
BACHELOR THESIS

Avazagha Ahmadov

Tournament environment for the board
game Hive with an implementation of

sample bots

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Vladan Majerech, Dr.
Study programme: Computer Science with a

specialization in Artificial
Intelligence

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

First and foremost, I would like to express my deepest gratitude to my thesis
supervisor, Mgr. Vladan Majerech, Dr., for his guidance and support throughout
the research process.

I extend my heartfelt thanks to my family for their unwavering support and
belief in my abilities, which has been a constant source of motivation.

I am also profoundly grateful to my closest friends for their exceptional
assistance and support when I needed it the most.

Title: Tournament environment for the board game Hive with an implementation
of sample bots

Author: Avazagha Ahmadov

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Vladan Majerech, Dr., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: This thesis addresses the performance of AI algorithms in the board
game Hive. It implements and evaluates Alpha-Beta pruning and Monte Carlo
Tree Search in this complex game setting. The study demonstrates that Alpha-
Beta significantly outperforms MCTS, achieving perfect results against baselines.
Additionally, the Alpha-Beta agent won against an intermediate-level human
player and nearly won against an expert-level player. Compared to previous works,
this research achieves better performance against human players.

Keywords: Monte Carlo Tree Search, Minimax, Alpha-Beta pruning, board game
Hive

Contents

Introduction 7

1 Hive 8
1.1 Set Up for the Game and Movement 8
1.2 Bugs . 9
1.3 One Hive Rule . 11
1.4 Freedom To Move . 12
1.5 Objective of The Game . 13
1.6 Why Hive? . 13

2 Related Work 15

3 Monte-Carlo Tree Search 17
3.1 Background . 17
3.2 Overview of MCTS . 18
3.3 Selection . 19
3.4 Expansion . 20
3.5 Simulation . 20
3.6 Backpropagation . 21
3.7 Choosing The Best Move . 21
3.8 Parallelization . 21
3.9 Algorithm . 21

4 Minimax and Alpha-Beta pruning 24
4.1 Background . 24
4.2 Minimax . 25

4.2.1 Algorithm . 26
4.2.2 Problems with Minimax 27

4.3 Alpha-Beta pruning . 28
4.3.1 Comparison with Minimax 29
4.3.2 Transposition Tables . 30
4.3.3 Algorithm . 30

4.4 Evaluation Function . 31

5 Implementation 33
5.1 Implementing Hive . 33

5.1.1 Position Encoding . 33
5.1.2 Piece And Move Encoding 34
5.1.3 Game State Encoding . 35
5.1.4 Game Logic Implementation 35

5.2 Implementing the AI agents . 36
5.3 Universal Hive Protocol . 37

5

6 Results 38
6.1 AI Agents Versus a Random Agent 38
6.2 AI Agents Versus a “Mate In One” agent 39
6.3 Alpha-Beta Agent Versus Monte Carlo Tree Search Agent 40
6.4 AI Agent Versus a Human . 40

Conclusion 42

Bibliography 43

List of Figures 45

List of Tables 46

A User Documentation 47
A.1 Dependencies . 47
A.2 Installation . 47
A.3 Running the Application . 48

A.3.1 Settings . 49
A.3.2 Playing the Game . 50
A.3.3 Reviewing Saved Files . 52

B Attachments 54
B.1 Source Code . 54
B.2 Executables . 54
B.3 GitLab Repository . 54

6

Introduction
Artificial intelligence (AI) encompasses a wide range of techniques designed

to emulate human cognitive functions, with applications spanning from simple
automated tasks to complex decision-making processes. At its core, AI aims to not
only mimic human intelligence but also to enhance decision-making capabilities
beyond human limits through the use of sophisticated algorithms and neural
networks.

The study of artificial intelligence through board games offers a controlled
yet complex environment for investigating algorithmic decision-making. This
context allows for precise manipulation of variables and transparent measurement
of outcomes, providing deep insights into the strategies and adaptability of AI
algorithms. This thesis builds on this premise by implementing the board game
Hive together with sample bots and tries to answer this question: How do different
AI algorithms perform in a complex and unconventional game setting like Hive?

Hive is a two-player strategy board game that offers a unique challenge due
to its lack of a fixed board. Similarly to chess, each piece follows a specific set
of movement rules. However, unlike chess, the layout of Hive is dynamic and
continuously changes with each move. Moreover, pieces in Hive cannot be removed
once placed, leading to an increasingly complex game state as the game progresses.
These features make predicting and analyzing potential moves and outcomes a
demanding task.

To address this complexity, we focus on two prominent AI algorithms as
strategies for the bots: Alpha-Beta pruning, known for its depth-first search
optimization in zero-sum games, and Monte-Carlo Tree Search (MCTS), which
uses randomized simulations to make decisions. Both algorithms have shown
substantial success in structured game environments, such as chess and Go ([1]
and [2]). However, Hive’s unique gameplay introduces variable factors that
challenge these algorithms differently, providing a fresh context for assessing
their adaptability and strategic depth. In this thesis, the primary objective is to
implement and evaluate the two AI strategies for the game of Hive. Specifically,
we aim to implement AI agents using Monte Carlo Tree Search and Alpha-
Beta pruning techniques, develop a software platform to facilitate the testing
and evaluation of these AI agents, and conduct a comparative analysis of the
performance of MCTS and Alpha-Beta pruning against baseline agents and human
players.

In Chapter 1, we present background knowledge, the game rules, the winning
conditions, and some terminology that will be used later in this discussion. Chapter
2 reviews the current state of research on the game. While acknowledging previous
efforts to integrate artificial intelligence into Hive, we identify and propose potential
refinements. In Chapters 3 and 4, we introduce the methodologies, specifically
implementations of Alpha Beta pruning and Monte-Carlo Tree Search, respectively.
In Chapter 5, we discuss how we developed the software to accommodate our
needs. Chapter 6 evaluates these strategies against baseline Random agents and
human players. Finally, in the Conclusion, we will highlight the effectiveness of
these algorithms in Hive.

7

1 Hive
Hive is a bug-themed game designed by John Yianny in 2001 and published

by Gen42 Games in 2015 [3]. Hive can be categorized as a two-player, zero-sum
(one player’s advantage is another player’s loss), turn-based (each player waits for
the opponent to finish their turn before starting theirs), and perfect information
game (all players are fully informed of all previous moves and decisions made by
other players).

In Section 1.1, we will demonstrate how to set up the game and describe
movement types that a piece can have. In Section 1.2, we will introduce different
types of pieces and the movement styles they use. Sections 1.3 and 1.4 introduce
the general rules applied to all the pieces in the play. Section 1.5 will describe an
objective of the game. In section 1.6, we will discuss why Hive is an interesting
subject for this research.

1.1 Set Up for the Game and Movement
Although the game has no physical board, it can be imagined as being played

on an infinite plane of interconnected hexagons. Each tile of this imaginary
board represents a stack of pieces. From now on, tile and stack will be used
interchangeably. Stacks can be of different sizes, if it does not contain any piece,
we consider this stack to be empty and refer to it as an empty tile. If stack contains
only one piece, we will refer to it as a ground tile. Ground level refers to a set of
ground tiles. All pieces are assumed to be positioned on the ground level unless
specified otherwise.

The movement of pieces in Hive is determined by the hexagonal shape of
the tiles. Each tile must be placed so that one of its edges touches the edge of
an adjacent tile. Moving a piece one “space” means shifting it to a different,
imaginary hexagonal area adjacent to both its current position and another piece.
This movement is called crawling, or sliding. When we mention a piece crawling
for X amount of tiles, we mean there is a continuous sequence of length X of valid
crawls. Each such crawl in the sequence can be referred to as a step.

Additionally, certain pieces can move onto the top of an adjacent higher stack,
this movement is called a climb up. Once on top, a certain piece can move across
the tops of adjacent tiles, adhering to the sliding definition. Such movement can
be referred to as sliding on top of the Hive. The position of these pieces can be
called on top of the Hive. A piece can descend from the higher stack to an adjacent
lower one, or an empty tile. Such movement is referred to as a climb down.

Moreover, certain pieces can leap, or jump, over one or more tiles arranged in
a straight line landing on the opposite side of the line. A straight line of tiles is a
continuous sequence of adjacent tiles where each tile shares an edge with the next
tile in the sequence, forming a direct path, meaning the tiles must form a single,
uninterrupted line without changing direction. The leap must be in the direction
of one of the piece’s edges, not its corners.

Hive is a two-player game where each player is assigned a color (white or black)
that matches the color of their tiles. From now on, we will refer to these players
as player White and player Black. Each player receives 11 pieces in their assigned

8

color which they store in their hand. Hand refers to a set of pieces that have not
been introduced to the board. Initially, this imaginary board is empty, and the
game is started by player White, placing one of their pieces to the center of the
board. This introduction of a piece from the hand to the board is referred to as
placing, or introducing, a piece. A newly introduced piece must be adjacent to the
rest of the Hive.

In this context, ply refers to a discrete unit of time during which a player can
perform a move (place or move a piece), and a complete turn consists of both
players completing their respective plies. On each ply, a player can either place a
new piece or move a piece according to its specific abilities. When placing a new
piece, it must only be adjacent to the player’s pieces and cannot be adjacent to
any of the opponent’s pieces, with the only exception being the first ply, where
player Black needs to place their piece next to the one of player White. This
placing rule is also referred to as a piece introduction rule.

1.2 Bugs
Each piece in the game can also be referred to as a bug. Below, we will

introduce bug types and their corresponding movement abilities. We assume that
these moves are performed during one ply.

Queen Bee. Each player receives only one Queen Bee. This bug can only
crawl one tile per ply. Figure 1.1 demonstrates this. Despite its limited range,
Queen Bee is the most important piece in the Hive. A player is allowed to move
their pieces if and only if their Queen Bee is introduced to the board. Queen Bee
has to be introduced within the first four turns except for the first turn. The
objective of the game (section 1.5) also demonstrates to us how important it is to
protect the Queen Bee.

Figure 1.1 Example for valid Queen Moves

Beetle. Each player receives two Beetles. The Beetle, similarly to Queen
Bee, slides only one space per ply. Figure 1.2a depicts this. Additionally, it can
climb up, crawl on top of the Hive, and climb down. Figure 1.2b demonstrates
additional movement abilities. All the pieces below the Beetle can not be moved
and the color of the tile becomes the color of the top Beetle. Beetles can be
stacked up on top of each other, meaning they are a part of the same stack. When
it is first placed, Beetle is introduced in the same way as other pieces, meaning
we can not directly place it on top of the Hive.

9

(a) Example of valid directions for a Beetle
on the ground.

(b) Example of valid directions for a Beetle
on the top of the hive. The white spider is
under the Beetle in the stack.

Figure 1.2 Beetle movement

Grasshopper. Each player receives three Grasshoppers. The Grasshopper
cannot crawl around like the other pieces in the Hive. Its main mechanic is to
jump over at least one piece and land into the first unoccupied space along a
straight line of tiles. Figure 1.3 shows valid destinations for a Grasshopper.

Figure 1.3 Grasshopper valid movement example.

Spider. Each player receives two Spiders. The Spider crawls exactly 3 tiles in
one ply. It is not allowed to retrace its steps. Meaning, in the same continuous
sequence of tiles, it is not allowed to repeat the tiles. It can only travel around
pieces that it is adjacent to during each step, and it cannot move to a piece with
which it is not directly adjacent. Figure 1.4 demonstrates this.

10

Figure 1.4 Example of valid Spider movement destinations. Yellow arrows represent
the steps a Spider takes to move to these valid destination tiles, while green lines
represent the valid destinations.

Soldier Ant. Each player receives three Soldier Ants. The Soldier Ant can
crawl to any position around the Hive as long as the restriction rules are followed
(see Sections 1.3 and 1.4), making it arguably one of the strongest pieces in the
game for its ranged mobility. Soldier Ants are a stronger version of Spiders, they
follow the same movement pattern, but Soldier Ants are allowed to crawl for any
amount of tiles.

1.3 One Hive Rule
A piece cannot be moved in such a way that it results in two or more separate

groups of pieces, either during or after its movement. A group refers to a collection
of pieces that are adjacent to each other in such a way that each piece is directly
adjacent to at least one other piece in that group. If a piece’s movement temporarily
disconnects the hive (meaning two or more groups can be observed), even if it
reconnects afterward, the move is considered to be illegal. This rule supports a
strategy where a player can pin an opponent’s piece by positioning their piece in
such a way that moving the opponent’s piece would break the hive, immobilizing
it. Figure 1.5 depicts the rule, we can also observe how both player White and
player Black pinned their own Queen Bees via Soldier Ants.

11

Figure 1.5 Example of moves breaking the One Hive Rule. Moving the white Queen
Bee will temporarily break the Hive in two. Moving the black Queen Bee in any direction
will cause the same.

1.4 Freedom To Move
This rule restricts pieces from moving through a narrow gap between two tiles,

where such a gap is defined by configuration where the corners of the two tiles
directly face each other, creating a constricted passage. In Figure 1.6b, we can
see how the corners of the tiles that contain white Soldier Ant and black Queen
Bee are facing each other, creating a narrow gap that does not allow the player
Black’s Ant to slide through.

A piece that is surrounded in such a way that it cannot slide out of its position
must not be moved. Figure 1.6a demonstrates how the gap between player Black’s
Soldier Ant and a Queen Bee makes player White’s Soldier Ant trapped and now
the trapped Soldier Ant does not have another way out. The exceptions are the
Grasshoppers, which are capable of jumping into or out of space, and the Beetles,
which can climb up or down. Likewise, no piece should be moved into a space that
it cannot slide into. Figure 1.6b shows this. However, when introduced to the
game, a piece may be placed in a surrounded space, provided it is not adjacent to
an enemy piece.

(a) In this case, Ant is trapped
and can not move anywhere.

(b) Here, Ant can not follow the
red arrow, but it can crawl any-
where else on the grid.

Figure 1.6 Examples of invalid moves due to Freedom to move rule.

12

1.5 Objective of The Game
Objective of the game is to surround the enemy’s Queen Bee while also trying

to prevent an opponent from surrounding our Queen Bee. The color of the
surrounding pieces does not matter. The first player to surround their opponent’s
Queen Bee wins. Figure 1.7a demonstrates a case where player White wins. If
both queens get surrounded simultaneously, the game ends in a draw. Figure1.7b
shows the example of a draw. Although not specified in the official rules, we have
imposed a cap of 100 turns per game as an additional constraint for our study. If
the game reaches 100 turns, it is automatically considered a draw.

(a) Black’s Queen Bee is sur-
rounded. White Wins.

(b) Both Queen Bees are sur-
rounded. It’s a Draw.

Figure 1.7 Outcomes when Queen Bees are surrounded.

1.6 Why Hive?
In this section, we explore challenges presented by Hive by comparing it

to Chess. Chess is typically characterized by an average branching factor of
approximately 35 [4], whereas Hive exhibits a higher branching factor of around
60 [5]. The branching factor refers to an average number of valid moves per
ply. Unlike Chess, where the capture of a piece allows a player to permanently
remove a threat from the board, simplifying the game state, Hive introduces a
different mechanic – pinning. This tactic leverages the One Hive Rule to position
pieces to immobilize an opponent’s piece. Pinning does not eliminate a piece
but restricts its mobility, allowing a player to neutralize a threat temporarily.
Nevertheless, the pinned piece remains on the board, posing a latent threat that
can re-emerge if the pin is released. Consequently, the board only expands and
becomes increasingly complex as the game progresses. Additionally, the lack of a
fixed board representation presents an interesting challenge from a developer’s
perspective: how does one effectively encode the game state for algorithms?
Furthermore, some pieces, like Beetles, can stack on top of other pieces. This
introduces another dimension for the board to be worried about and somehow
account for. These unique game mechanics in Hive require different strategic
thinking and affect how well traditional algorithms like Alpha-Beta pruning and
Monte Carlo Tree Search (MCTS) perform. Because of these complexities, Hive
offers a valuable opportunity for expanding research in game theory and artificial

13

intelligence. We believe that studying Hive is not only worthwhile but could also
inspire new approaches in algorithmic strategies.

14

2 Related Work
We are not the first to introduce Artificial Intelligence (AI) into Hive. A

unique approach was performed by Connor Michael McGuile, where he utilized
Swarm AI as an agent strategy for the game [6]. However, there are several issues
with the methodologies used in their evaluations. To simplify the experiment,
McGuile focused predominantly on the endgame by initiating gameplay with a
board set up through 20 random moves before allowing AI agents to proceed. This
method of random initialization, while reducing complexity, also omits critical
strategic elements introduced during the opening phases of the game. Typically,
the pieces placed during the first four moves remain static, thus immobilizing
them for the game’s duration. Consequently, starting with certain pieces, such as
Soldier Ants, can substantially disadvantage a player later in the match.

Another quite interesting approach was using reinforcement learning in the
report by Rikard Blixt and Anders Ye [7]. They implemented a pair of simple
agents with only a knowledge of the game rules and no tactics and had them play
against each other as a learning mechanism. Their experiment encountered some
complications. The learning process proved to be computationally intensive and
time-consuming. It required approximately 22 hours for the agents to complete
300 matches, a relatively small number for acquiring proficiency in a complex
game like Hive. Moreover, Blixt and Ye estimated that, given the computational
capabilities of a high-end personal computer at the time, it could take between
140 to 1400 years for an AI agent to reach a competent level through this training
method.

Barbara Ulrike Konz implemented agents using different configurations of
Monte Carlo Tree Search (MCTS), specifically a basic MCTS and MCTS enhanced
with Upper Confidence Bounds applied to Trees (UCT) [8]. MCTS is a heuristic
search algorithm for decision processes. At the same time, UCT is a specific
strategy within MCTS that balances the exploration of unexplored moves with the
exploitation of known rewarding moves, using the Upper Confidence Bound (UCB)
formula. Both agents outperformed a baseline agent that executed only random
moves, achieving winning rates of approximately 77% and 83%, respectively. When
comparing the two methods directly, the well-tuned UCT agent outperformed
the basic MCTS agent, with an average win rate of 45% compared to only 18%
achieved by MCTS. Despite these successes, both strategies exhibited limitations
when competing against human players. In addition, Konz’s implementations
encountered challenges related to time management. Each turn took up to 36
seconds on average, rendering the process computationally expensive and resulting
in fewer MCTS simulations per move.

Tamás Bunth implemented a deep reinforcement learning framework inspired by
AlphaZero to train artificial intelligence to play Hive [9]. His approach integrated
Monte-Carlo Tree Search (MCTS) with a continuously improving neural network,
enabling the agent to learn and adapt through selfplay. This method allowed the
agent to achieve a 71% winning rate against a random agent, with the remaining
outcomes being either draws or losses. However, a significant limitation of Bunth’s
methodology was its exclusive focus on AI versus AI matches, omitting human
players. While the agent performed well against a random agent, this does

15

not necessarily translate to equivalent or superior performance against human
opponents.

A recent study conducted by Danilo de Goede, Duncan Kampert, and Ana
Lucia Varbanescu explores the complexity and computational costs associated with
training a reinforcement learning agent for Hive [10]. Their research adopts the
AlphaZero approach, where the agent improves through self-play and significantly
outperforms a random agent. The study employed the Elo rating system to assess
agents’ performance. The study did not include the agents competing against
human opponents. The Elo rating system is a method for calculating the relative
skill levels of players in two-player games. Minimax was the best-performing
agent, with an Elo rating of 1355, outperforming the next best agent by 292
Elo points, which was the self-play agent achieving an Elo rating of 1063 after
only 24 hours of training. The authors measured the playing speed, exploration
costs, and energy consumption per game instance. Their findings suggest that
identifying the optimal AlphaZero agent configuration for Hive would require
an extended training period, potentially spanning tens of node-years, where a
node-year refers to the computational effort expended by one computational unit
running continuously for one year.

In 2021, Duncan Kamper, Ana-Lucia Varbanescu, Matthias Müller Brock-
hausen, and Aske Plaat [5] implemented both AlphaBeta pruning and Monte-Carlo
tree search (MCTS) as strategies for AI agents. They tested these agents against
a Random agent and each other, comparing the winning rates and employing an
Elo system to show the difference in strength between the bots. Moreover, the
agents played against a human but showed poor results. One area for potential
improvement is their board evaluation function, which relies on straightforward
strategies, such as counting the pieces surrounding each queen. We believe we
could refine this approach and will present our implementation of some strategies
later in the discussion.

16

3 Monte-Carlo Tree Search
In this chapter, we will introduce the Monte-Carlo Tree Search (MCTS)

algorithm and provide a detailed explanation of its procedural steps (selection,
expansion, simulation, backpropagation). Rémi Coulom coined the Monte-Carlo
Tree search in his 2006 work [11]. Additionally, we will discuss the types of games
that are most suitable for applying this algorithm.

In Section 3.1, we will introduce the background knowledge necessary to
understand the concept of MCTS in the context of our research. In Section 3.2,
we will briefly overview the MCTS algorithm, explain briefly what happens during
an algorithm iteration, and provide details on why Hive is a suitable game to test
the effectiveness of Monte-Carlo Tree Search. Sections from 3.3 to 3.6 will explain
each step of the iteration of the algorithm. In Section 3.7, we will demonstrate
how the algorithm chooses the best move, and in Section 3.8, we will introduce
a technique that will help us to speed up the algorithm. Section 3.9 provides a
pseudocode of the algorithm.

3.1 Background
A game state is defined as a specific snapshot that captures all the essential

information about the game, such as piece positions, whose ply it is to play, and
the history of moves that have occurred, which collectively defines the status of
a game at any particular point in its progression. End game state, or end state
(node), refers to the game state of the finished game (when the game ends in a
win, draw, or loss). A game state tree is a tree data structure where each node
represents a game state, and each edge (a direct connection from a node “A” to a
node “B”) represents a move taken by players, such as moving or placing a piece,
that transitions from game state “A” to game state “B”. In this case, the node
“B” is a child of the node “A” and “A” is a parent of “B”.

Term Children(node), or N(node) refers to a list of children (neighbors) of
the node. The game state tree can be seen as a directed tree graph, where nodes
store the game state, the number of wins observed in children, the number of
visits by the traversal, and the parent of the node. The edges store the moves
that transition the game states. The number of wins and visits in the nodes will
be defined later on during the tree traversal. From now on, the terms game state
and node, as well as move and edge, will be used interchangeably.

The root of the game state tree is an initial game state, where all the pieces
are in hand, and it is a player White’s ply. We say that root has no parent. The
leaf of the game state tree is a node with no children. Moreover, a path between
nodes “A” and “B” in the game state tree is a sequence of edges and nodes that
leads from node “A” to node “B”. Tree traversal refers to a process of visiting each
node in a tree data structure. One specific type of tree traversal is Monte-Carlo
Tree Search (MCTS).

In Monte-Carlo Tree Search, the traversal of the game state tree begins from
the root and progresses towards the leaves. The algorithm faces multiple options
(edges) at each node, each leading to a new potential game state. Selection
constructs a path from the root to the leaf, where this leaf is referred to as the

17

selected leaf. The choice of which edge to follow is determined by a selection
policy.

A policy in MCTS is a method of selecting the most promising edge. The
most promising edge refers to a move that is expected to lead to better outcomes
(nodes with higher value) based on previous exploration. This policy often involves
calculating a value that balances the potential benefits of exploitation (favoring
paths that have historically led to wins) and exploration (testing less promising
paths).

One such policy is the Upper Confidence Bound applied to Trees (UCT), which
uses statistical measures, such as the number of visits and the winning rate of the
node, to evaluate the potential of each move. Moves with higher potential are
promising and more likely to be chosen for further traversal. Upon reaching the
leaves, they are expanded by adding new children, which then become the new
leaves, while their parent is called an expanded node.

MCTS then performs a rollout, or a playout, on each of the children. A rollout
refers to a process of starting from a given game state and playing the game
stochastically, following a probability distribution, until reaching the end state.
The result of the rollout is a number between 0 and 1 that directly corresponds
to the outcome of the end state (win, draw, or loss). The result of the playout
is assigned to that child’s number of wins. Subsequently, the number of wins of
each non-leaf node is updated based on the number of wins observed from its
descendants. The visit count of each node on the path is also incremented. This
traversal is repeated until a sufficient number of iterations have been performed.
The number of wins and visits does not reset by the end of the iteration.

3.2 Overview of MCTS
According to Chaslot(2010) [12], Monte-Carlo Tree Search is a best-first search

algorithm (a type of search algorithm, which during each step of the traversal
chooses the best edge), where it primarily employs Monte Carlo simulations (roll-
out) to gather value estimates that direct the search towards the most promising
paths in the game state tree. Essentially, MCTS focuses on the more promising
nodes (game states that historically lead to wins), thereby bypassing the need to
explore every possibility, which would be impractical exhaustively.

Chaslot (2010) [12] describes that an iteration of Monte-Carlo Tree Search
consists of four phases: selection, expansion, simulation, and backpropagation.
Initially, the selection phase involves navigation from the root node to a leaf node
and selecting that leaf node for expansion.

Subsequently, in the expansion phase, the tree grows by adding new children
to the selected leaf. We add new children and create edges (possible valid moves)
between the selected node and its new children. Now, that previously selected
leaf becomes an expanded node, and its children are leaves.

The third phase, simulation, entails playing out the game from the children
of the expanded node to an end state. This is called a playout, or rollout. The
result of the playout gets assigned to the win count of that child. Finally, the
backpropagation phase occurs, where the simulation results are propagated back
from the leaves to the root. During this propagation, MCTS updates each node’s
visit and win count along the path formed by the selection. The exact method

18

of updates will be discussed in Section 3.6. After running the algorithm for a
sufficient number of iterations (at least 100), we get a game state tree. To retrieve
a move for the AI to take. We choose the best child of the root, where we define
the best child in Section 3.7. Figure 3.1 depicts visual outline of the algorithm by
Chaslot(2010).

Figure 3.1 Outline of Monte-Carlo Tree Search [12]

To effectively deploy Monte Carlo Tree Search (MCTS) as an agent within
a game, several criteria must be satisfied [12]. The game must feature bounded
payoffs, which means that the outcomes of the game are constrained within a
specific range. It should also have perfect information, where all elements of
the game state and moves are known to all players. Additionally, there should
be a predefined maximum length, limiting the number of turns. Hive serves as
an exemplary model of a game meeting these conditions. We can bound the
results of the end state (win and loss) to 1 and 0, respectively, with a draw
assigned a value of 0.5. According to the game’s rules, both players possess
comprehensive knowledge of the pieces on the board and in hand, meaning that
Hive features perfect information. Although the rules do not explicitly define the
game’s maximum number of turns, we pragmatically cap it at 100 for analytical
convenience.

3.3 Selection
During selection, we will recursively traverse from the root to the most promis-

ing leaf by choosing the most promising edge at each step of the traversal. Upon
reaching the leaf, it is referred to as a selected leaf, and the path containing all
the nodes and edges from the root to the leaf is called a selection path. The
most promising edge is the edge that leads to the node with a maximal policy
value. An important aspect of such policies is the balance between exploration
and exploitation. On one side, exploitation involves selecting edges that appear
most promising, thereby optimizing the immediate outcome. On the other side,
exploration is crucial for investigating various alternatives, including those that
might initially seem less favorable, to ensure that superior solutions are not inad-
vertently disregarded. Although various policies exist, this discussion focuses on
the Upper Confidence bounds for Trees (UCT) as the policy of our choice. Kocsis

19

and Szepesvári introduced it in their 2006 work [13]. The formula for UCT of i-th
child of a node p in the tree can be defined as follows:

UCT(i) = Vi + C

√︄
ln Np

Ni

(3.1)

where

• Vi is the winning rate of the node i . It is calculated by dividing the number
of wins by the number of visits of the node i,

• C is the exploration parameter, which controls the degree of exploration
(generally, this is a non-negative number, where sufficient range depends on
the game),

• Np is the number of visits of the node p,

• Ni is the number of visits of the node i.

During each step of selection, we choose an edge that leads to child i such that

i = arg max
i∈Children(p)

UCT(i)

where arg max refers to a function that is used to find the argument (input)
that gives the maximum value of a given function. In our case, the given function
is UCT(i).

3.4 Expansion
Expansion is the most straightforward part of the algorithm. We add new

nodes to the MCTS tree. In certain games, such as Hive and Chess, storing
the entirety of the game tree is unfeasible because of the high branching factor.
Therefore, we decide how the selected leaf should be expanded with new children
during expansion. For every valid move at the selected leaf state, we add an edge
and the resulting game state that this edge leads to as children of the selected
node. This selected node is now called an expanded node.

3.5 Simulation
Simulation is a process that starts from the children of an expanded node

and performs a playout of the game until we reach the end state by playing
moves stochastically. A knowledge-based heuristic is frequently used to select the
moves during a playout. However, for simplicity, we will focus on selecting moves
randomly (each valid move has an equal probability of being chosen). The result
of a playout is a number that indicates the outcome of the end state: a winning
end state results in a score of 1, a losing end state in 0, and a draw in 0.5, as
mentioned in Section 3.2

20

3.6 Backpropagation
In the backpropagation phase of Monte Carlo Tree Search, the results from

playouts are propagated from the leaf nodes back to the root. During this process,
the statistical values of each node, specifically the visit count and the node value,
are updated. Starting from the leaf, we increment the visit count for each node in
the selection path and add the result from the playout to each node’s number of
wins count.

3.7 Choosing The Best Move
After the completion of the algorithm, resulting in a game state tree, the process

of selecting the most promising move (move that will lead to an advantageous
position for the agent) becomes straightforward. This selection involves choosing
the best child of the root node. Several strategies can be employed to determine
this best child. According to Chaslot (2010) [12], there are various methods
such as the Max Child (selecting the node with the highest win count), Robust
Child (node with the highest visit count), and Robust-Max Child (node scoring
highest in both win and visit count). Chaslot notes that these strategies have no
significant performance difference when decisions are not time-constrained. In our
discussion, we will focus only on using Max Child.

3.8 Parallelization
Parallelization is a computational technique that divides tasks into smaller,

often simpler, parts that can be processed independently and simultaneously
rather than sequentially. As Chaslot (2010) [12] denotes, three types of paral-
lelization can be applied to MCTS: leaf parallelization, root parallelization, and
tree parallelization. Leaf parallelization involves performing multiple simulations
and backpropagations concurrently. These are independent of each other for each
child of the expanded node, which makes this method easy to implement and
very effective. Root parallelization involves multiple instances of the algorithm
starting with the same root but following different paths through the tree. After
the algorithms are done, the results from all trees are aggregated to make a final
decision (now, we choose the best child of the root among multiple trees). Tree
parallelization refers to a parallelization of the iterations of the algorithm. Here,
we have only one instance of the algorithm, but different parts of the tree are
processed in parallel, with each processor focusing on a different subtree. In our
implementation, we will focus mainly on leaf parallelization.

3.9 Algorithm
In this Section, we present the pseudocode demonstrating how the Monte-Carlo

Tree Search operates. The ideas behind the functions Select, Expand, Simulate,
and Backpropagate are explained in the Sections from 3.3 to 3.6, respectively.

21

The selection of the final move is demonstrated by the BestChild function,
which returns a node, where

node = arg max
child∈N(root)

(child.visitCount)

MaxIterations is the total number of iterations for the algorithm to perform.
It is set in advance. Generally, at least 100 iterations are sufficient. Additionally,
the function ValidMoves receives game state as input and outputs a collection
of all the valid moves a player can have at the given game state. The function
AddNewChild receives a game state and move as input and outputs a new game
state that is a result of playing the input move on the input game state.

PlayGame function refers to the playouts we mentioned in Section 3.5, it
performs stochastic play and updates node state accordingly. Subsequently, the
function Result takes the end state and returns a number between 0 and 1,
indicating the outcome of the end state.

22

Algorithm 1 Monte Carlo Tree Search
1: procedure MCTS(root)
2: node← root
3: iteration← 0
4: while iteration ≤MaxIterations do
5: node← Select(node)
6: if node.State is not EndState then
7: node← Expand(node)
8: end if
9: reward← simulate(node)

10: Backpropagate(node, reward)
11: end while
12: return BestChild(root)
13: end procedure

14: function Select(node)
15: while node is not a leaf do
16: node← arg maxchild∈N(node) UCT (child)
17: end while
18: return node
19: end function

20: function Expand(node)
21: for move in ValidMoves(node.State) do
22: newNode← AddNewChild(node, move)
23: end for
24: return newNode
25: end function

26: function Simulate(node)
27: while node.State is not EndState do
28: PlayGame(node)
29: end while
30: return result(node)
31: end function

32: procedure Backpropagate(node, reward)
33: while node is not null do
34: node.visitCount← node.visitCount + 1
35: node.winCount← node.winCount + reward
36: node← node.parent
37: end while
38: end procedure

23

4 Minimax and Alpha-Beta
pruning

In this chapter, we will introduce the Minimax algorithm and a technique
called Alpha-beta pruning applied to the Minimax. We will explain how the
algorithm works and how we adopted it for Hive. The Minimax algorithm is
derived initially from von Neumann’s Minimax theorem [14]. Whereas Alpha-Beta
pruning was discovered independently by multiple researchers around the 1960s.
Still, the refined version of the algorithm that is widely used today was introduced
in the 1975 work of Donald Knuth and Ronald W. Moore [15].

In Section 4.1, we will provide the essential background knowledge needed to
understand the concept of Minimax within the scope of our research. In Section
4.2, we will explain how Minimax works, including a pseudocode on Minimax
implementation, and point out some of the disadvantages of using Minimax with
no techniques applied. In Section 4.3, we will discuss the improvement of Minimax
through Alpha Beta pruning, detailing how it works and providing a pseudocode
demonstrating the implementation of Alpha Beta pruning applied to Minimax.
In Section 4.4, we will define an evaluation function and introduce Hive-specific
strategies implemented into an evaluation function used by the Minimax algorithm.

4.1 Background
Definitions that were introduced in the Section 3.1 remain applicable in this

context and will be employed similarly, with the only exception of the node
structure used in the game state trees. In the context of Monte-Carlo Tree Search,
we said that nodes in the game state tree consist of the following information: game
state, win count, visit count, and a parent. Herein, in the context of Minimax,
nodes will consist only of a game state, value, and parent.

Additionally, we define the depth of a node in the game state tree to be the
length of the path from that node to the root and the height of the node to be
the length of the longest path from that node to a leaf. The depth of the game
state tree is the maximum depth of any node in the game state tree. A level of
the game state tree refers to a set of nodes with a specific depth in the game
tree. The root node is at level 0, its direct children are at level 1, and subsequent
descendants follow at increasing levels.

We also define a node’s value by stating that a leaf’s value is calculated by
an evaluation function. An evaluation function is a method that estimates the
favourability of the game state for a specific player. The value of a non-leaf node
depends on the player’s ply in the game state. If it is the maximizing player’s
ply, then the node’s value is the maximum value of its children. If it is the
minimizing player’s ply, then the node’s value is the minimum value of its children.
A maximizing player refers to a player who aims to maximize the evaluation
function. In other words, a maximizing player chooses the moves that increase
their chance of winning. Conversely, a minimizing player aims to minimize the
score of the evaluation function, essentially reducing the maximizing player’s score
as much as possible.

24

Generally, the evaluation function is designed to assess a specific player’s score.
In our context, the evaluation function returns the desirability of the game state
only from the perspective of the maximizing player. This means that if our agent
(the maximizing player) is playing as White, the evaluation function will return
scores for the player White. Similarly, if our agent starts as Black, the evaluation
function will return scores for the player Black. In our case, the root of the game
state tree corresponds to a maximizer’s node.

In this context, an agent refers to an algorithm that plays a game by making
decisions based on a specific strategy. An agent that uses the Minimax algorithm
as its strategy is called a Minimax agent, while an agent that uses the Alpha-Beta
algorithm for its strategy is called an Alpha-Beta agent.

4.2 Minimax
The idea behind Minimax is rooted in zero-sum games, where one player’s

gain is another player’s loss. Starting with the current game state at the root,
the algorithm expands all the available leaves to all possible future game states,
alternating between the two players until it reaches the end state or a predetermined
depth of the game state tree. An expansion of a leaf refers to a process of adding
new children for each valid move available at that leaf. We add the children by
creating edges representing the available move that leads to the resulting game
state (a newly added child). Consequently, children become the new leaves, and
we repeat this process until reaching an end state or a predetermined depth of
the game state tree.

In the Minimax algorithm for two-player games, the players are typically
referred to as the maximizer and the minimizer. In our case, we say that the
Minimax agent is the maximizer and the opponent is the minimizer. From now
on, in this chapter, we will use the Minimax agent and the maximizing player
(maximizer) interchangeably. The same goes for the Minimax agent’s opponent
and the minimizing player (minimizer). The maximizer tries to maximize their
score, while the minimizer tries to minimize the maximizer’s score. The score
is obtained from the evaluation function. The algorithm recursively explores all
possible moves, assuming both players play optimally.

When reaching an end state or a predetermined depth, Minimax evaluates
each leaf node by assigning it a value obtained from the evaluation function,
which takes the game state of the leaf as input. The details on implementing the
evaluation function can be seen in Section 4.4. For now, we say that it returns an
integer between −∞ and ∞, which describes how desirable the game state is for
the maximizer.

After assigning these values, the algorithm backpropagates them up the game
state tree. Backpropagation in this context refers to propagating these evaluated
values from the leaf nodes back up to the tree’s root. At each level of the
game state tree, the algorithm alternates between two players: maximizer and
minimizer. If the current level represents the maximizer’s ply, the algorithm seeks
to maximize the value, selecting the highest value among the child nodes during
the backpropagation. Conversely, if the current level represents the minimizer’s
ply, the algorithm seeks to minimize the value, selecting the lowest value among
the child nodes. This alternation continues up the tree, ensuring that at each

25

node, the player considers the optimal moves of the opponent.
By the time backpropagation reaches the root, game state tree represents

all possible sequences of moves and counter-moves up to a certain length (the
predetermined depth), enabling the algorithm to determine the optimal initial
move. This move corresponds to the edge leading to the root’s child node with
the highest value.

In Subsection 4.2.1, we will introduce the pseudocode for the Minimax algo-
rithm. In Subsection 4.2.2, we will discuss why using the Minimax algorithm can
have a significant disadvantage and how we can solve this issue.

4.2.1 Algorithm
Below, we present a pseudocode for the Minimax algorithm for a two-player

zero-sum game. The function IsEndNode receives a node as an input and outputs
a boolean value, whether the node is an end state or not. The function Evaluate
represents the evaluation function, which takes a node as an input and returns an
integer. The maximizingPlayer is a boolean input argument indicating for which
player the calculation is being performed; true corresponds to the maximizing
player and false corresponds to the minimizing player. Functions max and min
return a maximum and a minimum of the two inputs, respectively. The function
GenerateChildren takes a node as an input and returns a list of all possible children
of the node.

To use the Minimax function, it is called based on the game’s setup. For
example, if we want our Minimax agent to play as the player Black and “think”
three plies ahead, we would call the Minimax function for each available move with
the arguments: node set to the resulting game state if we perform the available
move, depth set to 3, and maximizingPlayer set to true. After gathering the
results returned by the Minimax function for each valid move, we choose the
move that has the highest Minimax value assigned to it. The Minimax value
represents the optimal score that the maximizer can achieve, assuming both
players play optimally from that point onward. By selecting the move with the
highest Minimax value, the agent ensures that it is making the best possible move
given the anticipated responses of the opponent.

26

Algorithm 2 Minimax Algorithm
1: function Minimax(node, depth, maximizingP layer)
2: if depth == 0 or IsEndNode(node) then
3: return Evaluate(node)
4: end if
5: if maximizingPlayer then
6: maxEval ← −∞
7: for all child in GenerateChildren(node) do
8: eval ← Minimax(child, depth - 1, false)
9: maxEval ← max(maxEval, eval)

10: end for
11: return maxEval
12: else
13: minEval ←∞
14: for all child in GenerateChildren(node) do
15: eval ← Minimax(child, depth - 1, true)
16: minEval ← min(minEval, eval)
17: end for
18: return minEval
19: end if
20: end function

4.2.2 Problems with Minimax
While the Minimax algorithm is effective in theory, it faces significant practical

challenges, especially in games with a large branching factor like Hive or Chess. A
branching factor refers to an average or constant number of valid moves available
at each game state. The primary issue is the exponential growth of the game tree,
which makes it computationally expensive to evaluate all possible moves. This
leads to a time complexity of O(bd), where b is the branching factor and d is the
depth of the game state tree. Figure 4.1 demonstrates an example of an arbitrary
game state tree generated by the Minimax algorithm.

The computational burden becomes evident when considering a game like
Hive with an average branching factor of 60. An optimization technique known as
Alpha-Beta pruning can be applied to the Minimax algorithm to mitigate such
computational costs.

27

Figure 4.1 Illustration of a game state tree with a branching factor of ten and a
depth of three. Blue nodes represent the maximizer’s ply and green nodes represent the
minimizer’s ply.

4.3 Alpha-Beta pruning
Alpha-Beta pruning is a technique applied to the Minimax algorithm, where

pruning refers to a process of eliminating branches in the game state tree. From
now on, when referring to Alpha-Beta search, we mean Minimax with Alpha-Beta
pruning technique applied. Alpha-Beta pruning works by keeping track of two
special values, α and β.

The α value represents the minimum score that maximizing player is assured
of at any point during the search. This means that, given the current state of
the game state tree traversal, the maximizing player can guarantee a score of at
least α, regardless of how the minimizing player plays from that point onwards.
Initially, α is set to −∞, representing the worst possible score for the maximizing
player. Similarly, the β value is the maximum score that minimizing player is
assured of at any point during the search. This means that, given the current
state of the game state tree exploration, the minimizing player can guarantee a
score of at most β, regardless of how the maximizing player plays from that point
onwards. At the start of the algorithm, β is set to ∞, representing the worst
possible score for the minimizing player.

In Alpha-Beta search, the values of α and β are updated during the search.
For the maximizing player, α is increased to the value of a node if this node
provides a higher score than the current α. Conversely, for the minimizing player,
β is decreased to the node’s value if this node offers a lower score than the current
β.

Pruning occurs when β is less than or equal to α. In such cases, further
exploration of the current branch is unnecessary. This is because the maximizing
player has a better option elsewhere that is at least as good as the current α,
and the minimizing player can avoid this branch since they can achieve a result
no worse than the current β in another branch. This mechanism efficiently cuts

28

off irrelevant branches of the game tree, significantly reducing the number of
nodes that need to be evaluated, which accelerates the decision-making process
by focusing only on branches that could influence the final outcome.

In subsection 4.3.1, we will compare the Minimax algorithm with Alpha-Beta
search and discuss how it solves the issue of the Minimax algorithm. In subsection
4.3.2, we will demonstrate other techniques that could improve the performance
of Alpha-Beta search even more. In subsection 4.3.3, we will present the updated
pseudocode that implements the Alpha-Beta pruning.

4.3.1 Comparison with Minimax
The Minimax algorithm evaluates every possible node in the game state tree

up to a certain depth, leading to an exponential growth in the number of nodes as
the depth increases. On the other hand, Alpha-Beta search reduces this number
by effectively ignoring large portions of the tree. In the best-case scenario, when
we prune at every level, Alpha-Beta can reduce the time complexity from O(bd)
to O(bd/2). This makes the search process more manageable and allows for deeper
exploration within the same time constraints. In the worst-case scenario, however,
the time complexity stays at O(bd) when we can not prune any of the branches,
leaving us with the full game state tree.

This reduction in complexity is primarily due to effective move ordering in
Alpha-Beta pruning. The algorithm can achieve a significant speedup by selecting
the best move first. This happens because the earlier the best move is considered,
the more influential the pruning process becomes, leading to fewer nodes being
evaluated. Conversely, if the best move is selected late in the ordering, the pruning
has minimal effect, resulting in almost no speedup. To achieve effective move
ordering, we will use our heuristic. A heuristic function is a rule-of-thumb strategy
designed to find an approximate solution when the exact solution is not necessary,
in our case, the ranking of the moves. In our heuristic, we define the following
importance ordering:

1. Adding a piece adjacent to the enemy Queen.

2. Moving a piece to a coordinate adjacent to the enemy Queen.

3. Adding a piece anywhere.

4. Moving a piece anywhere.

For the tiebreakers:

• When moving or adding pieces anywhere, the order of priority is Soldier
Ant > Grasshopper or Beetle > Spider.

• When moving or adding pieces to be adjacent to the enemy Queen, the
order of priority is Spider > Grasshopper or Beetle > Soldier Ant.

Using this heuristic, we sort the list of valid moves available for the Alpha-Beta
agent and start the search.

29

4.3.2 Transposition Tables
Another technique that we could apply is a transposition table. A transposition

refers to a game state or position that can be reached through different sequences
of moves. Transposition tables store these game states, or their evaluations in
our case. By identifying these repetitions, the search algorithm avoids redundant
evaluations, improving efficiency.

To hash and store game states, we utilize Zobrist hashing [16]. In chess, a
random number is assigned to each potential piece on each square at the beginning
of the game. The hash of any game state is computed by combining these numbers
using exclusive OR (XOR) operations based on the pieces present in the state.
For Hive, we adapt this concept to account for the absence of a fixed board and
the ability to stack pieces. We encode space for all possible piece positions using
an axial hex coordinate system (Q, R), where each piece has coordinates q and
r representing columns and rows. This system aligns with the hexagonal grid
structure, allowing each hexagon to have six neighbors. Given 22 total pieces
in the game, the hypothetical situation where pieces stretch from the center to
one of the borders requires a coordinate shift. Instead of (-22,-22) to (22,22), we
shift to (0,0) to (44,44). Additionally, the maximum stack size is five due to the
presence of four Beetle pieces. Hence, we consider a layer of 44 x 44 coordinates
for each piece position, with five layers for each stack height.

We need to initialize the table dimensions for the Zobrist hash table. An entry
in the Zobrist hash table is defined by the axial hex coordinate of the piece, the
piece itself, and the height of the piece (position in the stack). Each entry is
assigned a random number during initialization. So the final dimensions of the
Zobrist hash table are

44× 44× 22× 5

After initializing the Zobrist hash table, we can compute the hash for the
current game state being observed by the agent. This hash serves as an entry
in the transposition table, mapping hash values to game state evaluation values.
If the agent already has an entry in the transposition table for the hash of the
current game state, it will return the corresponding value. Otherwise, the agent
will calculate the evaluation and add a new entry to the transposition table. By
remembering already computed states, we save some computational time.

4.3.3 Algorithm
Below, we introduce a pseudocode for the Alpha-Beta search algorithm. The

function definitions from the Section 4.2 are also applicable here. We also say
that transpositionTable refers to the transposition table introduced in subsection
4.3.2, implemented as a hash table, and node.ZobristHash is the Zobrist Hash
corresponding to that game state. We use α and β values for pruning.

30

Algorithm 3 Alpha-Beta Search
1: function AlphaBeta(node, depth, α, β, maximizingP layer)
2: if transpositionTable.ContainsKey(node.ZobristHash) then
3: return transpositionTable[node.ZobristHash]
4: end if
5: if depth == 0 or IsEndNode(node) then
6: eval ← Evaluate(node)
7: transpositionTable[node.ZobristHash]← eval
8: return eval
9: end if

10: if maximizingPlayer then
11: maxEval ← −∞
12: for all child in GenerateChildren(node) do
13: eval ← AlphaBeta(child, depth - 1, α, β, false)
14: maxEval ← max(maxEval, eval)
15: if β ≤ α then
16: break ▷ Beta cut-off
17: end if
18: end for
19: return maxEval
20: else
21: minEval ←∞
22: for all child in GenerateChildren(node) do
23: eval ← AlphaBeta(child, depth - 1, α, β, true)
24: minEval ← min(minEval, eval)
25: if β ≤ α then
26: break ▷ Alpha cut-off
27: end if
28: end for
29: return minEval
30: end if
31: end function

4.4 Evaluation Function
The efficiency of Alpha-Beta pruning is heavily dependent on the quality of

the evaluation function used at the terminal nodes. A good evaluation function
accurately estimates the desirability of a position, enabling more effective pruning.
If the evaluation function is poor, it can lead to incorrect pruning decisions,
thereby reducing the effectiveness of the algorithm.

The evaluation function, e(s), is a function that takes a game state s as input
and returns a numerical value representing the favourability of the board for the
maximizing player. In this context, the “favorability of the board” refers to how
advantageous the current game state is for the maximizing player compared to
the minimizing player. The output range of the evaluation function is [−∞, ∞],
where −∞ represents a completely lost game state, ∞ represents a completely
won game state, and 0 represents a draw.

31

The evaluation function calculates a difference between the advantage and
threat for any other game state. The advantage represents the strength and
potential of maximizer’s pieces on the board, while the threat represents the
potential and strength of the minimizer’s pieces. Hence, the evaluation function
can be expressed as:

e(s) = advantage− threat

In this context, a positive value of e(s) indicates a more favorable position for the
maximizing player, while a negative value indicates a more favorable position for
the minimizing player.

The advantage is calculated as follows:

• For the immobility of the opponent’s Queen, we add 30000 to the advantage.

• For each piece adjacent to the opponent’s Queen, we add a bonus advantage
score. The non-Ant pieces of the maximizer are adding 5500 to the advantage
score, while maximizer’s Soldier Ant and any of the immobile minimizer’s
pieces each add 5000 to the advantage.

• The general mobility of the maximizer’s pieces on the board results in an
additional advantage of 200+PieceScore∗10. The piece score is a numerical
value assigned to each type of piece. We say that the piece scores of Queen
Bee, Soldier Ant, Grasshopper, Beetle, and Spider are 100, 6, 4, 4, and 2,
respectively.

• For each mobile Soldier Ant of the maximizer we add a bonus of 100.

• For each mobile and well-placed maximizer’s Beetle, we add a bonus. If
the Beetle is on top of the enemy Queen, the update is 100. Otherwise (on
the ground or on top of the Hive), the advantage is scaled inversely by the
hexagonal distance to the enemy Queen. Meaning that if the Beetle is too
far from the enemy Queen, the value of it is trivial.

The threat is calculated similarly to the advantage, but with the piece posses-
sion flipped from the maximizing player to the minimizing player. Everything
advantageous for the minimizing player is a threat for the maximizing player. This
thorough evaluation ensures that all potential threats are considered, enhancing
the algorithm’s effectiveness.

32

5 Implementation
In this chapter, we present the implementation details and the development

process of the software designed to achieve the objectives outlined in the Introduc-
tion. Our primary focus is on the game logic and AI integration. The source code
includes comments that thoroughly explain each method used. It is important
to note that this chapter does not cover the technical details of the graphical
user interface (GUI). Instructions for users regarding the GUI can be found in
attachments (attachment A, User Documentation). At the same time, developers
can refer to the in-code comments for detailed descriptions of each method.

The chosen programming language is C# due to our familiarity with the .NET
Framework. For the graphical user interface (GUI), we use the Monogame library
(v3.8.1.303) because of the extensive documentation, open-source, and familiarity
with the library.

This chapter serves as a concise overview of the ideas behind the implementation
and a reference for developers interested in extending the project. In Section
5.1, we will explain in detail how we encode the pieces, piece positions, moves,
and the game state, along with implement the game logic. In Section 5.2, we
will demonstrate the integration of AI agents into the game, detailing how the
engine communicates with the agents and the methods used for encoding the
AI agents into our software. In Section 5.3, we will present the Universal Hive
Protocol, a standardized method of communication between the engines and the
user interfaces in Hive, and describe its implementation in our software.

5.1 Implementing Hive
To perform any of the desired experiments, we must first and foremost imple-

ment the game. This Section will present the ideas behind implementing different
parts of the game.

In Subsection 5.1.1, we will introduce the class that represents the positional
encoding of tiles in the game, using the axial hex coordinate system as its basis.
Next, in Subsection 5.1.2, we will present the piece and move notations, along
with methods of encoding piece and move notations in the code. In Subsection
5.1.3, we will demonstrate a class responsible for encoding game states for Hive,
detailing the components and the chosen data structure for board representation.
Finally, in Subsection 5.1.4, we will present the class responsible for the game
logic implementation, covering rule verification, updates within the game state,
and invoking agents to make decisions.

5.1.1 Position Encoding
In Chapter 4, Subsection 4.3.2, we discussed using an axial hex coordinate

system for encoding the positions of the pieces. The HexCoord represents a coordi-
nate on a hexagonal grid and contains the methods supporting various operations
on these coordinates. An instance of HexCoord is an axial hex coordinate. A
special instance of HexCoord is a static read-only value of (-99, -99) that rep-
resents a position of pieces that are still in the Hand and called a HandCoord.

33

Static methods in the class allow various operations with these coordinates, such
as obtaining the immediate neighbors of a coordinate, getting the hex distance
between the two coordinates, and checking adjacency.

5.1.2 Piece And Move Encoding
Moving on to the piece encoding: How do we represent the pieces in the game?

Fortunately, the BoardSpace.net community developed a de facto notation [17]
that we will use. We assume all pieces are placed in the “pointy-top” direction on
the board, meaning their hexagonal tiles have a corner at the top. Each piece’s
notation starts with the player’s color: “w” for White and “b” for Black, always
in lowercase. The second letter indicates the piece type, always capitalized: “Q”
for the Queen Bee, “A” for the Soldier Ant, “G” for the Grasshopper, “B” for the
Beetle, and “S” for the Spider. The third letter indicates the piece number, which
is used to differentiate among multiple pieces of the same type (except the Queen
Bee). For example, the notation “wS2” means the second white spider, and “bQ”
means the black Queen Bee. In our implementation, we encode each piece as an
Enum Piece in their respective notation. This way, each Piece gets assigned a
unique numerical value with it (which will be helpful later) and is easy to read in
the code. This straightforward approach provides clarity, ensures consistency, and
makes the code easier to maintain and update.

When it comes to move notations, it gets a form of “<moving_piece_nota-
tion><space><destination>”, where the destination is a combination of piece
notation and positional indicator. The moving piece is identified first without
specifying its initial position, as it either comes from the Hand or moves from
another location on the board. Next, one of the pieces adjacent to the destination
of the moving piece is identified. This reference piece is chosen from several
possible options, and the specific choice does not impact the validity of the move.

The position of the moving piece relative to the reference piece is indicated
by using “/”, “\”, or “-” (positional indicators) either preceding or following the
piece notation, depending on whether the moving piece is placed to the left or
right of the reference piece. Their “pointy-top” placement determines the left
or right side of the pieces. If we draw an imaginary line through the top and
bottom corners of the tile, we can identify the left and right sides of the piece. For
example, the move notation “wA1 bQ-” refers to moving the first White Ant to
the right middle side of the Black Queen Bee. If the move is a first move (“wS1”,
for example, is a move notation for placing the first white Spider as an opening
move) or a climb up move (“bB1 wQ”, for example, is a move indicating a first
black Beetle climbing on top of the white Queen Bee). In that case, no positional
indicator is used.

The Move class in our implementation handles these notations. Each Move
instance stores an Enum of the moving piece, an Enum of the end piece, and the
direction indicator of that move. It also includes methods to construct the move
strings from the instances and to parse move strings into the Move instances.
These methods also syntactically validate the move notations.

34

5.1.3 Game State Encoding
As we mentioned earlier, the game of Hive has no fixed board. However, we

can imagine an infinite (or large enough) grid on the axial hex coordinate system
that accommodates all the possible positions of the pieces. However, given that
we only have 22 pieces, this approach would be impractical and memory-intensive.

An alternative approach is using a hash map as our data structure. A hash
map stores key-value pairs, where the key is the axial hex coordinate, and the
value is a stack containing the pieces. A hash map is a data structure that maps
keys to values using a hash function to determine an index where the values are
stored. A stack is a data structure that follows the Last In, First Out (LIFO)
principle, meaning the last piece added is the first one removed.

To accommodate for parallelization and ensure safe access to the hash map from
different threads, C# offers the ConcurrentDictionary<K, V> data structure,
which implements a thread-safe hash map. By assigning appropriate key and value
types, we can initialize the playing grid as ConcurrentDictionary<HexCoord,
Stack<Piece>> Grid. This Grid is a significant part of the game state rep-
resentation, storing all pieces in play. Additionally, we define an array called
PiecePositions of size 22, using Enum numerical value of a Piece as an index in
the array to store the HexCoord of that piece. This array allows a quick retrieval
of piece positions. The pieces still in hand will have HandCoord as their value in
the array.

The game state needs to perfectly describe the essential information about the
game at any point in time. This is why the GameState class encapsulates all of
this. It contains the ConcurrentDictionary<HexCoord, Stack<Piece>> Grid
and the PiecePositions array to capture the board. Additionally, it includes
the GameHistory class, which stores all the moves previously made in the correct
order that led to the current state. The GameState class also includes fields of
the Player class type, representing each player, and the BoardState field, which
is an Enum that indicates if the game has not started, is in progress, ended in a
draw, or resulted in a win for either black or white. Finally, it has an indicator
for whose turn it is, storing an Enum TeamColor representing the current player’s
color to move.

5.1.4 Game Logic Implementation
The GameState class only contains the information about the state of the

game without providing any of the tools to modify this state in any way. This
is where we introduce the Engine class. This class contains a collection of static
methods for enforcing the game rules and updating the GameState instance
accordingly. Essential methods within the Engine class include IsBreakingHive
and CanSlideIn, which enforce the One Hive Rule and the Freedom To Move
rule, respectively. The IsBreakingHive method temporarily removes the piece
in question and performs the connectivity check using the Depth-First Search
algorithm. The CanSlideIn method checks for the existence of the neighbors that
can create the small gap through which the piece can not crawl.

Engine class also handles the piece introduction rule using the CanAddPieceTo
method, which makes a simple check for the color of the immediate neighbors.
Another key method is IsValidPieceMove, which validates specific piece move-

35

ments. For the Queen Bee and the Beetle, we check the adjacency. For the Spider
and Soldier Ant, we check the existence of the path (for the spider, we also specify
the length of the path). For the Grasshopper, we check the existence of at least
one piece in the direction of the jump and identify the first empty space.

Most of the AI agents need valid moves to make a decision. The Engine class
also contains the GetValidMoves method that generates all the valid moves for
the given GameState and the current player. Most of these rule validations are
called within a PlayMove method, which updates the GameState instance when a
move is performed.

The game loop is managed through the Play (non-static) method in the
Engine class. The Engine class contains an instance of the GameState, a private
field that we will refer to as the current game state. When Play is called, it
determines the current player via the GetPlayer method. If the current player
is a human, the method processes the move from the input argument, updates
the current game state accordingly via the PlayMove method, and performs self-
call with no arguments if the next player is AI. If the current player is AI, it
requests the move to play for the AI via the CalculateBestMove from the Player
instance representing the player, updates the current game state accordingly via
the PlayMove, and recursively calls Play with no arguments. This implementation
of Play is designed to handle interactions between different types of players,
whether human or AI.

5.2 Implementing the AI agents
In the previous Section, we discussed how the Engine class requests a response

from the agent by invoking the CalculateBestMove method from the Player
class. Each AI algorithm can be considered a strategy the Player class utilizes.
To ensure compatibility with the Engine class, each such strategy must implement
IEngineStrategy interface, which only contains the CalculateBestMove method.

The software uses five strategies: Human, Random, Mate In One, MCTS, and
Alpha-Beta. The HumanStrategy serves as a placeholder for human players, does
not execute computations for finding the best move, and is used in identifying non-
AI players. The RandomStrategy selects moves randomly, providing no strategic
depth. The MateInOne can identify a winning condition in one move and finish
the game but otherwise plays moves randomly. The MCTSStrategy employs the
Monte Carlo Tree Search algorithm, performing a deep copy on the current state
and executing the MCTS algorithm to build the game state tree and choose the
optimal move. Similarly, the AlphaBetaStrategy performs a deep copy on the
current state and utilizes the Alpha-Beta algorithm to construct the game state
tree and choose the best move. All these strategies are designed such that their
respective algorithms process the game state and determine the best move, which
is then outputted through the CalculateBestMove method. This design ensures
that the Engine class can consistently interact with each strategy, regardless of
the underlying algorithm.

36

5.3 Universal Hive Protocol
The Universal Hive Protocol (UHP), created by Jon Thysell [18], is an open

communication protocol for software versions of the board game Hive. Implement-
ing an engine to be UHP-compliant ensures compatibility and interoperability
with any UHP-compliant viewer (user interface applications). This allows devel-
opers to focus on specific components, such as AI agents and game logic, without
needing to build a complete system. The UHP enables communication between
the engine and the user interface through a standardized set of textual commands.
Our implementation of the Engine class adheres to UHP standards. Moreover,
the UHPMessageHandler class implements the functionality of the Universal Hive
Protocol, providing a set of commands a user or software can utilize. This class
implements various commands and allows the engine to process the UHP messages
efficiently.

A UHP-compliant engine is responsible for all of the logic necessary to play a
complete game of Hive. This includes maintaining an accurate representation of
the current game state, such as the configuration of the hive (the position of all
pieces), determining whose turn it is, identifying valid moves, maintaining a history
of moves played, and recognizing when the game has concluded. Additionally,
the engine must be capable of performing various actions, such as starting a new
game, playing moves, and undoing moves. Furthermore, given the current game
state, it should be able to recommend the best possible move.

The UHPMessageHandler is crucial for making the Engine UHP-compliant.
It provides an interface for parsing and executing UHP commands, ensuring
the engine responds correctly to any valid UHP message it receives. This class
encapsulates multiple command objects, each implementing the ICommand inter-
face, standardizing the execution of various commands within the engine. The
UHPMessageHandler class serves as a bridge of communication between the game
logic and the graphical user interface (GUI) in our software. The user input
from the GUI gets processed and converted into a UHP command, which is then
sent to a UHPMessageHandler. The UHPMessageHandler invokes the appropriate
command, which then performs the necessary actions using the Engine class. Our
Viewer part of the software is not fully UHP-compliant. It utilizes a non-UHP
query from the UHPMessageHandler to retrieve the current game state instance,
which it then uses to render the state of the game in the application.

37

6 Results
In this chapter, we will introduce the results of the experiments conducted

using the software detailed in Chapter 5. All experiments were run on a laptop
with an Intel i5-10300H CPU, which supports a maximum parallelization degree
of 8. The configurations for the Monte Carlo Tree Search algorithm were set to
a maximum of 300 iterations, the exploration parameter of the UCT formula
was set to 100, and all simulations were run until the simulated game was over.
These configurations provided the best results against a Random agent, which
is why they were selected. We chose a maximum depth of 3 for the Alpha-Beta
algorithm, as this offered a balanced trade-off between time and accuracy. A
maximum depth of 4 resulted in significantly slower performance, with an average
of several minutes per ply.

In Section 6.1, we will introduce the first baseline, a Random agent, which plays
only random moves. We compare the effectiveness of Alpha-Beta and Monte Carlo
Tree Search agents against this first baseline. In Section 6.2, we will introduce the
second baseline agent, referred to as the “Mate In One” agent. This agent can
identify a winning move and execute it to complete the game, but if there is no
such move, it defaults to performing random moves. In Section 6.3, we will put
Alpha-Beta and MCTS agents against each other and compare their performances.
In Section 6.4, we will put the winner from Section 6.3 against an intermediate
human player and an expert human player.

6.1 AI Agents Versus a Random Agent
A random agent is an agent that, given a list of all valid moves at its current

turn, will select a random move from that list and execute it in-game. It has not
understanding of strategy or tactics.

In this experiment, we put the Monte Carlo Tree Search agent against a
Random agent. We simulated 100 games, with the MCTS agent starting as player
White in 50 games and as player Black in the other 50 games. The results of this
experiment are summarized in the Table 6.1.

MCTS
Starts As

Wins Draws Losses Avg Turn
Count

White 66% 30% 4% 58.54
Black 76% 24% 0% 50.14

Table 6.1 MCTS vs Random

The format of the table will be the same for all of the experiments. “Player
Starts As” indicates the color the player started as (White or Black) during the
experiment. In the tables, instead of “player” we will use the name of the strategy
used by the agent. “Wins”, “Draws”, “Losses” represent the percentage of games
that resulted in a win, draw, or a loss for that player. In some tables, when the
number of experiments is quite low, next to the percentages in parenthesis, we
will include the exact number of wins, draws, or losses. “Avg Turn Count” refers
to the average number of turns to complete each game.

38

From the Table 6.1, we can observe the MCTS strategy winning most of the
games, beating the Random agent in most cases. However, we can also observe
a high average turn count in the experiments. This is due to the large number
of draws that occurred because of reaching the limit of 100 turns per game,
demonstrating how MCTS struggles to close out the games against such a basic
strategy. We can also observe a small number of losses that occurred during
MCTS starting as white; this can highlight a potential weakness of this strategy,
where it fails to defend itself against even random moves.

Next, we put the Alpha-Beta agent against a Random agent. Again, we
simulated 100 games, where the Alpha-Beta agent started as player White in 50
of those games and as player Black in the rest. The results of this experiment are
summarized in the Table 6.2 below.

Alpha-Beta
Starts As

Wins Draws Losses Avg Turn
Count

White 100% 0% 0% 15.64
Black 100% 0% 0% 15.76

Table 6.2 Alpha-Beta vs Random

The Alpha-Beta agent won 100% of the games regardless of starting as White or
Black, with average turn counts of 15.64 and 15.76, respectively. This demonstrates
the superior performance of the Alpha-Beta agent against the Random agent.

6.2 AI Agents Versus a “Mate In One” agent
The “Mate In One”, similarly to the Random agent, has no understanding of

tactics or strategy. Given a list of valid moves, it will iterate over each of them to
see which will result in an instant win for the agent. If none of such moves exist
in the list, the “Mate In One” agent defaults to playing a random move.

In this experiment, we put the MCTS agent against a “Mate In One” agent.
We simulated 100 games, with the Monte Carlo Tree Search agent starting as
player White in 50 games and as player Black in the other 50 games. The results
of this experiment are summarized in the Table 6.3.

MCTS
Starts As

Wins Draws Losses Avg Turn
Count

White 38% 48% 14% 68.66
Black 38% 46% 16% 62.46

Table 6.3 MCTS vs Mate In One

From the Table 6.3, we can observe the MCTS strategy having the majority
of the wins, however not as confident as previously. The “Mate In One” agent
exploited the weak defense from the MCTS agent, resulting in 14-16% winning
rates in its favor. Again, we can observe a high average turn count (both above
60 turns). This can be explained by the fact that most of the games resulted in
a draw due to exceeding the turn limit of 100 turns (almost 50% in both cases),
which further shows how MCTS struggles to close out a game.

39

In the next experiment, we put the Alpha-Beta agent against a “Mate In One”
agent. Again, we simulated 100 games, where the Alpha-Beta agent started as
player White in 50 of the games and as player Black in the rest. The results of
this experiment are summarized in the Table 6.4.

Alpha-Beta
Starts As

Wins Draws Losses Avg Turn
Count

White 100% 0% 0% 14.36
Black 100% 0% 0% 14.34

Table 6.4 Alpha-Beta vs Mate In One

As we can observe from the Table 6.4, the Alpha-Beta agent demonstrates a
superior performance against the “Mate In One”. Not a single loss out of the 100
games, and the games were all relatively short (both around 14 turns on average).

6.3 Alpha-Beta Agent Versus Monte Carlo Tree
Search Agent

Building on the previous experiments where both AI agents competed against
Random and MateInOne agents, it was evident that the Alpha-Beta agent outper-
formed the MCTS agent in terms of the winning rates. We experimented with the
Alpha-Beta agent against the MCTS agent to further evaluate their performance.
A total of 20 games were simulated, with the Alpha-Beta agent starting as White
in 10 games and the MCTS agent starting as White in the remaining 10 games.
The results are summarized in Table 6.5.

Alpha-Beta
Starts As

Wins Draws Losses Avg Turn
Count

White 100% 0% 0% 13.6
Black 100% 0% 0% 20.5

Table 6.5 Alpha-Beta vs MCTS

The Table 6.5 shows that the Alpha-Beta agent won all 20 games regardless
of its starting color, with an average turn count of 13.6 when starting as White
and 20.5 when starting as Black.

6.4 AI Agent Versus a Human
This section evaluates the performance of the Alpha-Beta agent against human

players with varying levels of experience. We define an intermediate player as
someone with a fundamental understanding of the game rules, basic strategies, and
common tactics. They have accumulated approximately one year of experience,
which typically includes regular play and exposure to a variety of in-game scenarios.
This level of experience allows the player to make competent moves, anticipate
opponent strategies to a certain extent, and execute basic game plans effectively.

40

In contrast, we define an expert player as someone with a profound understanding
of the game, advanced strategies, and complex tactics. They have accumulated
at least ten years of experience, including extensive practice and deep analytical
study of the game. This level of experience enables the player to make optimal
moves and counter opponent strategies consistently. Expert players can think
several moves ahead, adapt to changing game dynamics and exhibit a high level
of strategic foresight and tactical precision.

The Alpha-Beta’s dominance was evident in the previous experiments, estab-
lishing it as the candidate for this experiment. Consequently, we set up a series
of 10 games between the Alpha-Beta agent and an intermediate human player,
with the agent alternating between playing as White and Black. The outcomes of
these games are presented in Table 6.6.

Human
Starts As

Wins Draws Losses Avg Turn
Count

White 40% (2) 20% (1) 40% (2) 16.2
Black 40% (2) 0% (0) 60% (3) 16.4

Table 6.6 Intermediate vs Alpha-Beta

The results from the Table 6.6 reveal that the Alpha-Beta demonstrated
a notable performance against an intermediate-level human player. Out of 10
games, Alpha-Beta managed to win five, draw one, and lose four games, all with
a relatively small average turn count. These outcomes highlight our refinements
in the AI’s capabilities for the board game Hive. Previous attempts, as discussed
in the Related Work chapter, struggled to perform well against human opponents.
While these results are promising, it is important to note that the intermediate
level is not the highest benchmark; we must also evaluate performance against an
expert player.

After observing successful results, we put the Alpha-Beta agent against an
expert human player. The format remains the same. The only difference is the
skill level of the player.

Human
Starts As

Wins Draws Losses Avg Turn
Count

White 60% (3) 0% (0) 40% (2) 16.4
Black 40% (2) 20% (1) 40% (2) 18.4

Table 6.7 Expert vs Alpha-Beta

The Table 6.7 reveals the winner of the last experiment to be a human.
However, the margin was narrow. Out of 10 games, Alpha-Beta won four, lost
five, and drew one game. Despite its defeat, the agent performed relatively well.
These outcomes highlight the advancements in enhancing the AI’s capabilities,
though further refinements are necessary to improve decision-making quality. The
subsequent chapter will explore some of these potential improvements.

41

Conclusion
The primary focus of the thesis was to implement and evaluate two AI strategies,

Alpha-Beta and Monte Carlo Tree Search, in the board game Hive. To accomplish
this, we had to create a software platform that facilitated the integration and
evaluation of these AI agents. We consider all of the intended goals to be
successfully achieved.

A highlight from the comparative analysis was the dominant performance
of the Alpha-Beta algorithm. It demonstrated perfect results against the two
baselines and the MCTS algorithm. It won against an intermediate-skilled human
player and almost won against an expert human player.

Despite this, we acknowledge areas for improvement. One such area is the
execution time for the algorithms. For simplicity, during the experiments, we
mainly focused on the quality of the decisions rather than their speed. Therefore,
we set no time limitations per move for any of the algorithms. This was most
noticeable when performing the experiments with the MCTS algorithm; often,
it would take several minutes for the agent to decide on a move. The time
issue was also noticeable for the Alpha-Beta agent, but not to the same degree.
Implementing iterative deepening or a better heuristic for move ordering could
speed up the decision-making process of the Alpha-Beta algorithm.

Another such area is the Monte Carlo Tree Search implementation. By
incorporating a heuristic for simulations to play more promising moves instead
of uniformly random ones, the efficiency and accuracy of the algorithm could be
enhanced. Faster simulations would lead to quicker games, allowing for more
iterations of the algorithm and, consequently, more accurate outcomes. A different
method of parallelization could also be used for improving the algorithm.

In conclusion, while the Alpha-Beta algorithm outperformed MCTS in our
experiments, several approaches exist to enhance both algorithms’ performance
and efficiency. Future work could focus on optimizing decision-making speed and
refining heuristics to further improve the AI agents’ performance in Hive.

42

Bibliography
1. Hsu, Feng-hsiung. IBM’s deep blue chess grandmaster chips. IEEE micro.

1999, vol. 19, no. 2, pp. 70–81.
2. Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou,

Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas;
Lai, Matthew; Bolton, Adrian, et al. Mastering the game of go without
human knowledge. nature. 2017, vol. 550, no. 7676, pp. 354–359.

3. Gen42. Official website for the Game of Hive [online]. 2015. [visited on
2024-06-28]. Available from: https://www.gen42.com/games/hive.

4. Burmeister, Jay; Wiles, Janet. The challenge of Go as a domain for
AI research: a comparison between Go and chess. In: Proceedings of Third
Australian and New Zealand Conference on Intelligent Information Systems.
ANZIIS-95. IEEE, 1995, pp. 181–186.

5. Kampert, Duncan; Varbanescu, Ana-Lucia; Müller-Brockhausen,
Matthias; Plaat, Aske. Mimicking the Human Approach in the Game of
Hive. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI).
2021, pp. 1–8. Available from doi: 10.1109/SSCI50451.2021.9659999.

6. McGuile, Connor Michael. Swarm Artificial Intelligence in Hive [online].
2020. [visited on 2024-06-19]. Available from: https://info.cs.st-andrews.
ac . uk / student - handbook / files / project - library / cs5099 / cmm40 -
Final_report.pdf. MA thesis. University of St Andrews.

7. Blixt, Rikard; Ye, Anders. Reinforcement learning ai to hive [online]. 2013.
[visited on 2024-06-19]. Available from: https://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A668701&dswid=-4144.

8. Konz, Barbara Ulrike. Applying Monte Carlo Tree Search to the Strategic
Game Hive [online]. 2012. [visited on 2024-06-19]. Available from: https:
//www.aot.tu-berlin.de/fileadmin/files/lehre/diplomarbeit/BA_
Barbara_Konz.pdf. Bachelor’s Thesis. Technical University of Berlin.

9. Bunth, Tamás. Solving Hive Board Game with Deep Reinforcement Learning
[online]. 2019. [visited on 2024-06-19]. Tech. rep. Budapest University of
Technology and Economics. Available from: http://tdk.bme.hu/VIK/
DownloadPaper/Mely-megerositeses-tanulas-alapu-Hive-jatekos.

10. Goede, Danilo de; Kampert, Duncan; Varbanescu, Ana Lucia. The
Cost of Reinforcement Learning for Game Engines: The AZ-Hive Case-study.
In: Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering [online]. 2022, pp. 145–152 [visited on 2024-06-19].
Available from: https : / / dl . acm . org / doi / abs / 10 . 1145 / 3489525 .
3511685.

11. Coulom, Rémi. Efficient selectivity and backup operators in Monte-Carlo
tree search. In: International conference on computers and games. Springer,
2006, pp. 72–83.

43

https://www.gen42.com/games/hive
https://doi.org/10.1109/SSCI50451.2021.9659999
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-library/cs5099/cmm40-Final_report.pdf
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-library/cs5099/cmm40-Final_report.pdf
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-library/cs5099/cmm40-Final_report.pdf
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A668701&dswid=-4144
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A668701&dswid=-4144
https://www.aot.tu-berlin.de/fileadmin/files/lehre/diplomarbeit/BA_Barbara_Konz.pdf
https://www.aot.tu-berlin.de/fileadmin/files/lehre/diplomarbeit/BA_Barbara_Konz.pdf
https://www.aot.tu-berlin.de/fileadmin/files/lehre/diplomarbeit/BA_Barbara_Konz.pdf
http://tdk.bme.hu/VIK/DownloadPaper/Mely-megerositeses-tanulas-alapu-Hive-jatekos
http://tdk.bme.hu/VIK/DownloadPaper/Mely-megerositeses-tanulas-alapu-Hive-jatekos
https://dl.acm.org/doi/abs/10.1145/3489525.3511685
https://dl.acm.org/doi/abs/10.1145/3489525.3511685

12. Chaslot, Guillaume Maurice Jean-Bernard. Monte-Carlo Tree Search [on-
line]. [N.d.]. [visited on 2024-06-19]. Available from: https://project.dke.
maastrichtuniversity.nl/games/files/phd/Chaslot_thesis.pdf.

13. Kocsis, Levente; Szepesvári, Csaba. Bandit based monte-carlo planning.
In: European conference on machine learning. Springer, 2006, pp. 282–293.

14. Neumann, J v. Zur theorie der gesellschaftsspiele. Mathematische annalen.
1928, vol. 100, no. 1, pp. 295–320.

15. Knuth, Donald E.; Moore, Ronald W. An analysis of alpha-beta prun-
ing. Artificial Intelligence. 1975, vol. 6, no. 4, pp. 293–326. issn 0004-3702.
Available from doi: https://doi.org/10.1016/0004-3702(75)90019-3.

16. Zobrist, Albert L. A new hashing method with application for game playing.
ICGA Journal. 1990, vol. 13, no. 2, pp. 69–73.

17. BoardSpace.com. Hive Notation [online]. [N.d.]. [visited on 2024-07-11].
Available from: http://www.boardspace.net/english/about_hive_
notation.html.

18. Thysell, Jon. Univeral Hive Protocol [online]. 2015. [visited on 2024-07-13].
Available from: https : / / github . com / jonthysell / Mzinga / wiki /
UniversalHiveProtocol.

44

https://project.dke.maastrichtuniversity.nl/games/files/phd/Chaslot_thesis.pdf
https://project.dke.maastrichtuniversity.nl/games/files/phd/Chaslot_thesis.pdf
https://doi.org/https://doi.org/10.1016/0004-3702(75)90019-3
http://www.boardspace.net/english/about_hive_notation.html
http://www.boardspace.net/english/about_hive_notation.html
https://github.com/jonthysell/Mzinga/wiki/UniversalHiveProtocol
https://github.com/jonthysell/Mzinga/wiki/UniversalHiveProtocol

List of Figures

1.1 Example for valid Queen Moves 9
1.2 Beetle movement . 10
1.3 Grasshopper valid movement example. 10
1.4 Example of valid Spider movement destinations. Yellow arrows

represent the steps a Spider takes to move to these valid destination
tiles, while green lines represent the valid destinations. 11

1.5 Example of moves breaking the One Hive Rule. Moving the white
Queen Bee will temporarily break the Hive in two. Moving the
black Queen Bee in any direction will cause the same. 12

1.6 Examples of invalid moves due to Freedom to move rule. 12
1.7 Outcomes when Queen Bees are surrounded. 13

3.1 Outline of Monte-Carlo Tree Search [12] 19

4.1 Illustration of a game state tree with a branching factor of ten and
a depth of three. Blue nodes represent the maximizer’s ply and
green nodes represent the minimizer’s ply. 28

A.1 Main Menu in the application . 48
A.2 Settings Menu . 49
A.3 Game View state of the application. Human Vs Human. 50
A.4 A message pops up when the player Black tries to introduce Queen

Bee illegally on turn 1. It floats up slowly and fades away in 5
seconds. 51

A.5 Game Over. Human vs Random. White wins. 52
A.6 A Review state of the application. It shows the start of the game

when no moves have been played yet. 53

45

List of Tables

6.1 MCTS vs Random . 38
6.2 Alpha-Beta vs Random . 39
6.3 MCTS vs Mate In One . 39
6.4 Alpha-Beta vs Mate In One . 40
6.5 Alpha-Beta vs MCTS . 40
6.6 Intermediate vs Alpha-Beta . 41
6.7 Expert vs Alpha-Beta . 41

46

A User Documentation
This section demonstrates how to install and run the application developed as

part of this thesis. The software is called HiveEngineMFF and is built to simulate
the board game Hive and facilitate the integration of the AI agents. It offers
only a graphical user interface and is supported on Windows and Linux operating
systems.

In Section A.1, we will present the necessary dependencies needed for installing
and running the application. In Section A.2, we will demonstrate the steps needed
for running the application using the source code. In Section A.3, we will explain
how to use the application.

A.1 Dependencies
The only installation requirement is:

• .NET SDK 6.0

After installing this, a user can run the application, which is instructed in A.2.
For further development, the following dependencies were used in developing

the software:

• Monogame framework (version 3.8.1.303), more precisely, these two packages
from the framework (both can be acquired as a NuGet package, but recom-
mended to download the framework from the official website of Monogame):

– MonoGame.Framework.DesktopGL (version 3.8.1.303)
– MonoGame.Content.Builder.Task (version 3.8.1.303)

• TinyDialogsNet (version 2.0.0). (can be acquired as a NuGet package)

These are not required for the user who wants to run the application.

A.2 Installation
To install the application from the source code, a user must install all the

required installation dependencies. This guide works for both Linux and Windows
1. Clone the following GitLab repository containing the source code for the

project:

git clone https://gitlab.mff.cuni.cz/teaching/nprg045/majerech/ahmadov.git

2. Navigate to the cloned directory in the terminal. Then navigate to the
“Hive” folder and run the following command:

dotnet run

After running the command, a GUI application will appear.

47

A.3 Running the Application
When starting the application, a user will be met with the main menu screen.

Figure A.1 represents that.

Figure A.1 Main Menu in the application

Users can navigate the application using either a keyboard or a mouse. When
using the keyboard, the arrow up and arrow down keys allow users to move the
selection to the button above or below the currently selected one, respectively.
The “Enter” key can then activate the selected button. Alternatively, users can
navigate with a mouse by hovering over the desired button and clicking the left
mouse button once to activate it. It is important to note that the mouse cursor
takes priority in the selection of buttons.

We describe each button of the Main Menu as follows:

• Selecting the Start a Game option initiates a new game instance with the
current settings. This action transitions the interface into the Game View
State, which will be detailed later. Essentially, this means that either a
game or a simulation will start. A simulation involves an instance where
both player strategies are the AI agents, whereas a normal game can be
played between human players or between a human player and an AI agent.

• Selecting Settings transitions the interface into Settings Menu. The controls
for the Settings Menu are the same, meaning we can choose and activate
buttons via keyboard or mouse. The list of all the options and descriptions
will be detailed later in the document.

• Selecting Review Saved File will open a File Dialog, allowing users to
navigate to and select a saved game file (*.hivesave.txt). Once a file is
selected, the interface transitions into a Review Mode, letting users review
a saved game instance. Further details on the Review Mode are discussed
later.

• Selecting Exit closes the application.

48

In Subsection A.3.1, we will detail each settings option in the Settings Menu.
In Subsection A.3.2, we will demonstrate how to use the application for playing
the game or running simulations. In Subsection A.3.3, we will explain how to
review the saved game files using the application. The experiments run during
the Results Chapter are also considered to be saved files.

A.3.1 Settings
When selecting the Settings option in the Main Menu, the application transi-

tions into Settings Menu, which can be seen in Figure A.2.

Figure A.2 Settings Menu

Here, a user can set up the game’s settings, mainly the players’ strategies,
agent-specific settings, and the number of simulations to run an experiment. Each
button has certain possible values they can represent. The value selection is
cyclical. By pressing “Enter” or left mouse click on selected buttons, a user can
change to the next value. We define each button of the Settings Menu as follows:

• White Strategy. A strategy for the player White. The values are Hu-
man, MCTS, AlphaBeta, Random, and MateInOne. Each of these values
represents an AI strategy or a human player.

• Black Strategy. A strategy for the player Black. The values are the same
as in the White Strategy button.

• White Alpha Beta Depth. Chooses the maximal depth for the Alpha-Beta
search tree if the player white uses Alpha-Beta as its strategy. The values
are from 1 to 5.

• Black Alpha Beta Depth. Chooses the maximal depth for the Alpha-Beta
agent playing as player black. The values are from 1 to 5.

• White MCTS Iterations. Chooses the total number of iterations for the
MCTS agent playing as the player White. The values are 10, 20, 50, 100,
300.

49

• Black MCTS Iterations. Chooses the total number of iterations for the
MCTS agent playing as the player Black. The values are 10, 20, 50, 100,
300.

• Number of Experiments. A setting for simulations. Determines the number
of simulations to run. So, suppose we have a simulation for Alpha-Beta
versus a Random and set a simulation number to 100. In that case, this
experiment will run 100 games of Alpha-Beta playing against the Random
agent. The values are 1, 5, 10, 25, 50, 100, 200, 1000.

• Save Settings. Saves the settings for the game.

A.3.2 Playing the Game
When selecting the Start a Game option in the Main Menu, the application

transitions into Game View. Here, a user can, depending on the settings, play
against another human, against an AI agent, or observe the simulations happening
in real time. Figure A.3 depicts the Game View state.

Figure A.3 Game View state of the application. Human Vs Human.

The Game View can be controlled via a mouse. The left mouse button is used
to move pieces, introduce pieces, or press In-Game Interface buttons (save, skip,
or undo). Hovering over a stack of pieces with a mouse cursor will reveal all the
pieces in that stack. The pieces, from the bottom of the stack to the top, will be
displayed at the middle and bottom of part of the window. They will appear from
left to right, where the most left piece is the bottom piece, and the most right
piece is the one at the top of the stack. The right mouse button moves the camera;
by holding and dragging it, a user can move their camera to observe the board
better. A user can also use a scroll wheel to zoom in or zoom out the camera for
a clear view of the board.

The Game View also recognizes keyboard input; however, it is not enough to
play the game. For In-Game Interface buttons, a player can activate skip, save,
and undo by pressing “P”, “S”, and “U”, respectively. A player can zoom in and

50

zoom out by pressing the “+” and “-” keys, respectively. Additionally, by pressing
“R” on the keyboard, a user will move the camera back to the center.

The set of pieces on the sides represents the pieces in Hand. To introduce a
new piece from hand to the board, a player can drag (by pressing the left mouse
button and holding till the desired destination) the piece of their color from one of
the sides and drop it (releasing the left mouse button) where they think the piece
should be placed. For turn one, when player White starts the game, dragging and
dropping the piece will always drop it in the center. A player must drag and drop
to the desired position for the rest of the situations. The desired position can
be the center of the imaginary hexagon-shaped tile neighboring any of the pieces
(given that it complies with the game rules). The game will automatically place
the tile in its right position if the drop happens near the center of the desired tile.
If no more pieces from the hand are available of a specific type, the game will
not let the user drag in more pieces of that type. We also use dragging motion
to move a piece on the board. A user can click and hold the left mouse button
to select the piece to move and drop it in the place the user desires as long as it
complies with the game rules.

In the bottom left corner of the window, text represents the turn count and
current turn.

The error messages, notifying a player for attempting to perform an illegal
move, will appear as floating messages that fade away within 5 seconds. Figure
A.4 demonstrates that.

Figure A.4 A message pops up when the player Black tries to introduce Queen Bee
illegally on turn 1. It floats up slowly and fades away in 5 seconds.

The three button icons at the bottom right corner of the screen are called
In-Game Interface buttons. There are three buttons, each with an action. The
actions of the buttons, in order, are save, skip, and undo. Saving a game will
prompt the application to open a Save File Dialog, where a user can give a name
for a file that will be saved as a .hivesave.txt file in the SaveFiles folder. Skip
refers to an action of playing the move “pass”. By performing a pass move, a user
skips their turn without moving or adding a piece; this is only allowed when the
player has no legal moves available. Undo refers to an action of undoing the last
move. If the Game View is set up for a human vs human, the button will undo

51

only one move. If the Game View is set up for an AI agent versus a Human player,
the button will undo two moves so that the player can play again. These In-Game
Interface buttons can also be activated via the keyboard. By pressing the “S” key,
a user activates the Save button; by pressing the “U” key, a user activates the
Undo button; and by pressing the “P”, a user activates the Skip (Pass) button.
The In-Game Interface buttons are present only for non-simulations. This means
that if, in the Settings Menu, a user assigns both strategies to be non-human,
then the Game View starts the experiment run for the number of times specified
in the settings. During this period, the user can only move the camera and hover
over stacks of pieces on the board; no modifications by the user to the game state
are allowed. All the experiments are automatically saved into the SaveFiles folder.

When the game is over or the experiments are finished, a message in the middle
of the window announces the winner of the last game. When the game is over, a
user cannot modify the game state by performing or undoing moves. From here,
a user can press the “M” button on their keyboard to go back to the Main Menu
or close the application by pressing the “ESC” button. Figure A.5 demonstrates
that. It is important to note that during the Game View state of the application,
a user can not go back to the Main Menu before the game or the simulation is
over.

Figure A.5 Game Over. Human vs Random. White wins.

A.3.3 Reviewing Saved Files
When selecting the Review Saved File option in the Main Menu, a user will be

prompted to choose a save file from the File Dialog; then, after selecting the desired
save file, the application transitions into a Review state. Here, a user can observe
how the saved game developed over the turns. A user cannot modify the game
state; they can only observe the next or previous moves during that game (with
respect to the current turn). We can notice how the In-Game Interface buttons for
the Review state differ. The buttons introduced earlier are not present since we
cannot update the game state. However, the Review contains two arrow-shaped
buttons. The left-most button (arrow pointing to the left) performs an action
of reviewing the previous move. This action can also be called by pressing the
left arrow key on the keyboard. The right-most button (arrow pointing to the

52

right) performs an action of reviewing the next move. This action can also be
called by pressing the right arrow key on the keyboard. It is important to note
that each left mouse button click on the arrows performs the action once while
pressing and holding the left and right arrow keys, which will perform the action
multiple times. A user can leave the Review mode at any point by pressing the
“M” button on the keyboard. Below, Figure A.6 demonstrates that.

Figure A.6 A Review state of the application. It shows the start of the game when
no moves have been played yet.

53

B Attachments
Below, we present the attachments that are a part of a digital archive.

B.1 Source Code
This folder contains all the source code and the necessary files used to build

the HiveEngineMFF application as a part of this thesis. This folder will also
include a folder named SavedFiles, where all the game files of the experiments
performed are stored.

B.2 Executables
This folder contains two folders, each named after the operating system

and containing the executables for Windows and Linux operating systems. For
Windows, it is enough to run the Hive.exe file. For Linux, it might require the
execute permission. One can achieve that by running chmod +x Hive.

B.3 GitLab Repository
The GitLab repository, containing the source code, can be found at https:

//gitlab.mff.cuni.cz/teaching/nprg045/majerech/ahmadov

54

https://gitlab.mff.cuni.cz/teaching/nprg045/majerech/ahmadov
https://gitlab.mff.cuni.cz/teaching/nprg045/majerech/ahmadov

	Introduction
	Hive
	Set Up for the Game and Movement
	Bugs
	One Hive Rule
	Freedom To Move
	Objective of The Game
	Why Hive?

	Related Work
	Monte-Carlo Tree Search
	Background
	Overview of MCTS
	Selection
	Expansion
	Simulation
	Backpropagation
	Choosing The Best Move
	Parallelization
	Algorithm

	Minimax and Alpha-Beta pruning
	Background
	Minimax
	Algorithm
	Problems with Minimax

	Alpha-Beta pruning
	Comparison with Minimax
	Transposition Tables
	Algorithm

	Evaluation Function

	Implementation
	Implementing Hive
	Position Encoding
	Piece And Move Encoding
	Game State Encoding
	Game Logic Implementation

	Implementing the AI agents
	Universal Hive Protocol

	Results
	AI Agents Versus a Random Agent
	AI Agents Versus a ``Mate In One'' agent
	Alpha-Beta Agent Versus Monte Carlo Tree Search Agent
	AI Agent Versus a Human

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	User Documentation
	Dependencies
	Installation
	Running the Application
	Settings
	Playing the Game
	Reviewing Saved Files

	Attachments
	Source Code
	Executables
	GitLab Repository

