
MASTER THESIS

Marie Brožová

Projective polynomials and the S-Boxes
of Streebog and Kuznyechik

Department of Algebra

Supervisor of the master thesis: Dr. rer. nat. Faruk Göloglu
Study programme: Matematics for Information

Technologies
Study branch: Matematics for Information

Technologies

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank Dr. rer. nat. Faruk Göloglu, my supervisor, who identified
the topic of Projective polynomials and the S-Boxes of Streebog and Kuznyechik
and led me through it. I am grateful for every advise, explanation and comment
during consultations. I appreciate also the flexibility around the arrangement of
consultations. I would also like to thank my family for supporting me, especially
my husband and my son who gave me space for self-realisation.

ii

Title: Projective polynomials and the S-Boxes of Streebog and Kuznyechik

Author: Marie Brožová

Department: Department of Algebra

Supervisor: Dr. rer. nat. Faruk Göloglu, Department of Algebra

Abstract: This thesis deals with possible connection between result of Léo Perrin’s
paper published at 2019 and Gologlu’s paper published at 2022. Perrin deals
with S-box π, which is a part of Kuznyechik cipher and hash function Streebog,
especially he introduces the notion of TKlog, which is a structure found in the S-
box. The main result of Gologlu’s paper is classification of fractional q-projective
functions, which seems similar to the structure of TKlog. In the thesis, there is
a description of cipher Kuznyechik as well as the hash function Streebog. Then,
results of Perrin’s paper are described including cryptographical properties of the
S-box. As a main contribution we give a design of an experiment with a goal
to find a fractional q-projective function with same or similar invariants as the
S-box π. Such function can be an initial point in a design of an attack.

Keywords: TKlog fractional polynomial projective polynomial Kuznyechik Stree-
bog

iii

Contents

Introduction 3

1 Preliminaries 4
1.1 Structures and mappings . 4
1.2 Boolean functions . 8
1.3 Cryptosystems and basics of cryptanalysis 14

1.3.1 Ciphers . 14
1.3.2 Hash functions . 17
1.3.3 Basics of linear and differential cryptanalysis 18

1.4 Algebraic geometry . 19

2 S–box of Kuznyechik and Streebog 24
2.1 Kuznyechik cipher and Streebog hash function 24

2.1.1 Kuznyechik . 25
2.1.2 Streebog . 28

2.2 Decompositions of the S–box π 32
2.2.1 TKlog . 32
2.2.2 Previous decompositions 35
2.2.3 Link between decompositions 38

2.3 Properties of π as TKlog . 38
2.3.1 Mapping cosets to cosets 38
2.3.2 Cryptographical properties 41

3 Permutations over finite field 44
3.1 Classification of fractional projective permutations 44

3.1.1 Apparent connection between fractional q-projective func-
tions and TKlog . 46

3.1.2 Setting of constants . 47
3.2 Elementary representations of S-box π 48

3.2.1 S-box π as a vectorial Boolean function 49
3.2.2 S-box π as a Lagrange polynomial 50
3.2.3 One single formula for S-box π 51

3.3 Möbius transform and invariants 52
3.3.1 Affine equivalency . 52
3.3.2 Composition with affine transformations 54
3.3.3 Point at infinity . 55

3.4 Main experiment . 60
3.4.1 Summary of procedure . 61
3.4.2 Interpretation of the result 64

Conclusion 66

Bibliography 67

List of Figures 68

1

List of Tables 69

A Attachments 70
A.1 S-box π as a lookup table . 70
A.2 Auxiliary functions and used modules in SageMath 71
A.3 Linear layer of Kuznyechik . 72
A.4 S-box π as a TKlog in SageMath 73
A.5 Algebraic normal form of π in SageMath 74
A.6 Lagrange polynomial of π in SageMath 76
A.7 Setting of constants for main experiment in SageMath 77
A.8 Invariants of π in SageMath . 79
A.9 Auxiliary function for main experiment 80
A.10 Special case with d = ψ(a) in SageMath 81
A.11 Main experiment in SageMath . 82
A.12 Example of differential spectrum 87

2

Introduction
Cryptography, as we know it today, follows principles invented more than a hun-
dred years ago. Today, there exist multiple security institutes around the world
that publish cryptographical primitives. Published primitives are examined and
tested by a team of specialists. One of them is NSA (National Security Agency)
besides United States Department of Defense that published now most commonly
used primitives.

Rosstandard, formerly Gosstandard, is Russian federal government agency
subordinated to the Ministry of Industry and Trade. In 2015 the agency pub-
lished a standard that introduced a block cipher Kuznyechik and a hash function
Streebog. The cipher as well as the hash function uses an S-box called π as a non-
linear part of the procedure of encryption. Original standard is not distributed
freely to the public, but [DD13] and [Dol16] describe the block cipher and the
hash function as well.

Since that time, several papers were published [PU16], [BPU16] and [Per19],
that analyse the published standard and point out on found properties of its S-
box. Published papers and especially the most recent paper [Per19] by Perrin
found that there is a strong structure in the S-box and name it TKlog. It is a
special property of the S-box that preserves structural properties of its input to
its output. S-box π is a permutation of the finite field F28 . Roughly speaking, the
special property of S-box π is quite related to its subfield of index 2 F24 . There is
an apparent connection between the structure found in the S-box π and functions
introduced in [Gö22]. This connection seems to stem from the relationship of trace
and norm functions to both the S-Box π and projective polynomials.

We design an experiment where we inspect a set of fractional q-projective
function. We make use of the result of [Gö22], the classification of fractional
q-projective function. It gives us a tool how to generate all fractional q-projective
function by only composition of one or two fixed forms with all projective linear
transformations. A direct way how to inspect all of them takes more than reason-
able time, therefore we have to reduce the number of function we will check. We
use invariants with respect to affine-equivalency to overcome the complexity of the
experiment, by inspection of one single representative of each affine-equivalency
class.

We organise the thesis by chapters. In Chapter 1 we give all necessary back-
groud for following chapters. Specifically we give definitions and notations of
structures and mappings we will deal with such as finite fields, Boolean func-
tions, affine and projective space and fractional polynomials that operate on the
projective space. Moreover we give basic introduction into cryptosystems such as
ciphers and hash function, that will be needed in Chapter 2. First, we describe
there the cipher Kuznyechik and the hash function Streebog themselves and then
we deal with results of previous papers [PU16] and [BPU16] that give us decom-
positions of the S-box. In another section we describe properties found in [Per19].
Last chapter (Chapter 3) contains description of fractional q-projective function
and the result of [Gö22], which will help us in our experiment described in Section
3.4.

3

1. Preliminaries
Mappings and algorithms for cryptographical systems used to secure and store an
information are based on mathematical structures. Analysis of the principles are
usually based on general theory and structures of abstract algebra. We therefore
start with a chapter that covers all necessary terms.

First, we list notation around used structures and mappings between them.
Then, we give foundations of Boolean functions, within the range we will use them
later in the thesis. We continue with description of types of cryptosystems we
will analyse and of their properties used in linear and differential cryptanalysis,
that plays a role in every analysis of an S-box. At the end of the chapter as
last section we give elementary definitions from algebraic geometry with focus on
projective permutations over finite field.

1.1 Structures and mappings
Finite fields and vector spaces are important structures in domain of algebra as
well as in cryptanalysis. Together with integers they cover all structures we will
be interested in. There exists a connection between them and almost a one-to-one
correspondence between their elements. We give a list of mathematical structures
and the notation we will use from now on in Notation 1.
Notation 1. Let N,m, k ∈ N, N = pm for p a prime then:

• FN is the field with N elements,

• F k is k dimensional vector space over a field F with standard basis {ei}k−1
i=0

and notation

a ∈ F k ⇐⇒ a = (a0, . . . , ak−1) where ai ∈ F ∀i : 0 ≤ i < k,

• F × · · · × F⏞ ⏟⏟ ⏞
k times

is set of all possible ordered k-tuples of elements from F .

We focus in the thesis on analysis of one particular part of a cryptographical
system that operates on structures with p = 2 and therefore we will be mostly
interested in following structures:

• finite fields F2m and F22m as structures that plays the main role in Chapter
2 and especially then with m = 4, as our mapping of interest is defined to
permute F28 ,

• Boolean vector spaces Fm2 and F2m
2 as structures the most close to real

configuration of bits in a computer and especially with m = 4, because
F8

2 and F4
2 are the vector spaces that correspond to the finite fields from

previous point.
Remark. Finite field F2m has structure of a factor ring of a polynomial ring F2[x]

F2m = F2[x]/(g(x)) =
{︂m−1∑︂
i=0

ziα
i
}︂

for g ∈ F2[x] irreducible of degree m, α a root of g and z = (z0, . . . , zm−1) ∈ Fm2 .

4

In every field there must exists an inverse of every nonzero element and there-
fore we require an irreducible polynomial g in such construction. Irreducible
polynomial generates a prime ideal, which will guarantee the field. Representa-
tion of elements from the finite field is covered by all polynomials of degree less
than m.

Let α be a root of g, which is not in F2 obviously, because g is an irreducible
polynomial over Z2. The element α that also belongs to the residue class of x
then ensures that every elements from F2m can be represented as ∑︁m−1

i=0 ziα
i mod

g(α). The finite field is therefore generated by the element α or in other words
by the polynomial bases {1, α, . . . , αm−1} .

For a construction of a finite field with 2m elements we can chose an arbitrary
root of f because there exists an isomorphism between two finite fields generated
by two different root of an irreducible polynomial of degree m. Moreover we can
chose any irreducible polynomial of degree m and its roots will always generate
a finite fields isomorphic to each other.
Example. The field F22m with m = 4 used in π is defined as

F28 = F2[x]/(x8 + x4 + x3 + x2 + 1).

Every field contains groups with respect to multiplication and addition op-
eration. Notation 2 and Observation 1 describe structure of multiplicative and
additive group of a field, which will be used in Section 2.3 to explain discoveries
of Perrin [Per19].

Notation 2. The largest group of the finite field F2m with respect to multiplication
and addition operation will be called multiplicative and additive group respectively
and they will be denoted as:

• Multiplicative group (F×
2m , ·) and

• Additive group (F2m ,+)

with notation F×
2m = F2m \ {0}.

Observation 1. Let α be an element of F2m as in Remark after Notation 1.
Then using Notation 2 we have that:

• (F×
2m , ·) ≃ (Z2m−1,+) is a cyclic group generated by element α with under-

lying set
F×

2m = {αi mod p|i ∈ Z2m−1},

with correspondence αi + αj = αi+j for any i, j ∈ Z2m−1 and α−1 = α2m−2

since α · α2m−2 = α2m−1 = 1,

• (F2m ,+) ≃ (F2,+)m is a vector space over F2 of dimension d with standard
basis {ei}mi=0, with underlying set

F2m = {
d−1∑︂
i=0

aiα
i|(a0, . . . , am−1) ∈ Fm2 },

with {1, α1, . . . , αm−1} the polynomial basis.

5

Remark. Observation 1 describe structures of finite fields where we can see that
its additive group is isomorphic to a vector space. If we chose a different root of
g in the construction of the finite field e.g., β, we get also an isomorphism to a
vector space but elements themselves will be represented by different sequences
of (a0, . . . , am−1) analogously as if we chose a different basis of the vector space.

As we already mentioned, cryptographical systems runs over certain mathe-
matical structures. The closest representation of a message or information to be
protected is by elements of a vector spaces over F2, because the data are usually
bitstrings of known length. Before we move on to transitions between structures,
we focus on operations in vector spaces.

During manipulations with bitstrings as encryption, key generation or message
consummation, several bit operations are needed. We represent bitstrings as
elements from Fk2 and therefore bit operations will be represented as operation
over Fk2. We cover all used operations by Notation 3 as a list of simple and well
known functions to introduce them and use later in the thesis.

Notation 3.

• ⊕ is binary operator Fk2 × Fk2 → Fk2 that works as addition in F2 by compo-
nents with infix notation

a⊕ b = c, where ci = ai + bi,∀i : 0 ≤ i < k,

• ∥ is binary operator Fk2 × Fk2 → F2k
2 that works as concatenation of two

elements with infix notation

a∥b = c, where ci = ai and ck+i = bi, ∀i : 0 ≤ i < k,

• generalized ∥ operator is n-ary operator
n times⏟ ⏞⏞ ⏟

Fk2 × · · · × Fk2 → Fnk2 that works as
concatenation of n elements with infix notation

a(0)∥ . . . ∥a(n−1) = a, where aik+j = a
(i)
j ,∀i : 0 ≤ i < n and ∀j : 0 ≤ j < k,

• Splitn : Fnk2 →
n times⏟ ⏞⏞ ⏟

Fk2 × · · · × Fk2, that works as

Splitn(a) = a0, . . . , an−1

for a(0)∥ . . . ∥a(n−1) = a and a(0), . . . , a(n−1) ∈ Fk2, a ∈ Fnk2 ,

• MSBn : Fk2 −→ Fn2 with k > n that works as orthogonal projection to Fn2
with basis {ek−n, . . . , ek−1}

MSBn(x) = (xk−n, . . . , xk−1)

i.e. takes n most significant bits,

• LSBn : Fk2 −→ Fn2 with k > n that works as orthogonal projection to Fn2 with
basis {e0, . . . , en−1}

LSBn(x) = (x0, . . . , xn−1)
i.e. takes n less significant bits.

6

Bitstring of fixed lenght can be interpreted in more than one way. We can
always talk about k bit information but the way we interpret it gives us the real
meaning and possibilities how to manipulate it.

Cryptographical systems can for instance change the interpretation in the
middle of computation as it is for example in well known cipher AES, where we
switch between interpretation of a bitstring as an element from vector space Fk2
and a finite field F2k .

There is also another way how to interpret a bitsting and that is interpretation
as an integer. We will see in Observation 2, that there exists a mapping that
connects integers and other representation of a bitstring but the mapping does
not preserve the structure. It is the reason way interpretation as integers is
usually used only to express the value table of a function that operates on vector
spaces. We list mappings that connect mentioned structures in Notation 4.

Notation 4. Let k ∈ N.

• Transition from integer representation to vector representation will be de-
noted as Vk : Z2k −→ Fk2 with

Vk(a) := (a0, . . . , ak−1) = a,

such that a = ∑︁k−1
i=0 ai2i and ai ∈ F2.

• Transition from vector representation to integer representation will be de-
noted as Intk : Fk2 −→ Z2k with

Intk(a) :=
k−1∑︂
i=0

ai2i,

such that a = (a0, . . . , ak−1).

• Transition from the finite field representation to vector representation will
be denoted as VF : F2m −→ Fm2 with

VF (z) := (z0, . . . , zd−1),

such that z = ∑︁d−1
i=0 ziα

i.

• Transition from the vector representation to finite field representation will
be denoted as FV : Fm2 −→ F2m with

FV(z) =
m−1∑︂
i=0

ziα
i,

such that z = (z0, . . . , zd−1).

To summarize, we depict all mappings from Notation 4 in Figure 1.1 with
k = d.

Z2m

Vm

⇄
Intm

Fm2
FV
⇄
VF

F2m

Figure 1.1: Transitions between main structures

7

We describe connection between mappings from Notation 4 in Observation
2. All of the mappings has different domains and images, however they are all
bijections and we can observe several similarities between them. First we can see
that mappings Intk and Vk are inverse to each other as well as FV and VF . Then
we also observe that Intk is somehow an analogy of FV if we chose α = 2 and Vk

is analogy for FV for α = 2. We list up all observed properties to complete the
concept of transitions between studied structures by those mappings.

Observation 2. We can derive simple observations about mappings from Nota-
tion 4:

1. Intk and Vk are both injective mapping since ai < 2 and remainders are
always unique.

2. Intk = V−1
k because of point 1. and

Intk(a) = (a0, . . . , ak−1) ⇐⇒ Vk(a0, . . . , ak−1) = a

for every a ∈ Z2k (respectively for every (a0, . . . , ak−1) ∈ Fk2).

3. Analogously we have that FV and VF are both injective mappings and there-
fore FV = V−1

F .

4. Since Intk nor Vk is a homomorphism, we cannot derive the isomorphism
between Z2k and Fk2 from Intk = V−1

k (and obviously Z2k ̸≃ Fk2).

5. We have (F2,+)k ≃ (F2k ,+) as vector space and additive group as elemen-
tary isomorphism.

1.2 Boolean functions
We already described simple bitstring operations used by cryptographical systems
in previous section and in this section we focus generally on mappings that operate
on Boolean vector space Fk2 as space of representation of bitstrings with length k.

A Boolean function is a building block to its extended variant a vectorial
Boolean function. We define them together in Definition 1 and we will lately
focus more on vectorial Boolean functions as an interpretation of our main object
of interest - an S-box - a part of cipher Kuzniechik and hash function Streebog.

Lately in this section, we list properties of vectorial Boolean functions and
their relevance that will be also touched on in analysis of the S-box.

Definition 1 ([WF16]). A function

• f : Fk2 −→ F2 is called the Boolean function BF,

• F : Fk2 −→ Fn2 is called the vectorial Boolean function VBF.

Remark. We can treat a VBF F : Fk2 −→ Fn2 as an ordered n-tuple of BFs
f0, . . . , fn−1 : Fk2 −→ F2 with notation F (x) = (f0(x), . . . , fn−1(x)) for x ∈ Fk2

8

We will be mostly interested in VBF F : Fk2 −→ Fk2 with same dimension of
domain and image space and so we consider only this type of VBFs from now on.

Concrete VBF can be defined by a value table where we specify that a preim-
age (a0, . . . , ak−1) ∈ Fk2 goes to image (a′

0, . . . , a
′
k−1) ∈ Fk2. This representation

is usually used for function that does not have any structure in the image e.g.,
non-linear layer for a cipher as we describe in Section 1.3.1. It is one of simplest
definition of a function, since a value table exists for every deterministic function
with finite domain.

Another simple representation is the algebraic normal form defined in Defini-
tion 2.

Definition 2 ([WF16]). Let f : Fk2 −→ F2 be a BF and let F : Fk2 −→ Fk2 be
a VBF. We say that f has the algebraic normal form (ANF) if there exist
au ∈ F2 for every u ∈ Fk2 such that

f(x) =
∑︂
u∈Fk

2

aux
u,

with notation xu = ∏︁k−1
i=0 x

ui
i for u = (u0, . . . , uk−1) and specially for F we have

F (x) =
∑︂
u∈Fk

2

aux
u,

with au ∈ Fk2.

We show how to find an algebraic normal form for a VBF in Section 3.2.1. It
can be proven that every VBFs have such representation and that such represen-
tation is unique for every VBF, because for every two different ANF there is at
least one preimage on which those two functions differs. Moreover it allows us
to define the degree of VBFs in Definition 3. Degree of a VBF is an important
property that influences other properties.

Definition 3 ([WF16]). Let f : Fk2 −→ F2 be a BF and let F : Fk2 −→ Fk2 be a
VBF with ANFs

f(x) =
∑︂
u∈Fk

2

aux
u, F (x) =

∑︂
u∈Fk

2

aux
u.

Let wf : Fk2 −→ N0 be the Hamming weight of u ∈ Fk2 defined as

wf(u) =
k−1∑︂
i=0

ui.

We define the degree of f as

deg(f) = max
u∈Fk

2

(︃
wf(u)|au ̸= 0

)︃
,

and the degree of F as

deg(F) = max
u∈Fk

2

(︃
wf(u)|au ̸= (0, . . . , 0)

)︃
.

9

Remark. Equivalently we can define the degree of a VBF F = (f1, . . . , fk) with
fi : Fk2 → F2 for i = 1, . . . , k as

max
i=1,...,k

(︂
deg(fi)

)︂
,

where deg(fi) is defined as above.
Let us continue with other properties of VBFs. Walsh transform and Walsh

spectrum defined in Definition 4 are basic properties that can be computed
straightforwardly from the lookup table. They are also tightly connected with
linear cryptanalysis of an S-box viewed as a VBF as a part of a cipher. We use
the Definition 4 in Section 1.3.3 to define elements in the linear approximation
table.

Definition 4. Let F : Fk2 −→ Fk2 be a VBF and ⟨, ⟩ the standard scalar product
on Fk2. We define the Walsh transform of F as

F̂ (u, v) =
∑︂
x∈Fk

2

(−1)⟨u,F (x)⟩+⟨v,x⟩,

for u, v ∈ Fk2 and the Walsh spectrum of F : Fk2 −→ Fk2 a vectorial Boolean
function as a multiset of Walsh transforms

F = {F̂ (u, v)|u, v ∈ Fk2, u ̸= (0, . . . , 0)}.

In the same way that the Walsh transforms of a function form the Walsh
spectrum, we have δF (a, b) that form the differential spectrum from Definition
5. Walsh transforms are used as elements of linear approximation table in linear
cryptanalysis while elements of the differential spectrum are used as elements of
difference distribution table in differential cryptanalysis.

Both terms from Definition 5 can be computed straightforwardly from the
look up table as well and we use them in Section 1.3.3 to define elements in the
differential distribution table.

Definition 5. Let F : Fk2 −→ Fk2 be a VBF. We define

δF (a, b) = #{x ∈ Fk2|F (x⊕ a) + F (x) = b},

for a, b ∈ Fk2 and the differential spectrum of F : Fk2 −→ Fk2 a vectorial Boolean
function as a multiset

∆F = {δF (a, b)|a, b ∈ Fk2}.

We just defined properties of vectorial Boolean function that can play a role
in an analysis. There exist equivalencies between function that preserves those
properties i.e., we have always function with same properties in one equivalency
class.

In the thesis we are focused on one particular VBF - the S-box of Kuznyechik
and Streebog - and we want to somehow locate is in the set of all VBF. If we
divide the set into equivalency classes we can then more easily locate our VBF
in one or more equivalency classes by finding value of several properties. Or
more precisely, we can identify those in which equivalency classes our VBF is
not located, which is in those that contain functions with different values of the
properties.

We define a equivalency relation in Definition 6.

10

Definition 6. Let F1, F2 : Fk2 −→ Fk2 be two VBFs. We say that F1 is affine-
equivalent to F2 and we write F1 ∼EA F2 if and only if

F1(x) = A2 ◦ F2 ◦ A1(x) + A3(x) for every x ∈ Fk2,

for some A1, A2 affine permutation of Fk2 and A3 affine map on Fk2.

Properties in Definition 3, 4 and 5 are not chosen at random to be mentioned
in the thesis. These are properties that are preserved through composition with
affine mappings as we prove it in Theorem 3. We formally name such properties
in Definition 7.

Definition 7. Let ∼ be an equivalency and ρ a property. We say that ρ is an
invariant with respect to ∼ if for every F1 ∼ F2 it holds that ρ of F1 is equal to
ρ of F2.

We continue straightforward to the theorem which says that properties such
as the degree of a function, absolute value of elements from the Walsh spectrum
and the differential spectrum are preserved through affine equivalency. We give
also its proof to demonstrate that it follows from basic theory and only needs
some technical manipulation.

Theorem 3. Let F : Fk2 −→ Fn2 be a not constant vectorial Boolean function.
The following properties are invariant with respect to affine-equivalency:

1. deg(F) the degree of F ,

2. |F| = {|F̂ (u, v)| |F̂ (u, v) ∈ F} the multiset of absolute values of Walsh
spectrum,

3. ∆F the differential spectrum.

Proof. We denote the degree of F1, F2 as d1, d2 respectively. We suppose that
d1, d2 > 0 since constant and zero functions are not interesting for us.

Let us follow the notation from Definition 6. We show always that none of
transformations

a. F ↦→ F + A3

b. F ↦→ F ◦ A1

c. F ↦→ A2 ◦ F

change the invariant.

1. We will follow notation from Definition 3.

a. Let us consider A3 : Fk2 → Fk2 as

(x1, . . . , xk) ↦→ ((
k∑︂

i1=1
xik) + b3,1, . . . , (

k∑︂
ik=1

xik) + b3,k)

11

then transformation F ↦→ A3 will give us

F = (f1, . . . , fk) ↦→ (fk + (
k∑︂

i1=1
xi1) + b3,1, . . . , fk + (

k∑︂
ik=1

xik) + b3,k)

where b3,i are constants and deg(fi) >= 1. Degree of the sum is always
less or equal 1 and therefore it cannot change the degree of fi. Finally,
by Definition 3 the degree of the right side is not changed neither.

b. Let us consider A1 : Fk2 → Fk2 as

(x1, . . . , xk) ↦→ ((
k∑︂

i1=1
xi1) + b1,1, . . . , (

k∑︂
ik=1

xik) + b1,k)

then transformation F ↦→ F ◦ A1 give us

F = (f1, . . . , fk) ↦→ (f1(
k∑︂

i1=1
xi1), . . . , fk(

k∑︂
ik=1

xkk
))

Let xu be the term for which deg(F) = ∑︁k
i=1 ui. The transformation will

give us

xu =
k∏︂
i=1

uixi ↦→
k∏︂
i=1

ui((
k∑︂
j=1

xi) + ci)

where ci is a constant. Number of not zero ui stays the same after the
transformation and therefore also degree of every terms after we multiply
out the sum stays the same. Analogically every term of the algebraic
normal form keeps its degree and therefore also degree of the right side
of transformations stays the same.

c. Let us consider A2 : Fk2 → Fk2 as

(x1, . . . , xk) ↦→ ((
k∑︂

i1=1
xi1) + b2,1, . . . , (

k∑︂
ik=1

xik) + b2,k)

then transformation F ↦→ F ◦ A1 give us

F = (f1, . . . , fk) ↦→ ((
k∑︂

i1=1
fi1) + b2,1, . . . , (

k∑︂
ik=1

fkk
) + b2,k)

where b2,i are constant. Sum of function of certain degree cannot pro-
duce any new term of higher degree than the maximal one that existed
before and at the same time cannot reduce the term of maximal degree
because A2 is a permutation and the only part of A2 that can reduce the
degree because of sum of two or more fi can be represented by a non
singular matrix and therefore if one row reduce the degree there must
exist another that will keep it.

2. We follow the notation from Definition 4. We have

F̂ (u, v) =
∑︂
x∈Fk

2

(−1)⟨u,F (x)⟩+⟨v,x⟩

12

a. after the transformation F ↦→ F + A3 we get

F + A3ˆ (u, v) =
∑︂
x∈Fk

2

(−1)⟨u,F (x)+A3(x)⟩+⟨v,x⟩

=
∑︂
x∈Fk

2

(−1)⟨u,F (x)⟩+⟨u,A3(x)⟩+⟨v,x⟩

=
∑︂
x∈Fk

2

(︂
(−1)⟨u,F (x)⟩+⟨v,x⟩ · (−1)⟨u,A3(x)⟩

)︂

b. after the transformation F ↦→ F ◦ A1 we get

F ◦ A1ˆ (u, v) =
∑︂
x∈Fk

2

(−1)⟨u,F◦A1(x)⟩+⟨v,x⟩

=
∑︂
x∈Fk

2

(−1)⟨A−1
1 (u),F (x)⟩+⟨v,x⟩

= F̂ (A−1
1 (u), v)

A1 is a permutation and therefore |F| by definition stays the same.
c. after the transformation F ↦→ F ◦ A2 we get analogously

A2 ◦ Fˆ (u, v) = F̂ (A−1
2 (u), v)

A2 is a permutation and therefore |F| by definition stays the same.

3. We follow the notation from Definition 5. We have

δF (a, b) = #{x ∈ Fk2|F (x⊕ a) + F (a) = b}

a. after the transformation F ↦→ F + A3 we get

δF+A3(a, b) = #{x ∈ Fk2|F (x⊕ a) + A3(x⊕ a) + F (x) + A3(a) = b}
= #{x ∈ Fk2|F (x⊕ a) + A3(x) + A3(a) + A3(0) + F (x) + A3(x) = b}
= #{x ∈ Fk2|F (x⊕ a) + A3(a) + A3(0) + F (a) = b}
= #{x ∈ Fk2|F (x⊕ a) + F (a) = b+ A3(a) + A3(0)}
= δF (a, b+ A3(a) + A3(0),

b. after the transformation F ↦→ F ◦ A1 we get

δF◦A1(a, b) = #{x ∈ Fk2|F ◦ A1(x⊕ a) + F ◦ A1(x) = b}
= #{x ∈ Fk2|A−1

1 (F ◦ A1(x⊕ a) + F ◦ A1(x)) = A−1
1 (b)}

= #{x ∈ Fk2|A−1
1 (0) + F (x⊕ a) + F (x)) = A−1

1 (b)}
= #{x ∈ Fk2|F (x⊕ a) + F (x)) = A−1

1 (0) + A−1
1 (b)}

= δF (a,A−1
1 (0) + A−1

1 (b))

A1 is a permutation and therefore ∆F stays the same,

13

c. after the transformation F ↦→ A2 ◦ F we get

δF◦A2(a, b) = δF (a,A−1
2 (0) + A−1

2 (b))

A2 is a permutation and therefore ∆F stays the same.

Theorem 3 gives us a way how to distinguish whether two vectorial boolean
functions can be affine equivalent or more precisely thanks to the theorem we can
identify the case where two function are not affine equivalent by comparison of
their properties. We actually use the inverted implication, which says that if we
came up on two functions with different properties, we know that they are not
affine equivalent.

In Chapter 3, we will use the comparison of certain property in our experiment
where we will try to locate our VBF of interest in specific subset of functions or
more precisely to show that it can not be located there.

1.3 Cryptosystems and basics of cryptanalysis
Ciphers and hash functions are two of main tools that cryptography uses to
provide security and integrity of data. We give a general scheme and a definition
of a cipher, specifically the block cipher with SPN scheme and a hash function
as general foundations so that we can describe specifics of the cipher Kuznyechik
and the hash function Streebog that use our S-box of interest in Chapter 2.

1.3.1 Ciphers
Ciphers as we understand them here are designed to transfer secret message from
person A to person B so that only persons A and B are able to get the original
message from the encrypted one thanks to exclusive knowledge of a key. Such
scheme follows from Kirchhoff’s principles. We define a scheme of a cipher in
Definition 8.

Definition 8 (Cipher). We define a cipher as a 5-tuple (P , C,K, E ,D), where:

• P is a set of plaintexts (messages to be encrypted),

• C is a set of ciphertexts (encrypted messages),

• K is a set of keys (secret parameter in process of encryption),

• E : P ×K −→ C is the encryption function,

• D : C × K −→ P is the decryption function,

To be considered as a well defined cipher we require

D(E(m, k), k) = m, ∀m ∈ P , ∀k ∈ K.

Remark. Definition 8 can be used for both symmetric and asymmetric cipher,
where the main difference lie in the set K - set of keys - and its usage in E and
D.

14

• Symmetric cryptosystem uses the same key for encryption and decryption,

• asymmetric cryptosystem uses a couple of keys, so-called public key kp for
encryption and so-called secret key ks for decryption. They are related in
a way that

D(E(m, kp), ks) = m, ∀m ∈ P , ∀(kp, ks) ∈ K.

Kuznyechik as the cipher of interest in this thesis is as we call it a block
cipher and moreover Kuznyechik is a block cipher that uses a structure similar to
a substitution-permutation network in encryption and decryption function and
therefore we focus here on symmetric ciphers and especially block ciphers that
has specific structure of P and C. We define notion of block ciphers in Definition
9.

Definition 9. [MvOV01, Definition 7.1] We define a m-bit block cipher as cipher
(P , C,K, E ,D) with:

1. P = C = Fm2 ,

2. E(p,K) invertible mapping for every K ∈ K with inverse mapping D(c,K)
such that we have m = D(E(m,K), K) for every m ∈ P.

Remark. Second point in Definition 9 says only that we use the same key for
encryption and decryption and that it is a well defined cipher by Definition 8
Remark. In practice, to encrypt longer messages than k bits, we split the message
into k-bits block and encrypt each block on its own. To connect those block
one can use several modes of operation as CFB, FCB or OFB and many more.
Majority of them are described in [KR11, Chapter 4], but we are not interested
in how the modes of operation plays the role and focus therefore only on case
when size of the message matches exactly the size of the block.

As we already mentioned, block ciphers can be of special kind that uses a
substitution-permutation network (SPN). It has a specific structure of encryption
and decryption. The advantage lies in easy implementation, possible scalability.
It is a proven model that provides confusion and diffusion, two basic properties
introduced by Shannon in [eS49, Chapter 23]. These are properties of a cipher
that should provide resistance for instance against statistical attack or attempt
of key recovery from the ciphertext.

Definition 10 (SPN). The cryptosystem (P , C,K, E ,D) is called substitution-
permutation network with n ∈ N rounds if:

• P = C = Fm2 ,

• K = Fk2 with expansion function KeyGen : K −→ (Fm2)r expanding the main
key k ∈ Fk2 into r round keys k1, . . . , kr ∈ Fm2 ,

• E consist of r rounds, the first r − 1 rounds performing sequence of layers:

∗ round key addition,
∗ linear permutation of bits,

15

∗ non-linear substitution,

the last round applying only the key addition,

• D is the inverse of E in a way that we apply inverse of each layer in reverse
order.

Remark. There exist variations of SPN that replace the permutation layer by a
linear layer. Then, we can call it substitution-linear network (SLN). It is the
structure used in Kuznyechik block cipher, which is described in Section 2.1.2.
However we have to always keep the round key addition, the non-linear substitu-
tion and one layer in between that provides diffusion.

If we let apart the size of a block, ciphers using the SPN differs by choice of
KeyGen, the permutation layer and the non-linear substitution layer. We give
some comment on each of mentioned part of a cipher.

KeyGen should be a function expanding the main key into round keys in a
way that every bit of information in the main key is used and no information is
left out. Individual round keys should be independent with each other in a way
that knowledge of one round key or part of the main key does not provide much
information about the rest.

Permutation layer is commonly chosen similarly so that the change of one bit
on the input is distributed into approximately half of bits on the output, which
can provide us diffusion in a cipher as defined by Shannon [eS49, Chapter 23].

The main strength of the cipher lies in the non-linear substitution layer. Linear
and differential cryptanalysis can deal with other layers quite easily, but this is
the one that can make the cipher hard or easy to attack thanks to confusion as
defined by Shannon [eS49, Chapter 23].

The most common practice is the so–called S–box function as the non-linear
layer. There exist various types of S-boxes, there are fixed S-boxes that are
independent of the key or those generated dynamically with respect to to key.
An S-box can have domain and image vector spaces of the same or different
dimension. In Definition 11 we define notion of S-box as we will use in the thesis.

Definition 11. Let m be the block size of a block cipher. We define the S-box
as a function ς : F

m
n
2 −→ F

m
n
2 with n ∈ N, such that ς permutes F

m
n
2 .

Let us explain how the S-box as the non-linear layer in a SPN can work. We
first split the input with m bits into n smaller bitstrings with m

n
bits, apply the

S-box on each smaller bitstring and we concatenate outputs of the S-box back
again in one bitstring of m bits. All of these bitstring manipulations are covered
by Notation 3.

As an S–box is usually given by a value table, it could be hard to find a
structure in this layer since first one have to convert this value table into an-
other representation. We already mentioned the ANF and we will also discuss
our S-box of interest as the Lagrange interpolation polynomial in Section 3.2.2.
Representation by a Lagrange interpolation polynomial exists for every function
if it is considered as function on a finite field.

A good S-box is considered if the function ς provides significant confusion if
it is used in a SPN as the non-linear substitution layer. Properties that can be
mesured and that play a role in linear or cryptanalysis can be e.g. the degree

16

of the S-box function. For instance if the degree is equal to 1, we have a linear
function and we do not get any confusion.

Also other properties can be considered such as the Walsh spectrum and
differential spectrum, which are propagated to linear approximation table and
diference distribution table as we define them in Section 1.3.3. They are also
propagated to linear and differential anomaly that we define in Section 2.3.2 with
a brief comment about how to interpret those terms as indicators for easy or hard
to attack functions.

1.3.2 Hash functions
Hash functions are intended to preserve integrity of data. A hash function can be
used in a situation, when we want to sign a data to guarantee the non-repudiation
of an authorization. Therefore we introduce hash function because then we can
take only a hash print of the data of fixed size and sign it instead of signing
probably large data of different size at each time. We define a hash function in
Definition 12 taken directly from [MvOV01].

Definition 12 ([MvOV01], Definition 9.1). We define a hash function as map-
ping h having two properties:

1. (compression) h : (F2)∗ −→ Fk2 maps any element of finite bit length from
(F2)∗ to an element of fixed bit length from Fk2,

2. (ease of computation) computation of h(x) from an input x is ”easy”.

It is relevant to explain here what can be meant by ”easy” computation. We
do not want to sink in the theory of complexity or computational and provable
security and we give only an rough comment. In practice a hash function should
be used as that anyone can generate a hash of a data and any another can
validate the hash by computing it again from the data. Therefore we require the
computation to be ”easy” to cover this use case.

At the same time if we want to use a hash function as described at the be-
ginning of the section we implicitly require that inverse of the hash function is
”hard” to compute so that no one can systematically compute preimages from
the hash value. The requirement of ”easy” computation of the hash value also
exclude those function that has inverse that is ”hard” to compute but it is also
”hard” to compute the direct way to get the hash value, because such functions
can be secure but not practical.

A good hash function has certain properties. The aim is to be able to see
the hash value h(m) of a message m as somehow unique representative for the
message m. It suits the purpose to use it in signature schemes. But since a
hash function accepts more inputs than it can produce different outputs, we have
guarantied existence of collisions. A signature of a hash value can be considered
as unique with respect to signed data without knowledge of the signature key
only if it is ”hard” to find collisions for the hash function.

There exists several problems around finding preimages of the hash functions
and until one prove that he can solve them efficiently, the hash function is con-
sidered secure and collision resistant. We list them with respect to its complexity
in descending order:

17

1. For y ∈ Fk2 a hash print find arbitrary number of preimages xi ∈ (F2)∗,
pairwise different such that h(xi) = y, ∀i,

2. For x ∈ (F2)∗ find a x′ ∈ (F2)∗ such that x ̸= x′ and h(x) = h(x′),

3. Find any x, x′ ∈ (F2)∗ such that x ̸= x′ and h(x) = h(x′).

In this thesis we are interested in an S-box used in Streebog hash function
described in Section 2.1.2. Streebog has commonly used sponge structure which
consumes the message by blocks of fixed length and with each block it proceed
operations similar to SPN with the S-box that is common to the Kuznyechich
cipehr described in Section 2.1.1.

1.3.3 Basics of linear and differential cryptanalysis
When we study an S–box and its properties, we always come across its linear and
differential properties. S–boxes are usually permutations that are designed not to
have an algebraic structure, but we have several tools to analyse some properties.

Process of linear or differential attack themselves can be found in multiple
publications, for example in [KR11], whereas we focus only on several terms used
in Section 2.3.2. We will describe there Perrin’s discoveries in [Per19] about
properties of the S–box π and we will need basic terms to be defined here.

First of all we give a definition of the linear approximation table and the
differential distribution table in Definition 13, where both designations indicate
the purpose of such terms. We use here also already defined terms from Definition
4 and 5.

Definition 13 (LAT and DDT, [KR11]). Let F : Fn2 −→ Fn2 be a vectorial
Boolean function, i, j ∈ Fn2 . We define:

LATF (i, j) = F̂ (i, j),
LATF = {LATF (i, j)}i,j∈Fn

2
the linear approximation table,

DDTF (i, j) = δF (i, j),
DDTF = {DDTF (i, j)}i,j∈Fn

2
the difference distribution table,

The linear approximation table shows how close the S–box is to a linear func-
tion. On the position (i, j) of LATF we can find a whole number representing the
bias of ⟨a, i⟩⊕ ⟨F (a), j⟩, i.e how often we can see that ⟨a, i⟩ = ⟨F (a), j⟩ relatively
to ⟨a, i⟩ ≠ ⟨F (a), j⟩. If one of them happens more often, LATF (i, j) has bigger
absolute value than if both cases happen similarly likely. If we have F linear the
LATF would look like a scaled permutation matrix, i.e. there will be one and
only non–zero term in each line and column and those will have a large absolute
value.

The difference distribution table describes the situation, when we take two
elements with a fixed difference and we observe the difference of their images,
after we run them through the S–box. If we consider the output differences with
input difference equal to i as a ’random’ variable, we can say that the differential
distribution table has distribution of this ’random’ variable as the i–th row.

The other terms used in Section 2.3.2 are the differential uniformity and the
linearity of S–box. These terms should denote how easy it would be to attack the

18

S–box with differential and linear attack. High values are sign of possibly easy
attacks. Formally we define those terms in Definition 14.

Definition 14 (differential uniformity and linearity,[Per19]). Let F : Fn2 −→ Fn2
be a vectorial Boolean function and i, j ∈ Fn2 , then we define:

λF = max
i ̸=0,j

(|LATF (i, j)|) to be the linearity of F,

δF = max
i ̸=0,j

(DDTF (i, j)) to be the differential uniformity of F.

Remark. In Definition 14 we take the maximum over i, j with i ̸= 0 because the
first column of the LATF and DDTF is always special. On the position (0,0)
always the highest value 2n and the rest is equal to 0 and we are not interested
in that case.

For LATF position (0,0) corresponds to situation when we take input and
output mask equal to 0 and we have Σx∈Fk

2
(−1)0 = 2k, and other positions became

0 since Σx∈Fk
2
(−1)⟨F (x),v⟩ = Σx∈Fk

2
(−1)⟨x,v⟩ = 0 for any v ∈ Fk2, For DDTF first

column corresponds to the situation when we take two same inputs and then we
observe the difference between outputs that has to be 0 as well.

1.4 Algebraic geometry
In order to start talking about projective permutations over finite field later in the
thesis, especially in Chapter 3, we summarise basic terms in this section with focus
on fractional polynomial functions and projective linear mappings. Projective
permutations as the designation indicates operates on projective space, which
has to be defined first and we do so in Definition 16. Definition of a projective
space is based on definition of an affine space, which is simple algebraic structure
as we can see it in Definition 15.

We define following basic terms in general context, but we will need the def-
initions mostly for dimension 1 or 2. Affine and projective space are structures
related one to another and projective permutations are operating on them.

Definition 15 (An(K),[Wil08]). We define an affine n–space over K as a
set of n–tuples of elements from K, where K is a field. (notation: An(K) =
{(a1, . . . , an)|ai ∈ K})

Definition 16 (Pn(K),[Wil08]). We define a projective n–space over K as
a set of all lines in An+1(K) passing by the point (0,...,0). (notation: Pn(K))

Remark. Lines in An+1 are sets

{(λx1, ..., λxn+1)|λ ∈ K}.

Therefore every point x ∈ An+1

x = (x1, . . . , xn+1) ̸= (0, . . . , 0)

belongs to one and only line that passes through point (0, . . . , 0).

19

Two points x, y ∈ An+1

x = (x1, . . . , xn+1), y = (y1, . . . , yn+1), x, y ̸= (0, . . . , 0),

belong to the same line that passes through (0, . . . , 0) if and only if

∃λ ̸= 0, λ ∈ K such that yi = λxi ∀i = 1, ..., n+ 1.

We can then consider x and y equivalent and represent elements of Pn(K) as the
set of equivalence classes of points in An+1 \ {(0, . . . , 0)} with following notation.

Notation 5 ([Wil08]). We will represent elements of Pn(K) as the set of equiv-
alence classes of points in An+1 \ {(0, . . . , 0)} with notation

[x1 : · · · : xn+1] = {(λx1, ..., λxn+1)|λ ∈ K}.

as homogeneous coordinates.

Let us choose a fixed coordinates. We can separate those elements that has
0 or a non zero element on that coordinate. Since λ ∈ K there is always one
point from the line that has the coordinate equal to 1. Elements with 1 on that
coordinate corresponds one to one to elements from An(K) because contain all
combinations on n coordinates. Those lines that has 0 on the chosen positions
correspond on the other hand to elements from Pn−1. Inductively we get following
observation.

Observation 4. We have Pn(K) = An(K) ∪ Pn−1(K) and inductively

Pn(K) = (
n⋃︂
i=1

Ai(K)) ∪ P0(K).

As we already mentioned, we will be operating on case n = 1 and therefore
we can use decomposition P1(K) = A1(K) ∪ P0(K). It is not difficult to deduce
that P0(K) is a single point set and so we name it in Notation 6.

Notation 6. The single point in P0(K) will be called point at infinity with
notation ∞.

With Notation 6 we can finally consider the projective 1-space with structure:

P1(K) = A1(K) ∪ {∞}.

and we can move on to the mappings that operate on P1(K), especially, we will
focus on fractional polynomials. We define such mappings and their evaluation
in Definition 18.

One more thing to define remains and that is an algebraic variety representing
a selection of points from an affine space, that are roots to a set of polynomials.
We define it in Definition 17 and we use it right after in Definition 18 to define a
fractional polynomial and its evaluation.

Definition 17. Let K be a field and g ∈ K[x1, . . . , xn]. We define a variety as

V (g) := {a ∈ An(K)|g(a) = 0}.

20

Definition 18. Let K be a field and f, g ∈ K[x] such that V (f) ∩ V (g) = {}.
We define a fractional polynomial that operates on P1(K) as

f

g
(x) = f(x)

g(x)

with evaluation that covers every element of P1(K):

1. for x ∈ A1(K) \ V (g) we define f
g
(x) := f(x)

g(x) naturally as it is well defined
in K,

2. for x ∈ V (g) we define f
g
(x) :=∞ as V (f) ∩ V (g) = {},

3. for x ∈ P1(K) \ A1(K) (i.e. x =∞) we define

f

g
(x) = f(x)

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aq+1
bq+1

deg f = def g
∞ deg f > def g
0 deg f < def g

(1.1)

with common practice where c
0 =∞ and c

∞ = 0 for every c ∈ K \ {0}.

We define a special kind of fractional polynomial in Chapter 3 as a key term
taken from [Gö22]. In our analysis in Chapter 3 we will need notion of projective
equivalence using Möbius transformations as we define it in Definition 19 and 20.
Both definition are taken from [Gö22].

Definition 19. Let K be a field. We define the Möbius transformations as

M(K) =
{︂
x ↦→ ax+ b

cx+ d
: a, b, c, d ∈ K|ad− bc ̸= 0

}︂
.

Observation 5. M(K) forms a group with composition operation and

M(K) ∼= PGL2(K),

where PGL2(K) is a set of fractional linear transformations.

Definition 20 (∼PGL2(L)). For Πf1,g1, Πf2,g2 fractional q-projective functions we
say that they are projectively equivalent (notation: Πf1,g1 ∼PGL2(L) Πf2,g2) if
for µ1, µ2 ∈ PGL2(L)

Πf1,g1 = µ1 ◦ Πf2,g2 ◦ µ2.

Möbius transformations are interesting set of mappings because up to scalar
multiplication it corresponds to set of all regular matrices of dimension 2 × 2
over a field. Another property can be observed, every Möbius transform can be
obtained by composition of selected simple transformation. We name them in
Notation 7.

Notation 7. Let K be a field. We will call some of simple Möbius transforma-
tions as followed:

• fT,b(x) = x+ b, i.e. f1 = ax+b
cx+d for a = c = 0, d = 1 will be called translation

by element b,

21

• fD,a(x) = ax, i.e. f2 = ax+b
cx+d for b = c = 0, d = 1 will be called dilation,

• fI(x) = 1
x
, i.e. f3 = ax+b

cx+d for a = d = 0, c = b = 1 will be called inversion.

It is known that composition of translations, homotheties and inversions cover
whole set of Möbius transformation and in Observation 6 we give explanation of
how the composition looks like for arbitrary Möbius transform.

Observation 6. Let K be a field and f = ax+b
cx+d a Möbius transformation. Using

simple transformations from Notation 7 we can get f as composition

fT,a
c
◦ fD, bc−ad

c2
◦ fI ◦ fT, d

c
= f.

Explicitly, we have:

fT,a
c
◦ fD, bc−ad

c2
◦ fI ◦ fT, d

c
(x) = (x+ a

c
) ◦ (bc− ad

c2 x) ◦ (1
x

) ◦ (x+ d

c
)

= (x+ a

c
) ◦ (bc− ad

c2 x) ◦ (1
x+ d

c

)

= (x+ a

c
) ◦ (

bc−ad
c2

x+ d
c

)

=
bc−ad
c2

x+ d
c

+ a

c

=
1
c
(bc− ad) + a(x+ d

c
)

cx+ d

=
b− ad

c
+ ax+ ad

c
)

cx+ d

= ax+ b

cx+ d
= f(x)

Observation 6 will be our start point in an analysis of classes of equivalency
concerning the projective equivalency from Definition 20 on special kind of frac-
tional polynomials defined later in the thesis. One of aim of the analysis will
be selection of those Möbius transforms that preserves invariants mentioned in
Observation 3. We dedicate Chapter 3 to it.

We show in the following example how does the Möbius transformations act
on a special kind of functions. We take as example functions we will define later
in Definition 18 and how does the composition with Möbius transformation looks
like.
Example. Let µ1, µ2 ∈M(K)

µ1 = c1x+ c2

c3x+ c4
, µ2 = d1x+ d2

d3x+ d4
,

q ∈ N, q < |K| − 1 and Π a fractional polynomial with coefficients from K

Π(x) = aq+1x
q+1 + aqx

q + a1x+ a0

bq+1xq+1 + bqxq + b1x+ b0
.

22

then

µ2 ◦ Π ◦ µ1 =
d1

(︃
aq+1(c1x+c2

c3x+c4
)q+1+aq(c1x+c2

c3x+c4
)q+a1(c1x+c2

c3x+c4
)+a0

bq+1(c1x+c2
c3x+c4

)q+1+bq(c1x+c2
c3x+c4

)q+b1(c1x+c2
c3x+c4

)+b0

)︃
+ d2

d3

(︃
aq+1(c1x+c2

c3x+c4
)q+1+aq(c1x+c2

c3x+c4
)q+a1(c1x+c2

c3x+c4
)+a0

bq+1(c1x+c2
c3x+c4

)q+1+bq(c1x+c2
c3x+c4

)q+b1(c1x+c2
c3x+c4

)+b0

)︃
+ d4

,

which after processing to elementary form of fraction gives huge fractional poly-
nomial. The interesting thing is that numerator as well as the denominator have
then the same degree equal to the degree of the one that has bigger degree at the
beginning.

Another interesting thing could be coefficients of numerator and denominator
for xq+1 because as we define in Definition 18, their quotient is image of the point
at infinity.

By basic development of composed fractional we get that µ2 ◦ Π ◦ µ1(∞) =

(d1aq+1 + d2bq+1)cq+1
1 + (d1aq + d2bq)cq1c3 + (d1a1 + d2b1)c1cq3 + (d1a0 + d2b0)cq+1

3
(d3aq+1 + d4bq+1)cq+1

1 + (d3aq + d4bq)cq1c3 + (d3a1 + d4b1)c1cq3 + (d3a0 + d4b0)cq+1
3

.

23

2. S–box of Kuznyechik and
Streebog
We are about to study S-box used in Kuznyechik block cipher and Streebog hash
function and its properties. In Section 2.1 we describe the block cipher and
the hash function in details. Two other sections are based on paper by Perrin
[Per19] and they are focused on various decompositions of the S-box in 2.2 and
its properties in 2.3.

Paper [Per19] describes the problem of the S-box of Kuznyechik and Streebog,
Perrin gives there two previously found decomposition of the S-box and introduce
the notion of TKlog mapping. He also shows connection of TKlog to previous
decompositions and how TKlog can be seen as a master decomposition to them.
He deals with properties uncovered and explained by the TKlog structure in S-
box. Last but not least he analyzes design of the S-box and possible motivation
based on strong cryptographical properties.

2.1 Kuznyechik cipher and Streebog hash func-
tion

We will present the cipher and the hash function themselves for which π was de-
signed. Both algorithms are a part of Russian cryptographic standard algorithms
(called GOST algorithms). GOST standards are not available to the public freely,
so we derive information from RFC7801 [DD13] and RFC6986 [Dol16].

Some functions and algorithms used in the cipher and the hash function de-
mand several constants, which are not interesting for our purposes and therefore
the only constant presented in attachments is the S-box itself in A.1. We may
also skip some technical details about used functions and we make them available
in Attachment A.3.

Kuznyechik and Streebog as ordinary block cipher and hash function operate
on Boolean vector spaces. Basic bit operations used in description are listed
in Notation 3. In the process of computation they uses also structure of finite
field FN or iteger ring ZN and transition between the Boolean vector space, the
integer ring and the finite field. The correspondence is explained in more details
in Section 1.1 and explicit transition function are mentioned in Notation 4.

Both Kuznyechik cipher and Streebog hash function use S–box π. Kuznye-
chik is a block cipher that uses substitution–linear network as a modification of
SPN defined in Definition 10, where the S–box stands for the non–linear layer.
Streebog, as a hash function, has not scheme of a block cipher, but it consumes
the message with a round function, where the round function has a substitution-
permutation network scheme defined in Definition 10. The S–box is again used
as the non–linear layer.

24

2.1.1 Kuznyechik
The cipher was presented in June 2015 by the Federal Agency on Technical Regu-
lating and Metrology in its Decree #749 as GOST R 34.12–2015. The real freely
available source is RFC7801 [Dol16], published in march 2016, from which we
draw majority of information.

Kuznyechik is a block cipher with blocks of size 128 bits and 10 rounds that
process as typical SLN. The main key has 256 bits. Round keys of 128 bits, one
for every round, are derived from the main key K using 32 fixed known constants
in generating process described below in subsection 2.1.1.3.

Notation 8 might help us in orientation between notion of master key and
round keys as we already saw it in Definition 10.

Notation 8. For the key K ∈ F256
2 , called master key, we will denote K1, . . . , K10 ∈

F128
2 round keys derived from K by KeyGen process.

2.1.1.1 Encryption

Process of encryption can be applied on blocks of 128 bits, it uses 10 round keys,
one for each round. There are all layers (round key addition, substitution, linear
transformation) in the first 9 rounds and the last round only applies the round
key addition, as it is common for substitution network. Formally we define the
encryption in Definition 21.

Definition 21. Encryption of Kuznyechik block cipher is defined as mapping
E(a,K) : F128

2 −→ F128
2 :

EKuzn(a,K) := XK10 ◦ L ◦ S ◦XK9 ◦ · · · ◦ L ◦ S ◦XK1(a),

with K and K1, . . . , K10 following Notation 8 and particular layers defined as:

• round key addition layer is defined as mapping XKi
: F128

2 → F128
2 such that

XKi
(a) = Ki ⊕ a,

for Ki, a ∈ F128
2 ,

• substitution layer is defined as mapping S : F128
2 → F128

2 such that

S(a) = π(a0∥ . . . ∥a7)∥ . . . ∥π(a120∥ . . . ∥a127),

for a = (a0, . . . , a127) and π : F8
2 → F8

2 the S-box defined in Attachment A.1,

• linear layer is defined as mapping L : F128
2 → F128

2 such that

L(a) = R16(a),

for R linear mapping defined in more details in Attachment A.3 and R16

stands for 16 application of mapping R.

25

2.1.1.2 Decryption

The decryption is naturally defined as application of inverses of each layer in each
round in reverse order. Formally we define the decryption in Definition 22.

Definition 22. Decryption of Kuznyechik block cipher is defined as mapping
D(a,K) : F128

2 −→ F128
2

DKuzn(b,K) = XK1 ◦ S−1 ◦ L−1 ◦XK2 ◦ · · · ◦ S−1 ◦ L−1 ◦XK10(b),

with K and K1, . . . , K10 following Notation 8.

Observation 7 shows the form of inverse layers.

Observation 7.

• Inverse of round key addition mapping XKi
is XKi

itself:

X−1
Ki

= XKi
,

since
XKi
◦XKi

(a) = Ki ⊕ (Ki ⊕ a) = a,

for every Ki, a ∈ F128
2 .

• Inverse of substitution mapping S is S−1 : F128
2 → F128

2 such that

S−1(b) = π−1(b0∥ . . . ∥b7)∥ . . . ∥π−1(b120∥ . . . ∥b127),

for b = (b0, . . . , b127) and π−1 : F8
2 → F8

2 inverse of the S-box defined in
Attachment A.1.

• Inverse of linear mapping L is L−1 : F128
2 → F128

2 such that

L−1(b) = (R−1)16(b),

for R−1 inverse of linear mapping R defined in more details in A.3. It is
easily verifiable that R can be inverted.

Definition 8 gives us also notion of a well defined cipher. We therefore demand
that the encryption together with the decryption as we just defined them satisfy

DKuzn(EKuzn(m,K), K) = m,

for every m ∈ PKuzn messages and every K ∈ KKuzn keys. We can easily verify
that this is really the case by straightforward rewriting DKuzn(EKuzn(m,K), K)
in terms of XKi

, L, S as

DKuzn(EKuzn(m,K), K) = XK1 ◦ · · ·◦S−1 ◦L−1 ◦XK10 ◦XK10 ◦L◦S ◦ · · ·◦XK1(m)

and we find that all transformation are simplified, we get the condition satisfied
and Kuznyechik can be considered as a well define cipher.

Observation 8. To fulfill the condition on DKuzn, EKuzn, K above we need only
XKi

, S−1 and L−1 to be the left inverse to XKi
, S and L respectively.

26

2.1.1.3 Key generation

As we already mentioned above, the secret key has 256 bites and 10 round keys,
each with 128 bites, are derived from the master key by KeyGen generating
process.

Algorithm 1 shows how the round keys are derived. We use L, S,X from
Definition 21, a bit operation Split2 from Notation 3 and transition function
from integer representation of a number to its vectorial representation V128 from
Notation 4.

Algorithm 1: Kuznyechik KeyGen
input : K master key
output: K1, . . . , K10 round keys for master key K

1 for i← 1, . . . , 32 do
Ci = L(V128(i))

end
2 K1, K2 ← Split2(K)
3 for i← 1, . . . , 4 do

K ′ ← K2i−1, K
′′ := K2i

for j ← 1, . . . , 8 do
temp← K ′

K ′ ← (LSXC8(i−1)+j
(K ′))⊕K ′′

K ′′ ← temp
end
K2i+1 ← K ′, K2i+2 ← K ′′

end
4 return K1, . . . , K10

As we can see, in step 1 Algorithm 1 uses 32 vector constants C1, . . . , C32 that
do not depend on K. Value of the master key K come in by step 2 and gives the
value to first two round keys K1, K2.

Figure 2.1 shows how we can imagine one evaluation of inner loop with k :=
8(i − 1) + j, which computes value of following pair of round keys by repetition
for j = 1. . . . , 8.

K ′ K ′′

Ck

S L

LSXCk
(K ′)⊕K ′′ K ′

Figure 2.1: Main function used in key generation algorithm

Figure 2.2 on the other hand shows all 8 evaluation of inner loop as one
evaluation of outer loop i.e. process of generation of K3, K4 from K1, K2. For
K5, . . . , K10 the process works similarly. The initial state i.e. value of K ′, K ′′

is the last pair of generated K2i+1, K2i+2 as well as a set of 8 used constants
C8(i−1)+1, . . . , C8(i−1)+8 for new i.

27

K1 K2

LSXC1

K1 LSXC1(K1)⊕K2

LSXC2

LSXC1(K1)⊕K2 LSXC2(LSXC1(K1)⊕K2)⊕K1

LSXC8

K3 K4

Figure 2.2: Setting up a pair of round keys

Remark. Over all we can see that the S-box π is used in the process of encryption
as well as in the keys generation, always as a part of substitution-linear layer.
Therefore any progress in analysis of π might be applicable on both schemes.

2.1.2 Streebog
The hash function was presented in the standard GOST R 34.11–2012 in January
2013 which replace the standard GOST R 34.11–94. The new standard was
introduced by Decree #216 of the Federal Agency on Technical Regulating and
Metrology in August 2012. The source, we used to get majority of information,
is [DD13].

Definitions of functions and algorithms in the following subsection may need
several constants, which are not interesting for our purposes and therefore the only
constant presented in attachments is the S-box itself in A.1. Auxiliary function
are defined in Notation 3 and 4.

2.1.2.1 Hashing process

Main hashing process can be divided into 3 phases:

1. Initialisation of variables,

2. Consumation of message by 512-bit blocks.

3. Consumation of the last block.

Initialisation phase sets up default value of variables, that are modified later
during the process. Initialised value do not depend on consummated message.

In the middle phase we use as we call it the round function. We always take
a block of 512 bits from the message and apply several operations. The round
function that uses a substitution-permutation network is described in details in
next section 2.1.2.2. It is the phase where the S-box π is used and therefore the
step most interesting for us.

We complete the process by consummation of the last block of the message
which can be shorter than 512 bits and therefore it is first bit padded. Last steps
are similar to those in the middle phase again with the round function.

28

Algorithm 2: Hash function Streebog
input : M the message
output: h the hash of M
(initialisation of variables)

1 h← V512(0), N ← V512(0), ϵ← V512(0)
(consummation of message M by 512bit blocks)

2 while |M | > 512 do
m← LSB512(M)
M ′ ← MSB|M|−512(M)
h← gN(h,m)
N ← V512(Int512(N)[+]2512512)
ϵ← V512(Int512(ϵ)[+]2512Int512(m))
M ←M ′

end
(consummation of the last, probably shorter, block)

3 m←
511 − |M |⏟ ⏞⏞ ⏟
0∥ . . . ∥0 ∥1∥M1∥ . . . ∥M|M |

4 h← gN(h,m)
5 N ← V512(Int512(ϵ)[+]2512Int512(m))
6 return g0(g0(h,N), ϵ)

Algorithm 2 shows the process of calculation of the hash h from the message
M ∈ F∗

2. The algorithm uses auxiliary functions LSBn,MSBn,Vn, Intn defined
and explained in Notation 4 and 3, the ”+” operation is operating as natural
addition in Z2512 .

For simplicity we mention only the 512-bit variant. The other 256-bit variant
works pretty much the same, there is only chosen a different initialisation vector
for h in the initialisation phase and 256 most significant bits are returned in the
last step.

M’m

N h m ϵ

Int512

[+]2512

V512

512

gN

Int512

I
n
t 5

12

[+]2512

V512

N h ϵ

M

Figure 2.3: One round of consummation of message M by blocks of 512 bits

29

To describe more what goes really on in the middle phase and what is the role
of N and ϵ in relation with value h, we show how we can imagine one evaluation
of the while cycle in step 2 in figure 2.3. As we can see in the figure, we work
primary with 4 variables and each of them is somehow modified and some of them
are used to modify the others.

Section 2.1.2.2 is dedicated to so called round function gN , which is the main
former of the hash value h.

2.1.2.2 Round function gN

Function called round function that modifies value of h in each evaluation of the
while loop is used in hashing process in step 2 in Algorithm 2. It takes N, h,m
as parameters and outputs new value of h according to Definition 23.

Definition 23. We define gN : F512
2 × F512

2 −→ F512
2 with N ∈ F512

2 to be called
the round function of Streeboog that works as:

gN(h,m) = E(LPS(h⊕N),m)⊕ h⊕m,

where E(m,K) : F512
2 × F512

2 −→ F512
2 such that:

E(m,K) = XK13LPSXK12 ...LPSXK1(m),

with K1, . . . , K13 are derived from K by Algorithm 3.

As we already mentioned, round function gN and especially the inner function
E is a substitution–permutation network with a linear layer extra and 13 rounds
and 13 round keys. Each but last round consist of every mentioned layer and the
last round contains only the key addition.

The substitution layer S that uses the S-box π is defined just as in Definition
21 as well as the key addition XKi

. Other mappings from Definition 23 (i.e. layers
of the network) are defined in Definition 24.

Definition 24. We define layers of gN :

• The permutation layer P : F512
2 −→ F512

2 defined as

P (a) := aτ(63)∥ . . . ∥aτ(0),

for a63, . . . , a0 = Split64(a) and τ : Z64 −→ Z64 a permutation of indexes
defined as

τ(x) := 8 · (x mod 8) + (x div 8),
i.e. τ(x) = 8v + u where x = 8u+ v for u, v ∈ N, v < 8.

• The linear layer L : F512
2 −→ F512

2 defined as:

L(a) := L(a7∥ . . . ∥a0) = l(a7)∥ . . . ∥l(a0),

for a7, . . . , a0 = Split8(a) and l : F64
2 −→ F64

2 defined as:

l(a) := Aa,

with matrix A ∈ F64×64
2 defined in [DD13].

30

Remark. We add a comment to both mappings in Definition 24:

• P could be redefined to be an application of a block matrix P ∈ F512×512
2

partitioned into 64×64 blocks of size 8×8, where P = {Pi,j}63
i,j=0, Pi,j ∈ F8×8

2
defined as

Pi,j =
⎧⎨⎩I8 if i = 8 · (j mod 8) + (j div 8)

08 otherwise

with I8 identity matrix of size 8 and 0n null matrix of size 8.

• L could be redefined to be an application of a block diagonal matrix L ∈
F512×512

2 with 8 blocks on diagonal of size 64× 64, where L = diag{Li}7
i=0,

Li ∈ F64×64
2 defined as

Li = A, ∀i : 0 ≤ i ≤ 7.

Split and ∥ from Definition 24 can be replaced by large matrices but such large
matrices are not usable in practice. Especially if there is a way how to implement
P and L in a form more suitable for today’s computers.

In Figure 2.3 we can see how gN(h,m) can be written in a diagram.

h N m

LPS(·)

E(·, K)

gN(h,m)

Figure 2.4: Function gN

The parameter K ∈ F512
2 in function E has role of key and values Ki ∈ F512

2
for i = 1, . . . , 13 can be regarded as round keys. Ki are generated from K by
Algorithm 3. Analogously to Notation 8 we can call K and K1, . . . , K13 master
key and round keys respectively. Mappings S, P, L are used the same as for gN .

Algorithm 3: Generation of round keys in gN
input : K ∈ F512

2 master key
output: K1, . . . , K13 ∈ F512

2 round keys
1 define constants Ci as in [DD13]
2 K1 ← K
3 for i← 2, . . . , 13 do

Ki ← L ◦ P ◦ S(Ki−1 ⊕ Ci−1)
end

4 return K1, . . . , K13

31

Remark. This key generation process can be seen as another substitution permu-
tation network (without last round key addition), where key addition is actually
known constant addition and after the i–th round we store current value as Ki−1.
Remark. Looking at the round function with E mapping and its key generation
we can see that again the S-box π is present at multiple places and therefore, as
well as in Kuznyechik, any progress in analysis of π might be applicable on all
places.

2.2 Decompositions of the S–box π

Motivation of defining TKlog structure was to find a ’master’ decomposition of
S–box π. Two such decompositions was already found. The first one by Biryukov
et al. presented in [BPU16] and second one by Perrin and Uduvenko presented
in [PU16], but they have noting in common at first glance.

Firstly, we will present the definition of TKlog itself and in the second part of
this section we will describe two previously found decompositions and how TKlog
structure is related to them.

2.2.1 TKlog
The notion of TKlog structure is one of the main results of Perrin and the defini-
tion can be found in [Per19][Section 3.1]. Analyzing every branches of definition
we might be confused by the notation.

For example mapping κ is defined to have image in F22m in Perrin’s Definition
1, while we give an example of κ for π with image in F2m

2 . Additionally Perrin’s
Definition 1 puts elements of N as argument to κ while κ have domain Fm2 .

To clarify the situation we reformulate the process of computation in Al-
gorithm 4 by explicit expression of every manipulations. Perrin comments the
situation around transitions between different structures in [Per19][Section 2.1]
but lately in main definition he does not mention those transformation.

Every mapping from the algorithm is explained in Notation 3, 4 or Definition
25. We take a TKlog instance τκ,s as a mapping defined by a lookup table over
Z22m as π is defined in Attachment A.1.
Remark. In Algorithm 4 we use arithmetical operations mod, div, +, - and · taken
over N. Operation +F is taken as standard addition over F22m .
Remark. We need to briefly comment the situation that starts at step 3:

1. after step 3 k is by Definition 25 in N, but since α22m−1 = 1 = α0 we have
k ∈ {1, . . . , 22m − 1},

2. after step 4 we have j ∈ {0, . . . , 2m − 1} and i ∈ {0, . . . , 2m},

3. step 6 happens in case i = 0⇒ k = j · (2m + 1) and therefore since point 1
we have j ∈ {1, . . . , 2m− 1} and 2m− j ∈ {1, . . . , 2m− 1} ⊂ dom(Vm) as in
Notation 4, additionally as j ̸= 0 we return another value than in step 2,

4. steps 7 - 11 happen in case i ̸= 0 and therefore 2m − i ∈ {0, . . . , 2m −
1} =dom(Vm), we have also i > 0 ⇒ j < 2m − 1 and therefore j ∈
{0, . . . , 2m − 2} = dom(s).

32

Algorithm 4: TKlog mapping
input : a ∈ Z22m

output: τκ,s(a) ∈ Z22m

given : κ : Fm2 −→ F2m
2 an affine mapping

s : Z2m−1 −→ Z2m−1 a permutation
1 if a = 0 then
2 return Int2m ◦κ ◦ Vm(0)

end
3 k ← logF ◦FV ◦V2m(a)
4 i← k mod (2m + 1), j ← k div (2m + 1)
5 if i = 0 then
6 return Int2m ◦κ ◦ Vm(2m − j)

else
7 β ← FV ◦κ ◦ Vm(2m − i)
8 γ ← expF ((2m + 1) · s(j))
9 δ ← β +F γ

10 b← Int2m ◦VF (δ)
11 return b

end

We already touched uniqueness of outputs from different branches of the algo-
rithm in point 3 of previous remark. The question whether Algorithm 4 returns
different outputs for different inputs is answered by TKlog being always a per-
mutation as Perrin gives an inverse mapping. We handle uniqueness of outputs
in Observation 9 in a more constructive way.

Observation 9. Let κ be κ : Fm2 −→ F2m
2 , κ(a) = Aa ⊕ b. We show that each

branch of Algorithm 4 returns different outputs.

• Branches that lead to step 2 and 6 are discussed in step 3 of previous remark

• Step 11 returns the same value as step 2 if only, for i, j, β, γ, δ as in Algo-
rithm 4 and i′ = 2m − i, j′ = s(j), the following holds:

Int2m ◦κ ◦ Vm(0) = Int2m ◦VF (δ)
κ ◦ Vm(0) = VF (δ)

FV ◦κ ◦ Vm(0) = δ

FV ◦κ ◦ Vm(0) = γ +F β

FV ◦κ ◦ Vm(0) = expF ((2m + 1) · s(j)) +F FV ◦κ ◦ Vm(2m − i)
FV ◦κ ◦ Vm(0) = expF ((2m + 1) · j′) +F FV ◦κ ◦ Vm(i′)

κ ◦ Vm(0) = VF ◦ expF ((2m + 1) · j′)⊕ κ ◦ Vm(i′)
b⊕ Vm(0) = VF ◦ expF ((2m + 1) · j′)⊕ b⊕ A ◦ Vm(i′)

Vm(0) = VF ◦ expF ((2m + 1) · j′)⊕ A ◦ Vm(i′)
FV ◦Vm(0) = expF ((2m + 1) · j′) +F FV ◦A ◦ Vm(i′)

33

Let us denote Q = ⟨α2m+1⟩∪{0} ≃ F2m. Mapping κ and matrix A is defined
to satisfy

F22m = {xF +F FV(κ(xκ) +F κ(0))|xF ∈ Q, xκ ∈ Fm2 } (2.1)

i.e. F22m = {xF +F FV ◦A(xκ)|xF ∈ Q, xκ ∈ Fm2 } (2.2)
Since A has full column rank and

|F22m| = 22m = 2m · 2m = |Q| · |Fm2 |

and therefore every element from F22m is unequivocally represented by a pair
(xF , xκ). Specially we have only one way how to write

0 = xF +F FV ◦A(xκ) for xF = 0 ∈ Q and xκ = (0, . . . , 0) ∈ Fm2 .

This situation does not correspond to our situation above

FV ◦Vm(0) = expF ((2m + 1) · j′) +F FV ◦A ◦ Vm(i′)

since i′ = 2m − i ∈ {1, . . . , 2m − 1} and expF ((2m + 1) · j′) ∈ Q \ {0}.

• Analogously we can prove that steps 6 and 11 does not return any same
output by expression

Int2m ◦κ ◦ Vm(2m − j) = Int2m ◦VF (δ)
...

b⊕ A ◦ Vm(2m − j) = VF ◦ expF ((2m + 1) · j′)⊕ b⊕ A ◦ Vm(i′)
A ◦ Vm(2m − j) = VF ◦ expF ((2m + 1) · j′)⊕ A ◦ Vm(i′)

Vm(0) = VF ◦ expF ((2m + 1) · j′)⊕
⊕ A(Vm(2m − j)⊕ Vm(i′))

FV ◦Vm(0) = expF ((2m + 1) · j′)+F

+F FV ◦A(Vm(2m − j)⊕ Vm(i′))

and we come across the same thing: expF ((2m + 1) · j′) ∈ Q \ {0}.

The original definition by Perrin uses elements from 4 different types of struc-
tures:

• F22m the finite field as domain and image of τκ,s,

• Z2m−1 and Z22m−1 additive group e.g. as domain and image of the permu-
tation s,

• Fm2 and F2m
2 the vector spaces, κ operates on,

• N natural numbers, where operations as mod, div etc. are proceeded.

In Notation 4 we already introduced transition Fd2 ⇄ Z2d and Fd2 ⇄ F2d . We
introduce remaining transitions in Definition 25.

34

Definition 25. Let α be the generator and p the minimal polynomial of F2d as
in Remark after Notation 1, We define following mappings:

• logF : F2d −→ N defined as

logF (z) := k,

where k is the lowest such that αk mod p = z.

• expF : N −→ F2d defined as

expF (k) := αk mod p.

With Definition 25 we can complete Figure 1.1 with one structure and two
transformations more in Figure 2.5.

Z2d

Vd

⇄
Intd

Fd2
FV
⇄
VF

F2d

logF

⇄
expF

N
mod
⇄ Z2m−1

Figure 2.5: Transitions between structures

Perrin also gives an example of κ and the permutation s for τκ,s = π. We
reformulate the example as well. Permutation s is probably expressed in its best
form by a look up table, but κ can be expressed as an affine mapping by a matrix
multiplication and vector addition instead of expression of images on basal vectors
in hexadecimal form.
Example. The function κ : F4

2 −→ F8
2 for our S–box π can be defined as:

κ(x) = Ax+ b with A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 1 1 1
1 0 0 1
0 0 0 0
0 1 1 0
1 1 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Matrix A represents the linear part of κ mapping 4-dimensional vectors to 8-
dimesional vectors. However, A have exactly 4 linearly independent rows and
vector addition of b does not change dimension of the image and therefore image
of κ is a 4-dimensional vector subspace of F8

2.

2.2.2 Previous decompositions
Perrin briefly describes two decompositions published previously in [BPU16] and
[PU16] and he also shows how the TKlog structure can be the ’master’ decom-
position for the others. We will present both decompositions as well as the link
between them and relation to TKlog structure.

35

2.2.2.1 TU–decomposition

The first decomposition, that he mention, is the TU–decomposition presented
by Biryukov at al. in [BPU16]. The main thing they show is that S-box π is
affine–equivalent to a permutation of (F4

2)2:

(x, y) ↦→ (Ty(x), UTy(x)(y)).

The notion of affine-equivalency is defined in Definition 6.
Permutations Ty and Ux are described as decomposition to simpler functions,

where each of then is defined in [BPU16] and Perrin is also giving expressive
graphical scheme in [Per19].

Algorithm 5 shows process of the application of S-box π decomposed into
several steps as specified by TU decomposition. We describe functions used in
the TU decomposition in Notation 9 while we take Intk,Vk, Split2 and ∥ from
Notation 3 and 4.

Notation 9.

• α, ω : F8
2 −→ F8

2 are linear permutations such that

{α−1(x∥0);x ∈ F4
2} = {ω(0∥x);x ∈ F4

2}.

• ν0, ν1, σ : F4
2 −→ F4

2 are permutations.

• ϕ : F4
2 −→ F4

2 is a function such that ϕ(x) ̸= 0∀x ∈ F4
2.

• operations ·,−1 are standard operations on (Z24−1, ·).

Algorithm 5: TU decomposition
input : a ∈ F8

2
output: π(a) ∈ F8

2
1 b← α(a)
2 x, y ← Split2(b)
3 if y = (0, . . . , 0) then

t← ν0(x)
else

t← ν1(V4(Int4(x) · Int4(y)−1)
end

4 u← σ ◦ V4(Int4(ϕ(t)) · Int4(y))
5 v ← t∥u
6 w ← ω(v)
7 return w

Observation 10. Connecting the notation from [Per19] and Algorithm 5, we can
see that

• step 3 corresponds to the permutation Ty(x),

• step 4 corresponds to the permutation UTy(x)(y),

• steps 1 and 6 provide the affine equivalency choosing

36

– A1 := α,
– A2 := ω and
– A3 := 0 the null mapping on F8

2,

• steps 2 and 5 provide bit operations as separation of the input into halves
and concatenation of them back again.

2.2.2.2 Decomposition with discrete logarithm

Second decomposition, the one presented in [PU16] by Perrin and Udovenko, is
based on the discrete logarithm. The discrete logarithm is actually a ’pseudo’
discrete logarithm, where we choose an integer j, we define αj to have 0 as image
and we shift images of following exponents by 1. We define such mapping in
Definition 26.

Definition 26 (Pseudo discrete logarithm). Let K be a finite field K = F2n as
in Remark after Notation 1. We define pseudo discrete logarithm in K with
parameter j ∈ {0, . . . , 2n − 2} as mapping PDLj,K : K −→ Z2n−1

PDLj,K(x) :=

⎧⎪⎪⎨⎪⎪⎩
j, for x = 0
i, for x = αi and i < j

i+ 1, for x = αi and i ≥ j.

Example. PDLj,F28 : F28 −→ Z28−1 maps

(1, α1, . . . , αj−1, 0, αj, . . . , α28−2) ↦→ (0, 1, . . . , 28 − 1).

Algorithm 6 shows process of the application of S-box π decomposed into sev-
eral steps as specified by the log-based decomposition. Particular layers presented
in Notation 10 have all different domains and images and therefore conversions
between them such as Vn and Intn defined in Notation 4 have to be applied, so
that one layer can be followed by the other. All layers are specified in [PU16] as
well as graphical scheme presented in [Per19].

Notation 10.

• A : Z24 × Z24 −→ Z24 × Z24 are modular arithmetical operations.

• q′ : F4
2 −→ F4

2 is a permutation.

• ω′ : F8
2 −→ F8

2 is a permutation.

Algorithm 6: Decomposition using pseudo descrete logarithm
input : a ∈ F8

2
output: π(a) ∈ F8

2
1 b← V8 ◦PDLj,F28 ◦ Int8(a)
2 x, y ← Split2(b)
3 u, v ← A(Int4(x), Int4(y))
4 w ← u∥v
5 z ← ω′ ◦ q′−1(z)
6 return z

37

2.2.3 Link between decompositions
Perrin says in [Per19] that the missing link is exactly the TKlog structure and he
shows how TKlog is related to both of them.

Relation to TU–decomposition is described by Theorem 2 in [Per19][Section
4.1]. The Theorem 2 followed by a proof says that a permutation with TKlog
structure has always the TU–decomposition. The main idea of the proof is to
perform case analysis for each step of both TU–decomposition and TKlog function
algorithms.

Relation between TKlog and the decomposition with discrete logarithm is
commented in [Per19] as natural since both use a discrete logarithm in some form.
TKlog uses discrete logarithm in form of mapping αn to κ(A′(n)) + something
where A′ are some arithmetical operations. The other decomposition uses the
pseudo discrete logarithm as we define it in Definition 26 followed by certain
arithmetical operations and another permutations. Pseudo discrete logarithm
includes as well a kind of multiplexer dependent to the parameter j.

2.3 Properties of π as TKlog
TKlog structure has several properties and one can hope to use them to break
the S–box. However, no attack was design yet. We will present two kind of
interesting properties in the section. First one is partition–preserving property,
which allows us to map one kind of cosets to another and it is let as an open
problem, whether this property can be used against Streebog. The other kind
of properties that we will mention are cryptographical properties of π namely,
concerning linear and differential anomalies as we define them below.

2.3.1 Mapping cosets to cosets
We are about to explain the partition preserving property of TKlog mapping,
where cosets for particular subgroups play a role. We will denote those subgroups
as in Notation 11.

Notation 11. Important subgroups will be denoted as:

• Hmult := ⟨α2m+1⟩ multiplicative subgroup of (F22m , ·) generated by α2m+1 ∈
(F22m , ·).

• Hadd := ⟨β, . . . , βm⟩ additive subgroup of (F22m ,+) generated by m first
powers of α(2m+1) mod p(α) = β.

• Hvect := {(a0, . . . , a2m−1) ∈ (F2,+)2m|∑︁2m−1
i=0 aiα

i ∈ Hadd} a vector subspace
of (F2,+)2m generated by vectors of coefficients of β, . . . , βm.

Observation 11. Using Notation 11:

• Hmult = {α(2m+1)j|j ∈ Z2m−1} ≃ (Z2m−1,+) ≃ (F2m , ·) since

α(2m+1)(2m−1) = α22m−1 = 1.

38

• Hadd = {∑︁m−1
i=0 aiβ

i|(a0, . . . , am−1) ∈ (F2,+)m} ≃ (F2,+)m ≃ (F2m ,+) since
the set of generators is a polynomial base in β of dimension m.

• Hadd = Hmult ∪ {0} by definition.

• Hvect ≃ Hadd by definition.

The main thing on partition–preserving property is presented by [Per19, The-
orem1, Section 3.2]. The theorem is mentioned here as Theorem 13, but first we
need an explanation of used terms and notation. We start with notion of cosets
from basic algebra in Definition 27.

Definition 27. Let G = (G, ∗,′ , e) be a group, H ⊆ G its subgroup and g ∈ G.
We define left coset of H in G as

g ∗H := {g ∗ h|h ∈ H}.

Remark. As we work over commutative fields we can, without lost of generality,
use strictly notion of left cosets for our purposes, because the commutativity
makes the right and the left variant of the definition equivalent.
Remark. Usual notation of cosets do not use symbol of the operation between the
element g and the subgroup H, because usually it is clear which operation is used.
However, in our case, as we talk about both multiplicative and additive group
of a field, it is more reliable to explicitly write the symbols to keep expressions
evident.

Using Observation 11 and related Notation 11 we express decompositions of
F22m into cosets from [Per19][section 3.2] in Claim 12.

Claim 12. Let m ∈ N and F22m be a finite field, then we have two ways of
decomposition of F22m:

1.

{0} ∪ (F22m , ·) =(
2m⋃︂
k=0

αk ·Hmult) ∪ {0}

=(
2m⋃︂
k=1

αk ·Hmult) ∪Hmult ∪ {0},
(2.3)

2.

(F22m ,+) =
⋃︂

w∈Wadd

w +Hadd

=(
⋃︂

w∈Wadd

w + (Hadd \ {0})) ∪Wadd.
(2.4)

Proof.

1. As α is generator of (F22m , ·), every element from (F22m , ·) can be written as

alphai = αk+(2m+1)l = αk · (α(2m+1))l

39

for unique i, k, l ∈ N0 such that

i < 22m − 1, k < 2m + 1, l < 2m − 1, i = k + (2m + 1)l

and therefore αk · (α(2m+1))l ∈ αk ·Hmult for some k ∈ {0, . . . , 2m}.
Second equality of 2.3 hold because we only take the coset α0 ·Hmult = Hmult
and we exclude it from the big union.

2. By Observation 1 and 11 (F22m ,+) and Hadd are isomorphic to vector spaces
of dimensions 2m and m respectively. There must exist a vector space, let
us call it Wvect, such that

(F2,+)2m = Wvect +Hvect, where W ⊊ (Z2,+)2m and dim(W) = m

and therefore there must exist an additive subgroup of (F22m ,+), let us call
it Wadd, such that

(F22m ,+) = Wadd +Hadd

as a direct sum. Wadd must be generated by m linearly independent ele-
ments so that generators of Wadd with generators of Hadd give a generator
set for (F22m ,+). This decomposition allows us to write (F22m ,+) as union
of cosets w +Hadd because each element v ∈ (F22m ,+) can be written as

v = w ⊕ a where w ∈ Wadd and a ∈ Hadd

Second equality of 2.4 holds because we only take one element w + 0 from
each coset w +Hadd and store them in separate set behind the big union.

Notation 12 completes everything we need to reformulate Theorem 13 into
Theorem 14 and to explain it right after.
Notation 12.
Let ψ be a mapping, A be a subset of domain of ψ, then

ψ(A) := {ψ(a)| a ∈ A}.

Analogously we will use notation A ∗B = {a ∗ b|a ∈ A, b ∈ B}.
Theorem 13 uses exactly the formulation from [Per19] with Perrin’s notation,

while following theorem uses notation introduced above and notation from Section
2.2.1.
Theorem 13 ([Per19], Theorem 1). Let τκ,s : F22m −→ F22m be a valid TKlog
instance, then the following always holds:

τκ,s(F2m) = κ(Fm2),
τκ,s(αi ⊙ F∗

2m) = κ(2m − i)⊕ F∗
2m for i ̸= 0.

Theorem 14. Let τκ,s : F22m −→ F22m be a valid TKlog instance, with κ : Fm2 −→
F2m

2 . Let logF ′(x) = logα2m+1(x) = logF (x)/(2m + 1), then the following always
holds:

τκ,s(Hmult ∪ {0}) = FV ◦κ ◦ Vm ◦ logF ′(Hadd) (2.5)
τκ,s(αi ·Hmult) = FV ◦κ ◦ Vm(2m − i) +F (Hadd \ {0}) for i ∈ {1, . . . , 2m}.

(2.6)

40

Remark. Reformulation in Theorem 14 deserves brief comments:

• In 2.5 we enlarged the set in argument Hmult by the element 0, since
τκ,s(0) ∈ FV(Im(κ)) as well as τκ,s(Hmult) ⊊ FV(Im(κ)). Moreover it really
corresponds to the first equality in Theorem 13, since Hmult ∪ {0} ≃ F2m .

• Equality 2.6 says that τκ,s maps multiplicative cosets of Hmult in (F22m , ·)
to something like additive cosets of Hadd in (F22m ,+). The permutation s
only permutes Z2m−1 ≃ Hadd \ {0}.

• Although we do not have true additive cosets on the right side, we see
evident structure, where the element 0 is always somehow specific case.

• F22m is covered by Theorem 14, since in Claim 12 we have in 2.3 a partition
of F22m into a big union that is covered by left side of equality 2.6 and a
set Hmult ∪ {0} behind the big union that is covered by left side of equality
2.5. Right sides of 2.6 and 2.5 cover the partition 2.4 analogously.

Observation 15. With notation from proof of Claim 12 and κ(x) = Ax ⊕ b it
holds that Wvect is an affine vector space

Wvect = κ(0, . . . , 0) + Im(A).

Equalities 2.5, 2.6 and Observation 15 corresponds to how Perrin defines map-
ping κ to satisfy the condition 2.1 and 2.2. Without those condition we could not
observe uniqueness of outputs in Observation 9.

2.3.1.1 Impact on Streebog

Consequences of the partition–preserving property are discussed in [Per19] espe-
cially how the S–box π interacts with the linear layer of Streebog. Special case
for input (0, . . . , 0, x, 0, . . . , 0) is discussed and he concludes that if x ∈ F∗

2m then
π is mapping a subfield to its multiplicative coset.

In the discussion at the end of the paper Perrin describe usual setting around
the layers and interaction between them and conclude that this is quite unprece-
dented case. The unprecedency is caused by combination of the two things.

Firstly, by the fact that TKlog operates on one structure, while for example
the discrete logarithm preserve partitions into cosets, but it maps elements from
a multiplicative group into natural numbers.

Secondly, we have the fact that TKlog maps multiplicative cosets into addi-
tives cosets, so it is not the case similar to S–box in AES, where the linear layer
breaks this property.

Overall Perrin did not find a way how to use this property to attack Kuznyechik
or Streebog. He let it as an open problem, whether the property can be used as
an advantage for an attack.

2.3.2 Cryptographical properties
First of all Perrin asks himself a question whether the S–box with TKlog prop-
erties could be chosen at random. He analyzed the cardinality of set of TKlog
instances in comparision to cardinality of set of all permutations (or at least the

41

affine ones) of the field F28 . The probability of choosing a permutation with
TKlog properties between affine permutations is about 1

4000 . Thus we can be
suspicious about the randomness of choice declared by designers of π.

There is also another perspective presented by Perrin in [Per19]. If we admit
the choice of π to be purposeful to get some strong cryptographic properties and
we analyze linear and differential properties, we do not get any significant results.
Perrin in [Per19] introduce the concept of anomaly of S–box, as we mention it in
the following definition.

Definition 28. For F : Fn2 → Fn2 a permutation, u(F) differential uniformity of
F , l(F) linearity of F , Nk(F) number of occurrences of k in DDTF and N ′

k(F)
sum of number of occurrences of ±k in the LAT of F . We define the differential
anomaly of F as

AdF = − log2(Pr[u(G) ≤ u(F) ∧Nu(F)(G) ≤ Nu(F)(F)])

and the linear anomaly of F as

AlF = − log2(Pr[l(G) ≤ l(F) ∧N ′
l(F)(G) ≤ N ′

l(F)(F)]),

with probability taken over all permutations G.

The Definition 28 uses several terms as DDT, LAT, differential uniformity
and linearity, which we covered in the first chapter in Definitions 13 and 14. We
can stop at the definition to explain the meaning. If we take the differential
anomaly of F we can see its close relation to the DDTF and DDTG for every
other permutation G. Since the number of possible G for fixed n is final, the
probability in the definition is equal to the number of positive cases divided by
the total number of permutations G.

Firstly, a positive case can come if G has the differential uniformity strictly
lower than the one of F . It is because then the number of occurrences of u(F)
in DDTG is equal to 0 by Definition 14 and therefore lower than number of
occurrences of u(F) in DDTF .

u(G) < u(F) =⇒ 0 = Nu(F)(G) < Nu(F)(F)
Also, a positive case come when the differential uniformity of G is the same

as the differential uniformity of F and the number of occurrences of the value in
DDTG is the same or lower than in DDTF .

u(G) = u(F) and Nu(F)(G) ≤ Nu(F)(F)
In the context of the meaning of the differential uniformity the positive case

come when it is ’harder to attack’ permutation G than permutation F . Higher
the number of ’harder to attack’ permutations G is, higher the probability in the
definition is and lower the value of anomaly is.

In other words, the anomaly denote how ’hard’ it is to attack a permutation F
in the context of a set of permutations, where the ’hardest to attack’ permutation
would have the anomaly equal to ∞.

Analogously we can think of the linear anomaly.
If we take a look on anomaly of our S–box π, we can come to interesting

discovery. Perrin compares in [Per19] the differential and linear anomaly of π

42

with those of some other TKlog instances (randomly chosen) and with those of
discrete logarithms denoted as logFLY

α and logHN
α and defined in Definition 29

Definition 29 (logFLY
α and logHN

α .). We define logFLY
α and logHN

α as mappings
F2n −→ Z⧸2nZ, defined as:

logHN
α (x) =

⎧⎪⎪⎨⎪⎪⎩
2n for x = 0,
0 for x = 1,
logα(x) for x ̸∈ {0, 1}

, logFLY
α (x) =

⎧⎪⎪⎨⎪⎪⎩
0 for x = 0,
2n for x = 1,
logα(x) for x ̸∈ {0, 1}.

Perrin found out that in comparison with random TKlog instances, π has its
anomalies better than an average TKlog instance but not the best ones and even
worse than both anomalies of logFLY

α and logHN
α . He shows his findings in Figure

[Per19, Figure 3] where one can get good intuition about the situation.
In the light of those experimental findings we can ask ourselves a question: if

the designers chooses π to have TKlog properties, why they did not chose some
other TKlog instance with better anomalies? This doubt can lead us to the effort
to look for other reasons of the choice.

43

3. Permutations over finite field
The main aim of this thesis is to inspect whether the S-Box π is affine-equivalent
to a fractional q-projective permutation. To achieve this we use a classification
result from [Gö22] that proves that a fractional q-projective permutation is equiv-
alent to two different forms. A direct way to inspect whether there exists such
equivalence is computationally infeasible. We use mathematical tools to render
such an inspection feasible. We use invariants of Boolean functions with respect
to affine-equivalency to overcome the complexity of the experiment.

We dedicate the first section of this chapter to mention selected terms and
results of [Gö22] and fit the arrangement to the situation of the S-box π. Next,
we go through elementary representations of the S-box to show that they does
not help us in finding any other valuable structure in Section 3.2. In section 3.3
we complete the preparation of the experiment described in last section, Section
3.4. The experiment is accompanied by all used code in Attachment A.7, A.11
and A.10 and its result can be seen in attached invariants.txt and invariants
special.txt files.

3.1 Classification of fractional projective per-
mutations

Paper [Gö22] focuses on a special kind of projective permutation and provides
a classification of all such permutations. We already prepared a background of
definitions in Section 1.4 in the introductory chapter and now we will present the
special kind of permutations and explain the way we want to use them.

Let us start with the notation and the definitions that are taken directly from
[Gö22] to introduce the situation. Firstly, we give the notation which we will
follow from now on.

Notation 13. Let p ∈ P be a prime, k, l ∈ N, k < l, then

• r = pl,

• q = pk,

• L is the field with r elements,

• K is the field with q elements.

Now we give the definition of the main kind of terms. These terms are defined
for arbitrary choice of used parameters. For our purposes we will choose

p = 2, l = 8 and k = 4,

as we describe in Example after Theorem 16, because that setting seems to fit
the situation around the S-box, which we will describe later in the section.

Definition 30. Let p, q,L be as in Notation 13. We define the q–projective
polynomial as

f(x) = aq+1x
q+1 + aqx

q + a1x+ a0 ∈ L[x].

44

Let f, g be q–projective polynomials. The fractional q–projective function
is defined as

Πf,g(x) = f(x)
g(x) , Πf,g : P1(L)→ P1(L).

The main result of [Gö22] is the classification of fractional q-projective func-
tions by projective equivalency that we define in Definition 20. The theorem is
mentioned here as Theorem 16 and it uses carefully chosen constants, which are
listed here in Notation 14 with need of Definition 31.

Definition 31. Let p ∈ P a prime, l, d ∈ N, d|l. Let L and D be finite fields such
that L ⊇ D, L = Fpl, D = Fpd. We define the trace function as

trL\D(x) =
l
d

−1∑︂
j=0

xp
dj

.

We keep the notation used in Definition 31 and complete the exposition with
terms we will need in Theorem 16 and an analysis right after. We write down all
of important terms in Notation 14.

Notation 14. Let q, r, k, l,K,L represent same structures as in Notation 13. Let
d = gcd(k, l) then:

• D stands for L ∩K = F2d,

• L′ := Fr2i where i is maximal such that 2i|k
d
,

• ω is an element such that L′(ω) is an extension of L′ of degree 2,

• ϵ1 an element from L forced to have trD\F2(ϵ1) = 1,

• ϵ2 = ω2 + ω ∈ L′,

• ϵq = ωq + ω ∈ L,

• δ ∈ K with δ + ϵ2 ∈ L.

We list terms in Notation 14 only to help us with representation of the S-box
π as a fractional polynomial function. Knowledge of construction or properties
of those terms is not much important for our purposes, but in Attachment A.7
we show how to find a consistent set of values for those terms.

It is showed in [Gö22][Proposition 3.1] that every fractional q-projective func-
tions over a finite field is projectively equivalent to one of two separate forms.
Those forms are fractional q-projective functions with carefully chosen coeffi-
cients. We write down the proposition as Theorem 16 with the notion of projec-
tive equivalency taken from Definition 20.

Theorem 16 ([Gö22], Proposition 3.1). Let Π(x) be a fractional q-projective
permutation of P1(L). Then with Notation 14, it holds that char(L)=2 and Π(x)
is projectively equivalent to, either:

1. ψ1(x) = xq+1+(ϵq+1)x+ϵ2+δ+ϵ1
xq+x+ϵq , with trD/F2(ϵ1) = 1, or

45

2. ψ2(x) = xq+1+(ϵq+1)x+ϵ2+δ
xq+x+ϵq .

Remark. We can observe that ψ1 and ψ2 can both be permutations of affine space
A(L) ≃ L ≃ Fl2 because degree of the numerator is strictly greater then degree
of the denominator and so by Definition 18 we get

Π(∞) =∞

and therefore since Π is assumed to be a permutation we get also

Π(L) = Π(A(L)) = A(L) = L.

Theorem 16 can be interpreted so that for every fractional q-projective per-
mutation there exist µ1, µ2 ∈ PGL2(L) such that Π(x) can be written as

Π(x) = µ1 ◦
aq+1x

q+1 + aqx
q + a1x+ a0

bq+1xq+1 + bqxq + b1x+ b0
◦ µ2

where

aq+1 = 1, aq = 0, a1 = ϵq + 1, a0 = ϵ2 + δ + ϵ1 or a0 = ϵ2 + δ,
bq+1 = 0, bq = 1, b1 = 1, b0 = ϵq

with ϵq, ϵ2, ϵ1, δ satisfying requirements from Notation 14. This give us a tool how
to inspect every single fractional q-projective function. We can choose arbitrary
valid values for parameters eq, e2, e1, δ, define two initial functions ψ1, ψ2 and then
run through

µ2 ◦ ψ1 ◦ µ1 and µ2 ◦ ψ2 ◦ µ1

for all possible µ1, µ2 ∈ M(L) (defined in Definition 19). Theorem 16 ensures
that like this we meet every fractional q-projective function.

3.1.1 Apparent connection between fractional q-projective
functions and TKlog

Let us now talk about the initial motivation of searching for connection between
Perrin’s paper and fractional projective permutations. Perrin describe the struc-
ture of the S-box π as a TKlog structure which has a partition preserving property.
We describe the property in Section 2.3.1. We recall that instances of TKlog map
multiplicative cosets on the input to additive cosets of the finite field on the out-
put. The cosets are taken with respect to the maximal subgroups of the subfield
of half dimension.

There is two interesting function between a finite field and its subfield of index
two related to the special property of TKlog. We already defined one of them,
the trace function in Definition 31. We define now the norm function.

Definition 32. Let p ∈ P a prime, l, d ∈ N, d|l. Let L and D be finite fields such
that L ⊇ D, L = Fpl, D = Fpd. We define the norm function as

normL\D(x) =
l
d

−1∏︂
j=0

xp
dj

.

46

If we take the case of a finite field and its subfield of index 2 i.e. l = 2k, q = pk

we get

trL\K(x) =
l
k

−1∑︂
j=0

xp
kj = xq + x

and

normL\K(x) =
l
k

−1∏︂
j=0

xp
kj = xq+1.

The trace function classify all element of L into additive cosets by the value of
its trace. It means that two elements belonging to the same additive coset have
the same value of its trace. Analogously the norm function divides L \ {0} into
multiplicative cosets by the value of their norm. Moreover the trace function and
the norma functions are polynomial mappings with exponents that we can see in
a q-projective polynomial and in both numerator and denominator of a fractional
q-projective function.

Therefore it seems as a good idea to explore whether there is a connection
between TKlog a structure that preserves partitions into cosets and fractional
q-projective functions that are composed by mappings trace and norm functions
that divide the finite field into cosets.

3.1.2 Setting of constants
As we already mentioned, we want to find a representations of the S-box π or an
affine-equivalent function to π in the set of all fractional q-projective functions, if
there exists one. In this sections we give concrete values to terms that we defined
in general to suit our situation around the S-box.

The first choice should be
p = 2, l = 8,

since the S-box permutes F28 . Another choice has to be made and that is

k = 1
2 · l = 4

because of the partition preserving property of TKlog. Definition of every other
terms are consequences of these to choices.

We will go through all terms from from Notation 13, Definition 31 and Nota-
tion 14 and we list their values, so that they suits the situation:

• p = 2, l = 8, k = 4, d = gcd(8, 4) = 4,

• r = 28, q = 24,

• L = F28 ,K = D = F24 ,

• k
d

= 1⇒ i = 0 and L′ = L.

If we propagate those values into Definition 18 and we get that we deal with
fractional projective functions

Π(x) = a17x
17 + a16x

16 + a1x+ a0

b17x17 + b16x16 + b1x+ b0

47

and in Theorem 16 we focus on functions

ψ1(x) = x17 + (ϵq + 1)x+ ϵ2 + δ + ϵ1

x16 + x+ ϵq
and ψ2(x) = x17 + (ϵq + 1)x+ ϵ2 + δ

x16 + x+ ϵq

with

• trL\D(x) = trF28 \F24 (x) = ∑︁1
j=0 x

24j = x+ x24 = x+ x16

• trD\F2(x) = trF24 \F2 = ∑︁3
j=0 x

2j = x+ x2 + x4 + x8

• trD\F2(x) = trF28 \F2 = ∑︁7
j=0 x

2j = x+ x2 + x4 + x8 + x16 + x32 + x64 + x128

• ω ∈ F216 \ F28 such that F28(ω) = F216

• ϵq = ωq + ω, ϵq ∈ F28

• ϵ2 = ω2 + ω, ϵ2 ∈ F28

• ϵ1 ∈ {e ∈ F28 : trD\F2(e) = 1}

• δ ∈ F24 and by [Gö22, Section 3.1 and Lemma 4.1] since

K = D⇒ [K : D] = 1

is odd, we can choose δ = 0.

With such setting we can choose any valid combination of constants ϵq, ϵ2, ϵ1, δ
and define our initial ψ1 and ψ2 that will be combined later with Möbius trans-
formations of special type. We give example code in Attachment A.7 how we can
get concrete values of those constants. Constants are computed in a different way
then defined in [Gö22], because it is more suitable for computer. We compute
ϵq, ϵ2, ω as

• ϵ2 ∈ {e ∈ F28 : trL\F2(e) = 1} arbitrary,

• ω ∈ {e ∈ F216 : e2 + e = ϵ2} arbitrary,

• ϵq = ωq + ω

and we define ψ1 and ψ2 as already described.

3.2 Elementary representations of S-box π

Before we dive into the main experiment that tries to connect results of the two
paper, we make a step aside and take a look on simple representation of S-box π.

A function such as our S-box can be represented by a lookup table, which
is actually the way how S-box π is defined in [DD13] and [Dol16]. Another
representation that can come in mind among first options is algebraic normal form
of the S-box if it is interpreted as a vectorial Boolean function or representation
by a polynomial, known as Lagrange interpolation polynomial, if the S-box is
considered as permutation of a finite field.

48

These are three main representations that exists for every function. This
section should not serve as explanation of theory behind methods for getting the
algebraic normal form or Lagrange interpolation polynomial, but as description
of how these representation look like for our S-box.

In the last part of the section we give a representation of π that covers all
cases form Perrin’s definition of TKlog within one single formula.

3.2.1 S-box π as a vectorial Boolean function
S-box π is defined by a value table Z256 → Z256. In the value table we have record
such as i ↦→ j and if we want transfer the table to a value table over F8

2 we have
to transfer both preimage and image from Z256 into Boolean vectors of dimension
8 by natural transfer into Boolean representation, done also by function V8 from
Definition 4, we get a lookup table F8

2 → F8
2. Vectorial Boolean function with

such value table can be expressed in algebraic normal form.
There exists a procedure how to find the algebraic normal form from a lookup

table. Some of methods of converting representations of a Boolean function are
described in [WF16], however we followed a modified procedure for vectorial
Boolean function:

1. Write the look up table as Boolean matrix where columns are Boolean
representation of images

T =
(︂

Int8(π(0))| Int8(π(1))| . . . | Int8(π(255))
)︂

in our case we get a matrix of dimension 8× 256,

2. Construct a matrix M8 defined as

M1 =
(︂
1
)︂
,M2 =

(︄
1 1
0 1

)︄
, . . . ,Mk =

(︄
Mk−1 Mk−1

0 Mk−1

)︄
,

in our case we get a matrix of dimension 256× 256,

3. From product of matrices T ·M8 take columns as vector coefficients au
T ·M8 =

(︂
aInt8(0)|aInt8(1)| . . . |aInt8(255)

)︂
,

4. Write the algebraic normal form for π as

πANF
∑︂
u∈F8

2

aux
u.

As for other computation we chose SageMath, a computer algebra system
based on programming language Python. We got the result from the code and its
output that can be seen in Attachment A.5. Output [2] represents 8 sequences
of coefficients for 8 Boolean function fi, i = 0, . . . , 7 for vectorial Boolean function

πVBF = (f0, . . . , f7).

Each sequence is sorted as coefficients of xu for

u = V8(i), i = 0, . . . , 255.

This representation does not give any interesting information that can help us in
our purpose but it is one of elementary representations.

49

3.2.2 S-box π as a Lagrange polynomial
Lagrange interpolation is a method of finding a polynomial from finite field’s
polynomial ring that satisfies given value table. There exists such polynomial as
proved in [SB11][Theorem 6.2] and the polynomial is named Lagrange interpola-
tion polynomial. We give an explicit definition in Definition 33.

Definition 33. Let a1, . . . , an ∈ Fq with ai ̸= aj for i ̸= j and b1, . . . , bn ∈ Fq ele-
ments of finite field Fq. Then we define a Lagrange interpolation polynomial
as

L(x) =
n∑︂
j=1

bjlj(x),

where lj are elements of Lagrange basis {l1, . . . , ln}, where

lj(x) =
n∏︂

i=1,i ̸=j

x− ai
aj − ai

.

To get a value table for π over F28 we have to first convert image and preim-
age into Boolean vectors by mapping V8 from Notation 4 and then transfer the
Boolean vectors to element of the finite field F28 by mapping FV from Nota-
tion 4 as well. Then if we compute the polynomial by Lagrange interpolation of
this value table for our S-box π, we get a polynomial that can provide us some
information.

We used computer algebra system SageMath based on programming language
Python to compute the Lagrange polynomial and we got a polynomial of degree
254 with 4 factors each of them in first power. Code can be seen in Attachment
A.6. Explicitly we get πpoly and f1, f2, f3, f4 such that

πpoly = π1 · π2 · π3 · π4,

with

deg(πpoly) = 254, deg(π1) = 1, deg(π2) = 3, deg(π3) = 19, deg(π4) = 231

This result does not provide us any useful information that can get us closer to
a representation of S-box π as a fractional q-projective function.

An interesting result would be the case where πpoly has a factor πi of degree
17. If additionally the inverse of product of all other factors

π1 · π−1
poly mod xq

2 − x

is of degree 17 or lower, we can get exactly the representation of a fractional
q-projective function.

Unfortunately, as we can see in the output of the code in Attachment A.6, it
is not the case because none of the factors is of degree 17 and if we take the factor
with closest degree to 17, the factor f3 with degree 19 as numerator, combinations
of the remaining factors does not have degree much lower then 255 and

πpoly = π1 · π2 · π3 · π4 = π3

π−1
1 · π−1

2 · π−1
4
.

is not a q-projective polynomial nor a fractional polynomial with similar degree
of numerator and denominator.

50

3.2.3 One single formula for S-box π

TKlog as a structure found in our S-box is defined by κ and a permutation s.
The definition gives formula for {0}, ⟨α17⟩ and (F28 \ ⟨α17⟩) \ {0} separately. We
will follow now Perrin’s notation that omit auxiliary transformations between
algebraic structures, while explicit algorithm for π is described in Section 2.2.1.
We can get rid of the separation by reorganisation

π(x) =

⎧⎪⎪⎨⎪⎪⎩
κ(x) x = 0
κ(16− j) x = αk for k = i+ 17j and i = 0
κ(16− i) + α17·s(j) x = αk for k = i+ 17j and i ̸= 0

into one single formula

π(x) = g0 · κ(0) + g1 · κ(16− j) + g2 ·
(︂
κ(16− i) + α17·s(j)

)︂
,

where x = 0 or x = αk with k = i+ 17j and g1, g2 defined as

g0 = 1− x255, g1 = 1− (1− αi)255, g2 = 1− α15k.

We take actually 3 formulas from Perrin’s definition and put them together in
one and only formula while only one of original formulas is active for x belonging
to one of 3 original subsets since g0, g1 and g2 are defined so that they fullfill the
following.

g0(x) =

⎧⎪⎪⎨⎪⎪⎩
1 x = 0
0 x = αk for k = i+ 17j and i = 0
0 x = αk for k = i+ 17j and i ̸= 0

g1(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x = 0
1 x = αk for k = i+ 17j and i = 0
0 x = αk for k = i+ 17j and i ̸= 0

g2(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x = 0
0 x = αk for k = i+ 17j and i = 0
1 x = αk for k = i+ 17j and i ̸= 0

Moreover we can use the structure of mapping κ to simplify the formula. Mapping
κ is an affine mapping consisting of a linear part represented by multiplication
by a matrix A and shift by a vector b. Since π(0) = κ(0) = b and κ(x) = A(x)+ b
for x ̸= 0 we can simplify the formula as

π(x) = b+ g1(x) · A(q − j) + g2(x) ·
(︂
A(q − i) + α17·s(j)

)︂
.

If we add the auxiliary transformations in the formula we get a function
corresponding to the value table over F28

π(x) = FV(b) + g1(x) · FV(A(V4(q − j))) + g2(x) ·
(︂
FV(A(V4(q − i))) + α17·s(j)

)︂
.

51

3.3 Möbius transform and invariants
Paper [Gö22] provides us a classification of all fractional q-projective function
by projective equivalency. We get that every fractional q-projective function is
projectively equivalent to one of the unique forms with any valid choice of free
parameters. This means that if our S-box π has the form of fractional q-projective
function we should be able to find that form by inspection of all projective equiv-
alents of ψ1 and ψ2 for fixed ϵq, ϵ2, ϵ1 and δ.

Inspection of all instances of fractional q-projective functions is not doable
in feasible time and therefore we have to choose another approach of how to
compare two functions. We lower our goal to find exactly the representation of
π to find only representation of a function that can be obtained from π by affine
transformations. This pays off by need of inspection of affine invariants of lower
number of functions, always one representative from each affine equivalency class.

Finding that form by bruteforce could be theoretically successful but in real
execution we would have to go through all 2× ((q2 + 1)q2(q2− 1))2 ≈ 249 choices
for µ1, µ2 that provide the projective equivalency. Additionally, a run through
all of possible choices of µ1, µ2 contains also inspection of some affine equivalent
functions to a fractional projective function.

We can include also those function in our experiment, because if the S-box π
is not exactly a fractional q-projective function, but a function affine equivalent
to them, it can provide similar information as it would be fractional q-projective
function itself.

If we want to inspect all projective equivalent function to ψ1, ψ2 and all affine
equivalent function to them we should start with an experiment where we go
through all mappings of form

L2 ◦ µ2 ◦ ψ1 ◦ µ1 ◦ L1,

or
L2 ◦ µ2 ◦ ψ2 ◦ µ1 ◦ L1,

with L1, L2 affine permutations and µ1, µ2 Möbius transformation. Together pos-
sibly up to ≈ 249 × 232 ≈ 281, since L1, L2 both can be of form ax+ b.

We developed a way how to reduce number of choices we will have to go
through. It combines multiple aspects of permutations over affine and projective
space A1(L) and P1(L) with properties of affine equivalent permutations.

We will dedicate separate Section 3.3.1, 3.3.2 and 3.3.3 to every step in our
reduction. We unify the notation for used Möbius transforms µ1, µ2 in a way that
we want to find such µ1, µ2 that we get:

µ2 ◦ Π ◦ µ1(x) ∼EA π(x)
for Π = ψ1 or Π = ψ2 from Theorem 16 and

µ1 = a1x+ b1

c1x+ d1
, µ2 = a2x+ b2

c2x+ d2
.

3.3.1 Affine equivalency
With general bruteforce the simplest way how to compare two mappings is to
test the trivial invarinat - whether their value tables matches i.e. whether

µ2 ◦ Π ◦ µ1(x) = π(x) ∀x ∈ F28 .

52

Another way how to compare them is to inspect invariants other then the func-
tional value e.g. invariants from Section 1.2. For general bruteforce it is not really
efficient because computation of invariants takes more time then computation of
functional value and moreover we get only a set of candidates for affine equivalent
mappings to π.

On the other hand we can use this vagueness as an advantage and take it as
aim to find a set of candidates for affine equivalent functions to π i.e. candidates
for π up to affine equivalency. This will allow us to omit L1, L2 from the formula
and all possibilities that are affine equivalent to another. Moreover we can then
consider also all µ2 ◦ Π ◦ µ1 up to affine equivalency and this leads us also to
reduce the set of all possibilities for µ1, µ2.

In the set of Möbius transfers there exists transformations that are at the
same time affine mappings. It is those µ1, µ2 such that c1, c2 = 0, because then
we have

µ1(x) = a1x+ b1

d1
= a1

d1
x+ b1

d1
, µ2(x) = a2x+ b2

d2
= a2

d2
x+ b2

d2
,

which are affine mappings. We will therefore forbid choice c1 = 0 and c2 = 0.
Let us now specify how we can enforce µ1, µ2 to be a non-affine transformation.

We know that if we choose c1, c2 = 0 we get affine transformations. Let us then
choose c1, c2 ̸= 0. Especially without lost of generality we can choose c1, c2 = 1
because every choice of µ1, µ2 with c1, c2 ̸= 0 can be reorganised so that

µ1(x) = a′
1x+ b′

1
c′

1x+ d′
1

=
a′

1
c′

1
x+ b′

1
c′

1

x+ d′
1
c′

1

= a1x+ b1

x+ d1
,

µ2(x) = a′
2x+ b′

2
c′

2x+ d′
2

=
a′

2
c′

2
x+ b′

2
c′

2

x+ d′
2
c′

2

= a2x+ b2

x+ d2
.

With the condition on a′
1d

′
1 − b′

1c
′
1 ̸= 0, a′

2d
′
2 − b′

2c
′
2 ̸= 0 or now equivalently

a2d2 − b2 ̸= 0, a2d2 − b2 ̸= 0 we get all possibilities to go through.
The idea of reduction of the set of all possibilities for µ1, µ2 is built up on the

fact that value of invariants for Π ∈ {ψ1, ψ2} and mappings affine equivalent to
Π will be that same. Therefore comparison invariants for Π and π will give us
the same information as comparison invariants for a mapping affine equivalent to
Π with invariants for π.
Example. Let us take property ρ as invariant with respect to affine equivalency.
Let Π ∼EA Π′ and π our S-box.

Since Π ∼EA Π′ we know that ρ(Π) = ρ(Π′) and therefore we get

ρ(Π) = ρ(π) ⇐⇒ ρ(Π′) = ρ(π)

and while we meet Π or Π′ in the inspection of all possibilities and compare its
ρ to ρ(π) we already know how the comparison of the invariant will turn out for
the other variant.

Moreover we know that Π ∼EA Π′ and we can find it later by inspecting all
affine equivalent mapping to get Π or Π′ from each other.

In following section we describe how we can reduce the number of functions
to be inspected if we focus only on one representative from every class of affine
equivalency.

53

3.3.2 Composition with affine transformations
Result of the experiment should be a set of candidates for affine equivalent func-
tions to the S-box π. In the result set we always need at least one representative
from a class of affine equivalency with same invariants. However we need at most
one representative from each class of affine equivalency, because we know that the
other will have same value of invariants as the one representative. This provides
us opportunity to exclude those µ1, µ2 that we can obtain as a composition of
another Möbius transform with an affine transform.

With Notation 7, according to Observation 6 every µ1 and µ2 can be obtained
as composition

µ1(x) =ax+ b

cx+ d

=fT,a
c
◦ fD, bc−ad

c2
◦ fI ◦ fT, d

c
(x)

=
(︂
x+ a

c

)︂
◦
(︂ad− bc

c2 x
)︂
◦ 1
x
◦
(︂
x+ d

c

)︂
and if we choose c = 1 as we already commented in Section 3.3.1 we get

ax+ b

x+ d
= µ1(x) =

(︂
x+ a

)︂
◦
(︂
(ad− b)x

)︂
◦ 1
x
◦
(︂
x+ d

)︂
.

The part of the composition that is on the right side from transformation 1
x

can
be considered as a part of transformation L1 and not a part of µ1.

Another reduction can be considered. We focus on part of the composition
((ad− b)x) ◦ (1

x
) and we reformulate it to form

(︂
(ad− b)x

)︂
◦ 1
x

= ad− b
x

= 1
x
◦
(︂ 1
ad− b

x
)︂
,

where we have guarantied that ad− b ̸= 0 from the original condition for Möbius
fransformations. Again we can move the part on the right side of 1

x
to the affine

mapping L1 and all together we get that we have to run through all possible µ1
of form

µ1(x) =
(︂
x+ a

)︂
◦ 1
x

and the number of such µ1 is equal to 28.
Analogously we get that µ2 of general form

µ2(x) =ax+ b

cx+ d

=fT,a
c
◦ fD, bc−ad

c2
◦ fI ◦ fT, d

c
(x)

=
(︂
x+ a

c

)︂
◦
(︂ad− bc

c2 x
)︂
◦ 1
x
◦
(︂
x+ d

c

)︂
can be reorganised so that with c = 1 we will have to go through all 28 possibilities
of form

µ2(x) = 1
x
◦
(︂
x+ d

)︂
,

since everything on the left of 1
x

can be considered as a part of L2.

54

All together we will go through all choices of a, d ∈ F28 in expressions

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ1 ◦

(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦ ψ1 ◦
(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ1 ◦ L1

L2 ◦ ψ1 ◦ L1

and

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ2 ◦

(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦ ψ2 ◦
(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ2 ◦ L1

L2 ◦ ψ2 ◦ L1

together 2× (216 + 28 + 28 + 1) = 218 + 2 possibilities which is already a number
of functions to be inspected, that can be considered as low enough.

3.3.3 Point at infinity
We are interested in a connection between S-box π and fractional projective
functions. S-box π is a permutation of affine space F28 = A1(F28) while fractional
q-projective functions are by default defined to be permutations of projective
space P1(F28) = F28 ∪ {∞}. This is something that has to be clarified before we
start the experiment.

As we defined evaluation of fractional polynomials in Definition 18 and we get

ψ1
(︂
A1(F28)

)︂
= A1(F28), ψ1(∞) =∞

as well as
ψ2
(︂
A1(F28)

)︂
= A1(F28), ψ2(∞) =∞

for every ψ1 and ψ2.
Composition with non linear Möbius transforms µ1, µ2 does not preserve this

property, on the other hand composition with affine transformation does and we
have to be careful in comparisons of Π transformed ψ1 and ψ2. Specially we have
to take care of those that does not map ∞ to ∞.

55

3.3.3.1 Restriction on affine space

One of approaches is to focus only on those that does map ∞ to ∞ by forcing
d = ψi(a) for i ∈ {1, 2} because then we get

Π(∞) =
(︄

1
x
◦
(︂
x+ ψi(a)

)︂
◦ ψi ◦

(︂
x+ a

)︂
◦ 1
x

)︄
(∞)

=
(︄

1
x
◦
(︂
x+ ψi(a)

)︂
◦ ψi ◦

(︂
x+ a

)︂)︄
(0)

=
(︄

1
x
◦
(︂
x+ ψi(a)

)︂
◦ ψi

)︄
(a)

=
(︄

1
x
◦
(︂
x+ ψi(a)

)︂)︄
(ψi(a))

=
(︄

1
x

)︄
(0)

= ∞

for both i = 1, 2. This approach would consider only variants listed at the end of
Section 3.3.2 that has µ1, µ2 on both sides of formula and variants without µ1, µ2
on both sides:

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ1 ◦

(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦ ψ1 ◦ L1

and

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ2 ◦

(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦ ψ2 ◦ L1

This approach may be too restrictive with only 29 + 2 possibilities. We run
the experiment with this approach with code in Attachment A.10 in SageMath,
computer algebra system based on programming language Python. The code did
not give us any fractional q-projective function with same differential spectrum
as π has and therefore we develop also another approach how to deal with the
case that ∞ is mapped to an element of L.

3.3.3.2 Fractional jump

We will explore another approach, that is a bit outside of the idea of finding a
representation of S-box π as a fractional q-projective function. The idea is to
force the image of the function by additional manipulation to cover all elements
from L. Therefore if we meet the case where ∞ is mapped to an element from
L. we can force the function to map the preimage of ∞ to the image of ∞ and
fulfill the nature of permutation of the affine space by that.

56

Suppose that we have Π such that ∞ is not mapped to ∞. We can apply
simple manipulation for such function Π : P1(L) −→ P1(L) to obtain a function
ΠA : L −→ L

Π(x) = f1

f2
(x)⇝ ΠA(x) = f1 · f 2r−2

2 (x) mod xr − x, (3.1)

that gives us

Π(x) = ΠA(x), ∀x ∈ L and Π(x) =∞⇒ ΠA(x) = 0

and since Π is a permutation we get

ΠA(L) ⊊ L, because ΠA(L) = L \ {Π(∞)},

since ΠA has two preimages of 0 and element Π(∞) ∈ L does not have a preimage
in L. Therefore we have to straighten this situation. Overall we want to define a
similar function that will be a permutation of the affine space.

Forcing f ′ to map the preimage of ∞ to the image of ∞ is the most direct
way how to ensure that the function is permuting the affine space with minimal
impact on the structure of images up to one preimage.

f :∞ ↦→ γ

f : β ↦→ ∞

}︄
−→ f ′ : β ↦→ γ (3.2)

Remark. We can get a function that permutes the affine space by forcing it to
map the preimage of ∞ to an element of affine space while the preimage of that
element is forced to be mapped to the image of∞ and analogously with arbitrary
many tuples image/preimage in the middle steps

f :∞ ↦→ γ

f : χ ↦→ ζ

f : β ↦→ ∞

⎫⎪⎪⎬⎪⎪⎭ −→
⎧⎨⎩f ′ : β ↦→ ζ

f ′ : χ ↦→ γ
, (3.3)

maybe especially in our case with 17 middle steps that will correspond to the
TKlog structure, but the impact on the structure grows with every middle step
and therefore we choose to use the most direct modification 3.2.

Manipulation with aim to change image of one and only preimage is covered
by a method called fractional jump construction. This method is described
in [GM18, Chapter 2] for arbitrary dimension of projective space. We need the
fractional jump for dimension 1 and the concrete form that provides us the ma-
nipulation is expressed in Observation 17.

Observation 17. Let f : Fr → Fr for Fr a finite field. For every β, γ ∈ Fr let
f ′ = f +

(︂
γ − f(β)

)︂(︂
1− (x− β)r−1

)︂
. It holds that

f ′(x) =
⎧⎨⎩γ x = β

f(x) x ̸= β.
(3.4)

Proof. If we develop f ′(x) we get

f ′(x) = f(x) +
(︂
γ − f(β)

)︂(︂
1− (x− β)r−1

)︂
57

and if x = β

f ′(β) = f(β) +
(︂
γ − f(β)

)︂(︂
1− (β − β)q2−1

)︂
= f(β) + γ − f(β) = γ

and if x ̸= β

f ′(x) = f(x) +
(︂
γ − f(β)

)︂(︂
1− (x− β)q2−1

)︂
= f(x) +

(︂
γ − f(β)

)︂
(1− 1) = f(x)

Construction of fractional jump together with modification 3.1 will preserve
images of all affine points and preimage of ∞ will be mapped to image of ∞.
Final manipulation will look like

Π(x) = f1

f2
(x)⇝ Π′(x) = f1(x) · f 2r−2

2 (x) + γ ·
(︂
1− (x− β)r−1

)︂
.

Example. Let us analyse β and γ for each type of formula that we will need on
its own

1. 1
x
◦
(︂
x+ d

)︂
◦ ψ1 ◦

(︂
x+ a

)︂
◦ 1

x
:

maps ∞ ↦→ 1
ψi(a)+d and 1

ψ−1
i (d)+a ↦→ ∞ and therefore

γ = 1
ψi(a) + d

and β = 1
ψ−1
i (d) + a

2. ψ1 ◦
(︂
x+ a

)︂
◦ 1

x
:

maps ∞ ↦→ ψi(a) and 0 ↦→ ∞ and therefore

γ = ψi(a) and β = 0

3. 1
x
◦
(︂
x+ d

)︂
◦ ψ1:

maps ∞ ↦→ 0 and ψ−1
i (d) ↦→ ∞ and therefore

γ = 0 and β = ψ−1
i (d)

4. ψ1 maps ∞ ↦→ ∞ already

Those are point that we have to connect by force, by adding a formula from
Observation 17.

Before we build in the method of fractional jump in our experiment, we have
to first check how it commutes by composition with affine transformations from
the right and the left side. Let us formulate this assumption as a theorem.

Theorem 18. Let FJβ,γ be a transformation of a function

FJβ,γ(f) = f +
(︂
γ − f(β)

)︂(︂
1− (x− β)r−1

)︂
forcing

(︂
FJ(f)

)︂
(β) = γ for f : Fr → Fr such that f(β) = 0.

Let l1, l2 : Fr −→ Fr be affine permutations l1 : x ↦→ ax+ b, l2 : x ↦→ cx+ d for
a, b, c, d ∈ Fr. Then(︂

l2 ◦ FJβ,γ(f) ◦ l1
)︂
(x) =

(︂
FJl−1

1 (β),l2(γ)(l2 ◦ f ◦ l1)
)︂
(x)

for every x ∈ Fr.

58

Proof. We have to actually prove only(︂
l2 ◦ FJβ,γ(f) ◦ l1

)︂
(l−1

1 (β)) = l2(γ) ⇐⇒ FJl−1
1 (β),l2(γ)(l2 ◦ f ◦ l1)(l−1

1 (β)) = l2(γ)

because for every other point δ ̸= l−1
1 (β) it hold that(︂

l2 ◦ FJβ,γ(f) ◦ l1
)︂
(δ) = l2(FJβ,γ(f)(l1(δ))) = l2(f(l1(δ)))

since the argument of FJβ,γ(f) is l1(δ) ̸= β as well as

FJl−1
1 (β),l2(γ)(l2 ◦ f ◦ l1)(δ) = l2(f(l1(δ)))

since the argument of FJβ,γ(l2 ◦ f ◦ l1)) is δ ̸= l−1
1 (β).

For the point l−1
1 (β) we can prove 4 independent statements:

1. FJβ,γ(f) ◦ (ax) = FJβ·a−1,γ(f ◦ (ax))

2. FJβ,γ(f) ◦ (x+ b) = FJβ+a,γ(f ◦ (x+ b))

3. (cx) ◦ FJβ,γ(f) = FJβ,c·γ((cx) ◦ f)

4. (x+ d) ◦ FJβ,γ(f) = FJβ,γ+d((x+ d) ◦ f)

Each point follows from definition of FJ as we can see in the following.

1. By definition of FJβ,γ(︂
FJβ,γ(f) ◦ (ax)

)︂
(β · a−1) =

(︂
FJβ,γ(f)

)︂
(β · a · a−1)

=
(︂
FJβ,γ(f)

)︂
(β)

= γ

By definition of FJβ·a−1,γ(︂
FJβ·a−1,γ(f ◦ (ax))

)︂
(β · a−1) = γ

2. By definition of FJβ,γ(︂
FJβ,γ(f) ◦ (x+ b)

)︂
(β + b) =

(︂
FJβ,γ(f)

)︂
(β + b+ b)

=
(︂
FJβ,γ(f)

)︂
(β)

= γ

By definition of FJβ+b,γ(︂
FJβ+b,γ(f ◦ (x+ b))

)︂
(β + b) = γ

3. By definition of FJβ,γ(︂
(cx) ◦ FJβ,γ(f)

)︂
(β) = (cx) ◦

(︂
FJβ,γ(f)

)︂
(β)

= c · γ

By definition of FJβ,c·γ (︂
FJβ γ((cx) ◦ f)

)︂
(β) = c · γ

59

4. By definition of FJβ,γ(︂
(x+ d) ◦ FJβ,γ(f)

)︂
(β) = (x+ d) ◦

(︂
FJβ,γ(f)

)︂
(β)

= γ + d

By definition of FJβ,γ+d(︂
FJβ,γ+d((x+ d) · f)

)︂
(β + b) = γ + d

We just proved that composition with dilation and translation from both sides
fulfill the statement. Since affine transformations are composed by a dilation and
a translation, we proved the statement also for composition with affine transfor-
mations.

Remark. We can interpret Theorem 18 as an assurance that two following formu-
las give the same function.

1. We apply first the fractional jump on a function f and then apply affine
transformations

l2 ◦ FJβ,γ(f) ◦ l1
or

2. we first apply the affine transformations and then the fractional jump with
modified parameters

FJl−1
1 (β),l2(γ)(l2 ◦ f ◦ l1).

Modified parameters in fractional jump for second case correspond to composition
with the affine mappings because we have to take care always of the problematic
pair β, γ and therefore we chose l1(β), l2(γ) to avoid the case when the final image
is ∞ and ensure that something is mapped to l2(γ). It is important because we
want to preserve the property of permuting the affine space and we omit affine
transformations in the experiment.

After we rearrange the function to be permutation of the affine space, we get a
function that is not a fractional q-projective function but is very similar, because
it has the value table the same up to one value. Since it seems like the S-box of
interest is not a fractional q-projective permutation, we want to explore similar
exposition as well, but we have to consider this in processing of data we will get
in the course of the experiment. We describe actual procedure of the experiment
with the methodology of evaluation of generated data.

3.4 Main experiment
In previous sections and especially in Section 3.3 we prepared the stage for a run
of an experiment. The experiment has aim to locate the S-box π in one of affine-
equivalency classes of set of fractional q-projective functions defined in Definition
30.

60

In following subsections we give first the description step-by-step of procedure
of the experiment and then also a methodology of evaluation of generated data.
We use the computer algebra system SageMath based on programming language
Python. All used code is given in attachment and commented in this section. The
code may require to import libraries, define constants or auxiliary function also
described in Notation 4 or Definition 25. All of them are listed in Attachment
A.2 as a base repository to be used anytime later in the code. Moreover if we
define a variable once, we may refer to it later in a code.

Additionally we admit that one can always write a code that will be more
effective or less complicated with better notation, but our aim is not to explore
the best way how to run the experiment, we only need a code executable in
reasonable time that fulfill our purposes to find a representation or show that
there is no such one. Moreover there exist maybe better environments where we
can execute the experiment such as Magma Computational Algebra System or
we can even build the structure on our own in the C programming language, but
SageMath is after all enough for our purposes.

3.4.1 Summary of procedure
We start the description of the experiment at the point where we already got
through theoretic understanding of the settings described in Section 1.4 and the
motivation in Section 3.1 with an overall analysis described in Section 3.3. Then
the procedure can be divided into 3 parts:

1. Preparatory tasks

2. Run through all possibilities

3. Afterprocessing of generated data

Last part of the experiment is discussed in Section 3.4.2 and we focus here on
first two.

The preparatory tasks consist of generating multiple data that will be used
later. First of all we have to generate parameters ϵq, ϵ2, ϵ1, δ described in Section
3.1 to be able to construct ψ1, ψ2 described as well in Section 3.1. These will be
the initial functions that will be composed then with projective transformations.

We used the code that can be seen in Attachment A.7 to generate them.
We already mentioned a method of generation of needed constants at the end
of Section 3.1. We can add here a comment on the code. Although SageMath
has useful libraries and inbuilt functions that are able to manipulate algebraic
structures as finite fields and polynomials, we had to cover transitions between
a field and its subfield by our own. We can find such precedures in cell [4] of
Attachment A.7 where for example function element E L takes an element from
field E and gives corresponding element from field L if it is possible. As is it define
it in Attachment A.2 we take a chain of subfields

K = F24 ⊂ L = F28 ⊂ E = F216

We fix one choice of needed constants once we generate them at random within
boundaries

61

• ϵ2 ∈ {e ∈ F28 : trL\F2(e) = 1} arbitrary,

• ω ∈ {e ∈ F216 : e2 + e = ϵ2} arbitrary,

• ϵq = ωq + ω,

• δ = 0

• ϵ1 ∈ {e ∈ F28 : trD\F2(e) = 1} arbitrary

with values as printed in Attachment A.7

ϵ2 = U7 + U5 + U3 + U2 + U

ϵq = U4 + U3

δ = 0
ϵ1 = U6 + U2

where U is used as a generator of L.
Next step is to figure out how we will evaluate functions that we generate.

The first approach was to generate ψ1, ψ2 in its polynomial representation and
compose them in every iteration with current µ1, µ2 as we run through all of
µ1 = 1

x
+ a and µ2 = 1

x+d . Then we could manipulate the function to get the
form we discussed in Section 3.3.3, the fractional jump with manipulation of
the denominator, and then evaluate it for any purpose such as computation of
invarinats.. This approach would consume a lot of time since manipulation with
polynomials of high degree over a finite field takes SageMath a lot of time and
that could be limiting for the experiment. Moreover we would compute a lot of
times the same or similar thing instead of remembering them.

We choose another approach. Since we have fixed ψ1, ψ2, we can once generate
their value table and then always only search in a dictionary defined over the finite
field L. Composition with translation is done by additional manipulation with
elements from the finite field such as addition and inverse, that is again store in a
dictionary. Such manipulations does not consume a lot of time as multiplication
of a polynomials of high degree.

That is the motivation of generating dictionaries psi 1, psi 1 inv, psi 2,
psi 2 inv and inverses, to remember data instead of calculate them again and
again. Corresponding code is in Attachment A.9 in cell [2].

We also leave a comment about the evaluation of ψ1, ψ2 itself. We straight-
forwardly follow the Definition 18. Corresponding code is in Attachment A.9 in
cell [1].

The last thing that we prepare before we run the experiment itself is a func-
tion that generates values of invariants. We chose to generate only the differential
spectrum as defined in Definition 5 since it is easy and fast to compute. The de-
gree of a function can be difficult to compute on our own and the Walsh spectrum
would take a lot of time. These other invariants can be computed maybe later for
those of which the differential spectrum fulfill the requirements. SageMath has a
library sage.crypto.sbox that can directly compute cryptographical properties
of an S-box given by a value table over integer ring, but for our purposes it has
several defects.

62

Firstly, it accepts only value tables over integer rings as input. Converting
our value table in dictionary over the finite field to a value table over integer ring
takes some time. Secondly, during the computation with by the library function,
a lot of RAM memory is consumed and it can led to a dead of SageMath kernel.

Therefore we compute the differential spectrum by our own code by function
my dspectrum, that gives the same result as the SageMath library function but
suits our purposes better. Corresponding code is in Attachment A.9 in cell [3].
Especially, instead of computing the multiset as

∆F = {#{x ∈ F28|F (x+ a) + F (x) = b}|a, b ∈ F28}

which takes (28)3iterations, we generate the multiset as

∆F = {#{F (x+ a) + F (x)|x ∈ F28}|a ∈ F28}

which gives the same result and takes only (28)2 iterations.
Let us move on to the run through all iteration. We give 5 variants of the

computation. All of them are discussed in Section 3.3.1 and 3.3.3. Firstly, we
run through all

1
x
◦
(︂
x+ ψi(a)

)︂
◦ ψi ◦

(︂
x+ a

)︂
◦ 1
x

for ψ ∈ {ψ1, ψ2}. Corresponding code is in Attachment A.10. We ensure that
it goes through permutation of the affine space directly, without any additional
manipulation, by choosing d = ψ(a). We therefore run through both ψ1, ψ2, with
inner for loop that run thourgh all parameter a and compute appropriate value
table.

Value table is computed so that we make the less possible of manipulations
and therefore from an element l we compute its preimage of µ1 and store the
value in variable point. Then we find the image of l by ψ and then its image for
µ2 and store the value in variable value. Then we simply assign value of value
to the key point in the dictionary value table.

After we have the whole value table generated we provide it to the function
my dspectrum and it computes the differential spectrum for a function with such
value table. The differential spectrum is then compared with the one of the S-box
π and stored in a file according to the result of comparison. Methodology of the
comparison is described in Section 3.4.2.

We execute the run for 4 other variants of the experiment with modifications
described in Section 3.3.3.2 in a similar way. For every of variants

L2 ◦ ψ ◦ L1

L2 ◦ ψ ◦
(︂
x+ a

)︂
◦ 1
x
◦ L1

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ ◦ L1

L2 ◦
1
x
◦
(︂
x+ d

)︂
◦ ψ ◦

(︂
x+ a

)︂
◦ 1
x
◦ L1

we successively chose ψ ∈ {ψ1, ψ2} and generate all value tables for all choices of
parameters a and d. Code for all of them can be found in Attachment A.11 with
the same order as above in cells [2], [3], [4], [5].

63

The process of computation is the same as for the special case with d = ψ(a),
but we had to add a steps in the middle that cover the manipulation around
the point at infinity. First we have to identify the preimage of ∞ as we do it
in the Example in Section 3.3.3 and then force the function to map that point
to the point we want. As we work with the value table, it is quite easy, since
we can write it directly to the dictionary and during the for loop that assign
values, we can just avoid the critical point. Manipulation at the level of explicit
representation can be done after, in the interpretation of data we generate.

In each cell from Attachment A.10 and A.11 we print the overall and half
time consumed by the computation in the cell. Separate measured values with
precision on seconds can be seen in following table.

variant number of iterations consumed time
1
x
◦
(︂
x+ ψ(a)

)︂
◦ ψ ◦

(︂
x+ a

)︂
◦ 1
x

2 · 28 0:02:34
ψ 2 <0:00:01

ψ ◦
(︂
x+ a

)︂
◦ 1

x
2 · 28 0:02:44

1
x
◦
(︂
x+ d

)︂
◦ ψ 2 · 28 0:02:47

1
x
◦
(︂
x+ d

)︂
◦ ψ ◦

(︂
x+ a

)︂
◦ 1
x

2 · 216 3:37:50

Table 3.1: time complexity of the experiment

3.4.2 Interpretation of the result
In previous section, we described the procedure of the experiment. We run
through all functions that can be obtained as a projective equivalent to chosed
ψ1, ψ2. We want to find whether there is one such function that corresponds to
our S-box π. To decide which ones are more similar to π than the others, we use
comparison of the differential spectrum of those function. We store all differential
spectrum in files so that we can attach them to the thesis and some of them are
printed also in Attachment A.12.

By the first run of the experiment we found out that there is no such function
with exactly the same differential spectrum. There is also one aspect that we
did not considered yet. As we modify the majority of functions by the fractional
jump, we might change the differential spectrum by that as well.

Let us take a look on how we compute the differential spectrum of a function
and how it can change if we change one image. Generally, we get the differential
spectrum of a function F as a multiset

∆ = {#{F (x+ a) + F (x)|x ∈ F28}a ∈ F28}

and we store it in a dictionary in a form that corresponds to a multiset. By one
change in the value table, forcing e.g. β ↦→ γ we might change the value of

F (β + a) + F (β) and F (β + a+ a) + F (β + a)

for every a ∈ F28 . This gives us up to 2 · 28 changed values which is . We can
define a metric how to review the similarity.

64

Definition 34. We define the distance of differential spectrums ∆F1 ,∆F2

as
ϑ(∆F1 ,∆F2) =

∑︂
b∈F28

|b′
1 − b′

2|

with
∆Fi

= {(b, b′
i)|b ∈ F28 , b′ =

∑︂
a∈F28

δFi
(a, b)}

for i = 1, 2.

We use the distance of differential spectrum of π and a function F as a metric
of similarity. In case

ϑ(∆F ,∆π) ≤ 512
we categorize F as a function similar to π. We can see in the code in Attachment
A.10 and A.11, that we store the records about found differential spectrum in
multiple files and we sort them by value of ϑ(∆F ,∆π). However, no function F
with ϑ(∆F ,∆π) ≤ 512 was found and therefore files invariants matches.txt,
invariants similar.txt as well as invariants matches special.txt and
invariants similar special.txt stays empty and we do not even attach them
to the thesis. Files ”invariants.txt” and ”invariants special.txt” contains all found
differential spectrum, the file ”invariants special.txt” contains records that are
also contained in file ”invariants.txt”.

65

Conclusion
The main goal of this thesis was to find whether the S-Box π used in the cipher
Kuznyechik and hash function Streebog is affine equivalent to a fractional q-
projective permutation which was introduced in [Gö22] and has a simple form.
Such an equivalence could be exploited to devise an attack on the cipher. The
motivation was mainly based on a previously published paper [Per19], where a
significant structure was found. We described in Chapter 2 the procedure of
the block cipher Kuznyechik and the hash function Streebog and we summarised
findings of [Per19] around the partition-preserving property and cryptographical
properties of S-box π that are uncovered by the TKlog structure.

As it seemed that the structure has a connection with fractional q-projective
functions from [Gö22], we designed an experiment in Chapter 3, in which we want
to discover whether there is a fractional q-projective function that represents a
function affine-equivalent to the S-box π. We developed a way how to make
the experiment doable in reasonable time and how to deal with various aspects
of fractional polynomials and equivalencies over the affine and projective space.
The experiment itself did not find any fractional q-projective representation, but
the generated data may be analysed to find a fractional q-projective function that
has similar properties.

We give also elementary representations of S-box π in Section 3.2 as an alge-
braic normal form, the Lagrange interpolation polynomial or one single formula,
that encapsulates the definition of TKlog by Perrin, given as a formula of 3 parts.
None of those representation did give us any information that can be used in an
attack.

Another idea that is not mentioned in the thesis but can be related to the
topic, is to reformulate Perrin’s definition of TKlog, with help of elements from
a subgroup of all (2q + 1)-th roots of 1, the set ⟨α24−1⟩ instead of a subgroup of
all (2q − 1)-th roots of 1, the set ⟨α24+1⟩ or their combinations.

66

Bibliography
[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-

Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1.
Cryptology ePrint Archive, Report 2016/071, 2016.

[DD13] Vasily Dolmatov and Alexey Degtyarev. GOST R 34.11-2012: Hash
Function. RFC 6986, August 2013.

[Dol16] Vasily Dolmatov. GOST R 34.12-2015: Block Cipher ”Kuznyechik”.
RFC 7801, March 2016.

[eS49] Claude e. Shannon. Communication theory of secrecy systems. Bell
Systems Technical Journal 28, pages 656 – 715, 1949.

[GM18] Federico A. Guidi and Giacomo Micheli. Fractional jumps: Complete
characterisation and an explicit infinite family. arXiv:1805.11658,
2018.

[Gö22] F. Göloglu. Classification of fractional projective permutations over
finite fields. Finite Fields Appl., 2022.

[KR11] Lars Knudsen and M Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. Fifth Printing. CRC Press, 2001.

[Per19] Léo Perrin. Partition in the S-box of Streebog and Kuznyechik. IACR
Transaction on Symmetric Cryptography, pages 302–329, 2019.

[PU16] Léo Perrin and Aleksei Udovenko. Exponential S-Boxes: a Link Be-
tween the S-Boxes of BelT and Kuznyechik/Streebog. IACR Trans-
action on Symmetric Cryptography, pages 99–124, 2016.

[SB11] D. Stanovský and L. Barto. Poč́ıtačová algebra. Druhé opravené
vydáńı. Matfyzpress, Praha, 2011.

[WF16] Chuan-Kun Wu and Dengguo Feng. Boolean Functions and Their
Applications in Cryptography. Springer, Berlin, 2016.

[Wil08] Fulton William. Algebraic Curves. Third preface. Addison-Wesley,
2008.

67

List of Figures

1.1 Transitions between main structures 7

2.1 Main function used in key generation algorithm 27
2.2 Setting up a pair of round keys 28
2.3 One round of consummation of message M by blocks of 512 bits . 29
2.4 Function gN . 31
2.5 Transitions between structures . 35

68

List of Tables

3.1 time complexity of the experiment 64

69

A. Attachments

A.1 S-box π as a lookup table
pi=[
252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,
233,119,240,219,147,46,153,186,23,54,241,187,20,205,95,193,
249,24,101,90,226,92,239,33,129,28,60,66,139,1,142,79,
5,132,2,174,227,106,143,160,6,11,237,152,127,212,211,31,
235,52,44,81,234,200,72,171,242,42,104,162,253,58,206,204,
181,112,14,86,8,12,118,18,191,114,19,71,156,183,93,135,
21,161,150,41,16,123,154,199,243,145,120,111,157,158,178,177,
50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,
223,245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,
224,15,236,222,122,148,176,188,220,232,40,80,78,51,10,74,
167,151,96,115,30,0,98,68,26,184,56,130,100,159,38,65,
173,69,70,146,39,94,85,47,140,163,165,125,105,213,149,59,
7,88,179,64,134,172,29,247,48,55,107,228,136,217,231,137,
225,27,131,73,76,63,248,254,141,83,170,144,202,216,133,97,
32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,
89,166,116,210,230,244,180,192,209,102,175,194,57,75,99,182]

70

A.2 Auxiliary functions and used modules in
SageMath

[1]: import sage.rings.finite_rings
L = GF(2ˆ8,’U’); LL=list(L)
R.<x>=PolynomialRing(L)
import sage.matrix
import random
from datetime import datetime
from sage.crypto.sbox import SBox

[2]: #auxiliary functions
carrierset=[i[1] for i in enumerate(R)]
def log_GF(a):

return carrierset.index(a)
def exp_GF(a):

if a==0:
return 1

else:
return carrierset[a]

def Int_to_Vec(a,n):
vec_a=Integer(a).digits(2)
vec_a.reverse()
while len(vec_a)<n:

vec_a.insert(0,0)
return vec_a

def Vec_to_Int(a):
r=0
for i in range(len(a)):

if a[len(a)-i-1]:
r+=(2ˆi)

return r
def Vec_to_GF(x):

r=0
for i in range(len(x)):

if x[len(x)-i-1]:
r+=exp_GF(i)

return r
def GF_to_Vec(x):

r=[]
for i in range(7):

if x>=exp_GF(7-i):
r.append(1)
x-=exp_GF(7-i)

else:
r.append(0)

r.append(x)
return r

71

A.3 Linear layer of Kuznyechik

R :(F8
2)16 −→ (F8

2)16

R(a15|| . . . ||a0) = l(a15, . . . , a0)||a15|| . . . ||a1 where
l :(F8

2)16 −→ F8
2

l(a15, . . . , a0) = ∇(l′(∆(a15), . . . ,∆(a0))) where
l′ :Q16 −→ Q

l′(a′
15, . . . , a

′
0) = ⟨b, a′⟩

with a′ = (a′
15, . . . , a

′
0)

b = (148, 32, 133, 16, 194, 192, 1, 251, 1, 192, 194, 16, 133, 32, 148, 1),
∆ :F8

2 −→ Q

∆(a) = ∆(a7, . . . , a0) = Σ7
i=0aiθ

i

∇ :Q −→ F8
2

∇ = ∆−1

72

A.4 S-box π as a TKlog in SageMath
[1]: def Kappa(vec_a): #vec_a in Z_2ˆ4

b=[1,1,1,1,1,1,0,0]
A=Matrix(GF(2),[
[0,0,1,1, 0,0,0,0],
[0,0,1,0, 0,1,0,0],
[0,0,1,0, 0,1,1,0],
[0,0,0,1, 0,0,1,0]

]).transpose()

return (A*vector(GF(2),vec_a))+vector(GF(2),b)

def perm_s(a):
s=[0,12,9,8,7,4,14,6,5,10,2,11,1,3,13]
return s[a]

[2]:
def TKlog(int_a): #int_a in Z_{2ˆ8}

a=Vec_to_GF(Int_to_Vec(int_a,8))
if a==0:

return Vec_to_Int(
Kappa(

Int_to_Vec(0,4)
))

else:
k=log_GF(a)
i=k%17
j=k//17

if i==0:
return Vec_to_Int(

Kappa(
Int_to_Vec(16-j,4)

))
else:

return Vec_to_Int(
GF_to_Vec(

Vec_to_GF(
Kappa(

Int_to_Vec(16-i,4)
))

+
exp_GF(17*perm_s(j))

))

73

A.5 Algebraic normal form of π in SageMath
[1]: def Moebius_matrix(k):

if k==0:
return matrix(GF(2),[1])

else:
m=Moebius_matrix(k-1)
return block_matrix(GF(2),[[m,m],[0,m]],subdivide=False)

[2]:
matrix_of_values=[]
for i in range(len(Pi)):

matrix_of_values.append(Int_to_Vec(Pi[i],8))
matrix_of_values=matrix(matrix_of_values).transpose()

M=Moebius_matrix(8)
ANF=matrix_of_values*M
ANF.str()

[2]:
[1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0
1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0
0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1
0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0]

[1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0
1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1
1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1
1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0
0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0]

[1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0
1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0
1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1
1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1
0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1
1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0
1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0]

[1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0
1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0

74

0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1
1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1
1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0]

[1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0
1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0
0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0
0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0]

[1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1
0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1
1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0
1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1
0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0]

[0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0
1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0
1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0
0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1
1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1
1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0]

[0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1
0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1
1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1
0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0]

75

A.6 Lagrange polynomial of π in SageMath
[1]: inv=2ˆ8-2

zeropoly=xˆ(2ˆ8-1)-x
def lagrange_pol(i,R):

f=1
for j in R:

if i!=j:
f=(f*(x-j)*((i-j)ˆinv))%zeropoly

return f
def inverse(pol):

b=polˆinv
b=b%zeropoly
return b

[2]: Pi_as_Lagrange=0
zacatek=datetime.now()
for prvek in LL:

fc_value=Vec_to_GF(Int_to_Vec(
Sbox_Pi[Vec_to_Int(GF_to_Vec(prvek))]
,8))
Pi_as_Lagrange+=lagrange_pol(prvek,LL)*fc_value

print("consumed time:",datetime.now()-zacatek)

consumed time: 0:04:56.769572

[3]: print("degree of the Lagrange polynomial for pi :",Pi_as_Lagrange.
↪→degree())

factors=list(Pi_as_Lagrange.factor())
print("number of factors :",len(factors))
for i in range(len(factors)):

print("degree of factor f{0} : {1} of power:{2}".
↪→format(i,factors[i][0].degree(),factors[i][1]))

print("inverses :")
for i in range(len(factors)):

factor_inverse=inverse(factors[i][0])
print("degree of inverse of factor f{0} : {1}".

↪→format(i,factor_inverse.degree()))

degree of the Lagrange polynomial for pi : 254
number of factors : 4
degree of factor f0 : 1 of power:1
degree of factor f1 : 3 of power:1
degree of factor f2 : 19 of power:1
degree of factor f3 : 231 of power:1
inverses :
degree of inverse of factor f0 : 254
degree of inverse of factor f1 : 254
degree of inverse of factor f2 : 254
degree of inverse of factor f3 : 254

76

A.7 Setting of constants for main experiment in
SageMath

[1]: m=4; n=2*m
q=2ˆm; r=2ˆn; ee=rˆ2

E=GF(ee,’V’); V=E.gen()
L=GF(r,’U’); U=L.gen()
K=GF(q,’u’); u=K.gen()

[2]:
carrierset_K=[]
for i in enumerate(K):

if i[0]==0:
carrierset_K.append(0)

else:
carrierset_K.append(uˆi[0])

def log_GF_K(a):
return carrierset_K.index(a)

carrierset_L=[]
for i in enumerate(L):

if i[0]==0:
carrierset_L.append(0)

else:
carrierset_L.append(Uˆi[0])

def log_GF_L(a):
return carrierset_L.index(a)

carrierset_E=[]
for i in enumerate(E):

if i[0]==0:
carrierset_E.append(0)

else:
carrierset_E.append(Vˆi[0])

def log_GF_E(a):
return carrierset_E.index(a)

[3]:
def Trac(xx,order_of_field1,order_of_field2):

value=0
l=log(order_of_field1,2)
d=log(order_of_field2,2)
for j in range(l/d):

value+=xxˆ(2ˆ(d*j))
return value

77

[4]:
def element_E_in_L(a):

index_a_L=log_GF_E(a)
if index_a_L%(r+1)==0:

index_a_K=index_a_L//(r+1)
return Uˆindex_a_K

else:
return False

def element_L_in_K(a):
index_a_L=log_GF_L(a)
if index_a_L%(q+1)==0:

index_a_K=index_a_L//(q+1)
return uˆindex_a_K

else:
return False

def element_K_in_L(a):
index_a_K=log_GF_K(a)
index_a_L=index_a_K*(q+1)
return Uˆindex_a_L

def element_L_in_E(a):
index_a_L=log_GF_L(a)
index_a_E=index_a_L*(r+1)
return Vˆindex_a_E

[5]:
U_1=[X for X in L if Trac(X,r,2)==1]
e_2=random.choice(U_1); print("e_2 =",e_2)

e_2_E=element_L_in_E(e_2)
W=[Y for Y in E if Yˆ2+Y==e_2_E]
w=random.choice(W)

e_q_E=wˆq+w
e_q=element_E_in_L(e_q_E); print("e_q =",e_q)

delta=0; print("delta =",delta)

V_1=[X for X in K if Trac(X,q,2)==1]
e_1_K=random.choice(V_1)
e_1=element_K_in_L(e_1_K); print("e_1 =",e_1)

e 2 = Uˆ7 + Uˆ5 + Uˆ3 + Uˆ2 + U
e q = Uˆ4 + Uˆ3
delta = 0
e 1 = Uˆ6 + Uˆ2

78

A.8 Invariants of π in SageMath
[1]: pi_SBox=SBox(pi)

[2]:
def DDT_multiset(SBox_for_f):

DDT_f=SBox_for_f.difference_distribution_table().
↪→coefficients()

d={i:0 for i in set(DDT_f)} #dictionary with 0 values
for i in DDT_f:

d[i] += 1
return(d)

def LAT_multiset(SBox_for_f):
LAT_f=SBox_for_f.linear_approximation_table().coefficients()
l={abs(i):0 for i in set(LAT_f)} #dictionary with 0 values
for i in LAT_f:

l[abs(i)] += 1
return(l)

[3]:
zerotime=datetime.now()
print("Degree :",pi_SBox.max_degree(),"\nconsumed time :

↪→",datetime.now()-zerotime)
zerotime=datetime.now()
print("Differential spectrum :",DDT_multiset(pi_SBox),"\nconsumed

↪→time :",datetime.now()-zerotime)
zerotime=datetime.now()
print("Walsh spectrum :",LAT_multiset(pi_SBox),"\nconsumed time :

↪→",datetime.now()-zerotime)

Degree : 7
consumed time : 0:00:00.495818
Differential spectrum : {256: 1, 2: 22454, 4: 4377, 6: 444, 8: 25}
consumed time : 0:00:00.045100
Walsh spectrum : {128: 1, 2: 11645, 4: 10761, 6: 10166, 8: 8793,

↪→10: 6804, 12:
4474, 14: 2796, 16: 1693, 18: 971, 20: 535, 22: 219, 24: 91, 26:

↪→39, 28: 14}
consumed time : 0:00:00.193512

79

A.9 Auxiliary function for main experiment
[1]: def Evaluate(poly_up,poly_down,point):

if point=="inf":
if poly_up.degree()==poly_down.degree():

value_res=poly_up.list()[poly_up.degree()]*(poly_down.
↪→list()[poly_down.degree()]ˆinv)

elif poly_up.degree()>poly_down.degree():
value_res="inf"

else:
value_res=0

else:
value_up=poly_up(point)
value_down=poly_down(point)
if value_down==0:

value_res="inf"
else:

value_down_inv=value_downˆinv
value_res=value_up*value_down_inv

return value_res

[2]: psi_1_up=xˆ17 + (e_q+1)*x + e_2 + delta + e_1
psi_2_up=xˆ17 + (e_q+1)*x + e_2 + delta
psi_down=xˆ16 + x + e_q
psi_1={a:Evaluate(psi_1_up,psi_down,a) for a in LL}
psi_1_inv={Evaluate(psi_1_up,psi_down,a):a for a in LL}
psi_2={a:Evaluate(psi_2_up,psi_down,a) for a in LL}
psi_2_inv={Evaluate(psi_2_up,psi_down,a):a for a in LL}
inverses={a:a**inv for a in LL}

[3]: def my_dspectrum(value_table):
d_spectrum={}
for a_GF in LL:

DDT={}
for i_GF in LL:

d=value_table[L(i_GF)]
d+=value_table[L(i_GF)+L(a_GF)]
if d in DDT:

DDT[d]+=1
else:

DDT[d]=1
for d_s in DDT:

if DDT[d_s] in d_spectrum:
d_spectrum[DDT[d_s]]+=1

else:
d_spectrum[DDT[d_s]]=1

del(DDT)
del(value_table)
return(d_spectrum)

80

A.10 Special case with d = ψ(a) in SageMath
[1]: f1=open("invariants special.txt","a")

f2=open("invariants matches special.txt","a")
zacatek=datetime.now()

for i in range(2):
if i==0:

psi=psi_1
psi_inv=psi_1_inv

else:
psi=psi_2
psi_inv=psi_2_inv

for a in LL:
d=psi[a]
value_table={}
for l in LL:

point=inverses[l+a] #1/(x+a)=(mu_1)ˆ-1
image=inverses[psi[l]+d]
value_table[point]=image

tmp=my_dspectrum(value_table)
if tmp==pi_dspectrum:

f2=open("invariants match special.txt")
f2.write("(1/x)(x+{0})psi{1}(x+{2})(1/x), {3};\n".

↪→format(d,i+1,a,tmp))
f2.close()

else:
similarity=0
for b in pi_dspectrum.keys():

if b in tmp.keys():
similarity+=abs(pi_dspectrum[b]-tmp[b])

else:
similarity+=pi_dspectrum[b]

for b in tmp.keys():
if b not in pi_dspectrum.keys():

similarity+=tmp[b]
if similarity<=512:

f3=open("invariants similar special.txt","a")
f3.write("psi{0}(x+{1})(1/x), {2};\n".

↪→format(i+1,a,tmp))
f3.close()

else:
f1.write("(1/x)(x+{0})psi{1}(x+{2})(1/x), {3};\n".

↪→format(d,i+1,a,tmp))
print(datetime.now()-zacatek)

f1.close()

0:01:17.650238
0:02:34.724217

81

A.11 Main experiment in SageMath
[1]: pi_GF={preimage:

↪→Vec_to_GF(Int_to_Vec(pi[Vec_to_Int(GF_to_Vec(preimage))],8))
↪→for preimage in LL}

pi_dspectrum=my_dspectrum(pi_GF)

[2]:
#variant psi_1, psi_2

f1=open("invariants.txt","a")
zacatek=datetime.now()

for i in range(2):
if i==0:

psi=psi_1
psi_inv=psi_1_inv

else:
psi=psi_2
psi_inv=psi_2_inv

tmp=my_dspectrum(psi)
if tmp==pi_dspectrum:

f2=open("invariants match.txt","a")
f2.write("psi{0}, {1};\n".format(i+1,tmp))
f2.close()

else:
similarity=0
for b in pi_dspectrum.keys():

if b in tmp.keys():
similarity+=abs(pi_dspectrum[b]-tmp[b])

else:
similarity+=pi_dspectrum[b]

for b in tmp.keys():
if b not in pi_dspectrum.keys():

similarity+=tmp[b]
if similarity<=512:

f3=open("invariants similar.txt","a")
f3.write("psi{0}, {1};\n".format(i+1,tmp))
f3.close()

else:
f1.write("psi{0}, {1};\n".format(i+1,tmp))

print(datetime.now()-zacatek)

f1.close()

0:00:00.327935
0:00:00.629967

82

[3]: #variant psi_1 mu_1, psi_2 mu_1

f1=open("invariants.txt","a")
zacatek=datetime.now()

for i in range(2):
if i==0:

psi=psi_1
else:

psi=psi_2
for a in LL:

value_table={}
beta=0
gamma=psi[a]
value_table[beta]=gamma
for l in LL:

point=inverses[l+a] #1/(x+a)=(mu_1)ˆ-1
image=psi[l]
value_table[point]=image

tmp=my_dspectrum(value_table)
if tmp==pi_dspectrum:

f2=open("invariants match.txt","a")
f2.write("psi{0}(x+{1})(1/x), {2};\n".

↪→format(i+1,a,tmp))
f2.close()

else:
similarity=0
for b in pi_dspectrum.keys():

if b in tmp.keys():
similarity+=abs(pi_dspectrum[b]-tmp[b])

else:
similarity+=pi_dspectrum[b]

for b in tmp.keys():
if b not in pi_dspectrum.keys():

similarity+=tmp[b]
if similarity<=512:

f3=open("invariants similar.txt","a")
f3.write("psi{0}(x+{1})(1/x), {2};\n".

↪→format(i+1,a,tmp))
f3.close()

else:
f1.write("psi{0}(x+{1})(1/x), {2};\n".

↪→format(i+1,a,tmp))
print(datetime.now()-zacatek)

f1.close()

0:01:21.962485
0:02:44.569614

83

[4]: #variant mu_2 psi_1, mu_2 psi_2
f1=open("invariants.txt","a")
zacatek=datetime.now()
for i in range(2):

if i==0:
psi=psi_1
psi_inv=psi_1_inv

else:
psi=psi_2
psi_inv=psi_2_inv

for d in LL:
value_table={}
beta=psi_inv[d]
gamma=0
value_table[beta]=gamma
for l in LL:

point=l
image=inverses[psi[l]+d]
value_table[point]=image

tmp=my_dspectrum(value_table)
if tmp==pi_dspectrum:

f2=open("invariants matches.txt","a")
f2.write("(1/x)(x+{0})psi{1}, {2};\n".

↪→format(d,i+1,tmp))
f2.close()

else:
similarity=0
for b in pi_dspectrum.keys():

if b in tmp.keys():
similarity+=abs(pi_dspectrum[b]-tmp[b])

else:
similarity+=pi_dspectrum[b]

for b in tmp.keys():
if b not in pi_dspectrum.keys():

similarity+=tmp[b]
if similarity<=512:

f3=open("invariants similar.txt","a")
f3.write("(1/x)(x+{0})psi{1}, {2};\n".

↪→format(d,i+1,tmp))
f3.close()

else:
f1.write("(1/x)(x+{0})psi{1}, {2};\n".

↪→format(d,i+1,tmp))
print(datetime.now()-zacatek)

f1.close()

0:01:25.116888
0:02:47.124847

84

[5]:
f1=open("invariants.txt","a") #variant mu_2 psi_1 mu_1, mu_2

↪→psi_2 mu_1
zacatek=datetime.now()
for i in range(2):

if i==0:
psi=psi_1
psi_inv=psi_1_inv

else:
psi=psi_2
psi_inv=psi_2_inv

for a in LL:
for d in LL:

value_table={}
beta=inverses[psi_inv[d]+a]
gamma=inverses[psi[a]+d]
value_table[beta]=gamma
for l in LL:

if l!=psi_inv[d]:
point=inverses[l+a] #1/(x+a)=(mu_1)ˆ-1
image=inverses[psi[l]+d]
value_table[point]=image

tmp=my_dspectrum(value_table)
if tmp==pi_dspectrum:

f2=open("invariants matches.txt","a")
f2.write("(1/x)(x+{0})psi{1}(x+{2})(1/x), {3};\n".

↪→format(d,i+1,a,tmp))
f2.close()

else:
similarity=0
for b in pi_dspectrum.keys():

if b in tmp.keys():
similarity+=abs(pi_dspectrum[b]-tmp[b])

else:
similarity+=pi_dspectrum[b]

for b in tmp.keys():
if b not in pi_dspectrum.keys():

similarity+=tmp[b]
if similarity<=512:

f3=open("invariants similar.txt","a")
f3.write("(1/x)(x+{0})psi{1}(x+{2})(1/

↪→x), {3};\n".format(d,i+1,a,tmp))
f3.close()

else:
f1.write("(1/x)(x+{0})psi{1}(x+{2})(1/

↪→x), {3};\n".format(d,i+1,a,tmp))
print(datetime.now()-zacatek)

f1.close()

85

1:48:26.770032
3:37:50.116593

86

A.12 Example of differential spectrum

(1/x)(x+Uˆ5 + Uˆ4 + Uˆ2 + U)psi1(x+0)(1/x), {256: 2, 4: 14464, 16:
↪→ 448};

(1/x)(x+Uˆ7 + Uˆ5 + Uˆ4 + Uˆ2 + 1)psi1(x+U)(1/x), {256: 2, 4:
↪→14464, 16: 448};

(1/x)(x+Uˆ7 + Uˆ6 + Uˆ5 + Uˆ4 + 1)psi1(x+Uˆ2)(1/x), {256: 2, 16:
↪→448, 4: 14464};

(1/x)(x+Uˆ7 + Uˆ6 + Uˆ5 + 1)psi1(x+Uˆ3)(1/x), {256: 2, 4: 14464,
↪→16: 448};

(1/x)(x+Uˆ5 + Uˆ4 + Uˆ3 + 1)psi1(x+Uˆ4)(1/x), {256: 2, 4: 14464,
↪→16: 448};

(1/x)(x+Uˆ7 + Uˆ5 + Uˆ3 + Uˆ2 + 1)psi1(x+Uˆ5)(1/x), {256: 2, 4:
↪→14464, 16: 448};

(1/x)(x+Uˆ2 + U + 1)psi1(x+Uˆ6)(1/x), {256: 2, 4: 14464, 16: 448};
(1/x)(x+Uˆ7 + Uˆ6 + Uˆ4 + Uˆ3 + U)psi1(x+Uˆ7)(1/x), {256: 2, 4:

↪→14464, 16: 448};
(1/x)(x+U + 1)psi1(x+Uˆ4 + Uˆ3 + Uˆ2 + 1)(1/x), {256: 2, 4:

↪→14464, 16: 448};
(1/x)(x+Uˆ5 + Uˆ2 + 1)psi1(x+Uˆ5 + Uˆ4 + Uˆ3 + U)(1/x), {256: 2,

↪→4: 14464, 16: 448};
(1/x)(x+Uˆ7 + Uˆ3 + U + 1)psi1(x+Uˆ6 + Uˆ5 + Uˆ4 + Uˆ2)(1/x),

↪→{256: 2, 4: 14464, 16: 448};
(1/x)(x+Uˆ6 + Uˆ2 + 1)psi1(x+Uˆ7 + Uˆ6 + Uˆ5 + Uˆ3)(1/x), {256:

↪→2, 4: 14464, 16: 448};
(1/x)(x+Uˆ7 + Uˆ4 + Uˆ2)psi1(x+Uˆ7 + Uˆ6 + Uˆ3 + Uˆ2 + 1)(1/x),

↪→{256: 2, 16: 448, 4: 14464};
(1/x)(x+Uˆ7 + Uˆ5 + Uˆ4 + Uˆ3 + U)psi1(x+Uˆ7 + Uˆ2 + U + 1)(1/x),

↪→{256: 2, 16: 448, 4: 14464};
(1/x)(x+Uˆ7 + Uˆ5 + Uˆ4 + Uˆ3 + 1)psi1(x+Uˆ4 + U + 1)(1/x), {256:

↪→2, 4: 14464, 16: 448};
(1/x)(x+Uˆ7 + Uˆ6 + Uˆ5 + Uˆ4 + Uˆ3 + Uˆ2 + U)psi1(x+Uˆ5 + Uˆ2 +

↪→U)(1/x), {256: 2, 16: 448, 4: 14464};
(1/x)(x+Uˆ7 + Uˆ5 + Uˆ3)psi1(x+Uˆ6 + Uˆ3 + Uˆ2)(1/x), {256: 2, 4:

↪→14464, 16: 448};
(1/x)(x+Uˆ4 + Uˆ2)psi1(x+Uˆ7 + Uˆ4 + Uˆ3)(1/x), {256: 2, 4:

↪→14464, 16: 448};
(1/x)(x+Uˆ6 + Uˆ3 + U + 1)psi1(x+Uˆ5 + Uˆ3 + Uˆ2 + 1)(1/x), {256:

↪→2, 4: 14464, 16: 448};
(1/x)(x+Uˆ6 + Uˆ5 + Uˆ2)psi1(x+Uˆ6 + Uˆ4 + Uˆ3 + U)(1/x), {256:

↪→2, 16: 448, 4: 14464};
(1/x)(x+Uˆ5 + Uˆ3 + U)psi1(x+Uˆ7 + Uˆ5 + Uˆ4 + Uˆ2)(1/x), {256:

↪→2, 4: 14464, 16: 448};
(1/x)(x+Uˆ7 + Uˆ3 + U)psi1(x+Uˆ6 + Uˆ5 + Uˆ4 + Uˆ2 + 1)(1/x),

↪→{256: 2, 4: 14464, 16: 448};

87

	Introduction
	Preliminaries
	Structures and mappings
	Boolean functions
	Cryptosystems and basics of cryptanalysis
	Ciphers
	Hash functions
	Basics of linear and differential cryptanalysis

	Algebraic geometry

	S–box of Kuznyechik and Streebog
	Kuznyechik cipher and Streebog hash function
	Kuznyechik
	Streebog

	Decompositions of the S–box π
	TKlog
	Previous decompositions
	Link between decompositions

	Properties of π as TKlog
	Mapping cosets to cosets
	Cryptographical properties

	Permutations over finite field
	Classification of fractional projective permutations
	Apparent connection between fractional q-projective functions and TKlog
	Setting of constants

	Elementary representations of S-box π
	S-box π as a vectorial Boolean function
	S-box π as a Lagrange polynomial
	One single formula for S-box π

	Möbius transform and invariants
	Affine equivalency
	Composition with affine transformations
	Point at infinity

	Main experiment
	Summary of procedure
	Interpretation of the result

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	S-box π as a lookup table
	Auxiliary functions and used modules in SageMath
	Linear layer of Kuznyechik
	S-box π as a TKlog in SageMath
	Algebraic normal form of π in SageMath
	Lagrange polynomial of π in SageMath
	Setting of constants for main experiment in SageMath
	Invariants of π in SageMath
	Auxiliary function for main experiment
	Special case with d=ψ(a) in SageMath
	Main experiment in SageMath
	Example of differential spectrum

