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Introduction

Humans have enjoyed playing board games ever since we could remember, long
before the time of computers. Therefore, it is no surprise that there are hundreds
of new and creative board games created every year.

Nowadays, we have the luxury to enjoy and challenge ourselves even on our own,
whenever we feel like it. And that is exactly what this thesis aims to do. Provide
the right opponent for everybody in the game of Hex.

Hex is a two-player abstract strategy game invented by the Danish mathematician
Piet Hein in 1942. What is interesting about the discovery of the game is that the
famous American mathematician John Nash supposedly also invented the game
independently in 1948. And since John Nash played Hex a lot during his studies
at Princeton, it is also known as Nash. We can also glimpse John playing Hex in
his bibliographical movie, The Beautiful Mind.

As the interest of famous mathematicians suggests, there are some complex qual-
ities of Hex worth studying. And many people did; there are already plenty of
mathematical findings and very good Als that have already beat the best players
in the world. In this thesis, we will first implement the game itself, summarize the
current research progress, and also build a few of our own artificial intelligences
capable of playing Hex against both real players and other Als. With the aim
of making the game more accessible to people by giving them the possibility to
choose the right difficulty. Because even though many excellent Als already exist,
they might be a bit too difficult to play against or take too long to make a move
for real-time games, considering their complexity.

For implementing the game, we will use Python, and it will be possible to either
play against an Al or a local friend.



1. The Hex Game

In this chapter, we will describe how to play the game of Hex and later analyze
its properties.

1.1 Introduction to Hex

Hex is a captivating and strategic board game. Traditionally played on a symmet-
rical 11x11 rhombus board with hexagonal cells. But in theory even asymmetrical
boards with unequal side lengths are possible, as well as any other dimensions,
13x13 and 19x19 being particularly popular and studied.

The game was first published in a Danish newspaper, Politiken, on December
26, 1942. The name of the game went through some changes before becoming
known as Hex. The inventor, Peter Hein, originally named the game Polygon in
his article. Later, it was marketed in Denmark under the name Con-tac-tix. And
finally almost ten years later, it was popularized by the Parker brothers as Hex,
probably due to the nature of the game board.

The game has very simple rules but the strategy is rather complex. There is no
element of chance and has a perfect information structure. The players need to
anticipate their opponent’s moves, block strategic paths, and create their own
winning strategies.

1.2 Rules

As mentioned above, Hex is a two-player strategy game traditionally played on
11x11 rhombic board with hexagonal cells. Each player is assigned a color, usually
red and blue or black and white for high contrast, but any color combination is
possible. Both players are also assigned two opposite sides of the game board, all
the four corner cells belong to both adjacent sides.

Players then take turns in coloring one of the blank cells with their allocated
color, claiming it as theirs. It is not allowed to repaint an already claimed cell
or skip a turn entirely. The goal of the game is then very simple; link your two
opposite sides of the game board by a connected path consisting of cells painted
in your color. The player to connect their sides first wins. It is common for the
loser to resign when the winner is clear, even though the game is not officially
over yet.

1.3 Analysis

Now that we know how Hex works, let us analyze the properties of the game.
It is essential for later choosing the right algorithms for both its implementation
and the design of its Al agents.



Figure 1.1: A finished 11x11 Hex game where Blue won

1.3.1 Game Theory Point of View

Hex is a zero-sum game, meaning that one player’s gain is exactly the other
player’s loss, so the total value of the outcomes for both players sums to zero.

Hex is also a game with perfect information. Both players are perfectly aware of
all the moves that have been played and also of all the possible moves that can
be played at any given moment.

Hex is a deterministic game. Since there is no element of chance or surprise, the
outcome is fully determined by the players’ choices and actions.

Hex is a non-cooperative game. There is no reason to cooperate with the other
player under any circumstances.

Hex is a symmetric game if we choose to focus on the more common version of
the game. Meaning the available strategies and payoffs for both players are the
same. In other words, in terms of their roles, the players are indistinguishable,
and they face the same choices and outcomes.

1.3.2 Complexity

In 1981, a German mathematician Stefan Reisch proved that Hex is PSPACE-
complete [Reisch| [1981]. Meaning that it is at least as hard as the hardest prob-
lems in polynomial space complexity. This implies that finding an optimal strat-
egy algorithmically can be computationally challenging.

However, we have to take into consideration that the board size of the game has
a great impact on the computational complexity of the game. Conveniently, Hex
can be represented as a tree graph, but we have to be careful because when we
increase the board size, the branching factor also increases.

1.3.3 Properties

What is interesting about the game is that it can never end in a draw. Meaning
that even if all the cells are claimed by one of the players, there always exists
a connected path linking either the left and right sides of the board, or the top



and bottom sides, with their respective colors, of course. This phenomenon is
also known as the Hex theorem, and it was known to even John Nash. The proof
is non-trivial, and there are many different ones. For example a proof by

1979,

As a consequence of the Hex theorem, defending is also attacking. If a player at
every move plays defensively; blocking the other player from connecting their sides
of the board, this strategy inadvertently leads to the defensive player’s victory.

Another very important property of the game is that the first player has a winning
strategy, as proven by John Nash in 1952. To remedy this fact, a swap rule can
be added. When the second player is about to make their first move, they can
choose to either play normally or swap colors with their opponent, and the game
continues with the first player playing again, but with the swapped colors.

1.3.4 Basic Strategies

As mentioned above, there are many Hex strategies, and none of them are too
straight-forward. But after taking a closer look at the structure of the game, we
can observe a few things.

One of the simplest ways to advance is by using a two-bridge. Two-bridge is a
diamond-shaped formation where a player has claimed two cells that are two cells
apart, as seen in Figure[[.2] We can observe that the opposing player cannot later
prevent the red player from joining their cells in a two-bridge, no matter what.
Any possible rotation of the shown two-bridge is again a valid two-bridge.

Figure 1.2: A red two-bridge

And as a result, it is very beneficial to use such bridges in the game, as a player
can advance across the game board twice as fast as when connecting the adjacent
cells. For visualization, see Figures [.3] and

While advancing using two-bridges is a good practice, it is only good at a local
level and can also be blocked. Let us also hint at some more general principles.
We can observe that a position is only as good as its weakest link. Therefore,
a player should generally try to either make their weakest link stronger or make
their opponent’s weakest link even weaker. Achieving both at the same time is
ideal.

For illustration, let us look at Figure [1.5 For the blue player, the cell marked
with a black star is their weakest link, as they used two-bridges for the rest of the
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Figure 1.5: Weakest link

game board, assuring their future connection. Simultaneously, the cell marked
with a black star is also the red player’s weakest link for similar reasons. As a
result, whoever will play next will be smart to claim the black star cell because
it is both theirs and their opponent’s weakest link. Specifically for this scenario,
whoever claims the black star cell will also win the whole game.

Many other local and more general strategies can be adapted. Their specification

and analysis in more detail was described by 2000).



2. Artificial Intelligence

In this chapter, we will look into artificial intelligence approaches suitable for
the game of Hex and later used in its implementation. To be more specific, we
will be implementing an agent. An agent is an entity designed to autonomously
make decisions in order to reach a specific goal. They are able to perceive their
environment and act accordingly. In our case, the environment is the current
state of the Hex board, and the goal is to win the game by following its rules.

Let us look at some algorithms and approaches that can be used by such agents.
The description of some of the agents is inspired by a book by Russell [2010].

2.1 Minimax

The Minimax algorithm is a popular decision-making algorithm used for two-
player games. Its main idea is to find an optimal move for a player while assuming
the opponent also plays optimally. The name "Minimax” reflects the strategy of
minimizing the maximum possible loss.

Minimax is a type of backtracking and recursive algorithm, and it represents the
game as a tree. One of the players is typically called a maximizer, and the other
a minimizer. The maximizer tries to get the highest possible score, while the
minimizer the lowest. Every game state can be assigned a value, which tends to
be higher when the game state is favorable for the maximizer and lower when it
is favorable for the minimizer. The value itself is computed using some sort of
heuristics that are specific to different kinds of games.

The algorithm itself works in the following way:
1. Generate game tree.

The current game state is used as the root of the game tree, and then
the tree itself is generated in the following way: We recursively take into
account all possible moves, and the game states that are the result of the
moves being played are added as children to their parent nodes. This way;,
we recursively continue until terminal game states are reached, and these
will be our leaves.

2. Assign values to leaves.
All the leaves are assigned a value using a static evaluation function.
3. Assign values to internal nodes.

In this step, we will backtrack from the leaves back to the root. Proclaiming
the root as a node at depth zero, we do the following: For each internal
node at an even depth, it is the maximizer’s turn, so we choose the child
with the highest value and use this value for our current node. On the
other hand, if the node is at an odd depth, it is the minimizer’s turn, and
we choose the lowest value of all our children.

4. Choosing a move.

Looking at the children of the root, we choose the child with the highest



value, and as our move, we choose the move that led to this child.

When applied to the Hex game, which is deterministic, zero-sum, and finite,
Minimax actually guarantees finding the optimal move. However, that is only
true when the game tree is fully searched. Which poses a big problem for a game
with such a big branching factor, making it basically impossible to use in its
current state. Therefore, if we want to use Minimax for one of our agents, we
have to modify it to make it faster.

2.1.1 Alpha-Beta Pruning

In the first improvement, we will show that not all branches of the game tree
need to be explored. It is based on the idea that if we find a move that proves to
be worse than an already previously examined one, there is no need to examine
it further because the Minimax algorithm will never choose it anyway. And
therefore, we can cut the tree branch there, saving precious computational time.
This cutting of branches is called pruning.

The pruning process can be applied at any level of the tree and involves two
additional parameters, typically called alpha and beta, hence the name alpha-
beta pruning.

The parameters are defined as:
e Alpha:

The best choice (highest value) that can be found on the path of the maxi-
mizer, at that level or above. The alpha parameter is initialized as negative
infinity, —oo.

o Beta:

The best choice (lowest value) that can be found on the path of the mini-
mizer, at that level or above. The beta parameter is initialized as positive
infinity, +o0.

The alpha-beta pruning then works in the following way:

1. As we traverse the tree using the Minimax algorithm, we keep track of the
values of alpha and beta.

2. When we are examining a node, we explore all possible moves from that
node. If it is the maximizer’s turn and we find a move with a better value
than alpha (higher than alpha), we update the alpha parameter with this
value.

3. If it is the minimizer’s turn and we find a move with a better value than
beta (smaller than beta), we update the beta parameter with this value.

4. At every node we examine, we check whether alpha becomes greater or
equal to beta. If yes, then the maximizer has a choice that is at least as
good as a choice available to the minimizer at a higher level. That means
the current node will never be chosen by Minimax, and its entire subtree
will never be traversed; therefore, it can be pruned.

Note that the alpha value is only modified by the maximizer, and the beta value
is only modified by the minimizer. And when backtracking the tree, it is the child



nodes’ values that are passed on to their parents, not the alpha or beta values
themselves.

Since alpha-beta pruning does not influence the decision process of the Minimax
algorithm, both standard Minimax and Minimax with alpha-beta pruning return
the same output, given the same input. But since the game tree can only get
smaller with alpha-beta pruning, the algorithm can only get faster.

An example of a pruned game tree can be seen in Figure 2.1]

MAX A

MIN

MAX

Figure 2.1: Minimax with alpha-beta pruning example. Source: Shevtekar et al.
[2022]

In this specific example in Figure two branches were pruned. First, the
right child of node E, because the minimizing player in node B is choosing the
minimum of its children, and its options so far before evaluating the right child of
node E are: 5 from D and 6 from E. And because E is a maximizing player, the
final number can only be either 6 or something higher; otherwise, E would not
choose it. B will therefore always choose the 5 from D, making the value of the
right child of E irrelevant and therefore pruned. The other branch was pruned
similarly, even managing to prune the whole sub-tree.

2.1.2 Depth Restriction

Because the branching factor of Hex is very large, Minimax with alpha-beta
pruning would still take too long to finish. Therefore, it still needs to be modified
for our purposes. One such modification is restricting the maximum depth we
can reach while searching the game tree. We will only search up to a previously
fixed depth and then treat the nodes at such depth as terminal nodes, meaning
they will be assigned a value by some evaluation function. These values will then
be back-propagated as in standard Minimax.

By restricting the depth, we can easily influence the computation time of the
algorithm, but we also lose the guarantee of an optimal move being chosen.

Generally speaking, the larger the depth we are allowed to explore, the better the
results produced by the Minimax algorithm. So not only is restricting the depth
good for efficiency management, but it can also be used to influence the difficulty
of a game played against such a Minimax Al agent.
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2.1.3 Negamax

Before we get to the implementation, let me introduce a variant of Minimax.
Negamax makes use of the zero-sum property of Hex. So because one player’s
gain is exactly equal to the other player’s loss, we do not need a maximizer and
a minimizer, but a procedure that maximizes the negation of the values of its
children and chooses a move accordingly.

Negamax has the same efficiency and performance as Minimax; it is just com-
monly used for simplification of the implementation process.

2.1.4 Pseudo Code

Here is a pseudo code for the modified Minimax algorithm.

1: function NEGAMAX(player, board, depth, alpha, beta)
2: best_value < —o0

3: if depth = 0 or board.is_game_over() then
4: value < EVALUATE(player, board)

5: return value

6: end if

7 moves <— board.get_moves()

8: for each mowve in moves do

9: board.make_move(move)

10: SWITCH_PLAYERS(player)

11: new_value < NEGAMAX (player, board, depth — 1, —alpha, —beta)
12: new_value <— —new_value

13: if new_value > best_value then

14: best_value < new_value

15: end if

16: board.take_move(mouve)

17: alpha <— max(alpha, best_value)

18: if alpha > beta then

19: break

20: end if

21: end for

22: end function

The first call of the algorithm would be, for example for the first player and depth
equal to three:

NEGAMAX(1, board, 3, —co, +00)

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) |Chaslot et al.l 2008 is another algorithm
suitable for Hex. It is in some sense similar to Minimax, as it also represents
the game as a tree and gives its nodes values. However, unlike Minimax, MCTS
does not search the entire game tree for all possible states but only takes into
consideration the states that, in a way, guarantee some success. It is based on
Monte Carlo strategies, which rely on random sampling and statistical evaluation
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using tree search techniques.

MCTS dates back to 2006, when Rémi Coulom presented using the Monte Carlo
method on a game-tree search. Nowadays, it is a very popular algorithm for all
sorts of board games. In combination with artificial neural networks, MCTS was
also used in 2015 in the famous AlphaGo program by Google Deepmind [Silver
et al.| 2016], which is known for being the first program to ever beat a professional
Go player on a 19x19 board.

The key idea of MCTS is to incrementally build and refine a game tree, focusing
mainly on parts of the tree that are more likely to be favorable for the current
player. It is randomly simulating game play-outs and updating node values based
on the play-outs’ results. Over time, MCTS converges to an optimal move decision
without having almost any knowledge about the game itself.

A big advantage over Minimax is that MCTS does not require any domain-specific
knowledge. In order to implement a good Minimax algorithm with alpha-beta
pruning, a good evaluation function is needed. Therefore, a deep knowledge of
the game itself and its strategies is needed. Whereas by evaluating the game tree
nodes based on random simulations, when implementing a MCTS algorithm, no
domain knowledge is required.

The algorithm itself is divided into four main parts: selection, expansion, simula-
tion, and back-propagation. They are executed exactly in this order and repeated.
Figure 2.2 shows the algorithm schema.

Run continuously in the alloted time

[ Selection ———+{ Expansion = Simulation |+ Backpropagation ]

Figure 2.2: MCTS Algorithm Schema. Source: Swiechowski and Tajmajer [2021]

2.2.1 Selection

The aim of selection is to, by traversing the game tree from its root, select the best
node. The selection aims to balance exploration, not-yet-well-explored nodes, and
exploitation, the best-explored nodes so far. It is done using a formula called the
upper confidence bound for trees.

UCT(U)::((S;+0>< zl(i\;

Where:
o UCT(v) is the upper confidence bound for node wv.

12



o w(v) is the total number of wins of v.

« n(v) is the number of times node v has been visited.

e N is the total number of times the parent node of v has been visited.
e c is the exploration parameter.

The first part of the formula corresponds to exploitation, as it favors nodes with
a high win ratio. The second part of the formula corresponds to exploration; it
favors nodes with few visits. The exploration parameter is a constant, and its
value is usually chosen close to v/2.

So the child node that returns the highest UCT(v) value when traversing the tree
is the one that will get selected.

2.2.2 Expansion

The goal of expansion is to expand our already-chosen node through the selection
process. Expanding means adding children to this node, similarly as in Minimax,
by going through all possible moves from the chosen node and adding the resulting
states of the game as its children. In cases of limited memory or time, not
necessarily all children have to be added; only one child will also suffice. If we
select the same node in the future, more children can be added if they exist.

2.2.3 Simulation

In simulation, we randomly choose a child of the originally selected node; if only
one child was created during expansion, we choose this one. From this node, we
run a random full play-out of the game. This means playing uniformly randomly
until the terminal state of the game is reached.

2.2.4 Back-propagation

The aim of back-propagation is to pass on the simulation result information back
to its parents and grandparents. Since Hex is a two-player game, we can assign
these values to the node from which we ran the simulation based on how the
simulation ended.

e Win =1
e Loss =10

Figure [2.3| shows how back-propagation works. For the sake of visualization, the

values of the nodes are: ,
wins

games played

2.2.5 Move Choosing

The last step of the algorithm is to choose the best move to play. This is done
by looking at the children of the root, as they represent possible moves from our
initial game state. We choose the child with the highest number of visits because

13
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Figure 2.3: MCTS Back-propagation. Source: Moss| [2020] Licensed under CC
BY-5A 4.0.

this node was thoroughly explored and simulated and therefore must have a high
probability of success.

2.2.6 Pseudo Code

Here is the pseudo code for the Monte Carlo Tree Search algorithm.

1: function MCTS(root)
2: while resources left do

3: leaf <~ SELECT(r00t)

4: if leaf not fully expanded then

5: ExPAND(leaf)

6: end if

7 node <— SELECT_RANDOM_CHILD(leaf)
8: if node is terminal then

9: BACKPROPAGATE(node, node_winner)
10: else

11: result <— SIMULATE(node)

12: BACKPROPAGATE(node, result)

13: end if

14: end while

15: best_child < FIND_BEST_CHILD(r00t)

16: return best_child

17: end function

18:

19: function SELECT(root)
20: node <— root
21: while node has children do
22: for each child in node_children do
23: if child is unvisited then
24: return child
25: end if
26: child_uct <~ CALCULATE_UCT (child)

14
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27: end for

28: node <— randomly choose one of the children with the max UCT value
29: end while

30: return node > leaf found
31: end function

32:

33: function EXPAND(node)

34: possible_moves < get all moves that can be played on the current board
35: for each mowve in possible_moves do

36: new_node < play move on current board

37: add new_node to node children

38: end for
39: end function

40:

41: function SIMULATE(node)

42: curr_board <— make a copy of the node board
43: while not game over do

44: move < choose random move that can be played on curr_board
45: make move on curr_board

46: end while

47: return winning player

48: end function

49:

50: function BACKPROPAGATE(node, result)

51: increase number of visits of node

52: if root player won then

53: increase number of wins of node

54: end if

55: BACKPROPAGATE(node_parent, result)

56: end function

57:

58: function FIND_BEST_CHILD(r00t)

59: return child with the most visits

60: end function

When the turn of a MCTS player comes, we simply get the move to be played
as:

move <— MCTS(current game board state)

15



3. Related Work

This chapter focuses on the current progress of Hex Al research. We will briefly
mention some remarkable projects whose goal was to develop the best possible
AT agents for playing Hex. The first ever Hex playing agent has been created
by Claude Shannon and E.F. Moore in 1953 [Shannon, 1953]. Since 2000, an
international Hex competition for Hex Als organized by ICGA is being held
annually and is called the Computer Olympiad [International Computer Games
Association) 2021]. Board sizes used at the Computer Olympiad are 11x11 and
13x13.

3.1 Polygames: Improved Zero Learning

Polygames [Tristan Cazenave, 2020] is an open-source framework for zero-shot
learning with multiple libraries, one of which is for Hex. Zero-shot learning is
a machine learning practice where a model is trained to recognize classes it has
not seen during training. Polygames uses a combination of Monte Carlo Tree
Search and Deep Learning. It uses clever tricks to achieve board-size invariance.
For example, by using computer vision, global pooling, and fully convolutional
neural networks. The whole framework was inspired by DeepMind’s AlphaZero,
which is a version of an already-mentioned AlphaGo.

Their Al was, for example, able to beat strong human players in 19x19 Hex,
including Arek Kulezycki, a player with the best ELO rank (2248 at that time)
on LittleGolem (a popular online game system where games are played on a web
browser, one turn at a time). Polygames also won against another framework,
Galvanise-Zerd'] A single Quadro GP100 was used with a 5 minute per move
limit.

Polygames is very good, not only in Hex, as it can be trained for many other
board games. Peak performance is usually achieved after nine days of training.
However, it is unsuitable for our purposes as it requires too much time to make
a move and probably would be too good to play against rookie players.

3.2 DeepEZO

EZO [Takadal 2019] is an algorithm that also represents the game as a game
tree and uses iterative deepening depth-first search |Korf, 1985] created by Kei
Takeda in 2013. It was very successful in the Computer Olympiad from 2013 to
2018, ranking among the top three multiple times. Over the years, EZO used
different evaluation functions to achieve good results: a combination of global
and local evaluations, later value and policy functions consisting of 12 network
characteristics. In 2018, came to be the most successful version called DeepEZO
[Takada et al., |2020], using value and policy functions based on convolutional
neural networks. DeepEZO uses the minimum search width of three and only
searches nodes with high probability values computed by the evaluation function.

'https://github.com/richemslie/galvanise_zero
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3.3 MoHex-3HNN

MoHex [Henderson, [2010] is an algorithm using Monte Carlo Tree Search, as ex-
plained in Section 2.2. It has won first place at the Computer Olympiad in years
from 2009 to 2011. In 2013, a group of researchers improved MoHex and intro-
duced MoHex2.0 |Arneson et all 2011]. They used Hex game records played by
expert players to learn board patterns. Also compared to the already-introduced
UCT parameter used in the tree search in Section MoHex2.0 uses a smart
parameter tuning called Confident Local Optimization [Coulom, 2011] that dis-
cards samples with an estimated value confidently inferior to the mean of all sam-
ples. MoHex2.0 was a big success, and it held the title of Hex world champion of
the Computer Olympiad in the years from 2013 to 2017. Another improvement
came in 2017 when the prediction model was combined with deep convolutional
neural networks to create MoHex-CNN [Gao et al., 2017]. In 2017, MoHex-CNN
beat Mohex2.0 at Hex 13x13 and won the gold medal. In 2018, MoHex-CNN
was further improved by the same group of researchers, which leads us to the
most successful version so far called MoHex-3HNN [Gao et al., |2018|, which uses
a neural network model called Three Head Neural Network. And it became the
Hex world champion in 2018, outperforming MoHex-CNN.

3.4 Wolve

Wolve |[Henderson, 2010] is an algorithm using a bit different approach than the
previously mentioned algorithms. It models Hex positions as electrical resistor
circuits and uses the resistance values of the circuit as the evaluation function. It
is called Shannon’s electric circuit evaluation function [Anshelevich| 2001]. As for
the tree search algorithm, iterative deepening depth-first search is adapted. From
2006 to 2011, it was very successful in the Computer Olympiad, winning the one in
2008 and then placing second in the other years. Wolve is the best computer Hex
player using Shannon’s evaluation function and alpha-beta pruning, as explained

in Section R.1.1]
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4. Framework

In this chapter, we will talk about the implementation of the game and the
Al agents. The game is programmed in Python, a general-purpose, high-level
programming language. The code itself is segmented into classes, therefore using
an object-oriented approach. We will briefly describe the classes used and explain
the overall structure of the project.

4.1 Game Implementation

Since the project can be used as the game only, without using the Al agents, we
will first describe the implementation and structure of the game and its graphical
user interface (GUI).

4.1.1 Cell

Cell is a class representing one hexagonal cell on the game board. It holds all
the necessary information we need to clearly identify a cell on the game board.
Its coordinates on the game board, and the player who is occupying the cell.
When playing with a graphical interface, even more information is stored, like
the vertices coordinates, which are needed to detect whether the player has clicked
on that particular cell.

4.1.2 GameBoard

GameBoard is a class representing the game board. Internally, the game board
is a two-dimensional array of hexagonal cells.

The GameBoard also contains a function responsible for checking for a game-
over. The method chosen to effectively check whether the game has ended is
Union Find.

Union Find

Union Find is a disjoint-set data structure |Galler and Fischer, 1964]. It cate-
gorizes objects into different sets and chooses a representative element to denote
the set. The set is usually represented as a tree graph, and the root of the tree
serves as the representative element. So in order to check whether two elements
are in the same set, we just need to compare their roots. In order to make this
operation fast, we need to keep the respective trees shallow. This can be done by
using path compression. The basic idea is to make each node on the path from a
node to the root directly point to the root. To find the root of a node, we need
to traverse up the tree until we find the root. During the traversal, every node
encountered is updated to point directly to the root.

In our case, we store a collection of trees that contain occupied hex cells that
are connected on the game board. For determining whether a player has won,
we check if the player’s respective borders are connected (in the same set). For
player one (the red player), the borders that need to be connected are left and
right, whereas for player two (the blue player), they are top and bottom. To
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achieve even better efficiency, we only start checking for a winning player once at
least
2 x min(board_width, board_height) — 1

moves have been played, because otherwise the game cannot be over yet.

The GameBoard is also responsible for making all the moves appropriately and
checking their validity.

4.1.3 GUI

GUI is a class handling all graphical matters. It draws the current state of the
game board as well as detects mouse clicks and clicked cells done by the user when
it is their turn to play. It also converts the coordinates of these mouse clicks to
two-dimensional array positions so they can be used by the internal representation
of the game board, GameBoard, to make the move. After the move was played
in GameBoard, the GUI uses the current state of the GameBoard to redraw the
new state of the game.

GUI is therefore a class that encapsulates GameBoard and Cell. And they all
communicate to achieve a visually pleasing Hex game.

A set of Python modules called Pygame [[] was used for the implementation GUI.

4.1.4 GUIGame and Game

GUIGame and Game are classes containing the main logic for controlling the flow
of the game. They are two different classes because the game has two modes: a
game with a graphical user interface using GUI, or a game in the console using
text outputs. For that reason, whenever a game is played, only one of these
classes is used. They have the same functionality, and the only difference is that
GUIGame uses GUI as its internal game board representation and Game uses
GameBoard.

4.1.5 Player

Player is a parent class of all types of players this project offers. The possible
players are:

o Human player

o Random player

o Heuristic Player

o Al player using Minimax

o Al player using Monte Carlo Tree Search

Player has two mandatory functions for getting a move: one is for the console
version of the game, and the other is for a game with GUI.

A child class of Player called HumanPlayer is relevant when the user themselves
wants to play. For the console version, the user is required to manually enter

Thttps://www.pygame.org
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the valid coordinates of the move they want to play. Whereas for the game with
GUI, they need to mouse-click on the position of their desired cell.

The other child classes will be described more in detail in AI Implementation.

4.1.6 Main

Main is the execution point of the whole application. It contains some examples
of how the game can be run as well as all the information the user needs in order
to play their desired game or watch the Als play against each other.

4.2 Al Implementation

Now let us look into the implementation of all the Al agents.

4.2.1 RandomAlIl

The most simple but useful agent implemented is a random player. With no
improvements, it just randomly finds an empty position and plays there. Even
though it is possible to play against a random player, this agent is more commonly
used as a tool for testing the other, more clever agents. A random player is very
fast, and we can see how the currently tested opposing agent behaves in different
scenarios because it plays randomly. On the other hand, if we want to see a
certain behavior of the tested agent more in depth, we can also fix the random
seed of the random player and get the same sequence of moves.

4.2.2 HeuristicAl

A heuristic player is an agent that, given the current state of the game board,
evaluates all the possible moves and then chooses the best one. Therefore, the
performance depends solely on the choice of the heuristic evaluation function.

The evaluation function used is based on the connectivity of the board with the
use of Dijkstra’s algorithm.

Dijkstra’s Algorithm

Dijkstra’s algorithm [Dijkstray, [1959] is a path-finding algorithm invented in 1956
by a Dutch computer scientist, Edsger W. Dijkstra. The goal of the algorithm is
to find the shortest path from a node to all the other nodes. It iteratively chooses
the closest unvisited neighbor and updates the distances to all its neighbors based
on that path length.

The evaluation function assigns a value to the given state of the game board.
Specifically, it initializes a matrix with the same dimensions as the game board,
where each cell’s value represents the least number of moves required to connect
to the opposite side. The values are obtained using Dijkstra’s algorithm. We then
simply take the minimum value in the first column (for player one) or row (for
player two) as the connectivity score. Ultimately, the connectivity scores of both
the current player and the opposing player are calculated, and their difference is
taken as the final value for that given state of the game board.
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After computing the scores for all the possible moves on the game board. The
heuristic player simply chooses to play the position with the maximum value.
Since it is beneficial for the current player to get a higher score from the evaluation
function.

4.2.3 MinimaxAl

The Minimax agent is, in a way, a more advanced version of the heuristic agent.
It uses the modified version of the Minimax algorithm described in Section [2.1]
specifically Negamax with alpha-beta pruning. It also uses the exact same eval-
uation function as the heuristic player, described in Section 4.2.2

Since both the Minimax and the heuristic agent use the exact same evaluation
function, its logic is contained in a special class serving as a library called Heuris-
tics.

The advantage of the Minimax agent over the heuristic player is that it can search
the game tree to a bigger depth, which should, in theory, make it ultimately
better, but it can also take way longer.

4.2.4 MCTSAI

The last implemented Al agent uses a Monte Carlo Tree Search approach de-
scribed in Section For its implementation three other classes were used.

MCTSBoard

In order to run many simulations during a turn, the game board representation
needs to be as light as possible. That is why a lite version of the original game
board, called MCTSBoard, is created. It converts the original representation to
a NumPy array for faster computation. NumPy []is a Python library specifically
designed for scientific computations, making many array operations significantly
faster than in Python itself. It also makes use of a modified version of Union
Find, a new class MCTSUnionFind, that does not support taking moves back,
as the one in the original game board does. Since unlike in Minimax, in MCTS
we are only adding the moves.

MCTSNode

When building the Monte Carlo Search Tree a class MCTSNode representing a
single node is used. It contains all the necessary MCTS steps, selection, expan-
sion, simulation and back-propagation. This allows us to separate the logic when
building the tree in the main MCTSAI class.

MCTSAI then contains only functions for choosing the best move. Its computa-
tion time can be either limited by a specific number of simulations or by time.

4.3 Experiments

The last part of the framework focuses on running many experiments to see
how well the Al agents play against one another. For these purposes, the class
Experiment exists. It uses the console version of the game because of its better

Zhttps://numpy.org
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time efficiency. One experiment is designed to simulate 100 Hex games and save
the results to a CSV file. The results include four columns of data: player one
and the games it won, player two and the games it won, the number of moves that
were needed for the game to be over, and the time in seconds the game lasted.

To run an experiment, it is necessary to create an instance of the Experiment class
in the main class with all the desired parameters and then execute the function
experiment(). The detailed format of the parameters is described in the Python
file itself, along with some examples.

Here is a brief overview of them:
1. file_name: string name of the CSV file to save the results in

P

Al player one: "minimax_ai”, "mcts_ai”, "heuristic_ai” or "rand_ai”
Al player two: "minimax_ai”, "mcts_ai”, "heuristic_ai” or "rand_ai”
height: integer from 3 to 15

width: integer from 3 to 15

SRR AN

optionally minimax_depth: integer, recommended range is 1 to 3, default
value=2

7. optionally mcts_time_allowed: float, default value=9999999
8. optionally mcts_number_of_simulations: integer, default value=9999999

Some examples:

experimentl = Experiment("heuristic_vsmcts_time5 11x11.csv",
"heuristic_ai", "mcts_ai", 11, 11, mcts_time=5)
experimentl.experiment ()

experiment2 = Experiment("mcts_vs minimax depthl sims4000_7x7.csv",
"mcts_ai", "minimax_ai", 7, 7, minimax depth=1,
mcts_simulations=4000)

experiment?2.experiment ()

experiment3 = Experiment ("heuristic_vs minimax depth2 7x7.csv",
"heuristic_ai", "minimax_ai", 7, 7)
experiment3.experiment ()

4.4 How to Run

Excluding the experiments, the game itself can be run from the command line.
There are two versions of the game:

1. With Graphical Interface (GUI)
In the command line, run as:
python main.py gui height width playerl player2
--minimax _depth depth --mcts_time time
--mcts_simulations simulations

2. Without GUI in console, mainly for testing Als
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In the command line run as:

python main.py console height width playerl player2
--minimax_depth depth --mcts_time time
--mcts_simulations simulations

Where:

height and width are integers from 1 to 15 expressing the dimensions of
the board

playerl and player?2 are player options described below in player options.

depth is an optional integer parameter for the Minimax agent, setting its
search depth. The default value is set to 2.

time is an optional float parameter for the MCTS agent, setting time al-
lowed per move in seconds. The default value is set to 9999999.

simulations is an optional integer parameter for the MCTS agent, setting
number of simulations per move. The default value is set to 9999999.

Player options:

1.

Human player: Use string "human”.

e The format of a move in console is "row, column” as integers.

2. Random player: Use string "rand_ai”.

3.

4. Minimax player: Use string "minimax_ai”.
D.

Heuristic player: Use string "heuristic_ai”.

Monte Carlo Tree Search player: Use string "mcts_ai”.

For the MCTS player, the parameter that runs out first is the one that will end
the move. If the user sets only one, the other is automatically set to a very high
number (9999999), so it does not interfere with the user’s choice. However, if the
user does not set any of these parameters, a default of 10000 simulations will be
set to prevent the code from running for a very long time.
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5. Experiments

In this chapter we will look into how good the Al agents are when playing against
each other and discuss the results.

For every combination of agents, multiple experiments were conducted. One
experiment consists of a simulation of one hundred games, and since playing first
is a clear advantage, every experiment was also repeated with a swapped first
and second player. Because many agents contain parameters that influence their
performance, experiments are repeated for a selected few of them. The last thing
taken into account is game board size. All experiments are therefore repeated for
symmetric game boards of sizes 7x7 and 11x11.

For every two ordered agents tested, there are two tables, one for results on a
game board of size 7x7 and the other for size 11x11. Each table has the following
format: player one and its variations in column one, and player two and its
variations in column two. The third column is for results, and it is divided into
two parts. The first is the ratio of games won by each agent, with the parameters
set next to the agent’s name on the current row. The ratio specifically is number
of wins of the first player:number of wins of the second player, and since the total
number of games is 100, the numbers can also be viewed as percentages. The
other part of the result column is the average number of moves the agents took
before the game was over.

All the experiments were run on a personal computer with the following technical
specifications:

« Processor (CPU): 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
2.80 GHz

« Memory (RAM): 16 GB DDR4 3200

« Graphics Processing Unit (GPU): NVIDIA GeForce MX450 2 GB
e Storage: 1 TB SSD PCle

e Operating System: Windows 11 Home, Version 23H2

5.1 Heuristic AI vs. MCTS Al

For the combination of the heuristic player and the MCTS player, the only pa-
rameter we can set is the time we allow the MCTS agent to make its move.
The two following tables show the results for experiments simulated on the game
board of size 7x7.

Player 1 Player 2 Result

Heuristic MCTS 1s 39:61 19.7 moves
Heuristic MCTS 2s 19:81 18.8 moves
Heuristic MCTS 4s 13:87 17.6 moves
Heuristic MCTS 6s 8:92 16.9 moves

As we can see, the MCTS agent performs much better on this small board game
size, even though it has the disadvantage of the second player. As we allow the
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MCTS agent more time, the games also resolve with fewer overall moves.

Let us move on to the game board of size 11x11.

Player 1 Player 2 Result

Heuristic MCTS 1s 100:0 22.9 moves
Heuristic MCTS 2s 98:2 24.7 moves
Heuristic MCTS 5s 68:32 34.6 moves
Heuristic MCTS 10s 23:77 38.8 moves
Heuristic MCTS 15s 17:83 39.5 moves

When we increased the board size, the MCTS agent needed much more time to
beat the heuristic one. Even not winning a single match with an allowed time
of one second. As expected, with more time, the performance of the MCTS
improves, but waiting for 15 seconds while playing against a player in real time
seems too much.

5.2 MCTS Al vs. Heuristic Al

Let us now look how the results change when the MCTS agent gets the chance
to play first. Starting with game board 7x7.

Player 1 Player 2 Result

MCTS 1s Heuristic 72:28 20.0 moves
MCTS 2s Heuristic 91:9 20.3 moves
MCTS 4s Heuristic 91:9 17.8 moves
MCTS 6s Heuristic 98:2 16.7 moves

As expected, the MCTS agents fares a little better compared to when it played
second. And it is safe to say that it performs better than the heuristic player on
the 7x7 board.

The following table is for game board 11x11.

Player 1 Player 2 Result

MCTS 1s Heuristic 0:100 24.9 moves
MCTS 2s Heuristic 0:100 23.6 moves
MCTS 5s Heuristic 48:52 38.6 moves
MCTS 10s Heuristic 80:20 43.1 moves

For one and two seconds per MCTS move, it seems it does not matter which agent
plays first, as the heuristic player wins almost all the matches. The MCTS agent
simply does not have enough time to compute a good enough move. But for the
allowed five seconds and more, there is a noticeable difference in the results when
the MCTS agent plays first. For five seconds, winning almost half the games as
compared to 32% when playing second.

5.3 Heuristic AI vs. Minimax Al

When conducting experiments for the heuristic and the Minimax agent, only the
parameter of Minimax depth can be set. And as the game of Hex has a high
branching factor, the maximum depth tested is three.
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Comparing the heuristic and the Minimax agent is interesting because they both
use the same evaluation function, and the only difference between them is the
depth they search into. Therefore, in theory, the Minimax agent with depth set
to one should be identical to the heuristic agent. It will be tested experimentally
in the following tables, starting with a game board of size 7x7.

Player 1 Player 2 Result

Heuristic Minimax d=1 52:48 18.9 moves
Heuristic Minimax d=2 20:80 17.2 moves
Heuristic Minimax d=3 17:83 16.8 moves

For the first experiment in the table, a higher win rate was expected for the first
player, but as only 100 games were simulated, the relatively small difference could
be a part of the statistical error. But as expected, the deeper the Minimax agent
is allowed to search, the better it performs, even with the disadvantage of being
the second player.

Next, we have the results on a board game of size 11x11.

Player 1 Player 2 Result
Heuristic Minimax d=1 53:47 33.3 moves
Heuristic Minimax d=2 16:84 29.8 moves

With the increase in game board size, the minimax search time also increases.
And as the results for minimax with depth equal to two are already very good
with a win rate of 84% and the disadvantage of the second player, the experiment
for minimax with depth equal to three will not be conducted in this case.

In both experiments in the table, both the ratios are similar to those run on the
7x7 board, and same as for the 7x7 experiments, when minimax searches deeper,
the game is over in less moves on average, suggesting that it plays a little more
smartly.

5.4 Minimax Al vs. Heuristic Al

Next, let us compare how the results change when we swap the order of the
players. Starting with the table for the game board 7x7.

Player 1 Player 2 Result
Minimax d=1 Heuristic 57:43 19.3 moves
Minimax d=2 Heuristic 96:4 15.7 moves
Minimax d=3 Heuristic 98:2 17.1 moves

For minimax with depth equal to one, the first player has the upper hand again,
same as when the order of the players was swapped. The results are a little in
favour of the Minimax agent, which again is just a statistical flaw. When the
search depth is increased, minimax dominates the games already at depth equal
to two, also taking on average fewer moves to win.

For a game board of size 11x11, the results are the following:

Player 1 Player 2 Result
Minimax d=1 Heuristic 53:47 32.8 moves
Minimax d=2 Heuristic 96:4 30.8 moves
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For the same reason as in the previous chapter, depth equal to three is not
included.

Interestingly, the win ratio for the first experiment is exactly the same as when
the agents played in the opposite order, supporting the theoretical result that the
heuristic agent and the Minimax agent with d = 1 are, in fact, the same agent.

5.5 Minimax Al vs. MCTS Al

Probably the most interesting pair to experiment on is the Minimax and the
MCTS agent, as they are programmed to be the two best-performing ones. The
parameters we can set are again the depth of search for the Minimax agent and
the allowed time per move for the MCTS agent. This could be unfair since the
parameter of the MCTS agent depends on the performance of the computer it
is being run on, so a few more experiments with a new parameter number of
simulations per move will also be conducted. These are the results for a game
board of size 7xT:

Player 1 Player 2 Result
Minimax d=2 MCTS 2s 69:31 16.8 moves
Minimax d=2 MCTS 3s 65:45 16.2 moves
Minimax d=2 MCTS 5s 60:40 16.0 moves
Minimax d=2 MCTS 7s 58:42 15.2 moves
Minimax d=2 MCTS 10s 57:43 15.3 moves
Minimax d=2 MCTS 15s 40:60 15.3 moves
Minimax d=2 MCTS 3000 sim 33:17 16.3 moves
Minimax d=2 MCTS 5000 sim 33:17 15.8 moves
Minimax d=2 MCTS 10000 sim 32:18 15.7 moves
Minimax d=3 MCTS 2s 81:19 18.3 moves
Minimax d=3 MCTS 6s 83:17 18.3 moves

The Minimax agent seems to be playing better than the time-limited MCTS
agent, as most of its win rates are above 50%. The MCTS agent starts beating
the Minimax agent with d=2 only with 15s per move, which is quite a lot for an
amateur real-time game on such a relatively small board size. There seems to be
not much improvement for the MCTS agent when it gets an allowed time of 5s, 7s,
or 10s. It is important to note that, due to time reasons, some of the experiments
for this particular pair of agents were conducted on a different personal computer
with similar technical specifications.

For the experiments with a fixed number of simulations, only 50 game simulations
were run for a single experiment. So the result cannot be viewed as a win per-
centage in this case. We see that the win rate remains really similar, suggesting
that it can do 10,000 simulations in around 3 seconds. The number of simulations
could therefore be increased even more.

For minimax d=3, only two experiments were run, as this setting for minimax is
a little too time-consuming for our purposes, and the two experiments that were
run with this depth had similar win rates. For similar reasons, no experiments
for the Minimax agent with d=3 were run for the game board of size 11x11, and
every experiment consists of only 50 game simulations. Here are the results:
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Player 1 Player 2 Result
Minimax d=2 MCTS 2s 50:0 23.5 moves
Minimax d=2 MCTS 6s 44:6 27.2 moves
Minimax d=2 MCTS 8s 37:13 30.1 moves

Even 15s for a MCTS move were not enough to beat the Minimax agent. But
the Minimax agent also took its time to make a move. On closer inspection,
computed from the additional time data in the experiment, the Minimax agent
took on average 41s to make its move. Making it compete against the MCTS agent
with a maximum allowed time of only 15 seconds seems unfair. The Minimax
player, therefore, might not be suitable to play against in an amateur match as
it takes too long to make a move, and its implementation does not provide any
means of making it play faster or stopping mid-search as the MCTS does.

5.6 MCTS Al vs. Minimax Al

Let us now swap the playing order of the agents and again note that some of the
experiments were run on a different computer. Starting with the results on board

TX7:

Player 1 Player 2 Result
MCTS 2s Minimax d=2 62:38 18.6 moves
MCTS 3s Minimax d=2 75:25 18.0 moves
MCTS 5s Minimax d=2 74:26 16.4 moves
MCTS 7s Minimax d=2 82:18 15.3 moves
MCTS 10s Minimax d=2 84:16 15.9 moves
MCTS 15s Minimax d=2 88:12 14.9 moves
MCTS 3000 sim Minimax d=2 37:13 19.0 moves
MCTS 5000 sim Minimax d=2 37:13 17.4 moves
MCTS 10000 sim Minimax d=2 42:8 16.9 moves
MCTS 2s Minimax d=3 46:54 20.6 moves
MCTS 6s Minimax d=3 62:38 18.2 moves

The advantage of the first player seems to be more important than ever for this
pair of agents, as the MCTS agent has a higher win rate for all of the matches
and their chosen setting except for Minimax d=3 and only two allowed seconds
per move.

As for the experiments in simulations, again, only 50 game simulations are in-
cluded in a single experiment. And judging by the similar win rates again, we
can see that it takes about 3-5 seconds to make 5000 simulations and about 7
seconds to make 10,000 of them. The fact that it takes a little longer than when
the agents played in the opposite order might be due to the fact that the com-
puters’ computation power was consumed by some other processes at the time
of the experiment’s execution. And again, it would be a good idea to run more
experiments with an even higher number of simulations.

Now for the results on board 11x11, for time reasons, every experiment consists
of only 50 game simulations. The results are the following:
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Player 1 Player 2 Result

MCTS 2s Minimax d=2 2:48 26.9 moves
MCTS 6s Minimax d=2 15:35 35.0 moves
MCTS 8s Minimax d=2 14:36 33.7 moves

Even though the MCTS agent had the advantage of playing first, it still did not
seem to have enough time to enough explore the best moves and scored worse
than the Minimax agent. Again, we checked for the Minimax agent’s average
time to make a move and came up with 38 seconds, which is again way more
than the maximum allowed time per MCTS move.

5.7 Heuristic AI vs. Random Al

To make sure that all the agents above play reasonably well, they were also tested
against a randomly playing agent. This agent was mainly useful as a testing tool
during programming and now will also serve as a safety check.

Starting with a game board 7x7.

Player 1 Player 2 Result
Heuristic Random 100:0 | 13.6 moves

As expected, the heuristic agent won 100% of the games. The average number
of moves also got very close to the minimum number of moves a game needs
to be over. In this case, since the random agent starts, it is 2 - board_width -
board_height — 1, which in our current experiment is equal to 13.

Next, the 11x11 board:

Player 1 Player 2 Result
Heuristic Random 100:0 \ 21.9 moves

Similarly as on board 7x7, the heuristic agent won everything, and the average
number of moves also got very close to the minimum possible, which in this case
is 21.

5.8 Random AI vs. Heuristic Al

To keep things fair, we also swapped the order of players, letting the random
agent get a chance to play first.

First, the 7x7 results:

Player 1 Player 2 Result
Random Heuristic 0:100 \ 14.6 moves

Again, a full victory for the heuristic player. Since the heuristic agent plays
second, the minimum number of moves for a valid game is 2 - board width -
board_height. So for a game board of 7x7, it is equal to 14. Which is again very
close to the average number of moves in the experiment.

Player 1 Player 2 Result
Random Heuristic 0:100 ‘ 22.9 moves

Same as all the other cases for this pair of agents, 100% victory for the heuristic

29



agent playing on average with nearly the minimum number of moves possible.

5.9 MCTS AI vs. Random Al

Next up is a test for the Monte Carlo Tree Search agent, starting on game board
7.

Player 1 Player 2 Result
MCTS 0.5s Random 100:0 \ 20.5 moves

Since the MCTS agent has already won all the games, even with a very limited
allowed time per move, no other experiment was conducted. However, unlike the
heuristic agent, the MCTS agent needed, on average, three more rounds of the
game. Where round is when both players play their move.

Results for game board 11x11:

Player 1 Player 2 Result
MCTS 0.5s Random 99:1 | 48.0 moves

Here, the random agent managed to get the better of the MCTS agent once, but
still, the results are very favorable for the MCTS agent. And again, the average
number of moves is much higher than the minimum possible, needing almost 13
more rounds on average.

5.10 Random AI vs. MCTS Al

For the sake of completeness, let us swap the order of the players. Starting with
xT:

Player 1 Player 2 Result
Random MCTS 0.5s 0:100 | 21.4 moves

All the games were again won by the MCTS agent, but the average number of
moves increased even more.

For the game board 11x11:

Player 1 Player 2 Result
Random MCTS 0.5s 1:99 \ 87.9 moves

Here, almost 33 more rounds on average were needed to complete the game than
the possible 11. Which is quite a significant difference but surely easily fixable
by allowing the MCTS agent more time per move.

5.11 Minimax Al vs. Random Al

The last agent to test is the Minimax agent. The results for game board 7x7 are
the following:

Player 1 Player 2 Result
Minimax d=2 Random 100:0 | 13.6 moves

Similar to the results for the heuristic agent in both win rate and the average
number of moves per game.
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Next, results for board 11x11:

Player 1

Player 2

Result

Minimax d=2

Random

100:0

\ 23.8 moves

Interestingly, the Minimax agent with depth equal to two needed on average one
more round to finish the game compared to the heuristic agent.

5.12

Random Al vs. Minimax Al

The last set of experiments, giving the Minimax agent the disadvantage of playing
second. Starting with a game board of size 7x7:

Player 1

Player 2

Result

Random

Minimax d=2

0:100

\ 15.0 moves

Again, a clear win for the Minimax agent, needing on average close to the mini-
mum number of moves.

And for the last experiment on a game board of size 11x11:

Player 1

Player 2

Result

Random

Minimax d=2

0:100

‘ 24.0 moves

The Minimax agent again won 100% of the games and, on average, needed only

one more round than the possible minimum.
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Conclusion

In this work, we introduced the Hex game and analyzed it from a game theory
point of view, also suggesting some simple strategies on how to play it. We have
also described some popular Al algorithms suitable for Hex and similar games,
such as the Minimax algorithm or the Monte Carlo Tree Search algorithm. Later,
we explored already-existing Hex Als and showed how popular and profusely
researched this field is. However, these Als, even though very good, are a little
too good or too slow for a friendly amateur real-time game.

After the theoretical preparation, we implemented the game and the user in-
terface for it. We also implemented four Al agents and experimentally tested
them against each other. The agents were the following: the Heuristic agent us-
ing heuristics, the Minimax agent using the Minimax algorithm with alpha-beta
pruning, the MCTS agent using the Monte Carlo Tree Search algorithm, and
finally, the Random agent choosing its moves randomly.

From the experiments, we concluded that, unsurprisingly, the worst agent is the
random one, the second worst is the heuristic one, as it uses the same evaluation
function as the Minimax agent but does not search as deep, and the two best
ones are the Minimax agent and the MCTS agent. Between these two, it really
depended on the order of the players, as playing first has proven to be a big
advantage. The experiments also showed that the Minimax agent with the depth
of search of at least two is not suitable for game boards bigger than 11x11, as
already on this board size it takes too much time to make a move, making the
MCTS and the heuristic agent better choices.

To choose the difficulty for a game, one simply chooses an Al agent to play against
and sets the parameters accordingly. The more time or the more simulations we
allow the MCTS agent to have, the harder the game. Similarly, for the Minimax
agent, the deeper we allow it to search, the harder the game.

5.13 Future Expansions

There are multiple ways this work can also be expanded in the future. The
design allows for new Al agents to be simply added, or possibly combined with
the already-implemented ones. There are also some algorithmic improvements
that can be made to the existing Als, like adding transposition tables to the
Minimax agent or integrating neural networks into the MCTS agent.

It would also make for a nice addition to run more experiments to determine the
best-performing agents more accurately. In particular, with a higher number of
simulations for the MCTS agent, as unlike an allowed time per move, they are
not so dependent on the performance of the computer the experiments are being
run on.

Because of the importance of the order of the players, something like a swap rule
can be implemented—a rule that makes playing first and second evenly good.
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A. Attachments

The attachment contains the following folders:

e Source codes
All of the source codes implemented for this thesis and described in Chap-
ter 4] can be found here. Including the implementation of both the game
itself and the Al agents.

o Experiment results
This folder contains all of the experiments conducted and summed up in
Chapter [5l Each file is named in the following format:
All_vs_AI2_ParametersAndTheirSetting_BoardSize.csv

e Documentation
This folder serves as a user guide to the project and it contains the following

files:
— README.md
— requirements.txt

— Specification.md
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