
MASTER THESIS

Jana Hrúzová

PIR codes using combinatorial
structures

Department of Algebra

Supervisor of the master thesis: Dr. rer. nat. Faruk Göloglu
Study programme: Mathematics for Information

Technologies

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Dr. rer. nat. Faruk Göloglu, for the useful
consultations and feedback he provided. I would also like to thank my family for
their never-ending support.

ii

Title: PIR codes using combinatorial structures

Author: Jana Hrúzová

Department: Department of Algebra

Supervisor: Dr. rer. nat. Faruk Göloglu, Department of Algebra

Abstract: Private information retrieval (PIR) codes are crucial for ensuring user
privacy when querying distributed data storage systems. These codes allow users
to retrieve specific data items from multiple servers without revealing which item
is being retrieved, thereby preserving the user’s privacy. The main aim when
studying PIR codes is to minimize storage overhead and communication com-
plexity. This thesis provides an introduction to PIR codes and presents recent
upper bounds on storage overhead. Furthermore, it discusses code families con-
nected to PIR codes, such as PIR array codes, locally repairable codes, and batch
codes.

Keywords: PIR protocol, PIR codes, block design, configurations

iii

Contents

Introduction 3

1 Preliminaries 4
1.1 Notation . 4
1.2 Linear codes . 4
1.3 Incidence structures . 5

1.3.1 Block designs and partial packings 6
1.4 Affine geometry . 7

1.4.1 Affine plane . 8
1.5 Projective geometry . 9

1.5.1 Projective plane . 9
1.5.2 Maximal arcs . 10
1.5.3 Classical unitals . 10
1.5.4 Conics in P2(Fq) . 11

2 PIR codes 14
2.1 Introduction to PIR protocols . 14

2.1.1 Single-database PIR schema 14
2.1.2 Multi-server PIR protocol 15

2.2 Definition of PIR codes . 15
2.3 Known bounds for PIR codes . 17
2.4 Results of practical tests . 18

3 Minimizing storage overhead in PIR codes 20
3.1 PIR codes as k-partial packings 20
3.2 Connection to affine geometry . 21
3.3 Connection to projective geometry 22
3.4 Geometrical objects in projective planes 23

3.4.1 Maximal arcs . 24
3.4.2 Classical unitals . 24
3.4.3 Conics in P2(Fq) . 25

3.5 (vt, bz)−configurations . 26

4 Code families connected to PIR codes 30
4.1 PIR array codes . 30

4.1.1 Definition of PIR array codes 30
4.1.2 Construction of PIR array codes 33
4.1.3 Comparison with PIR codes 34

4.2 Locally Repairable Codes . 35
4.3 Batch Codes . 36

4.3.1 Linear Batch Codes . 36

Conclusion 39

Bibliography 40

1

A Attachments 41
A.1 Upper bounds on the number of servers in PIR codes 41

2

Introduction
Private information retrieval (PIR) protocols are designed to protect the privacy
of users querying a database. The goal is to ensure that the database owner
cannot determine which data item the user is interested in, even though the user
successfully retrieves the data. PIR protocols are generally divided into single-
server protocols and multi-server protocols.

In this thesis, we will work with multi-server PIR protocols within a dis-
tributed storage system, where the user interacts with multiple servers to retrieve
information without disclosing the specific data of interest. This is represented
by PIR codes and PIR array codes.

An efficient PIR system must minimize storage overhead while maintaining
robust privacy guarantees and fast access times. This study addresses the lower
limits of storage overhead and represents the currently achievable limits in this
area.

In a k-server PIR [m, s]-code, the database is distributed among m servers.
Each server stores 1/s of the database. We will show how the k-server PIR
protocol is used with PIR codes. The advantage is that for PIR codes, the storage
overhead is m/s, compared to the higher value k in classical PIR protocols. The
main aim of studying PIR codes is to minimize the number of servers m given s
and k, thereby reducing the storage overhead.

Furthermore, the concept of PIR array codes is explored. The goal in [t×m, p]
k-PIR array codes is to design distributed storage systems with m servers that
can implement classic k-PIR protocols while reducing storage overhead.

In this work, we will begin by introducing PIR protocols and their historical
development. In the second and third chapters, we will define k-server PIR codes
with a focus on minimizing m. This will be done mainly through combinato-
rial structures such as k-partial packings or (vt, bz)-configurations. We will also
explore their geometric representation in affine space or projective space.

The last chapter will discuss code families connected to PIR codes. In particu-
lar, we will describe PIR array codes, some of their constructions, and associated
problems with PIR codes. Furthermore, the chapter is dedicated to comparing
PIR codes with locally repairable codes and batch codes, as these codes share
common features.

3

1. Preliminaries

1.1 Notation
The following list will clarify the notation used in this thesis.

• In the whole thesis p is considered as prime number and q as power of p,
i.e. q = pn for n ∈ N;

• Fp denotes the finite field with p elements and F denotes an arbitrary finite
field;

• Fq denotes the finite field with q elements with characteristic p;

• row vector is denoted by x and xi denotes the i-th coordinate of a vector
x;

• 0 denotes row vector with all zeros;

• ei denotes row vector with all zeros and one 1 on position i;

• Ik denotes an identity matrix of size k;

• Σ denotes a finite alphabet.

1.2 Linear codes
This section is inspired by [1, Appendix A.5].

Let k, n ∈ N, k ≤ n and a mapping C : Σk → Σn be an injection. Then, a
set of coded vectors {y = (y1, y2, . . . , yn) = C(x) : x ∈ Σk} ⊆ Σn is called an
[n, k]-code.

An [n, k]-code C is a linear code if and only if Σ = Fq and:

1. C is closed under vector addition, i.e. the sum of any two valid codewords
within the code is also a valid codeword. So if

c1, c2 ∈ C : c1 + c2 ∈ C.

2. C is closed under scalar multiplication, i.e. if c ∈ C then

∀a ∈ Fq : ac ∈ C.

If a minimum distance d is specified, the code is denoted as a [n, k, d]-code.
The linear code can be defined by specifying only the basis vectors of the

code’s subspace, rather than enumerating every individual codeword. It can be
interpreted as a k × n matrix G over Fq with linearly independent rows. This
matrix G is called a generator matrix for the code C and

C = {xG : x ∈ Fk
q}.

4

The generator matrix G can be transformed into standard-form, [Ik|A], where Ik

represents the identity matrix of size k.
Additionally, an [n, k, d]-code can also be described using a parity-check ma-

trix H. This matrix H is an (n − k) × n matrix over Fq with rank n − k, and it
defines the code C as the right null space of H:

C = {y ∈ Fn
q : yHT = 0}.

The code’s minimum distance is determined based on a specified metric. In
this thesis, we will specifically consider the Hamming distance for this purpose.

Definition 1. The Hamming distance of vectors u, v ∈ Fn
q is defined as the

number of positions at which they have differing entries.

The minimal distance of a code is bounded by Singleton bound.

Theorem 1 (Singleton bound). [1, Theorem A5.3] Let C be an [n, k, d]-code.
Then

d ≤ n − k + 1.

Two more important definitions which will be used when talking about codes
are as follows:

Definition 2. The communication complexity is defined as the total number of
bits exchanged between the server and the user during the execution of a protocol.

Definition 3. The storage overhead is defined as the ratio of the total number
of bits stored across all servers to the number of bits in the original database.

1.3 Incidence structures
An incidence structure consist of certain objects (usually called points, lines,
planes, etc.) together with certain incidence relations between these objects.
When considering only the set of points P and lines L (point-line incidence struc-
ture), there is an incidence relation I ⊆ P × L [1, Chapter 1].
Example. Let us consider the point set P = {P, Q, R, S}, the line set L = {a, b, c}
and the incidence relation

I = {(P, a), (Q, a), (Q, c), (R, c), (S, b), (S, c)}.

It can be informally presented by the picture:

P

Q R S

a b
c

or by incidence matrix, where the rows and columns are indexes by points
and lines respectively. Entries 0 and 1 corresponds to non-incident and incident
point-line pairs.

5

A =

a b c⎡⎢⎢⎢⎣
1 0 0
1 0 1
0 0 1
0 1 1

⎤⎥⎥⎥⎦
P

Q

R

S

Neither the picture nor the incidence matrix A is unique, both depends on
the order of lines and points.

Definition 4. A (vt, bz)-configuration is an incidence structure (P , L, I) where

• |P| = v, |L| = b

• Each line contains z points

• Each point lies on t lines

• Any two distinct points are connected by at most one line

If v = b, and consequently t = z, the configuration is symmetric and denoted
by vz.

Example. Following example shows us (vt, bz)-configuration with v = 6, t = 1,
b = 2, z = 3 and v = b = 6, t = z = 2 respectively.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The latter is an example of a symmetric configuration.

1.3.1 Block designs and partial packings
Here we provide the definitions of block designs and partial packings. Block
designs are combinatorial structures that consist of a set of points and a collection
of subsets called blocks, with specific incidence properties. It will be used later in
the Chapter 3, where we will explore the relationships between various geometrical
structures and partial packings.

Definition 5 (Block Design). [2, Definition 2.11] Let v, k, t, and λ be integers.
Assume that v > k > t ≥ 1 and λ ≥ 1. A t-(v, k, λ) block design is an incidence
structure consisting of points and blocks (V, B) satisfying the following properties:

1. The size of V is v.

2. Each block B ∈ B contains exactly k points.

3. Every t-subset of V is contained in exactly λ blocks B ∈ B.

A 2-(v, k, λ) block design is known as a Balanced Incomplete Block Design
(BIBD). From the definition, we can see that a (v, k, λ)-BIBD can also be con-
sidered as a (vr, bk)-configuration for some r ∈ N.

6

Next definition is a special case of block designs, where λ = 1.

Definition 6. A Steiner system S(t, k, n) is a set system (S, B) where:

1. S is a set of n elements.

2. B is a collection of k-element subsets of S called blocks.

3. Each t-subset of S is contained in exactly one block.

Example. For example, an S(2, 3, 7) system has 7 elements and the following
blocks:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6},

{2, 5, 7}, {3, 4, 7}, {3, 5, 6}.

As we can see each subset of size two is exactly in one block.
Partial packings, on the other hand, are arrangements of points into subsets

where each subset contains at least two points. Unlike block designs, there is no
exact number of points in each subset. Pairs of points can appear together in at
most one subset, similar to 2-Steiner systems.

Definition 7. [3, Definition 1.1] A k-partial packing of a finite set X of size s
is a set of k − 1 partitions of X which satisfy the following conditions:

(i) each subset in any partition has size at least two;

(ii) two subsets from two distinct partitions meet in at most one point.

The total number of subsets of X belonging to its partitions is the order r.
Moreover, a k-partial packing is homogeneous if all the subsets from any par-

tition have the same size.

1.4 Affine geometry
Let An(Fq) denote an affine space of dimension n over a finite field Fq. The
sections on affine and projective geometry are inspired by [1, Parts II and III].

Definition 8. The Gaussian binomial coefficient
(︂

n
k

)︂
q

for n, k ∈ N is defined by
the number of k-dimensional subspaces of an n-dimensional vector space.

Theorem 2. [1, Chapter 19] For n, k ∈ N(︄
n

k

)︄
q

= (qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

Proof. To define a k-dimensional subspace, we must specify k linearly indepen-
dent vectors. The initial vector can be selected from the non-zero vectors (set
with 0 vector is linearly dependent) in qn − 1 ways. The second vector must be
chosen outside the span of the first vector. There are qn − q choices as the first
vector generates a subspace of dimension 1. This process continues, resulting in
(qn − 1)(qn − q) · · · (qn − qk−1) ways to specify k linearly independent vectors.

7

Now we need to divide the previously determined number by the count of
k-sets generating the same subspace. Remarkably, this is equivalent to what we
have already calculated in another manner: we are essentially determining the
number of bases for a k-dimensional subspace. This count corresponds to the
number of linearly independent k-sets in a k-dimensional space. Setting n = k in
the previous calculation gives us (qk − 1)(qk − q) · · · (qk − qk−1).

Corollary. The number of k-dimensional affine subspaces in An(Fq) is equal to

qn−k

(︄
n

k

)︄
q

.

Proof. The k-dimensional affine subspaces are described as the cosets in the form
x + U , where x ∈ Fn

q and U is a k-dimensional subspace of Fn
q .

However, x + U = y + U if and only if x − y ∈ U . Consequently, as x goes
through all qn elements of Fn

q , each k-dimensional coset corresponding to the
vector subspace U is counted qk times.

1.4.1 Affine plane
An affine plane is an affine space of dimension two, denoted as A2(Fq). The
following axioms hold in an affine plane:

• For every pair of distinct points, there exists precisely one line passing
through both.

• For any line l and any point P /∈ l, there exists precisely one line through
P that does not intersect l.

• There are four points in such a way that no three are collinear.

Definition 9. The property of a set of points lying on a single line is termed
collinearity.

Let us define parallel classes in affine plane.

Definition 10. Let l and m be two lines in an affine plane. We define l to be
parallel to m (expressed as l ∥ m) if either l = m or the two lines do not have
any points in common.

In an affine plane, by definition, any two lines are either parallel or intersect
at exactly one point.
Corollary. In an affine plane, parallelism creates an equivalence relation on the
lines.

The order of an affine plane is determined by the number of points on any
given line within the plane. For an affine plane over the finite field A2(Fq), every
line contains exactly q points because each line can be described by a linear
equation ax + by = c where a, b, c ∈ Fq, and for each value of variable x, there is
a unique corresponding value of the variable y and vice versa.

8

1.5 Projective geometry
Let PN(Fq) denotes a projective space of dimension N over a finite field Fq.

Lemma 3. The number of k-dimensional projective subspaces in PN(Fq) is equal
to (︄

N + 1
k + 1

)︄
q

.

Proof. The number of k-dimensional projective subspaces over N -dimensional
projective space over a finite field Fq is same as the number of (k+1)-dimensional
subspaces of an (N + 1)-dimensional vector space, thus

(︂
N+1
k+1

)︂
q
.

In the following subsection, we will introduce several geometrical structures.
These structures will be useful lately in Chapter 3, where they are put into relation
with partial packings.

1.5.1 Projective plane
A projective plane is a projective space of dimension two, denoted as P2(Fq). For
a projective plane, there are similar conditions as for the affine plane.

• Two distinct points define exactly one line passing through both of them.

• Two distinct lines intersect at precisely one point.

• There exist four points where no three of them are collinear.

From different point of view a projective plane, denoted as C, can be axiomat-
ically defined as an incidence structure, involving a set P of points, a set L of
lines, and an incidence relation I that specifies which points lie on which lines.
This structure is written as C = (P , L, I).

By interchanging the roles of “points” and “lines” in C = (P , L, I), we obtain
the dual structure C∗ = (L, P , I∗), where I∗ represents the dual relation of I.
The dual structure C∗ is also a projective plane, known as the dual plane of C. If
the projective plane C and its dual C∗ are isomorphic, then C is called self-dual.

Definition 11. [1, Chapter 10] A collineation σ of (P , L) is a permutation of
P ∪ L that maps points to points and lines to lines, such that for l ∈ L, P ∈ P :
P ∈ l if and only if P σ ∈ lσ.

A correlation σ of (P , L) is a permutation of P ∪ L that transforms points
into lines and lines into points, while preserving reversing incidence. Hence, a
correlation σ has the property that for l ∈ L, P ∈ P : lσ ∈ P σ if and only if P ∈ l.

A polarity ρ of (P , L) is a correlation of order 2, which means ρ2(P) = P
holds for all points P ∈ P and ρ2(l) = l holds for all lines l ∈ L.

In a projective plane, let ρ be a polarity. A point P is absolute if P ∈ ρ(P).
Otherwise P is nonabsolute. Similarly, a line l is considered absolute if ρ(l) ∈ l.
Otherwise it is nonabsolute.

9

1.5.2 Maximal arcs
In the next subsection there is summary on arcs and maximal arcs mainly inspired
by [4].

Definition 12. Let m, d ∈ N such that m, d ≥ 1. An (m, d)-arc in the projective
plane P2(Fq) is defined as a set A of m points such that each line in P2(Fq)
contains at most d points from A. The number m is referred to as the size, and
d is referred to as the degree. An (m, 2)-arc is abbreviated as an m-arc.

We can see from the definition that d ≤ q + 1 since there are q + 1 points on
a line and a line contains q + 1 points in P2(Fq). Also, d ≤ m ≤ q2 + q + 1 since
there are q2 + q + 1 lines in P2(Fq).

Let A be an (m, d)-arc, x ∈ A, and L1, . . . , Lq+1 be the lines through x.
Define ni = |A ∩ Li| for 1 ≤ i ≤ q + 1. Then the total number of points in A
can be expressed as m = 1 + ∑︁q+1

i=1 (ni − 1). Given that ni ≤ d, it follows that
m ≤ qd + d − q.

Equality m = qd + d − q holds if and only if ni = d, i.e., every line of P2(Fq)
either intersects A in exactly d points or is disjoint from A. An (m, d)-arc is
called maximal when m = qd + d − q.

Lemma 4. [5, Section 4] An (m, d)-maximal arc of P2(Fq) exist if there exist
0 ≤ n′ ≤ n such that q = 2n, d = 2n′

, m = dq − q + d = 2n+n′ − 2n + 2n′.

1.5.3 Classical unitals
First we begin with what is a unital in projective geometry [1, p. 62], [2].

Definition 13. A unital is a set of n3 + 1 points organized into subsets of size
n + 1, such that each pair of distinct points is included in exactly one subset.

From definition the unital can be seen as 2-(n3 + 1, n + 1, 1) block design.
For next definition we need to define unitary polarity. A projective plane

P2(Fq2) has an automorphism x ↦→ x = xq of order 2. In such a scenario the
conjugate-transpose map is v ↦→ vT . The transposition of matrix flips row and
column vectors of length 3 and gives a polarity of P2(Fq2), establishing a unitary
polarity in P2(Fq2).

The absolute points of this polarity are those satisfying the condition

0 = (x, y, z)(x, y, z)T = xq+1 + yq+1 + zq+1,

which are exactly the points in classical unital U in P2(Fq2).

Definition 14. The absolute points and non-absolute lines of unitary polarity
create a classical unital U , also called a Hermitian unital. The set of point
consists of q3 +1 points such that each line of P2(Fq2) meets U in either 1 or q +1
points.

The following definition is more technical but will be helpful for the next
lemmas.

10

Definition 15. Let U be a classical unital. A lines meeting U in one point is
called tangent.

Let point P /∈ U . We denote by τP (U) a subset of points from U obtained
from tangent lines through P .

Lemma 5. [2, Theorem 2.3] Let U be a classical unital in a projective plane
P2(Fq2). Then, for any point P ∈ P2(Fq2) \ U , the size of the subset τP (U) is
|τP (U)| = q + 1.

Proof. Let U be a classical unital and P /∈ U . Then, there are q2 +1 lines passing
through P which partition the points of U into sets of size 1 or q + 1. Let s be
the number of lines through P which meets U in q + 1 points, so the number of
lines through P which meet U in one point is q2 + 1 − s.

This leads to the equation

s(q + 1) + (q2 + 1 − s) = q3 + 1.

Solving for s results in s = q2 − q. Consequently, there exist q + 1 lines through
P meeting U in one point, and thus, the size of the subsets is q + 1.

Lemma 6. [2, Corollary 2.4] Let U be a classical unital in P2(Fq2) and P ∈
P2(Fq2) \ U . Then the points in τP (U) are collinear.

Proof. Let U be a classical unital in P2(Fq2). Then we have a polarity ρ whose
absolute points are U . Suppose P is a point not in U .

Then, for all points Q ∈ τP (U), we have P ∈ Qρ. From polarity definition we
get Q ∈ P ρ for all Q which means all the points lie on the same line, so they are
collinear.

1.5.4 Conics in P2(Fq)
In this subsection we will focus on conics in projective plane P2(Fq) over a finite
field Fq with q odd. Definitions and some further observations about conics are
from [1, Chapter 12].

Definition 16. In a projective plane P2(Fq), a conic C is defined as the set of
points with projective coordinates (X, Y, Z) that satisfy a non-zero homogeneous
equation Q(X, Y, Z) = 0 given by:

Q(X, Y, Z) = aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z.

This condition is well-defined for points with projective coordinates (X, Y, Z)
since if λ ∈ Fq, λ ̸= 0 then Q(λX, λY, λZ) = λ2Q(X, Y, Z). A conic C is consid-
ered non-degenerate if it does not contain an entire line.

We will omit the proof of the following theorem as it would be too technical
and our main focus is not on conics. The proof is nicely presented in [1, Theorem
12.1].

Theorem 7. Consider a non-degenerate conic C in a finite projective plane
P2(Fq). In this setting, C contains q + 1 points, and no three of these points
are collinear. Furthermore, through a linear change of coordinates, C can be
transformed to the conic y2 = xz.

11

A generalization of a conic in the projective plane is an oval.

Definition 17. An oval in a projective plane of order n is an (n + 1)-arc.

The following definitions and lemmas in this subsection hold for both ovals
and conics in projective planes of odd order q.

Any line in P2(Fq) intersects C in either 0, 1, or 2 points; these lines are called
external, tangent, and secant, respectively.

Lemma 8. [1, Theorem 12.7] Consider a non-degenerate conic C in a finite
projective plane P2(Fq). For any point P ∈ C, there is precisely one tangent line
passing through P , and the remaining q lines through P are secant lines, each
intersecting C at just one more point other than P .

The conic C is associated with:

• q + 1 tangent lines as there is q + 1 points in C and each have one tangent

• q2+q
2 secant lines as there are q secants through each of q + 1 points and

each secant passes through two point of C

• q2−q
2 external lines as we have totally q2 + q + 1 lines, q + 1 tangent lines

and q2+q
2 are secant lines

Definition 18. Points lying on C are called absolute. Points not on C but lying
on a tangent line to C are called exterior points of C. Points not lying on a
tangent line to C are termed interior points of C.

Lemma 9. [1, Theorem 12.7] Let C be a non-degenerate conic in P2(Fq), where
q is odd. With regard to C there is

1. q2+q
2 exterior and q2−q

2 interior points

2. every interior point lies on q+1
2 external and q+1

2 secant lines

3. every exterior point lies on 2 tangent, q−1
2 external and q−1

2 secant lines

Proof. In whole proof be C a non-degenerate conic in P2(Fq2), q odd.

1. As we have q + 1 tangent lines with q exterior point and each exterior point
lies on two tangent lines, we have totally q2+q

2 exterior points. The rest of
the points not in C are interior and there are

q2 + q + 1 − q2 + q

2 − (q + 1) = q2 − q

2
of these points.

2. Let P be an interior point of C. The lines passing from P to the points in C
are secants. There is q + 1 points in C and each secant passes through two
points, which gives us that P lies on q+1

2 secant lines. Number of external
lines is calculated as number of all lines going through P minus secant lines

q + 1 − q + 1
2 = q + 1

2 .

12

3. Let P be an exterior point of C. We know P lies on a tangent line l, meeting
C in point T . As q is odd, P has to lie on even number of tangents. And
since each of the n points on l different from T lies on at least one tangent
other than l, the tangents other than l must meet l in n distinct points.
Therefore, no three tangents are concurrent, and P lies on two tangents.
The rest is calculated equally as for interior points, considering only q − 1
points in C for secants.

In the dual plane, the tangent lines of C are absolute points of dual conic C ′,
external lines of C change to interior points of dual conic C ′ and secant lines of
C become exterior points of C ′. That gives us following corollary.
Corollary. [1, Theorem 12.7] Let C be an irreducible conic in P2(Fq2) for q odd.
Then the following holds.

1. A tangent line contains one absolute point and q external points

2. An external line contains q+1
2 interior and q+1

2 exterior points of C.

3. A secant line contains two absolute, q−1
2 interior and q−1

2 exterior points of
C.

Proof. 1. From the definition of absolute and external points.

2. The total number of external lines is q2−q
2 , and there are q2+q

2 exterior points,
each lying on q−1

2 external lines. From duality, all external lines contain the
same number of exterior and interior points, which is as follows:

• for exterior points: (︂
q2+q

2

)︂
·
(︂

q−1
2

)︂
q2−q

2

= q + 1
2 ;

• for interior points:
q + 1 − q + 1

2 = q + 1
2 .

3. The same computation applies to secant lines, with the difference being the
2 absolute points that the secant line contains by definition.

13

2. PIR codes

2.1 Introduction to PIR protocols
Private information retrieval (PIR) protocol allows user to retrieve information
from a database without revealing which specific data is being accessed. It ensures
privacy for the user while interacting with the database. The privacy constraint
can manifest as either information-theoretic or computational.

Information-theoretic requirement: In the information-theoretic require-
ment, each server should remain unable to deduce any information about the
identity of the requested message, even when considering the scenario where the
server possesses infinite computational power.

Computational privacy requirement: Conversely, the computational pri-
vacy requirement operates under the assumption that each server has restricted
computational power. Under this constraint, it is essential that the server remains
incapable of gaining any insight into the identity of the requested message.

There are two implementation of PIR protocol according to communication
with server. It can be used either single-database PIR schema or multi-server
PIR schema, where each server has a copy or some part of database.

2.1.1 Single-database PIR schema
We can imagine this approach as a scenario involving two participants: a user
and a centralized database. The database contains publicly accessible data (for
instance, an n-bit string). The user aims to retrieve a specific item from the
database, i.e. the i-th bit, without revealing to the database which item is being
queried. It’s important to note that in this setup, the database data is public,
but it is centrally located. The user, lacking a local copy, must submit a request
to obtain the data from the central database.

A straightforward solution would be for the user to download the entire
database, ensuring privacy. However, the overall communication complexity in
this approach, quantified by the number of bits exchanged between the user and
the database, is n.

Private information retrieval protocols offer a more efficient alternative, al-
lowing the user to retrieve data from a public database with communication < n,
surpassing the communication cost of downloading the entire database.

It has been demonstrated in [6] that for a single database, achieving perfect
information-theoretic privacy necessitates downloading the entire database (of n
messages). In this case, the optimal rate, defined as the ratio of the amount of
desired information (one message) to the total downloaded amount (n messages),
is 1/n.

To overcome this inefficiency, two approaches can be considered: either limit
the computational capabilities of the server or presume the existence of multiple
independent servers, each possessing a copy or some part of the database.

14

2.1.2 Multi-server PIR protocol
The multi-server PIR protocol was introduced by [6] in 1995, in a setting where
there are many copies of the same database, and none of these copies are allowed
to communicate with each other.

Definition 19 (k-server PIR protocol). [7, Definition 1] Let S1, S2, . . . , Sk be
servers, each storing a database x of length n, x = (x1, x2, . . . , xn) ∈ {0, 1}n. A
user U wishes to retrieve the i-th bit xi from the database without revealing i.

The k-server PIR protocol is an algorithm P = (Q, A, C) consisting of:

1. The user U flips coins and, based on the coin flips and index i, invokes the
query algorithm Q(k, n; i) to generate a randomized k-tuple of queries of
some predetermined fixed length, (q1, q2, . . . , qk).

2. For j ∈ 1, . . . , k, the user sends the query qj to the j-th server Sj.

3. The j-th server, for j ∈ 1, . . . , k, responds with an answer of some fixed
length aj = A(k, j, x, qj).

4. Finally, the user computes the output by applying the reconstruction algo-
rithm C(k, n; i, a1, . . . , ak).

In the classical PIR model, each server stores a full copy of the database. If
there are k servers and the database size is n bits, the total storage across all
servers is kn bits. The storage overhead is then defined as the ratio between the
total number of bits stored in the system and the number of information bits,
which is in this case k.

Another option, introduced in [7], is to distribute the database among multiple
servers in a more efficient way, where each server stores only an encoded part of
the database rather than the entire database. This method reduces the storage
overhead compared to the classical model.

Parameter k is used for controlling the privacy-communication trade-off. In
the context of multi-server PIR protocols, we will consider information-theoretic
privacy. Later on, we will focus on multi-server PIR protocol with distributed
storage system.

2.2 Definition of PIR codes
Private information retrieval codes are designed to reduce the communication
and storage overhead compared to classical PIR model. Let us start with the
definition [8].

Definition 20 (k-server PIR code). A k-server PIR code is a binary linear [m, s]-
code with a generator matrix G such that for every integer i with 1 ≤ i ≤ s, there
exist k disjoint subsets of columns of matrix G that add up to the vector of weight
1, with the single 1 in position i. The disjoint subsets of columns of matrix G are
called recovery sets.

15

Consider a database containing n bits of data. Each of the m servers stores
n/s bits, so the total number of bits stored on all servers is mn

s
. The storage

overhead in a k-server PIR [m, s]-code is given as the ratio of all bits stored on
all servers to the bits in the database. That is,

mn
s

n
= m

s
.

The central aim when studying PIR codes is to minimize the value of m while
keeping s and k fixed. This minimal value of m is denoted by P (s, k).
Example. Example of a k-server PIR [9, 4]-code.

G =

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 1 1
0 1 0 0 0 1 0 1 1
0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 1 1

⎞⎟⎟⎟⎠
For G as the generator matrix, we can obtain these recovery sets for different

columns.
For i = 1 we get for example⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = y1

x1 = y2 + y3 + y6

x1 = y4 + y7

x1 = y5 + y8 + y9

In the same way for i = 2, 3, and i = 4 , we can obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2 = y2

x2 = y5 + y6

x2 = y1 + y3 + y4 + y9

x2 = y7 + y8

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = y3

x3 = y1 + y2 + y6

x3 = y4 + y5 + y7

x3 = y8 + y9

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x4 = y4

x4 = y1 + y2 + y8

x4 = y3 + y5 + y7

x4 = y6 + y9

In this example we have 4-server PIR [9, 4]-code as we have 4 recovery sets
for all xi.

Let S1, . . . , Sm be servers, each storing a linear combination of x1, . . . , xs, and
the user wants to obtain xi. A k-server PIR [m, s]-code can be used to simulate
a linear k-server PIR protocol in the following way:

1. The user generates queries (q1, . . . , qk).

2. Let R1, . . . , Rk be k recovery sets for xi. For all j ∈ {1, . . . , k}, the user
sends query qj to the servers in recovery set Rj.

3. Each server responds with an answer, and since we have a linear PIR pro-
tocol, all answers from one recovery set Rj sum up to the answer aj =
A(k, j, xi, qj).

4. The user computes the output by applying the k-server PIR protocol re-
construction algorithm C(k, n; i, a1, . . . , ak).

16

2.3 Known bounds for PIR codes
Let P (s, k) be a the minimum value of m for which a k-server PIR [m, s]-code
exists.

Theorem 10. For every s, k ∈ N, s, k ≥ 1 the value P (s, k) ≥ k· 2s−1
2s−1 and equality

holds if and only if k ≡ 0 mod 2s−1, i.e. k is divisible by 2s−1.

Proof of the previous theorem can be found in [7, Theorem 18]. That provides
the optimal value of P (s, k) for k divisible by 2s−1.
Corollary. Let s ≥ 1 be an integer, then P (s, 2s−1) = 2s − 1.

Here is a summary of inequalities for P (s, k) as derived from [7, Lemma
13, Lemma 14]. These inequalities provide straightforward methods to establish
upper bounds for various values of P (s, k).

Theorem 11. The following holds for s, k ≥ 1:

1. P (s, 1) = s and P (s, 2) = s + 1;

2. P (s, k) ≤ P (s, k + 1) − 1;

3. If k is odd, then P (s, k) = P (s, k + 1) − 1;

4. P (s, k) ≤ P (s + 1, k) − 1.

Proof. 1. For k = 1, consider the [s, s]-code which stores all the information
symbols, i.e., the generator matrix is Is. This is a 1-server PIR [s, s]-code.

Similarly, consider the parity check code [s + 1, s]. In the generator matrix G,
we can find exactly 2 disjoint subsets that add up to ei for every 1 ≤ i ≤ s (because
s columns are independent). This means we have a 2-server PIR [s + 1, s]-code.

2. Consider a (k + 1)-server PIR [m, s]-code with generator matrix G. As
we know from the definition of PIR codes, for every 1 ≤ i ≤ s, there are k + 1
disjoint subsets of columns that add up to ei. If we delete one column from G, we
will affect at most one of these sets. This means that G′ is the generator matrix
for a k-server PIR [m − 1, s]-code.

3. For k odd, we need to prove that P (s, k+1) ≤ P (s, k)+1. Let us consider a
k-server PIR [m, s]-code with generator matrix G. By the definition of a k-server
PIR [m, s]-code, we have k disjoint subsets of columns of G that add up to ei for
1 ≤ i ≤ s.

Now we have two possibilities. If the sum of all columns of G adds up to 0,
then the sum of the remaining columns (columns that are not in any of the k
subsets) is equal to ei, because k is odd. Thus, we have a (k + 1)-server [m, s]
PIR code.

The second possibility is that the sum of all columns of G is not equal to 0.
In this case, we can add one column to G to make the sum equal to 0. Then we
obtain a (k + 1)-server PIR [m + 1, s]-code.

4. Proof can be seen in [7] at the end of section V.

Theorem 12. [7, Lemma 13] For s, s1, s2 ≥ 1 and k, k1, k2 ≥ 1, the following
holds:

1. P (s1 + s2, k) ≤ P (s1, k) + P (s2, k);

17

2. P (s, k1 + k2) ≤ P (s, k1) + P (s, k2).

Proof. 1. Imagine we have a k-server [m1, s1]-code and a k-server PIR [m2, s2]-
code with generator matrices G1 and G2, respectively. Let us create a new gen-
erator matrix of shape

G =
(︄

G1 0s1×m2

0s2×m1 G2

)︄
.

There are k disjoint subsets of columns that add up to ei for every 1 ≤ i ≤ s1 +s2.
We have obtained a k-server PIR [m1 + m2, s1 + s2]-code.

2. As previously, assume we have a k1-server [m1, s]-code and a k2-server PIR
[m2, s]-code with generator matrices G1 and G2, respectively. By concatenating
G1 and G2, we obtain the generator matrix G = [G1 | G2]. Thus, there exist
k1 + k2 disjoint subsets of columns that add up to ei for every 1 ≤ i ≤ s. This
results in a (k1 + k2)-server PIR [m1 + m2, s]-code.

Next upper bounds and some optimal values were determined in [7].

Theorem 13. For s, k ≥ 1 the following holds:

1. For every integer k > 1 we have P (2, k) = ⌈3k/2⌉;

2. For every even integer k > 2 we have P (3, k) = ⌈7k/4⌉;

3. [7, IV. A] P (s, k) ≤ s + (k − 1)⌈s
1

k−1 ⌉k−2.

In [7], the following two constraints were obtained from the construction of
PIR codes.

Theorem 14. [7, Theorem 8] If r ∈ N and a Steiner system S(2, k − 1, r) exists,
and s = r(r−1)

(k−1)(k−2) , then P (s, k) ≤ r + s.
A sufficient condition for the existence of S(2, k − 1, r) is r(r−1)

(k−1)(k−2) ∈ Z and
r−1
k−2 ∈ Z.

Theorem 15. [7, Theorem 9] For l, θ and λ ∈ N the following holds:

P (22θl − (2θ+1 − 1)l, 2l + 2) ≤ 22θl − 1;

P ((2λ − 1)l − 1, 2l) ≤ 2λl − 1.

In the publication [3], more precise bounds were established with the aid of
combinatorial structures. These bounds, along with a more in-depth exploration
of these combinatorial structures, are undertaken in Chapter 3. The results are
summarized at the end of the chapter in Table 3.2.

2.4 Results of practical tests
The lower bounds on P (s, k) from this and the next chapter are used to compute
P (s, k) for small values of s and k. The results are presented in Table 2.1, which
was computed using a SageMath program, attached as Appendix A.1.

The first column of Table 2.1 shows the minimal value of m, denoted as
P (s, k), while the second column represents the storage overhead for the given
values of s and k.

18

H
H

H
H
H

s
k

1
2

3
4

5
6

7
8

9
10

11
12

1
1

1.
00

2
2.

00
3

3.
00

4
4.

00
5

5.
00

6
6.

00
7

7.
00

8
8.

00
9

9.
00

10
10

.0
0

11
11

.0
0

12
12

.0
0

2
2

1.
00

3
1.

50
5

2.
50

6
3.

00
8

4.
00

9
4.

50
11

5.
50

12
6.

00
14

7.
00

15
7.

50
17

8.
50

18
9.

00
3

3
1.

00
4

1.
33

6
2.

00
7

2.
33

9
3.

00
10

3.
33

13
4.

33
14

4.
67

16
5.

33
17

5.
67

19
6.

33
20

6.
67

4
4

1.
00

5
1.

25
8

2.
00

9
2.

25
11

2.
75

12
3.

00
14

3.
50

15
3.

75
19

4.
75

20
5.

00
23

5.
75

24
6.

00
5

5
1.

00
6

1.
20

9
1.

80
10

2.
00

12
2.

40
13

2.
60

18
3.

60
19

3.
80

22
4.

40
23

4.
60

25
5.

00
26

5.
20

6
6

1.
00

7
1.

17
10

1.
67

11
1.

83
13

2.
17

14
2.

33
20

3.
33

21
3.

50
24

4.
00

25
4.

17
27

4.
50

28
4.

67
7

7
1.

00
8

1.
14

12
1.

71
13

1.
86

14
2.

00
15

2.
14

22
3.

14
23

3.
29

27
3.

86
28

4.
00

29
4.

14
30

4.
29

8
8

1.
00

9
1.

12
13

1.
62

14
1.

75
19

2.
38

20
2.

50
24

3.
00

25
3.

12
33

4.
12

34
4.

25
38

4.
75

39
4.

88
9

9
1.

00
10

1.
11

14
1.

56
15

1.
67

21
2.

33
22

2.
44

29
3.

22
30

3.
33

36
4.

00
37

4.
11

43
4.

78
44

4.
89

10
10

1.
00

11
1.

10
15

1.
50

16
1.

60
23

2.
30

24
2.

40
31

3.
10

32
3.

20
39

3.
90

40
4.

00
47

4.
70

48
4.

80
11

11
1.

00
12

1.
09

17
1.

55
18

1.
64

24
2.

18
25

2.
27

32
2.

91
33

3.
00

42
3.

82
43

3.
91

49
4.

45
50

4.
55

12
12

1.
00

13
1.

08
18

1.
50

19
1.

58
25

2.
08

26
2.

17
33

2.
75

34
2.

83
44

3.
67

45
3.

75
51

4.
25

52
4.

33
13

13
1.

00
14

1.
08

19
1.

46
20

1.
54

26
2.

00
27

2.
08

34
2.

62
35

2.
69

46
3.

54
47

3.
62

53
4.

08
54

4.
15

14
14

1.
00

15
1.

07
20

1.
43

21
1.

50
28

2.
00

29
2.

07
35

2.
50

36
2.

57
49

3.
50

50
3.

57
56

4.
00

57
4.

07
15

15
1.

00
16

1.
07

21
1.

40
22

1.
47

30
2.

00
31

2.
07

42
2.

80
43

2.
87

52
3.

47
53

3.
53

61
4.

07
62

4.
13

16
16

1.
00

17
1.

06
23

1.
44

24
1.

50
32

2.
00

33
2.

06
46

2.
88

47
2.

94
56

3.
50

57
3.

56
62

3.
88

63
3.

94
17

17
1.

00
18

1.
06

24
1.

41
25

1.
47

33
1.

94
34

2.
00

47
2.

76
48

2.
82

58
3.

41
59

3.
47

63
3.

71
64

3.
76

18
18

1.
00

19
1.

06
25

1.
39

26
1.

44
34

1.
89

35
1.

94
48

2.
67

49
2.

72
60

3.
33

61
3.

39
64

3.
56

65
3.

61
19

19
1.

00
20

1.
05

26
1.

37
27

1.
42

35
1.

84
36

1.
89

49
2.

58
50

2.
63

62
3.

26
63

3.
32

65
3.

42
66

3.
47

20
20

1.
00

21
1.

05
27

1.
35

28
1.

40
36

1.
80

37
1.

85
50

2.
50

51
2.

55
64

3.
20

65
3.

25
66

3.
30

67
3.

35
21

21
1.

00
22

1.
05

28
1.

33
29

1.
38

41
1.

95
42

2.
00

51
2.

43
52

2.
48

65
3.

10
66

3.
14

67
3.

19
68

3.
24

22
22

1.
00

23
1.

05
30

1.
36

31
1.

41
42

1.
91

43
1.

95
52

2.
36

53
2.

41
66

3.
00

67
3.

05
68

3.
09

69
3.

14
23

23
1.

00
24

1.
04

31
1.

35
32

1.
39

43
1.

87
44

1.
91

53
2.

30
54

2.
35

67
2.

91
68

2.
96

69
3.

00
70

3.
04

24
24

1.
00

25
1.

04
32

1.
33

33
1.

38
44

1.
83

45
1.

88
54

2.
25

55
2.

29
76

3.
17

77
3.

21
79

3.
29

80
3.

33
25

25
1.

00
26

1.
04

33
1.

32
34

1.
36

45
1.

80
46

1.
84

55
2.

20
56

2.
24

77
3.

08
78

3.
12

80
3.

20
81

3.
24

26
26

1.
00

27
1.

04
34

1.
31

35
1.

35
49

1.
88

50
1.

92
57

2.
19

58
2.

23
78

3.
00

79
3.

04
81

3.
12

82
3.

15
27

27
1.

00
28

1.
04

35
1.

30
36

1.
33

50
1.

85
51

1.
89

58
2.

15
59

2.
19

79
2.

96
80

3.
00

82
3.

04
83

3.
07

28
28

1.
00

29
1.

04
37

1.
29

38
1.

32
52

1.
86

53
1.

89
59

2.
11

60
2.

14
81

2.
89

82
2.

93
83

2.
96

84
3.

00
29

29
1.

00
30

1.
03

38
1.

34
39

1.
38

53
1.

83
54

1.
86

60
2.

07
61

2.
10

82
2.

83
83

2.
86

84
2.

90
85

2.
93

30
30

1.
00

31
1.

03
39

1.
37

40
1.

40
54

1.
80

55
1.

83
61

2.
03

62
2.

07
83

2.
77

84
2.

80
85

2.
83

86
2.

87
31

31
1.

00
32

1.
03

41
1.

35
42

1.
39

58
1.

87
59

1.
90

62
2.

00
63

2.
03

84
2.

71
85

2.
74

86
2.

77
87

2.
81

32
32

1.
00

33
1.

03
42

1.
38

43
1.

41
59

1.
84

60
1.

88
64

2.
16

65
2.

19
85

2.
66

86
2.

69
87

2.
72

88
2.

75

Ta
bl

e
2.

1:
U

pp
er

bo
un

ds
fo

r
P

(s
,k

)
an

d
co

rr
es

po
nd

in
g

st
or

ag
e

ov
er

he
ad

fo
r

gi
ve

n
s

an
d

k

19

3. Minimizing storage overhead
in PIR codes
In this chapter we will show some combinatorial structures and their connection
to PIR codes. In [3] some new bounds for private information retrieval codes by
using combinatorial structure of these codes were introduced, especially k-partial
packings and (vt, bz)-configurations. With these combinatorial structures, we can
establish upper bounds on the number of servers m, which consequently provides
new upper bounds on storage overhead.

3.1 PIR codes as k-partial packings
Consider a linear [m, s = m−r] k-server PIR code. As a linear code, its generator
matrix can be written as [Is | P]. Thus, we have s information bits e1, . . . , es

and r redundancy bits p1, . . . , pr, where each pi is characterized by a subset
Si ⊆ {e1, . . . , es} such that pi = ∑︁

e∈Si
e.

As mentioned in [7], the idea behind the construction of any k-server PIR code
is to create k mutually disjoint subsets of {g1, . . . , gm} (for every information bit),
such that the information bit can be recovered by a linear combination of the bits
in each set.

Theorem 16. [3] A k-partial packing of order r for a set of size s gives us
a sufficient conditions for a k-server PIR code with parameters [r + s, s]. The
storage overhead in this construction is m

s
= 1 + r

s
.

Proof. Let X = e1, . . . , es, with Si as previously defined, and assume there exists
a k-partial packing of X. Take an arbitrary 1 ≤ i ≤ s. We will denote the
sets Sj such that ei ∈ Sj as S

(i)
j , for j ∈ 1, . . . , r. By definition, there are

k − 1 partitions of X into subsets S
(i)
j . We next define, for j ≤ k − 1, the sets

R
(i)
j = el : el ∈ Sj(i), l ̸= i ∪ pj and R

(i)
k = ei.

From the k-partial packing definition, every subset S
(i)
j has size at least two.

Moreover, according to the second condition, all k sets R
(i)
j are mutually disjoint

because two S
(i)
j subsets from two distinct partitions meet in at most one point,

and all of the subsets S(i)j have ei in common. Finally, it is straightforward to
verify that ei is the sum of the bits in every Rj(i) set, thereby creating a k-server
PIR [r + s, s]-code.

Theorem 17. [3, Theorem 2.2] Let s = a1 · · · ak−1, where ai ∈ N, ai ≥ 2. Then
for each w ≤ k − 1 there exist a (w + 1)−server PIR [m, s]−code with

m = s + s

a1
+ · · · + s

aw

.

The storage overhead is 1 +∑︁w
i=1

1
ai

.
Specifically if s = hk−1, for each w ≤ k − 1 there exist a (w + 1)−server PIR

[s + w s
h
, s]−code with storage overhead 1 + w

h
.

20

Proof. Let k > 3 and s can be written as the product of k − 1 integers as follows:

s = a1 · a2 · · · ak−1, with ai ≥ 2.

Let Cai
denote the cyclic group of order ai and G the direct product of the groups

Cai
for i = 1, . . . , k − 1. Then,

G = Ca1 × Ca2 × · · · × Cak−1 .

Each subgroup Cai
creates a partition Pi on G into subsets defined as follows:

numbers in all positions in one subset of a partition Pi are identical except for the
i-th position. Thus, each subset in the partition Pi contains exactly ai elements.

For each w ≤ k − 1, P = {P1, . . . , Pw} satisfies:

(i) |Pi| = s
ai

, which means each subset in any partition has size at least two.

(ii) For any two distinct indices i, j, let Si and Sj be arbitrary subgroups in
partitions Pi and Pj, respectively. Elements in Si differ only in the i-th
position, and elements in Sj differ only in the j-th position. Since i ̸= j,
the subsets Si and Sj have at most one element in common.

That gives us a (w+1)-partial packing of G. The order is equal to s
a1

+· · ·+ s
aw

.

Let s = hk−1, then

m = s +
w∑︂

i=1

s

h
= s + w

s

h
.

That gives us (w + 1)-server PIR [s + w s
h
, s]-code, with storage overhead equal to

m
s

= 1 + w 1
h
.

Example. Let s = 18 and k = 3, then we have w = 2 and s can be written in
terms of previous theorem as s = 2 · 9 or s = 3 · 6.

So for a1 = 2, a2 = 9, we obtain m = 29 and storage overhead 1.61. Better
result is received, if we consider a1 = 3 and a2 = 6. Then m = 27 and storage
overhead is equal to 1.5.

3.2 Connection to affine geometry
Consider approaching PIR codes from the perspective of affine geometry. Let
AN(Fq) be an affine space of dimension N over a finite field Fq. We can divide
the affine space into parallel classes, which will give us a connection to partial
packings.

Theorem 18. [3, Theorem 2.5] Let N ∈ N, N ≥ 2 and s = qN . Then for any
k − 1 ≤ qN−1 + qN−2 + · · · + q + 1 there exist a k-server PIR [m, s]-code with

m = s + s(k − 1)
q

= s + (k − 1)qN−1

and storage overhead 1 + k−1
q

.

21

Proof. In an affine space AN(Fq), we have qN points. We can divide the affine
space into parallel classes of lines. In any parallel class, there are qN−1 lines,
because we have qN points and each line contains q points, so we have to divide
it by q points which generate the same line.

The total number of lines in AN(Fq), according to Corollary 1.4, is qN−1(qN −1)
q−1 .

As parallelism on lines is an equivalence relation, we can obtain the number of
parallel classes as the total number of lines divided by the number of lines in one
class, which is

qN−1(qN − 1)
q − 1 · 1

qN−1 = qN−1 + qN−2 + · · · + q + 1.

The k-partial packing of AN(Fq) is obtained by taking any k − 1 parallel
classes. The order of such a k-partial packing is r = (k−1)qN

q
, which is the total

number of subsets of AN(Fq) belonging to its partition.
According to Theorem 16, this proves the existence of a k-server PIR [m, s]-

code with m = s + r and storage overhead 1 + r
s
.

A similar approach can be applied when considering parallelism of hyper-
planes, which are (n − 1)-dimensional subspaces of affine space AN(Fq). Two
hyperplanes are parallel if and only if they do not have any points in common.

Theorem 19. [3, Theorem 2.6] Let N ∈ N, N ≥ 2 and s = hqN−1 for some
h ≤ q. Then for any k − 1 ≤ qN−1 there exist a k-server PIR [m, s]-code with

m = s + (k − 1)qN−1

and storage overhead 1 + k−1
h

.

Proof. Let us consider a subset S of AN(Fq) consisting of h parallel hyperplanes.
Each hyperplane contains qN−1 points, so there are q parallel classes in AN(Fq).
Therefore, the subset S has size hqN−1.

There are qN−1 directions not determined by these hyperplanes. One can
imagine this as if from one fixed point in a hyperplane, there are qN−1 lines
to points on a second hyperplane, each determining a direction. Each of these
directions corresponds to lines that are not parallel to the hyperplanes. Each line
in one of these directions will intersect every hyperplane exactly once, giving a
total of h intersection points per line.

We can select k − 1 directions from the qN−1 available, each giving us qN−1

directed lines (one parallel to another). This selection provides us with a k-partial
packing of order r = (k − 1)qN−1, with m = s + r = hqN−1 + (k − 1)qN−1 and
storage overhead equal to m

s
= 1 + k−1

h
.

3.3 Connection to projective geometry
Similarly to an affine space, we can divide a projective space PN(Fq) using the
following notation.

22

Definition 21. [9, p. 207] A d-spread of PN(Fq) is a collection of d-dimensional
subspaces that are mutually disjoint and whose union covers all of PN(Fq). A
d-packing of PN(Fq) is a partition of all d-dimensional subspaces into d-spreads.

For d = 1, we will denote the d-spreads as resolution classes and the d-packing
as a resolution.

A sufficient condition for such a partition of the lines in PN(Fq) to exist is
either N = 2z + 1 with q = 2 for z ≥ 1, or N = 2i+1 − 1 for i ≥ 1 [3].

Theorem 20. [3, Theorem 2.4] Let N be such that a resolution in PN(Fq) exist,
and s = qN + qN−1 + · · · + q + 1. Then for k − 1 ≤ qN−1 + · · · + q + 1, there exists
a k-server PIR [m, s]-code with

m = s + (k − 1)s
q + 1

and storage overhead 1 + k−1
q+1 .

Proof. In each resolution class, there are qN +···+q+1
q+1 lines, because the total number

of points in PN(Fq) is s = qN+1−1
q−1 and each line contains q + 1 points.

As we showed in Lemma 3, the number of lines in PN(Fq) is

(qN+1 − 1)(qN − 1)
(q2 − 1)(q − 1) .

That gives us

(qN+1 − 1)(qN − 1)
(q2 − 1)(q − 1) · q + 1

qN + · · · + q + 1 = qN − 1
q − 1

resolution classes.
Additionally, two resolution classes from distinct partitions intersect in at

most one point, as two different lines meet at most in one point. Taking k − 1
resolution classes creates a homogeneous k-partial packing of order

r = (k − 1)qN + · · · + q + 1
q + 1 .

As stated in Theorem 16, this establishes the existence of a k-server PIR [m, s]-
code with m = s + r and a storage overhead of 1 + r

s
.

Corollary. For N odd and q = 2 we will get a k-server PIR [m, s]-code with

s = qN+1 − 1
q − 1 = 2N+1 − 1,

m = s + (k−1)s
3 , k − 1 ≤ qN −1

q−1 = 2N and storage overhead equals to m
s

= 1 + k−1
3 .

3.4 Geometrical objects in projective planes
In this subsection, we will focus on the structures in the projective plane P2(Fq)
that were defined in Section 1.5.

23

3.4.1 Maximal arcs
An (m, d)-arc in a projective plane P2(Fq) is a set of m points such that no d
points are collinear. In a maximal arc A, every line in P2(Fq) is either disjoint
from A or intersects A in exactly d points.

An (m, d)-maximal arc in P2(Fq) exists if n, n′ ∈ N, 0 ≤ n′ ≤ n such that
q = 2n, d = 2n′ and m = 2n+n′ − 2n + 2n′ . That will help us with the following
theorem.

Theorem 21. [3, Corollary 2.8] Let s = 2n+n′ − 2n + 2n′ for some n, n′ such that
1 ≤ n′ ≤ n. Then for any k, where k − 1 ≤ 2n + 1 there exist a k-server PIR
[m, s]-code with

m = s + (k − 1)s
2n′

and storage overhead 1 + k−1
2n′ .

Proof. Consider q = 2n and d = 2n′ . Then a (qd−q +d, d)-maximal arc in P2(Fq)
exists, and we will denote it as A.

From the definition of maximal arcs, every line intersects A either in d points
or not at all. Take a point x which is not in A. The lines through x that are not
disjoint from A intersect A in d points and create a partition into subsets of size
d = 2n′ .

Moreover, there are s = 2n+n′ − 2n + 2n′ points in A, divided into subsets of
size d = 2n′ . This means the number of subsets is

s

d
= 2n+n′ − 2n + 2n′

2n′ .

Now take k−1 points from a line disjoint from A (i.e., there are q +1 collinear
points, so k − 1 ≤ q + 1). Each of these points will create a partition of A into
subsets of size d. Any two subsets in any partition have at most one point in
common because the subsets are defined by lines, and for every pair of distinct
points, there exists exactly one line passing through both.

Thus, this configuration will create a homogeneous k-partial packing of order
r = s + (k−1)s

d
, providing us with the corresponding PIR code.

3.4.2 Classical unitals
As a summary of Section 1.5.3, for classical unital U , each point in P2(Fq2) \ U

defines a partition of U into subsets of q + 1 collinear points. There are q3+1
q+q

=
q2 − q + 1 of these subsets.

Theorem 22. [3, Corollary 2.10] Let s = q3 +1, where q is a prime power. Then
for each k − 1 ≤ q2 there exist a k-server PIR [m, s]-code with

m = s + (k − 1)(q2 − q + 1)

and storage overhead 1 + k−1
q+1 .

24

Proof. Let us consider a classical unital U over P2(Fq2). According to the defini-
tion of a unital, each line meets U in either 1 or q + 1 points. Take a line l that
meets U in one point P .

The remaining q2 points Pi (where 1 ≤ i ≤ q2) on the line l distinct from P
will create partitions of U , each into q2 − q + 1 subsets of q + 1 collinear points.

These partitions are mutually disjoint because they are unequivocally defined
by the points on the line l and the polarity, which maps Pi ↦→ P ρ

i , where Pi ∈ l
and Pi ̸= P . Since all the points Pi lie on the line l, the point lρ ∈ P ρ

i . This
means that through the point lρ go all the lines P ρ

i . Also, lρ /∈ U , because if lρ

were in U , it would coincide with Pi for all 1 ≤ i ≤ q2, which contradicts the
choice of Pi as distinct points on l different from P .

Taking k − 1 of these partitions will create a homogeneous k-partial packing
of order r = (k − 1)(q2 − q + 1), which is the number of partitions times the
number of subsets in each partition.

3.4.3 Conics in P2(Fq)
A non-degenerate conic C in a projective plane P2(Fq) contains q + 1 points.
These points are called absolute. Points lying on tangent line are exterior points
of C. Points neither on C nor lying on tangent line are denoted as interior. There
are q2−q

2 interior points.
Every exterior point lies on 2 tangent, q−1

2 secant and q−1
2 external lines.

An external line contains q+1
2 interior and q+1

2 exterior points of C. A secant
line contains 2 absolute, q−1

2 interior and q−1
2 exterior points of C.

Theorem 23. [3, Corollary 2.11] Let s = q2−q
2 , where q > 3 and q is odd. Then

for each k − 1 ≤ q there exist a k-server PIR [m, s]-code with

m = s + (k − 1)(q − 1)

and storage overhead 1 + 2(k−1)
q

.

Proof. Consider a non-degenerate conic C in the projective plane P2(Fq) for q
odd. Let P be an exterior point of C.

Secant and external lines through P divide the set of interior points of C into
q−1

2 + q−1
2 = q − 1 subsets. Each subset is created by interior points on secant or

external lines, so the points in each subset are collinear. The subsets have sizes
q−1

2 for secant lines and q+1
2 for external lines.

Let l be a tangent line to C. The set of interior points has size s = q2−q
2 . By

selecting k − 1 distinct exterior points on l out of q, we form k − 1 partitions of
the set of interior points. Each subset has size either q−1

2 or q+1
2 . By definition,

in projective planes, two distinct points define exactly one line passing through
both of them, so the subsets have at most one point in common.

This results in a non-homogeneous k-partial packing with order

r = (k − 1)(q − 1).

The corresponding PIR code has m = s + (k − 1)(q − 1) and storage overhead
m
s

= 1 + 2(k−1)
q

.

25

3.5 (vt, bz)−configurations
As mentioned in Chapter 1, a (vt, bz)-configuration is a point-line structure with
v points, b lines, and specific restrictions: each line contains z points, each point
lies on t lines, and any two distinct points are connected by at most one line. The
following theorem will connect these configurations with k-server PIR codes.

Theorem 24. [3] A (vt, bz)-configurations produces a (t + 1)-server PIR [m, s]-
code with s = v, m = s + b and storage overhead 1 + b

s
.

Proof. We can imagine the (vt, bz)-configuration as a v × b matrix M with t ones
in each row, z ones in each column, and for any two rows j and k, if Mj,i = 1
and Mk,i = 1 for some i, then for all l where Mj,l = 1, it holds that Mk,l = 0 (and
vice versa - if Mk,l = 1, then Mj,l = 0).

Consider a v × (v + b) matrix G = (Iv | M). We can then proceed similarly
to k-partial packings. We can express redundancy vectors from matrix M as
pj = ∑︁

e∈Sj
e, where Sj ⊆ {e1, . . . , ev}.

Take an arbitrary 1 ≤ i ≤ v. Denote S
(i)
j the set Sj if and only if ei ∈ Sj. The

sets R
(i)
j = {el : el ∈ S

(i)
j , l ̸= i} ∪ {pj} for 1 ≤ j ≤ t and Rt+1 = {ei} define a

partition of column vectors. These subsets are disjoint because any two distinct
points are connected by at most one line, which corresponds to the i-th line in
the representation of matrix G for sets S

(i)
j .

The subsets Ri give us t + 1 disjoint subsets of columns that add up to the
vector with a single 1 in position i. This creates a (t+1)-server PIR [v+b, v]-code
with storage overhead m

v
= 1 + b

v
.

For the next theorem, we need to define what is meant by a resolution in the
context of (vt, bz)-configurations.

Definition 22. [10, Definition 2.1] Let t, z ≥ 2 and v ≥ 4 be integers. Suppose
C = (P, L) is a (vt, bz)-configuration with a set of points P and a set of lines L.
A parallel class in C is a subset of lines such that each point in P is incident
with exactly one line in the subset. A partition of L into parallel classes is called
a resolution, and C is said to be a resolvable configuration if L has at least one
resolution.

Other interesting results for upper bounds for PIR codes can be obtained
using resolvable (vt, bz)-configurations.

Theorem 25. [3, Theorem 3.1] Consider a resolvable configuration (vt, bz), with
s = v and k − 1 ≤ t. Then there exists a k-server PIR [m, s]-code with

m = s + (k − 1)s

z
,

and storage overhead
1 + k − 1

z
.

26

Proof. A resolvable configuration (vt, bz) consists of v points and b lines, where
each line contains z points, and each point lies on t lines. There are t parallel
classes in (vt, bz) because each point lies on t lines, and a parallel class is a partition
of points according to lines.

Two subsets, each from a different parallel class, have at most one point in
common since, in (vt, bz), any two distinct points are connected by at most one
line.

The size of each parallel class is the number of all points divided by the number
of points lying on the same line, which is v

z
.

Taking k − 1 parallel classes creates a homogeneous k-partial packing with
order r = (k − 1)v

z
. According to Theorem 16, this gives us a corresponding PIR

[m, s]-code for s = v with storage overhead
m

s
= 1 + k − 1

z
.

A slightly different results are for resolvable (vt, bz)-configurations, where any
two distinct points are connected exactly by one line. Such a configuration is a
Steiner system S(2, z, v) or (v, k, 1)-BIBD.

As a reminder, a (v, k, λ)-BIBD can be considered as a (vr, bk)-configuration
for some r ∈ N. So we we can talk about resolvable BIBDs.

Theorem 26. [3, Theorem 3.2] Let (vt, bz) be a resolvable BIBD, where any two
distinct points are connected by exactly one line. Then for any k −1 ≤ v−1

z−1 , s = v
there exist a k-server PIR [m, s]-code with

m = s + (k − 1)s

z
,

and storage overhead 1 + k−1
z

.

Proof. The number of parallel classes in such resolution is number of lines going
through one point which is t. Consider fixed point P in configuration, then there
is v − 1 points which we want to connect with P and on one line there is another
z − 1 points. That gives us t = v−1

z−1 lines going through one point. There are v
z

points in each parallel class.

In the Table 3.1 there is a list of existing resolvable (vt, bz) configurations and
corresponding parameters for PIR codes.

z v Conditions
3 v ≡ 3 (mod 6)
4 v ≡ 4 (mod 12)
5 v ≡ 5 (mod 20) v ̸= 45, 345, 465, 645
7 v ≡ 7 (mod 42) v > 294427
8 v ≡ 8 (mod 56) v > 24480

Table 3.1: List of existing resolvable BIDS (vt, bz)-configurations [3]

Following list are sufficient conditions for existence of (vt, bz)-configurations
for z = 3, 4 and 5 [3, Section 4.2].

27

• z = 3: vt = 3b and v ≥ 2t + 1.

• z = 4:

– v ≡ 4 (mod 12), v > 3t + 1, and vt = 4b;
– v ≡ 0 (mod 12), v ≥ 3t + 1, vt = 4b, and

v /∈{84, 120, 132, 180, 216, 264, 312, 324, 372, 456, 552, 648, 660,

804, 852, 888}.

– v ≡ 0 (mod 12), v = 3t + 3, and vt = 4b;
– t = 4s, v ≥ 3t + 1, vt = 4b, and 1 ≤ s ≤ 15, except possibly s = 3 and

v = 38;
– t = 6, v ≥ 20 even, and b = 3v

2 .

• z = 5:

– v = 4t + 4, v ≡ 0 (mod 20), and vt = 5b;
– v ≡ 5 (mod 20), v ≥ 4t + 1, vt = 5b, and v ≥ 7865;
– t = 5s, v ≥ 4t + 1, vt = 5b, 1 ≤ s ≤ 10 and

(t, v) /∈{(1, 22), (2, 42), (2, 43), (3, 62), (3, 63), (4, 82), (5, 102), (7, 142),
(9, 182), (9, 183), (9, 185), (9, 186), (9, 187), (9, 188), (9, 189),
(9, 190), (9, 191), (9, 192)}.

The following Table 3.2 summarizes the results from this chapter, along with
references to the theorems where they are proven.

28

s k − 1 P (s, k) ≤ Theorem
a1 · · · ac ≤ c s +∑︁k−1

i=1
s
ai

17
qN ≤ qN −1

q−1 s(1 + k−1
q

) 18
hqN−1, h ≤ q ≤ qN−1 s(1 + k−1

h
) 19

qN+1−1
q−1 , N = 2i+1 − 1 ≤ qN −1

q−1 s(1 + k−1
q+1) 20

2N+1 − 1, N odd ≤ 2N − 1 s(1 + k−1
3) 20

2n+n′ − 2n + 2n′ , 0 ≤ n′ ≤ n ≤ 2n + 1 s(1 + k−1
2n′) 21

q3 + 1 ≤ q2 s(1 + k−1
q+1) 22

q2−q
2 ≤ q s + (k − 1)(q − 1) 23

≡ 3 (mod 6) ≤ s−1
2 s(1 + k−1

3) 26
≡ 4 (mod 12) ≤ s−1

3 s(1 + k−1
4) 26

≡ 5 (mod 20), ̸= 45, 345, 465, 645 ≤ s−1
4 s(1 + k−1

5) 26
≡ 7 (mod 42), > 294427 ≤ s−1

6 s(1 + k−1
7) 26

≡ 8 (mod 56), > 24480 ≤ s−1
7 s(1 + k−1

8) 26

Table 3.2: Known upper bounds on P(s,k) [3]

29

4. Code families connected to
PIR codes
In this chapter we will introduce PIR array codes, locally repairable codes and
batch codes and their connection to PIR codes.

4.1 PIR array codes
We can look at k-server PIR [m, s]-codes in a different way, where we have n bits
in the database, but we divide it into s parts, each part containing n/s bits as a
single symbol. Then, m is the total number of parts stored, and s is the number
of parts in the database.

PIR array codes were introduced in [7] and extend this concept by allowing
each server to store more than one symbol. This means the database can be
divided into more parts, for example, 3s parts of n

3s
bits each, enabling each

server to store three symbols. This idea can be generalized so that each server
stores a fixed number of symbols. A symbol can be interpreted as a vector in F2.

This approach can improve the value of P (s, k) for certain instances of s and k,
thereby reducing the storage overhead. Since each server stores multiple symbols,
we treat the code construction as an array code. When a server receives a query
q, it responds with multiple answers corresponding to the number of symbols it
stores.

4.1.1 Definition of PIR array codes
This section is mainly inspired by [11] and [12]. Let us start with formal definition.

Definition 23. Let x1, x2, . . . , xp be a basis of a vector space with dimension p
over finite field F. A [t × m, p] array code is defined as a t × m array where each
entry is a linear combination of the basis elements xi.

This array code is [t×m, p] k-PIR array code if it satisfies the k-PIR property.
That means for every i ∈ {1, 2, . . . , p}, there exist k pairwise disjoint subsets
S1, S2, . . . , Sk of columns such that for all j ∈ {1, 2, . . . , k}, the element xi is a
linear combination of the entries of the columns Sj.

The setting is as follows: the database is divided into p parts, x1, x2, . . . , xp,
each encoded as an element of the finite field F. Each of the m servers stores t
linear combinations of these parts. The entries in the array consisting of a single
basis element are called singletons.

Furthermore, if xi can be accessed from a single server alone, it appears as a
singleton entry and is not included in any other entries on that server. Conse-
quently, we may assume that each server contains t linearly independent symbols.
Example. In the following example is [5 × 4, 8] 3-PIR array code consisting of 17
singletons.

30

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Server 1 Server 2 Server 3 Server 4
x1 x2 x3 x1 + x2 + x3

x3 x1 x2 x4

x4 x5 x4 + x5 + x6 x6

x5 x6 x7 x8

x7 x5 + x7 + x8 x8 x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can see that each xi can be obtained from linear span of entries of 3

disjoint columns as follows:

• x1 from {S1}, {S2} and {S3, S4} as S1,3 + S2,3 + S1,4;

• x2 from {S2}, {S3} and {S1, S4};

• x3 from {S1}, {S3} and {S2, S4};

• x4 from {S1}, {S4} and {S2, S3};

• x5 from {S1}, {S2} and {S4};

• x6 from {S2}, {S4} and {S1, S3};

• x7 from {S1}, {S3} and {S2, S4};

• x8 from {S3}, {S4} and {S1, S2}.

The storage overhead is given by tm
p

, which can be significantly smaller than
k when a good array code is used. Define s = p

t
, so 1

s
represents the fraction of

the database stored on each server. This also means that for PIR array codes s
could be a fraction. The storage overhead can be viewed as

tm

p
= m

s
,

which is the number of servers times the fraction of the database stored on each
server.

We aim to maximize the ratio
k
tm
p

= s
k

m

for several reasons:

• when s is fixed, indicating the amount storage required per server, such
schemes offer lower storage overhead compared to k;

• we aim to use the minimal number of servers, so m should be as small as
possible.

On the other hand, with k being large, the storage overhead could also be
too large for practical usage in applications (though still much smaller than k as
required).

31

As we can see, a PIR array code is characterized by the parameters s, t, k,
and m. When t = 1, we get k-server PIR codes, for which the goal is to find
the smallest m for a given s and k. This value of m is denoted by the function
P (s, k).

For PIR array codes, the extra parameter t is introduced. Given s, t, and k,
the goal is to find the smallest m, denoted by P (s, t, k).

Definition 24 (Virtual server rate). We define the virtual server rate of a [t ×
m, p] k-PIR array code as k

m
. The largest virtual server rate of such a code will

be denoted as g(s, t) for s and t fixed. Let g(s) = lim supt→∞ g(s, t).

In case we have s and t fixed, then p is consequently fixed as p = st.

The following theorem provides an upper bound on the virtual server rate.

Theorem 27. [11, Theorem 3] For each rational number s > 1 we have

g(s) ≤ s + 1
2s

and there is no t such that g(s, t) = s+1
2s

.

Proof. Let us have a [t × m, p] k-PIR array code with s = p
t
, so without loss of

generality each server contains t linearly independent vectors. We will show that
k
m

< s+1
2s

.
Define αi as the number of servers holding the singleton xi in one of their

cells. Given that each server out of m contains t cells, we have ∑︁p
i=1 αi ≤ tm,

and thus the average value of the αi is at most tm
p

= m
s

. Therefore, there exists
u ∈ {1, 2, . . . , p} such that αu ≤ m

s
. Equality αu = m

s
only holds when αi = m

s

for all i ∈ {1, 2, . . . , p}.
From the definition of a k-PIR array code, we will get k disjoint sets of servers,

chosen such that the span of the cells in each subset of servers includes xu. These
servers will be denoted as S1, S2, . . . , Sk ⊆ {1, 2, . . . , m}. If no server in a subset Sj

contains the singleton xu, then the subset Sj must contain at least two elements.
Hence, at most αu of the subsets Sj have a cardinality of one, as there are αu

servers holding the singleton xu. The rest of the m−αu servers have a cardinality
of at least two. This implies that

k ≤ αu + m − αu

2 .

When divided by m servers, we get the following inequality:
k

m
≤ αu + (m − αu)/2

m
= 2αu + m − αu

2m
= 1

2 + αu

2m

≤ 1
2 + m/s

2m
= 1

2 + 1
2s

= s + 1
2s

.

Equality holds only when αi = m
s

for all i ∈ {1, 2, . . . , p}, indicating that all
cells in every server are singletons. Consequently, the span of a subset of servers
includes xi if and only if it includes a server with a cell xi, thus k ≤ αi = m

s
. This

means the rate of the array code is at most αi

m
= m/s

m
= 1

s
. This contradicts the

premise that the rate of the array code is k
m

= s+1
2s

for s > 1. Therefore, we have
proven that k

m
< s+1

2s
.

32

4.1.2 Construction of PIR array codes
In [11], Blackburn and Etzion developed an optimal construction of PIR array
codes, especially for 1 < s ≤ 2. This construction of PIR array codes provides
lower bounds for the virtual server rate g(s, t).

Construction 1 Let t > 1 and 1 ≤ d ≤ t. We define p = t + d, which gives us
s = 1 + d

t
. Let u denote the least common multiple LCM(d, t).

In the construction, there are two types of servers:

• Server A: Stores t singletons. Each possible t-subset of parts occurs u
d

times
as the set of singleton cells of a server.

• Server B: Stores t − 1 singletons. The last cell contains the sum of the
remaining p − (t − 1) = d + 1 parts. All possible (t − 1)-sets of singletons
occur u

t
times.

There are
(︂

p
t

)︂
u
d

servers of Type A and
(︂

p
t−1

)︂
u
t

servers of Type B.
Example. Let d = 1 and t = 2. Then s = 3

2 , p = 3, and u = 2. So we can divide
the data in the database into three parts x1, x2, x3.

Server A: We have the following options for servers with t singletons: (x1, x2),
(x2, x3), (x1, x3).

Server B can store the following entries: (x1, x2+x3), (x2, x1+x3), (x3, x1+x2).
Each entry of Server A appears twice, and each entry of Server B appears

once in the resultant matrix.

⎡⎢⎢⎢⎣
Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7 Server 8 Server 9

x1 x1 x2 x2 x1 x1 x1 x2 x3

x2 x2 x3 x3 x3 x3 x2 + x3 x1 + x3 x1 + x2

⎤⎥⎥⎥⎦
As we can see, the virtual server rate in this example is g(s, t) = k

m
= 7

9 . The
storage overhead is tm

p
= 18.

The following theorem is obtained from Construction 1 and proof can be found
in [11, Theorem 7].

Theorem 28. For any given t and d, 1 ≤ d ≤ t, when s = 1 + d
t

we have:

g(s, t) ≥ 1 − d2 + d

(t + d)(2d + 1) = s + 1 + 1/d

s(2 + 1/d) .

For any rational number 1 < s ≤ 2, we have

g(s) ≥ lim sup
t−>∞

g(s, t) = s + 1
2s

.

For s = 2, we have d = 2t − t = t and

g(2, t) ≥ 3 + 1/t

4 + 2/t
= 3t + 1

4t + 2 .

The lower bound for g(s) matches the upper bound established in Theorem
27, providing an asymptotically optimal virtual server rate.

33

To achieve the optimal virtual server rate, the Blackburn-Etzion construction
requires too large number of servers m =

(︂
p
t

)︂
u
d

+
(︂

p
t−1

)︂
u
t

for practical use. In [12],
an alternative construction was proposed that uses significantly fewer servers,
with only a little reduction in the virtual server rate.

Construction 2 Let s, t ∈ N, t + 2 ≤ s ≤ 2t + 1 and p = st. Code C is
constructed from three types of servers:

• Server T1: Stores t singletons. Each t-subset appears α1 times and there
are

(︂
p
t

)︂
number of distinct subsets.

• Server Tt+1: Stores pair (A, B) where A is a (t − 1) singletons and B is
a sum of (t + 1) other entries {xi : i ∈ {1, . . . , p}} \ A. Each such a pair
appears α2 times.

• Server 1-factorization: Set {x1, . . . , xp} is divided into subsets of size s,
where each element occurs exactly in one subset. All the s-subsets of
{x1, . . . , xp} can be separated into

(︂
p−1
s−1

)︂
partitions P . This server stores t

sums
{︂∑︁

xi∈P xi : P ∈ P
}︂
. Server from each partition appears αs times.

Let α1, α2, αs ∈ N minimum such that α1
(︂

p−1
t

)︂
= α2

(︂
p−1
t−1

)︂(︂
p−t

t

)︂
and

α2
(︂

p−1
t−1

)︂(︂
p−t
t+1

)︂
= αs

(︂
p−1
s−1

)︂
.

Theorem 29. [12, Theorem 4] The code C in Construction 2 is a [t × m, p = st]
k-PIR array code, where

k = α1

(︄
p

t

)︄
+ α2

(︄
p − 1
t − 2

)︄(︄
p − t + 1

t + 1

)︄
+ αs

(︄
p − 1
s − 1

)︄
,

m = α1

(︄
p

t

)︄
+ α2

(︄
p − 1
t − 1

)︄(︄
p − t + 1

t + 1

)︄
+ αs

(︄
p − 1
s − 1

)︄
and the virtual server rate g(s, t) is

k

m
= ((s − 1)2 + s)t + 1

(2(s − 1)2 + s)t + s
.

4.1.3 Comparison with PIR codes
The main aim when studying PIR codes is to determine the minimal value of
servers m, denoted as P (s, k). The lower m is for fixed s and k, the lower the
storage overhead.

PIR array codes offer a structured approach that allows for more efficient data
distribution. We have m servers, each storing t entries, together containing 1/s of
the database.The minimal value m, previously denoted as P (s, t, k), also depends
on t.

• For t = 1 we will get P (s, t, k) = P (s, k).

34

• For t > 1, we will get P (s, t, k) ≤ P (s, k), as we can always take a [m, s]
k-PIR code and divide each entry on each server into t smaller parts and
store them back into t cells. This creates a [t × m, ts] k-PIR array code.

For PIR array codes, the main aim is to achieve the highest value of the virtual
server rate g(s, t), which is k/m. This also results in m being as small as possible
compared to k for given s and t. Since g(s, t) is the maximal value of k/m, we
have g(s, t) ≥ k/m. This implies that

P (s, t, k) ≥ k

g(s, t) .

The related aim of studying PIR array codes is to find the range where P (s, t, k) <
P (s, k) and the storage overhead is low.

4.2 Locally Repairable Codes
Locally repairable (or recoverable) codes are a class of error-correcting codes and
are used to transfer data over channels with error. Error-correcting codes has a
specific capability to detect and correct a certain number of errors. However, if
the number of errors exceeds the correction capability of the code, the transmitted
message cannot be accurately recovered.

Locally repairable codes were designed for distributed storage systems. In
such systems, data is stored in multiple servers, and these servers may experience
occasional failures.

Definition 25. [13, Definition 2] The code C has locality r ≥ 1 and availability
δ ≥ 1 if, for any y ∈ C, any symbol in y can be recovered by using any of δ
disjoint sets of symbols, each of size at most r.

If we write the generator matrix of the code as [Ik | A] for some matrix A,
the symbols in y corresponding to Ik are referred to as informational symbols.
There are two distinct concepts related to locality: the locality of informational
symbols and the locality of all symbols.

• For the locality of an informational symbol, only the recoverability of infor-
mational symbols is required (from δ sets of size at most r);

• When all symbols of y are recoverable from a small sets it is called locality
of all symbols.

According to [13] the parameters of a linear [n, k, d] code with locality r and
availability δ of all symbols satisfy:

n ≥ k + d +
⌈︄

δ(k − 1) + 1
δ(r − 1) + 1

⌉︄
− 2.

This bound can be regarded as a refinement of the classical Singleton bound,
incorporating an additive penalty of

⌈︂
δ(k−1)+1
δ(r−1)+1

⌉︂
− 1 for the code’s locality and

availability when compared to the classical Singleton bound.

35

Definition 26. A code C is called locally repairable code (LRS) if it satisfies the
locality (and availability) property.

In locally repairable codes, the goal is to ensure that every message bit can
be recovered from a small set of coded bits, with only one such recovery set being
required. In contrast to PIR codes, where we wish to have many disjoint recovery
sets for every message bit, without concern for the size of these sets.

4.3 Batch Codes
Batch codes are a specialized type of error-correcting codes used in distributed
storage systems and data storage applications. Unlike traditional error-correcting
codes, which are designed to recover from individual symbol errors, batch codes
are designed to correct entire batches or subsets of symbols that may be lost or
corrupted due to various factors, such as server failures or network errors.

The definition of batch codes is as follows.

Definition 27 (Batch Code). [13, Definition 3] Let Σ be a finite alphabet. Then
C denotes a (k, n, t, M, τ)Σ batch code over a finite alphabet Σ if it encodes any
string x = (x1, x2, . . . , xk) ∈ Σk into M strings. These M strings are called buck-
ets and have a total length of n. The buckets are denoted as y1, y2, . . . , yM, such
that for each t-tuple, called batch, of (not necessarily distinct) indices i1, i2, . . . , it,
the symbols xi1 , xi2,...,xit

can be retrieved by reading at most τ symbols from each
bucket.

Definition 28. A primitive batch code is a batch code, where each bucket con-
tains exactly one symbol. In particular, n = M .

For τ = 1, this model is referred to as multiset batch codes. Essentially, this
means that only one symbol is read from each bucket.

4.3.1 Linear Batch Codes
We consider a special case of primitive multiset batch codes with n = M and
τ = 1. Under these conditions, each symbol can be viewed as a separate bucket,
and only one reading per bucket is allowed [14].

Let Σ = Fq, where q is a prime power and encoding mapping C : Fk → Fn be
linear over F. Then the code is linear [n, k] code over F. The batch code with
parameters n, k and t, where t is the size of a query of the code, is denoted by
[n, k, t]-batch code.

Linear batch codes shares some similarities with locally repairable codes. Both
are designed to provide fault tolerance and data recovery capabilities in scenarios
where data is distributed across multiple storage devices or servers. In terms of
locally repairable codes a batch code has availability M and locality τ .

Main difference between batch codes and locally repairable codes is that in
batch codes we are interested in reconstruction of the information symbols in x.
On the contrary, in locally repairable codes we are trying to recover the coded
symbols in y.

36

Example. Since batch codes can be viewed as linear codes, we can express the
coding as y = xG. Consider this 3 × 6 generator matrix of a batch code C:

G =

⎛⎜⎜⎜⎝
1 0 0 0 1 1
0 1 0 1 1 0
0 0 1 1 0 1

⎞⎟⎟⎟⎠
Take, for instance, the following combination of the columns of G:⎛⎜⎜⎜⎝

1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
0

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
1
1
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
0
1
1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
1
0

⎞⎟⎟⎟⎠
Now considering that the query includes the information symbols (x1, x1, x2),

we can recover these symbols using the following equations:⎧⎪⎪⎨⎪⎪⎩
x1 = y1

x1 = y2 + y5

x2 = y3 + y4

Similarly, we can show that any 3-tuple (xi1 , xi2 , xi3), where i1, i2, i3 ∈ {1, 2, 3},
can be reconstructed using the symbols from y, with the condition that each
symbol is used at most once. The conclusion is that C is a [6, 3, 3]2 batch code.

It can be seen that batch codes are a specific subset of private information
retrieval codes. The main distinction is in the type of queries. PIR codes supports
queries in the form of (xi, xi, . . . , xi), where i ∈ {1, . . . , k}. In contrast, batch
codes supports more general queries like (xi1 , xi2 , . . . , xit), where i1, i2, . . . , it can
be different indices selected from the set {1, . . . , k}. Consequently, batch codes
could be used as PIR codes. However, PIR codes cannot be considered as batch
codes because there is no guarantee of the existence of reconstruction sets for
mixed queries.
Example. Let us go back to the previous example of the [6, 3, 3]2 batch code. We
can recover, for example, the symbols (x1, x1, x1) using the following equations:⎧⎪⎪⎨⎪⎪⎩

x1 = y1

x1 = y2 + y5

x1 = y3 + y6

It can be also viewed as 3-server PIR [6, 3]-code.
On the other hand, in the example of the k-server PIR [9, 4]-code from Chapter

2, where the generator matrix G was as follows

G =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 1 1 1 1 1
0 1 0 0 0 1 0 1 1
0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
there is no recovery set for the query (x1, x1, x4, x4).

37

Theorem 30. [14, Lemma 2] Let C be an [n, k, t]q batch code. The minimum
Hamming distance of C is greater than t.

Proof. Consider an arbitrary row i, for i ∈ {1, . . . , k}. We need to show that the
Hamming weight of row i in the generator matrix G is at least t.

We can retrieve the combination (xi, xi, . . . , xi) if there are t non-intersecting
sets of columns, such that the sum of the elements in each set equals ei.

Since we can retrieve t copies of xi from t non-intersecting sets of columns,
there must be at least t columns in G with a nonzero entry in the i-th position.
This is because each of these sets of columns must contribute a nonzero entry in
the i-th row to sum to ei. Meaning the Hamming weight of row i is at least t.

38

Conclusion
The aim of this thesis was to introduce private information retrieval (PIR) pro-
tocols, explore PIR codes, and establish their connections with combinatorial
structures to derive upper bounds on the number of servers for given values of s
and k.

We began by introducing linear codes, designs, and various structures in pro-
jective planes. In Section 2.1, we discussed PIR protocols, their applications, and
their classification into single-server and multi-server PIR protocols. Traditional
k-PIR protocols have a storage overhead of k, as each of the k servers stores the
entire database.

We then defined k-server PIR [m, s]-codes, designed to simulate k-PIR pro-
tocols with m servers, where m ≥ k and each server stores 1/s of the database.
We demonstrated how these codes can be used with k-PIR protocols to achieve a
storage overhead lower than k. The primary focus when studying PIR codes is to
minimize the number of servers m (denoted as P (s, k)) for given values of k and
s, and thus reduce the storage overhead. We presented constraints on the value
of P (s, k) and conducted practical tests using a SageMath program to determine
minimal values of P (s, k) for small values of s and k.

Chapter 3 is dedicated to the upper bounds on P (s, k) presented in [3]. We
verified all the upper bounds provided in that study.

The final chapter introduced code families similar to PIR codes, such as PIR
array codes, which are an updated version where each server possesses more cells
for storing entries. We also described locally repairable codes and batch codes.

Research on PIR codes is still relatively new, and there is considerable poten-
tial for improving P (s, k) values for better practical use. Further studies on PIR
array codes and their in-depth analysis, particularly identifying the conditions
under which P (s, t, k) < P (s, k), could also lead to significant advancements in
this field.

39

Bibliography
[1] Eric Moorhouse, G. Incidence Geometry. 2007. http://ericmoorhouse.

org/handouts/Incidence_Geometry.pdf.

[2] S. Barwick and G. Ebert. Unitals in Projective Planes. Springer, 2008.

[3] M. Giulietti, A. Sabatini, and M. Timpanella. PIR codes from combinatorial
structures. 2021. https://arxiv.org/abs/2107.01169.

[4] M. Gezek, R. Mathon, and V. D. Tonchev. Maximal arcs, codes, and
new links between projective planes. 2020. https://arxiv.org/abs/2001.
11431.

[5] J. A. Thas. Handbook of Incidence Geometry. North-Holland, 1995.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41–50, 1995.

[7] A. Fazeli, A. Vardy, and E. Yaakobi. PIR with low storage overhead: Coding
instead of replication. 2015. http://arxiv.org/abs/1505.06241.

[8] S. Kurz and E. Yaakobi. PIR codes with short block length. Designs, Codes
and Cryptography, 89:1–29, 2021.

[9] R. D. Baker. Partitioning the planes of AG2m(2) into 2-designs. Discrete
Mathematics, 15:205–211, 1976.

[10] G. Gévay. Resolvable configurations. Discrete Applied Mathematics, 266:319–
330, 2019.

[11] S. R. Blackburn and T. Etzion. PIR array codes with optimal PIR rates. In
2017 IEEE International Symposium on Information Theory (ISIT), pages
2658–2662, 2017.

[12] C. Wang and Y. Zhang. PIR array codes: the optimality of Blackburn-Etzion
construction. In 2023 IEEE International Symposium on Information Theory
(ISIT), pages 1342–1347, 2023.

[13] V. Skachek. Batch and PIR codes and their connections to locally repairable
codes. 2016. http://arxiv.org/abs/1611.09914.

[14] H. Lipmaa and V. Skachek. Linear batch codes. 2014. http://arxiv.org/
abs/1404.2796.

40

http://ericmoorhouse.org/handouts/Incidence_Geometry.pdf
http://ericmoorhouse.org/handouts/Incidence_Geometry.pdf
https://arxiv.org/abs/2107.01169
https://arxiv.org/abs/2001.11431
https://arxiv.org/abs/2001.11431
http://arxiv.org/abs/1505.06241
http://arxiv.org/abs/1611.09914
http://arxiv.org/abs/1404.2796
http://arxiv.org/abs/1404.2796

A. Attachments

A.1 Upper bounds on the number of servers in
PIR codes

1 from sympy import factorint
2

3 def is_prime_power (num):
4 factors_dict = list(factorint (int(num)).items ());
5 return len(factors_dict) == 1;
6

7 def partition (s, k):
8 factors_dict = list(factorint (int(s)).items ());
9 factors = [];

10

11 for i in range(len(factors_dict)):
12 for j in range(factors_dict [i][1]):
13 factors . append (factors_dict [i][0]);
14

15 while (k < len(factors) + 1):
16 first = factors .pop (0);
17 factors [0] = first * factors [0];
18 factors .sort ();
19

20 if (k == len(factors) + 1):
21 suma = 0;
22 for i in range(len(factors)):
23 suma = suma + s/ factors [i];
24 return s + suma;
25 return s*k;
26

27 def affine_planes (s, k):
28 for N in range (2, math.ceil(s **(1/2))):
29 q = s**(1/N);
30 if (
31 q. is_integer () and
32 is_prime_power (q) and
33 k <= (q**N - 1)/(q - 1) + 1
34):
35 return s + s*(k - 1)/q;
36 return s*k;
37

38 def projective_planes (s, k):
39 for N in range (2, math.ceil(s **(1/2))):
40 if (
41 N % 2 != 0 and
42 2**(N + 1) - 1 == s and
43 k <= 2**N
44):
45 return s + s*(k - 1) /3;
46 return s*k;
47

48 def projective_planes_2 (s, k):
49 for q in range (3, s):
50 if (not is_prime_power (q)):

41

51 continue ;
52 i = 0;
53 N = 2**(i + 1) - 1;
54 while ((q**(N + 1) - 1)/(q - 1) < s):
55 i = i + 1;
56 N = 2**(i + 1) - 1;
57 if (
58 (q**(N + 1) - 1)/(q - 1) == s and
59 k <= (q**N - 1)/(q - 1) + 1
60):
61 return s + s*(k - 1)/(q + 1);
62 return s*k;
63

64 def maximal_arcs (s, k):
65 for n_1 in range(math.ceil(s **(1/2))):
66 for n_2 in range(n_1):
67 if (
68 s == 2**(n_1 + n_2) - 2** n_1 + 2** n_2 and
69 k <= 2** n_1 + 2
70):
71 return s + s*(k - 1) /(2** n_2);
72 return s*k;
73

74 def classical_unitals (s, k):
75 q = (s - 1) **(1/3) ;
76 if (
77 q. is_integer () and
78 is_prime_power (q) and
79 k <= q**2 + 1
80):
81 return s + s*(k - 1)/(q + 1);
82 return s*k;
83

84 def conics (s, k):
85 for q in range (1, 2* math.floor(s **(1/2))):
86 if (
87 is_prime_power (q) and
88 2*s == q**2 - q and
89 k <= q + 1
90):
91 return s + (k - 1)*(q - 1);
92 return s*k;
93

94 def steiner_system (s, k):
95 value = s*k;
96 if (s % 6 == 3 and k <= (s -1) /2 + 1):
97 value = s + s*(k -1) /3;
98 if (s % 12 == 4 and k <= (s -1) /3 + 1):
99 value = s + s*(k -1) /4;

100 if (s % 20 == 5 and k <= (s -1) /4 + 1):
101 value = s + s*(s -1) /5;
102 return value;
103

104 def configurations_3 (s, k):
105 value = s*k;
106 b = s * (k - 1) /3;
107 if (b. is_integer () and s >= 2 * (k - 1) + 1):
108 return s + b;

42

109 return value;
110

111 def configurations_4 (s, k):
112 value = s*k;
113 b = s * (k - 1) /4;
114 if (not b. is_integer ()):
115 return value;
116 if (s % 12 == 4 and s >= 3 * (k - 1) + 1):
117 return s + b;
118

119 if (
120 s % 12 == 0 and
121 s >= 3 * (k - 1) + 1 and
122 s not in {84, 120, 132, 180, 216, 264, 312, 324, 372,

456, 552, 648, 660, 804, 852, 888}
123):
124 return s + b;
125

126 if (s % 12 == 0 and s == 3 * (k - 1) + 3):
127 return s + b;
128

129 a = (k - 1) /4;
130 if (a. is_integer () and
131 a >= 1 and a <= 15 and
132 a != 3 and s != 38 and
133 s > 3* (k - 1) + 1):
134 return s + b;
135

136 if (k == 5 and s >= 20 and s % 2 == 0):
137 return s + (3 * s)/2;
138

139 return value;
140

141 def configurations_5 (s, k):
142 value = s*k;
143 b = s * (k - 1) /5;
144 if (b. is_integer ()):
145 return value;
146 if (s % 20 == 0 and s == 4 * (k - 1) + 4):
147 return s + b;
148 if (s % 20 == 5 and s >= 4 * (k - 1) + 1 and s > 7865):
149 return s + b;
150 a = (k - 1) /5;
151 if (
152 a. is_integer () and
153 a >= 1 and a <= 10 and
154 s >= 4*(k - 1) + 1 and
155 (k - 1, s) not in {(1, 22) , (2, 42) , (2, 43) , (3, 62) ,

(3, 63) , (4, 82) , (5, 102) , (7, 142) , (9, 182) ,
156 (9, 183) , (9, 185) , (9, 186) , (9, 187)

, (9, 188) , (9, 189) , (9, 190) , (9, 191) , (9, 192)}
157):
158 return s + b;
159 return value;
160

161 def construction (s, k):
162 sigma = math.ceil(s **(1/(k - 1)));
163 return s + (k - 1)*sigma **(k - 2);

43

164

165 def construction_2 (s, k):
166 if (k < 3):
167 return s*k;
168 for l in range (1, math.ceil(log(k, 2))):
169 if (2**l + 2 == k):
170 t = 0;
171 s_2 = 2**(2* l*t) - (2**(t + 1) - 1)**l;
172 while (s_2 < s):
173 t = t + 1;
174 s_2 = 2**(2* l*t) - (2**(t + 1) - 1) **l;
175 if (s_2 == s):
176 return 2**(2* l*t) - 1;
177 if (2**l == k):
178 t = 0;
179 while ((2**t - 1)**l - 2 < s):
180 t = t + 1;
181 if ((2**t - 1)**l - 2 == s):
182 return 2**(l*t) - 1;
183 return s*k;
184

185 def construction_3 (s, k):
186 n = 1;
187 s_1 = (n*(n - 1))/((k - 1)*(k - 2));
188 while (s_1 < s):
189 n = n + 1;
190 s_1 = (n*(n - 1))/((k - 1) *(k - 2));
191 if (s_1 == s and ((n -1) /(k -2)). is_integer ()):
192 return n + s_1;
193 return s*k;

Algorithm for computing P(s,k)

1 class PIR_codes :
2 def __init__ (self , s_range , k_range , debug):
3 self. s_range = s_range ;
4 self. k_range = k_range ;
5 self.debug = debug;
6 self. tableP = [[j*i for j in range(k_range + 1)] for i in

range(s_range + 1)];
7

8

9 def P(self , s, k):
10 #known optimal values
11 if (k == 1):
12 self. tableP [s][k] = s;
13 return self. tableP [s][k];
14 elif (k == 2):
15 self. tableP [s][k] = s + 1;
16 if (self.debug):
17 print(’s: ’, s, ’, k: ’, k, ’ s + 1’, self. tableP

[s][k]);
18 return self. tableP [s][k];
19 elif (k == 2**(s - 1)):
20 self. tableP [s][k] = 2**s - 1;
21 if (self.debug):

44

22 print(’s: ’, s, ’, k: ’, k, ’ 2**s - 1’, self.
tableP [s][k]);

23 return self. tableP [s][k];
24 elif (s == 1):
25 return k;
26 elif (s == 2):
27 self. tableP [s][k] = math.ceil ((3*k)/2);
28 if (self.debug):
29 print(’s: ’, s, ’, k: ’, k, ’ 3k/2’, self. tableP [

s][k]);
30 return self. tableP [s][k];
31 elif (s == 3):
32 self. tableP [s][k] = math.ceil ((7*k)/4);
33 if (self.debug):
34 print(’s: ’, s, ’, k: ’, k, ’ 7k/4’, self. tableP [

s][k]);
35 return self. tableP [s][k];
36

37 # values from combinatorial structures
38 value = affine_planes (s, k);
39 if (value < self. tableP [s][k]):
40 if (self.debug):
41 print(’s: ’, s, ’, k: ’, k, ’affine_planes (s, k)’

, value)
42 self. tableP [s][k] = int(value);
43

44 value = projective_planes (s, k);
45 if (value < self. tableP [s][k]):
46 if (self.debug):
47 print(’s: ’, s, ’, k: ’, k, ’projective_planes (s,

k)’, value)
48 self. tableP [s][k] = int(value);
49

50 value = projective_planes_2 (s, k);
51 if (value < self. tableP [s][k]):
52 if (self.debug):
53 print(’s: ’, s, ’, k: ’, k, ’projective_planes_2 (

s, k)’, value)
54 self. tableP [s][k] = int(value);
55

56 value = maximal_arcs (s, k);
57 if (value < self. tableP [s][k]):
58 if (self.debug):
59 print(’s: ’, s, ’, k: ’, k, ’maximal_arcs (s, k)’,

value)
60 self. tableP [s][k] = int(value);
61

62 value = classical_unitals (s, k);
63 if (value < self. tableP [s][k]):
64 if (self.debug):
65 print(’s: ’, s, ’, k: ’, k, ’classical_unitals (s,

k)’, value)
66 self. tableP [s][k] = int(value);
67

68 value = conics (s, k);
69 if (value < self. tableP [s][k]):
70 if (self.debug):

45

71 print(’s: ’, s, ’, k: ’, k, ’conics (s, k)’, value
)

72 self. tableP [s][k] = int(value);
73

74 value = steiner_system (s, k);
75 if (value < self. tableP [s][k]):
76 if (self.debug):
77 print(’s: ’, s, ’, k: ’, k, ’steiner_system (s, k)

’, value)
78 self. tableP [s][k] = int(value);
79

80 value = configurations_3 (s, k);
81 if (value < self. tableP [s][k]):
82 if (self.debug):
83 print(’s: ’, s, ’, k: ’, k, ’configurations_3 (s,

k)’, value)
84 self. tableP [s][k] = int(value);
85

86 value = configurations_4 (s, k);
87 if (value < self. tableP [s][k]):
88 if (self.debug):
89 print(’s: ’, s, ’, k: ’, k, ’configurations_4 (s,

k)’, value)
90 self. tableP [s][k] = int(value);
91

92 value = configurations_5 (s, k);
93 if (value < self. tableP [s][k]):
94 if (self.debug):
95 print(’s: ’, s, ’, k: ’, k, ’configurations_5 (s,

k)’, value)
96 self. tableP [s][k] = int(value);
97

98 value = partition (s, k);
99 if (value < self. tableP [s][k]):

100 self. tableP [s][k] = int(value);
101 if (debug):
102 print(’s: ’, s, ’, k: ’, k, ’partition (s, k)’,

self. tableP [s][k])
103

104 value = construction (s, k);
105 if (value < self. tableP [s][k]):
106 self. tableP [s][k] = int(value);
107 if (self.debug):
108 print(’s: ’, s, ’, k: ’, k, ’construction (s, k)’,

self. tableP [s][k])
109

110 value = construction_2 (s, k);
111 if (value < self. tableP [s][k]):
112 self. tableP [s][k] = int(value);
113 if (self.debug):
114 print(’s: ’, s, ’, k: ’, k, ’construction_2 (s, k)

’, self. tableP [s][k])
115

116 value = construction_3 (s, k);
117 if (value < self. tableP [s][k]):
118 self. tableP [s][k] = int(value);
119 if (self.debug):

46

120 print(’s: ’, s, ’, k: ’, k, ’construction_3 (s, k)
’, self. tableP [s][k])

121

122 return self. tableP [s][k];
123

124

125 # values depending on other values
126 def P_update (self , s, k):
127 updated = False;
128 if (k < self. k_range):
129 if (k % 2 != 0 and self. tableP [s][k + 1] > self.

tableP [s][k] + 1):
130 if (self.debug):
131 print(’s: ’, s, ’, k: ’, k, ’ P(s,k + 1) = P(

s, k) + 1’, self. tableP [s][k] + 1);
132 self. tableP [s][k + 1] = self. tableP [s][k] + 1;
133 updated = True;
134

135 value = self. tableP [s][k + 1] - 1;
136 if (value < self. tableP [s][k]):
137 if (self.debug):
138 print(’s: ’, s, ’, k: ’, k, ’ P(s, k) = P(s,

k + 1) - 1 = ’, value);
139 self. tableP [s][k] = value;
140 updated = True;
141 if (s < self. s_range):
142 value = self. tableP [s + 1][k] - 1;
143 if (value < self. tableP [s][k]):
144 if (self.debug):
145 print(’s: ’, s, ’, k: ’, k, ’ P(s, k) = P(s +

1, k) - 1 = ’, value);
146 self. tableP [s][k] = value;
147 updated = True;
148

149 for s_1 in range (1, math.floor(s/2) + 1):
150 s_2 = s - s_1;
151 value = self. tableP [s_1][k] + self. tableP [s_2][k];
152 if (value < self. tableP [s][k]):
153 if (self.debug):
154 print(’s: ’, s, ’, k: ’, k,’, s_1: ’, s_1 , ’,

s_2: ’ , s_2 , ’ P(s1 + s2 , k) <= P(s1 , k) + P(s2 , k) = ’,
value);

155 self. tableP [s][k] = value;
156 updated = True;
157

158 for k_1 in range (1, math.floor(k/2) + 1):
159 k_2 = k - k_1;
160 value = self. tableP [s][k_1] + self. tableP [s][k_2];
161 if (value < self. tableP [s][k]):
162 if (self.debug):
163 print(’s: ’, s, ’, k: ’, k, ’, k_1: ’, k_1 , ’

, k_2:’, k_2 , ’ P(s, k1 + k2) <= P(s, k1) + P(s, k2) = ’,
value);

164 self. tableP [s][k] = value;
165 updated = True;
166

167 return updated ;

47

Printing table of P (s, k) values

1 pir_codes = PIR_codes (35, 12, False);
2

3 for s in range (1, pir_codes . s_range + 1):
4 for k in range (1, pir_codes . k_range + 1):
5 pir_codes .P(s,k);
6

7 updated = True;
8 while (updated):
9 updated = False;

10 for s in range (1, pir_codes . s_range + 1):
11 for k in range (1, pir_codes . k_range + 1):
12 updated = pir_codes . P_update (s,k) or updated ;
13

14 for i in range(pir_codes . k_range + 1):
15 pir_codes . tableP [0][i] = i;
16 for i in range(pir_codes . s_range + 1):
17 pir_codes . tableP [i][0] = i;
18 pir_codes . tableP [0][0] = ’s/k’
19

20 print(’P(s, k) table:’);
21 for row in pir_codes . tableP :
22 form = [’ {:ˆ4} ’ for i in range(pir_codes . k_range + 1)];
23 print ((’|’ + ’|’.join(form)). format (* row));
24

25 for i in range (1, len(pir_codes . tableP)):
26 row = pir_codes . tableP [i];
27 for j in range (1, len(row)):
28 row[j] = float(row[j])/i;
29

30 print(’\ nStorage overhead table:’);
31 form_str = ’ {:ˆ5} ’;
32 for row in pir_codes . tableP :
33 form = [form_str for i in range(pir_codes . k_range)];
34 print ((’| {:ˆ4} |’ + ’|’.join(form)). format (* row));
35 form_str = ’ {:5.2f} ’;

48

	Introduction
	Preliminaries
	Notation
	Linear codes
	Incidence structures
	Block designs and partial packings

	Affine geometry
	Affine plane

	Projective geometry
	Projective plane
	Maximal arcs
	Classical unitals
	Conics in P2(Fq)

	PIR codes
	Introduction to PIR protocols
	Single-database PIR schema
	Multi-server PIR protocol

	Definition of PIR codes
	Known bounds for PIR codes
	Results of practical tests

	Minimizing storage overhead in PIR codes
	PIR codes as k-partial packings
	Connection to affine geometry
	Connection to projective geometry
	Geometrical objects in projective planes
	Maximal arcs
	Classical unitals
	Conics in P2(Fq)

	(vt, bz)-configurations

	Code families connected to PIR codes
	PIR array codes
	Definition of PIR array codes
	Construction of PIR array codes
	Comparison with PIR codes

	Locally Repairable Codes
	Batch Codes
	Linear Batch Codes

	Conclusion
	Bibliography
	Attachments
	Upper bounds on the number of servers in PIR codes

