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Abstract: Three-dimensional unsteady Navier-Stokes equations of an incompressible
Navier–Stokes fluid in tube containing a sinusoidal extension is used for modelling
the flow in the aortic root. Firstly, the proof of the existence of the weak solution is
provided. The main aim of this thesis is to understand the formation of vortices and
other flow characteristics such as dissipation, vorticity, wall shear stress and pressure
drop. We extend the results presented in Chabionik et al. (2022) International
Journal of Engineering Science, 180(103749) by focusing on three following aspects.
The first is to use the extension with three sinuses describing a more realistic aortic
root geometry. The second aspect is to approximate the boundary of the discretised
computational domain by piecewise higher order polynomials to better capture the
imposed boundary conditions. Thirdly, we discuss the choice of the finite element
discretisations such as Taylor-Hood element and Brezzi-Douglas-Marini element.
For all these aspects we investigate the character of the solutions and how the flow
characteristics changes with the allowed slip at the wall.
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Introduction
Right after the oxygenated blood exits the left ventricle through the aortic valve it
enters the aorta, including a region known as the Sinus of Valsalva, consisting of
three so called sinuses. The flow in this region was already studied by Leonardo Da
Vinci, who made two conjectures, see [6]. Firstly, through experiments involving an
artificial glass model of the aortic root, he observed the formation of vortices in this
area. Secondly, he believed that these vortices play a crucial role in the proper func-
tioning of the aortic valve, which is underneath. The first of da Vinci’s conjectures
is supported by general observations. However the second conjecture is not truly
valid. It was demonstrated that the straight artificial aortic root without any sinus
extensions can function normally, even for longer period (above 15 years). However
further experiments, see [15], showed that the real shape of the aortic root with
three sinuses has some effects on the aortic valve. Specifically, the three leaflets of
the aortic valve can close more smoothly, and the stresses acting on them are lower
compared to a straight aortic root without these sinuses. Moreover, aortic root is
also a critical space for formation of sclerosis.
This thesis follows the articles [9] and [10]. Their aim is to investigate flow in the
aortic root and to understand the formation of vortices and other flow characteristics
such as dissipation, vorticity, wall shear stress and pressure drop. They start from
the most simplified case and then step by step add some modification, which can be
of many types. For each modification they investigate the character of the solutions.
At first, [9] investigated incompressible Navier-Stokes fluid in a tube with Navier’s
slip boundary condition imposed on impermeable wall. Because the analytical solu-
tion for this problem is known, the simplified geometry serves as a benchmark test
to select numerical methods for their developed computational code. With knowl-
edge of these suitable numerical methods, [10] focus on computing the blood flow
in geometry with sinus extension, but only axially symmetric one. An interesting
results show the importance of the choice of the Navier’s slip parameter, enabling
slip of the fluid on the wall also with the limiting cases (no-slip on the one side and
perfect slip on the other side). Therefore we also take into account in our model this
assumption of more general boundary condition, rather than traditional assumption
that the blood adheres to the wall and exhibits the no-slip.
This thesis is divided into two parts, analytical and numerical. In the first analytical
part we provide a detailed proof of the existence of the weak solution to the initial-
boundary-value problem of unsteady three-dimensional flows in domain typical for
the aortic root.
The second part concentrates on numerical and computational aspects. We follow
the above mentioned approach in [9], [10], and we focus on three following exten-
sions. The first is to use the domain with three sinuses describing a more realistic
aortic root geometry. Further, we study the influence of the boundary of the dis-
cretised computational domain approximated by piecewise higher order polynomials
to better capture the imposed boundary conditions. And thirdly, concerning dis-
cretisation in space, we also study pros and cons using the H(div,Ω)-conforming
finite elements with comparison to Taylor-Hood finite element. Our objective is to
investigate how significant effect these modifications can have on all flow character-
istics analysed in the earlier studies [10], [9]. The main goal is to deduce if these
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modifications have a significant effect on the flow and whether they should be taken
into account or neglected for further investigation of the flows in the aortic root. To
do all these steps, we have implemented several scripts: for generating the geometry
of the aortic root, for computing flows in such regions and also for providing post-
process manipulations to obtain numerical simulations and convergence graphs for
final comparisons.
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1. Description of the problem

1.1 The initial-boundary-value-problem (IBVP)
We investigate the three-dimensional unsteady flows of the incompressible homoge-
neous Navier-Stokes fluid over the time interval (0, T ) flowing in set Ω.
We assume that Ω ⊂ R3 is an open bounded connected set with Lipschitz continuous
boundary, i.e. Ω ∈ C0,1. The boundary ∂Ω of the flow domain is split into three
non-overlapping parts, the inlet Γin, outlet Γout and wall Γwall, see Figure 1.1. Such
sketch of the domain is motivated by the geometry of the aortic root. The precise
description of the shape of the aortic root will be discussed in section 3.3.
We look for the unknown velocity v : (0, T ) × Ω → R3 and the pressure p :
(0, T ) × Ω → R, satisfying the equations

div v = 0 in (0, T ) × Ω, (1.1)

ρ∗
∂v
∂t

+ ρ∗ (∇ v) v = divT in (0, T ) × Ω, (1.2)

T = −pI + µ∗
(︂
∇ v + ∇ vT

)︂
in (0, T ) × Ω, (1.3)

together with initial and boundary conditions

v(0, ·) = v0 in Ω, (1.4)

v = vin on (0, T ) × Γin, (1.5)

Tn = −Pn + 1
2ρ∗ (v · n)− v on (0, T ) × Γout, (1.6)

v · n = 0 on (0, T ) × Γwall, (1.7)

θvτ + γ∗(1 − θ) (Tn)τ = 0 on (0, T ) × Γwall, (1.8)

for given functions v0, vin and P with properties specified later. Here θ ∈ [0, 1],
γ∗ ∈ (0,∞), n is a unit normal vector at the boundary and for arbitrary x ∈ R,
x− = min {0, x}, x+ = max {0, x}, hence x = x+ + x−. The arbitrary vector z ∈ R3

can be decomposed into the normal and tangential direction z = zn + zτ , where
zn = (z · n)n.
The governing equations consist of the incompressibility condition (1.1), of the bal-
ance of linear momentum (1.2) with constant density ρ∗ and without considering
external body forces acting on Ω and of the constitutive relation for the Navier-
Stokes fluid (1.3), where µ∗ > 0 is a given constant dynamic viscosity. Now we
provide more comments on each initial and boundary condition in (1.4)-(1.8).

The initial condition

We prescribe general initial condition v0 : Ω → R3, however for numerical compu-
tations we start from zero solution, i.e. we set v0 = 0.

Inflow boundary condition

On the inlet Γin the Dirichlet boundary condition is prescribed generally as v
⃓⃓⃓
Γin

=
vin : [0, T ] × Γin → R3. In our problem vin represents the only term generating
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Γin

Γout

Γwall

Figure 1.1: Computational domain

the flow. As our domain, motivated by shape of the aortic root, starts from almost
narrow tube (see Figure 1.1), it makes sense to consider the parabolic velocity profile
on inflow, that would evolve from the Poiseuille flow in infinite tube. Such idea
is used in [10], where the flow is driven by gradually increasing parabolic profile,
imposed on the inflow. Specifically, the time-dependent inflow vin starts from zero
and increases to one second to the parabolic profile with set mean inflow velocity,
which then remains for the rest of the time. We will proceed in the same manner in
our computations with the exact formulation for the inflow vin provided in section
4.2.

Outflow boundary condition

For problems with outflow, the artificial boundary need to be set. The condition on
this artificial boundary should be chosen to have good mathematical properties and
also to have some physical interpretation. One of the most common is the so called
do-nothing condition (∇v)n|Γout = 0 or similarly the constant traction condition
Tn|Γout = 0, representing no forces acting on the outlet. Both of these condition are
also often used with some prescribed function b on the right hand side. However for
such conditions on the outlet, it is known, that the energy estimates for the weak
solution can not be guaranteed and some smallness condition on the data has to
be imposed to perform the PDE analysis, see [28]. Moreover in the article [25], the
numerical results also shows that for some cases (here with two outlets) there exist
multiple solutions for the stationary Navier-Stokes equations in three dimensions,
where the uniqueness/non-uniqueness is not yet proven analytically. We thus modify
this condition, despite the fact that the do-nothing or constant traction conditions
are still often used in many computations, where giving reliable results.
Therefore, in this thesis we prescribe the force acting on the outlet generally as
some prescribed pressure P : [0, T ] → R times the normal, plus specific non-linear
correction 1

2ρ∗ (v · n)− v. In numerical computations we consider P = 0, but it does
not limit applicability of the method for general outflow pressure. The additional
non-linear term is necessary, since in the energy estimates it cancels out with the
negative part of the convective term on the outlet Γout, which generally doesn’t have
to be under control. Hence with the additional term we can get the boundedness of
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the energy of the whole system. This problematic is in more detail described in the
article [28], where they also show the improvement of numerical properties for such
condition. Note that for problems with pure outflow, (v · n)−

⃓⃓⃓
Γout

= 0 and the term
1
2ρ∗ (v · n)− v vanishes.

The impermeability condition

The impermeability condition is imposed on the boundary Γwall and is natural con-
dition for our problem. It says no fluid can go through, thus we get the constraint
for the normal velocity component as

v · n
⃓⃓⃓
Γwall

= 0.

Navier’s slip boundary condition

Navier’s slip boundary condition enables the fluid to slip on the wall. It is defined
that the tangential velocity at the wall is proportional to the tangent force acting
on the boundary. It can be written as

θvτ + γ∗(1 − θ) (Tn)τ
⃓⃓⃓
Γwall

= 0, (1.9)

where n, τ denotes the normal and tangential direction to the boundary Γwall re-
spectively. Here θ ∈ (0, 1) is non-dimensional weight, representing all possible values
of slip on the wall. It can be also extend for the limiting cases to no-slip with θ = 1
and free slip with θ = 0. Further in this thesis, we will refer to the Navier’s slip
condition as (1.9) with θ ∈ [0, 1]. Value γ∗ ∈ (0,∞) is the slip parameter.

1.2 Weak formulation
First, let us define notation for Sobolev function spaces and some other basic nota-
tion, that we will frequently use. Firstly,

V := W1,2(Ω)
(︂
= H1(Ω)

)︂
(1.10)

Ṽ := W1,2
div,bc(Ω) := {ϕϕϕ ∈ V; divϕϕϕ = 0, ϕϕϕ = 0 on Γin, ϕϕϕ · n = 0 on Γwall} . (1.11)

Bold symbols Wk,p(Ω), Lp(Ω) denote vector-valued Sobolev and Lebesgue spaces
respectively. Further (·, ·) is the L2 inner product in Ω and ⟨·, ·⟩ := ⟨·, ·⟩X∗,X is
the duality between space X and its dual space X∗. Scalar product for tensors is
denoted as A : B = ∑︁3

i,j=1 AijBij. Also, later, we will need space L2
0,div(Ω), which

can be characterised as

L2
0,div(Ω) = {v ∈ C∞

0 (Ω); div v = 0}∥·∥L2
. (1.12)

To pass to the weak formulation, we integrate (1.2) over Ω and test by function
ϕϕϕ ∈ Ṽ. Hence we have

ρ∗

⟨︄
∂v
∂t
,ϕϕϕ

⟩︄
+ ρ∗

∫︂
Ω

(∇ v) v · ϕϕϕ dx =
∫︂

Ω
divT · ϕϕϕ dx,

6



where we replaced the scalar product in the first term by duality. Applying integra-
tion by parts on the right hand side yields to∫︂

Ω
divT · ϕϕϕ dx =

∫︂
∂Ω

Tn · ϕϕϕ dS −
∫︂

Ω
T : ∇ϕϕϕ dx =

∫︂
∂Ω

Tn · ϕϕϕ dS −
∫︂

Ω
T : D(ϕϕϕ) dx,

using T : ∇ϕϕϕ = T : D(ϕϕϕ) due to the symmetry of T. Terms on the boundary can be
separated as follows∫︂

∂Ω
Tn · ϕϕϕ dS =

∫︂
Γin∩Γout

Tn · ϕϕϕdS +
∫︂

Γwall
(Tn)n · ϕϕϕn dS +

∫︂
Γwall

(Tn)τ · ϕϕϕτ dS

=
∫︂

Γout
Tn · ϕϕϕ dS +

∫︂
Γwall

(Tn)τ · ϕϕϕτ dS,

where the last identity follows from ϕϕϕ ∈ Ṽ.
Now applying the constitutive relation (1.3), we get T : D(ϕϕϕ) = (−pI + 2µ∗D(v)) :
D(ϕϕϕ) = −p divϕϕϕ + 2µ∗D(v) : D(ϕϕϕ) = 2µ∗D(v) : D(ϕϕϕ), due to divϕϕϕ = 0. Using
outflow condition (1.6) on Γout and Navier’s slip condition (1.8) on Γwall, we can
finally get

ρ∗

⟨︄
∂v
∂t
,ϕϕϕ

⟩︄
+ ρ∗

∫︂
Ω

(∇ v) v · ϕϕϕ dx+ 2µ∗

∫︂
Ω
D(v) · D(ϕϕϕ) dx

+ θ

γ∗(1 − θ)

∫︂
Γwall

vτ · ϕϕϕτ dS = −P (t)
∫︂

Γout
ϕϕϕ · n dS +

∫︂
Γout

ρ∗

2 (v · n)−v · ϕϕϕ dS,

(1.13)

valid for all ϕϕϕ ∈ Ṽ and a.a. t ∈ (0, T ).
The incompressibility condition, which weak formulation reads∫︂

Ω
−q div v dx = 0 ∀q ∈ L2(Ω), (1.14)

is hidden in the space Ṽ, where we look for the velocity v(t).

Requirements on vin

For the analysis, we assume the existence of an extension v∗
in of vin, i.e. we require

that there exists a continuous function v∗
in : (0, T ) × Ω → R3, Ω being the closure

of Ω, such that

div v∗
in = 0 in (0, T ) × Ω,

v∗
in = vin on Γin,

v∗
in · n = 0 on Γwall,

v∗
in = 0 on Γout,

∂v∗
in

∂t
∈ L2((0, T ) × Ω)3 and ∇v∗

in ∈ L∞((0, T ) × Ω)3×3.

(1.15)

Definition 1 (Weak solution). Let Ω ∈ C0,1, v0 ∈ L2
0,div(Ω) and vin fulfils (1.15).

We say that v is a weak solution to (1.1)-(1.8) provided that

v − v∗
in ∈ L2(0, T ; Ṽ) ∩ L∞(0, T ; L2

0,div(Ω)),
∂v
∂t

∈ L
4
3 (0, T ; Ṽ⋆),

lim
t→0+

∥v(t, ·) − v0∥L2 = 0,

(1.16)
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satisfying the weak formulation (1.13) for all ϕϕϕ ∈ Ṽ and a.a. t ∈ (0, T ) and satisfy-
ing the energy inequality

ρ∗

2 ∥(v − v∗
in)(t, ·)∥2

L2(Ω) + 2µ∗

∫︂ t

0
∥D(v − v∗

in)∥2
L2(Ω) ds

+ θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

|vτ |2 dS ds+
∫︂ t

0

∫︂
Γout

|v|2

2 (v · n)+ dS ds

≤ ρ∗

2 ∥v0 − v∗
in(0)∥2

L2(Ω) + θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

vτ · (v∗
in)τ dS ds

−
∫︂ t

0

∫︂
Ω
ρ∗(v − v∗

in) ⊗ (v − v∗
in) : ∇v∗

in dx ds

+
∫︂ t

0

∫︂
Ω
ρ∗(v∗

in ⊗ v∗
in) : D(v − v∗

in) dx ds−
∫︂ t

0

∫︂
Ω
ρ∗
∂v∗

in
∂t

· (v − v∗
in) dx ds

− P (t)
∫︂ t

0

∫︂
Γin

v · n dS ds− 2µ∗

∫︂ t

0

∫︂
Ω
D(v∗

in) : D(v − v∗
in) dx ds,

(1.17)

for a.a. t ∈ (0, T ).
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2. Existence of the weak solution
of IBVP
Nowadays the results and proofs of existence of the weak solution for internal three-
dimensional unsteady Navier-Stokes equations with Dirichlet boundary condition are
provided in many textbooks for example in [35], [36] and are also available in lecture
notes [31]. The existence theory considering also Navier’s slip boundary condition
seems to be firstly analysed in [26], where more complex fluids were considered, or
see also [4]. To our knowledge, first results with general outflow conditions on artifi-
cial boundaries are established in [7]. The existence including the outflow condition
in a form (1.6), is stated in [28], but without a detailed proof.
In this thesis, we provide a detailed proof for the specific problem (1.1)-(1.6), contain-
ing non-homogeneous inflow Dirichlet boundary condition, Navier’s slip boundary
condition and outflow boundary condition in form (1.6), on different parts of the
boundary. The existential theorem is as follows.

Theorem 1. Let Ω ∈ C0,1 be a bounded domain in R3, v0 ∈ L2
0,div(Ω) and vin fulfils

(1.15) and 0 < T < ∞. Then there exists a weak solution defined in definition (1).

This whole chapter covers the proof of the theorem (1). A priori energy estimates
for velocity are established in the first section and rigorous proof of the existence of
the weak solution is provided in the second section.

2.1 A priori energy estimates
A part of the energy estimates is already in detail provided in [9]. In summary,
they formed a scalar product of (1.2) with v − v∗

in, integrated over the domain
Ω, used Gauss’s theorem, incompressibility condition (1.1), boundary conditions
(1.5)-(1.8), properties of v∗

in and finally, integrated w.r.t. time over (0, T ), used
Cauchy-Schwartz, Young and Hölder inequalities and Gronwall lemma to finally
show that

ρ∗ sup
t∈[0,T ]

∥(v − v∗
in)(t, ·)∥2

2 + µ∗

∫︂ T

0
∥D(v − v∗

in)∥2
2 dt

+ θ

γ∗(1 − θ)

∫︂ T

0

∫︂
Γwall

|vτ |2 dS dt+
∫︂ T

0

∫︂
Γout

ρ∗|v|2(v · n)+ dS dt

≤ C
(︂
T, ∥v0 − v∗

in(0, ·)∥2
2, C(v∗

in)
)︂
< ∞,

(2.1)

where the constant C(v∗
in) depends on ρ∗, µ∗,

∫︁ T
0

⃦⃦⃦
∂v∗

in
∂t

⃦⃦⃦2

2
ds,

∫︁ T
0 ∥D(v∗

in)∥2
2 ds and

supt∈(0,T ) ∥∇v∗
in∥∞ ans is finite due to the assumptions on v∗

in stated in (1.15) 1.
1For clarity, let us just show how in [9] treat the convective term multiplied by v − v∗

in:∫︂
Ω

((∇ v)v) · (v − v∗
in) dx =

∫︂
Ω

((v − v∗
in) ⊗ v) : ∇ v dx =

∫︂
Ω

((v − v∗
in) ⊗ v) : ∇(v − v∗

in) dx

+
∫︂

Ω
((v − v∗

in) ⊗ v) : ∇ v∗
in dx =

∫︂
Ω

div
(︃

|v − v∗
in|2

2 v
)︃

dx +
∫︂

Ω
((v − v∗

in) ⊗ v) : ∇ v∗
in dx.
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2.1.1 Function spaces for v − v∗
in

Specifically, (2.1) provides estimates

sup
t∈[0,T ]

∥(v − v∗
in)(t, ·)∥2

2 < ∞, (2.2)
∫︂ T

0
∥D(v − v∗

in)∥2
2 dt < ∞, (2.3)∫︂ T

0
∥vτ∥2

L2(Γwall) dt < ∞. (2.4)

Then (2.3) and (2.2) respectively gives natural spaces for v − v∗
in as

v − v∗
in ∈ L2(0, T ; Ṽ), (2.5)

v − v∗
in ∈ L∞(0, T ; L2

0,div(Ω)). (2.6)

From the continuous embedding of Sobolev spaces in Ω ∈ C0,1, see [1], W1,2(Ω) ↪→
Lq(Ω) for q ≤ 6 we get

v − v∗
in ∈ L2(0, T ; Lq(Ω)) for 1 ≤ q ≤ 6. (2.7)

We shall show that for s2 ∈ [2, 6] we also get the estimate

v − v∗
in ∈ Ls1(0, T ; Ls2(Ω)) for s2 = 6s1

3s1 − 4 . (2.8)

Proof. By standard interpolation for Lebesgue spaces (coming from Hölder inequal-
ity), for s ∈ [2, 6], requiring 1

s2
= λ

2 + 1−λ
6 , with λ ∈ [0, 1], we have

∫︂ T

0
∥v − v∗

in∥s1
s2 dt ≤

∫︂ T

0
∥v − v∗

in∥λs1
2 ∥v − v∗

in∥(1−λ)s1
6 dt

≤ sup
t∈[0,T ]

∥(v − v∗
in)(t, ·)∥λs1

2

∫︂ T

0
∥v − v∗

in∥(1−λ)s1
6 dt.

Due to (2.6), (2.7), the first term is finite and the second term is finite for (1−λ)s1 =
2, thus together giving the constraint s2 = 6s1

3s1−4 .

In the first equality is used a little different notation and in last equality is applied the following
observation:

∫︁
Ω ((v − v∗

in) ⊗ v) : ∇(v−v∗
in) dx =

∫︁
Ω vj

∂(v−v∗
in)i

∂xj
(v−v∗

in)i dx =
∫︁

Ω vj
1
2

∂|v−v∗
in|2

∂xj
dx =∫︁

Ω div( |v−v∗
in|2

2 v) dx, due to incompressibility condition (1.1). Further∫︂
Ω

div
(︃

|v − v∗
in|2

2 v
)︃

dx +
∫︂

Ω
((v − v∗

in) ⊗ v) : ∇ v∗
in dx =

∫︂
Γout

|v − v∗
in|2

2 (v · n) dS+∫︂
Ω

((v − v∗
in) ⊗ (v − v∗

in)) : ∇ v∗
in dx +

∫︂
Ω

((v − v∗
in) ⊗ v∗

in) : ∇ v∗
in dx

=
∫︂

Γout

|v − v∗
in|2

2 (v · n) dS +
∫︂

Ω
((v − v∗

in) ⊗ (v − v∗
in)) : ∇ v∗

in dx−∫︂
Ω

(v∗
in ⊗ v∗

in) : ∇(v − v∗
in) dx +

∫︂
Ω

div ((v∗
in · (v − v∗

in))v∗
in) dx,

using integration by parts in the last equality. Note that the last term vanishes due to properties of
v∗

in in (1.15). Further, term on Γout can be written as
∫︁

Γout

|v−v∗
in|2

2 (v · n) dS =
∫︁

Γout

|v|2

2 (v · n) dS

and its negative part cancels out with non-linear term of the outflow condition (1.6), which is the
essential part for establishing the energy estimates.
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Once we know (2.5), (2.6) and (2.8), we can also get (by considering v = v−v∗
in+

v∗
in, using triangle inequality and properties of v∗

in stated in (1.15)) the estimates for
v as

v ∈ L2(0, T ; Ṽn), (2.9)
v ∈ L∞(0, T ; L2

0,div(Ω)), (2.10)

v ∈ Ls1(0, T ; Ls2(Ω)) for s2 = 6s1

3s1 − 4 , s2 ∈ [2, 6]. (2.11)

With notation

Ṽn := {ϕϕϕ ∈ V; divϕϕϕ = 0, ϕϕϕ · n = 0 on Γwall} . (2.12)

Function spaces on Γout

For Ω ∈ C0,1, p ∈ [1,∞], r ∈
(︂

1
p
, 1
]︂
, there exist a continuous trace operator tr s.t.

tr : W r,p(Ω) → W r− 1
p
,p(∂Ω), (2.13)

see for example [1]. Also we have the following general embedding for p ∈ [1,∞]
and k ≥ 0

W k,p(∂Ω) ↪→ L
dp

d−pk (∂Ω) for pk < d. (2.14)

We shall show that for velocity v on Γout holds 2

v ∈ L
8
3 (0, T ; L

8
3 (Γout)). (2.15)

Proof. Denoting s := dp
d−pk ≥ 1 and substituting d = 2 for surface ∂Ω and p = 2, we

get k = s−2
s
< 1. Hence for us, for s ≥ 2

W
s−2

s
,2(∂Ω) ↪→ Ls(∂Ω). (2.16)

Together we get the estimate for velocity on Γout (for p = 2)∫︂ T

0
∥tr v∥sLs(Γout) dt ≤

∫︂ T

0
∥tr v∥sLs(∂Ω) dt ≤ C

∫︂ T

0
∥tr v∥s

W
s−2

s ,2(∂Ω)
dt

≤ C̃
∫︂ T

0
∥v∥s

W
3s−4

2s ,2(Ω)
dt, (2.17)

where we use (2.16) in the second inequality. Last inequality is due to boundedness
of the trace operator (2.13) for r = 3s−4

2s , giving constrain s ∈ (2, 4]. Here C̃ is the
embedding constant times constant from boundedness of the trace operator.
The last term in (2.17) can be handled due to following interpolation, see [13], for
l ≤ k as

∥v∥W l,2(Ω) ≤ ∥v∥l/kW 1,2(Ω)∥v∥1−l/k
L2(Ω). (2.18)

In our case l = 3s−4
2s . Thus using inequality above for s ∈ (2, 4] in (2.17) yields to∫︂ T

0
∥tr v∥sLs(Γout) dt ≤ C̃

∫︂ T

0
∥v∥s

W
3s−4

2s ,2(Ω)
dt ≤ C̃

∫︂ T

0
∥v∥

4−s
2

L2(Ω)∥v∥
3s−4

2
W1,2(Ω)

≤ C̃ sup
t∈[0,T ]

∥v(t, ·)∥
4−s

2
L2(Ω)

∫︂ T

0
∥v∥

3s−4
2

W1,2(Ω) < ∞,

due to (2.9) and (2.10) for 3s−4
2 = 2, i.e. s = 8

3 .
2Note that from (1.15), v∗

in = 0 on Γout.
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2.1.2 Function space for ∂v
∂t

We shall show that holds
∂v
∂t

∈ L
4
3
(︂
0, T ; (Ṽ)⋆

)︂
. (2.19)

Proof. Firstly, the convective term ρ∗
∫︁

Ω(∇v)v·ϕϕϕ dx can be treated as (using Gauss’s
theorem and boundary condition (1.7) for v)

ρ∗

∫︂
Ω
(∇v)v · ϕϕϕ dx = −ρ∗

∫︂
Ω
(v ⊗ v) : ∇ϕϕϕ dx+ ρ∗

∫︂
Γout

(v · ϕϕϕ) (v · n) dS,

(2.20)

for ϕϕϕ ∈ Ṽ. We want to estimate

∥∂tv∥
L

4
3 (0,T ;(Ṽ)⋆) = ∥∂tv∥[L4(0,T ;Ṽ)]⋆

:= sup
∥φφφ∥L4(0,T ;Ṽ)=1

∫︂ T

0

⟨︄
∂v
∂t
,φφφ

⟩︄
dt.

Substituting for the weak formulation (1.13) and using notation (2.20) for the con-
vective term, we get

∥∂tv∥
L

4
3 (0,T ;(Ṽ)⋆) = sup

∥φφφ∥L4(0,T ;Ṽ)=1

∫︂ T

0

⟨︄
∂v
∂t
,φφφ

⟩︄
dt

= sup
∥φφφ∥L4(0,T ;Ṽ)=1

1
ρ∗

⎡⎣ρ∗

∫︂ T

0

∫︂
Ω

(v ⊗ v) : ∇φφφ dx dt− ρ∗

∫︂ T

0

∫︂
Γout

(v ·φφφ) (v · n) dS dt

− 2µ∗

∫︂ T

0

∫︂
Ω
D(v) · D(φφφ) dx dt− θ

γ∗(1 − θ)

∫︂ T

0

∫︂
Γwall

vτ ·φφφτ dS dt

− P (t)
∫︂ T

0

∫︂
Γout

φφφ · n dS dt+ ρ∗

∫︂ T

0

∫︂
Γout

1
2(v · n)−v ·φφφ dS dt

⎤⎦.
This can be by Hölder inequality estimated as follows

∥∂tv∥[L4(0,T ;Ṽ)]⋆ ≤ sup
∥φφφ∥L4(0,T ;Ṽ)=1

1
ρ∗

⎡⎣ρ∗

∫︂ T

0

∫︂
Ω

|v|2|∇φφφ| dx dt

+ ρ∗
3
2

∫︂ T

0

∫︂
Γout

|v|2|φφφ| dS dt+ 2µ∗∥D(v)∥L2(0,T ;L2(Ω))∥D(φφφ)∥L2(0,T ;L2(Ω))

+ θ

γ∗(1 − θ)∥vτ∥L2(0,T ;L2(Γout))∥φφφ∥L2(0,T ;L2(Γout)) + |P (t)|∥φφφ∥L1(0,T ;L1(Ω))

⎤⎦.
(2.21)

Now let us focus on the first two terms on right hand side of the inequality, which
are most problematic.

Estimation of
∫︁ T

0
∫︁

Ω |v|2|∇φφφ| dx dt. By Hölder inequality in space for p = 2,
p′ = 2 and then Hölder inequality in time for p = q

2 , p′ = q
q−2 , we get

∫︂ T

0

∫︂
Ω

|v|2|∇φφφ| dx dt ≤
∫︂ T

0
∥v∥2

4∥∇φφφ∥2 dt ≤
(︄∫︂ T

0
∥v∥q4 dt

)︄ 2
q
(︄∫︂ T

0
∥∇φφφ∥

q
q−2
2 dt

)︄ q−2
q

.
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Due to (2.11) for s2 = 4, use s1 = q = 8
3 , leading to

∫︂ T

0

∫︂
Ω

|v|2|∇φφφ| dx dt ≤ ∥v∥2
L

8
3 (0,T ;L4(Ω))

∥∇φφφ∥L4(0,T ;L2(Ω))

≤ ∥v∥2
L

8
3 (0,T ;L4(Ω))

∥φφφ∥L4(0,T ;Ṽ).
(2.22)

Estimation of
∫︁ T

0
∫︁

Γout |v|2|φφφ| dS dt. Using Hölder inequality for p = 4
3 , p′ = 4

leads to ∫︂ T

0

∫︂
Γout

|v|2 |φφφ| dS dt ≤ ∥v∥2
L

8
3
(︂

0,T ;L
8
3 (Γout)

)︂∥φφφ∥L4(0,T ;L4(Γout))

≤ ∥v∥2
L

8
3
(︂

0,T ;L
8
3 (Γout)

)︂∥φφφ∥L4(0,T ;Ṽ).
(2.23)

The second inequality is possible due to (2.16) for s = 4 together with (2.13).
All together, (2.21) with results (2.22) and (2.23) (estimation of the other terms are
trivial with help of the Sobolev embeddings, trace theorem and Korn inequality)
reads

∥∂tv∥[L4(0,T ;Ṽ)]⋆ ≤ sup
∥φφφ∥L4(0,T ;Ṽ)=1

1
ρ∗

∥φφφ∥L4(0,T ;Ṽ) ·

⎡⎣ρ∗∥v∥2
L

8
3 (0,T ;L4(Ω))

+ ρ∗
3
2∥v∥2

L
8
3
(︂

0,T ;L
8
3 (Γout)

)︂ + 2µ∗∥D(v)∥L2(0,T ;L2(Ω))

+ θ

γ∗(1 − θ)∥vτ∥L2(0,T ;L2(Γwall)) + |P (t)|
⎤⎦.

Terms in bracket are finite due to (2.11), (2.15), (2.9) and (2.4).

2.2 Existence of the weak solution
Proof of the existence follows by standard procedure. First, we define the approxi-
mate solution using the Galerkin method. Then, we show the existence of this ap-
proximate solution, establish uniform estimates, and obtain the existence of a weak
solution by taking the limit in the weak formulation of the approximate solution.
Additionally, we show the energy inequality and verify that the initial condition is
satisfied. In [31] the proof of the existence of weak solution following this proce-
dure is provided in detail, however only for the evolutionary Navier-Stokes equations
with purely homogeneous boundary conditions on ∂Ω. We will partially follow this
reference, as many of the manipulations are similar or even coincides.
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2.2.1 Galerkin aprroximation
Let us have the problem

− divT = −µ∗∆w + ∇ p = λ̃w in Ω
div w = 0 in Ω

w = 0 on Γin

w · n = 0 on Γwall

(Tn)τ = 0 on Γwall

Tn = 0 on Γout,

where T is define as (1.3). Thus we want to find eigenvalues λ ∈ R, s.t. λ = λ̃
µ∗

,
and corresponding eigenfunctions w ∈ Ṽ, definition of Ṽ in (1.11), such that they
satisfy the spectral problem

((w,φφφ)) = λ(w,φφφ) ∀ φφφ ∈ Ṽ, (2.24)

where ((w,φφφ)) := (∇ w,∇φφφ) =
∫︁

Ω ∇ w : ∇φφφ dx. In a similar manner as in [27] we
get the existence of eigenvalues {λi}∞

i=1 and corresponding eigenfunctions {wi}∞
i=1,

satisfying (2.24). It holds that (wi,wj) = δij,
(︃(︃

wi√
λi
, wj√

λj

)︃)︃
= δij and {wi}∞

i=1 form

basis in Ṽ. Moreover there exist P n : Ṽ → HN := span {w1, ..,wN}, defined as

P nφφφ :=
n∑︂
i=1

(︃∫︂
Ω
φφφwi dx

)︃
wi, (2.25)

for φφφ ∈ Ṽ, satisfying

∥P nφφφ∥L2 ≤ ∥φφφ∥L2 , (2.26)
∥P nφφφ∥Ṽ ≤ ∥φφφ∥Ṽ. (2.27)

We define the n-th Galerkin approximation of vn as

vn(t, x) =
n∑︂
i=1

ani (t)wi(x) + v∗
in(t, x) (2.28)

with

vn(0, x) =
n∑︂
i=1

ani (0)wi(x) + v∗
in(0, x) =

n∑︂
i=1

(︃∫︂
Ω

v0wi dx
)︃

wi(x) + v∗
in(0, x) (2.29)

satisfying

ρ∗

∫︂
Ω

∂vn

∂t
wj dx+ ρ∗

∫︂
Ω
(∇vn)vn · wj dx+ 2µ∗

∫︂
Ω
D(vn) : D(wj) dx

+ θ

γ∗(1 − θ)

∫︂
Γwall

(vn)τ · (wj)τ dS = −P (t)
∫︂

Γout
wj · n dS

+ ρ∗

2

∫︂
Γout

(vn · n)−vn · wj dS

∀ j ∈ 1, .., n and a.a. t ∈ (0, T ).

(2.30)
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Here we can represent the duality by integral
(︂⟨︂

∂vn

∂t
,wj

⟩︂
=
∫︁

Ω
∂vn

∂t
wj dx

)︂
since vn −

v∗
in is a linear combination of functions from Ṽ. By standard procedure, we sub-

stitute (2.28) to (2.30) and use the orthonormality of the basis in L2(Ω)) and or-
thogonality in Ṽ to get the system of ordinary differential equations for unknowns
an = (an1 , .., ann) of type

∂an

∂t
= f(an) (2.31)

an(0) =
(︃∫︂

Ω
v0w1 dx, ..,

∫︂
Ω

v0wn dx
)︃
. (2.32)

Since f(an) is continuous, Carathéodory theory can be used and we get the local
existence of an ∈ AC [0, T ∗) solving the system for ∀n ∈ N and a.a. t ∈ (0, T ∗). Due
to the following uniform estimates we will see that T ∗ = T , hence we get the global
existence.

2.2.2 Uniform estimates
Uniform estimates for vn − v∗

in.

We multiply (2.30) by anj (t) and do the sum ∑︁n
j=1 (it can be seen as testing by

function vn − v∗
in). The procedure is then the same as in a priori estimates and we

again refer to [9] (treatment of the most problematic convective term is for clarity
explained in footnote in section 2.1). Eventually we get the energy equality for the
Galerkin approximation as
ρ∗

2 ∥(vn − v∗
in)(t, ·)∥2

L2(Ω) + 2µ∗

∫︂ t

0
∥D(vn − v∗

in)∥2
L2(Ω) ds

+ θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

|vnτ |2 dS ds+
∫︂ t

0

∫︂
Γout

ρ∗
|vn|2

2 (vn · n)+ dS ds

= ρ∗

2 ∥(vn − v∗
in)(0, ·)∥2

L2(Ω) + θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

vnτ · (v∗
in)τ dS ds

−
∫︂ t

0

∫︂
Ω
ρ∗(vn − v∗

in) ⊗ (vn − v∗
in) : ∇v∗

in dx ds

+
∫︂ t

0

∫︂
Ω
ρ∗(v∗

in ⊗ v∗
in) : D(vn − v∗

in) dx ds−
∫︂ t

0

∫︂
Ω
ρ∗
∂v∗

in
∂t

· (vn − v∗
in) dx ds

− P (t)
∫︂ t

0

∫︂
Γin

vn · n dS ds− 2µ∗

∫︂ t

0

∫︂
Ω
D(v∗

in) : D(vn − v∗
in) dx. ds

(2.33)

By standard procedure, using Cauchy-Schwartz, Young, Hölder inequalities and
Gronwall lemma we get (also provided n [9])

ρ∗ sup
t∈[0,T ]

∥(vn − v∗
in)(t, ·)∥2

2 + µ∗

∫︂ T

0
∥D(vn − v∗

in)∥2
2 dt

+ θ

γ∗(1 − θ)

∫︂ T

0

∫︂
Γwall

|vnτ |2 dS dt+
∫︂ T

0

∫︂
Γout

ρ∗|vn|2(vn · n)+ dS dt

≤ C
(︂
T, ∥vn0 − v∗

in(0, ·)∥2
2, C̃(v∗

in)
)︂
< ∞.

(2.34)

Boundedness of the first term gives

sup
t∈[0,T ]

|an(t)|2 ≤ C,
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implying the global existence of an(t), hence also vn on (0, T ). From (2.1) we can
also get the n-independent estimates for sequence vn (by triangle inequality from
vn = vn − v∗

in + v∗
in) as

∥vn∥L∞(0,T ;L2(Ω)) ≤ ∥vn−v∗
in∥L∞(0,T ;L2(Ω)) +∥v∗

in∥L∞(0,T ;L2(Ω)) ≤ C(T,v∗
in,v0) (2.35)

∥vn∥L2(0,T ;Ṽn) ≤ ∥vn − v∗
in∥L2(0,T ;Ṽ) + ∥v∗

in∥L2(0,T ;Ṽn) ≤ C(T,v∗
in,v0) (2.36)

and
∥vnτ ∥L2(0,T ;L2(Γwall)) ≤ C(T,v∗

in,v0). (2.37)
In same way as in a priori estimates (2.11), (2.15), it can be also shown that

∥vn∥Ls1 (0,T ;Ls2 (Ω) ≤ C for s2 = 6s1

3s1 − 4 , s2 ∈ [2, 6], (2.38)

∥vn∥
L

8
3 (0,T ;L

8
3 (Γout))

≤ C, (2.39)

for constant C independent of n.

Uniform estimate for ∂vn

∂t
.

We want to estimate

∥∂tvn∥
L

4
3 (0,T ;(Ṽ)⋆) := sup

∥φφφ∥L4(0,T ;Ṽ)=1

∫︂ T

0

∫︂
Ω

∂vn

∂t
φφφ dx dt.

We separate the test function φφφ as φφφ = P nφφφ + φφφ̃. Here P nφφφ, defined in (2.25),
is the orthogonal projection onto {wi}ni=1. Term φφφ̃ denotes the rest, orthogonal to
{wi}ni=1. Therefore

∥∂tvn∥
L

4
3 (0,T ;(Ṽ)⋆) = sup

∥φφφ∥L4(0,T ;Ṽ)=1

∫︂ T

0

∫︂
Ω

∂vn

∂t
P nφφφ dx dt

and we can substitute the weak formulation (2.30) and proceed as in a priori esti-
mates in section 2.1.2, using the property (2.27). Finally we get the n-independent
estimates for sequence ∂tvn as

∥∂tvn∥
L

4
3 (0,T ;(Ṽ)⋆) ≤ C(T,v∗

in,v0). (2.40)

Limit passage

Consequently from the uniform estimates (2.36), (2.35), (2.37), (2.40), there exist
a weakly converging subsequences (for simplicity of notation not relabelled), such
that

vn ⇀ v in L2(0, T ; Ṽn), (2.41)
vn ⇀∗ v in L∞(0, T ; L2

0,div(Ω)), (2.42)
vnτ ⇀ vτ in L2(0, T ; L2(Γwall)), (2.43)
∂tvn ⇀ ∂tv in L

4
3
(︂
0, T ; (Ṽ)⋆

)︂
. (2.44)
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To pass to the limit, we multiply the weak formulation for vn (2.30) by ψ ∈ C∞(0, T )
and integrate over the time interval (0, T ) and get

ρ∗

∫︂ T

0

∫︂
Ω

∂vn

∂t
· ψwj dx dt− ρ∗

∫︂ T

0

∫︂
Ω

(vn ⊗ vn) : ∇wjψ dx dt

+
∫︂ T

0

∫︂
Γout

(vn · n) (vn · wj)ψ dS dt+ 2µ∗

∫︂ T

0

∫︂
Ω
D(vn) : D(wj)ψ dx dt

+ θ

γ∗(1 − θ)

∫︂ T

0

∫︂
Γwall

(vn)τ · (wj)τψ dS dt = −P (t)
∫︂ T

0

∫︂
Γout

ψwj · n dS dt

+ ρ∗

2

∫︂ T

0

∫︂
Γout

(vn · n)−(vn · wj)ψ dS dt

∀ j ∈ 1, .., n,

(2.45)

where we additionally used formula (2.20). For all the linear terms in (2.45) is
enough to use definition of weak convergence from obtained results (2.41), (2.43),
(2.44) and pass the limit n → ∞. However the non-linear convective term and
non-linear term on Γout must be treated applying Aubin-Lions lemma, stated for
example in [35].

Convective term on Ω. If holds (2.36), (2.40) and Ṽn ↪→↪→ L2
0,div(Ω) ↪→ (Ṽ)⋆

are Banach and reflexive spaces, then from Aubin-Lions lemma yields

vn → v in L2(0, T ; L2(Ω)). (2.46)

Having (2.38) for s1 = s2 = 10
3 and (2.46), the interpolation inequality for r ∈

(︂
2, 10

3

)︂
gives

||vn − v||Lr(Q) ≤ ||vn − v||λL2(Q)||vn − v||1−λ
L

10
3 (Q)

≤ C||vn − v||λL2(Q)
n→∞−−−→ 0,

where we use notation Q = (0, T ) × Ω3. Hence for λ ∈ (0, 1) we eventually obtain

vn → v in Lr(0, T ; Lr(Ω)), r ∈
[︃
1, 10

3

)︃
, (2.47)

where the relation for r ∈ [1, 2] it is trivial due to (2.46). Now let us focus on the
part of the convective term on Ω in (2.45). We have⃓⃓⃓⃓
⃓
∫︂ T

0

∫︂
Ω

[(vn ⊗ vn) : ∇wjψ − (v ⊗ v) : ∇wjψ] dx dt
⃓⃓⃓⃓
⃓

≤
∫︂ T

0

∫︂
Ω

⃓⃓⃓⃓
⃓∂(wj)i
∂xk

⃓⃓⃓⃓
⃓ |ψ| |(vni − vi)vnk − (vk − vnk )vi| dx dt

≤ sup
t∈[0,T ]

|ψ|
(︃ ∫︂ T

0

∫︂
Ω

⃓⃓⃓⃓
⃓∂(wj)i
∂xk

⃓⃓⃓⃓
⃓ |(vni − vi)| |vnk | dx dt

+
∫︂ T

0

∫︂
Ω

⃓⃓⃓⃓
⃓∂(wj)i
∂xk

⃓⃓⃓⃓
⃓ |(vk − vnk )| |vi| dx dt

)︃

≤ sup
t∈[0,T ]

|ψ|
(︃ ∫︂ T

0
||∇wj||L2(Ω)||vn − v||L3(Ω)||vn||L6(Ω) dt

+
∫︂ T

0
||∇wj||L2(Ω)||vn − v||L3(Ω)||v||L6(Ω) dt

)︃
≤ sup

t∈[0,T ]
|ψ|||∇wj||L2(Ω)||vn − v||L2(0,T ;L3(Ω))

(︂
||vn||L2(0,T ;L6(Ω)) + ||v||L2(0,T ;L6(Ω))

)︂
,
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the Hölder inequality for exponents p = 2, q = 3 and r = 6 is used. Due to the
strong convergence of vn in L2(0, T ; L3(Ω)) from (2.47) and boundedness of v and
vn in L2(0, T ; L6(Ω)) coming from (2.9) and (2.36), the right hand side goes to zero
as n → ∞.

Non-linear terms on Γout. Now it remains the treat the non-linear terms on
Γout in (2.45). We investigate the convergence of∫︂ T

0

∫︂
Γout

(vn · n)(vn · wj)ψ dS dt,

as it is stronger requirement than with the negative part. Hence⃓⃓⃓⃓
⃓
∫︂ T

0

∫︂
Γout

[(vn · n)(vn · wj)ψ − (v · n)(v · wj)ψ] dS dt
⃓⃓⃓⃓
⃓

≤
∫︂ T

0

∫︂
Γout

|vni ni vnk (wj)kψ − vini vk(wj)kψ| dS dt

≤ sup
t∈[0,T ]

|ψ|
∫︂ T

0

∫︂
Γout

|(wj)k||(vni − vi)vnk − (vk − vnk )vi| dS dt

≤ sup
t∈[0,T ]

|ψ|
(︃ ∫︂ T

0

∫︂
Γout

|(wj)k||(vni − vi)||vnk | dS dt

+
∫︂ T

0

∫︂
Γout

|(wj)k||(vk − vnk )||vi| dS dt
)︃

≤ sup
t∈[0,T ]

|ψ|
(︄∫︂ T

0
||wj||L4(Γout)||vn − v||L2(Γout)||vn||L4(Γout) dt

)︄

+ sup
t∈[0,T ]

|ψ|
(︄∫︂ T

0
||wj||L4(Γout)||vn − v||L2(Γout)||v||L4(Γout) dt

)︄
≤ sup

t∈[0,T ]
|ψ|||wj||L4(Γout)||vn − v||L2(0,T,L2(Γout))

·
(︂
||vn||L2(0,T,L4(Γout)) + ||v||L2(0,T,L4(Γout))

)︂
≤ C||vn − v||L2(0,T,L2(Γout)) ≤ C||vn − v||L2(0,T,L2+ϵ(Γout)),

for some small positive ϵ. In derivation we used Hölder inequality for p = 2,
q = 4, r = 4 in the fourth inequality and (2.13), (2.16), setting s = 4 to get
∥v∥L2(0,T ;L4(Γout)) ≤ C∥v∥

L2(0,T ;W
1
2 ,2(Γout))

≤ C∥v∥L2(0,T ;W1,2
div, n(Ω)) ≤ C and the same

for vn with C independent of n.
Now by the embedding (2.16), we get

W
s−2

s
,2(∂Ω) ↪→ Ls(∂Ω)

for s = 2 + ϵ, hence s−2
s

= ϵ̃ also small positive. By the continuous trace operator
(2.13) defined for r ∈

(︂
1
2 , 1

]︂
tr : W r,2(Ω) → W r− 1

2 ,2(∂Ω),

we set r − 1
2 = ϵ̃, hence r = 1

2 + ϵ̃. Therefore

||vn − v||L2(0,T,L2(Γout)) ≤ C||vn − v||L2(0,T,L2+ϵ(Γout)) ≤ C||vn − v||L2(0,T,Wϵ̃,2(Γout))

C ≤ ||vn − v||
L2(0,T,W

1
2 +ϵ̃,2
div, bc(Ω))

= C||(vn − v∗
in) − (v − v∗

in)||
L2(0,T,W

1
2 +ϵ̃,2
div, bc(Ω))

. (2.48)
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The strong convergence of vn − v∗
in in space L2(0, T,W

1
2 +ϵ̃,2
div,bc(Ω)3) is provided by

Aubin-Lions lemma. Let us have W1,2
div,bc(Ω)3 ↪→↪→ W1−ϵ,2

div, bc(Ω)3 ↪→ (W1,2
div,bc(Ω)3)⋆

Banach, reflexive spaces and results (2.36), (2.40). Then

vn − v∗
in → v − v∗

in in L2(0, T ; W1−ϵ,2
div,bc(Ω)3).

Therefore with continuous embedding W1−ϵ,2
div,bc(Ω)3 ↪→ W

1
2 +ϵ̃,2
div,bc(Ω)3 for small positive

ϵ and ϵ̃, s.t. 1 − ϵ > ϵ̃, we can also get

vn − v∗
in → v − v∗

in in L2(0, T ; W
1
2 +ϵ̃,2
div,bc(Ω)3). (2.49)

Hence from results (2.48) and (2.49) we can finally write

vn → v in L2(0, T ; L2(Γout)) (2.50)

and ⃓⃓⃓⃓
⃓
∫︂ T

0

∫︂
Γout

[(vn · n)(vn · wj)ψ − (v · n)(v · wj)ψ] dS dt
⃓⃓⃓⃓
⃓ n→∞−−−→ 0

and consequently

ρ∗

∫︂ T

0

⟨︄
∂v
∂t
,wj

⟩︄
ψ dt+ ρ∗

∫︂ T

0

∫︂
Ω

(∇v)v · ψwj dx dt

+ 2µ∗

∫︂ T

0

∫︂
Ω
D(v) : D(wj)ψ dx dt+ θ

γ∗(1 − θ)

∫︂ T

0

∫︂
Γwall

(v)τ · (wj)τψ dS dt

= −P (t)
∫︂ T

0

∫︂
Γout

ψwj · n dS dt+ ρ∗

2

∫︂ T

0

∫︂
Γout

(v · n)−v · wjψ dS dt

∀ j ∈ N.

This holds for all wj, j = 1, ..,∞, whose linear combination are dense in
Ṽ, therefore we can test by arbitrary φφφ ∈ Ṽ. Additionally the equation holds for
all ψ ∈ C∞(0, T ) and the whole integrand is in L1(0, T ) a.e. All mentioned aspects
imply existence of the velocity v belonging in spaces (1.16) and satisfying the weak
formulation (1.13).

Energy inequality

We show that v satisfies the energy inequality. We start from Galerkin approxima-
tion for which we already have the energy equality in (2.33). We again integrate
over [0, T ] and multiply by ψ ∈ C∞(0, T ), such that ψ ≥ 0 on [0, T ], to be able to
pass to the limit.
Now we discuss the limiting procedure for all terms in (2.33).∫︂ T

0

ρ∗

2 ∥(vn − v∗
in)(t, ·)∥2

L2(Ω)ψ dt n→∞−−−→
∫︂ T

0

ρ∗

2 ∥(v − v∗
in)(t, ·)∥2

L2(Ω)ψ dt

as vn → v in L2(0, T ; L2
0,div(Ω)). Limit

∫︂ T

0

∫︂ t

0

∫︂
Γwall

vnτ · (v∗
in)τ dSψ ds dt n→∞−−−→

∫︂ T

0

∫︂ t

0

∫︂
Γwall

vτ · (v∗
in)τ dSψ ds dt
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as v∗
in ∈ C((0, T ) × Ω) and vnτ ⇀ vτ in L2(0, T ; L2(Γwall)). Limit∫︂ T

0

∫︂ t

0

∫︂
Γwall

|vnτ |2 dSψ ds dt n→∞−−−→
∫︂ T

0

∫︂
Γwall

|vτ |2 dSψ dt

as vnτ → vτ in L2(0, T ;L2(Γwall)2) (it is shown in (2.50) just for Γout, but it holds
for whole ∂Ω, hence even for Γwall). Limit∫︂ T

0

ρ∗

2 ∥(vn − v∗
in)(0, ·)∥2

L2(Ω)ψ dt n→∞−−−→
∫︂ T

0

ρ∗

2 ∥v0 − v∗
in(0)∥2

L2(Ω)ψ dt

due to (2.29) and completeness of the orthogonal system {wi}∞
i=1 in L2

0,div(Ω). Limit
∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗(vn − v∗

in) ⊗ (vn − v∗
in) : ∇v∗

inψ dx ds dt

n→∞−−−→
∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗(v − v∗

in) ⊗ (v − v∗
in) : ∇v∗

inψ dx ds dt

follows from the limit procedure in section 2.2.2 and fact that ∇v∗
in ∈ L∞((0, T ) ×

Ω)3×3. Limits ∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗(v∗

in ⊗ v∗
in) : D(vn − v∗

in)ψ dx ds dt

n→∞−−−→
∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗(v∗

in ⊗ v∗
in) : D(v − v∗

in)ψ dx ds dt,∫︂ T

0

∫︂ t

0

∫︂
Ω

2µ∗D(v∗
in) : D(vn − v∗

in)ψ dx ds dt

n→∞−−−→
∫︂ T

0

∫︂ t

0

∫︂
Ω

2µ∗D(v∗
in) : D(v − v∗

in)ψ dx ds dt,∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗
∂v∗

in
∂t

· (vn − v∗
in)ψ dx ds dt

n→∞−−−→
∫︂ T

0

∫︂ t

0

∫︂
Ω
ρ∗
∂v∗

in
∂t

· (v − v∗
in)ψ dx ds dt,

due to properties of v∗
in stated in (1.15) and due to vn−v∗

in ⇀ v−v∗
in in L2(0, T ; Ṽ)

from (2.36). Limit

P (t)
∫︂ T

0

∫︂ t

0

∫︂
Γout

vn · nψ dS ds dt n→∞−−−→ P (t)
∫︂ T

0

∫︂ t

0

∫︂
Γout

v · nψ dS ds dt

due to (2.50). Applying twice the Fatou lemma for non-negative sequences, which
converges pointwise and due to n-independent estimates coming from (2.34) we can
write for selected subsequences simultaneously limits for two terms in (2.30) as

lim inf
n→∞

∫︂ T

0

(︄∫︂ t

0
2µ∗∥D(vn − v∗

in)∥2
L2(Ω) ds+

∫︂ t

0

∫︂
Γout

|vn|2

2 (vn · n)+ dS ds
)︄
ψ dt

≥
∫︂ T

0
lim inf
n→∞

(︄∫︂ t

0
2µ∗∥D(vn − v∗

in)∥2
L2(Ω) ds+

∫︂ t

0

∫︂
Γout

|vn|2

2 (vn · n)+ dS ds
)︄
ψ dt

≥
∫︂ T

0

(︄∫︂ t

0
2µ∗∥D(v − v∗

in)∥2
L2(Ω) ds+

∫︂ t

0

∫︂
Γout

|v|2

2 (v · n)+ dS ds
)︄
ψ dt,
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Due to limits of these terms we get energy inequality instead of equality as in (2.33).
Altogether, choosing ψ as a mollifier ωϵ in time and passing ϵ → 0 we finally obtain

ρ∗

2 ∥(v − v∗
in)(t, ·)∥2

L2(Ω) + 2µ∗

∫︂ t

0
∥D(v − v∗

in)∥2
L2(Ω) ds

+ θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

|vτ |2 dS ds+
∫︂ t

0

∫︂
Γout

|v|2

2 (v · n)+ dS ds

≤ ρ∗

2 ∥v0 − v∗
in(0)∥2

L2(Ω) + θ

γ∗(1 − θ)

∫︂ t

0

∫︂
Γwall

vτ · (v∗
in)τ dS ds

−
∫︂ t

0

∫︂
Ω
ρ∗(v − v∗

in) ⊗ (v − v∗
in) : ∇v∗

in dx ds

+
∫︂ t

0

∫︂
Ω
ρ∗(v∗

in ⊗ v∗
in) : D(v − v∗

in) dx ds−
∫︂ t

0

∫︂
Ω
ρ∗
∂v∗

in
∂t

· (v − v∗
in) dx ds

− P (t)
∫︂ t

0

∫︂
Γin

v · n dS ds− 2µ∗

∫︂ t

0

∫︂
Ω
D(v∗

in) : D(v − v∗
in) dx ds,

for a.a. t ∈ (0, T ), giving the energy inequality for weak solution v.

Initial condition

We use following lemma, see lecture notes [31].
Lemma 2. Let X,Y be Banach spaces, X reflexive space and X ↪→ Y densely. Let
ϕ ∈ L∞(0, T ;X) ∩ C([0, T ];Yweak). Then ϕ ∈ C([0, T ];Xweak).

Where ϕ ∈ C([0, T ];Xweak) has the meaning

⟨F, ϕ(t)⟩X∗,X
t→t0−−−→ ⟨F, ϕ(t0)⟩X∗,X for all F ∈ X∗. (2.51)

For us let X = L2
0,div(Ω), Y = Ṽ∗. We know that

v − v∗
in ∈ L∞

(︂
0, T ; L2

0,div(Ω)
)︂

and even v − v∗
in ∈ C

(︂
[0, T ]; Ṽ∗)︂, since v, ∂v

∂t
∈

L2
(︂
0, T ; Ṽ∗)︂. Therefore v ∈ C

(︂
[0, T ]; (L2

0,div(Ω))weak
)︂

and also (see [31])

v ∈ C
(︂
[0, T ]; (L2(Ω))weak

)︂
. (2.52)

Now take weak formulation for Galerkin approximation (2.30), integrate over [0, T ]
and multiply by ψ ∈ C∞(0, T ), such that ψ(T ) = 0. We integrate by parts the term
with time derivative, i.e.∫︂ T

0

∫︂
Ω

∂vn

∂t
· wjψ dx dt = −

∫︂ T

0

∫︂
Ω

vn · wj
∂ψ

∂t
dx dt−

∫︂
Ω

vn(0) · wjψ(0) dx

Passing to the limit as we already showed in section 2.2.2, we get for φφφ ∈ Ṽ∫︂ T

0

∫︂
Ω

∂vn

∂t
· wjψ dx dt n→∞−−−→ −

∫︂ T

0

∫︂
Ω

v ·φφφ∂ψ
∂t

dx dt−
∫︂

Ω
v0 ·φφφψ(0) dx (2.53)

due to (2.29). On the other hand, taking the weak formulation (1.13) for v, again
integrate over [0, T ] and multiply by ψ ∈ C∞(0, T ), such that ψ(T ) = 0, we get
using integration by parts on the term with time derivative∫︂ T

0

⟨︄
∂v
∂t
,φφφ

⟩︄
ψ dt =

∫︂ T

0

d

dt
⟨v,φφφ⟩ψ dt =

∫︂ T

0

d

dt

(︃∫︂
Ω

v ·φφφ dx
)︃
ψ dt =

−
∫︂ T

0

(︃∫︂
Ω

v ·φφφ dx
)︃
dψ

dt
dt−

∫︂
Ω

v(0) ·φφφψ(0) dx,
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due to weak continuity in time (2.52). Together comparing with (2.53) we get for
arbitrary ψ(0) ∫︂

Ω
v(0) ·φφφ dx =

∫︂
Ω

v0 ·φφφ dx. (2.54)

Moreover,
lim inf
t→0+

∫︂
Ω

|v(t)|2 dx ≥
∫︂

Ω
|v0|2 dx (2.55)

from weak convergence v(t) ⇀ v0 as t → 0+ in L2(Ω) obtained through (2.52) and
(2.54). Also from energy inequality (1.17) follows

lim sup
t→0+

∫︂
Ω

|v(t)|2 dx ≤
∫︂

Ω
|v0|2 dx,

hence together we get convergence of norms: limt→0+ ∥v(t)∥L2(Ω) = ∥v0∥L2(Ω).
Therefore finally

lim
t→0+

∥v(t) − v0∥2
L2(Ω) = lim

t→0+
∥v(t)∥2

L2(Ω) − lim
t→0+

2(v(t),v0) + lim
t→0+

∥v0∥2
L2(Ω) = 0.

Which ends the proof of the theorem (1).
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3. Numerical computations
So far we described physical problem of the flow in the aortic root by a mathematical
model consisting of partial differential equations given in (1.1)-(1.3) with initial and
boundary conditions (1.4)-(1.8). Generally we can not obtain the analytical solution
to these equations. Therefore we must compute them numerically and obtain an
approximate solution. This chapter presents how is the weak formulation (1.13)
treated for numerical implementation and how it is discretised in time and space.
We are using the finite element method for space discretisation. We also describe
in detail chosen finite elements for our computations, which are the Taylor-Hood
finite element and the divergence-free Raviart-Thomas and Brezzi-Douglas-Marini
finite elements and we discuss their properties. Another section covers the analytical
description of the domain of the aortic root to get the final computational mesh.
Lastly, we deal with the construction of better than piecewise linear approximation
of the boundary of the computational mesh.

3.0.1 Software tools
A significant part of this thesis involved the development of scripts for numerical
computation of the flow in the aortic root, with all the modifications such as im-
plementing the H(div,Ω)-conforming finite element formulation (section 3.2.3), pre-
scribing the geometry with three sinuses (section 3.3) and using higher polynomial
approximation of the boundary (section 3.4). All numerical simulations and graphs
presented in this thesis were generated using these scripts, which are available on
Gitlab https://gitlab.karlin.mff.cuni.cz/kosarkova/diplomka. The scripts are writ-
ten in Python programming language with use of the Firedrake library [21], an
automated system for solving partial differential equations using the finite element
method and the PETSc library [14], which handles the numerical algebra procedures
behind and the parallel computation. Software Gmsh [19] was used for generating
all meshes. The codes were running on the computational cluster Sněhurka.

3.1 Nitsche’s method
For the numerical implementation, it is necessary to incorporate the weak formu-
lation of the incompressibility condition (1.14) to the weak formulation (1.13). Si-
multaneously, the function space W1,2

div, bc should be replaced by W1,2
bc .

When imposing the Navier’s slip boundary condition (1.8), while specifying the
tangential velocity component at the wall, it is also necessary to impose the im-
permeability condition (1.7), which constrains the normal velocity component at
the wall as Dirichlet type boundary condition. However in some cases for arbitrary
curved domain Ω, the numerical implementation of such boundary condition in a
strong sense is complicated (i.e. such that it is contained in the space W1,2

bc ). In-
stead, it is more convenient to be enforced weakly by incorporating into the weak
formulation. The suitable method for imposition of this type of boundary conditions
in weak sense was first introduced by [30] 1.

1Note that for example the H(div, Ω)-nonconforming finite element spaces allow the strong
imposition of Dirichlet boundary conditions on the normal component, however there are other
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Derivation of the Nitsche’s method. There are several options how to derive
the weak formulation using Nitche’s method. We will show one of the approach,
presented in [3], suitable for simple Newtonian model (1.3) of a fluid.
Denote space

V̂ := {ϕϕϕ ∈ V; ϕϕϕ = 0 on ΓD} , (3.1)
where V is defined as (1.10), ΓD denotes parts of the boundary where Dirichlet
boundary conditions are imposed strongly, thus here ΓD = Γin.
Now we show how to modify the weak formulation to weakly impose the Dirichlet
boundary condition on normal components on Γwall. We proceed in similar manner
as in derivation of the weak formulation in 1.2, but now with test functions ϕϕϕ ∈ V̂,
we get

ρ∗

⟨︄
∂v
∂t
,ϕϕϕ

⟩︄
+ ρ∗

∫︂
Ω

(∇ v) v · ϕϕϕ dx−
∫︂

Ω
pI : ∇ϕϕϕ dx

+ 2µ∗

∫︂
Ω
D(v) : ∇ϕϕϕ dx−

∫︂
Ω
q div v dx

=
∫︂

Γout
Tn · ϕϕϕ dS +

∫︂
Γwall

(Tn)τ · ϕϕϕτ dS +
∫︂

Γwall
(Tn)n · ϕϕϕn dS.

Now lets us focus on the fourth and the fifth term. Due to the symmetry of D and
observation I : ∇ v = tr(v) = div v, they can be written as∫︂

Ω
2µ∗D(v) : ∇ϕϕϕ dx−

∫︂
Ω
q div v dx =

∫︂
Ω

2µ∗D(v) : D(ϕϕϕ) dx−
∫︂

Ω
qI : ∇ v dx

=
∫︂

Ω
2µ∗ ∇ v : D(ϕϕϕ) dx−

∫︂
Ω
qI : ∇ v dx

=
∫︂

Ω
[−qI + 2µ∗D(ϕϕϕ)] : ∇ v dx

=
∫︂

Ω
T(q,ϕϕϕ) : ∇ v dx (3.2)

Where we denoted
T(q,ϕϕϕ) := −qI + 2µ∗D(ϕϕϕ),

which is the Cauchy stress tensor for the test functions q,ϕϕϕ.∫︂
Ω
T(q,ϕϕϕ) : ∇ v dx = −

∫︂
Ω

divT(q,ϕϕϕ) · v dx+
∫︂

Γin
T(q,ϕϕϕ)n · v dS

+
∫︂

Γout
T(q,ϕϕϕ)n · v dS +

∫︂
Γwall

(T(q,ϕϕϕ)n)τ · vτ dS

+
∫︂

Γwall
(T(q,ϕϕϕ)n)n · vn dS.

Here we can set the Dirichlet boundary condition (for now in general case) as
vn
⃓⃓⃓
Γwall

= (vn)D and velocity on Γin, Γout, and tangential velocity component on
Γwall leave unspecified. Now apply integration per pares once again on the term
−
∫︁

Ω divT(q,ϕϕϕ) · v dx, where terms on Γin, Γout and tangential term on Γwall cancels
out and there remains∫︂

Ω
T(q,ϕϕϕ) : ∇ϕϕϕ dx =

∫︂
Ω
T(q,ϕϕϕ) : ∇ϕϕϕ dx−

∫︂
Γwall

(T(q,ϕϕϕ)n)n · (vn − (vn)D) dS.

obstacles with these spaces, which will be more discussed in chapter 3.2.3
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Using again identity (3.2), putting everything together we get

ρ∗

⟨︄
∂v
∂t
,ϕϕϕ

⟩︄
+ ρ∗

∫︂
Ω

(∇ v) v · ϕϕϕ dx−
∫︂

Ω
T(p,v) : ∇ϕϕϕ dx−

∫︂
Ω
q div v dx

−
∫︂

Γwall
(T(p,v)n)n · ϕϕϕn dS −

∫︂
Γwall

(T(q,ϕϕϕ)n)n · (vn − (vn)D) dS

=
∫︂

Γout
T(p,v)n · ϕϕϕ dS +

∫︂
Γwall

(T(p,v)n)τ · ϕϕϕτ dS.

Penalisation term. Such weak formulation is consistent with (1.13), however
[30] showed it is not stable. For stabilising, one must add consistent penalisation
term

µ∗β

h

∫︂
Γwall

(vn − (vn)D) · ϕϕϕn dS, (3.3)

where h denotes the local size of mesh edge and β > 0 is the stabilisation parameter.
The parameter must be determined experimentally based on the specific problem.
It should not be very small to ensure stability, yet it should not be too large so it
doesn’t make all other terms less relevant.

Weak formulation using symmetric Nitche’s method. All together sub-
stituting for (1.8), (1.6), that is also use the impermeability condition
vn
⃓⃓⃓
Γwall

= (vn)D = 0 and adding the penalisation term (3.3), we obtain the weak
formulation in the form:

Definition 2 (Weak solution). Find (v − v∗
in, p) ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V̂) ×

L5/4(0, T ;L2(Ω)) such that

ρ∗

⟨︄
∂v
∂t
,ϕϕϕ

⟩︄
+ ρ∗

∫︂
Ω
(∇v)v · ϕϕϕ dx−

∫︂
Ω
p divϕϕϕ dx+ 2µ∗

∫︂
Ω
D(v) : D(ϕϕϕ) dx

−
∫︂

Ω
q div v dx−

∫︂
Γwall

(T(p,v)n)n · ϕϕϕn dS −
∫︂

Γwall
(T(q,ϕϕϕ)n)n · vn dS

+ µ∗β

h

∫︂
Γwall

vn · ϕϕϕn dS + θ

γ∗(1 − θ)

∫︂
Γwall

vτ · ϕϕϕτ dS

+ P (t)
∫︂

Γout
ϕϕϕ · n dS − ρ∗

2

∫︂
Γout

(v · n)−v · ϕϕϕ dS = 0,

(3.4)

valid for all (wh, q) ∈ V̂ × L2(Ω) and a.a. t ∈ (0, T ) 2

Since terms −
∫︁

Γwall
(T(p,v)n)n · ϕϕϕn dS and −

∫︁
Γwall

(T(q,ϕϕϕ)n)n · vn dS have same
sign, method is denoted as symmetric Nitsche’s method. However, [8] showed, there
also exist nonsymmetric Nitsche method having +

∫︁
Γwall

(T(q,ϕϕϕ)n)n · vn dS in weak
formulation (2). Such variant is stable even without penalisation term (3.3). Based
on our experiments, symmetric Nitsche’s method with appropriate penalty β gave
very similar or even more accurate results in comparison to nonsymmetric Nitsche’s
method. Therefore our further tests will be provided only with the symmetric one.

2Note that here we consider also pressure as opposed to the definition (1), where it was not
part of the analysis. According to [9], space L5/4(0, T ; L2(Ω)) for pressure should be reasonable.
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3.2 Discretisation
To numerically compute the solution v, p, the weak formulation in (2) must be
discretised.

Discretisation in time Consider partition of time 0 = t0 < t1.. < tN of the time
interval [0, T ] and set fixed time step ∆t = tk − tk−1 for k = 1, .., N .
Consider differential equation of form

∂u
∂t

= G(u), u(0) = 0.

Backward Euler method. The time derivative can be discretised by Back-
ward Differentiation Formula of the first order (BDF1) denoted as Backward Euler
method. It is a stable implicit method and the time derivate is approximated as

∂u
∂t

≈ 1
∆t

(︂
uk − uk−1

)︂
= G(uk), (3.5)

where we denote ui := u(ti) and we set u0 = 0.

Backward Differentiation Formula of the second order. To get higher
order accuracy in time, we consider also Backward Differentiation Formula of the
second order (BDF2) an implicit stable method, which approximates the derivative
as

∂u
∂t

≈ 1
∆t

(︃3
2uk − 2uk−1 + 1

2uk−2
)︃

= G(uk). (3.6)

For initialisation we star from zero solution, i.e. u−1 = u0 = 0.
For numerical simulations in this thesis we use BDF2 scheme, to eventually get same
order of accuracy in time as in space.

Discretisation in space Finite element method is used for discretisation in space.
Let us consider Ωh an approximation of the domain Ω (more specified in section
3.2.1). Over Ωh we construct finite-dimensional spaces Qh ⊂ L2(Ω), Xh ≈ V,
X̂h ≈ V̂, where V, V̂ are defined in (1.10), (3.1), such that Xh, X̂h ⊂ L2(Ω) for
general non-conforming finite element spaces. Let X̂h be of dimension Nv with basis
{φφφi}Nv

i=1 and Qh of dimension Np, with basis {qi}Np

i=1. Spaces X̂h and Qh should
satisfy the discrete inf-sup condition called the Babuška Brezzi condition ([5]) to
obtain a uniquely solvable discrete problem. Special choice of these spaces will be
discussed in next section 3.2.1.
On each time-step tk, for k = 1, .., N , we look for vkh ∈ Xh and pk ∈ Qh in a form

vkh = (v∗
in)kh +

Nv∑︂
i=1

V k
i φφφi, (3.7)

pk =
Np∑︂
i=1

P k
i qi, (3.8)

where (v∗
in)kh = (v∗

in)h(tk) ∈ Xh in each time-step is an approximation of v∗
in defined

in (1.15) where vin is known from (1.5). Further, for simplification of notation, let
us denote

vh − (v∗
in)kh := v̂h (3.9)
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and from (3.7) we look in each time-step tk, k = 1, .., N , for the coefficients V k
i of

the velocity v̂kh ∈ X̂h.

Finite-dimensional variational problem. We apply the spatial discretization
to the weak formulation in (2), using test functions as basis functions of X̂h, Qh,
while also incorporating the BDF2 scheme specified in (3.6). Then we look for the
approximate velocity v̂kh ∈ X̂h and approximate pressure pkh ∈ Qh, such that in each
time-step tk for k = 1, .., N they satisfy the discrete weak formulation, which can
be after standard manipulations generally written as system of non-linear algebraic
equations of the form

F(Vk
h,Pk

h) = 0, for k = 1, .., N, (3.10)

where Vk
h = (V k

1 , .., V
k
Nv

) and Pk
h = (P k

1 , .., P
k
Np

) are vectors of coefficients from (3.7),
(3.8).

Newton method. Defining xk = (Vk
h,Pk

h), solving such system by Newton
method for each k = 1, .., N leads to

xkn+1 = xkn −
(︂
Jkn
)︂−1

F(xkn), for n = 1, 2, ..,

where Jkn denotes the Jacobian, Jkn = ∂F
∂x (xkn), in k-th time-step in point xkn. Practi-

cally we compute in each time-step tk, k = 1, .., N , linear algebraic system

Jkn∆xkn = −F(xkn), for n = 1, 2, .., (3.11)

for ∆xn = xkn+1 − xkn. For each n = 1, 2, .. the linear system (3.11) is solved directly
by MUMPS solver [2]. The newton iterations are then stopped when the residuum
rkn = ∥F(xkn)∥ satisfies the absolute tolerance rkn ≤ 10−10 or the relative tolerance
rk

n

∥xk
n∥ ≤ 10−10 for each k = 1, .., N .

This classical Newton method is used for numerical computations of Couette flow
in section 4.1.1 and Poiseuille flow in section 4.1.2. However in three dimensional
non-stationary numerical simulations of flow in the aortic root, direct computation
of the linear system (3.11) for each k = 1, .., N and n = 1, 2, .. are the most time
consuming operations in whole computation. Therefore in this case the so called
lagged Jacobian method is used. That is the Jacobian is not evaluated in every step
n as in Newton method, instead it is kept from the previous step. If more than 10
iterations are needed to solve the non-linear problem, the Jacobian is recomputed.
However it can also happen that it is kept to next time-step.
In simulations of flow in the aortic root we compute to the fixed time T = 5 s or we
can also stop the computation if the steady solution is reached, that means we stop
at time tk, if the time derivative is under some tolerance, in our case ρ∗

∥vk
h−vk−1

h
∥L2

∆t ≤
10−3.

3.2.1 Finite element method
The problem is numerically solved by the finite element method (FEM) in space,
a very frequent method for solving partial differential equations. Previous section
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provided general process how to get from variational formulation in (2) to finite-
dimensional system represented as (3.11) through finite-dimensional spaces Xh and
Qh. This section will introduce the basic definitions and theorems behind the theory
and also selection of the spaces Xh and Qh. All the definitions, details and proofs
are provided in [12]. A brief overview about finite element method can be found,
for example, in [38].
Firstly, domain Ω is approximated by polyhedral domain Ωh, which is split into
subdomains T which build the triangulation Th of the domain Ωh with boundary
∂Ωh consisting of Γhin, Γhwall, Γhout. We assume

• (Th1) Each set T from Th is closed with non-empty and connected interior.

• (Th2) The boundary ∂T of each T ∈ Th is Lipschitz continuous.

• (Th3) Ωh = ⋃︁
T∈Th

T

• (Th4) The intersection of interiors of two different sets from Th is empty.

Definition 3 (General definition of the finite element). The finite element in Rn is
a triple (T, P,Σ), where

• T is an bounded closed subset of Rn with non-empty connected interior and
Lipschitz continuous boundary.

• P is a finite-dimensional function space on element T .

• Σ = {li, i = 1, .., N}, is the set of linear functionals over the space P, such that
Σ is P-unisolvent.

Then p1, .., pN are basis function of the finite element and l1, .., lN are degrees of
freedoms of the finite element, such that li(pj) = δij for i, j = 1, .., N . It holds that

p =
N∑︂
i=1

li(p)pi ∀p ∈ P.

If the functionals from Σ are defined on space Q(T ) ⊃ P , the local interpolation
operator Π : Q(T ) → P can be defined as

Πv =
N∑︂
i=1

li(v)pi, for v ∈ Q(T ). (3.12)

It holds that Πp = p for ∀p ∈ P , hence Π is a projection. Function Πv is called the
P-interpolation of function v.
If Σ has the meaning of evaluation of function at a point ai, i.e. ϕi(v) = v(ai), i =
1, .., N , then we talk about Lagrange interpolation and hence it must hold that the
definition domain of the interpolation operator D(Π) = C(T ).
Given a regular mapping FT , one can generate system made of finite elements
(T, PT ,ΣT ) from reference finite element

(︂
T̂ , P̂ , Σ̂

)︂
. The mapping FT is usually

used as affine regular, that means FT : Rn → Rn satisfying

FT (x̂) = Bx̂ + b, (3.13)

for regular matrix Bn×n, vector b ∈ Rn and x̂ denoting point in reference element
T̂ .
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Definition 4 (Affine equivalent finite elements). Two finite elements
(︂
T̂ , P̂ , Σ̂

)︂
,

(T, PT ,ΣT ) are affine equivalent if there exists an affine regular mapping FT such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

T = FT (T̂ )
PT =

{︂
p : T → R, p = p̂ ◦ F−1

T , p̂ ∈ P̂
}︂

ΣT =
{︂
l, l(p) = l̂(p ◦ FT ), l̂ ∈ Σ̂

}︂
.

(3.14)

Theorem 1. Let p̂1, .., p̂N be a basis function of the finite element
(︂
T̂ , P̂ , Σ̂

)︂
, then

functions pi = p̂i ◦ F−1
T , i = 1.., N are the basis functions of the finite element

(T, PT ,ΣT ). It addition it holds that P̂ -interpolation operator Π̂, defined in (3.12)
and the PT -interpolation operator ΠT satisfy

ΠTvˆ = Π̂v̂, ∀v̂ ∈ D(Π̂) and ∀ v = v̂ ◦ F−1
T ∈ D(ΠT ). (3.15)

Definition 5 (General definition of finite element spaces). Let Ωh be a bounded
domain with Lipschitz continuous boundary and Th triangulation satisfying all as-
sumptions (Th1) − (Th4). We define a general finite element space as

Xh :=
{︃
vh ∈ L2(Ω), vh

⃓⃓⃓
T

∈ PT ∀T ∈Th, lT,i(vh|T ) = lT̂ ,i(vh|T̂ )

∀T, T̂ ∈ Th,i, i = 1, .., Nh

}︃
, (3.16)

where indices i = 1, .., Nh denotes global nodes and Th,i set of elements containing
node i.

By summing the basis functions over the elements we can eventually get {pi}Nh

i=1
the basis of finite element space Xh with Σh = {li}Nh

i=1 a set of global degrees of
freedom, where i = 1, .., Nh are indices of the nodes. It holds that li(pj) = δij for
i, j = 1, .., Nh

Considering the Dirichlet boundary conditions on ΓhD, we define

ΣΓD
h =

{︂
l ∈ Σh; l(v|Ωh

) = 0 ∀φ ∈ C∞(Rn);φ = 0 on ΓhD
}︂

(3.17)

and finite-dimensional function space

X̂h =
{︂
vh ∈ Xh; l(vh) = 0 ∀l ∈ ΣΓD

h

}︂
. (3.18)

Assuming functionals from Σh are defined on space Q(Ωh), we can also define a
global Xh interpolation operator Πh : Q(Ωh) → Xh, such that

Πhv =
Nh∑︂
i=1

li(v)pi for v ∈ Q(Ωh). (3.19)

Moreover it holds for every T ∈ Th that (Πhv) |T = Π|T (v|T ), where ΠT is defined
through (3.15).

Consider a mixed function space X̂h × Qh of finite-dimensional function spaces
X̂h, Qh from 3.2 with general definitions (3.16), (3.18). The specific choices of
these spaces that we use in our computations are Taylor-Hood finite element and
H(div,Ω)-conforming finite element, which are in detail described in sections 3.2.2
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and 3.2.3 respectively. Our aim is to develop a script for reliable and efficient com-
putation of flow in the aortic root. As the problem is in three-dimensions, the
computational time is high mainly due to the direct computations of the linear
system (3.11) in Newton iterations. A potential future modification is the imple-
mentation of a multigrid scheme for solving this linear system. In [17] they discuss
using the multigrid scheme for stationary Naiver-Stokes equations on Scott-Vogelius
element. However, there are challenges associated with using Taylor-Hood finite
elements together with multigrid methods. In contrast, H(div,Ω)-conforming finite
elements are more suitable for this method, which is our main motivation to use and
investigate the influence of these spaces on numerical computations.

3.2.2 Classical methods - Taylor-Hood discretisation
Consider a mixed function space X̂h ×Qh of finite-dimensional function spaces X̂h,
Qh from 3.2 with general definitions (3.16), (3.18). Classical methods are those,
where we look for continuos approximative velocity v̂h ∈ X̂h and pressure ph ∈ Qh

which are conforming in (i.e. they are contained in space) V̂ and L2(Ω) respectively.
It seems as a natural choice for discretisation of the weak formulation in (2), where
we look for weak solution ((v − v∗

in)(t), p(t)) ∈ V̂ ×L2(Ω). Frequently used classical
mixed discretisation generating these spaces and ensuring the inf-sup Babuška con-
dition [5] is the Taylor-Hood finite element Pk/Pk−1 for k ≥ 2, further denoted as
THk. Therefore finite-dimensional spaces for the approximative velocity v̂h and for
approximative pressure ph satisfy X̂h ⊂ V̂, Qh ⊂ L2(Ω) respectively and are defined
as

Xh =
{︂
vh ∈ C(Ωh),vh|T ∈ Pk ∀T ∈ Th

}︂
, (3.20)

X̂h :=
{︂
v̂h ∈ Xh; l(v̂h) = 0 ∀l ∈ ΣΓD

h

}︂
, (3.21)

Qh :=
{︂
ph ∈ C(Ωh), ph|T ∈ Pk−1 ∀T ∈ Th

}︂
, (3.22)

where Pk is polynomial of order k. Thus spaces contain functions, that are contin-
uous and piecewise polynomials of order k. For approximative velocity vh it means
that every component is in Pk. Set of degrees os freedoms Σh are values at points.
Set ΣΓD

h is defined as (3.17), where ΓhD = Γhin for problem of flow in the aortic root,
when using Nitche’s method for imposing impermeability condition (1.7).

Non-divergence-free property.

To the weak formulation in (2) we added the weak form of the incompressibility
condition (1.1) for v ∈ V, which reads

−
∫︂

Ω
q div v dx = 0 ∀q ∈ L2(Ω), (3.23)

For the discretised problem we try to satisfy for vh ∈ Xh:

−
∫︂

Ωh

qh div vh dx = 0 ∀qh ∈ Qh. (3.24)

Simultaneously, it is clear that div Xh ̸⊂ Qh, since div Xh contains also discontinuous
functions. Therefore we can not generally get from (3.24) ∥ div vh∥L2 = 0 or div vh =
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0 pointwise in Ωh. Moreover, experiments in sections 4.1 show, that the quantity
∥ div vh∥L2 can be quite large, hence we say that Taylor-Hood finite element is non-
divergence-free method. This problematic is in detailed discussed for Stokes problem
in [24].

Error estimates for Stokes problem.

In [24] the error estimates using classical methods are in detail analysed for the
Stokes problem.
Let us have solution (v, p) to the Stokes problem, that reads

−ν∆v + ∇ p = f in Ω
div v = 0 in Ω

v = 0 on ∂Ω,
(3.25)

for f ∈ L2(Ω). The approximative solution (vh, ph) ∈ X̂h × Qh ⊂ V̂ × L2
0(Ω) is

obtained using Taylor-Hood finite element. Here X̂h, V̂ are defined in (3.21), (3.1)
respectively, for ΓD = ∂Ω and we denote L2

0(Ω) = {q ∈ L2(Ω),
∫︁

Ω q dx = 0} The error
estimates for velocity vh and pressure ph can be obtained by the analogue of Céa’s
lemma, which can be further estimated by error of interpolation operator (3.19),
for general theorem of error estimates for interpolation operator, see [12]. Firstly,
define

Xh,div :=
{︃

vh ∈ X̂h,
∫︂

Ωh

qh div vh dx = 0 ∀qh ∈ Qh

}︃
, (3.26)

the space of discretely divergence-free functions.

Theorem 2 (Error estimates for Stokes problem discretised by Taylor-Hood element
(Theorem 4.21, 4.25, Corollary 4.30 in [23])). Let Ωh be a bounded domain with
polyhedral Lipschitz continuous boundary. Consider family of triangulations {Th}
satisfying assumptions (Th1) − (Th4) ∀T ∈ ⋃︁

h Th and such that system {Th} is
regular, i.e. there exists constant κ such that hT

ρT
≤ κ ∀T ∈ ⋃︁

h Th and the quantity
h = maxT∈Th

hT approaches zero. Also all finite elements (T, PT ,ΣT ), T ∈ Th are
affine equivalent to a single reference finite element

(︂
T̂ , P̂ , Σ̂

)︂
. Let (v, p) be solution

of the Stokes problem (3.25), with v ∈ Wk+1,2(Ω) ∩ V̂ and p ∈ W k,2(Ω) ∩ L2
0(Ω).

Then for the discretisation of this problem with inf-sup stable conforming Taylor-
Hood finite element Pk/Pk−1 k ≥ 2 with spaces X̂h × Qh, denoting the velocity
solution by vh ∈ Xh,div, holds

∥∇(v − vh)∥L2(Ωh) ≤ 2 inf
ṽh∈Xh,div

||∇(v − ṽh)||L2(Ωh) + ν−1 inf
qh∈Qh

||p− qh||L2(Ωh)

≤ Chk
(︂
∥v∥Wk+1,2(Ωh) + ν−1∥p∥Wk,2(Ωh)

)︂
(3.27)

∥p− ph∥L2(Ωh) ≤ C1ν inf
ṽh∈Xh,div

||∇(v − ṽh)||L2(Ωh) + C2 inf
qh∈Qh

||p− qh||L2(Ωh)

≤ Chk
(︂
ν∥v∥Wk+1,2(Ωh) + ∥p∥Wk,2(Ωh)

)︂
, (3.28)

with constants C1, C2, C independent of h.
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Hence the H1 norm of the velocity depends on the approximation properties of
space Xh,div but also due to div Xh ̸⊂ Qh it eventually depends on the approximation
of the pressure or on the smallness of the viscosity. Thus it can happen that the
term ν−1∥p∥Wk,2(Ωh) dominates in the velocity error bound.
It is important to note that these estimates are established on the domain Ωh ≈ Ω
with a polyhedral boundary and also under the assumption that all integrals in
the weak formulation of the given problem are computed exactly. However, in
practice, the integrals are evaluated using numerical integration, and the real domain
Ω is often not polyhedral, meaning that its boundary is not composed of a union
of simplices (triangles in two dimensions, tetrahedra in three dimensions). These
factors are known as variational crimes, and they can result in less accurate estimates
than those presented. In section 3.4 we consider better approximation Ωh of Ω, using
higher-order piecewise polynomial boundary. With this procedure we aim to reduce
the inaccuracies related to the second variational crime.

Grad-div stabilisation

The higher error in ∥ div vh∥L2 = 0 for the classical methods, such as the Taylor-
Hood element, can be reduced by adding the grad-div stabilisation, which penalises
the violation of mass conservation. It was first presented in [18].
The idea is to add term −α∇(div v) = 0 to the linear momentum equation, where
v is the strong solution. Then multiply by ϕϕϕ ∈ V̂, defined in (3.1)) and integrate
over Ω (as in derivation of the weak formulation). Since div v = 0 on the boundary,
using integration per partes we eventually get the additional term

α
∫︂

Ωh

div vh divϕϕϕh dx ∀ϕϕϕ ∈ X̂h (3.29)

in the discretised weak formulation. [24] and [23] proves on Stokes problem that for
smaller stabilisation parameter α, the divergence error became smaller and vanishes
for α → ∞. However in practice, we do not take α too high, to not make other
terms less relevant (in finite precision arithmetic).

3.2.3 H(div,Ω)-conforming discretisations
Again we assume a mixed function space X̂h × Qh of finite-dimensional function
spaces X̂h, Qh, from discretisation 3.2, with general definitions (3.16), (3.18). Now
we consider non-conforming discretisation (X̂h ̸⊂ V̂) of space for velocities, but
satisfying the divergence-free property div Xh ∈ Qh. The review of diverge-free
methods are provided for example in [29]. One of them are the H(div,Ω)-conforming
methods, which are suitable divergence-free methods for our problem, where we
discuss also better approximation of the boundary. We provide a brief introduction
how are this spaces defined, more details can be found in [23].
Let us have triangulation Th satisfying assumptions (Th1) − (Th4). Let Eh be set of
facets (edges in two dimensions, faces in three dimensions). Denote EBh ⊂ Eh the set
of boundary facets and EIh := Eh \ EBh set of interior facets. We no longer require
Xh ⊂ V as we did in Taylor-Hood conforming finite element method, instead we
have Xh ⊂ H(div,Ω), which is defined as

H(div,Ω) :=
{︂
v ∈ L2(Ω) : div v ∈ L2(Ω)

}︂
, (3.30)
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also we denote space

H0(div,Ω) := {v ∈ H(div,Ω); v · n = 0 on ΓD} , (3.31)

here for problem of flow in the aortic root (1.1)-(1.8) we have ΓD = Γin ∩ Γwall.

Lemma 3. Let Xh denote a space of piecewise polynomials with respect to partition
Th. Then Xh ⊂ H(div,Ω), provided the normal components (not necessarily the
tangential components) of functions in this space are continuous across all inter-
element boundaries e ∈ EIh.

Article [33] address all the issues for assembly of the H(div,Ω)-conforming finite
elements for numerical implementation. We present two spaces satisfying the lemma
(3).

Raviart-Thomas finite element space.

Raviart-Thomas (RT) finite element spaces are class of vector-valued finite element
spaces defined as

RTk := {v̂h ∈ H0(div,Ω) : v̂h|T ∈ Pk(T ) + xPk(T ) ∀T ∈ Th} k ≥ 0, (3.32)

where H0(div,Ω) is defined in (3.31). Defining space DPk, such that

DPk :=
{︂
ph ∈ L2(Ω), ph|T ∈ Pk ∀T ∈ Th

}︂
, (3.33)

yields to inf-sup stable mixed finite element pair X̂h ×Qh = RTk × DPk for approx-
imative velocity and pressure which we will denote Raviart-Thomas finite element.
Note that the mathematical definition (3.32) for lowest order k = 0 leads to space
RT0 := {v̂h ∈ H0(div,Ω) : v̂h|T ∈ P0(T ) + xP0(T ) ∀T ∈ Th}, i.e. it is a linear func-
tion on each element. However in Firedrake library, which we use for implementation
of finite element method, such space is denoted as RT1, since it contains piecewise
linear functions. Similarly for each k in definition (3.32), the space is numerically
implemented as RTk+1 with DPk.

Brezzi-Douglas-Marini finite element space.

Brezzi-Douglas-Marini (BDM) finite element spaces are also class of vector-valued
finite element spaces defined as

BDMk := {v̂h ∈ H0(div) : v̂h|T ∈ Pk(T ) ∀T ∈ Th} k ≥ 1. (3.34)

Choosing space DPk−1, defined in (3.33), for approximative pressure, yields to an
inf-sup stable mixed finite element pair X̂h×Qh = BDMk×DPk−1 for approximative
velocity and pressure which we will denote Brezzi-Douglas-Marini finite element.

Degrees of freedoms

For presented H(div,Ω) methods, the degrees of freedom (DOFs) on facets contain
normal integral moments with Lagrange space of order k (assuming here k from the
mathematical definition (3.32)). On the interior of the reference element are integral
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moments with vector Lagrange space of order k − 1. 3 Therefore when imposing
Dirichlet boundary conditions, H(div,Ω) elements take into account only the normal
component on the boundary, the tangential part must be imposed weakly to the weak
formulation. For illustration we show some formulas of degrees of freedom for RT
and BDM on triangle, analogous formulas can be obtained for tetrahedron.

Example: DOFs for RT0 on triangle Degrees of freedom for RT0 on the
reference triangle are defined as

l : v →
∫︂
ei

v · ni, i = 0, 1, 2,

where ei are edges of the triangle and ni their normals. The corresponding basis
functions are shown on Figure 3.1

Figure 3.1: Basis functions for RT0 on triangle (source: DefElement)

Example: DOFs for RT1 on triangle Degrees of freedom for RT1 on the
reference triangle are defined as

l : v →
∫︂
ei

v · (1 − s0)ni, i = 0, 1, 2

l : v →
∫︂
ei

v · (s0)ni, i = 0, 1, 2

l : v →
∫︂
R

v ·
(︄

1
0

)︄

l : v →
∫︂
R

v ·
(︄

0
1

)︄

where ei are edges of the triangle, ni their normals and s0 their parametrisation
(which represents the Lagrange space of order k on the edges). On Figure 3.2 are
shown the basis functions for interior degrees of freedoms (with numbering 6,7),
basis functions for degrees of freedom on edges are show just for one edge e0 (with
numbering 0,1), others would look analogously.

3Lagrange space denotes space consisting of piecewise polynomial functions that are continuous
across the elements of the mesh. For example in Taylor-Hood finite element the velocity is in vector
Lagrange space of order k and pressure in Lagrange space of order k − 1.
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Figure 3.2: Basis functions for RT1 on triangle (source: DefElement)

Example: DOFs for BDM1 on triangle Degrees of freedom for BDM1 on
the reference triangle are defined as

l : v →
∫︂
ei

v · (1 − s0)ni, i = 0, 1, 2

l : v →
∫︂
ei

v · (s0)ni, i = 0, 1, 2

where ei are edges of the triangle, ni their normals and s0 their parametrisation.
Note that this six degrees of freedom are the same as those six on edges for RT1.

Divergence-free property.

From the construction, both these finite elements satisfy div Xh ⊆ Qh, therefore for
vh ∈ Xh

−(div vh, qh) = 0 ∀qh ∈ Qh (3.35)
implies div vh = 0 pointwise in Ω.

Modification of the weak formulation.

In section 1.2 we showed how to get to the weak formulation for test functions
φφφ ∈ V̂, defined in (3.1), for ΓD = Γin ∩ Γwall. For numerical computation we
assumed the space without constraining zero divergence in it. Now we aim to get
to the weak formulation for v and p but assuming the test functions from space
X̂h ⊂ H0(div,Ω) (but X̂h ̸⊂ V̂) being the Raviart-Thomas or Brezzi-Douglas-Marini
space. The procedure to get to the weak formulation is similar as for derivation the
Discontinuous Galerkin method, where we assume discontinuity for both normal and
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tangential components across facets. Here we derive similar formulas, but knowing
that normal components are automatically continuous by definition of the space
H(div,Ω), hence we can force the continuity only to tangential components. Little
bit different procedure is provided in [24] for Stokes problem in two dimensions.
Also due to the degrees of freedom for RT and BDM finite elements, which are
applied only to the normal component on facets, we do not have to use the Nitsche’s
method as in section 3.1, to impose the impermeability condition v · n|Γwall = 0
weakly. However, since X̂h ̸⊂ V̂ the gradients of functions wh ∈ X̂h do not exist
globally. Thus multiplying the right hand side of (1.2) by wh ∈ X̂h ⊂ H0(div,Ω),
integrating over Ωh and then using integration by parts element-wise, we get∫︂

Ωh

divT dx = −
∑︂
T∈Th

∫︂
T
T : ∇ wh dx+

∑︂
T∈Th

∫︂
∂T

Tn · wh dx.

The first term can be written as
∫︁

Ω T : ∇h wh dx denoting ∇h as piecewise gradient
operator. The additional second term can be separated as

∑︂
T∈Th

∫︂
∂T

Tn · wh ds =
∑︂
e∈EI

h

∫︂
e
[T+n+ · (wh)+ + T−n− · (wh)−] ds

+
∑︂
e∈EB

h

∫︂
e
Tn · (wh) ds = II + IB (3.36)

where ϕϕϕ+ := ϕϕϕ|T+, ϕϕϕ− := ϕϕϕ|T−. Let us now focus on the first term, which we denote
as II . Since T = −pI + 2µ∗D(v) and the normal components of wh are continuous
across all inner facets, we can write

II =
∑︂
e∈EI

h

∫︂
e
[2µ∗D+n+ · (wh)+ + 2µ∗D−n− · (wh)−] ds.

We use the notation Ab · c = A : (c ⊗ b) for matrix A and vectors b, c. Further we
use that for normals to facets on each T holds n− = −n+. Hence we get

II = µ∗
∑︂
e∈EI

h

∫︂
e
[2D+ : ((wh)+ ⊗ n+) − 2D− : ((wh)− ⊗ n+)] ds.

Now we use the identity A : B − C : D = 1
2(A − C) : (B + D) + 1

2(A + C) : (B − D)
and a little manipulation to get

II = µ∗
∑︂
e∈EI

h

∫︂
e

[︃1
2(2D+ − 2D−) : {((wh)+ ⊗ n+) + ((wh)− ⊗ n+)}

1
2(2D+ + 2D−) : {((wh)+ ⊗ n+) + ((wh)− ⊗ n−)}

]︃
ds.

The first term can be again rewritten as (2D+ − 2D−)n+ · ((wh)+ + (wh)−), where
(D+ − D−)n+ denotes jump of D across the inner facets, which vanishes assuming
v sufficiently smooth. Denoting the average as

avg = 1
2(A+ + A−), (3.37)
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we can finally write

II = µ∗
∑︂
e∈EI

h

∫︂
e
avg(2D) : 2 avg(wh ⊗ n) ds.

To keep the symmetry, but also still the stability, we add the so called symmetry
term and penalisation term, respectively:

II = µ∗
∑︂
e∈EI

h

[︃ ∫︂
e
avg(2D(v)) : 2 avg(wh ⊗ n) ds

+
∫︂
e
avg(2D(wh)) : 2 avg(v ⊗ n) ds− σ

he

∫︂
e
2 avg(v ⊗ n) : 2 avg(wh ⊗ n) ds

]︃
(3.38)

where he = diam(e), σ > is the penalisation parameter, which is problem dependent
and must be chosen experimentally.
Let us now continue with term denoted as IB in (3.36). Since wh ∈ H0(div,Ω), on
Γhwall remains just tangential components 4. Therefore we get

IB =
∫︂

Γh
in

Tn · wh dS +
∫︂

Γh
wall

(Tn)τ · (wh)τ dS +
∫︂

Γh
out

Tn · wh dS (3.39)

On Γhout and Γhwall we simply use the conditions (1.6), (1.8) respectively. In the
first term of (3.39) we can omit the pressure part of Cauchy stress tensor (1.3)
since wh ∈ H0(div,Ω). The remaining part can be written, using the notation
Ab · c = A : (c ⊗ b) as∫︂

Γh
in

Tn · wh dS =
∫︂

Γh
in

2µ∗D(v) : (wh ⊗ n) dS. (3.40)

Adding to(3.40) also the symmetric and penalisation term similarly as in (3.38) also
with imposing the condition on Γin leads to∫︂

Γh
in

Tn · wh dS =
∫︂

Γh
in

2µ∗D(v) : (wh ⊗ n) dS

+
∫︂

Γh
in

2µ∗D(wh) : ((v − v∗
in) ⊗ n) dS − µ∗σ

he

∫︂
Γh

in

(v − v∗
in) · wh dS. (3.41)

Weak formulation. Giving all the terms together, with the use of (3.38), (3.41)
we get the weak formulation for test functions wh ∈ H0(div,Ω) and we can define
the weak solution.

Definition 6 (Weak solution). Find (v − v∗
in, p) ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V̂) ×

4In fact also on Γh
in should remain just the tangential part

∫︁
Γh

in
(Tn)τ · (wh)τ dS, however our

experiments show that leaving here also the normal part, which is from the Dirichlet condition set
as zero, we get same or better results.
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L5/4(0, T ;L2(Ω)) such that

ρ∗

⟨︄
∂v
∂t
,wh

⟩︄
+ ρ∗

∫︂
Ω
(∇v)v · wh dx−

∫︂
Ω
p div wh dx+ 2µ∗

∫︂
Ω
D(v) : D(wh) dx

−
∫︂

Ω
q div v dx− µ∗

∑︂
e∈EI

h

[︃ ∫︂
e
avg(2D(v)) : 2 avg(wh ⊗ n) ds

−
∫︂
e
avg(2D(wh)) : 2 avg(v ⊗ n) ds− σ

he

∫︂
e
2 avg(v ⊗ n) : 2 avg(wh ⊗ n) ds

]︃
−
∫︂

Γin
2µ∗D(v) : (wh ⊗ n) dS +

∫︂
Γin

2µ∗D(wh) : ((v − v∗
in) ⊗ n) dS

− µ∗σ

he

∫︂
Γin

(v − v∗
in) · wh dS + θ

γ∗(1 − θ)

∫︂
Γwall

vτ · (wh)τ dS

= −P (t)
∫︂

Γout
wh · n dS + ρ∗

2

∫︂
Γout

(v · n)−v · wh dS,

valid for all (wh, q) ∈ H0(div,Ω) × L2(Ω) and a.a. t ∈ (0, T ).

For such weak formulation it makes sense to apply the H(div,Ω)-conforming
discretisation (after discretizing the domain to Ωh).
Note that adding the symmetry and penalisation terms in (3.38), (3.41) can be
taken as applying the Nitsche’s method, introduced in 3.1, to impose weakly the
continuity in tangential direction between inner facets in case of (3.38), or imposing
weakly the Dirichlet condition on Γin in case of (3.41) (here we could impose it only
in the tangential direction since for the normal component the Dirichlet condition
is imposed strongly).

Stabilisations. For H(div,Ω)-conforming elements we will use the upwind stabil-
isation. It is common procedure for the discontinuous Galerkin discretisation and
comes from applying the integration per partes on the convective term ρ∗

∫︁
Ω(∇v)v ·

wh dx. Moreover even for H(div,Ω)-conforming elements we also add the grad-div
stabilisation. The additional term (3.29) is zero from the divergence-free property
(3.35), however it should improve the numerical properties.

Error estimates for Stokes problem.

Consider the Stokes problem defined in (3.25) with the modified weak formulation,
which can be obtain in a same manner as above for the problem of flow in aortic
root. Firstly, define discrete H1-norm as

∥w∥2
1,h :=

∑︂
T∈Th

∥ ∇ w∥2
L2(T ) +

∑︂
e∈Eh

he∥ avg(2D(w))∥2
L2(e) +

∑︂
e∈Eh

h−1
e ∥ avg(w ⊗ n)∥2

L2(e).

(3.42)
The error estimates for the Stokes problem is analysed for example in [24], leading
to following results,

∥v − vh∥1,h ≤ C inf
ṽh∈X̂h

∥v − ṽh∥1,h ≤ Chl−1∥v∥W l,2(Ωh), (3.43)

∥p− ph∥L2(Ωh) ≤ C
(︃
ν∥v − ṽh∥1,h + inf

qh∈Qh

∥p− qh∥L2(Ωh)

)︃
≤ C

(︂
νhl−1∥v∥W l,2(Ωh) + hm∥p∥Wm,2(Ωh)

)︂
. (3.44)
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Assume for the solution of the Stokes problem (3.25) (v, p) ∈ (Ws,2(Ω), W r,2(Ω)).
Then, l = min {s, k + 1}. If X̂h × Qh is Raviart-Thomas finite element pair RTk ×
DPk, then m = min {r, k + 1}. If X̂h × Qh is Brezzi-Douglas-Marini finite element
pair BDMk × DPk−1, then m = min {r, k} . That is, in language of numerical
implementation, velocity in RTk+1 (RTk by mathematical definition (3.32)) and
BDMk has the same error convergence rate. Therefore the same also holds for the
pressure error.

3.3 Shape of the computational domain
Aortic root, the subject of our interest, is a region located behind the aortic valve.
It is characterised by its structure containing three sinuses, see Figure 3.3. It starts
from the aortic valve and ends behind the three sinuses. It is known, that such

Figure 3.3: On left: CT image of aorta (source). On right: illustration of the aortic
root with three sinuses (source: Biography of Antonio Maria Valsalva, Morgagni G.
1740).

shape induce vortices in this region, which affect the underlying valve. The flow dy-
namics in the aortic root is highly complex, involving many factors to be considered.
Therefore it is reasonable to start with the most simplified model and subsequently
introduce modifications to analyse their impact on the character of the flow.
Regarding the geometry, the most simplified model can be considered as a straight,
rigid tube without the valve. For such model, the characteristics of the flow, includ-
ing dissipation, vorticity, pressure drop under varying Navier’s slip parameters θ
from (1.8) are analysed in [9]. By modifying the geometry to a tube with an axially
symmetric sinus extension, [10] found out, depending on the radius of the extension
and the Navier slip parameter θ, there are conditions under which vortices begin to

39

https://heart.bmj.com/content/100/20/1571


form and conditions where the flow becomes chaotic.
We will proceed using different (analytical) description of the geometry, which can
be either with axially symmetric extension or extension with three sinuses, repre-
senting the ones in the real aortic root in Figure 3.3. Still, we do not consider aortic
valve and the coronary arteries, coming from the aortic root to our model as we
want to fully understand the behaviour and role of the sinuses on its own. However
there are studies as [20], [37], where the effect of fully tree dimensional model of the
aortic root with mechanical aortic valve is investigated. Study [16] demonstrated
that the fluid structure interaction contained in a model does not have a significant
effect on character of the flow. Therefore, we also assume the walls to be rigid for
now.

Description of the geometry

It is also possible to create a mesh of the aortic root from MRI images, however for
our purposes of analysing the flow in domain with axial or non-axial sinus extension,
we want to have the analytical description. It is also essential in our process of
generating piecewise polynomial boundaries, presented in section 3.4.
For description of the geometry in cross-section, we follow the article [32]. The shape
of the aortic root can be here approximated by epitrochoid. It is curve described by
a point which lies inside an exterior circle of radius r rolling on a fixed interior circle
of radius R and the point is at a distance d from the centre of the exterior circle,
see Figure 3.4. In Cartesian parametrisation:

R

r
d

x

y

rmax
rmin

R
R + r

Figure 3.4: Epitrochoid for R = 3r, d = 0.5 (source: Wikipedia)

x = (R + r) cos(s) − λr cos
(︃
R + r

r
s
)︃

(3.45)

y = (R + r) sin(s) − λr sin
(︃
R + r

r
s
)︃
, (3.46)

where λ = d/r. The angle s is geometrically the polar angle of the centre of the
exterior circle, however it is not a polar angle of the point (x(s), y(s)) on the epitro-
choid. The outer circle rotates three times around the inner one, representing three
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sinus of the same size, hence R = 3r. According to [32], λ = 0.5 corresponds to
normal aortic root. Values rmin and rmax, see Figure 3.4, can be then computed,
denoting R + r = rchar, as

rmin = R + r − λr = rchar − λr,

rmax = R + r + λr = rchar + λr.

Study [39] refers that the upper limit of radius in normal aortic root is rmax = 20
mm for men and rmax = 18 mm for woman. In term of characteristic radius rchar,
we further in numerical computations set rchar = 16 mm (for λ = 0.5 corresponds
to rmax = 18 mm)
In z direction, we will consider, inspired by [32] and
[10], that region consist of three parts. The first, almost straight one, starting from
radius 12 mm, is approximately 10 mm long, representing the left ventricular out-
flow. Then it extends to the second part, representing sinuses, approximately 24
mm long, with characteristic radius rchar = 16 mm. Further it narrows to the ap-
proximately 10 mm long part, ending with radius 13 mm.
The analytical description which would extend the results (3.45), (3.46) to z di-
rection (main direction of the blood flow) is not reasonably described in literature.
Therefore, we suggest to suitably multiply formulas (3.45), (3.46) by exponential
functions, to get the following parametrisation.

Parametrisation of the domain. Description of three dimensional shape of the
aortic root, parametrized by (s, t) reads

x = D

2 cos(s) +
(︃
rchar − D

2

)︃
e−φt2−ψt4 cos(s) − λre−ξt2 cos

(︃
rchar
r

s
)︃

y = D

2 sin(s) +
(︃
rchar − D

2

)︃
e−φt2−ψt4 sin(s) − λre−ξt2 sin

(︃
rchar
r

s
)︃

z = t,

(3.47)

for s ∈ (0, 2π], t ∈ (−44 mm , 44 mm ), rchar = R + r and

D

2 =
⎧⎨⎩Rout = 13 mm if t ≥ 0
Rin = 12 mm if t < 0

φ =
⎧⎨⎩φout if t ≥ 0
φin if t < 0

ψ =
⎧⎨⎩ψout if t ≥ 0
ψin if t < 0

Values for ξ, φ and ψ are chosen using non-linear least squares to fit the shape
with the geometry used in [10]. Also, note that the shape, analytically described by
(3.47), is infinitely continuous.
Figure 3.5 shows the final shape with dimensions. For comparison of the effect on
the dynamic of the flow, governed by equations (1.1)-(1.8), on the shape of the
domain, we use two geometries, axially symmetric one and one with three sinuses.
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z

10mm

10mm

24mm 44mm

13mm

12mm
Γin

Γout

Figure 3.5: Dimensions of the computational domain.

Shape with three sinuses. As we already mentioned the shape with three
sinuses can be obtained by choice λ = 0.5 in the parametrisation (3.47). Hence for
the characterisation radius rchar = 16 mm, the maximal radius is rmax = 18 mm and
minimal radius rmin = 14 mm. The shape with respect to rchar in a cross-section
can be seen on right in Figure 3.4.

Axially symmetric shape. Setting λ = 0 in (3.47), we can get axially sym-
metric shape with maximal radius rmax = rchar = 16 mm.
Figure 3.6 show the final reference meshes, which are used for all computations.
They are generated by software Gmsh [19] and are made of simplices.

Figure 3.6: Computational meshes with rchar = 16 mm: axially symmetric one on
left, with three sinuses on right.
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3.4 Approximation of the boundary
To numerically compute the solution using finite element method, the computational
domain Ω must be discretized first. This discretization usually leads to a mesh com-
posed of elements (in our case triangles in 2D or tetrahedra in 3D), each with piece-
wise linear facets. Together, however, the elements only provide an approximation
Ωh of the real domain Ω, whose boundary may not be very accurate for some general
domains with curved boundaries. This problem is one of the so-called variational
crimes that occur along with numerical integration in obtaining an approximate so-
lution by the finite element method. As the result the Dirichlet boundary condition
is imposed on a slightly shifted boundary and Navier’s slip boundary condition (1.8)
allows the slip of the fluid on piecewise linear non-smooth boundary. To reduce the
resulting inaccuracies, we construct a mesh with a boundary of piecewise higher
order polynomials. Section 4.1 of the next chapter demonstrate the difference in
convergence of the errors on two simple examples: Couette flow and Poiseuille flow.

Generation of a mesh with boundary of piecewise higher order polyno-
mials. We consider shift u on the computational discretised domain Ωh such that

∆u = 0 in Ωh (3.48)
u = 0 on Γhout, Γhin (3.49)
u = xanalytical − xmesh on Γhwall, (3.50)

where Γhin, Γhout, Γhwall are parts of the boundary of Ωh. The coordinates xanalytical ∈
Rn are prescribed analytically by the given parametric description of the domain
((3.47) in case of our simplified aortic root) and xmesh ∈ Rn are the real coordinates
of the given computational mesh. That means we prescribe known shift on the
boundary Γhwall and smoothly extend it to the whole domain Ωh. Problem (3.48)-
(3.49) is also solved by finite element method using Lagrange space of order l,
implying resulted shift u continuous and piecewise polynomial of the order l. The
coordinates of new mesh with boundary of piecewise polynomials of order l, denoted
meshl, is then generated as

xmeshl
= xmesh1 + u, (3.51)

where mesh1 is the same or very similar mesh as the original reference one. 5 Gener-
ated mesh with boundary of piecewise higher polynomials meshl is than classically
used for further numerical computation of the flow. Note that for general curved
domain Ω we can never obtain mesh with precise boundary, only with boundary of
piecewise polynomials.
In case of computational domain represented by cylinder (used in Poiseuille flow in
section 4.1.2), the corrections on the wall from reference piecewise linear mesh with
coordinates xmesh1 to piecewise higher order polynomial mesh, made by parametri-
sation of the cylinder, leaves the vertices of all elements at the same place and
moves points in interior of facets. These corrections are small, therefore the shift
can be also generated only requiring (3.50) on Γhwall and extending by zero inside of

5In case of parametrisation (3.47), linear shift u on Γwall only slightly moves the vertices on the
surface along the surface.
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Ωh. However the reference mesh xmesh1 for the aortic root is parametrised by (3.47),
whose angle s is geometrically the polar angle of the centre of the exterior circle, but
is not a polar angle of the point (x(s), y(s)) on the epitrochoid, describing the cross
section of the domain. Therefore the correction to piecewise higher order polynomial
mesh, using again parametrisation (3.47), also slightly shifts the vertices. Hence the
shift must be computed as (3.48)-(3.49) to get computational mesh with reasonable
shape of elements.
Note that some software, such as Gmsh or Netgen, allows to create a mesh with a
boundary of piecewise higher order polynomial, however the current software tools
based on Firedrake can not use such meshes directly. Nevertheless, all of these op-
tions should give the same output, only the method we have presented using shift
u is slightly more complicated for the user.
Also note that the problem has same degrees of freedom using mesh1 as mesh2,
but the computational time is slightly higher for computations on mesh2 due to the
more difficult enumeration of the integrals.

Isoparametric finite element method

The idea to use same finite elements for mapping the boundary as for approximating
the velocity leads to so called isoparametric finite element method. A introduction
on this topic can be found in [38].
Denote, similarly as in section 3.2.1 the reference finite element (T̂ ,P̂ ,Σ̂). Now

• T̂ is an bounded closed subset of Rn with non-empty connected interior and
Lipschitz continuous boundary

• P̂ is a finite dimensional function space on element T̂

• Σ̂ = {p̂(ai), i = 1, .., N}, for N number of nodes, is the set of functionals on P̂
giving the evaluation of p̂ ∈ P̂ in point ai (finite element with such degrees of
freedom are called Lagrange finite elements)

Further, instead of affine regular mapping FT defined as (3.13), there is a mapping
G : x̂ ∈ T̂ → x ∈ T, s.t. x = (Gj(x̂))j=1,..,n ∈ Rn where

Gj ∈ P̂ ∀j = 1, .., n, (3.52)

with n denoting dimension of the problem. In other words, arbitrary point x̂ in
reference element T̂ is mapped to the point x in element T , whose components are
each obtained by a polynomial function which is a linear combination of the basis
functions on the reference element T̂ , see Figure 3.7.
An isoparametric finite element (T, P,Σ) is then defined by⎧⎪⎪⎨⎪⎪⎩

T = G(T̂ )
P =

{︂
p : T → R, p = p̂ ◦ G−1, p̂ ∈ P̂

}︂
Σ = {p(G(âi)), i = 1, .., N} .

(3.53)

Note that from this definition, the mapping (3.52) is from the same finite element
space on the element. We use isoparametric triangles or tetrahedra elements, see
Figure 3.7, but in literature isoparametric quadrilaterals are also often. The same
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Figure 3.7: Example of quadratic mapping on a reference triangle element. The ref-
erence element is described by the coordinates (ξ, η) and Gi(ξ, η) are the (quadratic)
basis functions here.

convergence result for interpolation operator as for classical finite elements can be
also obtained, see [11]. The main obstacle stands in Jacobian of the mapping G
which is no longer constant. Eventually, we can get the estimates for the Stokes
problem for classical methods as in theorem (2).
Hence in our case numerically solving problem by finite element method using La-
grange type function spaces (for example space for velocities in Taylor- Hood ele-
ment) with P ∈ Pk on a mesh, created by shift (3.48)-(3.50) i.e. with boundary
of piecewise polynomials of degree k can be called by isoparametric finite element
method. Using H(div,Ω)-conforming finite elements with mapping of the boundary
from Lagrange space is not isoparemetric finite element method since the assump-
tions on degrees of freedom from (3.53) is not satisfied and the theory behind is
more difficult.
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4. Results
The final chapter presents the results from numerical simulations, which are gener-
ated using all mentioned methods and aspects presented in Chapter 2.
The main goal of this thesis is to analyse the effect on character of the flow in the
aortic root when using following modifications. First, as discussed in section 3.3,
we employ the computational mesh with three sinus together with the less realistic
axially symmetric mesh. Second, we construct better approximation of the bound-
ary than just piecewise linear, which is addressed in 3.4. Additionally we examine
the impact on the solution of the flow using these discretisations in space: Taylor-
Hood element and H(div,Ω)-conforming elements, see 3.2.2, 3.2.3 respectively. The
character of the flow is described by the following characteristic flow quantities.

Flow quantities. Flow quantities we are interested in are bulk dissipation ΞΩ,
boundary dissipation ΞΓ, kinetic energy Ek, average wall shear stress

1
|Γwall|

∥(Tn)τ∥1,Γ, pressure drop pdrop, vorticity 1
|O|∥ rot v∥1,O, wall flux, respectively:

ΞΩ := 2µ
∫︂

Ω
|D(v)|2 dx (4.1)

ΞΓ :=
⎧⎨⎩

θ
1−θ

∫︁
Γwall

|vτ |2 dS if θ < 1
0 if θ = 1

(4.2)

Ek :=
∫︂

Ω
ρ

|v|2

2 dx (4.3)
1

|Γwall|
∥(Tn)τ∥1,Γ := 1

|Γwall|

∫︂
Γwall

|(Tn)τ | dS (4.4)

pdrop := 1
|Γin|

∫︂
Γin
p dS − 1

|Γout|

∫︂
Γout

p dS (4.5)

1
|Ω|

∥ rot v∥1,Ω := 1
|Ω|

∫︂
Ω

| curl(v)| dx (4.6)

fluxwall :=
∫︂

Γwall
v · n dS. (4.7)

4.1 Piecewise linear versus piecewise higher order
polynomial boundary

Since we do not have the exact analytical solution for (1.1)-(1.8), we can not say,
if the solution using mentioned modifications are more accurate. Therefore, we
set two benchmark problems: Couette flow in two dimensions and Poiseuille flow
in three dimensions, where we know the analytical solution. On these examples
we demonstrate the accuracy of the solution and of the characteristic quantities
when computing on a mesh with piecewise higher order polynomial boundary rather
then piecewise linear. Simultaneously, it will be computed by Taylor-Hood element
and H(div,Ω)-nonconforming Raviart-Thomas and Brezzi-Douglas-Marini elements.
[10] demonstrated the importance of the allowed slip on the boundary, therefore we
investigate the solutions also under different slip parameters θ coming from Navier’s
slip boundary condition.
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We are interested in relative velocity L2 error, relative velocity H1 error, relative
pressure L2 error of each solution, respectively:

ev,L2 = ∥v − vex∥2

∥vex∥2
(4.8)

ev,H1 = ∥∇(v − vex)∥2

∥∇vex∥2
(4.9)

ep,L2 = ∥p− pex∥2

∥pex∥2
, (4.10)

where vex and pex are known exact analytical solutions of the problem and v, p here
denotes the approximative solutions from the numerical computations. To see the
convergence depending on the degrees of freedoms (DOFs), we compute the errors
of solution for set of refined meshes. An estimated order of convergence (EOC) is
taken as

EOC =
log( e(hN−1)

e(hN ) )
log(hN−1

hN
)

(4.11)

for each error e = ev,L2 , ev,H1 , ep,L2 . Here hN is the minimal cell diameter in the
most refined mesh, hN−1 the minimal cell diameter in the second most refined mesh.
Values of EOC can be than compared to the theoretical results for Stokes problem
(2) when using Taylor-Hood element or (3.43) and (3.44) when using H(div,Ω)-
conforming elements.
Also the L2 norm of the divergence ∥ div v∥2 is plotted in graphs for illustration
of fulfilling the incompressibility condition by divergence-free H(div,Ω)-conforming
methods as opposed to non-divergence-free classical methods such as Taylor-Hood.
For Poiseuille flow the flow quantities (4) are numerically computed and the error
with respect to degrees of freedom is investigated.
Convergence of the errors is plotted with respect to DOFs

1
d , where d denotes di-

mension of the problem and DOFs denotes degrees of freedom of the whole mixed
space. For a fair comparison of used finite elements, this is a better option than
plotting with respect to the minimum element size.

4.1.1 Couette flow in two dimensions between two concen-
tric circles

Couette flow in two dimensions between two concentric circles is simple example
with known analytical solution and curved boundary. Since it is in two dimensions,
the computational costs are low and we can afford to compute solutions on more
refinements of the computational mesh.

Definition of the problem

We assume incompressible Navier-Stokes fluid. The inner circle is at rest and outer
circle rotates with angular velocity Ωout and same Navier’s slip boundary conditions
are imposed on both walls Γin and Γout. Assume the problem is stationary and
v = (0, vφ(r)), p = p(r) (see geometry of the problem in Figure 4.1). Governing
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equations and boundary conditions can be therefore written as

ρ(v · ∇v) = divT in Ω, (4.12)
∇ · v = 0 in Ω, (4.13)
T = −pI + µ

(︂
∇ v + ∇ vT

)︂
in Ω, (4.14)

v · n = 0 on Γin, (4.15)
θvτ + γ(1 − θ)(Tn)τ = 0 on Γin, (4.16)
v · n = 0 on Γout, (4.17)
θ(vτ − V ) + γ(1 − θ)(Tn)τ = 0 on Γout, (4.18)

(4.19)

where velocity on the outer circle is V = ΩoutRout .

ϕ
r

Rin

Rout

Γin

Γout Ω

Figure 4.1: Geometry for Couette flow in concetric circles in two dimensions.

Exact solution

Analytical form of velocity and pressure are computed for example in [22] (there for
flow between concentric cylinders in three dimensions) and are as follows

(vφ)ex = Ar + B

r

pex = ρ

(︄
A2

2 r2 − B2

2r2 + AB ln r +K

)︄
,

where K is such that p(Rin) = 0. Velocity in Cartesian coordinates (x, y) can be
then written as

vex =
(︄

− y√
x2 + y2 (vφ)ex,

x√
x2 + y2 (vφ)ex

)︄
.
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Constants A and B are

A = RinRoutΩoutR
2
out + 2µκR3

outΩout

RinRout(R2
out −R2

in) + 2µκ(R3
out +R3

in)

B = − R3
inR

3
outΩout

RinRout(R2
out −R2

in) + 2µκ(R3
out +R3

in) ,

with κ = γ 1−θ
θ

.

Experiments

Numerical tests are computed for values of constant parameters given in Table
4.1. The solution is quite sensitive to the stabilisation parameter β coming from

Table 4.1: Chosen values of parameters for Couette flow between concentric circles.

Symbol Name Value Unit
ρ density 1 kg.m−3

µ dynamic viscosity 0.001 kg.m−1.s−1

Ωout angular velocity on Rout 1 rad.s−1

Rin inner radius 1 m
Rout outer radius 2 m
γ slip parameter 3.08 m2.s.kg−2

Nitsche’s method (3.3) and stabilisation parameter σ from weak formulation (6) for
H(div,Ω)-conforming methods. The optimal value is experimentally set as β = 10
and σ = 100. The grad-div stabilisation (3.29) with parameter α around 1 for
all used finite elements is used. H(div,Ω)-conforming elements are computed with
upwind stabilisation.

Results for θ = 1. Figure 4.2 shows the solution errors for Couette flow with
no-slip (θ = 1) on the wall 1. It is computed with piecewise linear (l = 1) and
quadratic (l = 2) boundary, using finite elements with k = 2, that means TH2 (P2
for velocity, P1 for pressure), RT3 (RT3 for velocity, DP2 for pressure), BDM2 (BDM2
for velocity, DP1 for pressure). It demonstrates the improvement of accuracy and
higher EOC (mainly in velocity errors) when using piecewise quadratic boundary
for all finite elements. Also, for l = 1 RT and BDM, elements needs more DOFs to
get to the same error as TH element. For l = 2 the results are very similar, even
better for RT and BDM elements.

Results for θ = 0.5. Figure 4.3 captures the same setting, only with imposed
partial slip θ = 0.5 on Γwall. For TH element the convergence of velocity in H1 is
significantly worse for l = 1, however it seems that the pressure error surprisingly

1In the weak formulations (2) or (6), the term on Γwall imposing the Navier’s slip boundary
condition is not defined for θ = 1. Therefore, we compute this case with imposing the Dirichlet
boundary condition v

⃓⃓
Γwall

= 0 strongly for the Taylor-Hood element. On contrary, for H(div, Ω)-
conforming elements we additionally need to impose v·τ

⃓⃓
Γwall

= 0 weakly into the weak formulation.
The results are also very similar as to compute Navier’s slip with θ = 0.999.
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doesn’t very depend on smoothness of the boundary. For RT and BDM elements
the difference in velocity and pressure errors between solutions obtained with l = 1
and l = 2 are significant. Also while for l = 2 it is comparable with TH element,
using l = 1 is much worse than TH. Comparing results for no-slip (Figure 4.2) and
for partial slip (Figure 4.3) we can see (except convergence of the pressure for TH)
that imposing Navier’s slip on non-smooth piecewise linear boundary rather then
on smoother piecewise quadratic boundary yields to worse errors convergence then
in imposing Dirichlet no-slip boundary condition on the wall.
Using the same finite elements for obtaining the approximative velocity as for map-
ping the domain leads to isoparametric finite elements, described in section 3.4.
Therefore in Figure 4.4 we demonstrated for slip parameter θ = 0.5 the difference in
using order k = l = 2 and k = l = 3. There is an improvement for solutions using
cubic isoparametric finite elements 2, however, the difference is not so significant
as opposed to piecewise linear boundary versus piecewise quadratic boundary with
k = 2. Also the degrees of freedom are increasing with k, which increases the com-
putational time and memory mainly for problems in three dimensions. Therefore
for our purposes we further use k = 2 and both l = 1 and l = 2 to see the difference
in smoothness of the boundary.
All the figures 4.2-4.4 demonstrates on last graph, that H(div,Ω)-conforming RT
and BMD elements satisfy the incompressibility condition div v = 0 (here v denotes
the approximative solution) as opposed to TH finite element.

2Strictly from the definition (3.53), we can speak about isoparametric finite elements only when
using TH element.
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Figure 4.2: Convergence of relative errors, EOC and norm of the velocity divergence
for Couette flow with no-slip (θ = 1) on the boundaries, for piecewise linear l = 1
(lines with triangles) and piecewise quadratic l = 2 (lines with stars) boundary and
for TH2, RT3, BDM2 finite elements.

4.1.2 Poiseuille flow in 3D
Poiseuille flow in straight tube in three dimensions is another simple example with
know analytical solution and curved boundary. It can be represented as a model of
flow in arteries or even very simplified model of flow in the aortic root. With such
motivation in mind, the article [9] investigated this problem, analysed the influence
of slip parameter θ on Γwall on flow characteristics defined in (4).

Definition of the problem

We assume again steady flow of incompressible Navier-Stokes fluid in cylinder with
Navier’s slip boundary condition on Γwall. Assume the problem is stationary and
v = (0, 0, vz(r)), p = p(r) 3(see geometry of the problem in Figure 4.5). Governing

3In numerical computations we keep the convective term, even though in analytical solution it
should vanish due to the symmetry.
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Figure 4.3: Convergence of relative errors, EOC and norm of the velocity divergence
for Couette flow with partial slip (θ = 0.5) on the boundaries, for piecewise linear
l = 1 (lines with triangles) and piecewise quadratic l = 2 (lines with stars) boundary
and for TH2, RT3, BDM2 finite elements.

equations and boundary conditions read

ρ(v · ∇v) = divT in Ω, (4.20)
∇ · v = 0 in Ω, (4.21)
T = −pI + µ

(︂
∇ v + ∇ vT

)︂
in Ω, (4.22)

v · n = 0 on Γwall, (4.23)
θvτ + γ(1 − θ)(Tn)τ = 0 on Γwall, (4.24)
v = vin on Γin, (4.25)
Tn = 0 on Γout, (4.26)
vy = vz = 0 on Γout, (4.27)

where the inflow vin is set as the velocity profile obtained by the exact analytical
solution (4.29) defined below. Condition (4.26) states that there is no force at the
outlet boundary, which than fixes the pressure as p

⃓⃓⃓
x= L

2
= 0. Conditions (4.27)

ensures that the flow at the outlet remains parallel.
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Figure 4.4: Convergence of relative errors, EOC and norm of the velocity divergence
for Couette flow with partial slip (θ = 0.5) on the boundaries, for piecewise quadratic
l = 2 (lines with triangles) and piecewise cubic l = 3 (lines with cubes) boundary
and for TH2, RT3, BDM2 finite elements.

Exact solution

Derivation of the analytical solution for Poiseuille flow is provided for example in
[9] and is as follows

(vz(r))ex = V
4µγR(1 − θ) + 2θ(R2 − r2)

R [4γµ(1 − θ) + θR] (4.28)

vex = (0, 0, (vz(r))ex) (4.29)

(p(z))ex = 8µV θ
R [4γµ(1 − θ) + θR]

(︃
L

2 − z
)︃

(4.30)

where V is mean inflow velocity and p is fixed as p|Γout = 0 assuming finite tube.

Experiments

Numerical test are for values of constant parameters given in Table 4.2.
The solution is again sensitive to the stabilisation parameter β coming from

Nitsche’s method (3.3) and stabilisation parameter σ from weak formulation (6) for
H(div,Ω)-conforming methods. The optimal value is experimentally set as β = 10
and σ = 10. The grad-div stabilisation (3.29) with parameter α around 0.1 is used

53



z

Γout

Γin

Γwall

Ω

R

r

L

Figure 4.5: Geometry for Poiseuille flow in tube in three dimensions.

Table 4.2: Chosen values of parameters for Poiseuille flow in straight tube.

Symbol Name Value Unit
ρ density 1050 kg.m−3

µ dynamic viscosity 3.896×10−3 kg.m−1.s−1

R radius of the cylinder 12×10−3 m
L length of the cylinder 44×10−3 m
γ slip parameter 3.08 m2.s.kg−2

V mean inflow velocity 0.5 m.s−1

for all finite elements. H(div,Ω)-conforming elements are computed with upwind
stabilisation.
The theoretical error estimates for Stokes problem reads (2) for THk element and
(3.43), (3.44) for RTk+1 (mathematically RTk) and BDMk element. Since the exact
solution is regular enough, setting k = 2 for all further computations, we should
theoretically get for all elements EOC = 2 for both velocity H1 error and pressure
L2 error. Note that in (4.20) we still take into the account the convective term,
hence it can also have a slight impact to the theoretical estimates.

Results for θ = 1. Figure 4.6 shows convergence of relative errors for velocity
and pressure and also L2 norm of divergence for Poiseuille flow with no-slip (θ = 1)
on Γwall. For all used finite elements there is an improvement in using piecewise
quadratic rather than piecewise linear boundary. The EOC results for H1 velocity
error is about a half order lower for l = 1 then the theoretical estimates, however
for l = 2 EOC is even greater than theoretical estimate. The pressure error give for
both l = 1 and l = 2 higher estimates then theoretical one, however computations
with l = 2 are about 2 orders higher than for l = 1. Using TH finite elements
over RT and BDM elements gives more accurate results, expect of the velocity H1

error with l = 1. Otherwise RT and BDM elements always needs more degrees of
freedoms to get to the same error.

54



Results for θ = 0.8. Figure 4.7 shows the results imposing Navier’s slip bound-
ary condition on Γwall with θ = 0.8. For all finite elements the resulting EOC is lower
then in no-slip case, mainly for l = 1. Such observation can represent the worse en-
forcement of some slip on non-smooth boundary, rather than enforcement of the
zero velocity on the wall. The effect of worse convergence of errors using l = 1
with θ = 0.8 than θ = 1 is more significant for RT and BDM elements. All the
figures 4.6-4.7 demonstrates on last graph, that H(div,Ω)-conforming RT and BMD
elements satisfy the incompressibility condition div v = 0 as opposed to TH finite
element.
Figure 4.8 captures convergence of the absolute errors of characteristic quantities
defined in 4. The improvement of results using l = 2 is also visible. The best
approximations seems to be using TH finite elements. Figure 4.9-4.10 shows the
effect of varying slip parameter θ on flow quantities, computed on coarse mesh
(hmin = 3.05 × 10−3) and fine mesh (hmin = 7.62 × 10−4) respectively.
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Figure 4.6: Convergence of errors, EOC and norm of the velocity divergence for
Poiseuille flow with no-slip (θ = 1) on the boundary using piecewise linear l = 1
(lines with triangles) and piecewise quadratic l = 2 (lines with stars) boundary and
for TH2, RT3, BDM2 finite elements.

Assume two same problems with same data on the same mesh, where one is dis-
cretised with usual piecewise linear boundary and the other allowing more smoother
piecewise quadratic boundary. Previous examples show that we can get two differ-
ent solutions even for fine meshes, where the second one with smoother boundary is
more accurate one.
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Figure 4.9: Flow quantities for values θ ∈ {0, 0.15, 0.35, 0.5, 0.65, 0.75, 0.8, 0.9, 1}
on coarse mesh (hmin = 3.05 × 10−3) using piecewise linear l = 1 (triangles) and
piecewise quadratic l = 2 (stars) boundary and for TH2, RT3, BDM2 finite elements.
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Figure 4.10: Flow quantities for values θ ∈ {0, 0.25, 0.5, 0.65, 0.75, 0.8, 0.9, 1} on fine
mesh (hmin = 7.62 × 10−4) using piecewise linear l = 1 (triangles) and piecewise
quadratic l = 2 (stars) boundary and for TH2, RT3, BDM2 finite elements.
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4.2 Simulations of flow in aortic root
Finally, we show the obtained results for the flow in the aortic root described by
the equations (1.1)-(1.8). Numerical test are for values of constant parameters given
in Table 4.3, which are taken from [34] also with dimensions of the computational
domain, provided in Figure 3.5. The characteristic radius is rchar = 16 in the middle
of the sinus extension, for either axially symmetric shape or shape with three sinuses,
see Figure 3.6. We are interested in solution which are driven by the inflow velocity

Table 4.3: Chosen values of parameters for flow in the aortic root.

Symbol Name Value Unit
ρ density 1050 kg.m−3

µ dynamic viscosity 3.896×10−3 kg.m−1.s−1

rchar characteristic radius of the domain 16×10−3 m
L length of the domain 44×10−3 m
γ slip parameter 3.08 m2.s.kg−3

V mean inflow velocity 0.65 m.s−1

vin in form of the parabolic velocity profile, obtained by the Poiseuille flow (4.29),
whose magnitude is scaled by the time-dependent factor, thus

vin(x, t) =
(︄

0, 0, f(t)V 4µγRin(1 − θ) + 2θ(R2
in − r2)

Rin [4γµ(1 − θ) + θRin]

)︄
, (4.31)

where

f(t)
⎧⎨⎩t if 0 ≤ t ≤ 1

1 if t > 1

and Rin = 0.012 m is the radius on Γin.
At the beginning t = 0 s, we set zero inflow condition, which slowly increases in
form of the parabolic profile up to t = 1 s. Then it remains as the fixed parabolic
profile with set mean inflow velocity V . Thus the inflow boundary condition is after
1 second stationary. With such setting we investigate, how the solution behaves for
bigger times, for example if they develop into stationary solutions or if they remains
unsteady. In our case, we compute the solution up to a fixed time T = 5 seconds, as
it appears that for states converging to stationary solutions, this convergence occurs
within this time frame.
For discretisation in time we use the BDF2 scheme, presented in (3.6) with fixed
time step ∆t = 0.005 s. We use the weak formulation in (2) for discretising in space
by Taylor-Hood (TH) element and weak formulation in (6) when using H(div,Ω)-
conforming Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) elements. In
computations we will further use only BDM element from H(div,Ω)-conforming
methods, since it generally provides more accurate results, according to examples
in section 4.1 and mainly it has less degrees of freedom than RT element (some
examples of degrees of freedoms for both RT and BDM elements are for illustration
in section 3.2.3).
The penalty parameters β, σ from Nitshce’s method (3.3) and from penalisation
term in weak formulation (6) respectively, are chosen as β = 100, σ = 100. For
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both TH and BDM element we add the grad-div stabilisation (3.29) with α = 10
and α = 100 respectively. For BDM element we also use the upwind stabilisation.
We use finite element spaces that are piecewise quadratic in velocities and piecewise
linear in pressure, i.e. TH2, BDM2 elements with both meshes with piecewise linear
(l = 1) and piecewise quadratic (l = 2) boundary (for such setting the results in
chapter 4.1 reveals improvement of the convergence with l = 2).
The problem will be tested on two meshes, axially symmetric one with minimal
size of the element hmin = 9.24 × 10−4 and on one with three sinuses with hmin =
8.91 × 10−4, see Figure 3.6.
For all the solutions we compute the flow quantities, defined in section 4.

4.2.1 Flow in the axially symmetric domain
Firstly, we show the graphs for flow in axially symmetric domain, using both TH and
BDM element with = 1 and l = 2. Figure 4.11 shows values of the flow quantities at
t = 5 s, where we vary the Navier’s slip parameter θ. As we will see on next figures,
depending on θ, some solutions goes to stationary states. For those who do not, we
get the value by averaging values in last two seconds.
The general behaviour depending on θ is as follows. It turns out that for low values
of θ (bigger allowed slip), the solution is stationary (almost right after 1 second)
and no vortices occur. After some critical value of θ, the flow becomes unsteady or
even chaotic as the vortices in the sinus extension starts to generate. However for
a higher values of θ, usually around 0.96, the solutions become steady with some
slow recirculation in the sinus extension. The critical values of θ, where the vortices
starts to generate are approximately as follows: θ = 0.65 for TH l = 1, θ = 0.8 for
TH l = 2, θ = 0.5 for BDM l = 1, θ = 0.8 for BDM l = 2. It can be seen on Figures
4.12-4.16, which captures the evolution of the flow quantities for picked (critical)
parameters θ. For example in Figure 4.13 with θ = 0.65 can be seen the difference
of flow character between l = 1 and l = 2 for both TH and BDM elements. For lower
θ, for example θ = 0.5 in Figure 4.12, the BDM element together with l = 1 goes
to different, non-stationary, solution as opposed to the other options. For higher
parameter θ, for example θ = 0.96 in Figure 4.15, BDM method seems to stabilise
more sooner then TH element.
Also note that the BDM element with l = 2 for all θ should give zero values of
wall flux, due to the diverge-free property (3.35), as we see for solutions with l = 1
or as we demonstrated in the benchmark problems in section 4.1. We do not have
explanation for this behaviour now and it is not clear whether there is a bug in our
script or in software’s libraries.
Figure 4.17 shows the surface velocities at t = 5 s for l = 2 for TH element and
Figure 4.18 illustrates the different solution obtained by TH and BDM elements for
θ = 0.96, which can be seen in Figure 4.15. Figures 4.19 and 4.20 shows the velocity,
instantaneous streamlines and vorticity on the cuts of the domain, illustrating the
generation of vortices for different slip parameter, with l = 2 using TH. Figure 4.21
captures the periodic behaviour of the solution for θ = 0.65, with l = 1, using
TH element (see Figure 4.13). During the one period, a vortex begins to form in
the sinusoidal extension (always in the same place), which increases in size and
eventually flows out of the domain.
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Figure 4.11: Flow quantities at time t = 5 s, for θ ∈ {0.0, 0.5, 0.65, 0.8, 0.9, 1}, with
both piecewise linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM
element on axially symmetric mesh.
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Figure 4.12: Flow quantities in time t ∈ [0, 5] s for θ = 0.5, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on
axially symmetric mesh.
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Figure 4.13: Flow quantities in time t ∈ [0, 5] s for θ = 0.65, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on
axially symmetric mesh.
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Figure 4.14: Flow quantities in time t ∈ [0, 5] s for θ = 0.9, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on
axially symmetric mesh.
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Figure 4.15: Flow quantities in time t ∈ [0, 5] s for θ = 0.96, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on
axially symmetric mesh.
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Figure 4.16: Flow quantities in time t ∈ [0, 5] s for θ = 1, with both piecewise linear
(l = 1) and quadratic (l = 2) boundary, using TH and BDM element on axially
symmetric mesh.
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Figure 4.17: Surface velocities for flow in axially symmetric geometry, with l = 2,
at time t = 5 s, using TH element, for θ ∈ {0.0, 0.5, 0.65, 0.8, 0.9, 1} respectively, on
axially symmetric mesh.

Figure 4.18: Surface velocities in time t ∈ [0, 5] s for θ = 0.96, with l = 2, using TH
and BDM element on axially symmetric mesh.
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Figure 4.19: Velocity and streamlines on the cut of axially symmetric domain, at
time t = 5 s, with l = 2, using TH element, for θ ∈ {0.0, 0.5, 0.65, 0.8, 0.9, 1}.
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Figure 4.20: Streamlines coloured by velocity magnitude and vorticity on the cut
of axially symmetric domain, at time t = 5 s, with l = 2, using TH element, for
θ ∈ {0.0, 0.5, 0.65, 0.8, 0.9, 1}.
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Figure 4.21: Magnitudes of velocities at times t ∈ {3.5, 3.8, 3.95, 4.05, 4.10, 4.15} for
flow in axially symmetric geometry with piecewise linear boundary, for θ = 0.65,
using TH element.
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4.2.2 Flow in domain with three sinuses
Lastly, we show the graphs for flow in domain with three sinuses, using both TH and
BDM element with = 1 and l = 2. Figure 4.22 shows values of the flow quantities
at t = 5 s, where we vary the Navier’s slip parameter θ. We observed, that the
interval of parameters θ where the solution goes to stationary state, is more narrow.
Here the critical values of θ, where the vortices starts to generate and the solution
in unsteady are approximately as follows: θ = 0.33 for TH and l = 1, θ = 0.4 for
TH and l = 2, θ = 0.4 for BDM and l = 2. For BDM element and l = 1 we did
not get a stationary solution for low values of θ, not even for θ = 0, see Figure 4.23.
Figures 4.24 again demonstrates the different solutions using piecewise linear and
quadratic boundary for both elements. For a higher value θ = 0.9, in 4.25, the BDM
method seems to oscillates much less than the TH element and in 4.26 it stabilise
more sooner.
Further, Figure 4.27 shows the surface velocities at t = 5 s for l = 2, for TH element.
Figures 4.28 and 4.29 shows the velocity, instantaneous streamlines and vorticity
on the cuts of the domain, illustrating the generation of vortices for different slip
parameter, with l = 2 using TH element.
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Figure 4.22: Flow quantities at time t = 5 s, for θ ∈ {0.0, 0.5, 0.65, 0.8, 0.9, 1}, with
both piecewise linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM
element on mesh with three sinuses.
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Figure 4.23: Flow quantities in time t ∈ [0, 5] s for θ = 0.0, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on mesh
with three sinuses.
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Figure 4.24: Flow quantities in time t ∈ [0, 5] s for θ = 0.33, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on mesh
with three sinuses.
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Figure 4.25: Flow quantities in time t ∈ [0, 5] s for θ = 0.9, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on mesh
with three sinuses.
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Figure 4.26: Flow quantities in time t ∈ [0, 5] s for θ = 0.97, with both piecewise
linear (l = 1) and quadratic (l = 2) boundary, using TH and BDM element on mesh
with three sinuses.
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Figure 4.27: Surface velocities for flow in axially symmetric geometry, with l = 2,
at time t = 5 s, using TH element, for θ ∈ {0.0, 0.33, 0.5, 0.65, 0.9, 1} respectively,
on mesh with three sinuses.
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Figure 4.28: Streamlines and velocity on the cut of mesh with three sinuses, at time
t = 5 s, with l = 2, using TH element, for θ ∈ {0.0, 0.33, 0.5, 0.65, 0.9, 1}.
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Figure 4.29: Streamlines coloured by magnitude of velocity and vorticity on the cut
of mesh with three sinuses, at time t = 5 s, with l = 2, using TH element, for
θ ∈ {0.0, 0.33, 0.5, 0.65, 0.9, 1}.

80



Conclusion
We investigated unsteady three-dimensional flows in the region representing the aor-
tic root when allowing the Navier’s slip boundary condition on the wall. In the first
chapter, we defined the initial-boundary-value problem and its weak formulation.
In the second chapter, we rigorously proved the existence of the weak solution for
our specific problem. With the weak formulation and the considered velocity spaces
validated, we proceeded to the numerical and computational part.
We follow studies [9], [10] that aim to analyse flow in the aortic root, beginning with
the most simplified model and progressively adding modifications, analyse their ef-
fect and deduce their significance. We developed computational codes for numerical
simulations of flow in the aortic root, including three key aspects described in the
third chapter. Firstly, we generated two types of geometry: an axially symmetric
geometry and a more realistic geometry of the aortic root featuring three sinuses.
Secondly, we approximated the boundary of the generated computational mesh by
piecewise higher order polynomials rather then only piecewise linear. Thirdly, we
compare results when using two discretization methods: the Taylor-Hood finite
element and the H(div,Ω)-conforming Brezzi-Douglas-Marini element. The last
chapter discusses the results using relatively non-standard combinations of all the
mentioned aspects together with varying Naviers’s slip parameter θ on the wall.
From the benchmark problems such as Couette flow in two-dimensions and Poiseuille
flow in three-dimensions, we observe that meshes with piecewise quadratic bound-
aries yield significantly more accurate results compared to those with piecewise linear
boundaries, especially for H(div,Ω)-conforming methods. That means that even for
very fine meshes we can get two different solutions, depending on the smoothness
of the boundary. The same effect occurs for flow in the aortic root, where there
exists states, depending on the allowed slip on the boundary, where the solution
for stationary data goes to stationary solution with piecewise quadratic boundary,
but have non-stationary or even chaotic behaviour with piecewise linear boundary.
Therefore we deduce that the better approximation of the boundary should be taken
into account for further studies.
In case of the aortic root shape of the domain, the one with axially symmetric shape
has a larger interval of allowed slip on the boundary for obtaining the stationary
solutions, then the mesh with three sinuses.
Regarding the choice of the finite element discretisation, the Brezzi-Douglas-Marini
finite element more likely goes to the chaotic state for piecewise linear boundary
mainly for small values of θ, rather then Taylor-Hood. Moreover it has more de-
grees of freedom, hence the computation time is longer. However for larger values of
θ the solution is not so oscillatory or chaotic as for Taylor-Hood. Nevertheless, the
main reason for H(div,Ω)-conforming methods to be considered is the possibility to
develop efficient multigrid solvers. With our current method based on direct solver
our computations in three dimensions are limited to relatively coarse discretizations
and efficent multigrid solver could remove this limitation.
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[4] J. Blechta, J. Málek, and K. R. Rajagopal. “On the Classification of Incom-
pressible Fluids and a Mathematical Analysis of the Equations That Govern
Their Motion”. In: SIAM Journal on Mathematical Analysis 52.2 (Jan. 2020),
pp. 1232–1289. issn: 1095-7154. doi: 10.1137/19m1244895. url: http://
dx.doi.org/10.1137/19M1244895.

[5] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Ap-
plications. Springer Berlin Heidelberg, 2013. isbn: 9783642365195. doi: 10.
1007/978-3-642-36519-5. url: http://dx.doi.org/10.1007/978-3-642-
36519-5.

[6] B. Boon. “Leonardo da Vinci on atherosclerosis and the function of the sinuses
of Valsalva”. In: Netherlands Heart Journal 17.12 (Dec. 2009), pp. 496–499.
issn: 1876-6250. doi: 10.1007/bf03086311. url: http://dx.doi.org/10.
1007/BF03086311.

[7] C.-H. Bruneau and P. Fabrie. “New efficient boundary conditions for incom-
pressible Navier-Stokes equations: a well-posedness result”. In: RAIRO Modél.
Math. Anal. Numér. 30.7 (1996), pp. 815–840. issn: 0764-583X. doi: 10 .
1051 / m2an / 1996300708151. url: https : / / doi . org / 10 . 1051 / m2an /
1996300708151.

[8] E. Burman. “A Penalty-Free Nonsymmetric Nitsche-Type Method for the
Weak Imposition of Boundary Conditions”. In: SIAM Journal on Numeri-
cal Analysis 50.4 (Jan. 2012), pp. 1959–1981. issn: 1095-7170. doi: 10.1137/
10081784x. url: http://dx.doi.org/10.1137/10081784X.

[9] R. Chabiniok et al. “A benchmark problem to evaluate implementational issues
for three-dimensional flows of incompressible fluids subject to slip boundary
conditions”. In: Applications in Engineering Science 6 (June 2021), p. 100038.
issn: 2666-4968. doi: 10.1016/j.apples.2021.100038. url: http://dx.
doi.org/10.1016/j.apples.2021.100038.

[10] R. Chabiniok et al. “Three-dimensional flows of incompressible Navier–Stokes
fluids in tubes containing a sinus, with varying slip conditions at the wall”.
In: International Journal of Engineering Science 180 (Oct. 2022), p. 103749.
issn: 0020-7225. doi: 10.1016/j.ijengsci.2022.103749. url: http://dx.
doi.org/10.1016/j.ijengsci.2022.103749.

82

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/19m1244895
http://dx.doi.org/10.1137/19M1244895
http://dx.doi.org/10.1137/19M1244895
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/978-3-642-36519-5
http://dx.doi.org/10.1007/978-3-642-36519-5
http://dx.doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/bf03086311
http://dx.doi.org/10.1007/BF03086311
http://dx.doi.org/10.1007/BF03086311
https://doi.org/10.1051/m2an/1996300708151
https://doi.org/10.1051/m2an/1996300708151
https://doi.org/10.1051/m2an/1996300708151
https://doi.org/10.1051/m2an/1996300708151
https://doi.org/10.1137/10081784x
https://doi.org/10.1137/10081784x
http://dx.doi.org/10.1137/10081784X
https://doi.org/10.1016/j.apples.2021.100038
http://dx.doi.org/10.1016/j.apples.2021.100038
http://dx.doi.org/10.1016/j.apples.2021.100038
https://doi.org/10.1016/j.ijengsci.2022.103749
http://dx.doi.org/10.1016/j.ijengsci.2022.103749
http://dx.doi.org/10.1016/j.ijengsci.2022.103749


[11] P. Ciarlet and P.-A. Raviart. “Interpolation theory over curved elements, with
applications to finite element methods”. In: Computer Methods in Applied
Mechanics and Engineering 1.2 (Aug. 1972), pp. 217–249. issn: 0045-7825.
doi: 10.1016/0045-7825(72)90006-0. url: http://dx.doi.org/10.1016/
0045-7825(72)90006-0.

[12] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
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