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Introduction
Optimization of transportation-related problems has become a popular topic

for many researchers [1]. The probably most famous Travelling Salesman Problem
(TSP) focuses on finding the shortest path to visit all given cities and return back
to the origin [2]. Over time, more sophisticated models were developed, like the
Vehicle Routing Problem (VRP). The VRP was first proposed by Dantzig and
Ramser for finding the optimal routing of multiple delivery trucks [3]. The goal is
to minimize the travel cost, which can consist of distance or time traveled.

Many other models were derived from the VRP [4]. For instance, in a Capaci-
tated VRP, the vehicle used has a maximum capacity, which cannot be exceeded [5].
In a VRP with Time Windows, each customer has a specific time interval in which
they must be served [6]. The interval can be soft, in which case the vehicle can
arrive outside the time interval, but incurs a penalty. The Periodic VRP can
be used to optimize services like waste collection or public transport, where the
vehicle routes repeat over a period of time [7].

The Dial-A-Ride Problem (DARP) was first mentioned by Psaraftis [8]. It
is the most general form of the Vehicle Routing Problem [9]. In this model,
passengers request transport between two stops, giving a desired departure time
from departure location or a desired arrival time from destination location. The
goal is to find a set of routes for a fleet of buses so that all the customer requests
are satisfied while the cost of operation is minimized. All buses need to start and
end at a given depot. In a more general form, there can be multiple depots, and
each vehicle can start and end its route at a different one. The bus fleet can be
homogeneous, meaning that all buses have the same capacity, or heterogeneous,
where different vehicles can have different capacities or other parameters.

Several algorithms for solving the DARP have been proposed in recent years.
Popular techniques include branch-and-cut [10], tabu search [11], insertion based
heuristics [12] or neighborhood search [13]. In this thesis, we will focus on solving
the problem using nature-inspired metaheuristics, namely genetic algorithms and
the Ant Colony Optimization.

Genetic algorithms [14] are an optimization technique based on the idea of
natural selection. They are based on an iterative improvement of solutions called
individuals. Each individual has a fitness value assigned to it, representing the
quality of the solution. Using genetic operators like crossover and mutation, new
individuals are created from the individuals in previous generations called parents.
The next generation is selected from these new individuals using a selection
mechanism.

Ant Colony Optimization [15] is a metaheuristic inspired by the behavior
of ants. Like ants laying pheromones while searching for food, the algorithm
uses a pheromone matrix to guide the search. New solutions are constructed by
traversing through the search space, where paths with higher pheromone values
are more likely to be chosen. The more the ants traverse a path, the higher the
pheromone value on the path is.

The goal of this thesis is to implement and compare various individual encodings
for the genetic algorithm to address our DARP model. We seek to determine
how different encodings influence the genetic algorithm’s performance. We then
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implement a variant of the Ant Colony Optimization to solve the DARP and further
compare it to the genetic algorithms. We again try using different ACO frameworks
to find out how great a difference they have on optimization performance.

Our DARP model uses real-world coordinates, with distances and durations
representing actual shortest paths in road networks. The generated routes then
correspond to real roads and can be visualized using geographic information
systems like QGIS [16].

In Chapter 1, we describe in detail our model of the DARP. In Chapters 2 and
3, we present several implementations of nature-inspired metaheuristics to find the
optimal solution for the DARP model described earlier. Finally, in Chapter 4, we
perform a series of experiments to compare these implementations. In Appendix
A, we describe how to run all scripts and algorithms implemented and how to
replicate the results of our experiments. In Appendix B, we briefly describe the
details of the implementations.
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1 Problem description
In this chapter, we present a specific model of the DARP. In Section 1.1, we

describe the characteristics of the input data for our model. In Section 1.2, we
describe the solution to the problem and its validity. In Section 1.3, the objective
function is defined. In Section 1.4, we then talk about our types of datasets and
how they are generated.

1.1 Input description
The problem instance is defined by the following data. Let R be the set of

customer requests, and S the set of all the origin and departure locations. Each
request i ∈ R contains the desired departure time ti (measured in seconds from
the start of the simulation), the size of the group si, the coordinates of the origin
location oi ∈ S, and the coordinates of the destination location ai ∈ S. The
coordinates of the depot are denoted as D. All buses are homogeneous with
capacity Bc, operational cost per kilometer Bo, and one-time fee for using the bus
Bf . The size of any group cannot exceed the capacity of the bus. The distances
between each location are given by the function d : S × S → R in kilometers.
The durations between each location are given by the function dt : S × S → R in
seconds.

1.2 Solution
The solution is a set Z of routes, where each route is an ordered list of group

indices in the order the bus handles their pick-ups and drop-offs.
For a solution to be valid, the following constraints must hold.

(1) Each group is handled by exactly one bus.
(2) Each group must be picked up and dropped off by a bus exactly once and as

a whole.
(3) No bus carries more passengers than its capacity allows it to.

This means that each group can appear in only one route. Each group’s index
must be included in its corresponding route exactly twice - the first occurrence
marks the pick-up, and the second occurrence marks the drop-off.

Every route needs to start and end at the depot. Since only one is available,
it is implicitly added to every route’s beginning and end.

1.3 Objective function
Since the goal is to minimize the costs, they form the foundation of the function.

With r being a route within the solution Z, we transform it into an ordered list
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of locations the bus visits, including the depot. Then, with ri ∈ S being the ith
stop on the route, the total operational cost of the buses is given by the equation

operational cost ≡
∑︂
r∈Z

(Bf + Bo ·
|r|∑︂

i=1
d(ri−1, ri)) (1.1)

We must also account for the group’s delays when evaluating a solution. The
delay for each group is calculated as the difference between the time we drop the
group off and the expected arrival time, which for group i is defined as ti +dt(oi, ai).

We represent the “satisfaction” of the customers by the equation

satisfaction cost ≡ p ·
∑︂
g∈R

d2
g (1.2)

where p is the penalty constant for late arrival and dg is the group’s delay. The
group’s delay is squared to penalize larger delays more. The penalty constant is
a hyperparameter and depends on the priority of handling all the customers as
soon as possible at the expense of higher operational costs.

The objective function is then the sum of the operational and satisfaction cost.

∑︂
r∈Z

(Bf + Bo ·
|r|∑︂

i=1
d(ri−1, ri)) + p ·

∑︂
g∈R

d2
g (1.3)

We can see that the problem of minimizing this objective function is NP-
hard, because for p = 0, we are solving the Capacitated Vehicle Routing Problem
(CVRP), which is known to be NP-hard [17].

1.4 Input data generation
There are some already existing datasets, for example the one created and

used by Ropke et. al. [18]. This dataset generates pick-up and drop-off locations
in a [0, 200]× [0, 200] square, with a single depot in the center of the square. Each
request has a time window assigned to it, defining the earliest possible departure
time and the latest possible arrival time. Our model, however, uses real-world
coordinates and has only the departure time defined in the customer requests.
Therefore, we create our own benchmark data to compare the algorithms presented
in the thesis.

We have two basic dataset types, uniformly distributed and commute.
The uniformly distributed data generator takes a geographical area represented

in OpenStreetMaps1, the number of requests to generate, the maximum size of
a group in a request, and the latest possible departure time of a group. Based
on these parameters, customer requests are generated, where departure and
destination coordinates are randomly chosen platforms in the given area. The
departure times and group sizes are chosen randomly. The number of platforms to
sample from can be limited to force multiple customers to use the same platform
for departure/destination. The depot is also chosen randomly from the available
platforms. The bus type included in the depot can be changed in the generated
file.

1https://wiki.openstreetmap.org/wiki/Area
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The commute generator works analogously to the uniformly distributed gener-
ator but takes three areas instead: an origin area, destination area, and a depot
area. The departure coordinates are randomly chosen platforms from the origin
area, and the destination coordinates are randomly chosen platforms from the
destination area. The depot coordinates are randomly chosen from the platforms
in the depot area.

Customer requests are stored in GeoJSON file. The use of GeoJSON allows for
simple visualization of the datasets in common geographical information systems.

The distance and duration matrices are generated using the Open Source
Routing Machine (OSRM ) API [19], that generates both matrices from a list of
coordinates. The matrices are stored in separate CSV files.
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2 Genetic algorithm
The concept of genetic algorithms to solve computationally hard problems

was first presented by John Holland [14]. Starting with a population formed with
initial (in most cases random) solutions called individuals, crossover and mutation
operators are applied to gradually improve the fitness score of the population and
thus find the best individual overall.

The most essential thing when designing a specific genetic algorithm is the
encoding of an individual. Based on the encoding, we need to choose the genetic
operators - crossover and mutation. The crossover operator takes two random
individuals (parents) from the population and uses them to create two new
individuals, which combine the properties of their parents. The mutation operator
takes only one individual and makes a change within him. The change should
usually be small and can be either completely random or try to improve the
individual using some heuristic (called a smart mutation). The operators are
performed on an individual or pair of individuals with a given probability (so in
each generation, only some individuals participate in crossover or are mutated).

After the operators are applied, the new population is created using the
selection. In our cases, the selection can either be a roulette wheel selection or
a tournament selection. In the roulette wheel selection, we randomly sample
individuals from the current population, but the individuals are weighted using
their fitness value. When using the tournament selection, we take t (usually 2 or
3) random individuals from the population and compare their fitness values. The
best one is chosen and added to the new population. This process is repeated
until the new population is fully populated.

Apart from using the roulette wheel or tournament selection, we employ a
strategy called elitism. After the new population is sampled using the selection, we
choose n individuals randomly and replace them with the first n best individuals
from the old population. This ensures that the best individual in each population
survives into the next generation.

We present three different encodings of an individual:

• Individual as routes made of stops (EVO-STOPS)

• Individual as separate clustering and routing (EVO-CR)

• Individual as only clustering, with routing solved with greedy heuristic
(EVO-H)

Each encoding has its separate population initialization and genetic operators,
described in detail in sections 2.1 to 2.3. They share the fitness function, which
is evaluated by transforming the individual into a solution and evaluating the
objective function defined in 1.3.
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2.1 Individual as routes of stops

2.1.1 Coding of an individual
The individual is encoded as a list of routes, where each route is a list of

stops in the order the bus visits them.
Transforming the individual into a solution is done by simulation. We simulate

every route - at each stop, we pick up any group waiting for the bus at that stop
and drop off every group present on the bus that can be dropped off. If multiple
groups are waiting at the stop, but not all can fit into the bus, we prioritize the
groups that are waiting longer. At the end of the route, if any groups are left
on the bus, we drop them off in the order of their departure time and return to
the depot. After all route simulations are completed, we create another route by
taking all the groups not picked up by any bus, picking them up, and immediately
dropping them off in the order of their departure time. This ensures that the
simulation returns a valid solution.

The difference between the encoding of a solution and our individual is that
the individual uses stops instead of groups to encode a route. The main reason
for introducing this change was that maintaining the correctness of the solution
after performing the genetic operators on it would be problematic. Making a
(semi-)random change in the individual could easily end up in the violation of
constraints (2) or (3). Using stops instead of groups eliminates the problem of
invalidating an individual since there is no invalid individual.

2.1.2 Initial population
We present two ways to create the initial population - random and greedy.
The random individual generator generates random sequences of stops and

takes as a parameter the number of buses to use and the maximum allowed length
of a route.

The greedy generator tries to generate already feasible routes. At each stop, we
generate a set of reasonable next actions - picking up a new group or dropping off
a group present on the bus. When considering groups to pick up, we only consider
those whose departure time is close to the arrival time to their pick-up stop. For
this, the generator takes a parameter defining how large this time window should
be. If no more options exist, the bus ends the route by traveling to the depot. The
generator can also be limited by parameters that define the maximum number of
buses that can be used or the maximum number of groups that can be picked up
within one route.

2.1.3 Genetic operators
Crossover

We use a simple one-point crossover. We take one random route from each
individual, select a crossover point, and swap the right parts of the routes between
the individuals.

We decided to use the crossover on only one of the routes for each individual.
This is because even a change in one route is usually quite a big change - it can
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easily result in not picking up or dropping off some groups and, therefore, making
the new individual largely penalized. However, it also makes the genetic algorithm
much more exploratory.

Mutation

Unlike crossover, we have many options on what mutation operators to choose.
We decided to implement multiple and randomly choose one at each mutation.
The probability of each operator is determined by its weight, and the weights are
set before an experiment as hyper-parameters.

The possible operators are:

• Delete a random stop from a randomly chosen route.
• Add a random stop to a randomly chosen route.
• Change a stop to a random one in a randomly chosen route.
• Reverse a random sub-route of a randomly chosen route. This is the main

source of changing the stops’ order.
• Shuffle the routes within the solution. This can greatly impact the simulation

when evaluating the fitness function since each group is picked up by the
first bus (in the simulation order) that arrives at their location at the right
time. If more buses travel through the same stop, groups on that stop can
be picked up by a completely different bus.

• “Smart mutation” - depending on the quality of the individual, it either
tries to add an “unhandled” group to a random route, or it tries to perform
a swap of a group between 2 routes. In both cases, we need to insert to a
route both group’s pick-up and drop-off. The maximum distance between
these in the route is given as a parameter.

2.2 Individual as separate clustering and routing
The individual encoding as routes of stops is not ideal for several reasons. The

crossover operator might break the solutions in datasets similar to the commute,
where the bus should first pick up a number of groups and drop them off afterward.
The encoding also does only say, which stops should the routes pass, but not
which groups to pick up/drop off when visiting them. If more groups are waiting
at the stop at the moment the bus arrives, all of them must be picked up. We
will try to fix these issues in the second encoding.

2.2.1 Coding of an individual
The individual consists of two parts: the assignment of the groups to routes,

which clusters the groups, and the order in which the groups are picked up and
dropped off.

The groups to routes assignment is defined by an array, where the array indices
represent the group identifiers and the values represent the identifier of the route
that handles the group. The maximum number of routes is given as a parameter
to limit the number of routes used.

14



The order of pick-ups and drop-offs is defined by an array, where every group
occurs twice; the first occurrence marks the pick-up, and the second marks the
drop-off.

To transform an individual into a solution, for each route, we first determine
which groups are handled by that route, and then we construct the route by picking
the group’s indices in the order they are present in the individual’s order-defining
array. When constructing a route, if picking up the next group would violate the
capacity constraint, we drop off groups with the earliest departure times until the
bus has enough capacity to pick up the group.

2.2.2 Initial population
We generate the initial solutions randomly - given the maximum number of

routes, we assign each group to a random route, and the order of the groups is
created by a random shuffle.

2.2.3 Genetic operators
Crossover

In the crossover, we only cross the order of handling the groups. We first
transform the order array into a permutation by adding |R| to every second
occurrence of each group. On this permutation, we use the Partially Mapped
Crossover (PMX) [20]. We then transform the permutation back to the order
array by subtracting |R| from every second occurrence of each group.

Mutation

Mutation has multiple options for changing the individual. It can change
the route assignment by either swapping two random groups between routes or
assigning a random route to a random group, or it can change the order by either
reversing a part of the order array or swapping two values in the order array.

2.3 Individual as only clustering with heuristic
routing

The previous encoding of an individual comprised two parts: the clustering
of the groups and the ordering of the groups within the routes. Therefore, the
genetic algorithm has to optimize two objectives at once. We try to make the
evolution simpler by only optimizing the group clustering, leaving the ordering to
a greedy heuristic.

2.3.1 Coding of an individual
The individual comprises only the assignment of the groups to routes, similarly

to 2.2.
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To convert an individual into a solution, we first divide the groups into routes
based on the individual. The order in which we handle the groups within a route
is then calculated based on a greedy heuristic described by Baugh et al. [21]

We can think of the problem as a graph, where nodes are either group pick-ups
or drop-offs. Each group corresponds to two different nodes. The edge between
nodes i and j then marks the action of either picking up/dropping off the group
corresponding to node j, when departing from the location corresponding to the
pick-up/drop-off of group i.

The heuristic uses breadth-first search (BFS) with limited breadth and depth.
When evaluating the route, we first find d “cheapest” possible options to travel
to, where d is a heuristic depth parameter. We only choose those options that
would not violate any constraints defined in Section 1.2. For each of the options,
we then try to determine the cost of the resulting route if we choose this option.
We do this by evaluating the cost of a route where, for d stops, we would always
choose the “cheapest” option available. Based on the costs of these routes, we
then select the best option overall. We then repeat this process until no options
are available and all groups are picked up and dropped off.

The movement cost between two nodes is calculated as a weighted sum of the
travel time between the two locations and the time violation. For pick-up nodes,
the time violation is the amount of time either the bus had to wait for the group
or the group had to wait for the bus. For drop-off nodes, it is equal to the delay
of the dropped-off group. For a more detailed description, see Algorithm 1.

Algorithm 1 Move cost between nodes i and j
Require: i, j, current_time

travel_time← durations[NodeToCoords(i), NodeToCoords(j)]
arrival_time← current_time + travel_time
group_j ← NodeToGroup(j)
if j is a pick-up node then

expected_time← group_j.departure_time
else

group_duration← durations[group_j.start, group_j.end]
expected_time← group_j.departure_time + group_duration

end if
tw_viol← |arrival_time− expected_time|
return wtravel_time · travel_time + wtime_window · tw_viol

2.3.2 Initial population
We generate the initial solutions randomly - given the maximum number of

routes to use, we assign each group to a random route.

2.3.3 Genetic operators
Crossover

We use a uniform crossover - for each of the two individuals, we go through
the group-routes assignment, and with a given probability, we change the current
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assignment to the one in the second individual.

Mutation

The mutation swaps two random groups between their routes or assigns a
random route to a random group.

2.4 Hyperparameters
All of the algorithms above depend on the setting of multiple hyperparameters.

We use a from of a greedy grid search to find the best settings. For example, we
start by running a smaller grid search containing the probability of mutation, the
probability of crossover, and the selection method. Other parameters are, at the
moment, set heuristically. After finding the best values for parameters included
in the grid search, we run another small grid search, usually containing one to
three other hyperparameters. This is repeated for all hyperparameters.

The values tried in the grid search are chosen from a fixed interval. For
example, for the crossover probability, we try values [0.1, 0.2, 0.3, 0.4, 0.5]. If the
best value found by the grid search lies on the edge of the interval, we repeat the
search with that interval shifted.

2.4.1 Individual as routes of stops
We describe the experiments in detail on the population initialization function.

For both dataset types, we conduct two experiments, one with greedy initialization
and one with random initialization. Both datasets are made of 50 customer
requests, with group sizes between 1 and 10 persons and departure times in a
2-hour window. Each experiment runs the genetic algorithm 10 times. In figure 2.1,
for each experiment, the mean fitness of the 10 runs is depicted as the primary
line, accompanied by the first and third quartiles represented as a translucent
region. Both x and y axes are logarithmic.

From figure 2.1, we see that for both datasets, the greedy initialization resulted
in faster convergence at the beginning. We therefore decided to use the greedy
initialization.
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Figure 2.1 Individual as stops - population initialization
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The rest of the hyperparameter values were chosen in a similar way and are
shown in the table 2.1.

Mutation probability 0.8
Crossover probability 0.2
Selection tournament (t = 2)
Population size 40
Create individual function greedy
Smart mutation weight 12
Reverse a route weight 3
Add/Delete/Change a stop randomly weight 9
Shuffle individual weight 2
Smart mutation maximum pick-up-drop-off distance 3

Table 2.1 Individual as stops - hyper-parameter settings

2.4.2 Individual as separate clustering and routing
The hyper-parameter settings for both dataset types were chosen experimen-

tally and are shown in the table 2.2.

Mutation probability 0.8
Crossover probability 0.4
Selection tournament (t = 2)
Population size 30
Mutate route assignments probability 0.5
Swap two groups between routes mutation probability 0.5
Reverse a part of the order array mutation probability 0.7

Table 2.2 Individual as cluster and route - hyper-parameter settings

2.4.3 Individual as only clustering with heuristic routing
The hyper-parameter settings for both dataset types were chosen experimen-

tally and are shown in the table 2.3.

Mutation probability 0.8
Crossover probability 0.3
Selection tournament (t = 3)
Population size 20
Travel time weight in heuristic cost 1
Time window violation weight in heuristic cost 2
Uniform crossover switch assignment probability 0.2
Swap two groups between routes mutation probability 0.5

Table 2.3 Individual as only clustering with heuristic routing - hyper-parameter
settings
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3 Ant Colony Optimization
The Ant Colony Optimization (ACO) algorithm is a probabilistic optimization

metaheuristic first presented by Dorigo and Stützle [15]. The original algorithm
was improved by Stützle and Hoos, who created the MAX−MIN Ant System
(MMAS)[22]. Blum and Dorigo then refined theMMAS framework and created
the hyper-cube framework (HCF) for ACO[23]. In this chapter, we compare these
3 frameworks on the DARP.

3.1 ACO frameworks
In our study, we implement three different ACO frameworks to evaluate their

effectiveness in solving the DARP. All the frameworks need two functions specific
to the problem: a function for creating new solutions and an attractiveness
function to guide the solution construction process. The difference between each
framework is described in the following sections.

3.1.1 Ant system
Ant System (AS) was the first Ant Colony Optimization algorithm. The

algorithm is based on the behavior of ants. When searching for food, multiple
ants scatter around their anthill. They lay down small amounts of pheromone to
remember the way back. If their search is successful, they return to the anthill
while laying down a much stronger layer of pheromone to mark the path to the
finding. Other ants can then follow this pheromone trail instead of searching
randomly. The pheromone, however, slowly evaporates, so the trail gets thinner
for longer paths. This allows the ants to find the shortest paths to nearby food.

The AS builds on this metaphor. Our ants generate possible solutions by
moving through the search space. When they create a solution, they update the
pheromone stored in the pheromone matrix based on the fitness value of their
solution. When new ants then move through the search space, they follow paths
with higher pheromone levels, increasing the chance of finding a better solution.
Apart from the pheromone levels, the ant also decides on the heuristic value of
the path - attractiveness.

For pheromone matrix T , the pheromone update is defined as T = (1− ρ)T +
∆T . Matrix ∆T is calculated using the solutions generated in the current iteration
as ∆T = ∑︁ants

k=1 ∆T k, where

∆τ k
ij =

⎧⎨⎩Q/Lk if edge ij was used in the kth solution
0 otherwise.

(3.1)

Q and ρ are hyperparameters, Lk is the fitness value of the kth solution. Therefore,
for the pheromone update, all generated solutions are used.

3.1.2 MAX−MIN Ant System
Stützle and Hoos improved the original Ant Systems by introducing 3 differences

from the original algorithm:
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• Only the ant that found the best solution lays down the pheromone.

• The amount of pheromone on each trail is limited to an interval [τmin, τmax],
which helps to avoid stagnation of the algorithm. These pheromone bounds
are updated during the optimization based on the fitness value of the current
best solution.

• The pheromone matrix is initialized with the value τmax. This makes the
algorithm prefer exploration at the beginning of the run.

3.1.3 Hyper-Cube Framework
The HCF aims for a more robust behavior thanMMAS. Instead of changing

the pheromone bound dynamically, in this framework, all pheromones are limited
to an interval of [0, 1]. This is possible because of changes in the pheromone
update rule. To update the pheromone, 3 solutions are used - global-best solution,
restart-best solution, and iteration-best solution. Each solution has its own weight,
κgb, κrb. and κib. These weights must sum up to 1. The pheromone update ∆T is
then calculated as

∆T = κib · s̄ib + κrb · s̄rb + κgb · s̄gb (3.2)

s̄∗ =
⎧⎨⎩1 for edges ij used in the solution

0 otherwise.
(3.3)

The framework also introduces restarting the algorithm when it has converged.
To measure how far the algorithm is from convergence, a convergence factor is
calculated as

cf = 2 ·
(︄(︄∑︁

τij∈T max(τmax − τij, τij − τmin)
|T | · (τmax − τmin)

)︄
− 0.5

)︄
(3.4)

When the pheromone is initialized with 0.5, the convergence factor is 0. The
closer cf is to 1, the more the algorithm converges to a single solution. The κ
values for the pheromone update are set based on the convergence factor value.
This allows for changing the relative influence of the iteration-best and restart-best
solutions based on how far the algorithm is from convergence. In addition, a
Boolean variable bs_update is defined and becomes true when the algorithm
reaches convergence. The kappa settings are defined in table 3.1.

bs_update = False bs_update
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = True

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κgb 0 0 0 0 1

Table 3.1 Kappa values for pheromone update [23]

The entire framework is described in Algorithm 2.
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Algorithm 2 Hyper-Cube Framework ACO [23]
Require: α > 0, β > 0, ρ ∈ (0, 1), ants > 0, iterations > 0

sgb ← null, srb ← null ▷ global-best, restart-best solutions
cf ← 0.0, bs_update← False
for all τij ∈ T do τij ← 0.5
for iterations do

solutions← CreateSolutions(ants, α, β, T )
sib ← argmin(Fitness(solutions))
Update(sib, sgb, srb)
cf ← ComputeConvergenceFactor(T )
if bs_update and cf > 0.9999 then

bs_update← False, srb ← null
for all τij ∈ T do τij ← 0.5

else
if cf > 0.9999 do bs_update← True
∆T ← PheromoneUpdate(T , sgb, srb, sib, cf, bs_update)
T ← (1− ρ)T + ∆T ▷ Evaporate pheromone, apply the update
for all τij ∈ T do τij ← min(max(τmin, τij), τmax)

end if
end for

3.2 Pheromone matrix
We represent our search space as an oriented graph. Vertices are the group’s

pick-ups and drop-offs. The edges represent the traveling, e.g., the edge between
the group’s i drop-off and the group’s j pick-up represents the path between the
group’s i destination location and the group’s j departure location. We must also
add a node for the depot. The solution is then a set of paths through the graph,
where each path satisfies the constraints defined in 1.2.

The pheromone matrix is of size (2|R|+ 1)× (2|R|+ 1), where R is the set
of all customer requests. For each group with id i, the pheromone at index i
represents the group’s pick-up, and the pheromone at index i + |R| represents the
group’s drop-off. The last index represents the depot.

3.3 Creating solutions
An ant generates new routes until all the customer requests are handled. Each

route starts by picking up the first unhandled group with the lowest departure
time. We then create a set of all possible options: pick up a new group, drop off a
group sitting in the bus, and, only if the bus is empty, return to the depot. The
probability of choosing each option is based on the amount of pheromone between
the two nodes τ and the attractiveness value of the transition ν. The probability
of transition from vertex i to vertex j is then proportional to τα

ij · ν
β
ij , where α and

β are hyperparameters specifying the weights of τ and ν. If the option to return
to the depot is selected, the route ends.
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Attractiveness

We use a simplified heuristic used in section 2.3. The attractiveness is equal
to a weighted sum of the travel time between the stops and the time violation -
how soon or late would the bus arrive.

When considering dropping off a group, we can adjust the attractiveness
with a drop-off bonus coefficient hyperparameter. This coefficient is multiplied
by the length of the current route. The whole bonus is then multiplied by the
attractiveness of the drop-off nodes. This helps to drop the groups faster and,
therefore, reduces delay penalties. We tried multiple variants of how this bonus
could work (fixed value, first picking up multiple groups and then dropping them
all off, or having different strategies for different ants). The variant used in
Algorithm 3 worked the best with both dataset types.

When calculating attractiveness for returning to the depot, we have no time
violation to consider in the weighted sum. Instead, we only multiply the travel
time to the depot with the depot attractiveness coefficient hyperparameter to favor
or disfavor the depot and end the current route.

Algorithm 3 Attractiveness between nodes i and j

Require: i, j, current_route, current_time
if nnode is depot then

attractiveness← travel_time_weight/duration[i, j]
return attractiveness · depot_coef

end if
attractiveness← 1/MoveCost(i, j, current_time) ▷ MoveCost from EVO-H 1
if nnode is a drop-off node then

attractiveness← attractiveness · length(current_route) ·drop_off_coef
end if
return attractiveness

3.4 Hyperparameters
The hyper-parameter settings for both dataset types were chosen experimen-

tally and are shown in the table 3.2.
The experiments were done the same way as in the section 2.4. For example,

in figure 3.1, we show experiments for setting the α and β parameters.
For the commute dataset, the value of the depot attractiveness coefficient

does not have much impact on the results. After dropping off all the groups in
the destination area, the attractiveness of picking up any group in the source
area is too low because the group would be picked up too late, while the depot
attractiveness stays high. However, for the random dataset, a lower value, such
as 0.1, lowers the number of buses used. This may be because we only consider
returning to the depot when the bus is empty, but we do not penalize the waiting
of an empty bus. However, the attractiveness function still considers the time
violation, so if the bus were to wait for a long time, it would rather return to the
depot. While we still need to account for the time violations since picking up
groups with earlier departure times might be more favorable, we do not want their
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attractiveness to be significantly lower than the depot’s attractiveness. Therefore,
lowering the depot attractiveness by multiplying it with a small fixed constant
works well.
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Figure 3.1 Ant Colony Optimization - Alpha and Beta setting

α 1
β 2
ρ 0.1
Number of ants 20
Travel time weight in heuristic cost 1
Time violation weight in heuristic cost 2
Drop-off bonus coefficient 10
Depot attractiveness coefficient 0.1
Convergence factor to restart 0.9999

Table 3.2 Ant Colony Optimization - hyper-parameter settings

3.5 Comparing different frameworks
During development, we tried different versions of ACO frameworks - Ant

System (AS)[15], MMAS[22] and HCF [23]. A comparison of these frameworks
on datasets with 50 customer requests can be seen in Figure 3.2. All experiments
ran for 20 minutes.

An important thing to note is that HCF and MMAS use the same attrac-
tiveness function as described in 3.3. However, for the AS, we failed to find a
single drop-off bonus coefficient or different attractiveness function for which both
datasets would converge to a reasonable solution. We therefore set the coefficient
to 5 for the commute dataset and 100 for the random dataset. This is a major
problem for the AS, as it is less universal.

Based on the results, we decided to use only the HCF in the final experiments,
as it consistently outperformed the AS and showed better characteristics during
longer runs than the MMAS.

23



101 102 103 104

Generations

106

107

Fit
ne

ss
Fitness over generations

Classic ACO
Hyper-cube framework ACO
MMAS ACO

(a) Uniformly distributed dataset

101 102 103 104

Generations

107

2 × 106

3 × 106

4 × 106

6 × 106

Fit
ne

ss

Fitness over generations
Classic ACO
Hyper-cube framework ACO
MMAS ACO

(b) Commute dataset

Figure 3.2 Ant Colony Optimization - Different Frameworks
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4 Experimental results
We have four different optimization algorithms to choose from:

• EVO-STOPS - an evolutionary algorithm that encodes a solution as a list of
routes of stops and tries to improve the solution by modifying these routes.

• EVO-CR - an evolutionary algorithm that encodes a solution using a mapping
of groups to buses and an array defining the order of pick-ups and drop-offs.

• EVO-H - an evolutionary algorithm that uses an assignment of groups to
buses and creates routes using greedy heuristics.

• ACO-HCF - iteratively creates new solutions using the (Hyper-Cube Frame-
work) Ant Colony Optimization metaheuristic.

To compare the approaches, we generated benchmark datasets and ran all the
algorithms on them. In this chapter, we present the results.

4.1 General parameters
Some dataset parameters are the same for all used datasets. Each group has

between 1 and 10 people. The depot is always set in Prague. It is important to
note that the first group in each route gets always picked up on time. This means
that the location of the depot has no effect on the group’s delays.

All the algorithms use the same fitness function, with the delay penalty constant
equaling 0.01. All genetic algorithms have 10% of the population’s best individuals
(elites) passed from the old to the new population. Other parameters are set as
described in Sections 2.4 and 3.4.

All the genetic algorithms can limit the number of buses used by a hyperpa-
rameter. However, the ACO does not have this option, as it generates the routes
until all customer requests are satisfied. Therefore, all the limits on the number
of buses set for each experiment apply only to the generic algorithms.

All experiments were performed on an AMD EPYC 7532 processor. Each
algorithm ran for a fixed amount of time before being terminated, and the time of
each experiment can be seen in the fitness plots.

For all experiments, we include a plot showing the progression of the best
fitness value found by each approach. The value shown is the mean best fitness of
10 different runs, with the first and third quartiles depicted by the translucent
region. The figure shows progression in time and has both the x and y axis on
a logarithmic scale. The statistics about the best solutions returned by each
algorithm are described in two tables. First shows the basic information: total
costs (in thousands), kilometers traveled in total, size of the delay penalties in
the fitness function (in thousands) and how much of the fitness value they take,
and the number of buses used. The second table shows information about group
delays - the maximum delay of a group and the average and median delays of all
groups, respectively.
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4.2 Commute dataset
In the commute dataset, 100 different customer groups depart from a random

location in Pilsen and travel to a random location in Prague. The distance
between the two cities is approximately 90 km. The departure times are randomly
distributed in a four-hour time window. The available bus type can carry up to
80 people, its operating cost per kilometer is 80, and its fixed rental cost is 50000.
The algorithms ran for exactly 90 minutes, after which they were terminated.

30 buses

When setting the bus limit (for generic algorithms) to 30, we see that the
ACO performed the worst, since it failed to minimize the number of buses used.
This resulted in the highest total costs and the greatest number of kilometers
traveled. All genetic algorithms returned similar results. EVO-CR minimized the
total costs the most while EVO-H handled the group delays slightly better.

We can compare the results to a situation where every group would use its own
vehicle. The total distance traveled by all groups from their departure locations
to their destinations is 10,112 km. All the genetic algorithms found solutions
that reduced the total distance traveled. However, the ACO used more buses,
resulting in a higher total distance traveled. It is important to note that the buses
start from a depot in one city, pick up the groups, drive to another city, and then
return to the original depot. Therefore, each bus travels between the cities twice.
If we had a two-way commute scenario, where we would use the same buses to
return the customers back to their original city, the savings would be much more
significant.

20 buses

We can try to reduce total costs by limiting the number of buses. The results
of the ACO algorithm stay the same, as the limit does not apply to it. EVO-CR
performed the best, with the lowest total costs and distance traveled overall, and
the lowest average delay of all genetic algorithms. The EVO-H solution is very
similar. Both the maximum and average delay are nearly double the amount
when the bus limit was set to 30. Even though the fitness values are higher for
the lower number of buses limit, the solution is not strictly worse.

We were able to find a solution that travels 6900 km in total. In this solution,
the buses used the highway between Pilsen and Prague 60 times, therefore spending
ca. 4900 km on the highway and 2000 km in the cities distributing the passengers.
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Figure 4.1 Commute dataset, 30 buses limit - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 2149 8732 km 612 (22%) 29
EVO-CR 2140 8626 km 524 (20%) 29
EVO-H 2240 9255 km 429 (16%) 30
ACO-HCF 2822 12147 km 472 (14%) 37

Table 4.1 Commute dataset, 30 buses limit - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 30m25s 11m26s 11m21s
EVO-CR 28m2s 10m10s 10m26s
EVO-H 23m3s 9m5s 8m56s
ACO-HCF 37m2s 7m36s 5m1s

Table 4.2 Commute dataset, 30 buses limit - Delay statistics
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Figure 4.2 Commute dataset, 20 buses limit - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 1629 7233 km 1604 (50%) 21
EVO-CR 1552 6900 km 1464 (49%) 20
EVO-H 1554 6927 km 1472 (49%) 20
ACO-HCF 2822 12147 km 472 (14%) 37

Table 4.3 Commute dataset, 20 buses limit - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 51m54s 17m3s 16m0s
EVO-CR 42m22s 17m19s 16m58s
EVO-H 44m41s 17m32s 16m27s
ACO-HCF 37m2s 7m36s 5m1s

Table 4.4 Commute dataset, 20 buses limit - Delay statistics
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4.3 Uniformly distributed dataset

4.3.1 100 customers
The uniformly distributed data set has both departure and destination locations

scattered randomly throughout Prague, and departure times are also randomly
distributed within a 5-hour time window. The available bus type can carry up to
40 people, its operating cost per kilometer is 60, and its fixed rental cost is 30000.
The wall time was set to 90 minutes.

25 buses

When the upper limit of buses for genetic algorithms is set to 25, the ACO
clearly outperforms all other approaches, as the limit is set too high. EVO-CR
struggled the most with lowering the buses used, resulting in the highest overall
costs. We can also see that EVO-STOPS fails the most in dealing with delay
penalties, which are higher than for the ACO while using 5 more buses. EVO-H
found a solution with minimal group delays, with the maximum delay being under
4 minutes.

16 buses

Lowering the upper limit for buses to 16 greatly improves the performance of
all genetic algorithms. However, the ACO still managed to minimize the total
costs the most. EVO-STOPS performed the worst in all aspects. EVO-CR and
EVO-H performed similarly, with EVO-CR using a bus more, but having slightly
shorter delays. The ACO run is the same as in the previous experiment.

All algorithms found solutions that have a median delay equal to 0 seconds.
This means that more than half of the customers get picked up exactly on time
and are immediately dropped off. For example, the solution returned by ACO
never has 2 different customer groups on a bus at once. EVO-CR decided to pick
up a group while another one was on the bus only 3 times.

To further analyze the solutions, we compare them with a simple greedy
heuristic. With a fixed maximum delay for any group, we try to form routes by
picking up the closest group and immediately dropping it off. To find the closest
group, we use a weighted sum of travel time to the group’s departure place and
time violation, that is, how long either the bus waited for the group or the group
waited for the bus. We choose only from the groups whose delay would not exceed
the maximum delay set.

When setting the maximum delay to 15 minutes and the equal weight of travel
time and time violation, the heuristic finds a solution that uses 27 buses, travels
2685 km, and costs 971k. The average delay is then 1 minute and 44 seconds. The
best solution found by ACO-HCF uses only 14 buses and costs 566k, nearly half
of what the greedy approach found. The average delay is also slightly shorter,
only 41 seconds.
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Figure 4.3 Uniformly distributed dataset, 25 buses limit - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 732 2698 km 18.9 (2%) 19
EVO-CR 807 2458 km 1.3 (0%) 22
EVO-H 718 2459 km 0.9 (0%) 19
ACO-HCF 566 2431 km 14.6 (3%) 14

Table 4.5 Uniformly distributed dataset, 25 buses limit - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 13m26s 35s 0s
EVO-CR 4m18s 7s 0s
EVO-H 3m52s 5s 0s
ACO-HCF 11m54s 41s 0s

Table 4.6 Uniformly distributed dataset, 25 buses limit - Delay statistics
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Figure 4.4 Uniformly distributed dataset, 16 buses limit - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 635 2577 km 108 (15%) 16
EVO-CR 626 2440 km 6 (1%) 16
EVO-H 597 2443 km 9 (1%) 15
ACO-HCF 566 2431 km 15 (3%) 14

Table 4.7 Uniformly distributed dataset, 16 buses limit - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 28m15s 2m12s 0s
EVO-CR 8m19s 23s 0s
EVO-H 8m33s 30s 0s
ACO-HCF 11m54s 41s 0s

Table 4.8 Uniformly distributed dataset, 16 buses limit - Delay statistics

31



4.3.2 150 customers
For 100 customer requests over a 5-hour time window, the solutions ended up

looking more like a taxi service instead of utilizing the advantages of bus transport.
To avoid this, we created a larger and denser dataset, with 150 different requests
during a 2-hour period. The bus type used is the same as in the previous dataset.
We also doubled the computation time to 3 hours.

When using the ACO approach, there is no direct way to limit the number
of buses used, only by changing the delay penalty in the fitness function. In all
GA approaches, we limited the number of buses to 25 to force them to utilize the
buses. Therefore, the solution returned by the ACO is not directly comparable to
the other returned solutions.

The ACO algorithm found a solution that uses 40 buses. The characteristics
of the solution remain the same as in the previous dataset. There are never 2
different customer groups on a bus at once, and the median delay is still 0. Both
the total costs and distance traveled are, therefore, the highest. However, it
minimized the fitness function the most.

The best solution with a limited number of available buses was found by EVO-
H, with both total costs and customer delays better than in solutions found by
EVO-STOPS and EVO-CR. EVO-STOPS converged to a strictly worse solution,
while also using a bus more (as to how see 2.1.1). EVO-CR failed to converge in
3 hours and probably could have found a better solution if it ran longer. This
makes EVO-H a better choice for larger datasets.

We can also compare the results with the greedy heuristic approach described
in 4.3.1. When we run it with a maximum delay of 30 minutes, the travel time
weight equal to 100 a time violation weight equal to 1, we get a solution that
uses 42 buses, costs almost 1500k and travels for 3750km. The average delay
is 8 minutes and 17 seconds. So ACO found a solution with similar total costs,
but smaller customer delays, while EVO-H found a much cheaper solution with
similar customer delays.

32



00:00:10 00:01:00 00:15:00 03:00:00
Time (H:M:S)

107

108

Fit
ne

ss
Fitness over time

ACO-HCF
EVO-STOPS
EVO-CR
EVO-H

Figure 4.5 Uniformly distributed dataset, dense data - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 963 3049 km 1585 (62%) 26
EVO-CR 921 2850 km 971 (51%) 25
EVO-H 919 2822 km 905 (50%) 25
ACO-HCF 1427 3779 km 128 (8%) 40

Table 4.9 Uniformly distributed dataset, dense data - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 48m36s 13m4s 9m21s
EVO-CR 38m38s 10m11s 9m22s
EVO-H 36m56s 9m30s 7m25s
ACO-HCF 23m7s 2m16s 0s

Table 4.10 Uniformly distributed dataset, dense data - Delay statistics
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4.4 Combined dataset
Finally, we combined both types of requests in a combined dataset. Approx-

imately half of the 100 customers travel between Prague and Pilsen, while the
other half travels either within Pilsen or Prague. Departure times are distributed
randomly within a 4-hour time window. The available type of bus is the same as
for the commute dataset. The upper limit for buses used for genetic algorithms
was set to 20. The wall time was set to 120 minutes.

The performance of each algorithm reflects its performance in both previous
datasets. The ACO performed the worst. When inspecting the best solution
returned, it can be seen that the algorithm had the most trouble with the commute
requests, most of the time failing to pick up multiple customers before traveling
between cities. This resulted in the highest number of buses being used. However,
it performed well with the requests within each of the cities, with the median
delay being zero seconds. The genetic algorithms gave all surprisingly similar
solutions. EVO-CR managed to reduce total costs the most, while EVO-H dealt
the best with minimizing group delays. Both of the algorithms have the same
maximum delay, which belongs to the same group.

For illustration purposes, in figure 4.6, we see a visualization of one of the
routes found by EVO-H. The blue pin marks the depot, the green markers show
group pick-ups, and the red markers show group drop-offs. The bus starts by
picking up and dropping off one group in Prague, then travels with one group
in the bus to Pilsen, where it handles three other groups and returns to Prague
with two groups in the bus. In total, there are two pick-ups and three drop-offs in
Prague and five pick-ups and four drop-offs in Pilsen.

Figure 4.6 Visualization of an example route found by EVO-H
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Figure 4.7 Mixed dataset - Fitness values in time

Total costs Distance traveled Delay penalties Buses used
EVO-STOPS 1597 6833 km 219 (12%) 21
EVO-CR 1522 6528 km 194 (11%) 20
EVO-H 1529 6613 km 159 (9%) 20
ACO-HCF 2060 9501 km 174 (8%) 26

Table 4.11 Mixed dataset - Route statistics

Maximum delay Average delay Median delay
EVO-STOPS 21m23s 5m15s 3m18s
EVO-CR 21m47s 4m43s 2m6s
EVO-H 21m47s 2m5s 15s
ACO-HCF 34m11s 2m50s 0s

Table 4.12 Mixed dataset - Delay statistics
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Conclusion
In this thesis, we implemented multiple approaches how to solve our model of

the Dial-A-Ride Problem. We introduced three different encodings of an individual
representing a DARP solution for a genetic algorithm, each with its own crossover
and mutation operators. We also designed a function for creating solutions and
an attractiveness function for the Ant Colony Optimization technique. We tried
using these functions in three different known ACO frameworks and compared the
results. We then compared all the presented approaches of the DARP optimization
using our own generated datasets.

Our ACO algorithm performs the best for datasets, where dropping groups
right after their pick-up resulted in the lowest cost. This was the case with
less dense uniformly distributed datasets. It is, however, a suboptimal choice for
datasets, where picking up multiple groups without dropping them off immediately
is essential, like in the commute datasets. Overall, the algorithm appears to be
the least universal of all the approaches presented.

The three genetic algorithms seem to be much more balanced, giving good
results for all types of datasets. All the approaches strongly depend on the
hyperparameter for setting the maximum number of buses used. When set too
high, the algorithms have limited ways to lower the number of buses themselves.
However, setting the limit lower can result in further minimization of operating
costs, of course at the expense of customer satisfaction. In our experiments, the
EVO-STOPS generally returned the worst results of all three. Using lists of stops
proved to be ineffective, as the search space is much larger because buses can visit
the same stop multiple times. The EVO-H approach returned very good results
for all types of datasets. It also managed to converge faster than the other two
and performed better on larger datasets. The EVO-CR, however, returned results
of very similar quality, sometimes even surpassing the EVO-H. We are pleasantly
surprised by its performance since the encoding does not use complicated crossover
or mutation operators. Its transformation from an individual to a solution is also
the simplest, without the need for any additional heuristics.

For future work, the algorithms could be tested and used on more datasets.
One scenario could include commuting from densely populated areas to a single
place, for example, a school or a workplace. The effect of some hyperparameters,
such as the delay penalty constant in the fitness function, could be further tested.
The algorithms could also be further extended to more complex models, being
able to support multiple depots or heterogeneous fleets.

The implemented genetic algorithms have a great disadvantage as they need a
good estimate of the number of buses used beforehand to return good solutions.
Ideally, the algorithms should be universal for every dataset, and therefore, this
number should be set automatically. This could be done perhaps by using a
heuristic approach to get an estimate. We could also find a reasonably small
range for this parameter and run the algorithms multiple times, each time with a
different bus limit.

As the EVO-CR approach seems promising, some more complex genetic
operators could be thought of and tested to help the algorithm converge faster.

For the ACO, other and more complex variants of the attractiveness function
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could be tested, to help the algorithm with datasets where the drop-off should
not be immediate.
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List of Abbreviations
• DARP - Dial-A-Ride Problem

• OSRM - Open Source Routing Machine

• EVO-STOPS - Genetic algorithm implementation where the individual is
encoded as a list of routes of stops

• EVO-CR - Genetic algorithm implementation where the individual is
encoded as separate clustering and routing

• EVO-H - Genetic algorithm implementation where the individual represents
only clustering and routing is done heuristically

• ACO - Ant Colony Optimization

• HCF - Hyper-Cube Framework, a metaheuristic algorithm derived from
Ant Colony Optimization
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A User Guide
This section contains the information necessary to run the optimization.
The software is divided into 3 separate parts:

• Data generation
• Optimization algorithms
• Results evaluation

A.1 Prerequisites
For the data generation and results evaluation scripts, the user needs

• a Python interpreter in version 3.11.9. Compatibility with different versions
is probable but not guaranteed. The libraries needed and their versions are
listed in the requirements.txt file.

• a running instance of Open Source Routing Machine (OSRM) [19] service.
The authors provide a demo server at https://router.project-osrm.org.
To host the service, a Makefile with prepare-server and run-server
targets is prepared in the osrm folder in the project files.

The optimization modules requires a Julia programming language compiler.
The program was tested on Julia versions 1.7, 1.8 and 1.9. The packages needed
are listed in the Project.toml file. The correct environment should be installed by
running Julia with the --project argument.

A.2 Generating New Instance Data
The datasets used for running this thesis’s experiments are available in the

attachments in the test_data folder. If you want to generate new datasets, two
scripts are available: dataGeneratorUniform.py and dataGeneratorCommute.py.
Both scripts can be configured using command line arguments, described in detail
when running the script with --help. Running the script generates a new folder
with all the needed files: the GeoJSON file with customer requests, CSV file with
the distance matrix, CSV file with the duration matrix and a parameters.txt file,
where the settings of the generator are stored.

The script assumes that the OSRM service runs on your local machine. If
your instance runs elsewhere, you can override this with the --osrm_url option,
e.g.

python dataGeneratorCommute .py --osrm_url https :// router .
project -osrm.org

The coordinates used are sampled from public transport platforms in the given
area. Note that when generating larger datasets, there must be enough unique
platforms to use in that area. If the number of available platforms is lower than
what is needed to sample, the generators exit with an error.

The bus type(s) available from the depot are hardcoded in the script. Either
change them in the code or afterward in the generated GeoJSON file.
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A.3 Running the optimization algorithms
All the Julia source files are stored in the src folder. Running the algorithms

is done using the EvoDARP.jl runner script. All hyperparameters and other
algorithm configurations are stored in the config.yaml file together with their
descriptions. The program loads the configuration file from the src folder by
default, but this can be overridden with the –config option.

The easiest way to run the program is with the following command:
julia EvoDARP .jl

The command compiles the program, loads the configuration from config.yaml,
and runs the optimization. If you want to override some configuration variables
directly from the command line, you can enter key-value pairs variable=value in
the command. Some of the examples include:

julia EvoDARP .jl algorithm = evolution_stops cross_prob =0.5
mut_prob =0.8 num_generations =20000

julia EvoDARP .jl input_data_folder = my_data algorithm =aco
number_of_runs =10 num_ants =10 num_iterations =10000

The configuration file is divided into several sections. When running a certain
optimization algorithm, all parameters from its section must be present. If some
are missing, the program stops and prints an error message describing what is
missing.

When the optimization finishes (by reaching maximum iterations or by exceed-
ing the wall time), the runner stores in the output folder the following files:

• best_solution.csv with the overall best solution found.
• config.yaml with all the hyperparameter settings for the current run. This

file can be used to reproduce the experiment.
• run_i.fits, where i is the run’s id for each run, logging the current iteration,

time, best fitness, and mean fitness of the population, respectively. Used for
creating plots and analyzing the algorithm’s convergence. The frequency of
the logging can be set in the configuration.

The most important configuration values include the following.

• algorithm - which of the algorithms implemented is used for the optimiza-
tion. Possible values are evolution_stops, evolution_cr, evolution_heuristic
and aco.

• input_data_folder - the folder with the instance data. Example datasets
are prepared in a available_datasets dictionary and can be selected by
the chosen_dataset parameter. To create valid instance data, use one of
the data generators attached. If you want to use your own dataset, it
must be stored in a folder containing three files: data.geojson file with the
customer requests, distances.csv file with the distances in meters for all
coordinate pairs and distances.csv file with the durations in seconds for all
the coordinate pairs. The GeoJSON file must conform to the JSON schema
in Figure A.1.
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Figure A.1 Input GeoJSON schema visualization

• output_data_folder - folder where to store the results.
• logs_frequency - after how many iterations are the log files with best and

mean fitnesses updated.
• number_of_runs - how many times will the algorithm run. All runs have

a different random seed. Use the standard Julia --threads command line
option to run the runs in parallel.

• random_seed - random seed to use. If not present or if its value is empty,
the seed is chosen randomly. If number_of_runs is greater than one, each
separate run has a seed of number_of_runs + run_id.

• wall_time - stops the algorithm if it runs for too long. Given in seconds.

A.4 Parsing the results
After the optimization finishes, the user can run the resultsParser.py script to

analyze the results.
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The standard way to run the script is with the following command:
python resultsParser .py [-f root_folder ] [-- visualize ]

The script finds all folders with output from the optimization algorithm within
the given folder and creates the following files:

• report.txt with basic statistics of the run’s best solution, including the total
costs, kilometers traveled, individual delays for each group, and the delay’s
mean and median.

• Plots visualizing the progress of the best run and the mean fitness of all the
runs. The x-axis in the plots represents the number of generations, and the
y-axis represents the fitness.

If the -v or --visualize option is used, the script also generates the following
files. This option requires the OSRM service to be running.

• routes.geojson with the routes stored as LineStrings. This file can be used
with software like QGIS to visualize the routes.

• routes.html with more basic visualization of the routes made with the Folium
library.

To compare multiple experiments and plot them in one figure, use the script
with the -c or --compare option:

python resultsParser .py -c [-f results_root_folder ]

With this option, the script finds all the output folders within the root folder
and creates a comparison plot. Again, the plots are generated in 2 variants: with
the x-axis representing generations and the x-axis representing time elapsed. The
labels in the plot’s legend can be set by creating a legend.txt file in the experiment’s
results folder and storing the legend label in it.

There are also --xlog and --ylog options available to set the x-axis or y-axis
scale as logarithmic in the plots. For larger experiments, to reduce the size of the
plots, the user can use a --compress option. With this option, only points where
fitness has changed are plotted.

Similarly to data generation scripts, the default OSRM host address can be
overridden with the --osrm_url option.

The project also includes two small scripts to help analyze the results. The
separateCarsDistance.py script takes 2 command line arguments, a path to a
dataset and an output folder, and returns the distances between every group’s
departure and destination point, and the sum of all the distances. The greedySpace-
TimeHeuristic.py takes the same 2 command line arguments, as well as additional
--max_delay, --travel_time_weight and --time_viol_weight arguments. It
uses a simple and naive greedy heuristic to find a solution for a given dataset.
The heuristic is described in 4.3.1
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B Developer Documentation

B.1 Data generators
Scripts for generating input data for the optimization algorithms are stored in

the data_generators folder.
The utils.py file stores general functions used by all the generators. This

includes:

• Sampling public transport platforms from OpenStreetMaps using the Overpy
library and Overpass API. The query for the API is hard-coded in the file.

• Getting the distances and durations matrices using the OSRM API. This is
done by simply using the table service1 from the API.

• Writing the generated data to files.

The dataGeneratorUniform.py then uses the utils file to sample platforms from
a given area, generates random attributes for the customer requests, and saves
the generated data. The commute data generator in dataGeneratorCommute.py
works similarly but takes 3 areas (from, to, depot) instead. There is also a
dataGeneratorSmall.py script, which creates data with manually selected platforms
and attributes. This dataset was used for testing purposes.

B.2 Optimization algorithms
All the algorithms are written in the Julia programming language. Each

algorithm’s source code is stored in a separate file. Other files include parsing the
input data, common functions for all evolutionary algorithms (like selection or
elitism), the fitness function, the runner script, configuration variables, and utility
functions that did not fit elsewhere. Each of the following sections corresponds to
one source file. Every function is described by a docstring and code comments
where needed, so look directly at the source files for a detailed description.

B.2.1 Input data parsing
Input data parsing is done in the input_parser.jl file. The data is parsed by

the load_input function. The function uses the CSV and DataFrames libraries
to parse the distances and durations matrices, the GeoJSON library to load the
input GeoJSON and JSON3 and JSONSchema libraries to validate the input
GeoJSON against a JSON Schema.

The group features are stored in a custom Group struct, and the depot is
stored in a custom Depot struct holding the available bus types, also stored in a
custom BusType struct.

The function then returns the parsed data in the form of a InputData struct,
which holds a mapping between the group’s IDs and their features (in a dictionary
if the IDs in the input GeoJSON were not continuous), the depot, the distances
and durations matrices and the coordinates to their id mapping.

1https://project-osrm.org/docs/v5.24.0/api/#table-service
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B.2.2 Fitness function
The fitness function calculation is stored in the fitness.jl file. The fitness is

evaluated using the evaluate_fitness function, which takes a valid solution and
an input data instance. The solution must be stored as a Vector{Vector{Int}},
where each vector is a route consisting of pick-ups and drop-offs of groups (the
first occurrence of the group’s id marks its pick-up, the second occurrence marks
the drop-off). The function separately calculates the bus costs (fixed cost per bus
and operating cost per kilometer) and the delay penalties. These two values are
then summed and returned. The boolean multi_objective parameter can be
used to return these values separately in an array.

B.2.3 Genetic algorithms
Functions common for all the genetic algorithms are stored in the evolu-

tion_base.jl file. Implemented functions include the tournament selection, mini-
mizing roulette wheel selection (by using the inverse of the fitness function), the
method for creating an initial population from a create individual function, meth-
ods for applying crossover and mutation on the whole population based on the given
probability, and the method for applying elitism. The run_genetic_algorithm
function then implements the main loop of the genetic algorithm using these
functions. This function also logs the algorithm’s progress. When the verbose
parameter is set to true, the progress is also printed to the standard output. The
map_fun parameter can be used to replace the classic map function with e. g. the
parallel_map from utils.jl to calculate the fitnesses of the population in parallel.

Each of the 3 implemented encodings for the genetic algorithm is implemented
in its separate file. In all implementations, we first define the function for creating
the initial individuals. The cross function then implements the crossover, and the
mutation function implements the mutation. These functions are named the same
for all encodings and when running the GA, the correct ones are chosen by Julia’s
multiple dispatch. Every encoding also implements a individual_to_solution
method to convert the individual to an instance of the solution, for which the
fitness can be calculated.

Individual as stops

The individual is stored in a Vector{Vector{Int}}, where each of the vectors
is one route.

When converting an individual to a solution, we need a data structure that
returns all the groups departing from a given place. We precompute this before
the GA with the get_departure_place_group_map function and pass it to the
fitness function as a parameter.

The submutations are implemented as nested functions within the mutation
function. When the operator is called, one of these submutations is chosen using
the sample function from the StatsBase package.

Individual as separate clustering and routing

For the EVO-CR encoding, the individual is stored in a EvoCRIndividual
struct. The struct includes a Vector{Int} for mapping of groups to buses (routes)
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and a Vector{Int} for the pick up/drop off order (its length is twice the number
of groups, values of the array are group’s ids, each id is present exactly twice).

Individual as clustering with heuristic routing

The individual is encoded in a single Vector{Int} defining the mapping of
groups to buses.

The greedy heuristic was inspired by the implementation by Baugh et al. [21].
While the original approach worked with heuristic depth fixed to 4, we define it
as a parameter.

B.2.4 Ant colony optimization
The ACO-HCF implementation is stored in the aco.jl file. The file includes a

ant_colony_optimization function with the main loop, initialize_pheromone
and update_pheromone functions for working with the pheromone matrix, the
attractiveness function and the construct_solution function for creating
new solutions based on the pheromones. The generated solutions are stored as
Vector{Vector{Int}} and are then directly passed to the fitness function.

The attractiveness function imports the greedy heuristic from EVO-H and
namely uses the move_cost function for calculating the weighted sum between
travel time and time violations.

B.2.5 Configuration
The configuration variables, stored in the config.yaml file, are parsed using the

config.jl file. The file implements functions for loading the YAML file and storing
it in a dictionary, validating it against a JSON Schema, extracting specific sections
from the configuration (and putting all the variables in the top level for easier
usage) or updating the configuration (which returns a new copy of the dictionary
and is useful for e.g. grid searching). The configuration dictionary uses Julia’s
Symbol type as keys.

B.2.6 Runner
In the EvoDARP.jl file, a runner function is implemented for each optimization

algorithm. Each function implements a run_once function, which prepares neces-
sary data structures (if needed), stores the configuration used, sets the random
seed, and runs the optimization algorithm once. The runner functions run this
function in parallel (using @threads).

Two main functions are implemented; one is used when running the runner
from the command line, and the other when running it in interactive mode (for
example, in VS Code). Having the interactive main separate allowed for easier
experimenting during development and algorithm fine-tuning (using interactive
mode reduced the compile time needed during the development because only
changed functions get recompiled).
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B.3 Results parser
The script for creating experiment reports, plots, and visualization maps is

stored in the resultsParser.py file in the folder scripts folder. It is divided into
several regions for easier navigation. Important regions are Experiment report,
Map visualization, and Plotting.

For creating the reports and maps, the script needs to load the input dataset.
It does so by looking for the dataset folder in experiment’s config.yaml, and from
that folder, it loads the data into custom dataclasses group, bus_type and depot.
It also reads the best solution from best_solution.csv. The data loading functions
are imported from a separate utils.py file.

When creating the experiment reports, the script goes through the solution
and runs a simulation for each route while storing kilometers traveled, operating
costs, delays for each group, and the maximum number of people on the bus
simultaneously. After simulating all the routes, the results are put together and
written in a file.

There are two “main” functions for plotting. One creates plots for a single
experiment, and the other creates comparison plots for all experiments in the
root folder. They read the .fits files with fitness values in time and store them in
pandas Series. The index of this series is either current generation or time (in
milliseconds), depending on what should be visualized on the x-axis. The value is
then the best fitness in said generation/time. The series are then compressed by
removing adjacent entries with the same value if the compress argument is true.
(this makes resulting plots significantly smaller in size). All the series are then put
together into a DataFrame, from which NaN values are removed using ffill().
From this DataFrame, the final statistics (mean, first, and third quartile) are then
calculated. Those statistics are then plotted using the Matplotlib library and
stored in a .pdf file.

To visualize the routes, the script first uses the OSRM API to get the routes
as GeoJSON LineStrings. The API has a convenient route service2 for this. The
Folium library is used to create a simple visualization in HTML. The routes are
also stored in a GeoJSON together with the stops for more complex visualizations
later.

2https://project-osrm.org/docs/v5.24.0/api/#route-service
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