedure for mentioned two random variables θ and F also assumed
that conditional variance is finite so that E((F (θ)−f(θ))2) <∞ and that f(θ) > 0
for θ > θ∗ and f(θ) < 0 for θ < θ∗.

Now, we get back to our problem, a process of deriving the desired recurrent
equations is as follows. Assume X1, . . . , Xn to be samples independently drawn
from the mixture distribution, which we are trying to describe. Then each of the
samples will be used to update the parameters and make them more accurate.
The process is based on the Robbins-Monroe stochastic approximation described
above. We consider the likelihood of the parameters Θ equal to the joint proba-
bility distribution for all given samples which is equal to

P ({X1, . . . , Xn}|Θ) =
n∏︂

i=1
P (Xi|Θ) =

n∏︂
i=1

K∑︂
k=1

P (Xi|zk = 1)P (zk).

Choosing the similar approach as in previous subsections we would maximize
the value of the formula by derivative which we would set to zero and find the
maximal likelihood estimation for Θ. This approach and consequent use of the
Robinson-Monroe algorithm together with some technical adjustments are possi-
ble for deriving an equation for the prior as is shown in [Heinen, 2011, Subsection
2.5.2]. Unfortunately, this approach becomes quite complex for the estimation
of the mean and covariance matrix. Therefore, another technique is chosen. Ac-
cording to Keehn [1965] it can be seen that when estimating mean and covariance
matrix by their sample estimations, which means

µ̂ = 1
n

n∑︂
i=1

Xi

Σ̂ = 1
n− 1

n∑︂
i=1

(Xi − µ̂)(Xi − µ̂)T

and the sample follows a normal distribution, then joint density function
P (µ, Σ|X1, . . . , Xn) is reproducible Gauss-Wishart distribution, which is four pa-
rameters distribution combining Gaussian distribution over mean and Wishart

29

distribution over the covariance matrix. Then according to [Heinen, 2011, Sub-
section 2.5.2] an estimation for single cluster starting with initial guesses µ0 and
Σ0, provides equations of following form

ω1 =ω0 + n v1 = v0 + n

µ1 =ω0µ0 + nµ̂

ω0 + n

Σ1 =(v0Σ0 + ω0µ0(µ0)T) + nµ̂µ̂T − ω1µ1(µ1)T

v0 + n
,

where µ̂ is a mean of samples X1, . . . , Xn, values ω0 and v0 stands for confidence
in our initial guesses µ0 and Σ0, which typically means the number of samples
we used for their estimation. At this moment we need to realize that if we are
operating in Gaussian Mixture Model scenario, it would not make good sense
to count the number of samples, since they are assigned by probability. This
probability for i-th sample and k-th cluster is equal to r(zi,k) and it is natural to
use it together with their sum as this confidence when producing the estimation
of the parameters. This finishes a brief illustration of Equations (1.16)-(1.19)
derivation.

The incremental procedure presented in this subsection represents a strong
mechanism for computing GMM in stream scenario. A shortcoming stands in
the computational costs, especially in the computation of the inverse covariance
matrix needed for determining responsibility value and in the covariance matrix
determinant computation. In Subsection 1.6.2, we present a possible way how we
can avoid to this computation by adapting Equations (1.16)-(1.19) to calculate
directly with the matrix inverse and with the determinant.

1.6.2 Fast Incremental GMM
In this subsection, we describe the adaptation of the algorithm presented in Sub-
section 1.6.1 into a faster version by modifying its incremental equations. This
modified algorithm is then used as the foundational part of our solution in Section
4.3.

We adapt Equations (1.16)-(1.19) following the approach of Pinto and Engel
[2015]. This adaptation reduces the computational complexity of the desired pa-
rameters by enabling their direct calculation during incremental approximation.

We will outline the approach according to [Pinto and Engel, 2015, Section 3].
First, we present the process of incrementally approximating the inverse covari-
ance matrix, Σ−1, which we denote as Λ. In the second part of the subsection,
we discuss a possible approach for the incremental computation of the covariance
matrix determinant, which is also necessary for the algorithm.

Lets rewrite Equation (1.18) as follows

Σk − (µk − µold
k)(µk − µold

k)T + r(zi,k)
spk

((Xi − µk)(Xi − µk)T − Σk)

= Σk − (µk − µold
k)(µk − µold

k)T + r(zi,k)
spk

(Xi − µk)(Xi − µk)T − r(zi,k)
spk

Σk

=
(︄

1− r(zi,k)
spk

)︄
Σk − (µk − µold

k)(µk − µold
k)T + r(zi,k)

spk

(Xi − µk)(Xi − µk)T ,

30

where the last formula can be seen as a sequence of two rank one updates of a
form

Σk =
(︄

1− r(zi,k)
spk

)︄
Σk + r(zi,k)

spk

(Xi − µk)(Xi − µk)T

Σnew
k = Σk − (µk − µold

k)(µk − µold
k)T .

This structure of computation provides us with the possibility of using Sherman-
Morison formula introduced in Sherman and Morrison [1950], which states

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
.

In the second case, when we need to subtract formula it becomes

(A + (−uvT))−1 = A−1 + A−1uvT A−1

1− vT A−1u
.

We can naturally use these formulas for our above equations. In the first step,
we set A =

(︂
1− r(zi,k)

spk

)︂
Σk and u = v =

√︃
r(zi,k)

spk
(Xi − µk), in the second then

A = Σk and u = v = (µk − µold
k). Exact incremental formulas, where for better

clarity we denote ∆spk = r(zi,k)
spk

are of the form

Λk = 1
(1−∆spk)Λold

k −
∆spk

(1−∆spk)2 Λold
k (Xi − µk)(Xi − µk)T Λold

k

1 + ∆spk

(1−∆spk)(Xi − µk)T Λold
k (Xi − µk)

(1.21)

Λk = Λk + Λk(µk − µold
k)(µk − µold

k)T Λk

1− (µk − µold
k)T Λk(µk − µold

k)
(1.22)

where Λold
k refers to the last approximation of Λk.

A similar approach is possible if the value of the determinant is needed. In this
case, we use matrix determinant lemma, which can be found in Harville [1998].
It states that for invertible squared matrix A and vectors u, v of corresponding
dimensions, it holds that

|A + uvT | = (1 + vT A−1u)|A|.

Now, we can use the same approach as for the computation of the inverse co-
variance matrix, even apply the same substitutions for A, u and v in both steps.
This provides us with equations

|Σ|k = (1−∆spk)d|Σ|old
k

(︄
1 + ∆spk

1−∆spk

(Xi − µk)T Λold
k (Xi − µk)

)︄
(1.23)

|Σ|k = |Σ|k(1− (µk − µold
k)T Λk(µk − µold

k)), (1.24)

where we suppose d dimensional vectors, which we used in the first equation
when applying basic determinant property that for d× d matrix A and scalar c
it holds that |cA| = cd|A|. We consider value |Σ|old

k as a last approximation of
the according determinant.

It is important to note that the process of adaptation of Equations (1.16)-
(1.19) presented in this subsection is exact. It uses no approximation. Therefore,

31

the results should be exactly the same as those we would obtain by using original
equations.

In [Sun et al., 2023, Subsection 4.2.2], Equation (1.21)-(1.24) are rewritten
into more computationally convenient form, which we present as Equation (1.25)
and Equation (1.26). In [Sun et al., 2023, Fig. 7], it can be seen that indeed these
equations show smaller runtime than ones presented in Pinto and Engel [2015].
The rewriting procedure results in equations

Λk = 1
1−∆spk

(︄
Λk −

∆spkΛk(X − µk)(X − µk)T Λk

1 + ∆spkdk

)︄
(1.25)

|Σ|k = (1−∆spk)d(1 + ∆spkdk)|Σ|k, (1.26)

where dk refers to square Mahalanobis distance of X from k-th cluster before
parameter update. Note also that µk in Equation (1.25) and Equation (1.26)
refers to not yet updated mean vector. These equations are used in Algorithm
7, which presents a very much similar update procedure as [Sun et al., 2023,
Algorithm 1].

1.7 Outlier detection in incremental GMM
In this section, we provide a concise overview of outlier detection techniques
within the framework of incremental Gaussian Mixture Models (GMM) algo-
rithms. These approaches are integral to the solution discussed in Section 4.3.

Subsection 1.7.1 introduces the general domain of outlier and novelty detec-
tion. Subsequently, Subsection 1.7.2 details the specific techniques from this
domain that will be utilized in developing our algorithm in Section 4.3.

1.7.1 Outlier and novelty definition
The terms outlier and novelty are highly connected to the content of Section 4.3.
To ensure clarity in our discussions, we will briefly describe these concepts here.
A more extensive discussion is provided in Attachment A.7.

Novelty detection, as defined in [Yang et al., 2021, Subsection 2.2] and [Faria
et al., 2016, Sections 1 and 3], refers to the ability to identify unlabelled instances
that differ significantly from known concepts and do not fit into any existing cat-
egories. These novel instances are typically prepared for further procedures such
as incremental learning or analysis. In this thesis, novelty detection generally in-
volves recognizing changes in the current concept that occur in regions of interest,
necessitating updates to the model to account for concept drift. Specifically, we
aim to identify new patterns resulting from concept drift and distinguish them
from noise.

Outliers lack a precise definition. As shown in [Ayadi et al., 2017, Table 1],
there are presented twelve distinct definitions of outliers, each from a slightly
different perspective. For the purposes of this thesis, we adopt the definitions
provided by [Wang et al., 2019, Section II A.] and [Yang et al., 2021, Subsection
2.5]. An outlier is defined as a point that is significantly dissimilar to other
observed points or deviates from typical behaviour. It is important to note that

32

the classification of a point as an outlier may change over time as new data
samples are collected.

In this subsection, we have provided a general definition of these terms. A
consistent mathematical formalization is not typically presented, which we will
also follow in this thesis. However, an intuitive understanding of this formaliza-
tion can be gained from the specific detection techniques discussed in Subsection
1.7.2.

1.7.2 Detection techniques
In this subsection, we present an overview of existing outlier detection techniques
associated with incremental Gaussian Mixture Models (GMM) algorithms. These
techniques will form a crucial part of the algorithm discussed in Section 4.3.

The advantage of the incremental GMM algorithm lies in its natural capability
for outlier detection by assessing whether a sample fits within the modeled clus-
ters. The GMM algorithm, being a probabilistic model, provides the probability
of a sample belonging to each cluster. However, determining whether a sample
is an outlier is not always straightforward. Hence, we explore several approaches
for outlier detection within the GMM framework.

We use the term outlier for clarity and general understanding, though other
terms might be appropriate depending on the context. A brief discussion of the
term outlier and related domain is provided in Subsection 1.7.1.

In one dimensional case it is straightforward to use well-known 68-95-99.7 rule,
which for usual value c = 2 or c = 3 determines by the equation

|X − µ| ≤ cσ (1.27)

probability of X belonging to cluster with mean µ and standard deviation σ
to approximately 95.5 respectively 99.7 percent. This approach is discussed for
example in [Blázquez-García et al., 2021, Subsection 3.1]. Unfortunately, the
direct use of this rule for multidimensional data is not possible since we need
to consider the dependencies among dimensions. A possible generalization is
described in [Bajorski, 2011, Section 5.7.2] and it is given by Mahalanobis distance
(see Subsection 1.5.3), where the criterion is√︂

(X − µ)T Σ−1(X − µ) ≤ c,

where Σ is the covariance matrix. The problem with this generalization is that
it obviously does not satisfy the same percentage distribution for c as in single
dimensional case. In fact, the probability decreases rapidly as can be seen in
Figure 1.7, which follows [Bajorski, 2011, Figure 5.21]. Let X be distributed
according to normal distribution N (µ, Σ) it holds that

P{dM(X, µ) ≤ k} = χ2
d(k2), (1.28)

where dM represents the Mahalanobis distance and χ2
d is the cumulative distribu-

tion function of the chi-squared distribution function with d degrees of freedom.
This fact is formulated in Lemma 5, which follows [Bajorski, 2011, Property 5.9].
Lemma 5. Let X be distributed according to N (µ, Σ), where Σ is positive definite
covariance matrix. Then the random variable (X − µ)T Σ−1(X − µ) has the chi-
squared distribution with d degrees of freedom.

33

Figure 1.7: Illustration of changing probability using generalized 68-95-99.7 rule
in higher dimensions. Presents probabilities presented in Equation (1.28) for
k ∈ {2, 3, 4} as function of the degree of freedom (dimension).

Proof. This proof uses the intuitive fact that the affine projection of normal
distribution is again a normal distribution, this proposition is stated in [Bajorski,
2011, Property 5.5]. From this property can be derived that Z = Σ− 1

2 (X− µ) is
again normally distributed with mean equals to 0 and unity covariance matrix.
Note also that we used positive definiteness of the Σ for existence of Σ− 1

2 . Now,
we can observe that

(X − µ)T Σ−1(X − µ) = ZtZ =
d∑︂

i=1
Z2

i ,

where Zi stands for i-th element of Z and since each of this elements follows
N (0, 1), the definition of a chi-square distribution with d degrees of freedom is
exactly the distribution given by ∑︁d

i=1 Z2
i .

One of the leading approaches for outlier detection is based on this general-
ization. The process is described for example in [Pinto and Engel, 2017, Section
2.1] or [Sun et al., 2023, Section 2] and it is based on simple criterion of testing
if the cluster statistics satisfy

(X − µi)T Σ−1
i (X − µi) ≤ χ2

d,1−β ∀i,

where χ2
d,1−β is the 1− β percentile of a chi-square distribution with d degrees of

freedom for a dimension d of feature vector X and given parameter β.
We mention also approaches presented in [Engel and Heinen, 2010, Section

2]. This procedure prefers more parametric-based detection, where an arriving
sample X is identified as non suiting to the model, based on novelty parameter

34

and the following inequality

P (X|zi,k) <
novelty parameter

(2π)d/2
√︂
|Σk|

∀k.

This approach may give us a straight way how to affect the number of outliers,
which can be possibly beneficial in the scenario where we have lots of information
about the data.

1.8 Cluster management
In this section, we will discuss cluster management in incremental Gaussian Mix-
ture Model (GMM) algorithm which is an essential part of the Algorithm 5, which
represents our solution for problem stated in Section 2.3.

A management of clusters is an important part of the incremental clustering
algorithms, especially when we consider adaptive number of them. Generally
speaking the following operations on the clusters are the ones we think of for the
proper incremental cluster algorithm.

• Update and deletion of the existing clusters

• Creation of a new cluster

GMM, a probabilistic algorithm discussed in Section 1.6, serves as the founda-
tional process for Algorithm 5. In this section, we introduce various existing
approaches to cluster management related to GMM, which will be the basis for
our work in Section 4.3.

We divide the discussion of cluster management into two parts. First, in
Subsection 1.8.1, we provide a brief overview of methods and approaches for
managing existing clusters. Then, in Subsection 1.8.2, we address the challenges
associated with creating new clusters.

1.8.1 Management of existing clusters overview
A crucial aspect of Algorithm 5 is cluster management, which is essential for
achieving the objectives outlined in Section 2.3. In this subsection, we provide
a brief overview of the approaches we used as starting points in developing our
solution. The information presented is especially important for Subsection 4.3.5.

We discuss various strategies for cluster management, noting that not all se-
lected approaches can be directly applied to our scenario. However, each approach
offers valuable insights relevant to our problem.

In [Pinto and Engel, 2015] same as in [Heinen, 2011, Subsection 2.5.3] the
approach of creating a new component is connected with two aspects, the number
of arrived samples since the cluster was made, denoted by vk and the importance
for the model, which is represented by spk. Given parameters vmin and spmin, we
check a delete criterion of the form

vk > vmin and spk < spmin. (1.29)

35

If the criterion is met then the cluster k is deleted and parameters in the model
are adjusted accordingly. For dealing with problem of too much accumulation in
the parameters which can negatively affect the model, it is possible to introduce
the parameters α and β which work as follows

spnew
k = P (zi,k|Xi) + αspk, (1.30)

where 0 < α < 1 and

if
K∑︂

k=1
spk ≥ βspmax then spnew

k = γspk ∀k, (1.31)

where 0 < γ < 1 and spmax is large value estimating

lim
t→∞

n∑︂
j=1

K∑︂
k=1

spj
k = spmax.

In [Diaz-Rozo et al., 2018, Section II. C. D.] there is described an approach
based on window strategy (see Subsection 1.3.1), where we generally consider
some statistics of the latest samples. In their work, they deal with concept drift
by a modification of detect and retrain idea. The detection algorithm is based
on the number of outliers in the GMM procedure supposing that increase of the
outlier detections is connected with data distribution change. This means that
when a new concept is arriving and we need to retrain our current outdated
model, we do it by common procedure but with the difference that we are using
only the latest samples. Using Chernoff bounds we can set a minimum number
of instances that fit in the model per defined window and if this number is not
met the concept drift is detected and a retraining procedure is launched. More
details on this approach can be seen in Attachment A.5.

An approach for handling overly similar clusters generated during the process
can be found in [Sun et al., 2023, Section 3]. This procedure involves creating new
clusters for samples that do not fit the current model and initiating a removal
process periodically. In the first step, clusters with a prior probability below a
certain threshold are removed. This step is similar to the criterion in Equation
(1.29), but the authors have enhanced it with an adaptive threshold that changes
based on the number of components. Specifically, when there are more compo-
nents, the threshold is lower, allowing for smaller priors. Conversely, when there
are fewer components, the threshold becomes more restrictive. By the extensive
experiments on the bivariate normal distributions (discussed in Attachment A.8)
the adaptive threshold is set to be

priorthreshold = π

10e− π
10 K .

After prior threshold-based removal, we sort the clusters in a descending manner
with respect to the prior probability. The next step is a study of the remaining
clusters’ overlap. For this task, the logical matrix LM of the shape K × K is
used. Its element on position i, j is of the form

LMi,j =
{︄1 if (µj − µi)T Σ−1

i (µj − µi) ≤ χ2
d,0.95 and i ̸= j

0 otherwise,
(1.32)

36

where χ2
d,0.95 is chosen accordingly to the 95% confidence level, which is considered

quite as a convention. The way LM is defined can be interpreted as if LMi,j =
1 then the center of j-th component µj is located in the confidence region of
component i. By extensive experiments, they concluded that it is beneficial
to remove the clusters whose centers are in the confidence interval of another
cluster. To be more precise, the process runs as follows. We sum up each column
of LM , lets denote it as COLLM, then we sequentially remove the cluster i such
that COLLM(i) ≥ 2 and spi = min({spj ; COLLM(j) ≥ 2}). When there is no
column in LM which sums up to more than 1 we proceed with those that sum
up to 1 where we again start with ones having the least prior probability and we
continue removing until LM is a matrix made only by zeros. The whole described
algorithm can be seen in [Sun et al., 2023, Fig. 1].

For the sake of completeness, we also mention that there are approaches for
splitting the clusters if their volume is too great and merging if we believe that
they represent the same distribution. Merging is described in [Acevedo-Valle
et al., 2017, Algorithm 2] and is given by equations of the form

f1 = sp1

sp1 + sp2
, f2 = sp2

sp1 + sp2

spnew = f1 + f2

µnew = f1µ1 + f2µ2

Σnew = f1Σ1 + f2Σ2 + f1f2(µ1 − µ2)(µ1 − µ2)T .

Approach for the splitting is presented in Bouchachia and Vanaret [2011] but we
do not describe the technique since we will not consider the splitting of clusters
in the algorithm.

1.8.2 Creation of a new cluster
In this subsection, we discuss the possibilities of creating a new cluster at the
moment when arriving sample is detected as not well-fitting into current distri-
bution. This is important part of our algorithm presented in Section 4.3 and it is
especially connected with Subsection 4.3.4. We will evaluate various approaches
and their respective advantages and disadvantages.

When encountering a sample that does not conform to the current distribu-
tion, we generally have two options. The first is to classify the sample as an
outlier but retain it temporarily to assess whether it might represent the arrival
of a new concept. The second option presumes that the sample indicates a new
concept, subsequently testing this hypothesis over time to confirm or refute it
(see Subsection 1.7.1). The literature is divided on which approach is superior.
For example, [Heinen, 2011, Subsection 2.5.3] and [Sun et al., 2023, Subsection
2.2] adopt the second approach, creating a new cluster for each non-fitting sample
while periodically applying the deletion criterion in Equation (1.29). Conversely,
in the same subsection of the above literature other researcher is cited claiming
that a single sample lacks sufficient information to justify the formation of a new
cluster, an argument reflected in Aletti and Micheletti [2017].

The second solution involves establishing a retention set Sret, where samples
identified as non-conforming are stored. When a new sample also does not fit, its
similarity to the samples in Sret is assessed. If the similarity exceeds a predefined

37

threshold, a new cluster is formed for these two points. Each data point in Sret

has an expiration date, beyond which it is discarded to prevent excessive memory
use and the formation of noise clusters from an overabundance of samples in Sret.

For our scenario we chose the second approach, using retention sets, which
seems more practical as it accommodates novelty detection while ensuring the
classification model is sufficiently adaptive to the new concept. This typically
involves assuming a sample is an outlier initially, rather than immediately cat-
egorizing it as the start of a new concept. Notably, as the model processes a
reasonable number of samples, the difference between these approaches may be-
come negligible. Both methods share the challenge of determining the optimal
time to remove a sample from the retention set or to reassess its significance (spk).
Current literature often treats this as a hyper-parameter, which may not be ideal
for statistical interpretability. Further discussion on this topic is presented in
Subsection 4.3.4.

A critical aspect of new cluster creation is the parameter setting, particularly
concerning the covariance matrix used to determine similarity among elements in
the retention set. This issue is examined in Subsection 4.3.4.

38

2. Problem formalization
The primary objective of this chapter is to describe and formalize the aim and
the working environment of this thesis.

Initially, we provide a brief motivation and formalization of the general sce-
nario in Section 2.1. In Section 2.2 we follow up on general definitions from Sec-
tion 1.1 and in connection with the formalized scenario we define crucial aspects
of concept drift. Finally, in Section 2.3, we summarize the working environment
along with aims and its underlying assumptions.

2.1 Formalization of scenario
In Subsection 2.1.1, we present the motivation of a scenario based on real-life
problem, and then in Subsection 2.1.2 we present general formalization of this
environment, which we will be further extended and detailed in Section 2.2.

2.1.1 Scenario motivation
Malicious software, commonly referred to as malware, is intentionally designed to
disrupt targets such as users, computers, or networks. A key aspect of malware
detection is the presence of features that enable rapid and accurate identification
of malicious software. Examples of such features include mutexes used by known
malware families, specific filenames, or registry keys. However, these features
often change rapidly, sometimes with each new iteration of the malware, leading
to a decline in detection model performance. This decline occurs because models
overly rely on these highly informative features, which can become misleading
when they assume previously unseen values.

Conversely, certain aspects of malware, such as the type of connection, the pro-
tocol used, or monetization methods, are difficult or impossible to alter. These
more stable features can provide valuable information for detection. Unfortu-
nately, machine learning algorithms may overlook these features, focusing too
much on the highly informative but volatile ones. When these volatile features
change, the overall detection accuracy can drop significantly.

This decline in performance is further exacerbated by a phenomenon specific
to malware detection known as label delay. This refers to the typical lag between
the need to classify new incoming software and the time it takes to definitively
determine whether these samples are malicious or benign. This delay complicates
the detection process and is an important factor to consider in improving malware
detection strategies.

2.1.2 Scenario formalization
In this subsection, we formalize the process outlined in Subsection 2.1.1. We will
still use a bit vague symbols as < and ≪, which we will further detail in Section
2.2. A sketch of the scenario can be seen in Figure 2.1.

Suppose that we have label y and feature vector X = (Xd, Xs), which consists
of two sets of features Xd and Xs, where the former are indicative but drifting

39

features and the latter are less reliable and more stable features. Also suppose
time t0 and distributions Pt<t0(y, X) and Pt>t0(y, X), which are followed by fea-
ture vectors and labels before and after time t0. Let P d

t<t0(Xd, y) and P s
t<t0(Xs, y)

be dimensional restrictions of Pt<t0(y, X) according to above sets of features.
Similarly we consider P d

t>t0(Xd, y) and P s
t>t0(Xs, y).

(X, y) ∼ Pt<t0(X, y) (X, y) ∼ Pt>t0(X, y)

drift in time t0

Mold optimizes loss on Pt<t0(X, y)

Mstable optimizes loss on P s
t<t0

(Xs, y)

Mnew optimizes loss on Pt>t0(X, y)

X = (Xd, Xs)

P s
t>t0

(Xs, y)

P d
t>t0

(Xd, y)

P s
t<t0

(Xs, y)

P d
t<t0

(Xd, y) and P s
t<t0

(Xs, y) are corresponding

Xd drifts severly

P d
t<t0

(Xd, y) ̸≈ P d
t>t0

(Xd, y)

Xs is stable

P s
t<t0

(Xs, y) ≈ P s
t>t0

(Xs, y)

Acc(Mold(X)) > Acc(Mstable(Xs)) Acc(Mold(X)) j Acc(Mstable(Xs)) < Acc(Mnew(X))

P d
t<t0

(Xd, y)

restricted distributions of Pt<t0(X, y)

P d
t>t0

(Xd, y) and P s
t>t0

(Xs, y) are corresponding

restricted distributions of Pt>t0(X, y)

Figure 2.1: General scheme of the scenario.

Since we are interested in label prediction and connected model performance
we add loss function l. For this loss, we assume the following models

Mold optimizes l with respect to Pt<t0(X, y)
M stable minimizes l with respect to P s

t<t0(Xs, y)
Mnew minimizes l with respect to Pt>t0(X, y).

Important property based on scenario motivation is that informally speaking
the distribution P s changes before and after time t0 only slightly and contrary
the distribution P d at same time suffers from significant drift. This property is
in Figure 2.1 denoted as

P s
t<t0(Xs, y) ≈ P s

t>t0(Xs, y)
P d

t<t0(Xd, y) ̸≈ P d
t>t0(Xd, y).

During formalization, we connect this property with model performance as the
most common objective. Assume loss function lA : Y × Y → R+, which
quantifies the accuracy of a model, the smaller the loss, the higher the accuracy.
Models satisfy

E(X,y)∼Pt<t0 (X,y)lA(Mold(X), y) < E(X,y)∼P s
t<t0

(Xs,y)lA(M stable(X), y)
E(X,y)∼P s

t>t0
(Xs,y)lA(M stable(X), y)≪ E(X,y)∼Pt>t0 (X,y)lA(Mold(X), y)

E(X,y)∼Pt>t0 (X,y)lA(Mnew(X), y) < E(X,y)∼P s
t>t0

(Xs,y)lA(M stable(X), y).

40

Since we connect the loss function with the accuracy we denote this property in
Figure 2.1 as

Acct<t0(Mold) > Acct<t0(M stable)
Acct>t0(M stable)≫ Acct>t0(Mold)
Acct>t0(Mnew) > Acct>t0(M stable).

Note that a bit vague < and ≪ will be replaced in Definition 8 by introduced
parameters and consequent terms of stable relevant information and
severe concept drift.

The above process in connection with our scenario implies that before the
model manages to learn Mnew, which is optimal on Pt>t0(X, y) it is beneficial to
use already learned M stable instead of Mold. This is the fundamental idea followed
in this thesis.

To complete formalization based on Subsection 2.1.1 we need to formalize
label delay. This is done naturally in connection with time series. We say that
there is label delay l if it holds that considering sample set {(Xi, yi)} model has
no access to label yi unit it predicts labels of all Xj for j ≤ i + l.

2.2 Concept drift specifics
In this section, we will present our definition of highly important terms
severe concept drift and relevant stable information, which are motivated by Sec-
tion 2.1 and are crucial for formalization of the problem. We will also define
sudden drift as the underlying type of concept drift considered in our scenario.

2.2.1 Severe drift
Our scenario is specific in that serious drifts occur only in some features, which
can corrupt predictions despite the presence of stable information that could yield
better results. Given our focus on severe drifts and stable relevant information,
it is essential to define these rigorously. To align with the formalization in Sec-
tion 2.1, we define these concepts using a comparison of the loss. The intuition
behind this approach as generally tracking the decision boundary can be found
in Subsection 1.1.2.

Definition 8. Let S0,t1 be a sample set consisting of samples of a form (X, y) ∈
Rd × Y and containing concept drift in time t0 ∈ N, 0 < t0 < t1. Also let
P0,t0(X, y) and Pt0+1,t1(X, y) be distributions according which are generated sets
S0,t0 and St0+1,t1. Consider models Mold and Mnew for which it holds that they
optimize loss function l with respect to distributions P0,t0(X, y) and Pt0+1,t1(X, y)
respectively. Let lA : Y × Y → R+ be a loss function quantifying accuracy,
then for given constants τ severe, τ stable ∈ (0, 1), τ severe ≤ τ stable:

• we call the concept drift in time t0 severe if it holds that

τ severeE(X,y)∼Pt0+1,t1
lA(Mold(X), y) ≥ E(X,y)∼Pt0+1,t1

lA(Mnew(X), y).

41

• we say that there exist stable relevant information for concept drift in time
t0 if there exists feature subset S ⊆ {1, . . . , d} for which it holds that

τ stableE(X,y)∼Pt0+1,t1
lA(M stable(RS(X), y) ≤ E(X,y)∼Pt0+1,t1

lA(Mnew(X), y),

where function RS : Rd → R|S| preserves all dimensions whose index is in
S and cuts of all which are not. Model M stable optimizes loss l with respect
to distribution P S

0,t0(RS(X), y), which is created from P0,t0(X, y) by taking
into account only dimensions of X which are in S.

In Definition 8 we used general threshold factors τ severe and τ stable as accu-
racy drop constants. In this thesis, we consider the appropriate value of τ severe

such that it decreases accuracy under 80% and stable parameter τ stable such that
accuracy does not decrease under 90%, both with respect to optimal accuracy.
Setting of these parameters can differ according to specific aims and scenarios.
Note also that in Definition 8 we connected the terms with the model, which can
be considered as in some sense optimal. We believe that this is necessary for the
possibility of proper definition but typically it is not possible to determine needed
distributions exactly and we work just with their approximation. Note also that
in the definition we intentionally did not use a specific loss function since in the
thesis next to the usual percentage of correct predictions we will also consider
other scores as F1-score (see Section 5.6).

2.2.2 Sudden drift
Especially for dealing with the concept drift it turned out that it can be beneficial
to divide process of the drift into several types. These are highly motivated by
real-life datasets. The most common types are sudden, gradual, incremental, and
reoccurring drift. We will define sudden drift as underlying for our scenario. The
remaining types are described in Attachment A.1.

The above mentioned types are mostly based on speed of change and perma-
nency of arriving concepts. The sudden drift occurs if a new concept quickly and
completely replaces the original concept. Its illustration can be seen in Figure
2.2, which follows [Lu et al., 2019, Fig. 4].

Figure 2.2: Illustration of the concept drift types according to way the distribution
of samples in the stream changes over time.

For the definition of the concept drift types, we assume a general setup from
[Hinder, 2022, Section 2]. We can understand this setup as similar to ours, where
we consider the collection of distributions Pi(X, y). These distributions may
change in time and are indexed by ordering t ∈ [1, . . . , n]. It holds that (Xt, yt) ∼
Pi(X, y). Based on this we give our definition of the sudden concept drift in
Definition 9.

42

Definition 9. Considering notation similar as in Definition 2 and problem setup
as above (Subsection 2.2.2), for given sample set S0,tn we call a concept drift
sudden if there exist time point t0 ∈ N, 0 < t0 < tn and distinct probability
distributions P≤t0(X, y) and P>t0(X, y) such that Pt(X, y) = P≤t0(X, y) for all
t ≤ t0 and Pt(X, y) = P>t0(X, y) for all t > t0.

It is important to note that, for testing on synthetic datasets, we primarily
consider those with multiple sudden drifts, as dictated by the problem formaliza-
tion presented in this chapter. Such datasets are more suitable for analysis. We
create a synthetic dataset tailored to our scenario in Subsection 5.1.2. However,
we must recognize that the definition of concept drift types aims to approximate
the main prevailing aspects of the concept, while real-world datasets typically
exhibit a complex mixture of properties.

2.3 Formalization of the problem
In this section, we summarize and complete the formalization presented in this
chapter. We will present the scenario, our aims, and assumptions, which follow
from real-life practice. In addition to previous sections, we also state the overall
goal in the context of the scenario.

The problem we are dealing with takes place in a stream scenario, which we
define in a way that there is a given dataset D consisting of n ∈ N samples ei,
where each sample ei = (Xi, yi) consists of feature vector X ∈ Rd and label y ∈ Y .
We assume that in time step i we have classified all feature vectors Xt for t ≤ i
and observe labels with delay l, which means labels yj for j ≤ i− l. This is our
general definition of the data stream scenario, which is generally similar to one
presented in [Bayram et al., 2022, Subsection 4.1].

ei−l ei−l+1 ei ei+1· · ·

Mi ŷi

Xi

t = i

ei−l ei−l+1 ei ei+1· · ·

Mi+1 ŷi+1

Xi+1

t = i + 1

Stream of data

Mi+1 Mi+2yi−l+1

+
=

+ =

+
=

Mi Mi+1yi−l + =

Time step

ei = data of i-th time stamp, ei = (Xi, yi)

l = label delay

Mi = model used in i-th time stemp

label delay

t = time step

ŷi = model prediction in i-th time step

Figure 2.3: Illustration of our scenario. Model evolution in data stream.

The overall goal is to find a sequence of models {Mt}n
t=1, where model Mi

predicts labels of the feature vector Xi received in time step i. We illustrate this
scenario in Figure 2.3. We look for the sequence of models for which it holds that
E(Xi,yi)∼DlA(Mi(X), y) is minimal for the accuracy quantifying loss lA. Note that
the sequence of models typically does not imply significant changes in a single
step. Instead, it generally involves slight adjustments to the current model by
incorporating newly arrived sample, as illustrated in Figure 2.3.

43

Our scenario is motivated by malware detection, specifically by sudden and
severe changes in highly decisive features but also with non-trivial information
that remains stable during the drift (see Section 2.1). All this motivates our
assumptions on dataset D which are that

• dataset D contains a sudden severe concept drifts as defined in
Definition 8

• for each concept drift occurring in dataset D there exists stable relevant
information according to Definition 8.

In Definition 8, we relate the terms severe concept drift and stable relevant
information to a drop in prediction accuracy compared to an optimal model. This
comparison is moderated by accuracy decrease factors that may vary depending
on the specific situation and objectives. A more detailed discussion of these
definitions is provided in Subsection 2.2. Generally, in this thesis, we consider a
drop in accuracy below 80% indicative of severe drift, and we consider information
stable and relevant if its accuracy does not drop below 90%, both relative to the
optimal accuracy before the drift.

44

3. Related work
In this chapter, we discuss prior methods developed for classification with concept
drift (Chapter 2), highlighting its shortcomings and illustrating the improvements
our work focuses on. This will be demonstrated using the evaluations presented
in Section 5.2 and Section 5.3. The related work primarily concentrates on the
Dynamic Weighted Majority (DWM) algorithm, a well-known and robust method
addressing a problem similar to the one presented in Section 2.3.

In Section 3.1 we give a brief insight into existing related work and highlight
some reasons why we chose the DWM algorithm as main underlying procedure.
In Section 3.2, we illustrate some of the related work limitations in case of sudden
severe drift in a subset of features (Section 2.3). In Section 3.3, we outline our
solutions designed to address these identified shortcomings.

3.1 Related work introduction
In this section, we briefly introduce related work relevant to the problem formal-
ized in Section 2.3.

Many algorithms and procedures aim at classification in data stream scenarios,
but to our knowledge, no approach focuses on the specific properties described in
Chapter 2.

The data stream scenario with concept drift is a complex process without a
single best strategy. However, there are two major approaches. The first approach
involves creating a model that constantly evolves and updates according to the
drift (Wankhade et al. [2020]). The second approach, known as detect and retrain,
learns the current concept and, upon detecting drift, discards previous informa-
tion and retrains on the latest samples (Ceschin et al. [2022]).

Generally, the detect and retrain strategy is considerably less computationally
demanding if concepts remain relatively stable. Unfortunately, in our scenario,
which assumes a highly drifting environment with non-negligible label delay, more
adaptive algorithms seem preferable.

There is, in fact, a broad class of algorithms that combine elements of these
two approaches: ensemble algorithms (Gomes et al. [2017]). These algorithms
utilize a set of models that are added, removed, and modified during the pro-
cess. Consequently, there exists a wide range of possible strategies to compose
these models optimally. Among these algorithms, we chose the DWM algorithm,
described in Subsection 1.2.1. This algorithm uses an ensemble of experts, each
weighted according to its current accuracy. The ensemble is constantly updated,
and outdated experts are discarded when a new concept is detected. We selected
this algorithm as our main baseline due to its considerable accuracy, robustness,
ability to adapt quickly to new concepts, and straightforward implementation.

3.2 The DWM accuracy drops
In this section, we show some results of DWM algorithm (see Subsection 1.2.1)
that illustrate some shortcomings and their possible improvements, especially in

45

relation to working with a dataset containing the severe concept drift, which is
important part of our scenario formalized in Chapter 2.

3.2.1 DWM and severe drift
In this subsection, we review results from the experiments presented in Sections
5.3 and 5.2, demonstrating that changes in concepts can lead to unnecessary drops
in accuracy. This discussion provides significant motivation for our proposed
solution outlined in Section 3.3, which aims to improve accuracy during brief
periods of new concept arrival.

The DWM algorithm is robust, and as noted in Kolter and Maloof [2007], can
adapt fairly quickly to entirely new concepts. However, the adaptation period
associated with the arrival of a new concept often results in a substantial decrease
in prediction accuracy, as illustrated by the accuracy drops in Figure 5.2. To
further highlight this issue, we evaluate the algorithm on our synthetic dataset
in Section 5.3.

Our dataset, detailed in Subsection 5.1.2, is designed according to our scenario
described in Section 2.1. It includes features that are highly decisive but subject
to drift, as well as features that are less decisive but more stable. These aspects
reflect the important characteristics of severe concept drift and relevant stable
information (Definition 8).

In Section 5.3, we compare the accuracy of the DWM algorithm in two sce-
narios: one utilizing all features of the dataset, and the other excluding the
highly indicative but severely drifting feature. The results align with the intu-
ition presented in Subsection 1.1.3, indicating that removing the highly decisive
but heavily drifting feature can enhance model performance during periods of
concept drift. It is important to note that the evaluation depicts a scenario with-
out label delay, which is a significant aspect of our scenario and can naturally
amplify periods of accuracy decline.

The evaluation discussed in this subsection demonstrates that during periods
of severe drift, focusing on less drifting parts of the feature vector may be advan-
tageous. This insight is crucial to our proposed solutions, the general outline of
which is presented in Section 3.3.

3.3 Solution outline
Although the techniques we employ in our solutions will vary, they adhere to a
general framework, which we present in this section.

This framework is strongly motivated by the shortcomings highlighted in Sec-
tion 3.2. We discussed how methods designed to address concept drift in data
stream scenarios can experience significant and unnecessary accuracy drops dur-
ing the arrival of new concepts. These issues are connected with overly relying
on severely drifting components of the feature vector.

The stream scenario described in Section 2.3 is well-documented, with numer-
ous approaches for addressing it, as detailed in Section 3.1. To build on existing
research and provide a highly usable solution, we have developed an algorithm
that supplies critical information about feature drift to the actual classification

46

model. The focus of this improvement is on periods of severe drift, where, as
illustrated in Subsection 3.2.1, current methods still exhibit shortcomings.

To maximize flexibility in selecting a classification model, our algorithm op-
erates as an auxiliary procedure, treating the classifier as a black box. The drift
information provided by our algorithm can then be used to enhance the classifier’s
drift response capabilities, which can be implemented in various ways depending
on the model. To maintain generality, we have chosen to use this information
as a binary indicator during testing, determining whether each feature should be
used for classification.

By adopting this solution, we intersect with the field of feature selection,
which is briefly described in Attachments A.3.

Results of evaluation (Section 5.3) reviewed in Subsection 3.2.1 provides in-
sight into another aspect of our solutions, which involves examining subsets of
features to determine if concept drift is present in any of them. Studying con-
cept drift by tracking non-drifted parts of the data is complicated by feature
dependencies, necessitating a search through all feature subsets—a problem that,
according to Welch [1982], is NP-hard. Motivated by Subsection 1.1.3, we sim-
plify this process by examining and solving the problem using specific subsets of
features and their drift. We assume dependencies among features as follows:

• let X ∈ Rd be d-dimensional feature vector. We are provided with a par-
titioning of these d features into non-overlapping sets. We assume that all
features within a single set are highly dependent, while each set of features
is independent of the others.

In other words, we assume knowledge of which features are dependent and
which are not. The correctness of this assumption does not invalidate the solution
algorithms, which is crucial since feature dependencies in real-life datasets are
typically complex. The procedures presented use the dependency assumption to
create feature subsets where drift is tracked. Thus, when adapting the dataset
to this assumption, we consider only highly dependent features that do not make
sense to examine alone.

If the dependency assumption is incorrect and we falsely assume strong depen-
dency, a stable feature might be marked as drifted due to its mistaken association
with drifting features. Conversely, if we incorrectly assume two highly dependent
features are independent, we might fail to detect the present drift. However, it
is common to have some knowledge about feature dependencies, especially when
focusing on strongly dependent ones. For completeness, we also assume that
the partitioning based on feature dependencies remains constant throughout the
process.

47

4. Proposed solutions
In this chapter, we present our proposed solutions for scenarios involving severe
concept drift and relevant stable information (Chapter 2). The first solution is
based on Hellinger concept drift detection (Section 1.3), and the second is based
on the incremental Gaussian Mixture Model (GMM) algorithm (Section 1.6),
both following the general outline described in Section 3.3.

Section 4.1 details the adjustments made to the Dynamic Weighted Majority
(DWM) algorithm (Subsection 1.2.1) to align with our scenario. Section 4.2
presents the solution based on Hellinger concept drift detection. Finally, Section
4.3 describes the sub-procedure based on the GMM algorithm.

4.1 Modified DWM
In this section, we describe adjustments of DWM algorithm (see Subsection 1.2.1)
in order to adapt it fully to our scenario presented in Section 2.3.

Two main aspects we must address are the possible label delay and the fact
that, in the DWM algorithm, the true label of the i-th sample is used to decrease
weights before these weights are used. This implies that information gained from
a label is used to predict the same label. Additionally, we introduce a parameter
t, representing the number of most recent labelled samples provided to the newly
emerging expert. This adjustment is based on the reasonable assumption that
the drift, indicated by the need for a new expert, actually occurred earlier due to
the delay caused by the updating period p.

Algorithm 3 is utilized in all experiments involving the DWM algorithm. In
Section 5.2 we demonstrate that setting l = 0 and t = 1 our modified algo-
rithm (Algorithm 3) is equivalent to original DWM algorithm (Algorithm 1).This
equivalence is shown by replicating results from Kolter and Maloof [2007]. For
our environment, when referring to scenarios without label delay, it is appropriate
to consider l = 1.

4.2 Solution based on concept drift detection
In this section, we present solution for problem formalized in Section 2.3, which
follows general outline described in Section 3.3 and is based on the concept drift
detection technique presented in Section 1.3.

Generally, we consider drift which is severe in some part of the feature vector
but on the other hand, in others relevant information is preserved. Technique
presented in this section aims to detect concept drift in the feature subsets and
then for certain time period exclude them from the prediction process in order to
give the model time to adapt on the new concept.

4.2.1 Hellinger distance proposed algorithms
In Section 1.3 we presented one of the possible ways for concept drift detection,
which will now serve as the basis for our proposed solution. In this section,

48

Algorithm 3 Dynamic Weighted Majority with label delay
Notation

{(ei, wi)}m
i=0 - Set of experts ei and according weights wi.

Λi - Global prediction in step i, Λ ∈ Y .

λi,j - Local prediction, made by ej for Xi λ ∈ Y .

σ - Sums of local predictions, σ ∈ R|Y|.

Inputs

{(Xi, yi)}n
i=0 - Samples, feature vector X ∈ Rd and according label y ∈ Y ,

where Y = {1 . . . , c} for c ∈ N.

β - Factor of decreasing weights, where 0 ≤ β < 1.

θ - Removing expert threshold.

p - Period of ensemble and weights update, p ∈ N.

l - Label delay, l ∈ N.

t - Learning parameter t ∈ N, which sets how many latest labeled samples
are keeping in memory for learning of new experts.

m← 1
em ← Create new expert
wm ← 1
for i← 1, . . . , n {over all samples} do

σ ← 0
for j ← 1, . . . , m {over all current experts} do

λi,j ← Classification of Xi by ej

if λi−l,j ̸= yi−l and i mod p = 0 then
wj ← βwj

σλi,j
← σλi,j

+ wj

Λi ← argmaxjσj

if i mod p = 0 {the updating period is met} then
w ← Normalize weights w
{(e, w)} ← Remove experts using threshold θ
if Λi−l ̸= yi−l {global prediction is wrong} then

m← m + 1
em ← Create new expert, provide him with {(Xk, yk)}i−l

k=i−l−t

wm ← 1
for j ← 1, . . . , m do

ej ← ej with provided (Xi−l, yi−l)
output Λ

49

we modify Algorithm 2 to be more suitable for our general setting presented in
Section 2.3. We present this approach as Algorithm 4 and we will discus some of
its properties.

The first difference from the original algorithm (Algorithm 2) lies in splitting
the process into independent runs for each predefined feature subset and convert-
ing the algorithm into a data stream one. This conversion is achieved primarily by
using memory efficiently, replacing the need to remember Dλ as a set of features
with simple histograms, where we increment values in corresponding bins. This
change reduces the adaptability of window sizes since one of the distributions is
represented only by a histogram. Additionally, we adjust the number of samples
moved at each step from the original window size to a single sample at a time (see
Subsection 1.3.1), which, although more computationally demanding, provides a
more detailed detection of the sudden concept drift.

Presented adjustment is significant. It raises the question of whether, on an
intuitive level, it affects the process’s functionality. Using the approach from
Algorithm 2, the crucial step involves computing the difference in Hellinger dis-
tances ϵ(t). Comparing distances of P , differing by only a single sample, seems
fundamentally flawed since we seek properties of whole distributions, typically
undetectable by a single sample. Thus, we track differences directly between
growing and sliding windows. Another change involves the reaction to drift de-
tection. Given the assumption of the sudden concept drift, the breaking point
between concepts is likely within the sliding window. Therefore, we discard this
window’s distribution and use a new window presumed to consist entirely of sam-
ples from the new concept.

The algorithm measures differences between distributions provided by two
windows and checks for deviations from previously measured ones. This adaptive
threshold comprises the mean and standard deviation of previous differences,
setting the decision boundary to the mean plus a constant number of standard
deviations. This is a single-dimensional case of the problem discussed in Section
1.7, specifically focusing on Equation (1.27), which we modify to:

Xϵ < µ(Xϵ) + γσ(Xϵ), (4.1)

where γ is a given constant, and µ and σ are the mean and standard deviation
of Xϵ, a random variable representing the distribution differences. Unlike Ditzler
and Polikar [2011], we do not detect reductions in the difference concerning ob-
served differences, as our interest lies in detecting increases, which may possibly
signal a drop in model prediction accuracy and potential model confusion. Thus,
we replace ±γσ(Xϵ) with +γσ(Xϵ). From Section 1.7, we derive information
about possible γ values, expecting the differences to follow a Gaussian distribu-
tion. Our modification in Equation (4.1) adjusts the percentages by halving the
probability of being out of bounds, considering only one tail of the symmetric
distribution, approximately 97.75% for γ = 2 and 99.85% for γ = 3.

Estimating the mean and standard deviation raises the question of the sample
size required for accurate estimation. In our experiments on synthetic data,
we address this by setting the sample size to 30, inspired by the well-known
rule of thumb for estimating Gaussian distributions (Krithikadatta [2014]),
though the differences do not meet the assumption of independent sampling.
Another concern is that false detections occurring shortly before a real drift can

50

lead to overestimation of parameters, reducing sensitivity to future drifts. To
evaluate the algorithm’s performance, Section 5.4 provides an evaluation focused
on its ability to efficiently detect severe concept drift.

4.3 Solution based on GMM algorithm
In this section, we present our second solution for problem stated in Section 2.3.
The first proposed approach, presented in Section 4.2 was based on measuring
the distance between two distributions. Contrary to this, the second solution
presented in this section will focus on comparing distribution and the sample
using incremental Gaussian Mixture Model algorithm.

Content of this section is as follows.

• In Subsection 4.3.2, we present overall scheme of the algorithm.

• Subsection 4.3.3 focuses on determination whether new sample fits into the
current cluster description and if it does then how should be incremented
according parameters.

• Subsection 4.3.4 is devoted to process of new cluster creation

• Final Subsection 4.3.5 presents approach of spurious and obsolete clusters
deletion.

These processes involve use of many hyper-parameters, whose proper setting will
be an important part of each subsection.

4.3.1 Clustering algorithm
In this subsection, we present brief overview of the procedure and its motivation
in context of the thesis.

To identify drifted parts of a feature vector in a streaming scenario, we employ
clustering algorithms. This method aims to describe the current data distribution
through a set of clusters. We chose this approach since it is one of the leading
solutions for abnormal samples detection, which is, as briefly discussed in Sub-
section 1.7.1, very similar class of problems. Note that using this approach we
naturally move from concept drift detection on distribution level presented in
Section 4.2 to study the change for each arriving sample alone.

For our assumption of drifting data environment (see Section 2.3), it would
not seem reasonable to fix the number of clusters. This is since each concept
may have a different number of partitions which are needed for its description.
This naturally berries the problem of adaptively adding and removing clusters.
Consequently, our aim is not only to detect the drifted parts but also to track the
changes and be able to determine when the drift regions again reach stability with
the respect to classifier performance (see Section 3.3). This approach involves
several tasks which have to be solved. Firstly, it is important to get to know
the underlying clustering algorithm well. Therefore, in Chapter 1 we derived
the Gaussian Mixture Model algorithm (GMM) from the very beginning non-
incremental version presented in Section 1.3. Based on this, we then derived
both usual and fast version of incremental GMM in Section 1.6.

51

Algorithm 4 Hellinger distance feature subset stream concept drift detection
Inputs

• {Si}Di=1 - set of feature subsets, where all sets are non-empty, without inter-
ception and their union gives all features of feature space

• γ - standard deviation parameter for drift threshold, γ ∈ R

• {Xt}t=1 - stream of feature vectors X ∈ Rd

• w - window size w ∈ N

• nmin - minimal number of collected differences needed for proper estimation of
ϵ and σ, nmin ∈ N

Generate a histogram Q from {Xi}wi=1 with b bins (usually b = ⌊
√

w⌋) for each
feature, denote Qi as histogram for i-th feature
Generate sliding window by W ← {Xi}2w

i=w+1, where Wi is set of window values in
i-th feature
δprev ←∞D //for each feature subset set previous distance to infinity
for t← 2W + 1, . . . {over data stream} do

for i← 1, . . . , D {over feature subsets} do
WSi ← {WSi , X

(Si)
t } //add feature subset values to according window

if |WSi | = w and QSi ̸= {} then
Generate a histogram P from WSi with b bins for each feature of Si

Calculate feature Hellinger distance as follows

ϵ = 1
|Si|

|Si|∑︂
i=1

⌜⃓⃓⃓
⎷ b∑︂

j=1

(︄√︄
Pj,i∑︁N

k=1 Pk,i

−
√︄

Qj,i∑︁N
k=1 Qk,i

)︄2

(1.8)

Update the adaptive threshold

ϵ̂ = 1
|ξi|

∑︂
ϵ∈ξi

|ϵ|

σ̂ =
√︄∑︁

ϵ∈ξi
(|ϵ| − ϵ̂)2

|ξi|

β(t)← ϵ̂ + γσ̂
if |ϵ(t)| > β(t) and |ξi| ≥ nmin (ϵ̂ and σ̂ are precise enough) then

ξi ← {} //drift is present in i-th feature subset
QSi ← {} //reset all statistics for i-th feature subset
WSi ← {}

else
Remove an oldest sample from WSi and incorporate it into distribution QSi

ξi ← {ξi, ϵ}
if |WSi | = w and QSi = {} then

Generate a histogram QSi from WSi with b bins for each feature of Si

WSi ← {}

52

4.3.2 Algorithm scheme
As stated in introduction to this section, we will build procedure based on fast
incremental GMM algorithm (see Section 1.6). In this subsection, we present
overall structure of the process with focus on high-level cluster management.

Our algorithm is conceptually the most similar to one presented in [Sun et al.,
2023, Fig 1] (see Subsection 1.8.1). Now, we present basic general parts of the
procedure which is summarized as Algorithm 5. For K current clusters, retention
set Sret (Subsection 1.8.2) and newly arrived feature vector X, the general steps
of the algorithm for feature vector restriction XS given by predefined feature
subset S will be as follows:

• Determine whether XS is the outlier based on generalized 68-95-99.7-rule
presented in Section 1.7. If XS is not detected as outlier increment the
model parameters accordingly. (Subsection 4.3.3)

• If XS is detected as outlier then, check the squared Mahalanobis distance
from each sample in Sret if similarity is detected create a new cluster. (Sub-
section 4.3.4)

• If criterion is met, delete spurious clusters (Subsection 4.3.5) and adjust sp
parameters.

This scheme is precisely outlined in Algorithm 5, which presents the general
framework of the solution. It is important to note that the critical operations
occur immediately after the arrival of a new sample. At this stage, we assess
whether the sample fits well and whether it is appropriate to utilize specific parts
of the feature vector. A feature vector subsect is considered unsuitable if it does
not fit well or if it only fits into non-incorporated clusters (Subsection 4.3.3).
Then we do not use this part of sample for prediction. The rest of whole process
generally keeps accurate description of the current distribution.

4.3.3 Sample fit and update of mixture
In this subsection, we describe part of our solution based on GMM algorithm
(Algorithm 5). We deal with determination of how well does newly arrived sample
fit into existing mixture of clusters, whether is the sample incorporated by the
classifying model and how to update the current parameters. Overall approach
is described in Algorithm 6.

One of the main advantages of the GMM is the natural way of determination
whether new sample fits into the mixture or should be considered as an outlier.
This is due to the probabilistic nature of the algorithm. Therefore, we will use
well known generalized 68-95-99.7-rule presented in Section 1.7. This can be
seen in Algorithm 6, which represent a general scheme of testing how well is the
sample described by the model and where parameters update takes place in our
procedure. In the algorithm, we also determine whether feature subset should
be used for classification or not. This is done by marking the feature restriction
by outlier and non-incorporated, where the first refer for sample being completely
new for us while the second states that it is the novelty, but we suppose that using
it would probably worsens the classifier prediction. This part of the procedure is
described in what follows.

53

Algorithm 5 Solution based on Gaussian Mixture Model algorithm
Inputs

• {Si}Di=1 - set of feature subsets, where all sets are non-empty, without inter-
ception and their union gives all features of feature space

• {Xt}t=1 - stream of feature vectors X ∈ Rd

• tb - number of samples used for mixture of clusters initialization, tb ∈ N (Al-
gorithm 8)

• β - parameter used for determining percentile of setting threshold for belonging
to cluster (Algorithm 6)

• SP L, SP U - lower and upper bound on sum of sp for forgetting procedure,
SP L < SP U ∈ R+ (Algorithm 9)

• nlast, cid - incorporation parameters, cid is needed number of similar prediction
in nlast last samples from the cluster, nlast, cid ∈ N (Algorithm 7)

• πK
min - adaptive threshold for cluster prior probability, discussed in Subsection

4.3.5 (Algorithm 9)

• Λinitial
k - Diagonal inverse covariance matrix used at the beginning when there

is no cluster (Algorithm 8)

for t← 1, . . . {over data stream} do
for i← 1, . . . , D {over feature subsets} do

Check whether XSi
t fits into mixture of clusters and accordingly update param-

eters. In this procedure we also determine whether XSi
t is outlier or fits into

non-incorporated clusters only. Process follows Algorithm 6.
if XSi

t is marked as outlier then
Run cluster creation procedure described in Algorithm 8.

if
∑︁K

k=1 spSi
k ≥ SP U and t > tb then

Check for spurious clusters according to Algorithm 9.

54

Algorithm 6 Interaction between XS
i and corresponding mixture of clusters

Inputs

• XS
i - feature vector, (subset of original feature vector) XS

i ∈ R|S|

• β - parameter used for determining percentile of setting threshold for belonging
to cluster

• {Ck}Kk=1 - set of K ∈ N clusters each consisting of (spk, πk, µk, inck, Λk, vark)

for k ← 1, . . . , K {over all components} do
Compute how well does XS

i fit into k-th cluster by evaluating dk = (XS
i −

µk)T Σ−1
k (XS

i − µk).
for k ← 1, . . . , K for which it holds dk < χ2

|S|,1−β do
Update k-th cluster by XS

i according to Algorithm 7.
if ∀k ∈ {1, . . . , K} it holds that dk ≥ χ2

|S|,1−β or inck = False then
Mark XS

i as non-incorporated. //XS
i fits only to non-incorporated clusters

if dk ≥ χ2
|S|,1−β ∀k ∈ {1, . . . , K} then

Mark XS
i as outlier. //XS

i does not fit into any existing cluster

Cluster parameters update

In this paragraph, we present procedure of cluster parameter update as a part of
our solution whose scheme is discussed in Subsection 4.3.2. The exact approach
for cluster parameter update is presented in Algorithm 7.

Algorithm of cluster parameter update is the most similar to [Pinto and En-
gel, 2015, Algorithm 2] and [Sun et al., 2023, Algorithm 1], whose derivation is
presented in Subsection 1.6.2. We add two specific sets of parameters, which are
used for tracking variances, whose importance can be seen in Subsection 4.3.4 and
for determining incorporation of the cluster by classifier. Incremental tracking
variances have already been discussed in Subsection 1.2.2 (Lemma 2) Incorpora-
tion testing, which in other words means whether information from cluster does
significantly worsen the prediction or not, is discussed in rest of the subsection.

Cluster incorporation - general

According to the general outline (Section 3.3), an important part of the overall
approach is the classifier, which predicts labels of the incoming feature vectors.
Now, we formalize the problem and discuss possible ways of determining whether
cluster has already been incorporated by the classifier, which is in our scenario
considered as the black box.

We say that cluster is non-incorporated by a classifier if it holds that if we
include information from this cluster to prediction process then accuracy drops
by a factor of predefined parameter. We present this term in more rigorous form
in Definition 10.

Definition 10. We follow notation of Definition 8. Consider feature subset D ⊆
{1, . . . , d} and set of feature vector values G ⊂ R|D| corresponding to features in
D. Then we call set G (cluster) non-incorporated in time t0 if there exists feature
subset S

′ ⊆ {1, . . . , d}, D ∩ S
′ = ∅ such that for given constant τ inc ∈ (0, 1) it

55

Algorithm 7 Update single cluster parameters
Inputs

• XS
i - feature vector, (subset of original feature vector) XS

i ∈ R|S|

• {Ck}Kk=1 - set of K ∈ N clusters each consisting of (spk, πk, µk, inck, Λk, vark)

• k - index of updated cluster k ∈ N, 1 ≤ k ≤ K

• nlast, cid - incorporation parameters, cid is needed number of similar prediction
in nlast last samples from the cluster, nlast, cid ∈ N

//Increment k-th cluster by value XS
i

dk ← (XS
i − µk)T Λk(XS

i − µk) //Squared Mahalanobis distance
Calculate Pr(XS

i |zk) as N (XS
i ; µk, Σk) =

√︂
1

(2π)|S||Σk|e
− 1

2 dk

r(zk)← πkN (XS
i ;µk,Σk)∑︁K

j=1 πjN (XS
i ;µj ,Σj)

spk ← spk + r(zk)
Update parameters variances vark according to Subsection 1.2.2
Λk ← 1

1−∆spk

(︂
Λk − ∆spkΛk(X−µk)(X−µk)T Λk

1+∆spkdk

)︂
//Update inverse covariance matrix

|Σ|k ← (1−∆spk)d(1 + ∆spkdk)|Σ|k //Update determinant of covariance matrix
µk ← µk + r(zk)

spk
(XS

i − µk)
if inck = False then

//XS
i fits into non-incorporated cluster

Test incorporation of k-th cluster by connected classifier according to Subsection
4.3.3 which means:
Let copk be a set representing previous comparisons
Compare prediction made by classifier on X inc

i and X inc ∪ S
i , where inc is union

of all feature subsets Sj for which it holds that X
Sj

i is not marked as outlier or
non-incorporated.
If |copk| ≥ cid then drop the oldest value out of copk.
Add 1 to nlast if the two above mentioned predictions agree and add 0 otherwise.
Count number of ones in copk if it is at least cid then set inck = True.

for k ← 1, . . . , K {over all components} do
πk ← spk∑︁K

i=1 spi

//Update priors

56

holds that

τ incE(X,y)∼Pt0+1,t1 ∩GlA(MG(RD∪S′ (X)), y) ≥ E(X,y)∼Pt0+1,t1 ∩GlA(M inc(RS′ (X), y)

, where MG and M inc optimizes loss l with respect to P0,t0(RD∪S′ ,y(X) and
P0,t0(RS′ (X), y) respectively. These distributions are corresponding restrictions
of P0,t0(X, y) created by integrating over dimensions of X which are not in D∪S

′

respectively in S
′. Expectation is considered over distribution Pt0+1,t1(X, y) ∩ G

which is created from Pt0+1,t1(X, y) by not considering any X for which RD′ (X) /∈
G.

According to Section 2.3 we decided to keep the problem in unsupervised
setting since label delay can be extreme. Therefore, we build the approach on
property given by Definition 8. Our scenario assumes relevant stable information
given by set S, we can consider S = S

′ . Then we can set τ inc in a way, that accu-
racy threshold for non-incorporated cluster would be connected with accuracy on
stable relevant features. This is the key idea of our approach where we compare
classifier predictions made using features from S with and without information
from non-incorporated clusters. If the similarity exceeds a predefined threshold
then we mark the cluster as incorporated.

For the following calculations, we typically set the threshold for similar pre-
dictions to 80%, though calculations can be performed for any probability value.
This approach is largely motivated by Definition 10, which is based on the for-
malization in Section 2.2. However, it is important to note that the unsupervised
procedure using the threshold for similar prediction probability provides an ap-
proximation rather than a strict determination of non-incorporation as per the
definition.

Given the relatively small number of samples in this thesis, we avoid using
strictly rigorous probabilistic estimations of identical prediction probabilities, as
they are typically demanding and could negatively impact model performance.
Instead, we provide a brief outline of possible more rigorous solutions but ulti-
mately employ rather a heuristic approach, which we believe is still better than
solving the process only by introducing a hyper-parameter.

One potential approach involves adaptive sampling, as detailed in Attachment
A.5. Here, the positive observation would be the identical prediction, and the
negative observation would be the differing prediction. Our goal is to approximate
the probability of similar outputs so accurately that it exceeds a specified bound,
with probability δ. However, as shown by Equations (A.1) and (A.2), achieving
reasonable ϵ and δ values requires a sample size of at least several hundred. A
more straightforward approach is presented in [Wonnacott and Wonnacott, 1990,
Chapter 8] and we describe it in the following text.

Cluster incorporation - confidence interval solution

In [Wonnacott and Wonnacott, 1990, Chapter 8], there is presented an approach
based on confidence intervals (see Attachment A.6). In what follows, we describe
this approach, which we adopt for setting parameters of cluster incorporation (cid

and nlast) for evaluations discussed in Chapter 5.
The key difference from confidence estimations presented in Attachment A.6

lies in the standard deviation used. For estimating the mean, we used σ√
n
, but

57

now we are interested in the proportion. We approximate the probability of
identical predictions as P̂ = Xid

n
, assuming the number of identical predictions

follows a normal distribution X id ∼ N (np,
√︂

np(1− p)). From this we derive

that Xid

n
= P̂ = N (p,

√
np(1−p)

n
). We use a similar approach to that described in

Attachment A.6. We are interested in lower bound, to ensure α% confidence that
our estimation of identical prediction p would not be greater by more that δ%. We
rewrite error bound from lover bound of Equation (A.6) as δ = zα

√︂
p̂(1−p̂)

n
, where

zα represents the z-score for quantile of α. For our scenario, when determining
the required sample size n, we derive n = z2

αp̂(1−p̂)
δ2 .

Figure 4.1: Graph of probabilities of observing at least 35 identical predictions
out of 41 for distinct probability of matching. (Formula (4.2) for nlast = 41,
cid = 35 and changing p)

A challenge in our scenario is that the accuracy on the non-incorporated clus-
ter may change over time as the classifier continues to learn. Consequently, the
number of required samples might be greater than the number derived from the
previous approaches. In our more practical solution, we address this by tracking
nlast = z2

αp̂(1−p̂)
δ2 latest predictions made using the non-incorporated cluster.

Next, we need to determine the corresponding number of identical predictions
to observe in these last nlast comparisons to conclude that the cluster has been
incorporated. Assuming all latest samples follow the same distribution, the pre-
diction comparison process follows a Bernoulli distribution with probability p.
The corresponding cumulative distribution function is

Pr(X n ≤ k) =
k∑︂

i=0

(︄
n

i

)︄
pi(1− p)n−i,

for k ∈ N ∪ {0}, k ≤ n. This formula gives the probability of having at most
k positive observations. Therefore, probability of observing at least cid identi-
cal predictions out of nlast, assuming the process follows the identical prediction

58

probability p, is equal to

1−
cid−1∑︂
i=0

(︄
nlast

i

)︄
pi(1− p)nlast−i. (4.2)

The values of this formula as function of p for δ = 0.1, α = 0.9 and consequently
nlast ≈ 1.2820.52

0.12 ≈ 41 and cid = 0.85 ∗ nlast ≈ 35 can be seen in Figure 4.1. Note
that for calculation of nlast we set p̂ = 0.5, since it maximizes formula p̂(1 − p̂).
We observe that probability for p = 0.5 is almost zero, for p = 0.85 it is more
than 58% and for p = 0.9 it is already almost 89%. Note that we set the values
of δ, α and cid to be more relaxed than our scenario demands, this is due to small
number of samples we test on. Therefore, we include parameters nlast and cid as
algorithm parameters, adjustable based on the conditions of the algorithm’s use.

It is worth mentioning that due to the nature of Gaussian Mixture Models al-
gorithm, a sample may be assigned to multiple clusters simultaneously. If some of
these clusters are incorporated and others are not, we assume that the predictions
are identical.

Considering the limitations of this approach for checking incorporation into
the classifier, we propose future work based on Gaussian processes. This method
could naturally connect the problem of incorporation with prediction uncertainty.
This approach would involve studying the uncertainty of classifier predictions and
determining whether feature subsets improve it.

4.3.4 Cluster creation
In this subsection, we examine the process of a new cluster creation as one of
the essential parts of the algorithm scheme presented in Subsection 4.3.2. The
motivation of the process is discussed in Subsection 1.8.2. We will first describe
the procedure summarized in Algorithm 8, and then we will explore possible
values for the unknown covariance matrix and the retention expiration time,
both of which are parameters related to our approach.

Cluster creation scheme

In our algorithm, new clusters are created from samples detected as outliers, which
are generally considered not to fit well into the current set of clusters (Subsection
1.7.1). These outliers are kept in a retention set, and each time a new sample is
added to this set, we test whether a new cluster can be formed from the retention
samples. If possible, these samples are removed from the retention set and used
to create a new cluster. To determine the distance, we need a covariance matrix.
We select this matrix as a weighted sum of the variances of all current clusters,
where the weight corresponds to the prior of the cluster. This process is discussed
in Subsection 4.3.4.

The problem of algorithm initialization, when no clusters yet exist, is solved
by using a hyper-parameter covariance matrix and an initial learning period de-
fined by the parameter tb. During this period, all incorporation parameters are
initialized to True (see Subsection 4.3.3). Since we operate in a stream scenario
(Section 2.3), we must address the possibility of the retention set continually

59

growing. This is managed by assigning a retention expiration time to each sam-
ple, which specifies the number of samples processed after which the sample is
discarded from the retention set. This adaptive time threshold is discussed in
Subsection 4.3.4. The entire procedure is detailed in Algorithm 8.

Retention set expiration parameter

In what follows, we present a possible solution for determining the parameter that
dictates the duration for which a sample detected as an outlier is retained in the
retention set. This retention period is crucial for assessing whether the sample
represents the first example of a new concept or a rare property of the current
distribution, a topic briefly discussed in Subsection 1.8.2. This parameter is
important for the process described in Algorithm 8 as it optimizes memory usage
and prevents the creation of noisy clusters.

We believe that the retention time should be connected to the model’s com-
plexity and the number of outliers. We achieve this by adjusting the retention
expiration parameter accordingly. This is similar to the approach in [Diaz-Rozo
et al., 2018, Section II C], which adapts the window width based on the as-
sumption that the number of noise samples and concept drifts are related to the
number of outlier detections. This idea, discussed in Section 1.7 and detailed in
Attachment A.5, helps in detecting drifts and measuring their severity.

For a practical solution, we decided to use a more straightforward and heuristic
approach based on simple probability. Given how samples from the retention set
create a new cluster, it is natural to connect the retention expiration parameter
with the following question:

Assuming the examined sample belongs to a newly arrived valid cluster,
after how many steps should another sample from the same cluster arrive?

We consider the minimal prior probability of the potential cluster, pc, linked to the
cluster deletion threshold discussed in Subsection 4.3.5. This means the minimal
cluster prior probability pmin defines the threshold for discarding a cluster from
the mixture. Since we count all samples, not just those incorporated into the
mixture, we must also account for the probability of a sample being an outlier,
poutlier. Thus, we set the minimal probability of the potential cluster to pc =
pmin ∗ (1− poutlier).

Suppose samples are drawn independently from the same distribution. The
probability that no element of the potential cluster appears in n steps is (1−pc)n.
To find the number of steps n such that the probability of at least one more
example from the cluster arriving is 1− δ, we solve 1− (1− pc)n = 1− δ. From
this, we derive n = log(δ)

log(1−pc) .
Since poutlier is unknown, we approximate it. For rigorous approximation can

be used adaptive sampling as described in Attachment A.5. In our implementa-
tion, we approximate this value by the percentage of outliers in the last hundred
samples, assuming this percentage can change with concept drift. Additionally,
we note the potential use of the exponential distribution, which models the time
until the next specific occurrence based on the historical average waiting time.

This solution also considers the desired model complexity, specifically how
easily the concept can be described by the clusters, by setting pmin. The intuition

60

Algorithm 8 Cluster creation procedure
Inputs

• XS
i - feature vector, (subset of original feature vector) XS

i ∈ R|S|

• RS - retention set

• {Ck}Kk=1 - set of K ∈ N clusters each consisting of (spk, πk, µk, inck, Λk, vark)

• Λinitial
k - Diagonal inverse covariance matrix used at the beginning when there

is no cluster

• tb - number of samples used for mixture of clusters initialization, tb ∈ N

if K ≥ 1 then
Compute ΛS

universal ←
(︂∑︁K

k=1 πkDvar
k

)︂−1
//Inverse of weighted mean of diagonal

matrices with variances on the diagonal
else

ΛS
universal ← Λinitial

k

K ← K + 1 //Create cluster for new sample
µK ← XS

i

spK ← 1
ΛK ← ΛS

universal
|ΣK | = |Λ−1

K | //Note that ΛK is diagonal
Initialize parameters for variances varK according to Subsection 1.2.2
if i ≤ tb then

incK ← True //At the very beginning we have no incorporated
stable relevant information we can compare to

else
incK ← False

for k ← 1, . . . , K {over all components} do
πk ← spk∑︁K

i=1 spi

//Update priors

for r ← 1, . . . , |RS | {over all samples from retention set} do
if (XS

i −RS
r)T ΛS

universal(XS
i −RS

r) < χ2
|S|,1−β then

Update K-th cluster by RS
r according to Algorithm 7

else
Check expiration time of RS

r (Subsection 4.3.4)
if no sample fitted into K-th cluster then

K ← K − 1 //Delete cluster, no match with retention set
for k ← 1, . . . , K {over all components} do

πk ← spk∑︁K

i=1 spi

//Update priors

Include XS
i into retention set RS and determine the sample retention set expiration

time as described in Subsection 4.3.4.

61

is that if there are many clusters, rarer properties need more time to reoccur and
thus be included in the cluster description.

Parameters initialization and universal covariance matrix

In Subsection 1.8.2, we discussed the general strategy for creating new clusters.
Here, we focus on the initial choice of parameters, particularly the covariance
matrix, which is essential for comparing samples in the retention set and estab-
lishing new clusters. Since we use the same matrix for both comparison and
initialization, representing general information about the entire mixture, we refer
to it as the universal covariance matrix. This matrix plays an important role
in the algorithm presented in this section, especially in the process discussed in
Subsection 4.3.4.

Initializing cluster parameters is a critical step in new cluster creation. While
selecting the mean vector is straightforward, choosing the best value for sp is less
clear. We follow the good practice of initializing the sp parameter to 1, which
makes sense considering it represents the fit of the very first sample that creates
the cluster.

Now, we will concentrate on covariance matrix. The usual approach when
creating cluster for single samples is described in [Pinto and Engel, 2015, Section
2.2]. There they chose to set covariance matrix Σ to diagonal matrix consisting
of the overall dataset squared standard deviation (variance) multiplied by the
constant δ. Mostly similar approach is chosen in [Sun et al., 2023, Subsection
2.2] where Σ for feature vector X ∈ Rd is set ass follows

Σ = δ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(X1)2 0 · · · 0 0
0 (X2)2 0
... 0 ...
0 · · · 0 (Xd−1)2 0
0 0 · · · 0 (Xd)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The main advantage of these approaches is the ease of computing the inverse
covariance matrix and the determinant due to the diagonal nature of the matrices.
Both of these values are necessary for the fast incremental procedure presented
in Subsection 1.6.2. The following properties of a diagonal matrix illustrate this
advantage. Let:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 · · · 0 0
0 a2

. 0
... 0 ...
0 · · · 0 ad−1 0
0 0 · · · 0 ad

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

then |A| = ∏︁d
i=1 ai and

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a−1
1 0 · · · 0 0
0 a−1

2
. 0

... 0 ...
0 · · · 0 a−1

d−1 0
0 0 · · · 0 a−1

d

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

62

The determinant’s value can be easily seen from its definition, as all products
except the diagonal consist of zero multipliers. The second equation results from
the multiplication of these matrices and the property A−1A = Id.

Without the need for fast inverse and determinant computation, we can find
an interesting solution in Aletti and Micheletti [2017], where the authors approx-
imate the universal covariance matrix by the normalized weighted sum of the
current covariance matrices. Although this approach involves many costly inver-
sions, we can modify it to avoid this by approximating the covariance matrices
with their diagonal values, computing variance for each cluster. Unfortunately,
we are not aware of a fast way to compute variances from the inverse covari-
ance matrix. Therefore, we track the variances similarly to the Gaussian Naive
Bayes method presented in Subsection 1.2.2, using cluster priors as weights. This
approach effectively takes the weighted mean of the most important directions,
albeit restricted by the diagonal approximation. We also note that there is no
known efficient incremental algorithm for tracking weighted variance. Thus, while
computing variances, we do not distinguish how well a sample fits into the cluster.

A disadvantage of our approach is that it assumes the existence of some clus-
ters to establish the universal covariance matrix. This can be addressed by either
performing a non-incremental clustering algorithm on the initial set of samples
to establish the initial mixture of clusters or by initializing the first covariance
matrix with given parameters. We adopt the latter method in our algorithm, as
initializing the mixture of clusters is not the primary objective of this thesis.

4.3.5 Deletion of cluster
In this subsection, we examine the process of maintaining the relevance and accu-
racy of the cluster set by removing obsolete or redundant clusters based on prior
probability thresholds and significant overlap. This cluster removal procedure is
a crucial aspect of Algorithm 5, ensuring the distribution remains relevant and
free from noise or outdated clusters. First, we discuss deletion period (used in
Algorithm 5). Then we describe the procedure detailed in Algorithm 9. Finally,
we introduce a novel method for determining the prior probability threshold used
as a criterion for cluster deletion.

Deletion period

Based on specific scenario of drifting environment we connect time of cluster
purification and sp parameter forgetting with mixture complexity. This give us
a bounds on single arriving sample impact and we do not risk, that in longer
period of time sum of sp parameter will increase beyond all limits or gradually
decrease. This approach uses two parameters SP L and SP U. SP L is used in
Algorithm 9 for forgetting procedure. It stands for new sum of sp parameter
we want to reach after purification. It also determines impact of single arriving
sample after forgetting. On the contrary, SP U determines upper bound on the
sum of sp, which we can understand as bound on minimal possible impact of
the newly arriving sample. Based on this intuition we believe that reasonable
setting of these parameters should come from assumption on the complexity of
the concepts and speed of drift. Idea of this approach is very similar to one
presented in Equation (1.31).

63

Deletion procedure

In this part, we discuss Algorithm 9, which is responsible for updating the mixture
by removing noisy and obsolete clusters.

Algorithm 9 is largely based on [Sun et al., 2023, Algorithm 3]. We adopt the
concept of a logical matrix LM for determining cluster overlap and the elimination
of clusters based on their priors, a common step in similar algorithms (both
methods are discussed in Subsection 1.8.1). However, later in this subsection, we
propose a novel method for setting the threshold for this operation.

We have also incorporated cluster probability testing using a defined prior
probability threshold during the overlap examination. This adaptation is nec-
essary due to the adaptive nature of the threshold and to prevent the deletion
of relevant clusters because of non-mutual overlap with less significant clusters.
Algorithm 9 follows the approach in [Sun et al., 2023, Algorithm 3] by deleting
clusters with excessive overlap. Although merging these clusters, as suggested in
Subsection 1.8.1, seems advantageous, it is incompatible with the fast incremental
GMM because it would require undesirable approximations or matrix inversion
and determinant computation.

Our algorithm also incorporates a forgetting factor, used in Equations (1.30)
and (1.31), but modified for our scenario. Assuming a highly drifting environ-
ment, we generally set the boundary to the sum of sp parameters, representing
the weights of the current clusters in GMM. Each arriving sample adds its weight
to each cluster depending on how well it fits into them. If the sum of all sp is
great, then the newly arriving sample has only a minimal influence on the over-
all mixture. Therefore, we factor all sp parameters by value min(1, SP L∑︁K

i=1 spi
). If∑︁K

i=1 spi was greater than SP L then we reduce to SP L, which ensures that the
new sample is not seriously overlooked. If the sum is already smaller that the
bound, we do not make any changes.

Cluster prior deletion threshold

In the following text, we investigate the deletion threshold for cluster prior prob-
ability used in the subprocesses of Algorithm 5. This threshold is crucial for
maintaining the relevance of the distribution by removing obsolete and noisy
clusters.

In Subsection 1.8.1, we briefly discussed two approaches for setting the thresh-
old for the cluster prior in the Gaussian Mixture Model algorithm. The first
approach involves using a basic hyper-parameter, and the second approach, in-
troduced by Sun et al. [2023], employs an adaptive threshold based on extensive
search. Here, we propose an alternative solution grounded in the properties of
probabilistic distributions. Specifically, we suggest using the Dirichlet distribu-
tion, as described in Section 1.4, to set the threshold for the cluster parameter
π. The main advantage of our method lies in its ability to accommodate var-
ious assumptions about the probability distribution of the expected mixture of
clusters.

To construct the threshold for probabilities, we assume that the distribution
of cluster probabilities follows a Dirichlet distribution with specific parameters α.
The threshold is then defined as the maximum value such that a sample drawn
from this Dirichlet distribution with the chosen parameters will, with probability

64

Algorithm 9 Check for spurious clusters
Inputs

• {Ck}Kk=1 - set of K ∈ N clusters each consisting of (spk, πk, µk, inck, Λk, vark)

• πK
min - adaptive threshold for cluster prior probability, discussed in Subsection

4.3.5

• SP L - bound on sum of sp for forgetting procedure, SP L ∈ R+

//Remove spurious clusters by testing threshold on their priors and overlay
While there are πk such that πk < πK

min delete k-th cluster set K ← K − 1 and
update priors
Compute logical matrix LM of shape K ×K, where LMi,j is according to Equation
(1.32)
while ∃j

∑︁K
i=1 LMi,j > 1 do

Delete k-th cluster such that
K∑︂

k=1
LMk,j > 1 and spk = min({spi ;

K∑︂
i=1

LMi,j > 1})

Set K ← K − 1, delete k-th row and column of LM
while ∃j

∑︁K
i=1 LMi,j = 1 do

Delete k-th cluster such that
Update all clusters priors and delete ones with prior probability below πK

min, delete
also corresponding row and column of LM

K∑︂
k=1

LMk,j = 1 and spk = min({spi ;
K∑︂

i=1
LMi,j = 1})

∑︁K
k=1 LMk,j = 1 and spk = min({spi ;

∑︁K
i=1 LMi,j = 1})

Set K ← K − 1, delete k-th row and column of LM
Update all clusters priors and delete ones with prior probability below πK

min, delete
also corresponding row and column of LM

βforget ← min(1, SP L∑︁K

i=1 spi

)

for k ← 1, . . . , K {over all components} do
spk ← βforgetspk

Update priors according to current values of sp

65

δ, have no component smaller than this threshold. This means that with proba-
bility δ, no cluster will have a probability less than the observed threshold. By
selecting specific α values, we can derive various thresholds based on different
assumptions about the cluster probabilities. Figure 1.5 provides an intuition of
how different α values affect the Dirichlet distribution. In Attachment A.8 we
describe exponential threshold of Sun et al. [2023] in detail.

Advantage of our approach lies in its interpretability and the flexibility to ad-
just boundaries based on δ and the expected distribution of cluster probabilities.
However, the Dirichlet distribution’s adaptive computation is computationally
intensive, necessitating assumptions about the cluster probability distribution,
which are made by selecting parameters α. The thresholds in this thesis are
computed by generating 106 samples from the Dirichlet distribution with specific
α parameters, sorting these samples, and selecting the value corresponding to
probability δ.

A significant difference in our proposed prior threshold function emerges when
considering a larger number of clusters. The exponential threshold from Sun
et al. [2023] was derived from experiments with a limited number of clusters,
which might not perform well in scenarios with complex distributions, as its
exponential nature results in very small thresholds (e.g., less than 10−7 for K =
50). In contrast, our distribution-based approach does not decrease as rapidly.
To simplify computation in experiments, we approximate our threshold with a
basic hyperbolic function a

b+K
for given parameters a and b. An example of this

approximation is shown in Figure 4.2.

Figure 4.2: Approximation of flat Dirichlet threshold for α = 3 by basic hyperbola
a

b+x
.

66

5. Implementation and
experiments
In this chapter we present evaluations of procedures discussed in the thesis.

First in Section 5.1 we describe datasets, which we use in this chapter. Then
we present 5 evaluations, listed below.

• In Section 5.2, we replicate some result of Kolter and Maloof [2007] using
our modified DWM algorithm (Algorithm 3).

• In Section 5.3, we examine performance of DWM algorithm (Section 1.2.1)
in our scenario (Chapter 2) and we will highlight its limitations which served
as motivation of our solutions in Chapter 3.

• In Section 5.4 we evaluate Hellinger procedure (Section 4.2) showing that
it is able to perform well considering severe concept drift.

• In Section 5.5 we present evaluation of overall solutions in comparison with
DWM algorithm using our synthetic dataset (Subsection 5.1.2).

• In Section 5.6 we evaluate our overall solutions in comparison with DWM
algorithm using real life data (Subsection 5.1.3).

Each evaluation presented in this chapter is divided into three subsections.
The first subsection states the aim of the evaluation and the criteria for its fulfil-
ment. The second subsection describes the execution of the evaluation, detailing
the exact parameter values and the reasoning behind their selection. The final
subsection presents the results of the evaluation, discussing whether they meet
the hypothesis criteria and the implications of these findings.

In Attachment A.14, we briefly discuss structure and used software of our
supplementary code utilizing evaluations of this chapter.

5.1 Datasets
In this section, we outline the datasets utilized for evaluations in this chapter.

In Subsection 5.1.1, we present the "SEA" dataset as described in Kolter and
Maloof [2007]. This dataset is employed to demonstrate certain properties of
Dynamic Window Mechanism (DWM) and to replicate results from Kolter and
Maloof [2007] in Section 5.3.

Next, in Subsection 5.1.2, we introduce a synthetic dataset we developed
specifically to closely capture the properties of the scenario presented in Chapter
2. This dataset serves as the foundation for evaluations in Section 5.3, Section
5.4, and Section 5.5.

Finally, in Subsection 5.1.3, we describe the real-world DREBIN dataset (Arp
et al. [2014]), which is used for comparison purposes in Subsection 5.6.

67

X = (X1, X2, X3, X4, X5, X6) Y = {1, 2} X6 is irrelevant, randomly sampled from interval [0.0, 10.0].

For label 1 : For label 2 :X2 +X3 +X4 +X5 ≤ b X2 +X3 +X4 +X5 > bX1 = c X1 = d

12 concepts dataset description:

Concept :

b :

c :

d :

1

20.0

2

1

2

18.0

1

3

17.0

3

4

18.0

6

7

17.6

11

2

20.6

5

4

20.2

4

7

19.6

9

8

17.4

4

3

18.0

10

6

18.4

2

0

19.0

5

4

3 4 5 6 7 8 9 10 11 12

Figure 5.1: Description of the 12 sudden concept drifts contained in the dataset.
Each of these concepts are represented by 2000 samples.

5.1.1 "SEA" dataset
"SEA concepts" dataset described in Kolter and Maloof [2007] consists of feature
vectors X = {X1, X2, X3}, where for all i ∈ {1, 2, 3} it holds that X i ∈ R and
0.0 ≤ X i ≤ 10.0. The decision boundary is set to X1 + X2 ≤ b for given drifting
b. X3 is an irrelevant feature (independent of label) uniformly randomly sampled
from interval [0.0, 10.0].

5.1.2 12 Concepts dataset
We design this dataset to capture the key aspect of our scenario presented in
Chapter 2, especially with focus on terms severe concept drift and relevant stable
information defined in Definition 8.

Our dataset consists of 12 sudden concepts 2000 samples each. The feature
vector X consists of 6 features X1, . . . , X6 for which it holds that for all i ∈
{1, 2, 3, 4, 5, 6} it satisfies that X i ∈ R, 0.0 ≤ X i ≤ 10.0. X6 is similarly as
in "SEA concepts" irrelevant and generated randomly. The rest of features are
connected with exact concept drift specifics. X2, . . . , X5 follow rule X2 + X3 +
X4+X5 ≤ b for drifting b and the most important feature X1, representing severe
drifting feature, follows X1 = c for drifting c. Note that features X2+X3+X4+X5

also drift in distribution since our dataset is label balanced. According Definition
8, X2, . . . , X5 provide stable information and X1 ensures severe concept drift.

The features are generated randomly but they follow primarily known bound-
ary they have to satisfy. To be more specific in implementation for uniformly
randomly generated label we generate feature vector uniformly at random until
they meet the according concepts specifics. The dataset description can be seen
in Figure 5.1.

5.1.3 DREBIN dataset
This dataset is taken from Ceschin et al. [2022] and is based on well known
DREBIN dataset Arp et al. [2014], which consists of real life samples used for
malware detection. What is the most important for us is that this dataset was
collected during period of time which, as shown in [Ceschin et al., 2022, Fig. 3
(a)], caused that there are concept drifts in the data. Note that it is not clear if
these drifts are severe and therefore if they meet assumptions from Section 2.3.

68

The dataset was primarily collected in 2011 and 2012. While we acknowledge
that this data may be outdated and not indicative of current malware perfor-
mance, it remains suitable for comparing different algorithmic approaches, which
is the primary objective of this thesis.

Dataset is ordered by submission date and consists of 13 columns, 3 are not
part of the feature vector these are label, submission date and sha256. Feature
vector consists of columns api call, permission, url, provider, feature, intent,
activity, call, service render and real permission. All these are textual columns.
At all there are 123453 benign and 5560 malignant samples, whose distribution
in time can be seen in [Ceschin et al., 2022, Fig. 2 (a)].

5.2 Replication of DWM results
In this section we will demonstrate brief evaluation on "SEA" dataset (Subsection
5.1.1) where we replicate some results of Kolter and Maloof [2007]. This replicated
results will also demonstrate important property of DWM algorithm, which will
be further examined in Section 5.3.

5.2.1 Evaluation hypothesis
In this subsection, we state the main hypothesis of this evaluation, which is
focused on validation of our modifications of DWM algorithm (Algorithm 3).

• Our modified DWM algorithm (Algorithm 3) generalizes original DWM
algorithm (Algorithm 1).

We will examine whether is our modified DWM algorithm, given specific pa-
rameters (label delay l = 0, learning period t = 1), equivalent to original DWM
algorithm.

We replicate results presented in [Kolter and Maloof, 2007, Subsection 4.2],
specifically [Kolter and Maloof, 2007, Fig. 7]. We will state that hypothesis is
met if our results would follow depicted confidence intervals.

5.2.2 Evaluation setting
We are replicating results presented in [Kolter and Maloof, 2007, Fig. 7]. This
experiment uses "SEA" dataset (Subsection 5.1.1) and Gaussian Naive Bayes
classifier (Subsection 1.2.2) as expert.

Their setting, which we adopt, is as follows. They created 50000 samples,
divided into four concepts 12500 samples each. The concepts are sudden (see
Subsection 2.2.2) and are given by b for which it holds that the first concept
satisfy b = 8, the second b = 9, the third b = 7 and the fourth b = 9.5. The
experiment parameters consists of the decreasing weight factor β = 0.5, updating
period p = 50 and the removing threshold θ = 0.01.

They track number of experts and percentage accuracy. For the accuracy,
they generate 2500 random samples of the current concept, which should be
estimated at each time step. Results and confidence intervals are reached by
averaging accuracies of 10 runs of the algorithm. Note that considering accuracy

69

Figure 5.2: Comparison of our results and original results. The blue and light
blue are ours corresponding to black and light back original lines. The red dots
are ours and corresponds to black line.

experiment, due to insufficient computational power we evaluate accuracy only
every 500 time stamp.

To mimic the original experiment we further set label delay l = 0 and learning
period t = 1.

5.2.3 Evaluation results and discussion
Results of the evaluation are presented in Figure 5.2, where we see [Kolter and
Maloof, 2007, Fig. 7] together with our results. We can observe that our results
meet original confidence intervals. The left part of the Figure 5.2 is accuracy
comprising where our results are the red dots trying to meet the black line "DWM-
NB", due to insufficient computing power we tested every 500 time stamp. The
right graph represents the number of experts in the run of the algorithm. The
blue and the light blue line represents our result following the black and the light
black line.

We note that in the Figure 5.2 we can see great accuracy drops in the periods
of concept drift. This is key phenomenon in context of this thesis.

5.3 Evaluation of DWM algorithm
In this section, we present the results of the DWM algorithm (see Subsection
1.2.1), highlighting its shortcomings and potential improvements, particularly in
the context of datasets experiencing severe concept drift (Definition 8).

The information discussed here, particularly the results of DWM on our syn-
thetic dataset (Subsection 5.1.2), is crucial in Section 3.3, where we presented a
general outline of our solutions.

5.3.1 Evaluation hypothesis
In this subsection we state the main hypothesis following our focus on DWM
algorithm accuracy drops connected with scenario experiencing severe concept
drift.

70

Since we are interested in performance of DWM algorithm in our scenario,
which includes severe concept drifts and relevant stable information (see Chapter
2) we state the main evaluation hypothesis as follows.

• DWM algorithm (Subsection 1.2.1) suffers on dataset including severe con-
cept drift and relevant stable information (Definition 8) from unnecessary
drop of prediction accuracy.

We will examine the hypothesis by demonstrating that the DWM algorithm
on the 12 Concepts dataset (Subsection 5.1.2) overly relies on highly decisive yet
severely drifting feature (X1), which degrades prediction accuracy during periods
of concept drift. We consider the hypothesis to be confirmed if there are clear
periods where the mean accuracy, considering the severely drifting feature, is
significantly lower than the accuracy when this feature is excluded.

5.3.2 Evaluation setting
In this evaluation, we run our modified DWM algorithm (Algorithm 3) on 12
Concepts dataset (Subsection 5.1.2) and measure accuracy in last 100 time steps.
We compute mean accuracies of 10 runs for scenarios with and without severely
drifting feature X1.

When setting the parameters, we very much adopt values from Subsection
5.2.2. We sett decreasing weight factor β = 0.5, updating period p = 50, the
removing threshold θ = 0.01, label delay l = 0 and learning period t = 1.

Note that in Section 5.2, we showed that modified DWM algorithm (Algorithm
3) with these parameters shows the same results as original DWM algorithm
(Algorithm 1).

5.3.3 Evaluation results and discussion
The results of the evaluation are presented in Figure 5.3. There we compare the
accuracy of the DWM algorithm in two scenarios. The red line represents our
dataset described in Subsection 5.1.2, while the green line represents the same
dataset with the severely drifting feature X1 removed. The results show the mean
accuracies on the last 100 samples over 10 runs of the algorithm.

We consider drops in the short periods of drift change as significant and there-
fore we state the hypothesis as fulfilled. This evaluation motivates the general
solution presented in Chapter 3.

5.4 Evaluation of Hellinger subcomponent
In this section, we give some insight into Hellinger concept drift detection pre-
sented in Section 4.2. We will examine the procedure by evaluating whether it
is able to efficiently detect severe concept drift on the 12 Concepts dataset. Ad-
ditionally, we observe how many samples from the new concept process actually
needs for the detection.

71

Figure 5.3: Accuracies in last 100 samples on dataset described in Figure 5.1.
Comparison of accuracies on dataset including highly relevant but drifting feature
X1 (green) and excluding this feature (red).

5.4.1 Evaluation hypothesis
Evaluation in this section aims to show ability of Algorithm 4 on data containing
severe concept drift (Definition 8).

The main evaluation hypothesis is that

• Proposed procedure based on Hellinger concept drift detection (Algorithm
4) is able to efficiently detect severe concept drift.

We will examine this hypothesis by checking right and wrong concept drift detec-
tions on the 12 Concepts dataset (Subsection 5.1.2). For this, we need to define
what we consider to be the right detection and the wrong detection.

Right detection occurs when a new concept in the highly drifting feature
subset (X1) is detected within one window size of its actual arrival.

False detection is any detection that is not considered the right.

To state that the algorithm can efficiently detect the severe drift we demand
that on a dataset containing the severe concept drift, there exists a setting for
which the 95% confidence interval of right detections contains the real number
of the drifts and at the same time the 95% confidence interval of false detections
contains zero. We note that considering the 12 Concepts dataset, according to
our definition we can not detect concept drift correctly on any feature subset,
which does not contain feature X1. There is also drift in other features but we
do not consider it to be severe.

72

5.4.2 Evaluation setting
The evaluation presented in this section focuses on assessing the performance of
the Hellinger procedure (Algorithm 4) using the 12 Concepts dataset (Figure 5.1),
which inherently includes severe concept drift due to its construction. During
evaluation, we will track several metrics: correct detections, false detections,
and the number of samples required for correct detection. The latter metric
represents the number of samples between the arrival of concept drift and the
accurate detection of the drift, constrained by the window size. We will compute
the mean across 10 algorithm runs and calculate 95

Each of these metrics will be recorded for each individual feature subset.
Although the last metric (number of samples for right detection) is not essential
for evaluating the hypothesis, we include it because it is relevant to the overall
process discussed in Section 3.3.

We will run two experiments, one with 3 feature subsets according to depen-
dencies and one where all features create single overall feature subset. Parameters
are set as follows, window size w = 150, number of bins is set accordingly to square
root of w (see Subsection 1.3.2), parameter of standard deviation γ is set to 4 (see
Section 4.2.1). To not unnecessarily complicate a histogram creation, we suppose
that we know the maximal and minimal values which features can acquire. Hence
we set Bmax = 11 and Bmin = 0 for all features (see Subsection 1.3.2). Number
of minimal collected epsilons before concept drift detection is set to 30.

5.4.3 Evaluation results and discussion
In this subsection we present results of the evaluation of Algorithm 4 on 12
Concepts dataset (Figure 5.1) according to the setting presented in previous sub-
section.

Table 5.1: Algorithm 4 on 12 Concepts dataset, mean of 10 with 95% confidence
interval.

Right detections False detections Needed samples
(X1, X2, X3, X4, X5, X6) 11± 0 0.1± 0.2 38.6± 4.4
(X1) 10.75± 0.35 3.2± 0.9 5.2± 2.9
(X2) - 0.4± 0.4 -
(X3, X4, X5, X6) - 0.1± 0.2 -

The results are presented in Table 5.1. There we can see that optimal number
of correct detections (11) is consisted in both confidence intervals, for single overall
feature subset it was detected correctly every time. Number of false detections
differ. Confidence interval for overall feature subset contains 0 and therefore
fulfils our evaluation hypothesis, if we consider single feature subset then number
of false detections is greater. On the other hand, we can see that as divided
feature is more sensitive to false detections it is able to detect concept drift using
less samples. For better intuition of the algorithm process, we present graphs of
epsilon evolution during the single run in Attachment A.10.

73

5.5 Evaluation of overall process on 12 Concepts
dataset

In this section, we present evaluation of overall procedure illustrated in Section
3.3 on our synthetic dataset described in Subsection 5.1.2. We will show compar-
ison of DWM algorithm with and without our proposed sub-procedures aiming
indication of the feature subsets drift (Section 4.2 and Section 4.3).

Dataset is evaluated on three algorithms.

• DWM algorithm without drift indicator - Algorithm 3

• DWM with Hellinger drift indicator - Algorithm 3 with Algorithm 4

• DWM with GMM based drift indicator - Algorithm 3 with Algorithm 5

5.5.1 Evaluation hypothesis
Evaluation of this section aims to show ability of the sub-procedures (Algorithm
4 and Algorithm 5) according to our scenario (Section 2.3) to improve the results
of the general robust procedure that we chose to be DWM algorithm (Algorithm
3).

Main hypotheses of this evaluation are

• Proposed sub-procedure based on Hellinger concept drift detection (Algo-
rithm 4) is able to improve accuracy of DWM algorithm (Algorithm 3) in
scenario containing severe drift, relative stable information and label delay
(Section 2.3).

• Proposed GMM based sub-procedure (Algorithm 5) is able to improve ac-
curacy of DWM algorithm (Algorithm 3) in scenario containing severe drift,
relative stable information and label delay (Section 2.3).

We will state that certain sub-procedure improves the algorithm if it holds
that 95% confidence interval of the mean accuracy is without overlay greater than
when the sub-procedure is not used. Since the examined dataset has generally
the same number of labels we choose to measure and compare the percentage
accuracy of the algorithms.

5.5.2 Evaluation setting
In evaluation presented in this section, we compare results of three algorithms
on 12 Concepts dataset (Subsection 5.1.2). General approach of evaluation is
that we will compute 95% confidence intervals for mean percentage accuracy on
10 runs for each of the procedures. This will be done for two scenarios (Section
2.3), with very small label delay l = 50 and regular delay l = 1000. We note
that the data drifting assumption is satisfied by the 12 Concepts dataset from its
construction.

Since we want to show that our sub-procedures have ability to improve the
result of DWM algorithm we set parameters of this algorithm identically for each
process. We sett them very similarly as were set in Section 5.3. This means

74

updating period p = 50, removal threshold Θ = 0.01, decreasing factor β = 0.5
and we add learning parameter t = 2.

Algorithm 4 considers 3 feature subsets according dependencies. Tt is set
similarly as in Subsection 5.4.2, which means parameter of standard deviation
γ = 4, window size w = 150, Bmax = 11 and Bmin = 0 for all features. Number of
minimal collected epsilons before concept drift detection is set to 30. After drift
is detected the classifier do not use the drifted feature subset for 75 time steps
for label delay l = 50, respectively for 400 time steps for l = 1000.

Algorithm 5 considers 3 feature subsets based on dependencies and is set
according discussion in Section 4.3. Initialization period tb = 300, outlier per-
centile β = 0.05, upper and lower bound for sum of sp SP U = 600, SP L = 300,
incorporation parameters nlast = 41, cid = 35 (Subsection 4.3.3), unit initial in-
verse covariance matrices and prior threshold given by 3 flat Dirichlet distribution
(Subsection 4.3.5). This setting is similar for both label delays.

5.5.3 Evaluation results and discussion
In this, subsection we present accuracy of DWM algorithm with and without
presented sub-procedures on 12 Concepts dataset. We do it for two label delays
l = 50 and l = 1000. In Table 5.2 we can see results of the accuracy comparison.

Table 5.2: Accuracy comparison of DWM algorithm with and without sub-
procedures on 12 Concepts dataset for label delay l = 50 and l = 1000. Mean of
10 with 95% confidence interval.

Accuracy l = 50 Accuracy l = 1000
DWM + GMM 0.964± 0.003 0.809± 0.016
DWM + Hellinger 0.954± 0.005 0.675± 0.004
DWM 0.947± 0.006 0.627± 0.003

For delay l = 1000 both sub-procedures significantly improved original algorithm
accuracy and fulfilled evaluation hypothesis. Using delay l = 50 only approach
using GMM based sub-procedure met criterion on confidence intervals but we
note that for each of 10 examined runs of the algorithms using of Hellinger sub-
procedure we reached higher accuracy than regular DWM algorithm. For better
insight into algorithms performance we present Figure 5.4 and Figure 5.5, which
show evolution of mean accuracy during the evaluation (every time in last 100
samples). We highlight that performance especially of GMM based sub-procedure
is very similar to one which we were aiming for in Chapter 3, which is motivated
by evaluation in Section 5.3 (especially Figure 5.3). Note that this happens
with three exceptions where the drifts primarily change labels of feature vector
values which remains same (switches their labels), which is challenging setting
for unsupervised techniques.

5.6 Evaluation on DREBIN dataset
We will evaluate 3 procedures, similar ones as in Section 5.5, on real world dataset
called DREBIN dataset, which consists of android malware samples and spans

75

Figure 5.4: Comparison of 3 procedures (Section 5.5) on 12 Concepts dataset
with label delay l = 50. Mean accuracy from 10 runs in last 100 samples.

Figure 5.5: Comparison of 3 procedures (Section 5.5) on 12 Concepts dataset
with label delay l = 1000. Mean accuracy from 10 runs in last 100 samples.

76

over two years.
Dataset is evaluated on three algorithms.
• DWM algorithm without drift indicator - Algorithm 3

• DWM with Hellinger drift indicator - Algorithm 3 with Algorithm 4

• DWM with GMM based drift indicator - Algorithm 3 with Algorithm 5
The primary objective of the evaluation is to compare the methods, with a partic-
ular focus on the improvements brought about by the subprocesses when applied
to real-life data.

5.6.1 Evaluation hypothesis
Our hypothesis is quite similar to the one presented in Section 5.5. The primary
difference is that, this time, we do not assume strict compliance with our assump-
tions regarding severe concept drift from Section 2.3, due to the complexity of
real-world data.

• Proposed sub-procedure based on Hellinger concept drift detection (Algo-
rithm 4) is able to improve the performance of the DWM algorithm (Algo-
rithm 3) on real word malware detection dataset.

• Proposed GMM based sub-procedure (Algorithm 5) is able to improve the
performance of the DWM algorithm (Algorithm 3) on real word malware
detection dataset.

We assert that a given sub-procedure enhances the algorithm if the 95% confi-
dence interval for the improvement in the F-1 score is positive and does not include
0. The F-1 score is used due to the significant label imbalance in the dataset,
with over 22 benign samples for every malignant one. During the evaluation, we
also employ multiple downsampling techniques, including random downsampling
and benign-only downsampling.

5.6.2 Evaluation setting
In this subsection we present setting of the evaluation, where we compare DWM
algorithm with and without sub-procedures on DREBIN dataset (Subsection
5.1.3).

General structure and results measurement methodology

We will compute confidence interval of mean improvement of F1-score in 10 runs
of the procedures using random downsampling and label delay l = 1000. We
perform 4 different downsampling studying effect of label imbalance on examined
procedures.

Improvement is calculated as follows. First, we compute the values of tracked
statistics (F1-score, Recall, Precision, and Accuracy). For each run, we subtract
the value obtained using the DWM algorithm from the value obtained using the
sub-procedure. We then use these differences (10 for each statistic) to construct
a confidence intervals. Improvement is present if this interval does not include 0.
For completeness, we also list confidence intervals of results for each algorithm.

77

Dataset preprocessing

The dataset used in this study exhibits significant class imbalance, with more than
22 benign samples for every malignant sample. To address this, we implemented
a random downsampling of benign samples. However, in real-world scenarios,
the benign or malignant nature of a sample is not known in advance, making
this approach less realistic. Consequently, we also conducted experiments with
random downsampling without prior knowledge of sample types. Specifically, for
each sample, we randomly discarded it with a probability pd. We evaluated four
different downsampling strategies.

For both sub-procedures and types of downsampling, we used the same proba-
bilities pd, set at pd = 0.5 and pd = 5

6 ≈ 83.33%. The downsampling with pd = 0.5
aimed to reduce the number of tested samples and create diverse datasets. The
downsampling with pd = 5

6 ≈ 83.33% aimed to achieve a ratio of less than 4
benign samples to one malignant sample, mitigating the label imbalance.

The primary goal of Ceschin et al. [2022] is to demonstrate that, in real-life
tracking of concept drift, it is beneficial to update classifiers and modify feature
extraction methods based on measured concept drift. For instance, upon detect-
ing concept drift, the TF-IDF transformer is updated. While this is a crucial
problem associated with concept drift, it is not the focus of our work. Therefore,
we assume that an adequate representation is provided, or more precisely, that
all examples are processed through an initial sample transformation layer. Given
that all features are textual, they need to be transformed into numeric ones. Sim-
ilar to Ceschin et al. [2022], we use the TF-IDF process (see Attachment A.11),
with a maximum of 10 features per column.

The created dataset is normalized to have zero mean and unit variance. In
practice, the mean is subtracted, and each sample is scaled by the standard
deviation.

Label imbalance modification

To address the severe label imbalance in our dataset, in addition to downsam-
pling, we implemented two additional strategies. First, we used the F1-score
(see Attachment A.12) as our performance metric instead of percentage accu-
racy. Second, we modified the way we utilized classifiers. Specifically, for all
evaluations, we employed the Gaussian Naive Bayes classifier (Subsection 1.2.2),
which incorporates the prior probabilities of the labels.

Severe label imbalance can cause the classifier to underperform on malware
samples due to their low prior probability. To mitigate this issue, we smoothed
the priors by 20%. This approach sets the base prior probability of each label
to 20%, regardless of the actual distribution, with the remaining 60% distributed
according to the observed data. This smoothing technique helps to ensure that
malware samples are more likely to be correctly classified, despite their lower
occurrence in the dataset.

DWM algorithm parameters

Parameters for modified DWM algorithm are set similarly as in Subsection 5.5.2,
which means updating period p = 50, removal threshold Θ = 0.01, decreasing

78

factor β = 0.5 and learning parameter t = 2. This parameter setting is similar
for all examined procedures.

GMM sub-procedure parameters

Algorithm 5 considers 10 feature subsets based on the original column each fea-
ture was created. Together, we assume 10 feature subsets each consisting of 10
features.

We set initialization period tb = 400, outlier percentile β = 0.05, due to
strong label imbalance and possible complex nature of samples the upper and
lower bound for the sum of sp are set to SP U = 16000, SP L = 8000. From the
same reason we drastically lowers incorporation parameters nlast = 22, cid = 15.
Since we scaled data to follow zero mean and unit variance we set initial covariance
matrices to unit, scaled by 0.01. Similarly as in previous sections, we consider
the prior threshold given by 3 flat Dirichlet distribution (Subsection 4.3.5).

Hellinger sub-procedure parameters

Algorithm 4 considers similarly to GMM-based procedure 10 feature subsets based
on the original column each feature was created.

We set parameter of standard deviation γ = 4, window size w = 1000, Bmax
and Bmin to 5% and 95% percentile of the data for all features. A number of
minimal collected epsilons before concept drift detection is set to 100. After drift
is detected classifier does not use the drifted feature subset for 2000 time steps.
The drift parameter is set high (to 2000) since due to the great window size (1000)
we do believe that the Gaussian Naive Bayes classifier needs a long time to adapt
to a new concept.

5.6.3 Evaluation results and discussion
The main results of this evaluation are presented in Table 5.3, which displays
the 95% confidence intervals for the differences in the performance of the DWM
algorithm (Algorithm 3) with and without the developed sub-procedures (Algo-
rithm 4 and Algorithm 5). These intervals represent the mean improvement over
10 runs, as described in Subsection 5.6.2.

The Hellinger sub-procedure improved the DWM algorithm’s performance
in two experiments, meeting the evaluation hypothesis, which requires the confi-
dence interval to be positive and not include zero. Notably, all confidence intervals
for the Hellinger sub-procedure have non-negative means.

Conversely, the results for the GMM-based sub-procedure are ambiguous and
do not meet the evaluation hypothesis. While this sub-procedure primarily en-
hances Recall (Attachment A.12), indicating better malware detection, the overall
improvements are inconsistent.

In the following subsection, we will briefly discuss the results and present
Table 5.4, which displays the confidence intervals of output performance for each
procedure and downsampling method.

79

Table 5.3: Improvement of sub-procedures over DWM algorithm using four vari-
ous downsampled DREBIN dataset. Confidence intervals of results difference, as
described in Subsection 5.6.2. Values of single algorithms statistics are presented
in Table 5.4. pd stands for probability of sample being discarded from the dataset.

F1-diff. Recall-diff. Precision-diff. Accuracy-diff.
Downsampling all samples, pd = 5

6
GMM −0.006± 0.009 0.025± 0.029 −0.008± 0.005 −0.012± 0.003
Hellinger 0.006± 0.004 0.011± 0.015 0.004± 0.003 0.001± 0.004
Downsampling all samples, pd = 0.5

GMM −0.016± 0.007 −0.002± 0.013 −0.015± 0.005 −0.015± 0.002
Hellinger 0.006± 0.011 0.012± 0.022 0.004± 0.007 0.0± 0.001
Downsampling benign samples, pd = 5

6
GMM 0.007± 0.014 0.04± 0.022 −0.011± 0.01 −0.009± 0.006
Hellinger 0.002± 0.008 0.002± 0.012 0.002± 0.005 0.001± 0.003
Downsampling benign samples, pd = 0.5

GMM −0.012± 0.009 0.019± 0.013 −0.018± 0.007 −0.019± 0.003
Hellinger 0.013± 0.01 0.023± 0.013 0.008± 0.008 0.001± 0.003

Results further discussion

In Table 5.4, there are presented confidence intervals of the procedures for various
downsampling of DREBIN dataset (Subsection 5.1.3). In the table, we can see
that intervals are rather wide, since results for each run (downsampling with the
same pd) differ significantly. This is also the reason why we chose to track the
differences.

The results presented in Table 5.3 suggest that the performance of GMM-
based sub-procedure is connected with the label balance. We can see that in the
most balanced scenario the procedure achieves its best performance.

Unfortunately, we have not identified a single cause of inconclusive results of
the GMM sub-procedure evaluation presented in this section.

One cause of the results can be in complexity of the dataset, particularly
of malware samples. In [Ceschin et al., 2022, Fig. 3 (a)] authors identify a
great number of malware families, which with connection to only 5560 malignant
samples could cause that clusters created by malware samples have too negligible
prior and were considered as noisy.

Another aspect of our evaluation is that due to computational demands, we
created only 10 features out of each feature column. Especially considering com-
plex data it need not to be sufficient a number.

The results on the GMM sub-procedure can be also connected with exact im-
plementation, where if the whole feature vector is detected as unsuitable we gen-
erate labels uniformly at random. This could partially explain the improvement
of recall and deterioration of precision but it is in contrast with relevant stable
information which is generally indicated by the good performance of Hellinger
sub-procedure.

To get better intuition behind the run of GMM-based sub-procedure, we
present in Attachment A.13 some results on downsampling using pd = 5

8 . We

80

Table 5.4: Algorithms statistics for 4 various downsampled DREBIN dataset.
95% confidence intervals for the mean of 10 runs. pd stands for probability of
sample being discarded from the dataset.

F1-score Recall Precision Accuracy
Downsampling all samples, pd = 5

6
GMM 0.214± 0.017 0.472± 0.053 0.139± 0.011 0.85± 0.008
Hellinger 0.226± 0.013 0.457± 0.034 0.151± 0.01 0.864± 0.007
DWM 0.221± 0.013 0.446± 0.025 0.147± 0.009 0.863± 0.006
Downsampling all samples, pd = 0.5

GMM 0.156± 0.02 0.309± 0.045 0.104± 0.013 0.857± 0.005
Hellinge 0.178± 0.024 0.323± 0.049 0.123± 0.016 0.872± 0.005
DWM 0.172± 0.023 0.311± 0.046 0.119± 0.016 0.872± 0.005
Downsampling benign samples, pd = 5

6
GMM 0.523± 0.02 0.631± 0.037 0.448± 0.016 0.755± 0.001
Hellinge 0.518± 0.015 0.593± 0.028 0.461± 0.016 0.765± 0.01
DWM 0.516± 0.016 0.591± 0.029 0.459± 0.017 0.764± 0.01
Downsampling benign samples, pd = 0.5

GMM 0.277± 0.009 0.437± 0.015 0.203± 0.007 0.812± 0.003
Hellinge 0.302± 0.014 0.441± 0.023 0.229± 0.011 0.832± 0.004
DWM 0.289± 0.011 0.418± 0.019 0.221± 0.008 0.83± 0.003

specifically examine the evolution of the F1-score for the single run of GMM-
based sub-procedure in time.

81

6. Future work
In this chapter, we present proposed directions of possible future work. This
directions mainly focus on two aspects of problematic described in the thesis.

The first proposed direction stands in improvement of formalization which
would separately be able to provide us with non-trivial properties and results.
We see the possibility for this improvement in field of Domain generalization,
which appears to have many similar aspect as our scenario and is able to produce
solution directly based on the theoretical boundaries. We describe this field
together with discussion of similarities and show of theoretical work in this domain
in Attachment A.9.

The second proposed direction aims on better connection between classifier
and the algorithm determining drift of feature vector parts. This idea of en-
hancing the impact of a classifier on obtaining information about drift in feature
vector appears to well fulfilled by algorithm called Gaussian process. Despite the
fact that we will not describe this algorithm in the thesis, we believe that it could
be possible to use it for tracking the drift in feature subsets by testing whether
accordingly restricted feature vector improves a prediction certainty or not.

82

Conclusion
In this thesis, we investigate a scenario tailored to real-life malware detection,
characterized by data streams significantly impacted by concept drift and label
delay. This scenario exhibits unique properties: the presence of highly decisive but
severely drifting features, such as specific filenames or mutexes, and the existence
of relevant stable information, such as connection types or monetization methods,
which remain consistent over time.

We systematically study this environment. We present a formalization of this
scenario and highlight the shortcomings of current techniques, particularly how
models tend to over-rely on highly indicative drifting features, leading to unnec-
essary performance drops when these features drift. To address this issue, we
propose two solutions designed to run alongside the underlying model, providing
information about drift in specific feature subsets. The first solution utilizes con-
cept drift detection based on the Hellinger distance, while the second employs a
modified incremental Gaussian Mixture Model algorithm to identify drifted parts
of the incoming feature vector.

We introduced a custom dataset to capture the properties of the overall sce-
nario. Using this dataset and the Dynamic Weighted Majority (DWM) algorithm
as the underlying model, we demonstrated that our proposed techniques can en-
hance this robust algorithm. Furthermore, we present promising results of our
procedures on the real-life DREBIN dataset (Arp et al. [2014]).

The main takeaway of this thesis is that in scenarios exhibiting properties of
severely drifting features and relatively stable information, it is beneficial to ad-
dress the problem by excluding severely drifting features, as done in the proposed
solutions. This approach improves the performance and reliability of malware de-
tection systems in dynamic environments.

83

Bibliography
Juan M Acevedo-Valle, Karla Trejo, and Cecilio Angulo. Multivariate regression

with incremental learning of gaussian mixture models. In CCIA, pages 196–205,
2017.

Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H Falk, and
Ioannis Mitliagkas. Generalizing to unseen domains via distribution matching.
arXiv preprint arXiv:1911.00804, 2019.

Giacomo Aletti and Alessandra Micheletti. A clustering algorithm for multivari-
ate data streams with correlated components. Journal of Big Data, pages 1–20,
2017.

Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. Drebin: Effective and explainable detection of android malware in your
pocket. 2014.

Aya Ayadi, Oussama Ghorbel, Abdulfattah M Obeid, and Mohamed Abid. Out-
lier detection approaches for wireless sensor networks: A survey. Computer
Networks, pages 319–333, 2017.

Peter Bajorski. Statistics for imaging, optics, and photonics, volume 808. 2011.

Daniel Barbara and Ping Chen. Tracking clusters in evolving data sets. In
FLAIRS Conference, pages 239–243, 2001.

Anna Bartkowiak. Should normal distribution be normal? the student’s t alter-
native. In 6th international conference on computer information systems and
industrial management applications (cisim’07), pages 3–8, 2007.

Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler. From concept drift to
model degradation: An overview on performance-aware drift detectors. 2022.

Christopher M Bishop. Pattern recognition and machine learning. Springer google
schola, pages 5–43, 2006.

Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. A review
on outlier/anomaly detection in time series data. ACM Computing Surveys
(CSUR), pages 1–33, 2021.

Abdelhamid Bouchachia and Charlie Vanaret. Incremental learning based on
growing gaussian mixture models. In 2011 10th International Conference on
Machine Learning and Applications and Workshops, pages 47–52, 2011.

Ander Carreño, Iñaki Inza, and Jose A Lozano. Analyzing rare event, anomaly,
novelty and outlier detection terms under the supervised classification frame-
work. Artificial Intelligence Review, pages 3575–3594, 2020.

Fabrício Ceschin, Marcus Botacin, Heitor Murilo Gomes, Felipe Pinagé, Luiz S.
Oliveira, and André Grégio. Fast and furious: On the modelling of malware
detection as an evolving data stream. Expert Systems with Applications, 2022.

84

Tony F Chan, Gene H Golub, and Randall J LeVeque. Updating formulae and
a pairwise algorithm for computing sample variances. In COMPSTAT 1982
5th Symposium held at Toulouse 1982: Part I: Proceedings in Computational
Statistics, pages 30–41, 1982.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.
Computers and Electrical Engineering, pages 16–28, 2014.

Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke Yi.
An information-theoretic approach to detecting changes in multidimensional
data streams. 2006.

Javier Diaz-Rozo, Concha Bielza, and Pedro Larrañaga. Clustering of data
streams with dynamic gaussian mixture models: An iot application in indus-
trial processes. IEEE Internet of Things Journal, pages 3533–3547, 2018.

Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang Wang, and Fang Chen.
Domain generalization by learning and removing domain-specific features. In
Advances in Neural Information Processing Systems, pages 24226–24239, 2022.

Gregory Ditzler and Robi Polikar. Hellinger distance based drift detection for
nonstationary environments. pages 41–48, 2011.

Paulo Martins Engel and Milton Roberto Heinen. Incremental learning of multi-
variate gaussian mixture models. In Advances in Artificial Intelligence–SBIA
2010: 20th Brazilian Symposium on Artificial Intelligence, São Bernardo do
Campo, Brazil, October 23-28, 2010. Proceedings 20, pages 82–91, 2010.

Elaine R Faria, Isabel JCR Gonçalves, André CPLF de Carvalho, and João Gama.
Novelty detection in data streams. Artificial Intelligence Review, pages 235–
269, 2016.

Igor Goldenberg and Geoffrey Webb. Survey of distance measures for quantifying
concept drift and shift in numeric data. Knowledge and Information Systems,
2019.

Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet.
A survey on ensemble learning for data stream classification. ACM Computing
Surveys (CSUR), pages 1–36, 2017.

Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation. pages 345–359, 2005.

David A Harville. Matrix algebra from a statistician’s perspective, 1998.

Milton Roberto Heinen. A connectionist approach for incremental function ap-
proximation and on-line tasks. 2011.

Hammer Hinder, Vaquet. Suitability of different metric choices for concept drift
detection. In Advances in Intelligent Data Analysis XX, pages 157–170, 2022.

Thorsten Joachims et al. A probabilistic analysis of the rocchio algorithm with
tfidf for text categorization. pages 143–151, 1997.

85

D Keehn. A note on learning for Gaussian properties. IEEE Transactions on
Information Theory, pages 126–132, 1965.

J. Zico Kolter and Marcus A. Maloof. Dynamic Weighted Majority: An ensemble
method for drifting concepts. 2007.

Jogikalmat Krithikadatta. Normal distribution. Journal of Conservative Den-
tistry and Endodontics, pages 96–97, 2014.

Vipin Kumar and Sonajharia Minz. Feature selection: a literature review.
SmartCR, pages 211–229, 2014.

David M Lane, David Scott, Mikki Hebl, Rudy Guerra, Dan Osherson, and Heidi
Zimmer. Introduction to statistics, online edition. Rice University, University
of Houston Clear Lake, and Tufts University, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader
and artier domain generalization. In Proceedings of the IEEE international
conference on computer vision, pages 5542–5550, 2017.

Jiayu Lin. On the dirichlet distribution. Department of Mathematics and Statis-
tics, Queens University, pages 10–11, 2016.

Anjin Liu, Jie Lu, and Guangquan Zhang. Concept drift detection via equal
intensity K-Means space partitioning. pages 3198–3211, 2021.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang.
Learning under concept drift: A review. pages 2346–2363, 2019.

Goeffrey J McLachlan. Mahalanobis distance. Resonance, pages 20–26, 1999.

Richard D Morey, Rink Hoekstra, Jeffrey N Rouder, Michael D Lee, and Eric-
Jan Wagenmakers. The fallacy of placing confidence in confidence intervals.
Psychonomic bulletin & review, pages 103–123, 2016.

Kevin P Murphy et al. Naive bayes classifiers. University of British Columbia,
pages 1–8, 2006.

Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes. In Advances in Neural
Information Processing Systems. MIT Press, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. 2011.

Rafael Pinto and Paulo Engel. Scalable and incremental learning of gaussian
mixture models. arXiv preprint arXiv:1701.03940, 2017.

Rafael Coimbra Pinto and Paulo Martins Engel. A fast incremental gaussian
mixture model. PloS one, page e0139931, 2015.

86

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. pages 613–620, 1975.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. The Annals of Mathe-
matical Statistics, pages 124–127, 1950.

Shuping Sun, Yaonan Tong, Biqiang Zhang, Bowen Yang, Long Yan, Peiguang
He, and Hong Xu. A novel adaptive methodology for removing spurious compo-
nents in a modified incremental gaussian mixture model. International Journal
of Machine Learning and Cybernetics, pages 551–566, 2023.

Marco Taboga. Functions of random vectors and their distribution, lectures on
probability theory and mathematical statistics. Kindle Direct Publishing, 2021.

Jinita Tamboli and Madhu Shukla. A survey of outlier detection algorithms
for data streams. In 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), pages 3535–3540, 2016.

Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. Progress in
outlier detection techniques: A survey. Ieee Access, pages 107964–108000, 2019.

Kapil K Wankhade, Snehlata S Dongre, and Kalpana C Jondhale. Data stream
classification: a review. pages 239–260, 2020.

Osamu Watanabe. Simple sampling techniques for discovery science. IEICE
Transactions on Information and Systems, pages 19–26, 2000.

William J Welch. Algorithmic complexity: three np-hard problems in compu-
tational statistics. Journal of Statistical Computation and Simulation, pages
17–25, 1982.

Thomas H Wonnacott and Ronald J Wonnacott. Introductory statistics for busi-
ness and economics. 1990.

CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of
statistics, pages 95–103, 1983.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-
distribution detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

87

A. Attachments
In Attachments, we introduce several topics that are frequently referenced
throughout the thesis. However, they are not deemed essential for the develop-
ment of the primary techniques.

A.1 Other types of concept drift
In Subsection 2.2.2 we described sudden concept drift as essential scenario we are
interested in. In this section, we will follow up on this subsection and present other
frequent types of concept drift. Specifically, we will define gradual, incremental
and reoccurring concept drift.

Generally speaking we can describe the remaining three types as follows. For
gradual it holds that original concept is replaced in longer period of time and we
can observe period of overlay of these two concepts. The incremental is typical
by slowly change, where the original concept incrementally changes up to new
concept. For the reoccurring drift, original concept reoccurs in the future. Illus-
tration of this division can be seen in Figure A.1, which follows [Lu et al., 2019,
Fig. 4].

Figure A.1: Illustration of the concept drift types according to way the distribu-
tion of samples in the stream changes over time.

For Definition 11 of the concept drift types we assume setting presented in
Subsection 2.2.2.

88

Definition 11. Considering notation similar as in Definition 2 and problem setup
as in Subsection 2.2.2, for given sample set S0,tn we call a concept drift

• gradual if the drift is not sudden and there exist time points t0, t1 ∈ N,
0 < t0 < t1 < tn and distinct distributions P<t0(X, y) and P>t1(X, y) such
that Pt(X, y) = P<t0(X, y) for all t < t0 and Pt(X, y) = P>t1(X, y) for all
t > t1 and for all t satisfying t0 ≤ t ≤ t1 it holds that Pt(X, y) is equal to
either P<t0(X, y) or P>t1(X, y).

• incremental if the drift is not sudden and there exist time points t0, t1 ∈ N,
0 < t0 < t1 < tn and distinct probability distributions P<t0(X, y) and
P>t1(X, y) such that Pt(X, y) = P<t0(X, y) for all t < t0 and Pt(X, y) =
Pt>t1(X, y) for all t > t0. For t satisfying t0 ≤ t ≤ t1 it holds that
δ(P<t0(X, y), Pt(X, y)) ≤ δ(P<t0(X, y), Pt+1(X, y)) and
δ(P>t1(X, y), Pt(X, y)) ≥ δ(P>t1(X, y), Pt+1(X, y)), for some metric δ.

• reoccurring if for some given minimal time period m ∈ N there exists time
points t0, t1 ∈ N and probability distribution Preoccur(X, y) such that 0 <
t0 < t1 < tn, t1 − t0 > m, for all t satisfying 0 ≤ t < t0 or t1 < t < tn it
holds Pt(X, y) = Preoccur(X, y) and for all t such that t0 ≤ t ≤ t1 it holds
Pt(X, y) ̸= Preoccur(X, y).

Knowledge of the concept drift type of the dataset can be very beneficial in
real world scenarios since we can modify our technique accordingly. Example of
modified approaches for different concept drift types can be seen in Subsection
1.3.1.

A.2 Location of drift lemma
In this attachment we present proof of Lemma 1 presented in Subsection 1.1.3.
This lemma is as follows.

Lemma 6. Let X = {X1, . . . , Xd} be a feature vector, where d ∈ N and all
features in the vector are mutually independent, conditional on the label y ∈ Y.
That means P (X i|X1, . . . , X i−1, y) = P (X i|y). Then it holds that
P (X1, . . . , Xd, y) = P (y)1−d ∏︁d

i=1 P (X i, y).

Proof. First, we show basic probabilistic lemma about decomposition of joint
probability mostly known as chain rule, which we will use in Lemma 1.
Lemma 7. For n ∈ N let X1, . . . , Xn be random events for which it holds that
their joint probability is strictly greater than zero. Then it holds that
P (X1, . . . , Xn) = P (X1) ∏︁n

i=2 P (X i|X1, . . . X i−1).

Proof. For i = 2 equality comes from the definition of joint probability

P (X1, X2) = P (X1)P (X2|X1)

89

For induction step let assume that the equation holds for n = j− 1, for n = j we
can see that

P (X1, . . . , Xj) = P (X1, . . . , Xj−1, Xj) =

P (Xj|X1 . . . , Xj−1)P (X1 . . . , Xj−1) = P (X1)
j∏︂

i=2
P (X i|X1, . . . X i−1).

First we used definition of joint probability and then induction hypothesis for
P (X1, . . . , Xj−1).

The main lemma comes from

P (X1, . . . , Xd, y) = P (X1, y)
d∏︂

i=2
P (X i|X1, . . . X i−1, y) =

P (X1, y)
d∏︂

i=2
P (X i|y) = P (y)1−d

d∏︂
i=1

P (X i, y).

Where for the first equality we used Lemma 7, the second is obtained from as-
sumption of independence and the last expression is derived by applying equality
P (X i|y) = P (Xi,y)

P (y) which comes from definition.

A.3 Feature selection
As highlighted in Section 3.3, our general solution relies on selecting features
suitable for the prediction process. This task closely resembles feature selection.
To provide a broader context, we describe the objectives of this field and briefly
discuss its connection to our solutions.

According to [Chandrashekar and Sahin, 2014, Section 1], feature selection
aims to find a subset of features that can efficiently describe the original data,
reduce noise and irrelevant variables, and still provide good prediction results. A
more detailed description of feature selection can be found in Kumar and Minz
[2014], where a definition is provided in [Kumar and Minz, 2014, Definition 7],
which we present as Definition 12.

Definition 12. Feature selection is the following process. Let A be an original
set of features and L() be an evaluation criterion L : A

′ ⊆ A → R to be
maximized (optimized). The candidate subset of features can be considered under
the following considerations

• Let |A| = m and |A′ | = n, then L(A′) is maximized, where m > n and
A

′ ⊂ A.

• Set a threshold Θ such that L(A′) > Θ to find a subset of features with the
smallest number, where m > n.

• Finding the optimization function L(A′) with optimal feature subsets |A′|,
where optimal feature subset refers to subset of features for which accuracy
of the induced classifier is maximal.

90

From Definition 12, it is clear that feature selection is highly relevant to our
problem. Particularly, if we consider the evaluation criteria L() to reflect concept
drift and reevaluate the feature selection process at each time step, we see a direct
connection. This approach is applied across all our proposed solutions, with
each defining different evaluation criteria L(). In the first solution, presented in
Section 4.2, we measure drift based on changes in distribution using the Hellinger
distance. In the second approach, described in Section 4.3, the criteria assess
how well each arriving sample fits into the distribution modelled by the Gaussian
Mixture Model algorithm.

However, our objectives and assumptions diverge significantly from typical
feature selection. This divergence is primarily due to our strong assumption
of feature dependency knowledge and the fact that our primary goal is not to
identify the smallest subset of relevant features by excluding the least relevant
ones. Instead, we often aim to discard highly relevant features at the appropriate
time. Therefore, categorizing our problem strictly as feature selection could be
misleading.

A.4 EM algorithms
In this section, we generalize clustering algorithms presented in Section 1.5 into
more general class of algorithms called EM algorithms. Approach described in
following text is followed when deriving the incremental algorithms presented in
Section 1.6.

Both algorithms described in Subsection 1.5.4 and Subsection 1.5.2 are gen-
eralized by class of so called EM algorithms. This algorithms work in setting
such that there is joint distribution P (X, Z; w), where X is observed variable,
Z is latent variable and w parametrizes both of them. We want to maximize
the log-likelihood log P (X; w) = log∑︁Z P (X, Z; w) with respect to w. For our
process described in Subsection 1.5.4, X is feature vector, Z is assignment to the
clusters and w are parameters. Note that Z can be any variable which we made
(is not given) to improve our solution and the equality above is simple use of the
law of total probability. There is difficult calculation of logarithm of the sums.
Therefore, we split the computation into two steps, the evaluating step (E-step)
and the log-likelihood maximization step (M-step). There we replace the log-sum
by expectation of logarithm under the distribution P (Z|X; w). In the algorithm
we fix parameters wfix and proceed by E/M-steps which looks as follows

• E step Q(w|wfix) = EZ|X,wfix
(log P (X, Z; w))

• M step wfix ← argmaxwQ(w|wfix).

When considering the validity of this algorithm, it can be seen in Wu [1983] that
for EM algorithms it holds that log-likelihood increases in every step but whether
it converges to local or global optimum generally depends on initial setting.

A.5 Adaptive window size
In this section, we present the theory of adaptive sampling and adaptive window
size in relation to tracking concept drift. This theory is closely linked to a po-

91

tential solution for determining the duration for which an outlier sample should
be retained in the retention set, as discussed in Subsection 4.3.4. Although we
reference this theory multiple times throughout the thesis, we do not directly
apply it in our solution. Instead, it often serves to illustrate a more theoretically
robust approach to addressing issues that arise during the process.

First, we introduce the basic theory of sampling based on Watanabe [2000],
and then we discuss its potential application to problems associated with concept
drift.

Consider a random variables Xi which is 1 if the i-th sample is not detected as
outlier and 0 if otherwise. Using these, we can construct another random variable
X = ∑︁n

i=1Xi. Assuming that all Xi have probability of being 1 equal to p, in other
words, prior probability that arriving sample is clustered appropriately equals to
p. Then the expected value of X is equal to np. The problem is that typically
we do not know p, we can only estimate this value by p̂ which is generally set
to a number of non-outliers divided by a number of observations. Therefore, we
determine minimal amount of samples we need to get estimate of p close enough.
This we do according to [Watanabe, 2000, Theorem 2.5].

Theorem 8. Using above notation, for any δ, 0 < δ < 2 and relative error ϵ,
0 < ϵ < 1, if n satisfies

n >
3p

ϵ2 ln
(︃2

δ

)︃
,

then it holds that

P (|p− p̂| ≤ ϵ) > 1− δ,

where p̂ is estimated as p̂ =
∑︁n

i=1 Xi

n
.

In above, we worked with an absolute error of approximation p. It can be
beneficial to consider also relative error, where the bound for number of samples
n is presented in next theorem, which follows [Watanabe, 2000, Theorem 3.1].

Theorem 9. Using above notation, for any δ, 0 < δ < 2 and relative error ϵ,
0 < ϵ < 1, if n satisfies

n >
3

ϵ2p
ln
(︃2

δ

)︃
,

then it holds that

P (|p− p̂| ≤ ϵp) > 1− δ,

where p̂ is estimated as p̂ =
∑︁n

i=1 Xi

n
.

Presented sampling is based on idea that at the beginning we determine num-
ber of samples we need. This can be potentially improved by taking into ac-
count the values we receive during the process. This idea leads to the so called
adaptive sampling. There we count number of positive samples and check whether
it exceeds predefined threshold A, if it does, then we stop and calculate mean
by dividing the number of positive samples by the overall number of examined
samples. One of such thresholds is presented in [Watanabe, 2000, Theorem 3.2],
which we formulate as Theorem 10.

92

Theorem 10. Using above notation, for any δ, 0 < δ < 2 and relative error ϵ,
0 < ϵ < 1, if threshold for positive samples A in adaptive sampling satisfies

A >
3(1 + ϵ)

ϵ2p
ln
(︃2

δ

)︃
, (A.1)

then it holds that

P (|p− p̂| ≤ ϵp) > 1− δ,

where p̂ is estimated as p̂ =
∑︁n

i=1 Xi

n
.

This adaptive threshold can also provide an estimate on the number of sam-
pled elements n. This is done in [Watanabe, 2000, Corollary 3.5] which is of the
following form.

Theorem 11. For any δ, 0 < δ < 2 and relative error ϵ, 0 < ϵ < 1, using
adaptive sampling with threshold for positive samples A set to smallest integer
satisfying Equation (A.1), then with probability greater than 1− δ

2 , sample size n
satisfies

n ≤ 3(1 + ϵ)
(1− ϵ)ϵ2p

ln
(︃2

δ

)︃
. (A.2)

This theory is used in Barbara and Chen [2001] for tracking concept drift.
Generally, they are provided with n samples, where n is the lower bound of
Equation (A.2) computed using p̂ estimated in previous step. After proceeding
batch we compare the number of non-outliers to A computed as the lower bound
of Equation (A.1) and if A is greater then observed number of well fitted samples,
the concept drift is detected.

In [Diaz-Rozo et al., 2018, Section II C], the theory is applied to adaptive
window size. The authors use Equation A.2 to determine the adaptive window
size, optimizing the number of samples to be kept in memory. Intuitively, this
makes sense because the probability of a non-outlier is in the numerator; thus,
if the concept is well-represented, fewer samples are retained, and vice versa.
However, their objective differs from ours, as they use this window to measure
drift and retrain the model when significant changes are detected. We describe
this approach because it determines the number of recently significant samples,
which is closely related to the issue discussed in Subsection 4.3.4.

A.6 Confidence intervals
In this section we describe common method used for tests reliability and repeata-
bility called confidence intervals. This method is used many times in this thesis.
Therefore, we consider it appropriate to specify how exactly this method works.

An important part of the testing and generally observing any properties of
the examined algorithm is to determine its statistic relevance which is crucial for
possible result interpretation. One of the widely used approach for stating some
statistical certainty is concept called confidence interval, which we will describe

93

in this subsection according to [Lane et al., 2017, Chapter 10] and Morey et al.
[2016].

The general definition of the confidence interval can be seen in [Morey et al.,
2016, Definition 1]. This definition is presented as Definition 13. We note that
according to Morey et al. [2016] the probability equality from the Definition 13
can be often swapped with: at least with the probability P%.
Definition 13. An P% confidence interval for parameter Θ is an interval (L, U)
generated by a procedure that in repeated sampling has an P% probability of con-
taining the true value of Θ, for all possible values of Θ.

In this thesis, we will mainly estimate the mean and we will do it usually with
only small number of samples, typically with only 10 and also without knowledge
of the exact value of variance. This is scenario where it is common to approximate
the random variable producing the observation by student t-distribution. This
distribution has probability density function equal to

f(t) =
Γ(ν+1

2)√
πΓ(ν

2)
(︂
1 + t2

ν

)︂− ν+1
2 ,

where ν is the number of degrees of freedom and Γ is the gamma function, which
we already met in Section 1.4. We will denote this distribution as tν . More to
this distribution especially with focus on comparison to Normal distribution can
be seen in Bartkowiak [2007], but for our purpose it is sufficient to know that
it is generalization of the Normal distribution controlled by parameter ν, which
generally affects a tales of the probability distribution function. We illustrate
this in Figure A.2 which is similar to [Bartkowiak, 2007, Figure 2]. For our use
in confidence intervals, an idea of using t-distribution over normal distribution is
in incorporation of a less certainty, which is directed by the parameter ν.

Now, we present just a sketch of deriving confidence interval computation.
Generally, we are looking for interval (L, U) for which it holds that estimated
mean µ̂ satisfies P (µ̂ ∈ (L, U)) = 0.95. For estimating confidence interval, from
n samples X1, . . . , Xn and assuming Xi ∼ µ + σT for T ∼ tn−1, which is called
location-scale t-distribution with location parameter µ and scale parameter σ.
Hence for estimation of the mean we get

µ̂− µ
σ̂√
n

∼ tn−1, (A.3)

where µ̂ is estimate of the mean µ and σ̂ is sample variance estimating σ, both
using samples X1, . . . , Xn. Now, we use concept which is called quantile. Let
qtn−1(p) be a p percent quantile of the tn−1 distribution, then it means that it
is a such number that if we sample from variable which follows tn−1 distribution
with exactly p percent we sample value smaller or equal to the qtn−1(p). From
this definition and Equation (A.3) we can see that

P (µ̂− µ
σ̂√
n

≤ qtn−1(p)) = p. (A.4)

It also works on the other way and we can get

P (µ̂− µ
σ̂√
n

≥ qtn−1(1− p)) = p. (A.5)

94

Figure A.2: Comparison of probability density functions of student t-distribution
with various degrees of freedon (df) and Normal distribution. For all functions
we consider 0 mean and standard deviation equal to 1.

Now, we will show how can be these equations rewritten. From Equation (A.4)
we get

P (−µ ≤ −µ̂ + σ̂√
n

qtn−1(p)) = p

P (µ ≥ µ̂− σ̂√
n

qtn−1(p)) = p.

Hence the interval given by these equations is

(µ̂− σ̂√
n

qtn−1(p),∞).

For Equation (A.5) using same approach we can see that

P (−µ ≥ −µ̂ + σ̂√
n

qtn−1(1− p)) = p

P (µ ≤ µ̂− σ̂√
n

qtn−1(1− p)) = p.

This sets the second interval to

(−∞, µ̂− σ̂√
n

qtn−1(1− p)).

Now if we consider p ≥ 0.5 it holds that

P (qtn−1(1− p) ≤ µ̂− µ
σ̂√
n

≤ qtn−1(p)) = 1− (1− p)− (1− p) = −1 + 2p,

95

which can be considered as two inequalities, where we for each of them use above
derived intervals, whose combination provide us with confidence interval of the
form

(µ̂− σ̂√
n

qtn−1(p), µ̂− σ̂√
n

qtn−1(1− p)).

Note also that t-distribution is symmetric and therefore qtn−1(1−p) = −qtn−1(p),
which can provide us with interval given by

(µ̂− σ̂√
n

qtn−1(p), µ̂ + σ̂√
n

qtn−1(p)). (A.6)

At the end, we note that according to Morey et al. [2016] there are many pos-
sible fallacy about confidence intervals which we should be aware of. Therefore,
we highlight that we strictly follow Definition 13, which for our case mean that
main interpretation of the p-percent confidence interval (L, U) for mean value of
process P is that if we reevaluate this process, create mean of same number of
samples, then with probability p output value of our evaluation will be in interval
(L, U).

A.7 Abnormality detection
In this section, we present wider context of outlier and novelty detection, which
are important terms for our solution based on GMM procedure (Section 4.3).
Discussion serves as extension of Section 1.7.

There are lots of terms highly connected with concept drift. Usually, these
terms focus on specific tasks that are slightly different from ours, but their so-
lutions in a modified form can be beneficial in solving our problem. This is the
case of set of fields we generally called abnormality detection. We describe some
basic directions we can find behind this term and which appear in Section 4.3 as
sub-tasks of the final Algorithm 5. In following paragraphs we will present wider
discussion of terms described in Section 1.7.

Major objective of this thesis is ability of tracking drift. In Section 4.2 we
do this by studying change at the distribution level. But we might also want to
be able to track the change at a sample level. From this point of view, we are
interested in samples, which are abnormal to those we have seen so far. Gen-
erally, abnormality appears to be a reasonable assumption for samples that are
influenced by the concept drift.

There are many fields dealing with study of abnormality detection. The most
interesting for us are areas of Outlier detection and Novelty detection. Unfortu-
nately, both of these areas lacks exact definitions and formalization but still we
give some in Subsection 1.7.1.

Note that in our scenario novelty detection and outlier detection may meet
and overlap. We will show this on an example, which also generally demonstrates
a situation we deal with in Section 4.3. Suppose that we receive new sample
which does not fit into distribution we have seen so far. In this moment, we
mark this sample as an outlier but in time more similar samples arrive then our
conclusion would be that the sample was in fact the first example of the newly

96

arriving concept. Therefore, we are in the field of novelty detection scenario and
we should consider changes in the model.

Our solution presented in Section 4.3 is based on technique which is common
to both fields. It is clustering algorithm called Gaussian Mixture Model. Still
each of the presented terms will affect the algorithm in its own way. In Section
1.7, we present brief survey of related outlier detection techniques from which we
later derive a tailor-made solution for our problem. Novelty detection has specific
role in Algorithm 5 presented in Section 4.3. This is because next of searching for
pattern in detected outliers we will also deal with question whether is this pattern
incorporated by related classifier (see Section 3.3) or not. We study these tasks
across Section 4.3.

For sake of completeness, note that there are many not clearly defined terms
which are highly related to ones we described in this section. These are for ex-
ample Out of distribution detection, Anomaly detection, Rare event detection and
many others which are used in various and often overlapping meanings as can be
seen in Carreño et al. [2020]. Also techniques used in all mentioned detection
field are usually same or very similar. We will not discuss them any further in
this thesis since it would only unnecessarily complicate terminology.

A.8 Exponential prior probability threshold
In this section, we describe exponential probability threshold associated with
Subsection 4.3.5.

In [Sun et al., 2023, Subsection 3.1], the study of πmin involved generating
Nk random samples from a mixture of K bivariate normal distributions with
unit covariance matrices and overlaps occurring in the mixture. The extensive
search considered mixtures with 3 to 10 components, with the number of assigned
samples ranging from 500 to 2000, assuming uniform prior probabilities for all
mixtures. The data were sequentially generated and processed to create and
update clusters. These processes, described in [Sun et al., 2023, Subsections 2.1
and 2.2], are briefly summarized in Subsection 1.8.2 and Subsection 1.8.1. At
the end, spurious clusters were removed, and their maximum probabilities were
recorded. These probabilities were used to compute a threshold curve π

10e− π
10 K ,

representing πmin as a function of the number of clusters K. Clusters were deemed
spurious based on their small probabilities and significant distances from the
centers of generated data.

We compare the thresholds obtained using Dirichlet distribution based thresh-
old with various α and δ values to exponential threshold of Sun et al. [2023], which
determined the desired parameter through extensive search. This comparison is
illustrated in Figure A.3.

A.9 Domain generalization
Domain generalization is a field of study distinct from our work as it does not
address concept drift, a crucial aspect for us. Despite this, it offers major similar-
ities, particularly in its formalization, which is sophisticated enough to provide
useful theorems for algorithm development.

97

Figure A.3: Illustration of possibilities given creating probability threshold based
on Dirichlet distribution with comparison to exponential threshold presented in
[Sun et al., 2023, Subsection 3.1]. Thresholds are created according to Sub-
section 4.3.5, where α = N(5, 2) represents alphas taken as random samples
from normal distribution with mean 5 and standard deviation 2 generated by
numpy.random.normal(5, 2, K) for random seed 0. α = 2i represents alpha equal
to (2, 4, 8, . . . , 2K).

In this section, we delve into the concept of domain generalization, its formal-
ization, and current approaches based on risk bounds. We also present a lemma
derived from this formalization. Finally, we highlight the similarities between
this field and the problem addressed in this thesis.

All solutions proposed in this thesis share the goal of reducing the model’s
susceptibility to concept drift by identifying similarities between old and new
concepts. This objective aligns with the domain generalization field, which fo-
cuses on finding similarities across training datasets to generalize to new, slightly
different datasets. While domain generalization may not offer a direct solution
to our problem, it provides valuable insights, particularly in formalizing aspects
of our problem and offering useful theorems.

Domain generalization aims to develop models that generalize across different
training datasets, referred to as domains. These domains are defined in this sec-
tion. Notably, if we referred to them as concepts (see Chapter 2), the distinction
would be minimal.

First, we present basic notation of the domain generalization based on risk
bound from [Albuquerque et al., 2019, Subsection 2.1]. Suppose feature vectors
X ∈ X and labels y ∈ Y connected by deterministic labelling function fD : X →
Y . Every pair (X, y) connected by labelling function is called a sample. For D a
probabilistic distribution over X a pair (D, fD) is called a domain. Now we define
a risk in a way that for a mapping h : X → Y such that h is hypothesis from set

98

of candidate hypothesis H, a risk R(h) on domain (D, fD) is given by

R(h) = EX∼Dl(h(X), fD(X)), (A.7)

where the loss l : Y × Y → R+ quantifies accuracy of the hypothesis h(X), or
in the other words how far is h(X) from true labelling function fD(X). In our
scenario, labelling function fD, which we are trying to approximate is labelling
function of future drifted data and hypothesis h is generalizing model we learned
from data we have already received.

The generalization of Formula (A.7), which gives a basic definition of the risk
bound into multi domain scenario can be seen in [Li et al., 2017, Section 3.]. We
assume S source domains, the domains we are provided for generalization, each
of them has Ni data examples of a form (X, y) ∈ X × Y . Consider the scenario
where we want to reach the best performance on all the source domains. Then we
would try to find parameters Θi for each domain Si which provide our labelling
function hΘi

(X) with the best performance on i-th source domain comparing to
the true labelling function fD(X). This can be rewritten to

argminΘ1,...,ΘS

1
S

S∑︂
i=1

1
Ni

Ni∑︂
j=1

l(hΘi
(X(i)

j), fD(X(i)
j)). (A.8)

Problem is that Formula (A.8) does not provide us with the best possible gen-
eralization since each Θi can follow the specific aspects of Si which harms the
generality. On the other hand, if it would hold that Θ1 = Θ2 = . . . = ΘS we
could say that parameters are general and not to dependent on specificity of each
domain. This motivates us to rewrite the Formula (A.8) to

argminΘ
1
S

S∑︂
i=1

1
Ni

Ni∑︂
j=1

l(hΘ(X(i)
j), fD(X(i)

j)). (A.9)

More generalization and formalization is needed to work with this problem.
Therefore, we present information based on [Albuquerque et al., 2019, Subsection
3.1 and 3.2]. The main problem is that we want to minimize the error of an
unseen domain. Therefore the definition of meta-domain distribution D which
represents the probability distributions over countable set of possible domains.
In the scenario where we are not able to say anything of the target distribution
one of the best possible approaches is to minimize error generally on D. This
provide us with the formula

argminh∈HED∼DEX∼Dl(h(X), fD(X)). (A.10)

Note the similarity of Equation (A.7) and Equation (A.10), in the latter one
we add sampling domain from the meta distribution and afterwards sampling
example from sampled domain.

The general setting that we have no information about the test distribution
can show to be too general. According to [Albuquerque et al., 2019, Subsection
3.1] there is no free-lunch for risk bound, that means that for each fixed h it
is possible to find domain D from D, where the risk is high. Therefore, it is
reasonable to make some assumptions about the target distribution.

99

One of the most used assumption is that target domain DT is in the convex
hull of the source domains Di

S which are provided to us for training. Under
this assumptions we present [Albuquerque et al., 2019, Lemma 1.] together with
detailed proof. This lemma gives the mathematical background for intuitive
approach of the error minimization by minimizing the difference between each
two source domains.

Lemma 12. Given source domains Di
S for i ∈ {1, . . . , S}, 1 < S ∈ N satisfying

that for each i, k ∈ {1, . . . , S} it holds that dH(Di
S,Dk

S) ≤ ϵ, where dH(Di
S,Dk

S) =
2supη∈H|PrX∼Di

S
(η(X) = 1)− PrX∼Dk

S
(η(X) = 1)|. Then the inequality

dH(D′
,D′′) ≤ ϵ

holds for every pair of domains such that D′
,D′′ ∈ Λ2, where Λ is convex hull

satisfying Λ = {D | D = ∑︁S
i=1 πiDi

S, π1 + · · ·+ πS = 1, πi ≥ 0 ∀i}.

Proof. Consider domains D′
,D′′ ∈ Λ, which means D′ = ∑︁S

i=1 πiDi
S and D′′ =∑︁S

k=1 πkDi
S. Now we rewrite dH(D′

,D′′) as follows:

dH(D′

S,D′′

S) = 2supη∈H|PrX∼D′
S
(η(X) = 1)− PrX∼D′′

S
(η(X) = 1)|

= 2supη∈H|EX∼D′
S
(I(η(X)))− EX∼D′′

S
(I(η(X)))|

= 2supη∈H

⃓⃓⃓⃓ ∫︂
Ω
D′

S(X)I(η(X))dX −
∫︂

Ω
D′′

S(X)I(η(X))dX
⃓⃓⃓⃓

= 2supη∈H

⃓⃓⃓⃓ ∫︂
Ω

S∑︂
i=1

πiDi
S(X)I(η(X))dX −

∫︂
Ω

S∑︂
k=1

πkDi
S(X)I(η(X))dX

⃓⃓⃓⃓

At beginning we write definition then we went from probability to expected value
and this expected value we rewrote according to their definition for continuous
case, where Ω is support of a source domain convex hull Λ. Tn the end we use
definition of belonging to Λ. Now we use that

1
S∑︂

i=1
πiDi

S(X) =
S∑︂

k=1
πk

S∑︂
i=1

πiDi
S(X) =

S∑︂
k=1

S∑︂
i=1

πkπiDi
S(X)

since ∑︁S
k=1 πk = 1 which holds for both i and k. Now we will continue with

rewriting

= 2supη∈H

⃓⃓⃓⃓ ∫︂
Ω

S∑︂
k=1

S∑︂
i=1

πkπiDi
S(X)I(η(X))dX −

∫︂
Ω

S∑︂
i=1

S∑︂
k=1

πiπkDi
S(X)I(η(X))dX

⃓⃓⃓⃓

= 2supη∈H

⃓⃓⃓⃓ S∑︂
i=1

S∑︂
k=1

πiπk

(︃∫︂
Ω
Di

S(X)I(η(X))dX −
∫︂

Ω
Di

S(X)I(η(X))dX
)︃ ⃓⃓⃓⃓

≤ 2supη∈H

⃓⃓⃓⃓ S∑︂
i=1

S∑︂
k=1

πiπk

⃓⃓⃓⃓ ∫︂
Ω
Di

S(X)I(η(X))dX −
∫︂

Ω
Di

S(X)I(η(X))dX

⃓⃓⃓⃓

≤
S∑︂

i=1

S∑︂
k=1

πiπk

⃓⃓⃓⃓
2supη∈H

∫︂
Ω
Di

S(X)I(η(X))dX −
∫︂

Ω
Di

S(X)I(η(X))dX

⃓⃓⃓⃓

≤
S∑︂

i=1

S∑︂
k=1

πiπkdH(Di
S,Dk

S) ≤
S∑︂

i=1

S∑︂
k=1

πiπkϵ ≤ ϵ

100

For first inequality we used the triangle inequality which can be easily translated
for our case as absolute value of the sum is less then or equal to sum of the
absolute values. Then we used sub additivity of the supremum and at last we use
assumption dH(Di

S,Dk
S) ≤ ϵ.

The assumption that a target domain lies within the convex hull of source
domains is commonly used, naturally leading to data augmentation and specific
projections into latent space. Data augmentation involves generating new data by
modifying existing data, often used in image processing. Specific projections into
latent space, generally based on results similar to Lemma 12, typically employ
neural networks and require a large amount of training data. An example of
an effective projection function can be found in [Ding et al., 2022, Section 2].
While these approaches often have specific structural demands and assume a
large training dataset, they provide the intuition that if the target domain is
within the convex hull of the source domains, it is not significantly different from
the training domains.

The formalization presented reveals strong similarities with our scenario. In
our problem, we assume a sequence of concepts forming a stream, with each
concept change termed as drift. Our goal is to minimize the negative impact of
new, unseen concepts, closely aligning with the scenario discussed here. Both
environments assume the existence of stable common information throughout
the process (Definition 8). These similarities suggest that aspects of domain
generalization formalization could be highly beneficial for our scenario.

However, it is important to note that despite these similarities, our scenario
is not strictly domain generalization. In our case, the objective is not to develop
a model that performs best in the future, as the sequence of models described in
Section 2.3 allows for the use of adaptive models.

A.10 Evaluation of Hellinger detection
In this section we present graphs of epsilon evolution during the single run of
Algorithm 4 on 12 Concepts dataset (Subsection 5.1.2). The graphs in this section
are presented to give a better intuition behind evaluation in Section 5.4.

Figure A.4 represents part of evaluation where we study single overall feature
set. We note that as stated in Section 1.3 values of epsilon in stable concept
are not zero but close to constant. In Figure A.5 we present evolution of epsilons
with depicted concept drifts according to 3 feature subsets based on dependencies.
This evaluation is presented in Section 5.4.

A.11 TF-IDF
In this section, we briefly describe TF-IDF process, which is used for feature
extraction in Section 5.6.

TF-IDF introduced in Joachims et al. [1997] is approach presented in Salton
et al. [1975] and is based on calculation of words importance using term frequency
(TF) and inverse document frequency (IDF). General formula for term t on set

101

Figure A.4: Concept drift detection and epsilon evolution of Algorithm 4 in time,
for single run on 12 concepts dataset. We consider one overall feature subset and
γ = 4.

Figure A.5: Concept drift detection and epsilon evolution of Algorithm 4 in time,
for single run on 12 concepts dataset. We consider three feature subsets according
to the dependencies and γ = 4.

102

of documents D is

TF(t, d ∈ D) ∗ IDF(t),

where TF(t, d) is frequency of term t in document d and

IDF(t) = log
(︄

|D|
|d : d ∈ D, t ∈ d|

)︄
,

which in other words mean that we compute logarithm of overall number of
documents divided by number of ones which contains term t. Note that it is
usual (it is default in our experiments) to slightly adjust formula to

IDF(t) = log
(︄

|D|+ 1
|d : d ∈ D, t ∈ d|+ 1

)︄
+ 1.

Ones in the logarithm prevent formula from division by zero and can be under-
stood as if we added one more document consisting every term. One added to
logarithm provide us with property that we consider also terms which are present
in every document.

A.12 F1-score, recall and precision
In this section, we briefly describe methods for measuring the accuracy of datasets
with highly unbalanced labels, following the approach outlined in [Goutte and
Gaussier, 2005, Section 2]. We will apply these methods to evaluate a specific
dataset in Section 5.6, using the scores introduced here.

When handling strongly imbalanced datasets, using regular percentage pre-
diction accuracy can be misleading. For example, in a dataset with two labels
where one label is 20 times more frequent than the other, a model that always
predicts the more frequent label would achieve over 95% accuracy without being
useful. Therefore, it is common to consider recall and precision. In our scenario,
these metrics assume two labels: positive and negative. Given this context, each
prediction will fall into one of the following categories. In our scenario of mal-
ware detection, a malware presents positive sample and benign software negative
sample.

True positive (TP) - correctly classified positive samples.

False positive (FP) - negative samples classified as positive ones.

True negative (TN) - correctly classified negative samples.

False negative (FN) - positive samples classified as negative.

The usual percentage accuracy is defined as T P +T N
T P +F P +T N+F N

. Recall, defined as
T P

T P +F N
, represents the number of correctly classified positive samples divided by

the total number of true positive samples. This metric focuses on minimizing
the misclassification of positive samples and is particularly important in contexts
such as malware and fraud detection. Precision, defined as T P

T P +F P
, represents

103

the number of correctly classified positive samples divided by the total number of
samples classified as positive. Precision primarily aims to minimize the incorrect
classification of negative samples.

F-score connects recall and precision in a way that

Fβ-score = (1 + β) recall ∗ precision
β2precision + recall .

We use F1-score which weights both recall and precision evenly. The according
formula is of the form 2 recall∗precision

precision+recall .

A.13 GMM-based sub-procedure and label im-
balance

In this section, we aim to provide a deeper understanding of the GMM-based
sub-procedure on the downsampled data. We build on our previous evaluation
of sub-procedure performance using the downsampled DREBIN dataset (Section
5.6).

In Figure A.6 and Figure A.7 we see the evolution of label imbalance and
comparison of the DWM algorithm with and without proposed GMM-based sub-
procedure. Both figures depict a scenario with the DREBIN dataset using down-
sampling of benign samples with probability pd = 5

6 . In Figure A.8 and Figure
A.9 we can see the same procedures on DREBIN dataset with downsampling of
all samples with probability pd = 5

6 . For better clarity, we use single results of a
run of the procedures. These results correspond to the initial run used for mean
computation in Section 5.6.

The results indicate a strong correlation between the F1-score performance
and the number of malware samples. As shown in Figure A.7, the difference in
performances remains relatively consistent, with the one exception of enhancing
performance at the end of the dataset. Figure A.9 suggests that the performance
deficiencies of the sub-procedure are likely due to the discarding of important
information during brief periods of new malware arrivals.

A.14 Implementation and used software
In this section we briefly review the structure of supplementary code and used
software.

A.14.1 Used software
In accordance with the code of ethics of Charles University article VIII1 we state
that we used AI based software Chat GPT2 for rewriting and rephrasing sentences
throughout the thesis.

We utilized several Python libraries throughout this work. However, aside
from Scikit-learn (Pedregosa et al. [2011]), which was employed for the TF-IDF

1https://www.mff.cuni.cz/en/internal-affairs/regulations/code-of-ethics
2https://openai.com/chatgpt/

104

Figure A.6: The percentage of malware in the last 100 samples, it was calculated
using a dataset where benign samples were downsampled with a probability of
pd = 5

6 . These results correspond to the initial run used for mean computation
in Section 5.6.

Figure A.7: Evolution of the F1-score for the DWM algorithm, both with and
without the GMM-based sub-procedure, on the downsampled DREBIN dataset
where benign samples were downsampled with a probability of pd = 5

6 . Graph
depicts F1-score in the last 100 samples. These results correspond to the initial
run used for mean computation in Section 5.6.

105

Figure A.8: The percentage of malware in the last 100 samples, it was calculated
using a dataset where all samples were downsampled with a probability of pd = 5

6 .
These results correspond to the initial run used for mean computation in Section
5.6.

Figure A.9: Evolution of the F1-score for the DWM algorithm, both with and
without the GMM-based sub-procedure, on the downsampled DREBIN dataset
where all samples were downsampled with a probability of pd = 5

6 . Graph depicts
F1-score in the last 100 samples. These results correspond to the initial run used
for mean computation in Section 5.6.

106

process in Section 5.6, we do not specify the others by name, as their usage was
limited to addressing minor auxiliary tasks.

A.14.2 Code structure
Attached file consists of implementation and evaluation scripts, which can be also
find on my GitHub3.

Supplementary material consists of

• README.md - markdown file providing structure of the directory and nec-
essary information to code and evaluation.

• classes.py - python script representing implementation of developed proce-
dures (Algorithm 4, Algorithm 5 and Algorithm 3)

• postprocessing_functions.py - python script consisting of postprocessing
functions used for plotting graphs or generating datasets.

• evaluation_source_code.ipynb - Jupyter notebook containing all evalua-
tions of Chapter 5 except the one presented in Section 5.6.

• DREBIN directory contains two sub-directories:

– evaluations - files needed for the evaluation of procedures presented in
Section 5.6

– results - exact outputs of the evaluations presented in Section 5.6 (also
incorporated in evaluation_source_code.ipynb file)

DREBIN directory contain files, which follow that

• ..._main.py are python scripts representing the run of particular evaluation

• ..._test.py are python scripts, which run according evaluation with setting
given by the abbreviation in the file name.

• ..._result.out are textual files, which were created by according ..._test.py
scripts

Name of each _test.py file contains information about type of downsampling:

• ...d2... represents downsampling on all samples with probability 0.5

• ...d6... represents downsampling on all samples with probability 5/6

• ...db2... represents downsampling on benign samples with probability 0.5

• ...db6... represents downsampling on benign samples with probability 5/6
3https://github.com/MartinProchazka/Masther-thesis-supplementary-code

107

To run the evaluation it is sufficient to run the _test.py file in directory, where
is according _main.py, classes.py, postprocessing_functions.py and the dataset.
Example: command

Python GMMd2_test.py

runs GMM-based evaluation with 50% random downsampling (Section 5.6).
Note that for the run of the experiment it is necessary to download DREBIN

dataset used in Ceschin et al. [2022], which is available online4. This dataset
needs to be placed into sub-directory where evaluation takes place, or adjust
path in ..._main.py scripts accordingly. All evaluation also uses procedures from
files classes.py and postprocessing_functions.py. Both need to be in the same
directory as the launching script.

Due to computational complexity all evaluations of Section 5.6 took place on
metacentrum cluster. Computational resources were provided by the e-INFRA
CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports
of the Czech Republic.

4https://www.kaggle.com/datasets/fabriciojoc/fast-furious-malware-data-stream

108

	Introduction
	Background
	Concept drift
	General definitions
	Probabilistic concept drift illustration
	Location of drift

	Background of related work
	Dynamic Weighted Majority
	Gaussian Naive Bayes classifier

	Concept drift detection
	Window strategy
	Hellinger distance

	Dirichlet distribution
	Clustering algorithms
	Algorithms introduction
	K-means algorithm
	Mahalanobis distance
	Gaussian Mixture Model algorithm

	Incremental clustering algorithms
	Incremental Gaussian mixture model
	Fast Incremental GMM

	Outlier detection in incremental GMM
	Outlier and novelty definition
	Detection techniques

	Cluster management
	Management of existing clusters overview
	Creation of a new cluster

	Problem formalization
	Formalization of scenario
	Scenario motivation
	Scenario formalization

	Concept drift specifics
	Severe drift
	Sudden drift

	Formalization of the problem

	Related work
	Related work introduction
	The DWM accuracy drops
	DWM and severe drift

	Solution outline

	Proposed solutions
	Modified DWM
	Solution based on concept drift detection
	Hellinger distance proposed algorithms

	Solution based on GMM algorithm
	Clustering algorithm
	Algorithm scheme
	Sample fit and update of mixture
	Cluster creation
	Deletion of cluster

	Implementation and experiments
	Datasets
	"SEA" dataset
	12 Concepts dataset
	DREBIN dataset

	Replication of DWM results
	Evaluation hypothesis
	Evaluation setting
	Evaluation results and discussion

	Evaluation of DWM algorithm
	Evaluation hypothesis
	Evaluation setting
	Evaluation results and discussion

	Evaluation of Hellinger subcomponent
	Evaluation hypothesis
	Evaluation setting
	Evaluation results and discussion

	Evaluation of overall process on 12 Concepts dataset
	Evaluation hypothesis
	Evaluation setting
	Evaluation results and discussion

	Evaluation on DREBIN dataset
	Evaluation hypothesis
	Evaluation setting
	Evaluation results and discussion

	Future work
	Conclusion
	Bibliography
	Attachments
	Other types of concept drift
	Location of drift lemma
	Feature selection
	EM algorithms
	Adaptive window size
	Confidence intervals
	Abnormality detection
	Exponential prior probability threshold
	Domain generalization
	Evaluation of Hellinger detection
	TF-IDF
	F1-score, recall and precision
	GMM-based sub-procedure and label imbalance
	Implementation and used software
	Used software
	Code structure

