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Abstract: In this thesis, we analyze the copositivity problem, determining whether
a given matrix is copositive. Despite its NP-hard nature, a variety of testing
approaches exists. We explore the mathematical properties and necessary and
sufficient conditions for copositivity. Our work includes implementing a branch-
and-bound algorithm in MATLAB with the INTLAB library. The algorithm uses
three different bounding techniques based on interval analysis, spectral properties,
and quadratic programming. We briefly address challenges encountered, such
as random matrix generation, and propose effective strategies to mitigate them.
Additionally, we create a modular and extensible testing environment for possible
future extensions. Finally, we compare all considered methods and the practical
performance of our method to a simplex-based branch-and-bound algorithm. In
testing, we show that our method outperforms the simplex-based one on copositive
matrices.
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Abstrakt: V tejto práci analyzujeme problém kopozitivity, teda určenie, či je
daná matica kopozitívna. Napriek tomu, že ide o NP-ťažký problém, existuje
množstvo testovacích metód. Skúmame matematické vlastnosti, nevyhnutné
a postačujúce podmienky pre kopozitivitu. Naša práca zahŕňa implementáciu
branch-and-bound algoritmu v MATLABe s balíčkom INTLAB. Tento algoritmus
používa tri rozličné metódy na odhadovanie, založené na intervalovej analýze,
spektrálnych vlastnostiach a kvadratickom programovaní. Stručne spomenieme
problémy, s ktorými sme sa stretli, ako je napríklad generovanie náhodných matíc
na testovanie, a navrhneme efektívne spôsoby na ich mitigáciu. Navyše sme
vytvorili modulárne a ľahko rozšíriteľné testovacie prostedie pre možné budúce
rozšírenia práce. Nakoniec porovnávame všetky spomenuté metódy a kvalitu našej
metódy voči branch-and-bound algoritmu založenom na delení simplexov v praxi.
V testoch demonštrujeme, že naša metóda prekonáva túto simplexovú metódu na
kopozitívnych maticiach.
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Introduction
The concept of copositivity is a relatively novel term coined less than 100 years
ago. Since then, it has given rise to a whole new area of research, which gave us a
new perspective on many other NP-complete problems and their reformulations.
It helped to prove the NP-completeness of new, tighter questions by reducing them
to the copositive problem. It also opened the door for a completely new area of
optimization, copositive optimization, which generalizes semi-definite optimization
with many fascinating geometrical properties.

Besides mathematical interest, copositivity has been widely used in economics,
mainly financial optimization and applications in supply chains. Because of the
problem’s close connection to graph theory, specifically the maximum clique prob-
lem, it has applications in signal processing, image reconstruction, or machine
learning.

The goal of this thesis

This thesis aims to implement and test a new approach for testing copositivity,
using spectral properties and interval arithmetic, to create a branch-and-bound
method. Ideally, the method should be comparable to some of the best approaches
currently used (or proposed) in the scientific field, mainly a simplex branch-and-
bound method as described later in the paper. We also aim to test different
approaches and focus on problems related to copositivity, such as generating
copositive matrices or providing a testing environment for future approaches and
their testing.

For the implementation, we use MATLAB, with INTLAB arithmetic for nu-
meric comparisons.

Structure of the work

In the beginning, we define basic notions and definitions, then we move on to
showing some approaches from the scientific community to the problem, where
we pay most attention to the simplex branch-and-bound method, as this is the
method we wanted to compare our method to. Then, we describe the mathematical
theorems and matrix properties that we use in our method. Next, we discuss the
implementation, technical challenges, and how we dealt with them. Finally, we
present statistical data from real-run experiments, which give us insights into the
performance of methods.
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1 Basic definitions

1.1 Notation
We denote matrices as capital letters (A, B, C, etc), and vectors with small letters
(x, y, z, etc). We denote a real-valued matrix with m rows and n columns as
A ∈ Rm×n. In the context of this work, when referring to a matrix, we mean
symmetric real-valued square matrix (as this is most relevant for the copositive
problem, the symmetric part is justified later in lemma 1.2.8). Real vectors of
size n are denoted as x ∈ Rn. The entry of the matrix in the i-th row and j-th
column is denoted as Ai,j, and the k-th entry of a vector x is denoted as xk. The
transposition of matrix A is denoted as AT .

1.2 Definitions
Definition 1.2.1 (Vector e(i)). Given n ∈ N and i ∈ {1, 2, . . . , n}. We define
e(i) as vector from {0, 1}n which satisfies:

• j ̸= i =⇒ e(i)j = 0

• j = i =⇒ e(i)j = 1

(that is a vector whose all entries are 0, except for the i-th entry, which is a 1).

Definition 1.2.2 (Vector-real number inequality). Given y ∈ R, x ∈ Rn. We say
that x ≥ y if each entry of x is greater than or equal to y.

Definition 1.2.3 (Vector-vector inequality). Given x, y ∈ Rn. We say that x ≥ y
if

(∀i ∈ {1, 2, . . . , n})(xi ≥ yi)

Definition 1.2.4 (Matrix-matrix inequality). Given A, B ∈ Rm×n. We say that
A ≥ B if

(∀i ∈ {1, 2, . . . , m})(∀j ∈ {1, 2, . . . , n})(Ai,j ≥ Bi,j)
In other words, A ≥ B if, for all corresponding entries, the value in the matrix A
is greater than or equal to the one in the matrix B.

Definition 1.2.5 (Copositive matrix). A symmetric matrix A ∈ Rn×n is called
copositive if for all x ∈ Rn with x ≥ 0 we have xT Ax ≥ 0. Otherwise, it is called
non-copositive.

Definition 1.2.6 (Strictly copositive matrix). A symmetric matrix A ∈ Rn×n is
called copositive if for all x ∈ Rn with x ≥ 0, x ̸= 0 we have xT Ax > 0.

Definition 1.2.7 (ϵ-copositive matrix). A symmetric matrix A ∈ Rn×n is called
ϵ-copositive if for all x ∈ Rn with x ≥ 0 and maxi xi ≤ 1 we have xT Ax ≥ −ϵ.

Remark. Note that without loss of generality, we can only consider symmetric
matrices because of the following lemma:
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Lemma 1.2.8 (Symmetric lemma). For any matrix A ∈ Rn×n and any vector
x ∈ Rn we have the following equality:

xT Ax = 1
2xT (A + AT )x

Proof. We have xT Ax = (xT Ax)T = xT AT x, where the first equality holds because
the matrix is of size 1× 1, and the second is just the transposition rule for matrix
multiplication. Altogether we obtain 2xT Ax = xT (A + AT )x, which completes the
proof.

Definition 1.2.9 (Real interval). Given a, b ∈ R, where a ≤ b. A real interval
[a, b] is the set of numbers [a, b] = {y ∈ R | a ≤ y ≤ b}. We call a the infimum
(denoted inf) and b the supremum (denoted sup) of the interval [a, b].

Definition 1.2.10 (Interval matrix). Given matrices A, B ∈ Rm×n, A ≤ B. An
interval matrix A = [A, B] is the set of matrices A = {X ∈ Rm×n | A ≤ X ≤ B}.

Definition 1.2.11 (Interval vector). Given x, y ∈ Rn, x ≤ y. An interval vector
x = [x, y] is the set of vectors x = {z ∈ Rn | x ≤ z ≤ y}.

Definition 1.2.12 (Real interval operations). Given a, b, c, d ∈ R, a ≤ b, c ≤ d.
We define the following operations for intervals:

1. [a, b] + [c, d] = [a + c, b + d]

2. [a, b]− [c, d] = [a− c, b− d]

3. [a, b]× [c, d] = [m, M ], where m is the minimum and M is the maximum of
the set {ac, ad, bc, bd}.

4. [a, b] /[c, d] = [a, b]× 1
[c,d] , where

(a) c = 0 =⇒ 1
[c,d] = 1

[0,d] =
[︂

1
d

,∞]

(b) d = 0 =⇒ 1
[c,d] = 1

[c,0] = (−∞, 1
c

]︂
(c) 0 ∈ (c, d) =⇒ 1

[c,d] = (−∞, 1
c

]︂
∪

[︂
1
d

,∞)

(d) otherwise - 1
[c,d] =

[︂
1
d
, 1

c

]︂
Definition 1.2.13 (Standard simplex). Given n ∈ N. Then the set S = {x ∈
Rn | ||x||1 = 1} is called the standard simplex.

Definition 1.2.14 (Simplicial partition). Given n ∈ N, simplex S in Rn. Then the
simplicial partition of the simplex S is a set of simplices S1, S2, . . . , Sm satisfying
both

1. S = ∪m
i=1Si

2. (∀i, j ∈ {1, 2, . . . , m}, i ̸= j)(int(Si) ∩ int(Sj) = ∅)
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2 Problem analysis

2.1 Problem statement
The first formulation of the problem is often attributed to Motzkin all the way in
the year 1952 [1], and the term copositive programming was first coined in the
year 2000 [2]. In terms of optimization, we can surely call this a novel problem.
Let us give a precise formulation:

Given a symmetric A ∈ Rn×n, is the matrix copositive?

This has been shown to be a co-NP-complete problem [3], and many other
problems have since been reformulated (or reduced) to this problem, helping us
to classify them as NP-complete. Most notable NP-complete problems related to
copositivity are quadratic optimization [2], list coloring problem [3] or, arguably
the most famous with copositivity, the maximum clique problem [4].

2.2 Conditions for copositivity

2.2.1 Necessary conditions
Diagonal property

Claim 2.2.1. Given a copositive matrix A ∈ Rn×n. Then each diagonal element
of A, that is Ai,i for i ∈ {1, 2, . . . , n} is non-negative.

Proof. Suppose for contradiction that a copositive A ∈ Rn×n with a negative
element on its diagonal exists; let us denote it as Ai,i. Then for the vector x = e(i)
we have e(i)T Ae(i) = Ai,i < 0, which contradicts the copositivity of A.

This may seem relatively trivial, but this gives us a fascinating insight into how
many (symmetric) matrices of order n we can expect to be copositive, with entries
being chosen uniformly random in the range [-1, 1]. Given that each such matrix
has n diagonal entries, and each of those is negative with probability 1

2 , we have
that the probability of the matrix being copositive is at most 1

2n .

Spectral property

Claim 2.2.2. Given a copositive matrix A ∈ Rn×n. Then, at least one of the
eigenvalues of A has to be non-negative.

Proof. Suppose for contradiction that there exists a copositive A ∈ Rn×n with all
negative eigenvalues. Then, the matrix −A has all its eigenvalues positive, and
thus, it is positive-definite. Positive-definity implies copositivity, so we have that
−A is also copositive. However, then for all x ∈ Rn, x ≥ 0 we have both:

xT Ax ≥ 0

xT (−A)x = −xT Ax ≥ 0

10



This necessarily implies that A = 0. However, this contradicts the fact that all
eigenvalues of A are negative (as this matrix has all eigenvalues equal to 0), and
thus, such a matrix cannot exist, and the proof is complete.

While, again, this observation with spectral properties may seem obvious, it shows
that copositivity is fundamentally connected to the spectral properties of the
matrix. We explored other spectral properties as well and discussed them more
in section 3.4. There are far more sophisticated conditions, both necessary and
sufficient, that other researchers have explored [5][6][7].

2.2.2 Sufficient conditions
Positive-definity

Claim 2.2.3. Given a (symmetric) positive-definite matrix A ∈ Rn×n. Then, the
matrix A is also copositive.

Proof. This comes directly from the definition - if xT Ax ≥ 0 holds for all x ∈ Rn,
then it also holds for all y ∈ Rn, y ≥ 0, as it is a subset of Rn.

This observation shows us that while testing copositive matrices is generally a
co-NP-complete problem, some copositive matrices can be tested really quickly.
Not only that, but this also gives us a certificate of copositivity that is only
polynomially long. Similar approaches for copositive certificates have been tried
and implemented [8].

Entry-wise properties

Claim 2.2.4. Given a (symmetric) matrix A ∈ Rn×n. If A is entry-wise non-
negative, that is

(∀i ∈ {1, 2, . . . , n})(∀j ∈ {1, 2, . . . , n})(Ai,j ≥ 0)

then A is copositive.

Proof. This is relatively straightforward: we just rewrite the expression xT Ax
using the definition of matrix multiplication, and we obtain a sum where all of
the elements are non-negative; thus, the sum will be non-negative.

Other entry-wise conditions have been studied extensively, and we can say for
n = 2, 3, 4 we have full necessary and sufficient conditions for copositivity [9]:

Claim 2.2.5 (Necessary and sufficient conditions for n = 2). Given a (symmetric)
matrix A ∈ R2×2. Then A is copositive if and only if all the following hold:

• a1,1 ≥ 0

• a2,2 ≥ 0

• a1,2 +√a1,1a2,2 ≥ 0

Claim 2.2.6 (Necessary and sufficient conditions for n = 3). Given a (symmetric)
matrix A ∈ R3×3. Then A is copositive if and only if all the following hold:

11



• a1,1 ≥ 0

• a2,2 ≥ 0

• a3,3 ≥ 0

• a1,2 +√a1,1a2,2 ≥ 0

• a1,3 +√a1,1a3,3 ≥ 0

• a2,3 +√a2,2a3,3 ≥ 0

•

√
a1,1a2,2a3,3 + a1,2

√
a3,3 + a1,3

√
a2,2 + a2,3

√
a1,1+√︃

2
(︂
a1,2 +√a1,1a2,2

)︂ (︂
a1,3 +√a1,1a3,3

)︂ (︂
a2,3 +√a2,2a3,3

)︂
≥ 0

As we can see, the number of conditions tends to increase fast, so we choose to
omit the conditions for a matrix of size n = 4 and encourage the reader to go
to the source as cited above for the claim, as well as proofs (or citations therein,
which contain them).

These entry-wise properties are especially significant for matrices of size n ≤ 4,
where each copositive matrix can be written as the sum of a semi-positive-definite
matrix and an entry-wise non-negative matrix [10].

Other approaches

There are numerous other necessary and sufficient conditions for this problem
that offer unique ways of looking at the copositivity problem [11][6][12]. Some
directly give rise to algorithms, which we briefly mention in section 2.4. We do
not give them that much focus because we want to focus on the practical and
testing approach.

2.3 Practical applications
Despite being a relatively new field of study, both copositive matrices and coposi-
tive optimization found their way into many areas of research. This section is not
a full list of practical applications; rather, it is just an illustration and motivation
for this topic.

Copositive programming shows up, for example, in stochastic appointment schedul-
ing problem [13], which has practical applications in medicine, network flow opti-
mization, or general delivery systems.

As previously mentioned, copositivity is tightly related to many combinatorial
problems, such as clique number of a graph [10], stability number of a graph, [14]
chromatic number of a graph [15], fractional chromatic number of a graph [16]
or 3-partitioning of vertices [17]. One not necessarily graph-related application
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where copositivity is used is the quadratic assignment problem [18].

Copositivity is further used in quadratic programming, for example, in binary
quadratic problems [19], or fractional quadratic problems [20].

2.4 Approaches of other researchers

2.4.1 Simplex branch-and-bound method
We will discuss this approach in greater detail, as this is the approach we compare
our methods to and compare it the most in this work.

The simplex branch-and-bound method was first mentioned in [4] and was later
cited many times, with suggestions for improvements and other comments, for
example, see [21] [22] [23].

The paper first proves that without loss of generality, when testing copositivity,
it is sufficient to focus just on x ∈ Rn, x ≥ 0 with ||x||1 = 1, thus points in the
standard simplex. Furthermore, to check for the inequality on the whole simplex,
it is sufficient to consider only points v1, v2, . . . , vm, where the simplex is the
convex cover of these vertices. From these, we obtain a sufficient condition for
copositivity:

Claim 2.4.1. Given n ∈ N, S the standard simplex on Rn, symmetric A ∈ Rn×n

and a simplicial partition of the standard simplex S = {S1, S2, . . . , Sm}. Let
vk

1 , vk
2 , . . . , vk

n be the vertices of the simplex Sk. Then if

(∀k ∈ {1, 2, . . . , m}) (∀i, j ∈ {1, 2, . . . , n})
(︃(︂

vk
i

)︂T
Avk

j ≥ 0
)︃

Then, the matrix A is copositive.

This gives a direct algorithm to check for copositivity:
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Algorithm 1 Simplex branch-and-bound method
1: Q← empty queue
2: add the standard simplex S on Rn into Q
3: while Q is not empty do
4: remove the first element in Q and assign the value to s
5: choose v1, v2, . . . , vn, such that conv(v1, v2, . . . , vn) = s
6: for i = 1, 2, . . . , n do
7: if vT

i Avi < 0 then return "A is not copositive" and vi as certificate
8: end if
9: end for

10: m← mini,j∈{1,2,...,n}{vT
i Avj}

11: if m < 0 then
12: partition s into two smaller simplicies s1, s2
13: add s1 and s2 into Q
14: else ▷ the matrix is copositive on the simplex s, we can discard it
15: end if
16: end while
17: return "A is copositive" ▷ we discarded all of the intervals, and we only discard

an interval when the matrix is copositive, so it is copositive on all of them

This algorithm leaves space for the partitioning of the simplex into two smaller
ones. In the original paper [4], there is a suggestion for the splitting. This is
the way we implemented splitting in our work as well. There have been other
approaches, such as the one in the paper [21], which generally performs better. We
will focus on the approach from the original paper. Here is the splitting procedure
for the simplex s = conv(v1, v2, . . . , vn):

Algorithm 2 Simplicial partition
1: (i, j) = argmin(i,j)∈{1,2,...,n}2vT

i Avj

2: α← vT
i Avi

3: β ← vT
j Avj

4: γ ← vT
i Avj

5: if γ
γ−α

> β
β−γ

then
6: return "A is not copositive"
7: end if
8: λ← max{ γ

γ−α
, min{ β−γ

α−2γ+β
, β

β−γ
}}

9: σ ← λvi + (1− λ)vj

10: s1 = conv(v1, v2, . . . , vi−1, σ, vi+1, vi+2, . . . , vn)
11: s1 = conv(v1, v2, . . . , vj−1, σ, vj+1, vj+2, . . . , vn)
12: return (s1, s2)

In the paper, it was proved that this algorithm terminates for both strictly
copositive and non-copositive matrices. The problem with termination arises
with copositive matrices that are not strictly copositive. As this condition was
sufficient but not necessary, for some matrices, the algorithm may keep splitting
the simplices indefinitely, failing to terminate. Because of this, the notion of
ϵ-copositivity for some small ϵ > 0 has to be used to guarantee termination.
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2.4.2 Linear complementarity approach
In the paper [24], a new approach is introduced that is not based on simplex parti-
tioning. We first reformulate the copositivity problem as a quadratic programming
problem:

min f(x) = 1
2xT Ax

eT x = 1
x ≥ 0

where e is the vector, whose all coordinates are ones. Matrix A is copositive if
and only if the optimum x̄ found by the algorithm satisfies f(x̄) ≥ 0.
We can use KKT-conditions for optimality, to find λ ∈ R, w ∈ Rn, such that

Ax = λe + w

x ≥ 0, w ≥ 0
xT w = 0, eT x = 1

Notice that if any triple (x, λ, w) satisfies these, then we have

f(x) = 1
2xT Ax = λ

2

We can use this to construct a new program with linear complementarity con-
straints (let us call it PLCP):

min λ

2
w = Ax− λe

x ≥ 0, w ≥ 0
xT w = 0, eT x = 1

λ ∈ R

For which the paper proves the following claim:

Claim 2.4.2. Given a symmetric matrix A ∈ Rn. Then A is copositive if and
only if the PLCP program has an optimal solution (x̄, λ̄, w̄) with λ̄ ≥ 0.

Which shows the ties to the copositivity testing problem. The paper later goes into
more conditions and applies Lemke’s method and mixed integer linear program-
ming to formulate an algorithm for testing, which was tested on matrices up to
order 496×496. We encourage the reader to see the paper for more details and nu-
merical results, alongside comparisons with the simplex branch-and-bound method.

Finally, let us mention that this is not the only paper mentioning the idea of using
mixed integer linear programming and copositivity; for example, also see [25].
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2.4.3 Other branch-and-bound methods
Because of the recursive structure of copositive matrices [26], there exist many
branch-and-bound approaches, and this is by no means a full list but rather an
illustration of other methods not explored in our testing.

Many branch-and-bound approaches come from the following observation:

Claim 2.4.3. Given n ∈ N, A ∈ Rn×n copositive. Then, all its principal subma-
trices of order n− 1 are copositive.

Proof. By contradiction assume the existence of a copositive matrix A ∈ Rn×n

with a principal submatrix B ∈ R(n−1)×(n−1), that is non-copositive, thus there
exists y ∈ Rn−1, such that yT By < 0. Denote i as the index of the row (and
column) missing from A in B. If then we define x ∈ Rn as

• xj = 0 for j = i

• xj = yj for j < i

• xj = yj−1 for j > i

In other words, y with 0 inserted into i-th position. This gives us xT Ax = yT By <
0, thus contradicting the copositivity of A.

This gives us a necessary condition for copositivity. From this, multiple approaches
exist to adapt this idea into a sufficient condition, thus giving us various branch-
and-bound algorithms [27]. Let us mention a few:

Gaddum’s copositivity test

Claim 2.4.4. [28] Given n ∈ N, A ∈ Rn×n with all its principal submatrices of
order n− 1 copositive. Then the following are equivalent:

• A is copositive

• the value of the matrix game induced by A is non-negative

This gives us another interesting look at applications of matrices and their ties
with Nash equilibrium and matrix games.

Cottle–Habetler–Lemke copositivity test

Claim 2.4.5. [29][30] Given n ∈ N, A ∈ Rn×n with all its principal submatrices
of order n− 1 copositive. Then the following are equivalent:

• A is copositive

• det(A) ≥ 0 or adj(A) has a negative element

Where adj(A) is the transpose of the matrix cofactors, as usual.

Claim 2.4.6. [31] Given n ∈ N, A ∈ Rn×n with all its principal submatrices of
order n− 1 copositive. Then the following are equivalent:
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• A is not copositive

• A−1 exists and is entry-wise non-copositive

Finally, let us mention one with a recursive structure that does not rely on
principal submatrices.

Claim 2.4.7. [26] Given n ∈ N, symmetric A ∈ Rn×n. Let us denote a, b, C as:

A =
[︄

a bT

b C

]︄

Then A is copositive if and only if all the following conditions hold

1. a ≥ 0

2. C is copositive

3. yT (aC − bbT )y ≥ 0 for y ∈ Rn−1, bT y ≤ 0

The most problematic part of this algorithm would be the last condition - in
branching, this would get increasingly complicated, taking exponentially long to
verify.
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3 Implementation approaches

3.1 Introduction to the branch-and-bound
method

The branch-and-bound method is a method of solving optimization problems that
enumerates the state space and discards states that cannot contain the optimal
solution. The state space starts at a single node and then branches into further
sub-problems, where different estimates (bounds) can be made to simplify the
problem. This algorithm is better than an exhaustive search, as the bounds can
help navigate it to the optimal solution quicker.

Because we bound the problem on smaller and smaller sub-problems, it is often
used alongside interval methods [32] [33]. Interval methods help reliably estimate
the upper and lower bounds of a particular function, which helps the search from
the branch-and-bound method.

The branch-and-bound method has been used for many other NP-hard optimization
problems [34], such as the travelling salesman problem [35] [36], where the term is
believed to be coined.

3.2 Methodological Overlaps
In this section, we discuss the approaches we use to solve the copositivity problem.
We provide three distinct methods of obtaining a lower bound for a given interval
vector. While they are very different in nature, they have many overlaps.

3.2.1 Generating initial queue
In this method, we are testing whether a given matrix A ∈ Rn×n is copositive on
a given vector interval x ∈ Rn. We can model the coposivity problem as a whole
with intervals [0,∞), so this setting is very general. First, we will show that we
need not consider large values and can only consider values in the interval [0, 1]:

Claim 3.2.1. Given a symmetric matrix A ∈ Rn×n. If the matrix A is not
copositive, then there exists x ∈ Rn with entries in the interval [0, 1] with xT Ax < 0.

Proof. From the definition of copositivity, if the matrix A is not copositive, then
there must exist a vector y ∈ Rn, y ≥ 0 with yT Ay < 0. Note that y ̸= 0, because
otherwise the inequality would not hold, and thus we have M = maxi yi > 0, and
we can define x = 1

M
y, which satisfies the inequality xT Ax < 0, and the values of

x are all in the interval [0, 1] as claimed.

This means that we can only look for x with values in the interval [0, 1]. We
proved even more - if the matrix A is not copositive, then there must exist x with
values in the interval [0, 1] and at least one entry whose value is equal to 1.
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In general, we will be working with a queue of intervals on which we want
to check the copositivity of the matrix. The initial queue will take advantage
of the fact from the paragraph above and thus will consist of n interval vectors,
with n − 1 entries being the interval [0, 1] and the remaining entry being [1, 1]
(degenerate) interval. Here is a pseudocode:

Algorithm 3 Generate initial queue
1: initialize an empty queue Q
2: for i = 1, 2, . . . , n do
3: create a vector x = [0, 1]n
4: x[i]← [1, 1]
5: add x to Q
6: end for
7: return Q

3.2.2 Common subproblems
Because all of our approaches are based on the branch-and-bound approach, we
have different options in both branching and bounding, respectively, which we
describe in detail below.

Finding non-copositivity candidate

When we are checking if the matrix is copositive on a given interval vector,
we would like to generate (or somehow obtain) a possible candidate for non-
copositivity. Finding the optimal candidate, which minimizes the value of yT Ay,
is equivalent to solving the copositive problem, which is NP-hard. We have tried
multiple approaches, comparing and discussing them further in section 5.6.

Splitting intervals

If we cannot say whether or not a matrix is copositive on a given interval, we
need to somehow split the current interval vector into several smaller ones based
on some criterion. Again, we tried multiple approaches, including look-ahead
methods or the simplest "split the largest interval" method. We discuss them in
more depth in section 5.5.

3.3 Interval method
This approach relies on interval arithmetic, and in each step, for a given interval
vector, calculates the lower and upper bound for the node as the inf and sup of
the interval obtained by matrix multiplication.
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Algorithm 4 Interval-based branch-and-bound copositivity testing
1: Q← generate initial queue
2: while Q is non empty do
3: remove the first element in Q and assign the value to x
4: pick a vector y in the interval vector x
5: if yT Ay < 0 then
6: return "A is not copositive" and y as certificate
7: else
8: calculate the interval z = xT Ax
9: if inf(z) < 0 then

10: split the interval x into smaller ones, add them to Q
11: else
12: ▷ the matrix A is copositive on this interval, we can discard it
13: end if
14: end if
15: end while
16: return "A is copositive" ▷ we discarded all of the intervals, and we only

discard an interval when the matrix is copositive, so it is copositive on all of
them

3.4 Spectral method
The spectral method is based on the spectral theorem, a basic result from linear
algebra:

Theorem 3.4.1 (Spectral theorem). Given a symmetric matrix A ∈ Rn×n. Then
there exists an orthogonal matrix P ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n, such
that

A = P T ΛP

Then we can modify the expression from the definition of copositivity:

xT Ax = xT P T ΛPx = (Px)T ΛPx

If we denote y = Px, then we obtain a term yT Λy that is similar to the one in
the definition of copositivity but with a diagonal matrix instead. Because of this,
we can rewrite this using the definition of matrix multiplication:

yT Λy =
n∑︂

i=1
λiy

2
i

Thus, we only need to calculate the eigenvalues of the matrix A and the matrix P
once, and then in each iteration for the given interval matrix x calculate the value
Px and then use the summation expression from above to get the lower bound.
Here is the pseudocode:
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Algorithm 5 Spectral-based branch-and-bound copositivity testing
1: calculate λ1, λ2, . . . , λn eigenvalues of A and the respective eigenvectors, and

save them in a matrix P
2: Q← generate initial queue
3: while Q is non empty do
4: remove the first element in Q and assign the value to x
5: pick a vector y in the interval vector x
6: if yT Ay < 0 then
7: return "A is not copositive" and y as certificate
8: else
9: calculate the interval vector z = Px

10: calculate the interval w = ∑︁n
i=1 λiz2

i

11: if inf(w) < 0 then
12: split the interval x into smaller ones, add them to Q
13: else
14: ▷ the matrix A is copositive on this interval, we can discard it
15: end if
16: end if
17: end while
18: return "A is copositive" ▷ we discarded all of the intervals, and we only

discard an interval when the matrix is copositive, so it is copositive on all of
them

3.5 Quadratic program with linear conditions
The idea of this approach is to rewrite the original problem and approximate the
variables with new ones, creating a quadratic optimization problem with linear
constraints. This is also known as McCormick envelopes [37].

We start by rewriting

xT Ax =
n∑︂

i=1

n∑︂
j=1

Ai,jxixj =
n−1∑︂
i=1

n∑︂
j=i+1

2Ai,jxixj +
n∑︂

i=1
Ai,jx

2
i

And now we create new variables zi,j for i = 1, 2, . . . , n− 1 and j = i + 1, . . . , n.
These variables are used in order to approximate the value of xixj.

On a current interval vector x, and for a vector x ∈ x we have the following trivial
observations:

1. xi ≥ inf(xi)

2. xi ≤ sup(xi)

From these observations, we can write the inequalities

1. (xi − inf(xi))(xj − inf(xj)) ≥ 0

2. (xi − inf(xi))(sup(xj)− xj) ≥ 0
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3. (sup(xi)− xi)(xj − inf(xj)) ≥ 0

4. (sup(xi)− xi)(sup(xj)− xj) ≥ 0

Each of these inequalities gives us an inequality for the value of xixj, in which
we replace them with the variables zi,j. Notice the conditions are linear in all xi

(as both inf(xi), sup(xi) are just constants), so we obtain the following quadratic
program:

min
n−1∑︂
i=1

n∑︂
j=i+1

2Ai,jzi,j +
n∑︂

i=1
Ai,ix

2
i

variables

zi,j i ∈ {1, 2, . . . , n− 1}, j ∈ {i + 1, . . . , n}
xi i ∈ {1, 2, . . . , n}

conditions

sup(xi) ≥ xi ≥ inf(xi) i ∈ {1, 2, . . . , n}

zi,j − xi inf(xj)− inf(xi)xj + inf(xi) inf(xj) ≥ 0
(inequality 1)

sup(xj)xi − zi,j − sup(xi) sup(xj) + inf(xi)xj ≥ 0
(inequality 2)

sup(xi)xj − sup(xi) inf(xj)− xixj + inf(xj)xi ≥ 0
(inequality 3)

sup(xi) sup(xj)− sup(xi)xj − sup(xj)xi + xixj ≥ 0
(inequality 4)

This returns both a lower bound on the value of xT Ax, as well as the value of
x, where the minimum is obtained for this auxiliary program. We can use this
as a possible non-copositivity candidate, which is useful in practice. Here is a
pseudocode of this approach:
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Algorithm 6 Quadratic program branch-and-bound copositivity testing
1: Q← generate initial queue
2: while Q is non empty do
3: remove the first element in Q and assign the value to x
4: pick a vector y in the interval vector x
5: if yT Ay < 0 then
6: return "A is not copositive" and y as certificate
7: else
8: calculate the lower bound b of the quadratic program, alongside with

the variable z, for which this minimum is achieved
9: if zT Az < 0 then

10: return "A is not copositive" and z as certificate ▷ this is optional;
we do not have to use z for testing

11: end if
12: if b < 0 then
13: split the interval x into smaller ones, add them to Q
14: else
15: ▷ the matrix A is copositive on this interval, we can discard it
16: end if
17: end if
18: end while
19: return "A is copositive" ▷ we discarded all of the intervals, and we only

discard an interval when the matrix is copositive, so it is copositive on all of
them
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4 Implementation details

4.1 General notes
We wrote the methods and testing functions using MATLAB [38], with the INT-
LAB package [39] and optimization toolbox [40]. All our work is available in the
GitLab repository [41].

This thesis does not contain explicit user documentation, as its goal was not
to provide a user-friendly interface for testing but to implement and test a new
approach. The program variables and functions have to be manually changed
inside the code, which we did not consider user-friendly. Thus, we did not con-
sider adding it meaningful. Regarding programmer documentation, the code is
documented inside the repository itself in the form of extensive README.md files.
Of course, this documentation is also complemented by comments in the code.
This section provides a high-level overview of the approach.

4.2 Technical limitations
As the copositivity problem is NP-hard, we cannot guarantee termination in a rea-
sonable amount of time for an arbitrary matrix. Because of this, we implemented
a time restriction on the execution time inside the testing functions themselves,
slowing down the execution. However, this is far more practical than waiting for
the code to finish on every matrix when testing large amounts of matrices.

Another technical limitation is the termination itself - even for smaller matrices,
if the matrix is not strictly copositive, some variations of the branch-and-bound
method (such as the simplex method [4]) may not terminate. Because of this, we
have to result in a slightly weaker definition of copositivity, namely ϵ-copositivity
for some chosen value of ϵ. This will significantly change the result of the program,
given a large value of ϵ (the functions will terminate with the result of ϵ-copositive
more often, which is undesirable).

4.3 Method comparison functions
This section refers to the functions, which are programmed to compare various
methods against each other in terms of speed and/or number of steps. The code
is fairly simple to understand and well documented in the source code itself, so
we will only focus on the most interesting parts to discuss in greater detail.

4.3.1 Generating matrices for testing
Generating random symmetric matrices would seem like a logical choice; without
loss of generality, we can re-scale the matrix so that its entries are in the interval
[−1, 1]. This, however, would result in almost all generated matrices being non-
copositive (the bigger the matrix, the worse this gets). This would then favor
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methods that are better at detecting non-copositive matrices and skew the results
toward them. One could argue that if that is truly the nature of random symmetric
matrices, then it is, in fact, the best way. We did not find this interesting enough
and instead chose to modify the matrices to achieve a ratio of non-copositive to
copositive matrices close to 50/50. To do this, we came up with two different
approaches.

Adding values to the diagonal entries

The idea of this method is to choose some value λ(n), which is dependent on
the size of tested matrix n, and to add λ(n) to all diagonal entries of the matrix.
The idea of this approach is simple - adding values to the diagonal entries moves
the matrix closer to being positive definite, which is a sufficient condition for
copositivity. We experimentally found the best value of λ(n) for chosen values of
n and used that to generate matrices this way. The optimal value depends on the
ratio; we went for 50/50.

Adding values to all the entries

The idea of this method is similar to the one in the last subsection, but instead,
we add the value λ(n) to all the values in the matrix. The idea is that if all the
matrix entries are non-negative, then the matrix is clearly copositive. Again, we
experimentally found the values and used the same ratio as before.

Of course, generating random symmetric matrices (and then modifying them
in one of the mentioned ways) is not the only way to test for, and we account for
that. Because of that, all the tests call some function that generates the matrix
for testing instead. This function is always called when we need a matrix to test
on, so for larger quantities, this function needs to be relatively fast. Otherwise,
the already NP-difficult testing may take a long time. As the code is relatively
customizable and modular, it is straightforward to change the function inside the
code to accommodate for specific matrix generation to reflect better the matrices
on which these methods may be used.

4.3.2 Files and structure
These tests are single function files with no parameters. There are settings to
modify and change the behavior of these tests that are included (with comments
on what they exactly do) at the beginning of each function. All of these files are
in the testing directory, and we will now go through them and briefly explain
what they do.

1. compact_testing - a simple function that does testing of set methods on
many matrices, then displays the results in a compact format.

2. compact_specific_testing - a more general modification of the previous
function. This also supports generating random matrices from a custom
function or just generation of matrices until a condition is met - for a full
explanation, see the details in the code.

25



3. endless_comparison_better - an endless (meaning that by default it runs
forever, a "while true" loop situation) function for finding examples of
matrices, where a set method is better than the other. It generates a random
matrix, tests set methods on that matrix, and if the result is significantly
better (what this means precisely can be modified in the code; basically, we
do not want the difference to be because of CPU load fluctuations), displays
it.

4. endless_comparison_worse - almost the same function as the one above,
occasionally useful as its standalone function.

5. lambda_value_finder - this function is related to section 4.3.1: we are
trying to find the λ(n) values, as described in the linked subsection. The
ratio, matrix sizes, and the number of examples to test are all settings that
can be easily modified at the beginning of the function.

6. test_results - this function is used for storing matrices, where we want to
display exceptionally better or worse running time, or the number of steps,
between two functions. It contains many examples and can easily be re-run
to confirm the significance of behavior differences of tested methods.

4.4 Copositivity testing functions

4.4.1 General overview
In section 3, we discussed the math behind numerous methods for testing coposi-
tivity using branch-and-bound. We implemented the interval method, spectral
method, and the quadratic programming methods as the basis. From these, we
also implemented all possible combinations of these methods. On a given interval
vector x, we can compute various values to get multiple lower bounds and choose
the best one (at the cost of doing more calculations in all the steps). We have
three different methods; for each one, we can choose to include that method or
not, and in addition, in the quadratic program method, we can use the given non-
copositivity candidate or not, giving us a total of 26 different methods (the order
in which we compute them is important as well, cause it can discard unnecessary
calculations).

The simplest methods are directly inside our repository’s tests directory. Inside
this directory, there are multiple subdirectories:

1. combined - contains the implementations of all combinations of different
methods

2. lookahead_tests - contains two subdirectories, spectral and interval,
and includes the implementation of the spectral and interval methods,
respectively, where when branching, we do not split the longest interval in
the current interval vector, but instead split the interval in the index, in
which it gives us the best lower/upper bound for the next iteration. We
discuss this in more detail in section 5.5.
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4.4.2 Finding a non-copositivity candidate
These functions are implemented in the utilities directory. They are called with
two arguments - an interval vector and a matrix, on which to find the candidate.
The function always returns a single candidate. The currently used function can
be changed easily inside the code, making it fairly modular. With a slight addition
to the code, one can easily implement a function that returns a list of candidates
instead. We implemented a total of three different functions:

1. get_random_non_copositivity_candidate - picks a random point from
the interval vector

2. get_edge_non_copositivity_candidate - the idea of this method is to
find x, where the value of xT Ax is minimal on the given interval. We take
the derivative d

dx
xT Ax = 2Ax for x in the middle of the current interval

vector. Then we move in the direction of −2Ax from x until we reach an
edge, that is inf or sup in one of the coordinates in the current interval
vector.

3. get_vertex_non_copositivity_candidate - similar to the one above this,
but instead, we take note of the sign of −2Ax in each coordinate, and we
move from x in each coordinate until we either reach inf or sup of the current
interval vector (based of the sign).

Note that in section 5.6, we also use finding the middle of the current interval
matrix as a method for testing. This function is uninteresting, as it does not
take into consideration the matrix at all, and thus, we did not seem to find
it interesting to include as its own. It does guarantee the termination of the
algorithm for non-copositive matrices but is slower than other methods in practice.
A similar function get_middle_point is used often, but that does not take two
parameters as described above and thus does not fit the description in this category.

As mentioned before, adding a custom non-copositivity finding function is relatively
easy - any function matching the input and return arguments with a custom
heuristic can be easily added instead of these tests.

4.4.3 Functions arguments and usage
All of the methods have the same interface to interact with them - each method (or
combination of methods) is a function in a separate file, with the same arguments
as input into the function:

1. matrix - matrix for testing copositivity

2. epsilon - this is the parameter for returning the result of
epsilon-copositive, as described more in section 4.2

3. output - this is a boolean parameter, whether or not to print the "certificate"
of non-copositivity, that is, a particular value of x ≥ 0, where xT Ax < 0
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4. maximum_execution_time - maximum execution time of the function in
seconds (is not precise, the function may run more than this amount, but
not by much), the necessity of this is explained more in section 4.2

The function is called with these parameters and returns a tuple, where the first
value is a string that is either copositive, epsilon-copositive,
non-copositive or not-finished, which indicates the result of the operation.

The second value is a non-negative integer that indicates the number of steps the
calculation took to get to the result. This can mean various things, depending on
the method used, but most commonly refers to the number of interval vectors x
extracted from the queue during the calculation that is processed in any way. It is
useful for finding faster examples and helping illustrate which classes of matrices
a particular method struggles with, so we decided to leave it like this.

This implementation is easily extensible, and any further method, whether or
not using branch-and-bound, can be implemented like this and will work with
our current structure. The only requirement is that these function arguments be
precisely in this order and that the tuple (time, number of steps) be returned as
described.

4.4.4 Naming convention
The naming of these functions is pretty straightforward: the basic methods always
end with _test, and the simplest methods implemented begin with interval,
spectral and linear (for the quadratic test with linear conditions, spectral
test, interval test respectively). If the quadratic program method and its non-
copositivity candidate are used, then the name linear is extended with _example.
If multiple methods are used, they extend the name, starting with _ and then the
method name.

For example, for the test that first uses the interval method, and if that fails,
goes to the quadratic test with the non-copositivity candidate, the name will
be interval_linear_example_test. As another example, the method, which
uses spectral, then interval, and lastly quadratic programming test without
checking for the non-copositivity candidate from the program, will be named
spectral_interval_linear_test.
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5 Testing and results

5.1 Environment
We run the tests on the ASUS TUF Gaming notebook with the following specifi-
cations:

GPU

Intel(R) UHD Graphics + NVIDIA GeForce GTX 1660 Ti

CPU

Inter(R) Core(TM) i7-10870H CPU @ 2.20GHz

OS

Arch Linux

Memory

16GB RAM

5.2 Common parameter values
In all of our tests, we use the same value for these variables (their exact names
may slightly differ, but they refer to the same idea):

• epsilon = 10−10 - refers for approximation to ϵ-copositivity as described in
section 4.2

• maximum_execution_time = 60 - limits the maximum execution time of
each function, in seconds; for more information, again refer to section 4.2

• number_of_matrices_to_test = 1000
To make sure the ratio of copositive matrices is close to 1

2 , we use the diagonal
adjustment method, as mentioned in section 4.3.1. Also, unless it is clear from
context otherwise, each time a new matrix is generated for testing, its size is a
random number from 5 to 9 (including both endpoints).

5.3 Optimal lambda values
This refers to finding the optimal value of λ(n) as described in section 4.3.1.
The experiment was ran using the lambda_value_finder.m function with the
following settings:

• lambda_min_value = 0

• lambda_step_value = 0.01

• desired_ratio = 0.5
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5.3.1 Diagonal method
For the diagonal method, the parameter lambda_max_value was set to 2.
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λ
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)

Figure 5.1 Optimal value of λ(n) found by the experiment for the diagonal method

n λ(n)
1 0
2 0.55
3 0.78
4 1.06
5 1.30
6 1.45
7 1.63
8 1.89
9 1.98

Table 5.1 Optimal value of λ(n) found by the experiment for the diagonal method

5.3.2 All entries method
For the all entries method, the parameter lambda_max_value was set to 1.
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Figure 5.2 Optimal value of λ(n) found by the experiment for the all entries method

n λ(n)
1 0
2 0.48
3 0.59
4 0.70
5 0.75
6 0.81
7 0.83
8 0.85
9 0.87
10 0.88
11 0.88
12 0.90
13 0.90
14 0.92
15 0.92

Table 5.2 Optimal value of λ(n) found by the experiment for the all entries method

We can see that for larger matrices, we need almost all entries to be positive for a
matrix to be copositive, which tells us how much more likely the random matrix
is to be non-copositive (of course, adding one would make the matrix always
copositive).
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5.4 Combined methods
Another idea was to combine the methods - meaning when checking each interval
vector, we try using multiple methods to get multiple estimates, as some methods
may behave better on certain types of matrices and certain types of interval vectors.

In the following figures, we had to create shortcuts because of the long names of
the methods used, and we will explain them briefly now. We denote spectral as S,
interval as I, and linear as L. When using linear with an example, we denote as
Lx. The order of the letters denotes the order of methods in which they are used.
For example, SILx denotes that we first check spectral, then interval, then linear
with an example for a non-copositive candidate. As another example, LS denotes
linear (without the example) and then spectral.

Because these tests contain so many methods, the testing is very time-consuming,
and the parameter number_of_matrices_to_test was set to 250.
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Figure 5.3 Number of copositive matrices identified in combined method testing by
each method (1)
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Figure 5.4 Number of copositive matrices identified in combined method testing by
each method (2)
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Figure 5.5 Number of copositive matrices identified in combined method testing by
each method (3)
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Figure 5.6 Number of copositive matrices identified in combined method testing by
each method (4)
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Figure 5.7 Average number of steps (when finished) for copositive matrices identified
in combined method testing by each method (1)
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Figure 5.8 Average number of steps (when finished) for copositive matrices identified
in combined method testing by each method (2)
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Figure 5.9 Average number of steps (when finished) for copositive matrices identified
in combined method testing by each method (3)
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Figure 5.10 Average number of steps (when finished) for copositive matrices identified
in combined method testing by each method (4)
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Figure 5.11 Average time took (when finished) for copositive matrices identified in
combined method testing by each method (1)
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Figure 5.12 Average time took (when finished) for copositive matrices identified in
combined method testing by each method (2)
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Figure 5.13 Average time took (when finished) for copositive matrices identified in
combined method testing by each method (3)
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Figure 5.14 Average time took (when finished) for copositive matrices identified in
combined method testing by each method (4)
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Non-copositive matrices
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Figure 5.15 Number of non-copositive matrices identified in combined method testing
by each method (1)
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Figure 5.16 Number of non-copositive matrices identified in combined method testing
by each method (2)
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Figure 5.17 Number of non-copositive matrices identified in combined method testing
by each method (3)
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Figure 5.18 Number of non-copositive matrices identified in combined method testing
by each method (4)
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Figure 5.19 Average number of steps (when finished) for non-copositive matrices
identified in combined method testing by each method (1)
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Figure 5.20 Average number of steps (when finished) for non-copositive matrices
identified in combined method testing by each method (2)
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Figure 5.21 Average number of steps (when finished) for non-copositive matrices
identified in combined method testing by each method (3)
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Figure 5.22 Average number of steps (when finished) for non-copositive matrices
identified in combined method testing by each method (4)
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Figure 5.23 Average time took (when finished) for non-copositive matrices identified
in combined method testing by each method (1)
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Figure 5.24 Average time took (when finished) for non-copositive matrices identified
in combined method testing by each method (2)
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Figure 5.25 Average time took (when finished) for non-copositive matrices identified
in combined method testing by each method (3)
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Figure 5.26 Average time took (when finished) for non-copositive matrices identified
in combined method testing by each method (4)

Discussion

We can observe that a combination of all three approaches performs very slightly
better in general. The combination itself does not seems to matter that much and
all methods in general perform really similarly. This is mainly because in almost
all of the steps, we have to calculate all three bounds. The SILx approach seems
to have a very slight edge, and we will continue with it for the rest of the testing
as our best method.

Notably, from the singular methods, the quadratic program seems to perform the
best, and in our testing, it does exceptionally well with matrices with relatively
large diagonal values.

5.5 Look-ahead splitting
In this experiment, we decided to look at options related to splitting intervals, as
mentioned in section 3.2.2. In the basic method, which guarantees termination
for non-copositive matrices, we split the largest of all intervals from the current
interval matrix into two new ones and add them to the queue. However, in theory,
if we suspect the matrix is not copositive, it may be beneficial to prioritize some
interval splits over others, as they may find the solution quicker. On the other
hand, this will provide no boost in performance for copositive matrices, as to
mark a matrix copositive, we have to discard all of the intervals in the queue (for
more details, refer to section 3.3 or section 3.4), so the additional calculations will
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only slow this down.

We decided to try a new approach instead - try to calculate both the lower
bound and the upper bound from the interval (or spectral) method and try to
choose the one with the lowest/highest lower bound or the one with the lowest-
/highest higher bound. As we did not think that it was clear which method would
give the best result, we decided to test all of them. This gives us a total of 8
possible approaches, the details of which can be viewed in the source code itself.
For brevity, they are named just as digits from 1 to 8 in the figures below. We
compared these to the standard approach of splitting the largest interval and, of
course, as always, the simplex method.

When we split the interval into two, we obtain two new intervals; let us call them
first and second. We calculate the bound on these new interval vectors and call
them first_value and second_value. Now, we choose the best split based on
the following criteria (the numbering is consistent with the method notation in
figures):

1. the largest min(inf(first_value), inf(second_value))

2. the largest max(inf(first_value), inf(second_value))

3. the smallest max(inf(first_value), inf(second_value))

4. the smallest min(inf(first_value), inf(second_value))

5. the largest min(sup(first_value), sup(second_value))

6. the largest max(sup(first_value), sup(second_value))

7. the smallest max(sup(first_value), sup(second_value))

8. the smallest min(sup(first_value), sup(second_value))
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5.5.1 Interval method
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Figure 5.27 Number of copositive matrices identified in look-ahead splitting by each
method (interval)
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Figure 5.28 Average number of steps (when finished) for copositive matrices identified
in look-ahead splitting by each method (interval)

Note that the Average number of steps (when finished) is described as 0 because
the average is not well defined (they did not identify a single copositive matrix).
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Figure 5.29 Average time took (when finished) for copositive matrices identified in
the look-ahead splitting by each method (interval)

Again, the 0 represents that the average could not be calculated.
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Non-copositive matrices
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Figure 5.30 Number of non-copositive matrices identified in look-ahead splitting by
each method (interval)
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Figure 5.31 Average number of steps (when finished) for non-copositive matrices
identified in look-ahead splitting by each method (interval)
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Figure 5.32 Average time took (when finished) for non-copositive matrices identified
in the look-ahead splitting by each method (interval)
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Discussion

Here, we can see that some of the approaches are extremely bad on either copositive
or non-copositive matrices, namely methods 3, 4, 5, and 6 could not identify a
single copositive matrix in a given time restriction. Some of these look-ahead
approaches actually outperformed our non-look-ahead method in, for example, non-
copositive matrices in "Average number of steps (when finished)", but ultimately
they did not seem good enough to replace the standard biggest interval splitting,
so we used that for further tests.

5.5.2 Spectral method
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Figure 5.33 Number of copositive matrices identified in look-ahead splitting by each
method (spectral)
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Figure 5.34 Average number of steps (when finished) for copositive matrices identified
in look-ahead splitting by each method (spectral)
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Figure 5.35 Average time took (when finished) for copositive matrices identified in
the look-ahead splitting by each method (spectral)
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The exact value for the average in methods 3, 4, 5 and 6 was 0.00307. This is
insignificant, as they only identified 2 matrices, so it seems it was guessed as
copositive without splitting at all.

Non-copositive matrices

Simplex Spectral1 2 3 4 5 6 7 8
0

100

200

300

400

500

550
510 499489 482

373

444

375
396

493 493

Method used

N
on

-c
op

os
iti

ve
m

at
ric

es
id

en
tifi

ed

Figure 5.36 Number of non-copositive matrices identified in look-ahead splitting by
each method (spectral)
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Figure 5.37 Average number of steps (when finished) for non-copositive matrices
identified in look-ahead splitting by each method (spectral)
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Figure 5.38 Average time took (when finished) for non-copositive matrices identified
in the look-ahead splitting by each method (spectral)

55



Discussion

We see very similar results to the results in the previous subsection, where while
some of the look-ahead methods seem to do better on copositive (or non-copositive)
matrices, for example, taking many few steps, they fail to do so reliably, and
for both types of matrices. Because of this, again, we choose to discard these
approaches and continue with the simplest, largest interval splitting.

5.6 Non-copositive candidate
As described in section 4.4.2, we have many approaches to choose a possible
non-copositive candidate when bounding. As always, we compare them with the
simplex method. The R stands for random in the tests and the number after it
denotes how many random candidates we tried on a given interval vertex.
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Figure 5.39 Number of non-copositive matrices identified by different candidate
methods in testing
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Figure 5.40 Average number of steps (when finished) for non-copositive matrices
identified by different candidate methods in testing
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Figure 5.41 Average time took (when finished) for non-copositive matrices identified
by different candidate methods in testing
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Discussion

These figures show that the simplex method is really good compared with our
ideas in identifying non-copositive matrices. It gives by far the best time, and
even tho it takes many more steps than our methods, its steps are so much faster
that it makes up for it. From our methods, Middle came as the worst, followed by
random testing. Random testing, however, seems to get better as we test for more
candidates. An interesting idea would be to look into the optimal value (if such a
thing even exists) of random candidates for which to test. Our best methods were
Edge and Vertex, with Vertex slightly outperforming the Edge approach. Based
on these results, we decided to go with the Vertex approach as our best method,
although it is straightforward to switch to Edge in the source code directly, just
by changing the function called.

5.7 Large general testing
In this testing set, we decided to test a more significant number of matrices on
just two methods - the simplex method and the
spectral_interval_linear_example_test, as we thought this method showed
the most promise at that time. In these tests, we set the number of matrices at
n = 10000.
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Figure 5.42 Number of copositive matrices identified in simplex/SILx method com-
parison testing
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Figure 5.43 Average number of steps (when finished) for copositive matrices identified
in simplex/SILx method comparison testing
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Figure 5.44 Average time took (when finished) for copositive matrices identified in
simplex/SILx method comparison testing
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Non-copositive matrices
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Figure 5.45 Number of non-copositive matrices identified in simplex/SILx method
comparison testing
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Figure 5.46 Average number of steps (when finished) for non-copositive matrices
identified in simplex/SILx method comparison testing
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Figure 5.47 Average time took (when finished) for non-copositive matrices identified
in simplex/SILx method comparison testing
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Discussion

We can notice that the simplex branch-and-bound method did not finish on all
copositive matrices - meaning that there were copositive matrices that our method
identified, while the simplex did not (took too much time). This shows promise,
and we took notice of such matrices to try and isolate what type of matrices these
are. The simplex method seems to outperform our method on non-copositive
matrices by far, but on copositive matrices, our method does seem to have a very
slight edge.

5.8 Conclusion
In the end, by using vertex-based-non-copositivity candidate generation with a
combined approach of spectral, interval, and quadratic test methods, we were able
to construct a test that performs better on general copositive matrices than the
simplex branch-and-bound method, which we consider a good result.
We noticed that matrices, where our method does much better than the simplex
method, often have rather large values on the diagonal; thus, we tried to add even
more to the diagonal (even beyond compensating for non-copositivity, as explained
in section 4.3.1). This means the number of copositive matrices will be larger
than the number of non-copositive matrices, which, as explained, is the nature of
random matrices, so this may seem somewhat artificial. Another problem with this
approach is that the matrices would often just become positive semi-definite, which
is not an interesting case for the algorithm, as these matrices are always copositive.

These matrices have to be generated by a separate function that does the com-
pensation. Of course, the value added to the diagonal depends on the size of
the matrix, and this thing is challenging to figure out on its own - the larger the
value, the better our methods seem compared to the simplex branch-and-bound
approach, but the slower the random matrix generation seems to be.

We mention this for two reasons:

1. A suggestion for the simplex branch-and-bound method, showing its weak-
ness on a particular type of matrices

2. Suggestions for researchers interested in further improving methods from
these papers
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Conclusion
In this thesis we looked at the problem of testing copositivty of a given matrix. We
analyzed the problem mathematically, looked at problems with testing, including
it being NP-complete problem. We further examined different approaches other
researchers took, before diving into mathematical properties, including necessary
and sufficient conditions for copositivty. Then we came up with three methods
for testing ourselves - based on interval analysis, spectral properties of copositive
matrices, and quadratic programming. We tried implementing these approaches
in MATLAB, described our difficulties (such as generating random matrices for
testing), and then did statistical analysis on these methods.

Results of this work

As a practical result of this work, we created a simple, yet modular and highly
customizable means for further testing and comparing. Our methods provide a
really easy to use interface, with easily changeable settings for other researchers
after us.
We tried many different approaches for finding non-copositivity candidate, as well
as interval splitting, for both bounding and branching respectively, which can be
used in any branch-and-bound algorithm for copositivity testing.
We provide statistical results for future generating of matrices, which we tested
on large sample of random matrices, and can prove very useful for others. This
method of generating, alongside the option for custom generation, means that
basically anyone interested in copositivity testing in MATLAB can make use of
our work.
We implemented our own methods for testing, compared them with the simplex
method, and provide a list of results, where our method is better, than the
simplex-based one.

Future work

This work left some details unanswered, which can provide a new view for some
of the parts of testing. We briefly analyzed random non-copositivity candidate
in bounding, and it showed promise, perhaps testing with larger number of non-
copositivity candidates, or even better, finding the optimal number of candidates
to check for, to detect non-copositivity.
In addition we failed to clearly identify the matrices, on which our method behaves
much better than the simplex method. This may be interesting for our method
especially, as a means to further improve it, or as a possible suggestion for the
simplex method, to show its weaknesses, and where it can improve.
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