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Introduction

The development of autonomous vehicles represents a significant technological
advancement with the potential to transform transportation systems worldwide. A
critical component of autonomous vehicle functionality is accurate and reliable lane
detection, which ensures safe and efficient navigation. Recent advancements in
sensor technology, particularly Light Detection and Ranging (LIDAR), have greatly
improved lane detection capabilities. LIDAR sensors provide high-resolution, three-
dimensional representations of the environment, making them ideal for detecting
and classifying lanes.

Despite the potential of LIDAR technology, there are challenges associated with
lane detection, particularly in the context of human labeling. Creating large labeled
datasets for training supervised machine learning models is time-consuming and
prone to errors. This motivates the need for an unsupervised, fast, and effective
lane detection method that does not rely on extensive human-labeled data.

This thesis aims to investigate and develop LIDAR-based lane detection tech-
niques, focusing on an unsupervised approach that facilitates three-dimensional
segmentation of point clouds. The primary objective is to create a method where
each point in the point cloud is labeled as lane or non-lane, with an additional
classification of lane types. This will result in the creation of a comprehensive 3D
map of the driving environment, which is crucial for autonomous navigation.

To achieve this, the study will combine several well-known machine learning
techniques such as Principal Component Analysis (PCA), Random Sample Con-
sensus (RANSAC), and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering. These techniques will be integrated into custom-
developed algorithms designed to filter non-lane points from the point clouds,
connect remaining lane parts into unified lane entities and perform semantic
segmentation.

PCA and RANSAC will play a pivotal role in this custom algorithm. PCA will be
used to find the principal directions of the data, making it easier to identify lane
points. RANSAC will be utilized for robust fitting of models to the data, effectively
distinguishing lane points from noise and outliers. These methods, combined
with DBSCAN clustering, will allow for the effective grouping of lane points and
the accurate classification of lane types. Additionally, PCA and RANSAC-based
techniques will be compared to evaluate their performance and effectiveness in the
context of lane detection, ensuring that the most reliable and efficient methods
are utilized.

The main goal of this research is to create a new method for detecting lanes
using LIDAR data that is accurate and reliable, without needing large amounts of
labeled data. By combining well-known machine learning techniques into a single
system, this study aims to improve autonomous vehicles navigation and to make
autonomous driving safer and more efficient.
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1 Explanation of LIDAR Data

This chapter provides an overview of LIDAR technology and its application in
lane detection. We start by explaining the working principles of LIDAR, including
laser pulse emission and time-of-flight distance measurement. Next, we discuss the
creation and importance of LIDAR point clouds for spatial data representation.
We then explore the use of LIDAR in lane detection, highlighting key methods
and advancements that improve lane-keeping accuracy. Finally, we introduce the
Agroverse 2 dataset, which offers extensive LIDAR data and annotations essential
for training and evaluating lane detection models in autonomous driving research.

1.1 Working Principle of LIDAR

LIDAR (Light Detection and Ranging) is a remote sensing technology that uses
laser light to measure distances and create detailed, high-resolution maps of
the Earth’s surface and other environments. The basic principle behind LIDAR
involves emitting laser pulses towards a target and measuring the time it takes for
the pulses to reflect back to the sensor. This time-of-flight measurement allows for
precise calculation of distances, enabling the creation of accurate three-dimensional
representations of objects and landscapes.

Figure 1.1 Working principle of LIDAR. [1]

LIDAR systems begin by emitting laser pulses towards a target area. The laser
source, typically a solid-state or fiber laser, generates rapid bursts of light at
specific wavelengths, often in the near-infrared spectrum. These pulses are directed
through a scanner, which can rotate or oscillate to cover a wide area, ensuring
comprehensive spatial coverage.

When the laser pulses hit an object, such as a building, tree, or the ground, they
reflect back towards the LIDAR sensor. The photodetector in the sensor array
captures these reflected signals. The crucial component here is the timing system,
which precisely measures the time interval between the emission of each pulse and
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its return. This time interval, known as the time-of-flight, is directly proportional
to the distance between the sensor and the target.

The time-of-flight measurement is fundamental to LIDAR’s ability to calculate
distances. By knowing the speed of light and the time it takes for the laser pulse
to travel to the target and back, the LIDAR system can compute the distance
using the formula:

D = c×t
2

where D is the distance to the object, c is the Speed of Light, and t is the time it
takes for the laser pulse to travel from the source to the object and back.

The division by two accounts for the round-trip journey of the pulse. This process
is repeated for millions of pulses per second, allowing the LIDAR system to capture
a dense array of distance measurements.

Once the raw distance data is collected, sophisticated signal processing algorithms
are employed to filter out noise and enhance the accuracy of the measurements.
These algorithms handle issues such as multi-path reflections, where a single pulse
might bounce off multiple surfaces before returning to the sensor, and atmospheric
interferences that can affect the time-of-flight calculations.

1.2 LIDAR Point Cloud

The processed distance measurements are compiled into a point cloud, a collection
of spatial data points representing the scanned environment. Each point in the
cloud has coordinates (x, y, z) corresponding to a specific location in three-
dimensional space. Additional attributes, such as intensity values, can also be
recorded, providing information on the reflectivity of the target surfaces.

Figure 1.2 Format of Agroverse 2 (1.4) Point Cloud.



1.3 Applications of LIDAR Technology in Lane
Detection

LIDAR technology helps in precise lane keeping by continuously scanning the
road surface and detecting lane markings, even in challenging conditions like poor
lighting or adverse weather. The high-resolution data allows the vehicle to stay
centered in its lane and execute smooth lane changes when necessary. Recent
advancements have introduced methods like the Scatter Hough algorithm [2],
which improves the detection of lanes through a neighbor voting system, adapting
to both straight and curved lane patterns even in noisy environments.

In addition to traditional lane keeping, LIDAR technology plays a crucial role in
overall navigation by providing detailed, lane-level digital maps that guide vehicles
along planned routes. This capability is crucial for navigating complex urban
environments and intersections, roundabouts, and other challenging road features.
For instance, a real-time lane detection system described by Jiyoung Jung and
Sung-Ho Bae [3] uses an expectation-maximization method to update 3D lane
parameters dynamically, enhancing the ability to generate accurate lane-level
maps.

Furthermore, the LiLaDet framework [4] represents a breakthrough in LIDAR-
based 3D lane detection by utilizing a dual-pathway processing approach, which
merges bird’s-eye view (BEV) and voxel-based spatial features to increase detection
accuracy across diverse urban landscapes. Another innovative approach, the
row-wise LIDAR Lane Detection Network [5], leverages a two-stage network that
refines lane detection through correlation of lane features, demonstrating enhanced
detection capabilities in scenarios with occlusions and complex merging lanes.

By integrating these LIDAR data with GPS and other sensor inputs, autonomous
vehicles can achieve highly accurate localization and sophisticated path planning,
ensuring safer and more efficient navigation across a variety of driving conditions.
These advancements underscore the dynamic potential of LIDAR technology in
transforming autonomous driving technologies.

1.4 Agroverse 2 Dataset

In this research, we will utilize the Agroverse 2 Sensor dataset [6], which is is
a collection of open-source autonomous driving data and high-definition (HD)
maps from six U.S. cities: Austin, Detroit, Miami, Pittsburgh, Palo Alto, and
Washington, D.C. This release builds upon the initial launch of Argoverse, which
was among the first data releases of its kind to include HD maps for machine
learning and computer vision research. The dataset includes recorded logs of
sensor data, or "scenarios," across different seasons, weather conditions, and times
of day, making it a versatile resource for training and evaluating machine learning



models in the context of autonomous driving.

The data is collected using a fleet of identical Ford Fusion Hybrids, fully integrated
with Argo AI self-driving technology. The dataset includes data from two LIDAR
sensors, seven ring cameras, and two front-facing stereo cameras.

Each vehicle log is approximately 15 seconds in duration and 1 GB in size, including
150 LIDAR sweeps on average, and 300 images from each of the 9 cameras (2700
images per log).

LIDAR sweeps are collected at 10 Hz, along with 20 fps imagery from 7 ring
cameras positioned to provide a fully panoramic field of view, and 20 fps imagery
from 2 stereo cameras. In addition, camera intrinsics, extrinsics and 6-DOF
ego-vehicle (the vehicle that contains LIDAR sensors) pose in a global coordinate
system are provided. LIDAR returns are captured by two 32-beam LIDARs,
spinning at 10 Hz in the same direction, but separated in orientation by 180°. The
cameras trigger in-sync with both LIDARs, leading to a 20 Hz frame-rate. The
nine global shutter cameras are synchronized to the LIDAR to have their exposure
centered on the LIDAR sweeping through their fields of view. On average, LIDAR
sensors produce a point cloud with 107,000 points at 10 Hz.

Figure 1.3 Agroverse 2 LIDAR sweep captured by one nanosecond timestamp.

All returns are aggregated from the two stacked 32-beam sensors into a single
sweep. These sensors each have different, overlapping fields-of-view. Both LIDARs
have their own reference frame. All LIDAR returns are provided in the egovehicle
reference frame, not the individual LIDAR reference frame.

To support the Sensor datasets, Agroverse 2 maps include real-valued ground
height at thirty centimeter resolution. With these map attributes, it is easy to
filter out ground LIDAR returns (e.g. for object detection) or to keep only ground
LIDAR returns (e.g. for building a bird’s-eye view rendering).

Detailed annotations of lane markings are also provided, allowing for the supervised



training of lane detection models and the assessment of their performance against
ground truth data.

Figure 1.4 Ground height samples for an Argoverse 2 scenario. Ground height samples
are visualized as blue points. LIDAR samples are shown with color projected from ring
camera imagery. [6]

Tabular data (annotations, lidar sweeps, poses, calibration) are provided as Apache
Feather Files with the file extension .feather. Examples are provided in the figures
1.2 and 2.1.

Dataset structure is shown in the figure 1.5.

Figure 1.5 Structure of Agroverse 2 Sensor dataset.



The following table provides the abbreviations for each Log ID, which corresponds
to a dataset directory containing LIDAR sweeps.

PC Log ID Number of Timesteps

PC1 0f0cdd79-bc6c-35cd-9d99-7ae2fc7e165c 196
PC2 0c6e62d7-bdfa-3061-8d3d-03b13aa21f68 156
PC3 0fdbd56a-1ff7-3624-81f9-03cd68fd5616 157
PC4 11a84740-18a3-3798-91c5-21dc9c765350 157

Table 1.1 Information about Dataset Logs



2 Transformation and
Processing of LIDAR Point
Clouds

This chapter explores the transformation and processing of LIDAR point clouds to
create detailed and accurate 3D maps essential for autonomous vehicle navigation.
We begin by explaining the transformation of LIDAR data from the ego-vehicle’s
reference frame to a unified global coordinate system, which is crucial for consistent
spatial mapping. Next, we cover the methodology for accumulating transformed
point clouds to build comprehensive 3D models. The chapter further explores
the use of intensity-based filtering to enhance lane detection capabilities, followed
by advanced techniques such as octrees for spatial partitioning and voxel grid
filtering for downsampling point clouds. Lastly, we address outlier removal using
the Statistical Outlier Removal (SOR) [7] filter to improve data quality, developing
a robust pipeline for processing LIDAR data for autonomous driving applications.

2.1 Transformation and Accumulation of Point
Clouds

LIDAR sensors mounted on an autonomous vehicle, referred to as the ego-vehicle,
capture the surrounding environment in the form of point clouds. These point
clouds represent the spatial distribution of points reflecting from objects and
surfaces within the sensor’s field of view. In our study, each LIDAR sensor’s
outputs are initially provided in the ego-vehicle’s reference frame. This frame is
fixed relative to the vehicle, thus moving and rotating with it.

For the purpose of generating a comprehensive 3D map of the urban landscape, it
is necessary to transform these point clouds from the ego-vehicle’s reference frame
into a unified global coordinate system, typically defined as the city coordinate
system. This coordinate system remains fixed and provides a consistent frame of
reference that is crucial for tasks such as navigation, mapping, and multi-vehicle
coordination.

2.1.1 Methodology for Transformation

For each LIDAR sweep, the 6-degrees-of-freedom (6-DOF) pose of the egovehicle
is provided in the global coordinate system of the city. This pose includes
both a translation vector (tx, ty, tz) representing the position of the egovehicle,
and a quaternion (qw, qx, qy, qz) representing the orientation of the vehicle. The
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quaternion provides a compact and robust method for encoding the vehicle’s
rotation, avoiding the pitfalls of gimbal lock associated with Euler angles.

Figure 2.1 Egovehicle pose table for different timestamps.

The transformation of a point Plocal = (x, y, z) in the LIDAR’s local coordinate
system to the global coordinate system Pglobal involves two main steps: rotation
followed by translation [8]. Mathematically, this can be expressed as:

Pglobal = R(q) · Plocal + T

where R(q) is the rotation matrix derived from the quaternion q = (qw, qx, qy, qz),
and T = (tx, ty, tz) is the translation vector. The rotation matrix R(q) is computed
as follows:

R(q) =

⎡⎢⎣1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw

2qxqy + 2qzqw 1− 2q2
x − 2q2

z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

⎤⎥⎦

This rotation aligns the point cloud with the orientation of the global frame, and
the translation adjusts its position to reflect the vehicle’s location within the
global space.

2.1.2 Methodology for Accumulation

Once the point clouds are transformed into the global coordinate system, they can
be accumulated to build a comprehensive map of the environment. Accumulating
point clouds involves merging multiple point clouds into a single dataset where
each point’s position is relative to the same global reference frame. This process
enhances the density and coverage of the spatial data, enabling more detailed and
accurate representations of the environment.

The primary challenge in point cloud accumulation is managing the vast amount
of data. Efficient data structures, such as octrees (section 2.3), are crucial for



reducing the computational load by organizing the points in a hierarchical manner
that allows for quick access and manipulation.

Additionally, it is essential to address potential issues such as data redundancy.
Techniques such as voxel grid filtering (section 2.5) can be applied to downsample
the point cloud, reducing its size while maintaining the structural integrity of the
data.

Figure 2.2 Accumulated PC1 before preprocessing (number of points: 18,220,744).

2.2 Intensity-based Filtering of Point Clouds

Following the transformation and accumulation of LIDAR point clouds into a
unified global coordinate system, the next crucial step in enhancing lane detection
capabilities involves filtering the point clouds based on intensity values. Intensity
values in a LIDAR dataset represent the reflectivity of surfaces from which the
LIDAR pulses bounce back. These values are crucial for distinguishing between
different types of surfaces, such as lanes, which often have distinct reflective
properties compared to other road elements.

2.2.1 Statistical Analysis of Intensity Values

Initial analysis of the intensity values from the accumulated point cloud (log ID:
0f0cdd79-bc6c-35cd-9d99-7ae2fc7e165c) reveals a distribution characterized by a
mean of 30.42 and a standard deviation of 26.25. The distribution shown in the
figure 2.3, skewed towards lower intensity values, indicates variability in surface
reflectivity, which is typical in urban environments.



2.2.2 Threshold Determination for Intensity Filtering

To isolate potential lane markings, which generally exhibit higher reflectivity,
a threshold of 60 for intensity values was selected. This threshold is set above
the mean plus approximately one standard deviation, effectively focusing on the
upper quartile of the intensity distribution. The goal is to minimize the inclusion
of non-lane elements that typically have lower reflectivity and to enhance the
detection of lanes that are crucial for autonomous navigation.

Figure 2.3 Histogram of intensity values with Gaussian fit.

2.2.3 Impact on Lane Detection

Selective filtering of point clouds based on intensity values greatly improves
the detection of lane markings, which are crucial for guiding and controlling
autonomous vehicles. By focusing on higher intensity points, this filtering process
not only reduces computational effort but also enhances the accuracy and reliability
of lane detection algorithms. This intensity-based filtering is a key improvement
in our method for creating precise and detailed 3D maps.



Figure 2.4 PC1 filtered by intensity value (number of points: 1,900,919).

2.3 Efficient Point Cloud Management Using
Octrees

An octree [9] is a tree-based data structure that is widely used for the spatial
partitioning of three-dimensional spaces. It subdivides space into eight octants
at each node, hence the prefix ‘oct’. This structure is particularly beneficial in
managing large sets of three-dimensional data points, such as those found in
LIDAR point clouds. By recursively breaking down the 3D space into smaller
octants, octrees allow for efficient storage, manipulation, and retrieval of spatial
data.

An octant is one of the eight divisions of a three-dimensional space relative to a
central point. When a space (or a node in the context of octrees) is subdivided,
each resulting section is an octant. These octants are the result of dividing the
space along the three orthogonal axes (X, Y, and Z axes), each axis creating two
halves, thus resulting in 23 = 8 divisions or octants.

A voxel, short for "volume element," is the three-dimensional equivalent of a pixel
(which represents two-dimensional elements). It is a value on a regular grid in
three-dimensional space. Voxels represent a finite volume and typically contain
additional information such as color, density, or scalar values representing some
characteristic of the space they occupy.

2.3.1 Structure and Construction of Octrees

The structure of an octree is inherently hierarchical, with the division of three-
dimensional space into voxels. Each node in the tree represents a voxel and can
be further subdivided into eight smaller voxels, or children, each containing an



octant of the volume of its parent. This recursive subdivision continues until a
pre-defined stopping criterion is met, typically based on voxel size, the number of
points within a voxel, or tree depth.

Construction of an octree (Algorithm 1) begins with the encapsulation of the
entire dataset within the root node’s bounds. The space is then split into eight
equal-sized octants. This division process recurses on each resulting child node
until the termination condition is achieved. Each node stores pointers to its child
nodes, and leaf nodes maintain a list of all points residing within their spatial
boundaries.

Figure 2.5 Left figure: Cube is recursively divided into eight octants. Right figure:
Octree structure.

The mathematical representation of the octree subdivision can be defined as
follows. Consider a voxel defined by its lower corner (x, y, z) and side length s.
The center of the voxel (xc, yx, zc) can be calculated as:

xc = x + s

2 , yc = y + s

2 , zc = z + s

2

Using the center, the boundaries of the eight child voxels are computed. For
instance, the boundaries for one of the octants would be [x, xc]× [y, yc]× [z, zc] and
similarly for the others, adjusted according to their respective positions around
the center.

In practice, the effectiveness of an octree depends on several factors, including
the depth of the tree and the distribution of points within the space. Excessive
depth can lead to over-partitioning and increased memory usage, while insufficient
depth may not provide the desired efficiency gains. Therefore, balancing these
aspects is crucial for optimizing octree performance in real-world applications.



Furthermore, dynamic updates to point clouds, such as those encountered in
moving LIDAR systems, require efficient mechanisms for updating octrees without
full reconstruction. Incremental update algorithms and adaptive partitioning
strategies are areas of ongoing research aimed at addressing these challenges.

In conclusion, octrees provide a powerful tool for managing large-scale point cloud
data, enabling efficient operations and optimizations that are critical for advanced
3D data processing applications like those found in autonomous vehicle navigation
and urban modeling.

Algorithm 1 Construct Octree for 3D Point Cloud [9]
Require: Set of 3D points
Ensure: Octree structure where each node represents a voxel

Initialize root node root with a voxel covering the entire dataset
procedure ConstructOctree(node, depth)

if number of points in node ≤ threshold or depth = maxDepth then
Mark node as a leaf and store the points within
return

end if
Determine the centroid of node’s voxel to split into 8 octants
for each octant do

Define voxel for the octant by subdividing node’s voxel
Initialize a child node child for the octant
Assign the voxel to child
Filter and assign points within child’s voxel
if child contains points then

ConstructOctree(child, depth + 1)
else

Mark child as a leaf without points
end if

end for
end procedure
ConstructOctree(root, 0)

2.3.2 Comparison with k-d Trees

While octrees are highly effective for managing 3D point clouds, another prevalent
data structure used for spatial partitioning is the k-d tree [10]. The k-d tree is a
binary tree used for organizing points in k-dimensional spaces, typically with k=3
for spatial data applications such as those involving LIDAR data.

K-d trees partition space along data axes, alternating between them at each level
of the tree. This results in a structure where each node splits the space into two,
based on the median value of the points’ coordinates in the chosen axis. This
method of partitioning can be particularly efficient for balanced point clouds but
may become less efficient as the distribution of points becomes skewed.



K-d trees excel in applications where nearest neighbor searches are predominant,
particularly in datasets where data distributions are relatively uniform. They
offer excellent logarithmic query times for these cases. However, for applications
involving frequent updates, such as dynamic point clouds from LIDAR sweeps
in autonomous vehicle contexts, octrees may be preferred. The hierarchical
cubic subdivision of octrees can handle spatially uneven data distributions more
gracefully, and they can adapt more robustly to changes in the dataset’s spatial
bounds.

2.4 Removing Outliers from Point Cloud Using
Statistical Outlier Removal Filter

In the processing of LIDAR point clouds, outlier removal is a crucial step to
enhance the quality and accuracy of the data. Outliers in a point cloud are
typically points that deviate significantly from their surrounding data points and
can arise due to various factors such as sensor noise, atmospheric conditions, or
reflective surfaces. These outliers can affect subsequent processing steps such as
feature extraction, segmentation, and object recognition. A common approach to
addressing this issue is the Statistical Outlier Removal (SOR) filter, which uses
statistical analysis to identify and remove outliers based on the distribution of
point-to-point distances in the data.

2.4.1 The SOR Filtering Algorithm

The SOR [7] filter works by analyzing the distances between each point in the
point cloud and its neighboring points. The algorithm assumes that the majority
of points in the dataset form a surface while outliers are distant from this main
group.

For the Statistical Outlier Removal process, each point p in the point cloud
dataset undergoes a series of checks and calculations to determine if it should
be classified as an outlier. The parameter k represents the number of nearest
neighbors considered for each point p in the dataset. Initially, the k nearest
neighbors of p are identified based on Euclidean distance, serving as the basis
for further analysis. The mean distance µ and the standard deviation σ of these
distances are then calculated. The k_factor, on the other hand, acts as a scaling
factor that adjusts the sensitivity of the outlier detection mechanism. It is used
to establish a threshold for determining whether a point is an outlier. A threshold
for outlier detection is established at µ + k_factor · σ, where k_factor acts as
a scaling factor that modulates the sensitivity of the filter to outlier detection.
Points whose mean distance to their neighbors exceeds this threshold are deemed
outliers and are subsequently removed from the record. This method effectively
reduces noise and improves the fidelity of the point cloud by discarding anomalous



points that deviate significantly from their local point neighborhood.

The steps of the algorithm are outlined as follows [7]:

Algorithm 2 Statistical Outlier Removal for Point Cloud Cleaning
Require: PointCloud P , Integer k, Float k_factor
Ensure: Cleaned PointCloud P_clean

Initialize P_clean as an empty point cloud
for each point p in P do

neighbors← findKNearestNeighbors(p, k)
distances← computeDistances(p, neighbors)
mean_dist← mean(distances)
std_dev ← standardDeviation(distances)
threshold← mean_dist + k_factor × std_dev
if mean_dist ≤ threshold then

Add p to P_clean
end if

end for
return P_clean

2.4.2 Effectiveness Considerations

The effectiveness of the Statistical Outlier Removal (SOR) filter depends heavily
on the choice of parameters k and k_factor. The parameter k, should be chosen
based on the density of the point cloud; a larger k smooths over local variations
and is less likely to remove points that are not true outliers but merely part of a
sparse region. Conversely, k_factor, adjusts the strictness of the outlier definition.
Higher values allow more inclusion, potentially keeping noise, whereas lower values
make the filter stricter, potentially eliminating valuable information.

For instance, in one of our processing logs, the application of the SOR filter with
these parameters reduced the point cloud from 1,900,919 (figure 2.4) data points
to 1,776,476. This reduction underscores the filter’s capacity to effectively manage
data by removing statistical outliers, thus enhancing the quality and reliability of
the subsequent processing steps.

Despite its effectiveness, the SOR filter has limitations. It may fail in scenarios
where outliers form clusters dense enough to appear as valid regions, or in very
sparse point clouds where even normal points may appear isolated. Furthermore,
the filter can be computationally intensive, especially for large datasets, as it
requires extensive calculations and neighbor searches for each point in the cloud.

The Statistical Outlier Removal filter is a robust method for cleaning LIDAR point
cloud data, significantly improving the downstream processing and analysis steps.
By effectively identifying and removing statistical outliers, the resulting models’
quality and reliability are enhanced. Careful tuning of parameters and under-



standing of the dataset’s characteristics are essential to optimize the performance
and outcome of the SOR filter.

2.5 Voxel Grid Filtering for Point Cloud Down-
sampling

Voxel grid filtering is a common technique used for downsampling large point
clouds to reduce their density while preserving the overall geometric structure of
the data. This method involves overlaying a grid of voxels over the point cloud
and then approximating the set of points within each voxel with their centroid or
some other representative point. Typically, this representative point is calculated
as the centroid of all points within the voxel, although other methods such as
the average or median can also be used depending on the desired accuracy and
computational constraints.

The voxel grid filtering process can be mathematically outlined as follows:

1. Define the dimensions of each voxel as (vx, vy, vz), which determines the
level of downsampling.

2. Compute the voxel index for each point in the original cloud using:

i =
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where (x, y, z) are the Cartesian coordinates of a point in the cloud, and
(i, j, k) represents the indices of the voxel in which the point is located.

3. For each voxel, aggregate the points it contains and compute the representa-
tive point, generally using the centroid formula:
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where n is the number of points in the voxel, and ∑︁
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y,
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z are the sums
of the respective coordinate values of the points within the voxel.

This approach is particularly useful in reducing the computational complexity of
subsequent processing tasks.

2.5.1 Integration with Octree Structure

The integration of voxel grid filtering with the previously discussed octree structure
(2.3) provides an efficient framework for managing and processing downscaled point



clouds. Octrees inherently divide the space into hierarchical cubic volumes, which
can be leveraged to implement voxel grid filtering effectively. The adaptability
of octree resolutions aligns well with the variable resolutions required in voxel
grid filtering, facilitating a more dynamic and resource-efficient approach to point
cloud management.

2.5.2 Voxel Grid Filtering Algorithm

The voxel grid filtering algorithm can be directly applied using the octree generated
from the original point cloud. Each leaf node of the octree, which already contains
a subset of the points grouped by spatial proximity, can be treated as a voxel.
The filtering process then involves computing the centroid of the points within
each voxel and replacing these points with the centroid.

Algorithm 3 Voxel Grid Filtering for Point Cloud Downsampling
Require: Octree root, empty PointCloud filteredCloud
Ensure: Downsampled PointCloud

if root is a leaf node then
Calculate the centroid of all points in this voxel
Add the centroid to filteredCloud
return

end if
For each child of root:
Recursively call VoucherGridFilter with child, filteredCloud
return filteredCloud

2.5.3 Effectiveness Considerations

Implementing voxel grid filtering involves choosing appropriate parameters that
balance the level of downsampling and the fidelity of the resultant point cloud.
The size of the voxels is a critical parameter that directly influences the number
of points in the filtered point cloud; smaller voxels result in less downsampling
and finer detail, while larger voxels produce more significant downsampling but
may lead to loss of important geometric features.

By reducing the data volume, the filtering process enables faster decision-making
and efficient data handling, so voxel grid filtering serves as an essential pre-
processing step of our approach, efficiently managing the vast quantities of data
generated by LIDAR sensors, which can capture millions of data points per
second. For instance, in one of our processing logs (ID: 0f0cdd79-bc6c-35cd-
9d99-7ae2fc7e165c), the voxel grid filtering was applied to a point cloud initially
containing 1,776,476 data points. After filtering the number of points was effec-
tively reduced to 507,235. By downsampling the point cloud, computational and
memory requirements are substantially decreased.



Figure 2.6 PC1 after SOR filtering and Voxel Grid Downsampling (number of points:
507,235).



3 Methodology for Lane
Detection

In this chapter, we explore several unsupervised learning techniques that are pivotal
for detecting lanes in LIDAR data. The focus is on three main methodologies
to interpret the complex spatial data provided by LIDAR sensors: DBSCAN
clustering, RANSAC fitting, and Principal Component Analysis (PCA). These
methods are combined with custom-developed algorithms for lane connecting and
lane classification to create a novel approach.

DBSCAN clustering is particularly advantageous for its ability to form clusters
based on the density of points. By grouping points that are closely packed,
DBSCAN helps highlight areas that represent lanes while distinguish them from
lower-density regions which are typically background noise or non-lane objects.

RANSAC, or Random Sample Consensus, is another robust technique used in this
context to identify and model lanes through iterative approximation. This method
fits linear models to subsets of the data, estimating the parameters of a lane while
classifying outliers that do not fit the model. RANSAC is particularly useful for
its robustness against outliers, making it suitable for noisy data environments
where other methods might fail.

Principal Component Analysis (PCA) is utilized to reduce the dimensionality
of the data, simplifying the complex data into principal components that can
represent the main direction or orientation of lanes. PCA helps in distinguishing
lanes from other features by highlighting their linear alignment in the direction
of roadways. This is particularly useful in intersections or areas where lane
orientations significantly vary.

These techniques are not just discussed in isolation but are considered in how
they integrate within the broader context of autonomous driving systems. We
examine their practical implementations, challenges faced in real-world scenarios,
and how they complement each other to enhance the reliability and accuracy of
lane detection. This comprehensive approach helps in understanding the strengths
and limitations of each technique, guiding future applications and improvements
in autonomous navigation technologies.
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3.1 DBSCAN Clustering

After the preprocessing steps that include intensity filtering, noise reduction, and
downsampling, the next essential phase in lane detection using LIDAR data is the
segmentation of the point cloud into meaningful clusters. Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [11] is a robust, unsupervised
clustering algorithm particularly suited for this task due to its ability to identify
clusters of varying shapes and sizes based on density. This section explores the
application of DBSCAN in the context of lane detection in LIDAR data.

3.1.1 Overview of DBSCAN

DBSCAN is a clustering algorithm that groups together closely packed points,
marking as outliers the points that lie alone in low-density regions. This character-
istic makes it highly effective for use in LIDAR data where lanes and other road
markers form dense linear structures. The fundamental parameters of DBSCAN
are:

• ϵ (eps): The maximum distance between two samples for one to be considered
as in the neighborhood of the other.

• MinPts: The number of points required to form a dense region, which
implies a minimum cluster size.

The DBSCAN algorithm (4) can be described by the following steps:

1. For each point in the dataset, if it has not yet been visited, retrieve its
ϵ-neighborhood.

2. If the ϵ-neighborhood contains fewer than MinPts, mark the point as noise.
Otherwise, create a new cluster and expand it by iteratively adding all
density-reachable points from the ϵ-neighborhood. This means that for each
new point added to the cluster, the process is repeated to find and include
its ϵ-neighborhood points until no more points can be added.

3. Continue the process until all points are classified as either part of a cluster
or as noise.

Mathematically, the neighborhood of a point p, denoted as Nϵ(p), can be defined
as:

Nϵ(p) = {q ∈ D | dist(p, q) ≤ ϵ}

where D is the dataset and dist(p, q) is the distance between points p and q.



Algorithm 4 DBSCAN Clustering [11]
Require: Point set D, distance threshold ϵ, minimum points MinPts
Ensure: Clustered PointCloud

Initialize C = 0 ▷ Cluster counter set to 0
Initialize all points as unvisited
for each point p ∈ D do

if p is visited then
continue to next point

end if
Mark p as visited
N = RetrieveNeighbors(p, ϵ) ▷ Find neighbors within ϵ radius
if size of N < MinPts then

Mark p as noise
else

C = C + 1 ▷ Start a new cluster
ExpandCluster(p, N, C, ϵ, MinPts)

end if
end for
procedure ExpandCluster(p, N, C, ϵ, MinPts)

Add p to cluster C
for each point q ∈ N do

if q is not visited then
Mark q as visited
N ′ = RetrieveNeighbors(q, ϵ)
if size of N ′ ≥MinPts then

N = N ∪N ′ ▷ Add new neighbors to N
end if

end if
if q is not yet member of any cluster then

Add q to cluster C
end if

end for
end procedure
return All clusters



3.1.2 Application to Lane Detection

DBSCAN’s ability to identify clusters based on local point densities and its
insensitivity to the shape of the data distribution makes it particularly beneficial
for lane detection in LIDAR data, where lanes can curve and vary in width.
Furthermore, DBSCAN’s trait of treating low-density groups as noise helps in
effectively distinguishing between actual lane data and background noise such as
pedestrians, bicycles, or other non-lane objects.

Implementing DBSCAN for lane detection in LiDAR data requires careful con-
sideration of various factors to optimize the clustering process. The choice of
parameters such as ϵ (the neighborhood distance threshold) and MinPts (the
minimum number of points to form a dense region) is critical. These parameters
have an impact on the performance and effectiveness of the clustering, particularly
in the context of accurately identifying lanes.

Figure 3.1 Optimal clustering result showing distinct lane markings (ϵ = 0.3,
MinPts = 10), where each color represents a distinct cluster.

3.1.3 Effectiveness Considerations

A smaller ϵ tended to break a single lane into multiple clusters (figure 3.3),
especially in curved lane segments. Conversely, a larger ϵ sometimes resulted in
multiple adjacent lanes being detected as a single cluster (figure 3.2), particularly
in areas where lanes are close to each other.



Figure 3.2 Under-clustering example with a larger ϵ (1.0) causing multiple lanes to
merge (each color represents a distinct cluster).

Figure 3.3 Over-clustering example where a smaller ϵ (0.1) breaks a single lane into
multiple clusters (each color represents a distinct cluster).



3.2 The Random Sample Consensus (RANSAC)
algorithm

The Random Sample Consensus (RANSAC) [12] algorithm is a robust statistical
method used to estimate parameters of a mathematical model from a dataset that
contains outliers. It was introduced by Fischler and Bolles in 1981 as a solution
to the problem of fitting a model to experimental data contaminated with gross
errors, which are typical in data captured by sensors like LIDAR. RANSAC is
especially useful in the context of lane detection in LIDAR data due to its ability
to effectively distinguish between inliers (data points that fit the model) and
outliers (data points that do not fit the model).

3.2.1 Overview of RANSAC

RANSAC operates by iteratively selecting a random subset of the original data.
These subsets are used to estimate the model parameters, which in the context of
this thesis refers to either a line or a plane. The algorithm consists of the following
steps:

Algorithm 5 RANSAC Algorithm
Require: Data points D, number of iterations N , threshold t, number of required

inliers d
Ensure: Best fitting model parameters θ∗

Initialize best inliers I∗ = ∅
Initialize best model θ∗ = null
for i = 1 to N do

Randomly select subset S ⊆ D ▷ Minimal subset required for model
Estimate model θ = FitModel(S)
Determine inliers I = {x ∈ D | Distance(x, θ) < t}
if |I| > |I∗| then

I∗ = I
θ∗ = θ
if |I∗| ≥ d then

break
end if

end if
end for
return θ∗

The required number of iterations, N , can be calculated based on the probability
that at least one random sample is free of outliers. The formula to determine N
ensuring that the probability of choosing at least one good subset is at least p,
given the proportion of outliers e, is given by:



N = log(1− p)
log(1− (1− e)s)

where s is the size of the sample needed to fit the model. This formula ensures that
RANSAC is capable of providing a reliable model estimate with a high confidence
level.

3.2.2 Application to Lane Detection

Fitting Planes with RANSAC

In the processing of LIDAR data for lane detection, the first crucial step often
involves fitting planes to the data, which can help in identifying the road surface.
Using RANSAC for plane fitting is particularly advantageous because it can
effectively ignore outliers such as vehicles, pedestrians, or debris, which do not
belong to the road surface.

Figure 3.4 Projection of extracted ground plane (PC1).

The RANSAC algorithm adapted for plane fitting in LIDAR data typically involves:

• Selection: Randomly selecting a subset of LIDAR points that could poten-
tially form a part of the road surface.

• Model Estimation: Fitting a plane model to these points. The mathe-
matical model for a plane in a three-dimensional space can be represented
as:

ax + by + cz + d = 0

• Consensus: Determining how many points from the entire dataset fit this
plane model within a predefined error threshold, which classifies them as
inliers.



After fitting the plane, the inlier points are projected onto a new plane where the
z-axis is zero. This projection simplifies subsequent processing steps by reducing
the dimensionality of the data and aligning it with the road surface, making it
easier to detect lane markings and other relevant features.

This plane fitting process helps in establishing a baseline road level, from which
deviations can be identified as potential lane markings or obstacles.

Fitting Lines for Lane Markings

After establishing the road surface, the next step is to detect lane markings. This
involves an additional clustering step using DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) to group the LIDAR points that are likely
part of lane markings based on spatial proximity and reflectivity values. DBSCAN
helps in identifying clusters of points that represent different lane markings without
the need for specifying the number of clusters in advance. Following the clustering
process on the extracted plane, RANSAC is then applied to each detected cluster
to fit line models to the features that correspond to lane markings. Line fitting
with RANSAC in the context of LIDAR data for lane detection involves:

• Selection: Selecting each cluster previously identified by DBSCAN that is
likely to contain parts of lane markings.

• Model Estimation: Fit a line model to the points within each cluster.
The line model in a two-dimensional plane can be represented as:

y = mx + b

where m is the slope, and b is the intercept.

• Consensus: Measure how many points within the cluster agree with this
line model within a certain tolerance, classifying them as inliers to the line
model. The validity of this line is determined based on the number of inliers.

This method ensures accurate detection of each lane marking by fitting a line
model to each cluster and selecting the line based on the number of inliers that
meet a specified threshold. This approach allows for precise detection of lane
boundaries. In multi-lane scenarios, the algorithm can be adapted by adjusting
detection parameters to identify lines with different orientations, corresponding
to various lane directions. This enables the accurate detection and classification
of multiple lanes within a single framework.

These two stages, clustering with DBSCAN followed by line fitting with RANSAC,
effectively segment the complex LIDAR data into meaningful lane marking models,
crucial for autonomous vehicle navigation.



3.2.3 Effectiveness Considerations

RANSAC is highly regarded for its robustness against outliers, which are prevalent
in real-world scenarios, making it particularly useful for applications like lane
detection in LIDAR data where accuracy is critical despite noise and other data
corruptions.

However, the algorithm’s performance is heavily dependent on the correct setting
of its parameters, such as the inlier threshold and the number of iterations. These
parameters must be adjusted based on the specific characteristics of the dataset to
avoid poor performance. Moreover, RANSAC can be computationally expensive,
particularly with large datasets, as the process of random sampling may require
substantial computational resources. These aspects highlight the need for careful
implementation and optimization of RANSAC.

3.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used to simplify
complex datasets by transforming them into a set of orthogonal components,
called principal components. These components capture the maximum variance in
the data, with each subsequent component capturing progressively less variance.
PCA is widely used for dimensionality reduction, noise reduction, and feature
extraction in various fields.

3.3.1 Overview of PCA

Mathematically, PCA involves the following steps [13]:

• Standardization: Standardize the dataset to have zero mean and unit
variance for each feature. This step is crucial to ensure that PCA does not
become biased towards features with larger scales.

Xstand = X− µ

σ

where X is the original data matrix, µ is the mean vector, and σ is the
standard deviation vector.

• Covariance Matrix Computation: Compute the covariance matrix of
the standardized dataset.

C = 1
n− 1XT

standXstand

where n is the number of observations.



• Eigenvalue Decomposition: Perform eigenvalue decomposition on the
covariance matrix to obtain the eigenvalues and eigenvectors.

CV = VΛ

where V is the matrix of eigenvectors and Λ is the diagonal matrix of
eigenvalues.

• Principal Components: The principal components are the eigenvectors
corresponding to the largest eigenvalues. These eigenvectors form a new
basis set for the data, ordered by the amount of variance they explain.

Y = XstandV

where Y is the transformed dataset in the new principal component space.

3.3.2 Application to Lane Detection

In the context of lane detection using LIDAR data, PCA can be applied
to identify linear features in point clouds. By applying PCA to clusters of
LIDAR points, we can determine the direction of potential lane markings.
Specifically, the first principal component (PC1) should capture a significant
percentage of the variance, indicating the primary direction of the points
in the cluster. The second principal component (PC2) should capture a
relatively smaller percentage of the variance, confirming that the points are
aligned along a line.

Figure 3.5 The result of PCA analysis for one cluster, blue points represent potential
lane marking.

The steps for using PCA in lane detection are as follows:

• Clustering: Segment the LIDAR data into clusters using an algorithm like
DBSCAN.

• PCA Fitting: Apply PCA to each cluster to obtain the principal compo-
nents.



• Variance Explained: Analyze the percentage of variance explained by
the first principal component (PC1) and ensure that the second principal
component (PC2) captures significantly less variance. A higher variance
along PC1 and a lower variance along PC2 indicate that the cluster likely
represents a linear feature, such as a lane marking.

• Direction Vector: The first principal component (PC1) provides the
direction vector of the line.

• Projections: Project the points along the direction vector to confirm the
alignment and improve the detection accuracy.

3.3.3 Effectiveness Considerations

Using Principal Component Analysis (PCA) for lane detection in LIDAR data
effectively identifies linear features and enhances accuracy by focusing on the main
direction of point clusters. Combined with DBSCAN clustering and RANSAC
fitting, PCA reduces noise and improves reliability. However, this method can be
computationally intensive and depends on the quality of initial clustering. It is
also primarily suited for detecting linear features, which may limit its effectiveness
in more complex scenarios.

Figure 3.6 The result of detected lanes after RANSAC and PCA based filtering, each
color represents distinct cluster.

3.4 Connecting Clusters into Lane Entities

In lane detection, it is often necessary to connect several clusters that represent
individual line segments into a continuous lane entity, especially for dashed lanes.
This section outlines the methodology used for connecting clusters into lane entities
using two approaches: fitting lines with RANSAC and utilizing direction vectors
obtained from PCA. Both methods have their advantages and limitations, which
are discussed in detail.



3.4.1 Algorithm Description

The algorithm for connecting clusters into lane entities involves several key steps:

1. Finding Nearest Points: The algorithm begins by identifying the nearest
points between clusters to determine potential connections. This is achieved
by calculating the Euclidean distance between the boundary points of each
cluster. The pair of points with the shortest distance is considered for
potential connection.

2. Inlier Identification: For each candidate connection, the algorithm checks
if the points in the neighboring cluster align with the direction vector
(obtained using PCA) or the line fitted by RANSAC. This involves computing
the perpendicular distances of the points to the line or vector and identifying
those within a specified threshold as inliers. For a line defined by points P1
and P2, the perpendicular distance of a point Q is given by:
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x
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1 )(P y
1 −Qy)− (P x

1 −Qx)(P y
2 − P y

1 )|√︂
(P x

2 − P x
1 )2 + (P y

2 − P y
1 )2

3. Cluster Connection: Clusters are connected if the points are within
a specified distance threshold. This step ensures that only clusters with
consistent directionality and proximity are merged.

4. Line and Direction Vector Calculation: Once two clusters are con-
nected, the new cluster formed by their union is analyzed to update the
line model (using RANSAC) and the direction vector (using PCA). This
involves recomputing the principal components and fitting a new line to the
combined set of points.

3.4.2 Connecting Lanes Using Fitted Lines

The RANSAC (Random Sample Consensus) algorithm is used to iteratively fit lines
to the filtered clusters. RANSAC is robust to noise and can accurately identify
straight lanes by focusing on the inliers that fit the line model. Unfortunately, it
struggles with connecting lanes on turns, as the model assumes linearity which
may not hold for curved lanes.

3.4.3 Connecting Lanes Using Direction Vectors

Principal Component Analysis (PCA) is used to determine the direction vectors
for each cluster. These vectors are then used to connect clusters into continuous
lanes, especially useful for lanes that curve. PCA is applied to each cluster to
obtain the principal components. The first principal component provides the



direction vector, which is used to connect clusters by checking the alignment and
spatial proximity of their direction vectors. PCA is effective in connecting lanes
on turns as it captures the dominant direction of the clusters, but it may fail if
the direction vector is not accurately determined, leading to incorrect connections.

3.4.4 Comparison of Approaches

In this thesis, we employ two custom approaches for lane detection: one using
RANSAC and the other using PCA. While RANSAC excels at connecting straight
lanes, it is less effective on turns where the lanes are curved. On the other
hand, PCA-based direction vectors are better at handling curved lanes but may
occasionally produce errors if the direction vectors are not correctly identified.

The metrics for these two approaches will be compared in Chapter 5. This
comparison will provide a detailed analysis of their strengths and weaknesses in
different lane detection scenarios.

To visually compare the effectiveness of both approaches, consider the figures 3.7
and 3.8. The main full bottom line is not connected using RANSAC due to its
inability to handle non-straight paths effectively. However, this line is successfully
connected using PCA, which is adept at dealing with curved segments. Despite
this advantage, PCA sometimes connects parts of two parallel dashed lines as one
continuous line due to incorrect estimation of the direction vector, potentially
caused by noise in the data.

Figure 3.7 Lanes connected using RANSAC, each color represents line entity.

Both RANSAC and PCA-based methods have their specific use cases and can
complement each other in a robust lane detection system. RANSAC is preferred
for straight lane segments, while PCA is better suited for detecting and connecting
curved lanes. The choice of method depends on the specific characteristics of the
road and the required accuracy for lane detection. By integrating both approaches,
it is possible to achieve a more comprehensive and accurate lane detection system.



Figure 3.8 Lanes connected using PCA direction vectors, each color represents line
entity.

3.5 Classification of Dashed or Full Lanes

Classifying lanes as dashed or full is a crucial step in understanding road markings
and ensuring accurate lane detection. This classification is based on the analysis of
the clusters that form the lane lines. By examining the distance between clusters
and the size of the clusters, we can determine whether a lane is dashed or full.

3.5.1 Algorithm Description

The classification process involves two distinct approaches: size-based classification
and distance-based classification. Each approach has its advantages and limitations,
and they can be compared for effectiveness in different scenarios.

Size-Based Classification

In the size-based classification approach, the focus is on evaluating the size of
each cluster that constitutes a lane.

• Cluster Size Evaluation: Measure the size of each cluster along the
direction of the lane. This involves calculating the length of the cluster in
the direction of the lane’s principal axis.

• Standard Deviation Calculation: Calculate the standard deviation of
the cluster sizes. This gives a measure of the variation in cluster sizes.

σ =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(xi − µ)2

where xi is the size of the i-th cluster, µ is the mean size, and N is the
number of clusters.



• Classification Criteria:

– If the standard deviation of the cluster sizes tends to zero and the
clusters are relatively large, classify the lane as full.

– If the standard deviation of the cluster sizes is small and the clusters
are of similar, smaller sizes, classify the lane as dashed.

Distance-Based Classification

In the distance-based classification approach, the focus is on measuring the
distances between adjacent clusters.

• Distance Measurement: Measure the distances between the endpoints of
adjacent clusters. This involves calculating the Euclidean distance between
the end of one cluster and the start of the next.

d =
√︂

(x2 − x1)2 + (y2 − y1)2

where (x1, y1) and (x2, y2) are the coordinates of the endpoints of adjacent
clusters.

• Standard Deviation Calculation: Calculate the standard deviation of
these distances to assess their consistency.

σd =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(di − µd)2

where di is the distance between the i-th pair of clusters, µd is the mean
distance, and N is the number of distances measured.

• Classification Criteria:

– If the standard deviation of the distances tends to zero and the distances
are relatively small, classify the lane as full.

– If the standard deviation of the distances is small and the distances
are consistent, classify the lane as dashed.

3.5.2 Comparison of Approaches

Both size-based and distance-based classification methods have their advantages
and limitations:

• Size-Based Classification:



– Advantages: Effective for identifying lanes where cluster sizes are
uniform, easy to implement.

– Limitations: May misclassify dashed lanes if cluster sizes vary due to
noise or measurement errors.

• Distance-Based Classification:

– Advantages: Effective for identifying lanes where the spacing between
clusters is uniform, robust to variations in cluster size.

– Limitations: May misclassify full lanes if distances between clusters
vary due to noise or measurement errors.

To visually compare the effectiveness of both approaches, consider the figures 3.10
and 3.9.

Distance-based classification generally provides better results due to its robustness
to variations in cluster size. By focusing on the distances between clusters, this
method is less affected by the inherent variability in cluster sizes that can arise
from noise or measurement errors.

Figure 3.9 Distance-based classification. Consistent small distances between clusters
indicate a full lane, while consistent larger distances indicate a dashed lane.

Figure 3.10 Size-based classification. Consistent large cluster sizes indicate a full
lane, while consistent smaller sizes indicate a dashed lane.

Classifying lanes as dashed or full based on cluster analysis allows for a more
nuanced understanding of road markings. By measuring the distances between
clusters and evaluating their sizes, we can accurately distinguish between dashed



and full lanes, enhancing the overall lane detection process. This methodology,
combined with the calculation of standard deviations, ensures a robust classification
system that adapts to varying road conditions and markings. Both size-based and
distance-based approaches offer valuable insights and can be used complementarily
to improve the accuracy of lane classification.

3.6 Algorithm Description

Our final lane detection method includes the following key steps:

1. Preprocessing:

• Downsampling: Reduce the number of points in the point cloud using
voxel grid downsampling to ensure efficient processing while retaining
essential structural features. (Section 2.5)

• Outlier Removal: Use Statistical Outlier Removal to eliminate noise
from the point cloud by analyzing the distribution of distances to a
point’s neighbors. (Section 2.4)

2. Extraction of Ground Plane:

• Apply the RANSAC algorithm to segment the ground plane from the
point cloud data. This involves fitting a plane model and distinguishing
inliers that lie on the plane from outliers. (Section 3.2)

3. Clustering:

• Use DBSCAN to divide the remaining data into clusters. DBSCAN
groups points that are closely packed together while marking points
that lie alone in low-density regions as outliers. (Section 3.1)

4. Filtering Non-Lane Clusters:

• RANSAC Line Fitting: For each cluster, apply the RANSAC
algorithm to fit a line. Clusters that do not form a valid line are filtered
out. (Section 3.2)

• PCA Analysis: Perform Principal Component Analysis on each
cluster to analyze its geometric features. Clusters that do not align
with the principal direction are filtered out. (Section 3.3)

5. Connecting Lane Clusters:

• Use custom algorithm to connect the remaining clusters into lane
entities. This process utilizes direction vectors derived from PCA
to ensure that connected clusters maintain consistent directionality.
(Section 3.4)

6. Classification of Lane Entities:



• Use custom algorithm to classify the connected lane entities into two
categories: full lanes and dashed lanes. This classification is based on
the size of the clusters and the distances between them. (Section 3.5)

3.7 Conclusion

In this section, we present a comprehensive methodology for lane detection that
integrates well-known algorithms with our unique approach. Our method uses
the strengths of DBSCAN clustering, RANSAC, and PCA, enhanced by custom
algorithms that utilize geometric features of the data for filtering non-lanes,
connecting lane objects, and classification.

Our approach begins with DBSCAN clustering to identify potential lane segments.
Following this, we apply a combination of PCA and RANSAC to refine these
clusters. RANSAC is used in identifying inliers that fit a lane model, ensuring
that only relevant points are considered. PCA is used to determine the principal
direction of each cluster, enabling us to filter out non-lane points by analyzing
their alignment with the direction vector.

To connect lane objects, we use custom algorithms that assess the geometric
properties of the clusters. These algorithms calculate the nearest points between
clusters and evaluate their alignment using PCA and RANSAC-fitted lines. This
ensures that connected clusters maintain consistent directionality and proximity,
forming continuous lane entities.

For classification, our method evaluates both the size and distance between clusters.
By calculating the standard deviation of cluster sizes and the distances between
adjacent clusters, we classify lanes as either full or dashed based on their geometric
characteristics.

Evaluation results and comparisons with other methods will be detailed in chapter
5. This will provide a clearer picture of the performance and accuracy of our
approach in real-world scenarios.

Chapter 4 will delve into the implementation considerations and parameter esti-
mation for each algorithm, providing practical insights into the deployment of our
lane detection methodology.



4 Experiments and
Implementation Considerations

In this chapter, we delve into the practical aspects of our lane detection methodol-
ogy (3.6). This includes a detailed description of the implementation, the scripts
developed for each task, and the experiments conducted to estimate the optimal
parameters for each algorithm. By providing insights into the coding and exper-
imental processes, this chapter aims to offer a comprehensive understanding of
how our approach was realized and validated.

We will start by presenting the scripts that were developed to perform various
tasks within our lane detection framework. Each script is designed to address
specific challenges, from clustering and line fitting to connecting lane segments
and classifying lanes as dashed or full. Following the script descriptions, we will
discuss the experimental setups and results that informed our parameter choices
and demonstrated the effectiveness of our approach.

4.1 Data Loading and Management

To facilitate interaction with the data provided in the Agroverse 2 Sensor dataset,
a script named dataloader.py has been developed. This script serves as an
abstraction layer for retrieving and managing data from the dataset. It includes
functionality to synchronize and transform sensor data between different reference
frames and temporal points, ensuring the integrity and usability of the data
for research purposes. Additionally, the dataloader supports the extraction and
management of vehicle poses, LIDAR paths, and various other elements crucial
for processing the dataset.

4.1.1 Script Overview

The main class in this script is SensorDataLoader, which provides several key
methods:

• init(self, data_dir:, labels_dir: Path) -> None:

Initializes paths for data and labels directories.

• get_city_pose(self, log_id: str, timestamp_ns: int) -> SE3:

Retrieves the vehicle’s pose as an SE3 object from the dataset for a given
log ID and timestamp.
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• get_log_map_path(self, log_id: str) -> Path:

Returns the path to the map directory for a given vehicle log.

• get_city_name(self, log_id: str) -> str:

Extracts the city name from the vector map file associated with the log ID.

• list_log_ids(self) -> list:

Lists all log IDs available in the dataset directory.

• get_lidar_path(self, log_id: str, timestamp_ns: int) -> Path:

Provides the path to the LIDAR data file for a specific log ID and timestamp.

• get_ordered_lidar_timestamps(self, log_id: str) -> list:

Returns a list of chronologically ordered timestamps for each LIDAR sweep
in a log.

• get_ordered_lidar_paths(self, log_id: str) -> list:

Retrieves and sorts all LIDAR file paths in a single vehicle log.

The script also includes helper functions to convert and manipulate pose data:

• convert_pose_to_SE3(df: pd.DataFrame) -> SE3:

Converts a DataFrame containing pose data into an SE3 transformation
object. This involves extracting quaternion and translation components and
converting them into a rotation matrix.

• quat_to_mat(quat_wxyz: NDArrayFloat) -> NDArrayFloat:

Converts a quaternion to a rotation matrix.

4.1.2 IO Utilities

In addition to the dataloader.py script, another crucial component of our data
processing pipeline is the io_utils.py script. This script provides utility functions
for reading data from Feather files, which are a common format used in the
Agroverse 2 Sensor dataset. The functions in this script streamline the process of
loading and converting data into usable formats for further processing.

The io_utils.py script provides the following key functions:

• read_feather(path: Path, columns: [Tuple[str, ...]] = None):

This function reads data from a Feather file located at the specified path
and returns it as a pandas DataFrame. An optional parameter allows the
selection of specific columns to be read, improving efficiency when only a
subset of the data is needed.



• read_lidar_sweep(path: Path):

This function reads a LIDAR sweep from a Feather file and converts it into
a NumPy array of floating-point numbers. The resulting array includes the
x, y, z coordinates and the intensity values of the LIDAR points.

The io_utils.py script relies on the pyarrow.feather module for reading
Feather files. This module is optimized for high-performance reading and writing
of columnar data, making it well-suited for handling large-scale datasets commonly
encountered in autonomous vehicle research.

4.1.3 SE3 Class for Rigid Body Transformations

The SE3 class is a fundamental component used in the dataloader.py script.
The se3.py encapsulates functionalities for performing rigid transformations on
point clouds using the SE(3) lie group [8]. This script provides the mathematical
foundation for accurately transforming point cloud data from the ego-vehicle’s
local coordinate frame to a global city coordinate system by applying rotation
and translation parameters encapsulated in the SE(3) transformation matrices.

When retrieving the vehicle’s pose at a specific timestamp, the get_city_pose
method utilizes the SE3 class to convert the pose data from the dataset into an
SE3 object. This object can then be used to transform LIDAR points from the
vehicle’s local frame to the global frame, ensuring all data is aligned correctly for
further processing.

4.2 Point Cloud Accumulation

The accumulate.py script is an essential component of our data processing
pipeline, designed to aggregate point cloud data from multiple LIDAR sweeps
into a single, comprehensive dataset. This accumulated point cloud provides a
detailed and continuous representation of the environment, crucial for tasks such
as mapping and lane detection. This script processes individual LIDAR sweeps,
transforms their coordinates from the ego-vehicle frame to the global city frame,
and aggregates the transformed points into a single dataset. This process enhances
the spatial coverage and density of the point cloud, enabling more accurate and
detailed analysis.

4.2.1 Script Overview

The main steps in the accumulate.py script include:



• Initialization: The script initializes the data loader and sets up paths for
data directories.

• Processing Each Log: For each log in the dataset, the script retrieves and
processes all LIDAR sweeps.

• Transformation and Accumulation: Each LIDAR sweep is transformed from
the ego-vehicle frame to the city frame and then accumulated into a single
dataset.

• Saving Accumulated Points: The aggregated point cloud data is saved to a
file for further analysis.

The accumulate.py script uses functions from the io_utils.py and
dataloader.py scripts to read and transform data efficiently.

4.3 Integration with Point Cloud Library

To effectively manage the complexity of operations required for the manipulation
of accumulated LIDAR point clouds, our pipeline integrates the Point Cloud
Library (PCL). [14]

Recognized for its comprehensive suite of tools designed for 3D data processing,
PCL enables efficient and robust management of spatial data. The library includes
advanced algorithms such as Octrees (Section 2.3) and KD-trees for spatial
partitioning, voxel grid downsampling (Section 2.5) to reduce data size while
preserving essential structural features, and a statistical outlier removal filter that
improves data quality by eliminating noise (Section 2.4).

The incorporation of PCL into our system is driven by its optimized performance
capabilities, which are essential for handling the large volumes of data generated
by high-resolution LIDAR sensors. Its flexibility allows for adaptation to various
3D data structures and processing needs, supporting a broad range of applications
in autonomous vehicle navigation and 3D mapping. PCL’s reliability, underpinned
by a community of expert developers, ensures the accuracy and robustness of its
3D spatial computations.

Incorporating specific classes from PCL enhances our system’s processing ca-
pabilities. The use of pcl::StatisticalOutlierRemoval, pcl::Octree, and
pcl::VoxelGrid, as outlined in PCL documentation, allows for structured and
optimized handling of tasks such as data structuring, downsampling, and noise re-
duction. These classes support the high-performance demands of our applications,
ensuring the creation of accurate and reliable environmental models necessary for
autonomous vehicle operations.



4.3.1 Preprocessing LIDAR Point Clouds

The preprocessing.cpp script performs essential preprocessing tasks on LIDAR
point clouds, including statistical outlier removal and voxel grid downsampling.
The script reads input point clouds, applies filters to clean and downsample the
data, and writes the processed point cloud to an output file.

Workflow of Preprocessing

1. Reading the Point Cloud: The script begins by reading the input point
cloud file using pcl::PCDReader. This file contains the raw LIDAR data.

2. Statistical Outlier Removal: The pcl::StatisticalOutlierRemoval
filter is used to remove noise from the point cloud. The effectiveness of
the Statistical Outlier Removal depends heavily on the choice of param-
eters k and k_factor, designated in the implementation as MeanK and
StddevMulThresh.

• meanK: Number of nearest neighbors to analyze for each point.
• stddevMulThresh: Standard deviation multiplier threshold. Points

with a mean distance larger than this threshold from the average
distance are considered outliers and removed.

The chosen parameters ensure a balance between removing noise and retain-
ing important structural features.

3. Voxel Grid Downsampling: The pcl::VoxelGrid filter downsamples the
point cloud to reduce its size while preserving the geometric structure. The
leaf_size parameter defines the size of the voxels used for downsampling.

4. Writing the Processed Point Cloud: Finally, the processed point
cloud is written to an output file using pcl::PCDWriter. This file contains
the filtered and optionally downsampled LIDAR data, ready for further
processing.

Parameter Selection

In our specific implementation, as documented in the preprocessing.cpp file,
MeanK was set to 100, indicating that each point’s status (inlier or outlier) is deter-
mined based on its relationship with the nearest 100 points. This choice reflects
a balance between ignoring too many data points and avoiding the removal of
too few outliers. The standard deviation multiplier threshold (StddevMulThresh)
was set to 1.0, which establishes a moderate boundary for determining outliers,
aiming to keep the data clean yet comprehensive.

The parameter leaf_size was set to 0.1. This parameter is critical as it defines
the size of the voxel in all three spatial dimensions (X, Y, and Z). In the context



of our project, the chosen voxel size is 0.1 units, which effectively represents the
resolution of the point cloud after downsampling.

4.3.2 Ground Plane Extraction and Projection

The ground_extraction.cpp script focuses on identifying the ground plane within
a LIDAR point cloud and projecting the points onto a 2D plane. This process is
critical for tasks such as road surface detection and lane marking extraction.

Workflow of Ground Extraction

1. Loading the Point Cloud: The script loads the original point cloud
data using pcl::io::loadPCDFile, which reads the LIDAR data into a
pcl::PointCloudpcl::PointXYZ object.

2. Normal Estimation: Normals for each point are computed using
pcl::NormalEstimation. This step involves:

• Setting the input cloud and search method.
• Using a KdTree for efficient neighbor search.
• Computing the normals with KSearch = 50 (the number of nearest

neighbors to use when estimating the normals of the points in the point
cloud), which ensures a robust estimation.

3. Ground Plane Segmentation: The ground plane is segmented using
pcl::SACSegmentationFromNormals, configured with the following param-
eters:

• setModelType(pcl::SACMODEL_NORMAL_PLANE): Specifies the model
to fit a plane using point normals.

• setMethodType(pcl::SAC_RANSAC): Utilizes the RANSAC algorithm
for robust fitting.

• setNormalDistanceWeight(0.1): Balances the influence of point nor-
mals in the segmentation.

• setMaxIterations(1000): Ensures a thorough search for the best
model.

• setDistanceThreshold(2): Defines the maximum distance for a point
to be considered an inlier.

4. Extracting the Ground Plane: The ground plane points are extracted
using pcl::ExtractIndices. This filter isolates the inliers identified during
segmentation, producing a point cloud that represents the ground surface.

5. Projecting to 2D Plane: The extracted ground plane is projected onto a
2D plane using pcl::ProjectInliers. This step involves defining a model



coefficient that specifies the projection plane and applying the projection to
the point cloud.

6. Writing the Projected Point Cloud: The final projected point cloud is
written to an output file using pcl::PCDWriter.

Parameter Selection

The parameter selection includes setKSearch(50) for providing a reliable neigh-
borhood size for normal estimation, setNormalDistanceWeight(0.1) to balance
normal vector influence in segmentation, setMaxIterations(1000) to ensure com-
prehensive model fitting, and setDistanceThreshold(2) to define the tolerance
for inliers in the plane model.

4.4 DBSCAN Clustering

A script named clustering.py was developed to handle the DBSCAN clustering.
This script is designed to intake preprocessed LIDAR point cloud data, where noise
has been minimized and the points have been downsampled. The values chosen
for ϵ and MinPts were determined to balance the sensitivity of the algorithm to
small variations in density while preventing the merging of distinct lanes into a
single cluster.

4.4.1 Script Overview

The clustering.py script performs the following key tasks:

1. Loading Point Cloud Data: The script starts by loading the preprocessed
point cloud data from a .ply file using the PyntCloud library. This data
represents the LIDAR point cloud after noise reduction and downsampling.

2. Applying DBSCAN Clustering: The apply_dbscan_clustering function
applies the DBSCAN algorithm to the point cloud data. The parameters ϵ
and MinPts control the sensitivity and minimum cluster size, respectively.
The function returns labels for each point, indicating the cluster to which it
belongs. Points labeled as noise (with a label of -1) are filtered out. This
ensures that only points belonging to meaningful clusters are retained.

3. Saving Clustered Data: The save_segments_to_point_cloud function
saves the clustered point cloud data into a new .ply file. Each cluster
is assigned a unique label, which can be used for visualization and further
analysis.



4.4.2 Practical Implementation and Parameter Selection

In our initial tests, several configurations of ϵ and MinPts were experimented
with:

• A smaller ϵ tended to break a single lane into multiple clusters, especially
in curved lane segments (Figure 3.3).

• Conversely, a larger ϵ sometimes resulted in multiple adjacent lanes being
detected as a single cluster, particularly in areas where lanes are close to
each other (Figure 3.2).

Adjustments were made to improve the lane detection process. After several
iterations, we found optimal parameter settings that clearly separated the lanes
without mistakenly combining them or breaking them into smaller parts. The
parameter ϵ was set to 0.3 and MinPts was set to 10. The result of these settings
is shown in the Figure 3.1.

The practical implementation of DBSCAN in this script not only highlights the
challenges faced but also showcases the potential of this clustering technique in
real-world applications like autonomous driving. The visual results, as shown in
the figures, clearly illustrate the importance of parameter tuning in achieving
precise and reliable lane detection in LIDAR data.

By integrating DBSCAN clustering with careful parameter selection, our approach
effectively identifies and separates lanes in the LIDAR point cloud data, laying the
groundwork for further processing and analysis in autonomous vehicle navigation
systems.

4.5 RANSAC Filtering

Line fitting is implemented using a Python script named ransac_filter.py. This
script applies the RANSAC algorithm to each cluster detected previously using
the DBSCAN clustering algorithm. Here, a line is fitted to the points within each
cluster, and the validity of this line is determined based on the number of inliers.
If the number of inliers is greater than 60% of the total points in the cluster, the
cluster is considered to effectively represent a lane marking.

4.5.1 Script Overview

The ransac_filter.py script performs the following key tasks:



1. Loading Point Cloud Data: The script starts by loading the clustered point
cloud data from a .ply file using the PyntCloud library. This data represents
the LIDAR point cloud after clustering with DBSCAN.

2. Applying RANSAC Fitting: The apply_ransac_fitting function applies
the RANSAC algorithm to the point cloud data. The parameters
residual_threshold controls the maximum distance a point can have from
the fitted line to be considered an inlier. The function returns a dictionary
of line models for each cluster that meets the inlier criteria.

3. Filtering Out Small Clusters: Clusters with fewer than 10 points are filtered
out. This step removes noise and insignificant data that could otherwise lead
to incorrect lane detection. Additionally, clusters with a high percentage
of inliers are retained, ensuring that only significant lane markings are
considered.

4. Saving Filtered Line Segments: The save_segments_to_point_cloud func-
tion saves the filtered line segments into a new .ply file. Each line segment
is assigned a unique label, which can be used for visualization and further
analysis.

The line models resulting from the RANSAC fitting process are stored as objects
in a dictionary. Each object contains:

• Intercept: The y-intercept of the line model.

• Coefficient: The slope of the line.

• Inlier Mask: A binary mask indicating which points in the cluster are
inliers to the line.

This structured representation not only facilitates the manipulation and analysis
of detected lines but also helps with subsequent processes such as visualization
and further statistical analysis.

4.5.2 Practical Implementation and Parameter Selection

In our implementation, the optimal residual threshold for determining inliers
versus outliers during the line fitting process was set to 2. This threshold value
balances the need for precision in line detection against the robustness required
to handle typical noise and irregularities in LIDAR data.

The practical implementation of RANSAC in this script enhances the accuracy of
lane detection by ensuring that only significant lane markings are retained.



4.6 PCA Filtering

The implementation of PCA for lane detection involves specific tools and scripts
to ensure accurate and efficient processing of LIDAR data. The clustering step is
implemented using the DBSCAN algorithm to segment the LIDAR point cloud
into clusters. Each cluster is then processed individually using PCA.

4.6.1 Script Overview

The pca_filter.py script performs the following key tasks:

1. Loading Point Cloud Data: The script starts by loading the clustered point
cloud data from a .ply file using the PyntCloud library. This data represents
the LIDAR point cloud after clustering with DBSCAN and filtering with
RANSAC.

2. Applying PCA: The make_cluster_dict function applies the PCA algo-
rithm to the point cloud data. The function computes the principal com-
ponents and the percentage of variance explained by each component. The
direction vector of the line is extracted from the first principal component
(PC1).

3. Filtering Based on Variance: Clusters are filtered based on the variance
explained by PC1 and PC2. If the variance explained by PC2 is less than
0.05, the cluster is considered a potential lane marking. This ensures that
only clusters with significant linear characteristics are retained.

4. Extracting Direction Vectors: For each cluster, the direction vector of the
line is extracted from PC1. Additionally, the mean point, the minimum
point, and the maximum point along the direction vector are calculated.

5. Saving Filtered Line Segments: The save_segments_to_point_cloud func-
tion saves the filtered line segments into a new .ply file. Each line segment
is assigned a unique label, which can be used for visualization and further
analysis.

The resulting line models are stored as objects in a dictionary. Each object
contains:

• Points: The original points in the cluster.

• Mean Point: The mean point of the cluster.

• Point Min: The minimum point along the direction vector.

• Point Max: The maximum point along the direction vector.



• Direction Vector: The direction vector of the line determined by PC1.

This structured representation facilitates further processing, visualization, and
analysis of detected lanes.

4.6.2 Practical Implementation and Parameter Selection

In our implementation, the threshold for the variance explained by PC1 was set to
0.3, and the threshold for the variance explained by PC2 was set to 0.05. These
thresholds ensure that clusters with significant linear characteristics are identified
as potential lane markings.

The practical implementation of PCA in this script enhances the accuracy of lane
detection by ensuring that only significant linear features are retained.

4.7 Joining Clusters into Lane Entities

The process of joining clusters into lane entities is crucial for accurately representing
continuous lanes from segmented LIDAR data. The script join.py is designed to
merge these clusters based on geometric and statistical properties, ensuring that
the resulting lane entities are coherent and accurately reflect the road structure.

4.7.1 Script Overview

The join.py script performs the following key tasks:

1. Loading Cluster Data: The script starts by loading the cluster data from
a .pickle file using the pickle module. This data contains the clusters
identified from the previous DBSCAN, PCA and RANSAC processing steps.

2. Finding Nearest Clusters: The find_nearest_points function calculates
the minimum distance between the boundary points of two clusters. This
is done by considering all pairwise distances between the minimum and
maximum points of the clusters. The nearest pair of points determines the
potential connection between clusters.

3. Joining Clusters: The find_next_cluster function identifies the best clus-
ter to join based on the distance and inlier percentage. The script iterates
through the clusters and uses the PCA direction vector or RANSAC line to
check if the clusters are aligned. If the minimum distance is less than the
threshold (10 units) and the inliers percentage is greater than 70%, the clus-
ters are joined. The join_clusters function performs the actual merging



of clusters. It concatenates the points from two clusters and recalculates
the PCA components and RANSAC line for the new cluster. The merged
cluster is then added to the dictionary of clusters, and the process repeats
until no more clusters can be joined.

4. Recomputing Principal Components and RANSAC Lines: For each newly
formed cluster, the script recalculates the principal components using PCA.
The first principal component provides the new direction vector of the cluster.
Additionally, the script fits a line using the RANSAC algorithm to ensure the
linearity of the cluster. This helps in accurately modeling the lane markings.

5. Filtering by Common Direction: The most_common_direction function
filters clusters based on the similarity of their direction vectors. This
function calculates the mean direction vector of all clusters and normalizes
it to a unit vector. It then checks the cosine similarity between the mean
direction and the direction vector of each cluster. Clusters with a cosine
similarity below a specified threshold are considered to have a common
direction and are retained.

6. Saving Joined Clusters: The save_segments_to_point_cloud function
saves the joined clusters into a new point cloud file (joined.ply). Each
cluster is assigned a unique label for visualization. The script ensures that
the points are correctly labeled and saved for further use.

4.7.2 Practical Implementation and Parameter Selection

The main parameters involved in the clustering and joining process include the
threshold for the minimum distance between clusters (set to 10) ensuring clusters
are close enough to be considered for joining and the inlier percentage threshold
for considering a valid connection (set to 70%).

The practical implementation of cluster joining in this script enhances the coher-
ence of lane entities by merging fragmented clusters based on geometric alignment
and proximity.

4.8 Classification of Dashed or Full Lanes

The script classify.py is designed to classify lane entities as either dashed or full
based on the size of the clusters and the distances between them. This classification
is essential for understanding the nature of lane markings and ensuring accurate
lane detection.



4.8.1 Script Overview

The classify.py script performs the following key tasks:

1. Loading Point Cloud Data: The script starts by loading the joined point
cloud data from a .ply file using the PyntCloud library. This data represents
the LIDAR point cloud after the clusters have been joined into lane entities.

2. Classifying Clusters: The script applies size-based and distance-based classi-
fication to determine whether each lane entity is dashed or full.

3. Saving Classified Data: The resulting classifications are saved into a new
point cloud file for visualization and further analysis.

4.8.2 Practical Implementation and Parameter Selection

The classification process uses the following thresholds:

• distance-based classification: The standard deviation threshold for
distances between clusters is set to 5.

• size-based classification: The standard deviation threshold for the
size of clusters is set to 300.

The practical implementation of this script effectively classifies lane entities based
on their geometric properties. The visual results, as saved in the classify.ply
file, provide clear differentiation between dashed and full lanes, facilitating accurate
lane detection and mapping.

By integrating this script into our pipeline, we achieve a robust classification of lane
entities, improving the accuracy and reliability of lane detection in autonomous
vehicle navigation systems.



5 Evaluation Results

This chapter evaluates the performance of lane detection using various metrics,
including Overall Accuracy, Mean Intersection over Union (IoU), Mean Class
Accuracy, and Mean Average Precision (mAP). The metrics were tested on both
binary segmentation (whether a point in the point cloud is a lane or not) and
multi-class segmentation (where each lane type, such as dashed or full, is classified
separately).

5.1 Metrics and Formulas

5.1.1 Overall Accuracy

Overall Accuracy measures the proportion of correctly classified points over the
total number of points. It is calculated as:

Overall Accuracy = TP + TN

TP + TN + FP + FN

where TP is True Positives, TN is True Negatives, FP is False Positives, and
FN is False Negatives.

5.1.2 Mean Intersection over Union (IoU)

Mean IoU evaluates the average overlap between the predicted segmentation and
the ground truth segmentation. It is calculated as:

IoU = TP

TP + FP + FN

Mean IoU is the average IoU across all classes.

5.1.3 Mean Class Accuracy

Mean Class Accuracy measures the average accuracy of each class. It is calculated
as:

Class Accuracy = TP

TP + FN

Mean Class Accuracy is the average Class Accuracy across all classes.
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5.1.4 Mean Average Precision (mAP)

Mean Average Precision assesses the precision of the model averaged over all
classes and thresholds. Precision is calculated as:

Precision = TP

TP + FP

mAP is the mean of the Average Precision scores for all classes.

5.2 Results

The evaluation was conducted on original point clouds before pre-processing.
These point clouds were manually labeled to establish ground truth, as illustrated
in Figures 5.1 and 5.2. The primary objective of this task was to develop a
segmentation method. It is important to note that while our method focuses on
segmentation, other existing methods typically fit polylines for lane detection.
This fundamental difference in approach makes direct comparisons with existing
methods challenging. The results of our evaluation, therefore, highlight the
effectiveness of our segmentation-based approach within the scope of this project.

The results indicate that binary segmentation yields higher performance across
all metrics compared to multi-class segmentation. The improved performance
in binary segmentation is attributed to its ability to simplify the classification
process, reducing the likelihood of misclassification and enhancing overall model
accuracy.

Figure 5.1 Ground Truth for P1



Figure 5.2 Ground Truth for PC2

The results for each point cloud, as presented in the following tables, were calcu-
lated using the parameters specified in Chapter 4 and the algorithm described in
Section 3.6. These parameters have been identified as optimal, as they yield the
highest metrics compared to other tested parameters and approaches. Specifically,
we used PCA-based connection methods, which involve aligning clusters based on
their principal component directions to form lane entities (Section 4.7). Addition-
ally, we employed a classification approach based on both the size of the clusters
and the distances between them, which ensures accurate differentiation between
full and dashed lanes by assessing the geometric properties of the lane segments
(Section 4.8).

For binary segmentation, the metrics results on four point clouds are as follows:

Metric PC 1 PC 2 PC 3 PC 4

Overall Accuracy 0.9883 0.9909 0.9903 0.9815
Mean IoU 0.6844 0.6284 0.6598 0.6605

Mean Class Accuracy 0.7046 0.6911 0.6925 0.7029
Mean Average Precision 0.6720 0.5889 0.6486 0.6688

Table 5.1 Binary Segmentation Results with Optimal parameters and PCA-based
Connection



For multi-class segmentation, the metrics results on four point clouds are as
follows:

Metric PC 1 PC 2 PC 3 PC 4

Overall Accuracy 0.9879 0.9906 0.9903 0.9815
Mean IoU 0.6324 0.5001 0.5598 0.5605

Mean Class Accuracy 0.6904 0.6230 0.6725 0.6829
Mean Average Precision 0.6087 0.4472 0.5486 0.5788

Table 5.2 Multi-Class Segmentation Results with Optimal parameters and PCA-based
Connection

We also experimented with various modifications of our approach. For instance,
the table below demonstrates that utilizing RANSAC-based connections for lane
entities results in worse performance compared to the PCA-based approach. In
the RANSAC-based method, clusters are connected using fitted lines derived
from the RANSAC algorithm. This approach is less effective at connecting lanes,
especially at road turns, leading to discontinuities in lane entities. Consequently,
this variation yields lower performance metrics across all categories, including
Mean IoU, Mean Class Accuracy, and Mean Average Precision. The PCA-based
approach, which aligns clusters based on their principal component directions,
provides smoother connections and better handles the curvature of road lanes,
resulting in better performance in all evaluated metrics. Detailed comparison of
both approaches is explained in Section 3.4.4.

Metric PC 1 PC 2 PC 3 PC 4

Overall Accuracy 0.9809 0.9918 0.9884 0.9832
Mean IoU 0.5818 0.4840 0.5203 0.5312

Mean Class Accuracy 0.6217 0.6082 0.6358 0.6489
Mean Average Precision 0.5690 0.4287 0.4314 0.4968

Table 5.3 Multi-Class Segmentation with RANSAC-based Connection Results

Additionally, we explored a variation where clusters were connected using fitted
lines from the RANSAC algorithm, and classification was based on the size of the
clusters instead of using both size and distance-based criteria (Section 3.5). This
approach resulted in significantly degraded performance. The use of size-based
classification failed to accurately distinguish between full and dashed lanes, leading
to misclassifications. Consequently, this variation produced noticeably lower
metrics, including Mean IoU, Mean Class Accuracy, and Mean Average Precision.
The combined use of PCA-based connections and both size and distance-based
classification criteria in the original approach proved more robust and accurate in
lane detection tasks.



Metric PC 1 PC 2 PC 3 PC 4

Overall Accuracy 0.9787 0.9906 0.9861 0.9843
Mean IoU 0.5121 0.4244 0.4732 0.4487

Mean Class Accuracy 0.6258 0.5885 0.6114 0.6072
Mean Average Precision 0.5089 0.3857 0.4913 0.4112

Table 5.4 Multi-Class Segmentation with RANSAC-based Connection and Size-based
Classification Results

The high Overall Accuracy and Mean Class Accuracy in our results can be
attributed to the dominance of non-lane points in the LIDAR point clouds. Since
the majority of points are not part of a lane, correctly classifying these points as
non-lane significantly boosts these metrics.

However, Mean IoU and Mean Average Precision (mAP) are lower. Mean IoU
penalizes false positives and false negatives more heavily, highlighting the model’s
performance in distinguishing lane points from non-lane points. Mean Average
Precision (mAP) further considers the precision-recall trade-off for each class.
Since lane points are less frequent, small misclassifications impact these metrics
more, resulting in lower values.



Conclusion

This thesis has focused on investigating and developing LIDAR-based lane detec-
tion techniques, using the capabilities of machine learning algorithms to achieve
robust and accurate lane identification.

Throughout this research, we have proposed and implemented a novel method that
integrates several well-known unsupervised machine learning techniques, including
Principal Component Analysis (PCA), Random Sample Consensus (RANSAC),
and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
clustering. The primary objective was to achieve three-dimensional segmentation
of LIDAR point clouds, enabling the precise labeling of each point as lane or
non-lane and classifying each detected lane by type.

One of the significant advantages of employing unsupervised learning techniques
is the ability to perform fast and efficient lane detection without the need for
large datasets with ground truth labels. Labeling such datasets manually is not
only time-consuming but also prone to human error. Our approach avoids this
challenge, providing a reliable solution for real-time applications in autonomous
vehicles.

The methods developed in this thesis are not only effective for immediate lane
detection but also serve as powerful tools for the pre-processing and labeling
of large point cloud datasets. These labeled datasets can subsequently be used
to train supervised machine learning models, including deep neural networks,
enhancing their performance and accuracy in complex driving environments.

The evaluation results demonstrated the effectiveness of our approach and the
integration of unsupervised learning techniques into the lane detection pipeline
has proven to be a promising direction for future research and development.

In conclusion, this thesis contributes to the advancement of autonomous vehicle
navigation by providing a novel, efficient, and reliable lane detection solution
using LIDAR data. The developed methodologies offer benefits for both real-time
lane detection and the creation of high-quality training datasets for supervised
learning models.
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12. Ruzgienė, Birutė; Förstner, Wolfgang. Ransac for outlier detection.
Geodesy and cartography. 2012, vol. 31, pp. 83–87. Available from doi:
10.3846/13921541.2005.9636670.

13. Greenacre, Michael; Groenen, Patrick; Hastie, Trevor; Iodice D’Enza,
Alfonso; Markos, Angelos; Tuzhilina, Elena. Principal component analysis.
Nature Reviews Methods Primers. 2022, vol. 2, p. 100. Available from doi:
10.1038/s43586-022-00184-w.

14. Rusu, Radu Bogdan; Cousins, Steve. 3D is here: Point Cloud Library (PCL).
In: IEEE International Conference on Robotics and Automation (ICRA).
Shanghai, China, 2011.

https://doi.org/10.5120/739-1038
https://doi.org/10.3846/13921541.2005.9636670
https://doi.org/10.1038/s43586-022-00184-w


List of Figures

1.1 Working principle of LIDAR. [1] . . . . . . . . . . . . . . . . . . . 9

1.2 Format of Agroverse 2 (1.4) Point Cloud. . . . . . . . . . . . . . . 10

1.3 Agroverse 2 LIDAR sweep captured by one nanosecond timestamp. 12

1.4 Ground height samples for an Argoverse 2 scenario. Ground height
samples are visualized as blue points. LIDAR samples are shown
with color projected from ring camera imagery. [6] . . . . . . . . . 13

1.5 Structure of Agroverse 2 Sensor dataset. . . . . . . . . . . . . . . 13

2.1 Egovehicle pose table for different timestamps. . . . . . . . . . . . 16

2.2 Accumulated PC1 before preprocessing (number of points: 18,220,744). 17

2.3 Histogram of intensity values with Gaussian fit. . . . . . . . . . . 18

2.4 PC1 filtered by intensity value (number of points: 1,900,919). . . 19

2.5 Left figure: Cube is recursively divided into eight octants. Right
figure: Octree structure. . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 PC1 after SOR filtering and Voxel Grid Downsampling (number of
points: 507,235). . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Optimal clustering result showing distinct lane markings (ϵ = 0.3,
MinPts = 10), where each color represents a distinct cluster. . . . 30

3.2 Under-clustering example with a larger ϵ (1.0) causing multiple
lanes to merge (each color represents a distinct cluster). . . . . . . 31

3.3 Over-clustering example where a smaller ϵ (0.1) breaks a single
lane into multiple clusters (each color represents a distinct cluster). 31

3.4 Projection of extracted ground plane (PC1). . . . . . . . . . . . . 33

3.5 The result of PCA analysis for one cluster, blue points represent
potential lane marking. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The result of detected lanes after RANSAC and PCA based filtering,
each color represents distinct cluster. . . . . . . . . . . . . . . . . 37

66



3.7 Lanes connected using RANSAC, each color represents line entity. 39

3.8 Lanes connected using PCA direction vectors, each color represents
line entity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Distance-based classification. Consistent small distances between
clusters indicate a full lane, while consistent larger distances indicate
a dashed lane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Size-based classification. Consistent large cluster sizes indicate a
full lane, while consistent smaller sizes indicate a dashed lane. . . 42

5.1 Ground Truth for P1 . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Ground Truth for PC2 . . . . . . . . . . . . . . . . . . . . . . . . 60



List of Tables

1.1 Information about Dataset Logs . . . . . . . . . . . . . . . . . . . 14

5.1 Binary Segmentation Results with Optimal parameters and PCA-
based Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Multi-Class Segmentation Results with Optimal parameters and
PCA-based Connection . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Multi-Class Segmentation with RANSAC-based Connection Results 61

5.4 Multi-Class Segmentation with RANSAC-based Connection and
Size-based Classification Results . . . . . . . . . . . . . . . . . . . 62

68



List of Algorithms
1 Construct Octree for 3D Point Cloud [9] . . . . . . . . . . . . . . 21
2 Statistical Outlier Removal for Point Cloud Cleaning . . . . . . . 23
3 Voxel Grid Filtering for Point Cloud Downsampling . . . . . . . . 25
4 DBSCAN Clustering [11] . . . . . . . . . . . . . . . . . . . . . . . 29
5 RANSAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 32

69



List of Abbreviations

1. LIDAR: Light Detection and Ranging

2. SOR: Statistical Outlier Removal

3. DBSCAN: Density-Based Spatial Clustering of Applications with Noise

4. RANSAC: Random Sample Consensus

5. PCA: Principal Component Analysis

6. PCL: Point Cloud Library

70



A Attachments

An attachment in ZIP format that contains various files for an autonomous
lane detection framework using LIDAR data. This ZIP file includes Python
scripts, C++ source files, a Bash script for dataset downloading, and a CMake
configuration file for compiling the C++ files.

A.1 Python Scripts

dataloader.py: Manages LIDAR data loading and transformations.

io_utils.py: Handles reading and processing of Feather format data.

se3.py: Implements SE3 transformations for 3D point clouds.

accumulate.py: Aggregates LIDAR sweeps into a comprehensive dataset.

clustering.py: Performs DBSCAN clustering on LIDAR data.

ransac_filter.py: Applies RANSAC algorithm for line fitting in point clouds.

pca_filter.py: Utilizes PCA for analyzing and filtering point cloud clusters.

join.py: Merges clusters to form continuous lane entities.

classify.py: Classifies lane entities based on cluster characteristics.

A.2 C++ Source Files

preprocessing.cpp: Applies preprocessing like noise filtering and downsampling.

ground_extraction.cpp: Extracts and projects ground plane from LIDAR data.

A.3 Bash Script

dataset_download.sh: Automates downloading of the Agroverse 2 dataset.
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A.4 CMake Configuration File

CMakeLists.txt: Specifies build settings and dependencies for C++ files.
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