FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Mkrtich Hovsepyan

Deep Learning Models for Product
Mapping

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Katerina Mackova

Study programme: Computer Science with
specialization in Artificial
Intelligence

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

To my supervisor, RNDr. Katefina Mackova, whose support, guidance, and
encouragement have been invaluable throughout this journey.

Title: Deep Learning Models for Product Mapping
Author: Mkrtich Hovsepyan

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Katefina Mackova, Department of Theoretical Computer
Science and Mathematical Logic

Abstract: The thesis addresses the challenge of matching products from different
e-commerce platforms called Product Mapping. The problem in Product Mapping
is to decide whether two products from various sources refer to the same product.
The main goal of this thesis is to evaluate different deep-learning approaches
to increase the accuracy of Product Mapping techniques. We use all available
textual and image data that can be extracted from e-commerce platforms to
find the most suitable models techniques. We experiment with four different
datasets: ProMapEn, ProMapCz, Amazon-Google, and Amazon-Walmart. We
compare models such as TF-IDF, Word2VEc, and BERT-based transformers
for text preprocessing and we use CNNs like GG16, ResNet50, Inception V3,
and EfficientNet for image preprocessing. Then, we use machine learning, and
deep learning classifiers for computing similarity scores for individual features.
We obtained promising results with BERT-based architectures for text data and
multimodal models for mage data. These methods improve accuracy and F'1 score,
achieving superior results on the datasets. Which highlight the critical role of
deep learning techniques in advancing the field of e-commerce product mapping.

Keywords: Product Mapping, Product Matching E-commerce Platforms, Deep
Learning Techniques, Textual Data, Image Data, TF-IDF, Word2Vec, BERT,
Convolutional Neural Networks, VGG16, ResNetb0, Inception V3, EfficientNet,
Machine Learning, Logistic Regression, Support Vector Classifier, Multi-Layer
Perceptron (MLP), Large Language Models, ProMap datasets, Amazon-Google
Dataset, Amazon-Walmart Dataset

Contents

Introduction

1

Product Mapping

1.1 Product Mapping Task
1.1.1 The Importance of Product Mapping
1.1.2 Techniques in Product Mapping

1.2 Datasets
1.2.1 Existing Datasets
1.2.2 Chosen Datasets
1.2.3 ProMap Datasets

1.3 Stateof the Art
1.3.1 Traditional Approaches
1.3.2 State of the Art Models

1.4 Machine Learning and Deep Learning Models Used in the Thesis .

Comparison of Image Representation Models

2.1 Image Preprocessing Methods

2.2 Data Processing Approach
2.2.1 Feature Extraction Models
222 VGGI6
223 ResNetbOo o
2.2.4 Inception V3o
2.2.5 EfficientNet
2.2.6 EfficientNet Variants
2.2.7 MaxOutputEnsemble Custom Model
2.2.8 Conclusion about using only image data

Comparison of Text Representation Models

3.1 Introduction
3.1.1 Data Processing Workflow

3.2 Traditional Models
3.2.1 TF-IDF
3.2.2 Word2Vec

3.3 Transformer-Based Models
3.3.1 BERT Models
3.3.2 RoBERTa Models
3.3.3 DistilBERT Models

3.4 Sentence Transformers
3.4.1 all-MiniLM-L6-v2
3.4.2 alllmpnet-base-v2
3.4.3 stsb-roberta-large

3.5 Natural Language Inference (NLI) Models
3.5.1 nli-roberta-base-v2
3.5.2 nli-bert-base
3.5.3 nli-distilroberta-base-v2

3.5.4 nli-mpnet-base-v2 Lo 70

3.6 Specialized Models 72
3.6.1 abbasgolestani/ag-nli-DeTS-sentence-similarity-v1l 72

3.7 Fine-Tuning BERT for Sentence Similarity 74
3.7.1 First Fine-Tuned model 74

3.7.2 Fine-Tuning BERT for Product Matching with Triplet-Loss 76

3.7.3 Performance Evaluation 7

3.8 Conclusion 78

4 Combining Text and Image Data 79
4.0.1 Methodology 79

4.0.2 Results on ProMapEn Dataset 79

4.0.3 Results on ProMapCz Dataset 80

4.0.4 Comparative Analysis of F1 Scores 81
Conclusion 83
Bibliography 84
List of Figures 87
List of Tables 88
List of Abbreviations 91
A Attachments 92
Al Source Code 92
A2 Datasets 92

Introduction

Product mapping is closely related to linking, mapping, and matching products
in multiple databases or catalogs. It allows one to discern the same product within
several systems, even in cases where the description, image, etc., of the product
are different. This is a comparison method based on textual and visual data that
provides for relating identical objects, which can be presented in different manners
in different e-commerce environments. Product mapping ensures the consistency of
data and a good user experience of using Computer Vision and Natural Language
Processing which enables to correctly compare prices and manage inventories to
help customers find what they want on marketplaces.

In this thesis we work with four datasets: ProMapEn, ProMapCz, Amazon-
Google, and Amazon-Walmart. The datasets comprise names and descriptions;
the ProMap datasets also include images of the products and more textual features.
The thesis compares several methods and finds the best model for English and
Czech data. We deploy various models to pre-process all the text and image
features characterizing each product such as TF-IDF, Word2Vec, BERT-based
transformers for text data, and Convolutional Neural Networks with models
VGG16, ResNetb0, Inception V3, and EfficientNet for image data.

Afterwards, the machine and deep learning models classify characteristics ex-
tracted in the previous step. We extract the similarity score of the characteristics
between two products based on comparing their names, short descriptions, specifi-
cations, long descriptions, and images. Apart from this, Multi-Layer Perceptron,
Logistic Regression, Random Forest, Naive Bayes, KNN, and several other clas-
sifiers were trained. The outcomes of our experiments improved accuracy and
F1 score for Product-Mapping tasks through fine-tuning BERT-based architec-
tures and multimodal models. These techniques were applied to achieve amazing
progress on datasets ProMapEn and ProMapCz. The best F1 scores obtained
were 0.73, 0.72, 0.93, and 0.99 for ProMapEn, ProMapCz, Amazon-Google and
Amazon-Walmart, respectively.

We test the model performance when using only the name feature against all
available textual features combined. This might help us understand the significance
of the name feature. the contribution of the name feature and how it influences
the overall performance of the Product Mapping models. Our experiments can
decide whether the name feature alone can give accurate product mapping or if
substantial increments in accuracy can be achieved with other textual features.

1 Product Mapping

1.1 Product Mapping Task

Product Mapping is one of the critical aspects of the e-commerce industry:
linking, mapping, and matching products among different databases or catalogs.
The process ensures consistency in identifying the same products across multiple
systems, where descriptions, images, and other features could differ. It, also,
ensures data integrity, a better customer experience, and that prices and stocking
are matched correctly across all these multiple marketplaces.

Product Mapping contrasts text and visual information to draw a correct
relationship between similar products shown differently on various e-commerce
platforms. For instance, the same smartphone could be described or have different
images and specifications to be sold on Amazon, Walmart, or Google Shopping.
Product Mapping identifies and matches those slight variations with a single
product identity.

1.1.1 The Importance of Product Mapping

Consistency in data: One of the goals that Product Mapping aims at is to
ensure consistency in product data. Consistency in data benefits both the seller
and the buyer. Sellers can see a potential sale because information about their
products is inconsistent in other places, whereas buyers can make an informed
choice because they find information consistent.

User Experience: User experience is at the heart of the success of e-commerce
operations. When the product data are consistent, the customers should easily
be able to compare products on a different scale. Accurate mapping allows the
customer to avoid discrepancies that could raise questions of trust and frustration.

Accurate Price Comparisons: Comparative pricing is one of the major
features of online shopping. Product Mapping enables customers to make an
accurate price comparison, thus enabling them to compare products like for like.
This is helpful, especially in a highly competitive market, where a slight price
difference can alter the consumers’ buying decisions.

Inventory Management: With effective Product Mapping, inventory man-
agement becomes an easy task. A retailer can track products through different
platforms and ensure that the stock level is always updated in real time. This
removes the issue of items available on one site but out of stock on the other,
which brings customer dissatisfaction and loss of sales.

1.1.2 Techniques in Product Mapping

Product Mapping, in general, contains several advanced techniques like Natural
Language Processing and Computer Vision technologies, which are mainly applied
to functions like comparing and matching one product to another.

Natural Language Processing (NLP): NLP works with textual data linked
to the products. Generally, an analysis contains the product’s name, description,
specifications, and reviews. An efficient matching process will be conducted

through it, wherein the textual data identified using NLP techniques will find
similarities and differences.

We deal with this problem by considering not only all available textual data but
also experiments in understanding the influence of various features. For instance,
we could compare the performance between models using only the name feature
of the product and all available textual features combined. Such comparison
may provide insight into the role or importance of the name feature in this kind
of Product Mapping and help understand how much it influences the whole
performance of the models. Considering its importance in making mapping more
accurate, we will see this name feature alone. Computer Vision: Computer
Vision is important for products that have a high dependence on their visual
features—for example, clothing or electronic items. This technology helps compare
images of a product and looks into the similarity of the visual representation.
Comparisons made herein could be based on color, shape, or even design features
to say if the two products are similar.

Hybrid Approaches: Most frequently, the combinations of approaches offer
the best efficacy in Product Mapping. Using both textual and visual data provides
a proper understanding of the products, thus allowing for a better match.

The real future of Product Mapping lies in the advancement of Al and machine
learning. Systems that are more accurate and perpetually innovated for such
matters will soon be able to handle much more sophisticated forms of variation in
product data. The two areas where further improvement is possible are handling
more intricate product data variation and integrating real-time data.

1.2 Datasets

1.2.1 Existing Datasets

There are several datasets available for Product Mapping, including;:

« WDC Dataset: Created by Web Data Commons [1], it contains only
product names without additional details like descriptions, specifications, or
images.

« Amazon-Walmart Dataset [2]: This dataset has detailed product infor-
mation but includes only distant non-matches.

« Amazon-Google Dataset [3]:Contains product names, descriptions, and
prices, but lacks specifications, images, and non-matches.

o Abt-Buy Dataset [4] [5]: Does not have comprehensive product informa-
tion.

o Other Datasets: Such as DBLP-ACM, DBLP-Scholar, Shopmania, and
Amazon Review Data, [4] [5] which are not specifically designed for Product
Mapping tasks.

1.2.2 Chosen Datasets

For this thesis, we selected three datasets: ProMap dataset collection, Amazon-
Google, and Amazon-Walmart.

o ProMap [6] : Chosen for its comprehensive coverage of all available product
details, including images and close non-matches.

« Amazon-Google [3]: Selected for its well-documented matching pairs.

e Amazon-Walmart [2]: Included for its detailed product information,
despite having only distant non-matches.

These datasets were selected to ensure a robust evaluation of Product Mapping
models with a variety of product details and match types.

1.2.3 ProMap Datasets

The ProMap dataset collection [6] consists of two primary datasets, ProMapCz
and ProMapEn which contain product pairs from Czech and English e-shops,
respectively. These datasets are significant in our study, helping us to develop
deep-learning models and compare them. Every data pair has two products, and
each product has text and image features. The text features for each product are
'name," "short_ description," "long description," and "specification." Each product
has multiple images associated with it. Human annotators created Both datasets
manually, ensuring their high quality.

ProMapCz

The ProMapCz dataset [6] consists of 1,495 pairs of Czech products, including
both matching and non-matching pairs. The products are from Alza.cz and
Mall.cz. It includes 706 unique products from Alza.cz and 1,409 from Mall.cz,
with 504 matches, 456 close non-matches, and 535 medium non-matches. The
dataset is divided into a training set of 1,196 pairs and a testing set of 299 pairs
based on an 80:20 split. Matches are pairs referring to the same product, close
non-matches are similar but not the same product which are slightly more different
than close non-matches.

ProMapEn

The ProMapEn dataset [6] has 1,555 English product pairs from Walmart.com
and Amazon.com, having 1,555 unique products from Walmart.com and 751 from
Amazon.com. There are 500 matches, 509 close non-matches, and 537 medium
non-matches. This dataset is divided into train and test sets, with 1,244 pairs for
training and 311 pairs for testing, having an 80:20 ratio.

Amazon-Google and Amazon-Walmart Datasets

In addition to the ProMap datasets, we use datasets from Amazon-Google and
Amazon-Walmart. These datasets provide additional diversity and information,
helping to ensure the unbiasedness of our models in different datasets. They are

10

larger than ProMap datasets but do not provide several levels of non-matching
products, do not contain image data, and have fewer text features. Original
datasets are too large and strongly unbalanced. Therefore, we used shrunk and
balanced versions, which were created to make them more similar to ProMap
datasets [6].

Amazon-Google Dataset

The Amazon-Google [3] dataset consists of product pairs from Amazon and
Google Shopping. Each data point consists of two products, and each product
has text features ('mname," "short description," "long description"), price, and
manufacturer. The dataset has 1,363 products from Amazon, 3,226 from Google,
and 1363 matches and 1935 non-matches, and the data is split 80:20 into training
and testing datasets, which created 2589 pairs in train and 648 pairs in the test
dataset.

Amazon-Walmart Dataset

The Amazon-Walmart dataset [2] includes product pairs from Amazon and
Walmart. The dataset has 24,583 different products. Each product has a title,
brand, short and long descriptions, URLs, etc. There are 1154 matching pairs and
2000 non-matches, and the data is split 80:20 into training and testing datasets,
which created 2515 pairs in the train and 630 in the test dataset.

1.3 State of the Art

1.3.1 Traditional Approaches

Originally, the Product Mapping techniques were based on some string similar-
ity measurements like cosine similarity, edit distance, and Jaccard similarity. They
relied heavily on textual information to do a line-by-line comparison. Since the
product descriptions are wildly variant and usually relatively sparse, the methods
proposed in the past usually gave inaccurate results.

Deep NLP Models

Transformer-based Models: The transformer models, especially BERT,
have addressed NLP and Product Mapping problems. With its other derivations,
such as Sentence-BERT, BERT helps provide embeddings of product titles and
descriptions to make the matching more accurate.

Sentence-BERT: In contrast, Sentence-BERT leverages siamese and triplet
networks over the pre-trained BERT model into sentence embeddings. This
approach can thus capture context adequately from within the product descriptions
and demonstrates good performance compared to the conventional string similarity
measures [7].

11

Deep Learning Architectures for Multimodal Data

Text and Image Similarity: It has been shown that using a multimodal
approach to combine data in the form of text and image information with deep
neural networks has improved product matching accuracy. The up-to-date mod-
els with embedded images and text better match products described by both
modalities.

1.3.2 State of the Art Models

These sophisticated datasets and models introduced in recent studies help
acquire more advanced Product Mapping features. For instance, the ProMap
datasets, including ProMapCz and ProMapEn, have complete information concern-
ing the products; they contain images of products and their textual descriptions.
The best results were obtained on these datasets with neural network-based models,
achieving F1 scores of 0.77 on ProMapCz and 0.70 on ProMapEn. [6].

Comparison of Models

The ProMap datasets have been created to overcome the inadequacies of
existing datasets, which generally comprise far-away non-matching pairs and
have incomplete information about products. Including close and medium non-
matching products makes them, in a way, a more realistic benchmark and, hence,
challenging for testing Product Mapping models. Below is a table showing various
machine learning methods tested on several datasets: ProMapEn, ProMapCz,
Amazon-Google and Amazon-Walmart. Then, the models trained are evaluated
with F1 score, Precision and Recall. The best results in every dataset attained
were the models trained on text and image processing methods and also on
deep learning techniques. The texts are preprocessed by removal of unwanted
characters, lemmatization, lower casing, and turning them into numerical vectors
with TF-IDF. This step is then followed up with cosine similarity computation,
making it possible for text processing. As far as image processing is concerned,
resizing is done, after which they are changed into grayscale. Object detection
is done through edge detection and bounding box techniques, with perceptual
hash generation in computation for the image similarity measure. During this
work, many machine learning models were trained and tuned through Grid and
Random Search: Logistic Regression, Support Vector Machines, Decision Trees,
Random Forest, Neural Networks. Results indicated that the neural network-
based model fared very well with every dataset: close-to-high F1l-scores and
high-precision /recall results confirm its suitability for handling text data or image
data in product mapping tasks.

Dataset F1 Precision Recall
ProMapEn 0.70 0.71 0.70
ProMapCz 0.77 0.79 0.76
Amazon-Google 0.99 1.00 0.98
Amazon-Walmart 0.93 0.90 0.96

Table 1.1 Comparison of Machine Learning Methods on Various Datasets

12

1.4 Machine Learning and Deep Learning Mod-
els Used in the Thesis

We have used multiple classifiers to predict whether the product pair is a
match. The following are the classifiers used:

e XGBoost

— XGBoost [8] is an optimized distributed gradient boosting library,
aiming at being highly efficient, flexible, and portable. A machine
learning library interfaces many languages under the Gradient Boosting
framework. XGBoost provides parallel tree boosting, also known as
GBDT or GBM, a topic that tops Kaggle leaderboards in most cases
when solving data science problems quickly and efficiently. The model
was set with a maximum depth of 10 and 1000 estimators for our use.

o Logistic Regression

— Logistic Regression [9] is a statistical analysis method used when
the data consists of one or more independent variables determining
an outcome. The outcome is measured by a dichotomous variable,
having only two possible outcomes. In other words, it is a method for
predicting the probability of a binary response based on one or more
predictor variables.

e Random Forest

— Random Forest [10] is an ensemble learning method that builds
multiple decision trees during training and outputs the most common
class for classification tasks. The model used in this thesis includes
1000 trees with a maximum depth of 10, which enhances prediction
accuracy and reduces overfitting by averaging the results of multiple
trees.

« SVC

— Support Vector Classifier (SVC) [11] is a specific implementation
of the Support Vector Machine algorithm built for classification tasks.
Again, an SVC is an SVM for classification and looks for the best
hyperplane to find separation between classes of data points. While
the terms "SVC" and "SVM" have been used interchangeably, if a
person mentioned an "SVC," he referred to this variant variable of the
algorithm in classifying. We use an RBF kernel with parameters C=1
and gamma=1.

« KNN

— K-nearest neighbors (KNN) [12] algorithm is generally abbreviated as
a k-nn, and it’s a way of classifying data that estimates the likelihood
of a given point in the data being part of one group or another based
on what group the data points closest to it belongs.

13

» Naive Bayes

— Gaussian Naive Bayes classifier [13] is based on Bayes’ theorem, as-
suming independence between every pair of features. This probabilistic
classifier is particularly effective for high-dimensional data and is simple
to implement, making it a fast and efficient method for classification
tasks

« MLP (Multi-layer Perceptron)

— Multi-layer Perceptron [14] is also known as MLP. It means fully
connected dense layers transforming any input dimension to the desired
one. It is a neural network that contains multiple acquired layers joined
with one another. This can be done by combining neurons together so
that the outputs of some neurons become inputs for other neurons to
create a neural network.

— MLP 1000

* hidden_ layer_sizes: (1000)

* max__iter: 1000

x activation: relu

% solver: 1bfgs

x learning rate: adaptive

% learning rate init: 0.01

x early_stopping: True

x n_iter_no_ change: 1000
— MLP 500 500

x hidden_ layer_sizes: (500, 500)

* max__iter: 1000

x activation: relu

% solver: 1bfgs

x learning rate: adaptive

x learning rate init: 0.01

x early stopping: True

x n__iter_no_ change: 1000
— MLP 300 200 100

« hidden_ layer_sizes: (300, 200, 100)

* max_ iter: 1000

x activation: relu

x solver: Ibfgs

x learning rate: adaptive

x learning_rate init: 0.01

x early stopping: True

x n__iter_no_ change: 1000

14

— MLP 1000 tanh
* hidden_layer sizes: (1000)
* max__iter: 1000
x activation: tanh
x solver: Ibfgs
* learning rate: adaptive
% learning rate init: 0.01

*

early stopping: True

x n_iter_no_ change: 1000
— MLP 1000 relu adam

* hidden_ layer_sizes: (1000)

* max_ iter: 1000

x activation: relu

x solver: adam

x learning rate: adaptive

x learning rate init: 0.01

*

early_stopping: True
x n__iter_no_ change: 1000
— MLP 1000 relu 0.001
« hidden_ layer_sizes: (1000)
* max_ iter: 1000
x activation: relu
% solver: lbfgs
x learning rate: adaptive
x learning_rate_init: 0.001
x early stopping: True
x n__iter_no_ change: 1000

e AdaBoost

— AdaBoost (Adaptive Boosting) [15] is an ensemble learning algorithm
that concatenates many weak classifiers to get one robust classifier.
Successive rounds allow the algorithm to adjust weights according
to the previous classifier’s performance, emphasizing those instances
misclassified in that round. Each base weak model is weighted by its
performance and combined into the final model. For the number of
estimators, we have used 1000, and the learning rate used here is 0.01.

o Gradient Boosting

— Gradient Boosting [16] is a very powerful machine learning technique
that builds a predictive model in stages. It basically involves the
creation and summation of weak predictive models, typically decision
trees, one at a time, in such a way that each new model makes up for

15

the shortcomings of previous ones. This process uses calculus’ concept
of gradients to minimize errors. Hence the name ’gradient boosting.’
We use the model with 1000 estimators, a learning rate of 0.01, and a
maximum depth of 10.

o Extra Trees

— Extra trees: Extra trees [17] stand for extremely randomized trees.
It forms another ensemble supervised machine learning method using
decision trees used by the Train Using AutoML tool. The extra trees
algorithm, similar to random forests, generates many decision trees.
However, in extra trees, the sampling for every tree is random, and
there is no replacement. We use 1000 estimators and a maximum depth
of 10.

« Bagging

— Bagging (Bootstrap Aggregating) [18] is the ensemble learning method
generally used to reduce variance in a noisy data set. In bagging, a
random sample is made out of data in a training set; this is done with
replacement, meaning that individual data points may be selected more
than once. In this implementation, SVC is used as the base estimator
with 100 estimators

e Linear SVC

— Linear Support Vector Classifier [11] is a type of machine learning
algorithm used in classification problems. This works by using a
straight line or a hyperplane that separates data points of different
classes. If the given data can be precisely linearly separable, then only
linear SVMs can be applied.

« SGD

— Stochastic Gradient Descent (SGD) [19] is an algorithm for the opti-
mization of an objective function with adequate smoothness properties,
such as differentiability or subdifferentiability; it is iterative by nature.
It may also be understood as a stochastic approximation of optimiza-
tion by gradient descent: it replaces the real gradient of the objective
function on the basis of a large but finite sample of the data set with a
gradient estimate defined on the basis of a randomly chosen subset.

16

2 Comparison of Image
Representation Models

2.1 Image Preprocessing Methods

In the ProMapEn and ProMapCz datasets, every product has several images.
The images show the product from different angles, give an overview of some
features, and provide important product characteristics that cannot be captured
in the text data. Therefore, they are a vital data source for the product mapping
task.

2.2 Data Processing Approach

Our methodology for dealing with image data consists of three parts and is
outlined as follows:

« Image Preprocessing: First, we take resizing, normalizing, and other
known image processing methods to each image:

— Resizing: Each image is resized so that the shorter side is 256 pixels,
preserving the aspect ratio (ensures that the shorter side of the image
is consistently resized to a specific dimension).

— Center Cropping: From the resized image, a central square patch of
224x224 pixels is extracted (the pretrained models like ResNet, VGG,
and EfficientNet are trained on 224x224 pixel images.).

— Conversion to Tensor: The image is converted into a multidimen-
sional array format suitable for input into neural networks.

— Normalization: The mean and standard deviation values are used
to normalize the image tensor; these are dataset-dependent values on
which the pre-trained models were initially trained. As done earlier in
this chapter, this normalization step will standardize input data across
different images and even across datasets.

o Feature Extraction: Then we use pretrained on freely available image
data models for feature extraction. We tried VGGm ResNet, EfficentNet,
and Inception.

o Similarity Computation: We compute the similarity scores by comparing
every possible pair of images between the two products. We chose cosine
similarity for this part, which showed better results than other distance
metrics. Given n images for one product and m images for another, this
results in n x m matrix with similarity scores.

o Max Similarity Selection: From the computed similarity scores, we select
the highest value. This approach is based on the observation that the same
products probably have at least one pair of highly similar images, even if

17

other pairs have low similarity scores. Selecting the maximum value makes
it easier to perform the comparisons by focusing on the most relevant image
pairs.

The maximum similarity score is then used as a feature in subsequent machine
learning and deep learning models for product mapping tasks.

The following figure illustrates our image preprocessing and comparison archi-
tecture:

Product 1 Comparison Architecture Product 2

The Most Similar Images

Figure 2.1 Comparison of product images with double-sided arrows indicating com-
parisons and highlighting the most similar pairs.

2.2.1 Feature Extraction Models

We used the following methods for the feature extraction
« VGG16
ResNet50

Inception V3
EfficientNet

Custom Model - MaxOutputEnsemble

18

Every model catches different features from the images. This gave the idea
to make an ensemble model combining all of the methods together (MaxOut-
putEnsemble). EfficientNet and MaxOutputEnsemble showed the best results
after performing all experiments.

2.2.2 VGG16

VGG16 [20] is a classical convolutional neural network pre-trained on ImageNet
dataset [21], which is a freely available large database of images that are designed
for different image recognition tasks. The advantage of using this method was
that it is simple to understand and can provide good baseline results for product
mapping tasks.

Architecture of the VGG Model
The architecture of VGG can be divided into several key components:
» Convolutional Layers: 13 convolutional layers with 3x3 filters.
« Activation Function: Relu (Rectified Linear Unit)
« Pooling Layers: 5 max-pooling layers.
o Fully Connected Layers: 3 fully connected layers.

o Final Layer: 1 softmax layer

Performance with MLP Classifier We performed several experiments. We
involved VGG16 for getting individual image embeddings and afterwards processed
in our pipiline described in Data Processing Approach. Then we run several ML
models to train binary to detect matching and non-macthcing products. The best
result for the ProMapEn dataset using the VGG16 feature extractor combined
with the MLP model. The highest F1 score is 0.56 for ProMapEn (while only the
image data is used)

19

Model F1 | Accuracy | Precision | Recall
MLP 1000 tanh 0.56 | 0.65 0.47 0.7
Logistic Regression 0.55 | 0.65 0.47 0.64
AdaBoost 0.54 | 0.64 0.46 0.65
MLP 500 500 0.54 | 0.66 0.48 0.61
Naive Bayes 0.53 | 0.63 0.45 0.65
MLP 1000 relu adam | 0.53 | 0.69 0.53 0.52
MLP 1000 relu 0.001 | 0.52 | 0.63 0.45 0.62
MLP 1000 0.52 | 0.63 0.45 0.62
MLP 300 200 100 0.52 | 0.61 0.43 0.64
Gradient Boosting 0.51 | 0.5 0.37 0.8
Extra Trees 0.5 | 0.58 0.4 0.65
XGBoost 0.49 | 0.61 0.43 0.58
SVC 0.49 | 0.32 0.32 1.0
Random Forest 0.47 | 0.55 0.38 0.62
Bagging 0.46 | 0.73 0.65 0.36
KNN 0.43 | 0.53 0.35 0.54
Linear SVC 0.0 | 0.68 0.0 0.0
SGD 0.0 | 0.68 0.0 0.0

Table 2.1 Detailed results for VGG16 model on ProMapEn dataset using several
machine learning algorithms.

We performed the same experiments for the Czech dataset. The results for
the ProMapCz dataset were similar, with an F1 score of 0.54. We obtained the
best score using the same setup - MLP with VGG16. Detailed results for the
ProMapCz textual data are as follows:

20

Model F1 | Accuracy | Precision | Recall
MLP 1000 tanh 0.54 | 0.64 0.46 0.66
MLP 300 200 100 0.54 | 0.68 0.5 0.59
Logistic Regression 0.54 | 0.64 0.46 0.66
Naive Bayes 0.54 | 0.64 0.46 0.66
MLP 500 500 0.54 | 0.67 0.5 0.59
MLP 1000 relu 0.001 | 0.53 | 0.65 0.47 0.61
MLP 1000 0.53 | 0.65 0.47 0.61
Extra Trees 0.52 | 0.45 0.36 0.91
XGBoost 0.52 | 0.49 0.38 0.84
MLP 1000 relu adam | 0.51 | 0.5 0.37 0.79
Gradient Boosting 0.51 | 0.39 0.35 0.98
Random Forest 0.51 | 0.46 0.36 0.87
AdaBoost 0.49 | 0.33 0.33 1.0
Bagging 0.49 | 0.69 0.54 0.45
SGD 0.49 | 0.42 0.34 0.85
KNN 0.48 | 0.53 0.38 0.66
SVC 0.38 | 0.7 0.58 0.29
Linear SVC 0.0 |0.67 0.0 0.0

Table 2.2 Detailed results for VGG16 model on ProMapCz dataset using several
machine learning algorithms.

2.2.3 ResNet50
ResNet50 [22] or Residual Network with 50 layers, belongs to the family of

ResNets, which introduced residual learning to raise the performance related to
vanishing gradient while training deep neural networks.

Architecture of ResNet

The ResNet architecture utilizes residual blocks. Rather than learning an
unreferenced function for the desired output mapping, ResNet layers focus on
learning residuals—the difference between the input and the output.

Key Components

o Convolutional Layers: Feature extraction layers.

o Batch Normalization: Applied after each convolution to normalize the
feature maps.

« Activation Function: ReLU (Rectified Linear Unit).

» Residual Connections: Skip connections that add the input of the residual
block directly to its output.

Results

Results on ProMapEn: When combined with an MLP model, ResNet50
achieved notable results on the ProMapEn dataset. The highest F'1 score recorded

21

was 0.60. Below is the MLP classifier 1.4. The F1 score for the ProMapEn dataset
is 0.60. Detailed results for the ProMapEn dataset are as follows:

Model F1 | Accuracy | Precision | Recall
MLP 1000 relu adam | 0.6 | 0.73 0.57 0.64
MLP 1000 tanh 0.59 | 0.7 0.54 0.66
SVC 0.59 | 0.68 0.5 0.71
Naive Bayes 0.59 | 0.7 0.53 0.66
MLP 500 500 0.59 | 0.68 0.51 0.7
Logistic Regression 0.59 | 0.7 0.54 0.66
MLP 300 200 100 0.58 | 0.67 0.49 0.7
AdaBoost 0.58 | 0.64 0.46 0.78
MLP 1000 0.57 | 0.65 0.48 0.72
MLP 1000 relu 0.001 | 0.57 | 0.65 0.48 0.72
Extra Trees 0.55 | 0.54 0.41 0.87
Gradient Boosting 0.54 | 0.53 0.4 0.84
Bagging 0.53 | 0.73 0.62 0.47
XGBoost 0.53 | 0.58 0.41 0.74
Random Forest 0.53 | 0.54 0.4 0.81
KNN 0.52 | 0.6 0.43 0.65
Linear SVC 0.0 |0.68 0.0 0.0
SGD 0.0 |0.68 0.0 0.0

Table 2.3 Detailed results for ResNet50 model on ProMapEn dataset.

Results on ProMapCz: We performed the same experiments for the Czech
data. The 0.54 F'1 score for the ProMapCz dataset was obtained as the best score
by using the MLP classifier 1.4. Detailed results for the ProMapCz dataset are as
follows:

22

Model F1 | Accuracy | Precision | Recall
MLP 1000 tanh 0.54 | 0.64 0.47 0.64
Random Forest 0.54 | 0.52 0.39 0.87
AdaBoost 0.54 | 0.69 0.52 0.56
MLP 1000 0.53 | 0.66 0.49 0.57
MLP 500 500 0.53 | 0.64 0.46 0.63
MLP 1000 relu 0.001 | 0.53 | 0.66 0.49 0.57
SVC 0.52 | 0.65 0.47 0.59
Naive Bayes 0.52 | 0.61 0.44 0.64
MLP 300 200 100 0.52 | 0.65 0.47 0.59
Logistic Regression 0.52 | 0.62 0.44 0.64
MLP 1000 relu adam | 0.52 | 0.66 0.48 0.57
Extra Trees 0.51 | 0.52 0.38 0.78
Gradient Boosting 0.51] 0.45 0.36 0.87
Bagging 0.48 | 0.68 0.52 0.45
XGBoost 0.47 | 0.59 0.4 0.56
KNN 0.45 | 0.55 0.37 0.57
Linear SVC 0.0 |0.67 0.0 0.0
SGD 0.0 |0.67 0.0 0.0

Table 2.4 Detailed results for ResNet50 model on ProMapCz dataset.

2.2.4 Inception V3

Inception V3 [23] is a CNN architecture, part of the inception family, and very
efficient in image analysis and object detection. Characterizing this would be the
use of mixed convolutional layers and the introduction of factorized convolutions
that help reduce the number of parameters, making the network much more
efficient. Coupled with this are label smoothing and batch normalization, which
make it robust and highly performing on many image recognition tasks.

Architecture of Inception Model

The Inception architecture uses different convolutional filters within a single
layer, capturing various levels of detail. Each module’s output is concatenated
along the depth dimension, enabling the network to process multi-scale features
simultaneously.

Inception Module
The output of an Inception module can be formulated as:
Output = [Convyyg, Convyys, Convsy s, MaxPoolsys]
where Conv represents convolutional operations with specified filter sizes.

Key Components

« Convolutional Layers: With various filter sizes (1 x 1, 3 x 3, 5 x 5).

23

e Dimensionality Reduction: 1 x 1 convolutions to decrease the number
of input channels.

e Pooling Layers: Max-pooling

Results

We performed the same experiments as in the case of previous feature extraction
models.

Results on ProMapEn We obtained the highest result on the ProMapEn
dataset using the MLP model, using only image data. The highest F1 score was
0.62 using the following MLP 1.4. The F1 score for the ProMapEn dataset is 0.62.
Detailed results for the ProMapEn dataset are as follows:

Model F1 | Accuracy | Precision | Recall
MLP 1000 tanh 0.62 | 0.69 0.52 0.76
Naive Bayes 0.62 | 0.69 0.51 0.77
Logistic Regression 0.62 | 0.69 0.52 0.76
SVC 0.6 | 0.68 0.5 0.74
XGBoost 0.58 | 0.64 0.46 0.78
MLP 1000 relu adam | 0.57 | 0.6 0.44 0.81
MLP 1000 0.56 | 0.58 0.42 0.82
MLP 500 500 0.56 | 0.59 0.43 0.82
MLP 300 200 100 0.56 | 0.61 0.44 0.76
Random Forest 0.56 | 0.62 0.45 0.75
MLP 1000 relu 0.001 | 0.56 | 0.58 0.42 0.82
AdaBoost 0.56 | 0.58 0.42 0.82
Extra Trees 0.56 | 0.61 0.44 0.76
Gradient Boosting 0.53 0.5 0.38 0.86
KNN 0.51 | 0.59 0.41 0.65
Bagging 0.4 10.73 0.7 0.28
SGD 0.39 | 0.73 0.76 0.26
Linear SVC 0.38 | 0.74 0.81 0.25

Table 2.5 Detailed results for Inception V3 model on ProMapEn dataset (only image
data).

Results on ProMapCz We performed the same experiments as in the case
of previous models on Czech data. For the ProMapCz dataset, the highest F1
score achieved was 0.53 using a Random Forest classifier 1.4 with only image data.
Detailed results for the ProMapCz dataset are as follows:

24

Model F1 | Accuracy | Precision | Recall
Random Forest 0.53 | 0.58 0.42 0.72
Extra Trees 0.53 | 0.57 0.41 0.76
MLP 1000 relu adam | 0.52 | 0.61 0.44 0.65
MLP 500 500 0.52 | 0.64 0.46 0.58
XGBoost 0.51 | 0.62 0.44 0.59
MLP 300 200 100 0.51 | 0.64 0.46 0.56
MLP 1000 relu 0.001 | 0.51 | 0.65 0.47 0.57
Logistic Regression 0.51 0.6 0.42 0.65
MLP 1000 tanh 0.51 | 0.59 0.42 0.65
MLP 1000 0.51 | 0.65 0.47 0.57
Naive Bayes 0.51 | 0.59 0.42 0.65
AdaBoost 0.49 | 0.64 0.45 0.53
Gradient Boosting 0.49 | 0.6 0.42 0.58
SVC 0.49 | 0.64 0.45 0.54
KNN 0.47 | 0.6 0.41 0.55
Bagging 0.44 | 0.68 0.51 0.38
Linear SVC 0.35 | 0.69 0.57 0.26
SGD 0.0 |0.67 0.0 0.0

Table 2.6 Detailed results for Inception V3 model on ProMapCz dataset (only image
data).

2.2.5 EfficientNet

EfficientNet [24] is a method for scaling convolutional neural network architec-
tures using compound coefficients, scaling up depth, width, and resolution. In
contrast to the arbitrary scaling of depth, width, and resolutions usually done,
EfficientNet uses a set of fixed coefficients to scale network width, network depth,
and test resolution uniformly.

Architecture of EfficientNet

The EfficientNet family uses a baseline network called EfficientNet-B0, scaled
to create a range of models from EfficientNet-BO to EfficientNet-B7. The key
innovation is the compound scaling method, which uniformly scales all depth,
width, and resolution dimensions.

Key Components

« Mobile Inverted Bottleneck Convolution (MBConv): EfficientNet
uses MBConv layers with squeeze-and-excitation optimization.

e Swish Activation Function: A smooth, non-monotonic activation func-
tion.

o« Compound Scaling: Simultaneously scales network width, depth, and
resolution.

25

2.2.6 EfficientNet Variants
The EfficientNet family includes:
o EfficientNet-B0: Baseline model
« EfficientNet-B1 to B7: Scaled models with increasing complexity and
accuracy
Reults

Results on ProMapEn The highest F1 score, 0.63, was obtained using Effi-
cientNet in combination with MLP 1.4. Detailed results for the ProMapEn dataset
are as follows:

Model F1 | Accuracy | Precision | Recall
MLP 1000 relu adam | 0.63 | 0.74 0.58 0.69
SGD 0.62 | 0.78 0.71 0.55
Naive Bayes 0.61 | 0.69 0.51 0.74
MLP 500 500 0.6 |0.67 0.49 0.75
Logistic Regression 0.6 | 0.68 0.51 0.74
MLP 300 200 100 0.6 |0.68 0.51 0.73
MLP 1000 tanh 0.6 | 0.68 0.51 0.74
MLP 1000 0.59 | 0.67 0.49 0.74
SVC 0.59 | 0.68 0.51 0.7
Random Forest 0.59 | 0.6 0.44 0.86
MLP 1000 relu 0.001 | 0.59 | 0.67 0.49 0.74
AdaBoost 0.59 | 0.64 0.47 0.78
Bagging 0.58 | 0.78 0.77 0.47
Extra Trees 0.56 | 0.57 0.42 0.83
XGBoost 0.56 | 0.61 0.44 0.77
Linear SVC 0.55 | 0.78 0.81 0.42
KNN 0.54 | 0.53 0.39 0.83
Gradient Boosting 0.54 | 0.51 0.39 0.9

Table 2.7 Detailed results for EfficientNet model on ProMapEn dataset (only image
data)

Results on ProMapCz For the ProMapCz dataset, we performed the same
experiments. The highest F1 score achieved was 0.56 using a Random Forest
classifier 1.4 with only image data.

The F1 score for the ProMapCz dataset is 0.56. Detailed results for the
ProMapCz dataset are as follows:

26

Model F1 | Accuracy | Precision | Recall
Random Forest 0.56 | 0.58 0.43 0.82
SGD 0.55 | 0.66 0.48 0.63
MLP 1000 relu adam | 0.55 | 0.67 0.49 0.61
Logistic Regression 0.55 | 0.63 0.46 0.67
MLP 500 500 0.54 | 0.65 0.48 0.63
MLP 1000 relu 0.001 | 0.54 | 0.65 0.47 0.63
MLP 300 200 100 0.54 | 0.65 0.47 0.63
MLP 1000 tanh 0.54 | 0.62 0.45 0.68
MLP 1000 0.54 | 0.65 0.47 0.63
Naive Bayes 0.54 | 0.61 0.44 0.68
SVC 0.53 | 0.64 0.46 0.63
AdaBoost 0.53 | 0.63 0.45 0.64
Extra Trees 0.52 | 0.63 0.45 0.62
XGBoost 0.51 | 0.61 0.43 0.61
Gradient Boosting 0.5 |0.61 0.43 0.59
KNN 0.49 | 0.57 0.4 0.64
Bagging 0.48 | 0.67 0.5 0.46
Linear SVC 0.42 | 0.69 0.53 0.35

Table 2.8 Detailed results for EfficientNet model on ProMapCz dataset (only image
data).

2.2.7 MaxOutputEnsemble Custom Model

The MaxOutputEnsemble custom model combines VGG16, ResNetb0, In-
ception V3, and EfficientNet results. By taking the maximum value from the
output of these models, the MaxOutputEnsemble ensures that the most significant
features are captured for similarity computation.

Results

Results on ProMapEn The highest F1 score is 0.62 for ProMapEn (using
only the images) using the SVC 1.4. Detailed results for the PromapEn dataset
are as follows:

27

Model F1 | Accuracy | Precision | Recall
SVC 0.62 | 0.74 0.59 0.65
Logistic Regression 0.61 | 0.7 0.53 0.72
Naive Bayes 0.6 | 0.68 0.5 0.76
MLP 1000 relu adam | 0.6 | 0.76 0.64 0.57
MLP 1000 tanh 0.59 | 0.67 0.49 0.74
Bagging 0.59 | 0.77 0.7 0.5
MLP 500 500 0.59 | 0.68 0.5 0.71
MLP 300 200 100 0.59 | 0.71 0.55 0.64
AdaBoost 0.59 | 0.68 0.5 0.73
Extra Trees 0.59 | 0.69 0.51 0.7
Random Forest 0.58 | 0.69 0.52 0.66
Linear SVC 0.57 | 0.77 0.72 0.47
Gradient Boosting 0.57 | 0.7 0.53 0.61
MLP 1000 0.55 | 0.61 0.44 0.71
MLP 1000 relu 0.001 | 0.55 | 0.61 0.44 0.71
XGBoost 0.52 | 0.62 0.44 0.63
KNN 0.52 | 0.62 0.44 0.64
SGD 0.09 | 0.68 0.5 0.05

Table 2.9 Detailed results for MaxOutputEnsemble custom model on ProMapEn
dataset (only image data).

Results on ProMapCz For the ProMapCz dataset, the highest F1 score
achieved was 0.56 using the XGBoost classifier 1.4 with only image data.

The F1 score for the ProMapCz dataset is 0.56. Detailed results for the
ProMapCz dataset are as follows:

28

Model F1 | Accuracy | Precision | Recall
XGBoost 0.56 | 0.61 0.44 0.78
MLP 300 200 100 0.56 | 0.66 0.49 0.66
MLP 1000 relu 0.001 | 0.56 | 0.66 0.49 0.66
MLP 1000 0.56 | 0.66 0.49 0.66
Extra Trees 0.54 | 0.64 0.47 0.63
MLP 1000 relu adam | 0.54 | 0.65 0.47 0.63
Logistic Regression 0.54 | 0.64 0.46 0.65
MLP 1000 tanh 0.54 | 0.63 0.45 0.66
MLP 500 500 0.54 | 0.65 0.48 0.62
Naive Bayes 0.54 | 0.65 0.47 0.63
Random Forest 0.54 | 0.66 0.48 0.61
SVC 0.53 | 0.66 0.48 0.59
AdaBoost 0.53 | 0.63 0.46 0.64
Gradient Boosting 0.53 | 0.55 0.4 0.79
KNN 0.48 | 0.53 0.38 0.67
Bagging 0.47 | 0.67 0.49 0.45
Linear SVC 0.45 | 0.69 0.53 0.39
SGD 0.29 | 0.7 0.67 0.18

Table 2.10 Detailed results for MaxOutputEnsemble custom model on ProMapCz
dataset (only image data).

2.2.8 Conclusion about using only image data

We reached the best results by EfficientNet and MaxOutputEnsemble custom
models. Both of them have comparatively similar performance. However, the
interesting thing about MaxOutputEnsemble is that it has information about four
different models, which makes it better suitable for combined models of text and
images (we will see in the next section).

29

Model Preprocessed Model Name | F1 | Acc | Prec | Rec
efficientnet MLP 1000 relu adam 0.63 | 0.74 | 0.58 | 0.69
inception MLP 1000 tanh 0.62 | 0.69 | 0.52 | 0.76
MaxOutputEnsemble | SVC 0.62 | 0.74 | 0.59 | 0.65
inception Naive Bayes 0.62 | 0.69 | 0.51 | 0.77
inception Logistic Regression 0.62 | 0.69 | 0.52 | 0.76
efficientnet SGD 0.62 | 0.78 | 0.71 | 0.55
efficientnet Naive Bayes 0.61]0.69 | 0.51 | 0.74
MaxOutputEnsemble | Logistic Regression 0.61 0.7 |0.53 |0.72
efficientnet MLP 500 500 0.6 |0.67|0.49 | 0.75
resnet MLP 1000 relu adam 0.6 |0.73|0.57 | 0.64
efficientnet MLP 300 200 100 0.6 |0.68 | 0.51 | 0.73
inception SVC 0.6 |0.68 0.5 0.74
efficientnet Logistic Regression 0.6 |0.68|0.51 |0.74
efficientnet MLP 1000 tanh 0.6 |0.68|0.51 |0.74
MaxOutputEnsemble | Naive Bayes 0.6 |0.68 |05 |0.76
MaxOutputEnsemble | MLP 1000 relu adam 0.6 |0.76 | 0.64 | 0.57
MaxOutputEnsemble | MLP 500 500 0.59 | 0.68 | 0.5 0.71
resnet Naive Bayes 0.59 |1 0.7 | 0.53 | 0.66
resnet MLP 500 500 0.59 | 0.68 | 0.51 | 0.7

MaxOutputEnsemble | Bagging 0.59 1077 | 0.7 |05

Table 2.11 Detailed results for MaxOutputEnsemble custom model on ProMapEn
dataset (only image data)

30

Model Preprocessed Model Name | F1 | Acc | Prec | Rec
MaxOutputEnsemble | MLP 1000 relu 0.001 0.56 | 0.66 | 0.49 | 0.66
efficientnet Random Forest 0.56 | 0.58 | 0.43 | 0.82
MaxOutputEnsemble | MLP 300 200 100 0.56 | 0.66 | 0.49 | 0.66
MaxOutputEnsemble | XGBoost 0.56 | 0.61 | 0.44 | 0.78
MaxOutputEnsemble | MLP 1000 0.56 | 0.66 | 0.49 | 0.66
efficientnet SGD 0.55] 0.66 | 0.48 | 0.63
efficientnet Logistic Regression 0.55] 0.63 | 0.46 | 0.67
efficientnet MLP 1000 relu adam 0.55 | 0.67 | 0.49 | 0.61
vgg Naive Bayes 0.54 | 0.64 | 0.46 | 0.66
vgg MLP 500 500 0.54 1 0.67 | 0.5 | 0.59
vgg MLP 1000 tanh 0.54 | 0.64 | 0.46 | 0.66
efficientnet MLP 1000 relu 0.001 0.54 | 0.65 | 0.47 | 0.63
vegg MLP 300 200 100 0.54 1 0.68 | 0.5 | 0.59
efficientnet MLP 1000 tanh 0.54 | 0.62 | 0.45 | 0.68
efficientnet MLP 500 500 0.54 | 0.65 | 0.48 | 0.63
MaxOutputEnsemble | Naive Bayes 0.54 | 0.65 | 0.47 | 0.63
efficientnet MLP 1000 0.54 | 0.65 | 0.47 | 0.63
MaxOutputEnsemble | MLP 1000 relu adam 0.54 1 0.65 | 0.47 | 0.63
efficientnet Naive Bayes 0.54 | 0.61 | 0.44 | 0.68
MaxOutputEnsemble | MLP 500 500 0.54 | 0.65 | 0.48 | 0.62
Table 2.12 Detailed results for MaxOutputEnsemble custom model on ProMapCz

dataset (only image data)

31

3 Comparison of Text
Representation Models

3.1 Introduction

Text representation plays a vital role in the performance of the Product
Mapping task. We aim to compare several text representation models ranging
from traditional methods like TF-IDF to advanced transformer-based architectures
such as BERT, RoBERTa, and Sentence Transformers. We evaluated the models
on several datasets, including ProMapEn, ProMapCz, Amazon-Walmart, and
Amazon-Google.

We used the following approach to handle the data and evaluate the mod-
els. For traditional models, we focused on features derived from TF-IDF and
Word2Vec, whereas for advanced models, we leveraged pretrained transformer-
based architectures fine-tuned for specific NLP tasks. The uniqueness of datasets
evaluates models more comprehensively.

3.1.1 Data Processing Workflow

To visualize the data processing workflow, we illustrate the two approaches
used. The first one is text Processing with chosen NLP extractor methods (BERT,
RoBERTa, TF-IDF, etc.). The second one calculates cosine similarities for each
feature and trains the models to detect corresponding and different products.

The datasets consist of features such as namel, name2, short descriptionl,
short__description2, long descriptionl, long description2, and for the ProMapEn
and ProMapCz datasets, additional features like specificationl and specifica-
tion2. Each dataset is processed using the chosen NLP extractor method (BERT,
RoBERTa, TF-IDF) to extract embeddings. Cosine similarities are then calculated
for each feature, resulting in a dataset with either one feature (if only name is
used) or four features (cosine values for name, short description, long description,
and specification). This processed data subsequently trains classifiers such as MLP,
Logistic Regression, Naive Bayes, and SVC, enabling effective Product Mapping.

3.2 Traditional Models

3.2.1 TF-IDF
Overview of TF-IDF

One of the challenges in Product Matching is that there are words that are
either very common or words that are rare. TF-IDf [13] technique deals with this
problem. We experimented with TF-IDF on ProMapEn, ProMapCz, Amazon-
Walmart, and Amazon-Google datasets. The experiments are done by using only
name features and all textual features. TF-IDF stands for Term Frequency-Inverse
Document Frequency. This measure of the importance of words in a document
with respect to a corpus uses two metrics: term frequency, which quantifies

32

the number of times that a term appears in a document, and inverse document
frequency, which measures the importance of the term. This will be helpful when
filtering less critical words from those most essential in the document.

Results

We used ProMapEn, ProMapCz, Amazon-Google, and Amazon-Walmart for
our experiments to find the best model for the Product Mapping task using text
features.

ProMapEn The highest F1 score is 0.57 using all text features and is achieved
by MLP 1.4,

Model F1 | Acc | Prec | Rec | Name
SVC 0.59 | 0.64 | 0.47 | 0.78 | True
Logistic Regression 0.57 | 0.62 | 0.45 | 0.78 | False
MLP 1000 relu adam | 0.57 | 0.57 | 0.42 | 0.86 | True
Naive Bayes 0.57 1 0.6 | 0.44 | 0.82 | True
MLP 1000 tanh 0.57 | 0.59 | 0.43 | 0.83 | False
Logistic Regression 0.5710.6 | 044 | 0.82 | True
MLP 1000 relu 0.001 | 0.56 | 0.57 | 0.42 | 0.85 | True

MLP 1000 tanh 0.56 | 0.57 | 0.42 | 0.85 | True
MLP 1000 0.56 | 0.57 | 0.42 | 0.85 | True
MLP 1000 relu adam | 0.56 | 0.58 | 0.42 | 0.84 | False
SVC 0.55 | 0.57 | 0.42 | 0.8 | False
Naive Bayes 0.55 | 0.58 | 0.42 | 0.78 | False
MLP 300 200 100 0.55 [0.54 | 0.4 0.87 | True
AdaBoost 0.55]0.54 | 0.4 | 0.88 | False
Bagging 0.54 1 0.7 | 0.54 | 0.54 | False
Extra Trees 0541054 |04 0.82 | False
Random Forest 0541053 |04 0.86 | False
Random Forest 0.53 | 0.48 | 0.37 | 0.88 | True
MLP 500 500 0.53 [0.49 | 0.38 | 0.89 | True
XGBoost 0.53 | 0.51 | 0.38 | 0.85 | False

Table 3.1 Results for ProMapEn using TF-IDF (only text data). The Name column
shows if only "name" features were used for comparison or all text features.

We found out that in most cases, the name feature has similar results as using
all features and sometimes even outperforms. The highest F1 score achieved is
0.59 using the name feature, which is greater than the F1 score achieved by using
all features. The model used is Linear Support Vector Classification 1.4.

ProMapCz The highest F1 score is 0.55 using all text features and is achieved
by MLP classifier 1.4

33

Model F1 Acc | Prec | Rec | Name

MLP 1000 0.55 | 0.57 | 0.42 | 0.82 | False
Random Forest 0.55 | 0.6 | 044 | 0.73 | False
MLP 1000 relu 0.001 | 0.55 | 0.57 | 0.42 | 0.82 | False
MLP 1000 tanh 0.54 | 0.55 | 0.4 0.8 | True

Logistic Regression 0.54 1 0.55 |04 | 0.8 | True
MLP 1000 relu adam | 0.54 | 0.56 | 0.41 | 0.78 | True
XGBoost 0.53 | 0.5 | 0.38 | 0.85 | False
MLP 300 200 100 0.53 | 0.47 | 0.37 | 0.91 | False
MLP 1000 relu 0.001 | 0.53 | 0.57 | 0.41 | 0.73 | True

MLP 1000 0.53 | 0.57 | 0.41 | 0.73 | True
Naive Bayes 0.53 1053|104 |0.83]| True
AdaBoost 0.53 [0.43 | 0.36 | 0.96 | False
Gradient Boosting 0.53 | 0.51 | 0.39 | 0.83 | False
Extra Trees 0.53 | 0.43 | 0.36 | 0.97 | False
MLP 300 200 100 0.52 | 0.51 | 0.38 | 0.82 | True
MLP 500 500 0.52 [0.5 |0.38 | 0.83 | True
AdaBoost 0.52 | 0.57 | 0.41 | 0.72 | True
MLP 1000 relu adam | 0.52 | 0.44 | 0.36 | 0.94 | False
MLP 500 500 0.52 1 0.46 | 0.37 | 0.9 | False
KNN 0.52 | 0.59 | 0.42 | 0.69 | False

Table 3.2 Results for ProMapCz using TF-IDF (only text data).

The highest F1 result using only the name feature is 0.54 using Logistic
Regression. TF-IDF’s advantage in Product Matching is that it easily adapts to
new domains. However, one of the challenges of Product Mapping is that it has
many small sub-domains.

Amazon-Walmart The highest F1 score achieved is 0.82 using all text features
and is achieved by MLP classifier 1.4. Interestingly, MLP classifiers with "tanh"
activation are very effective in our task.

34

Model F1 Acc | Prec | Rec | Name

Bagging 0.82 1086 | 0.8 | 0.83 | False
SVC 0.82 1 0.86 | 0.75 | 0.9 | False
Extra Trees 0.82 1 0.86 | 0.77 | 0.87 | False
MLP 1000 tanh 0.82 1 0.85 | 0.74 | 0.91 | False
MLP 1000 relu adam | 0.82 | 0.86 | 0.81 | 0.82 | False
AdaBoost 0.81 | 0.85 | 0.75 | 0.89 | False

Logistic Regression 0.81 | 0.85 | 0.74 | 0.89 | False
MLP 1000 relu 0.001 | 0.8 | 0.84 | 0.74 | 0.86 | True

MLP 500 500 0.8 [0.84|0.75 | 0.86 | True
MLP 1000 0.8 [0.84|0.74 | 0.86 | True
SGD 0.8 | 0.84|0.75 | 0.85 | False
AdaBoost 0.8 1084 |0.74 | 0.86 | True
Naive Bayes 0.8]0.84|0.74 | 0.88 | False
MLP 1000 relu 0.001 | 0.79 | 0.84 | 0.78 | 0.8 | False
Bagging 0.79 1 0.84 | 0.75 | 0.84 | True
MLP 1000 relu adam | 0.79 | 0.84 | 0.76 | 0.82 | True
MLP 1000 tanh 0.79 1 0.83 | 0.73 | 0.86 | True
MLP 300 200 100 0.79 1 0.83 | 0.73 | 0.86 | True
Naive Bayes 0.79 1 0.83 | 0.73 | 0.86 | True
SVC 0.79 1 0.83 | 0.72 | 0.86 | True

Table 3.3 Results for Amazon-Walmart using TF-IDF (only text data).

We have an F1 result of 0.8 using MLP classifiers for only using the name
feature.

Amazon-Google The highest F1 score achieved is 0.8 using all text features
and is achieved by MLP classifier 1.4

35

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu 0.001 { 0.8 | 0.85 | 0.9 | 0.72 | False
MLP 300 200 100 0.8 |0.84|0.79 | 0.81 | False
Extra Trees 0.8 [0.84|0.81 | 0.8 | False
MLP 1000 relu adam | 0.8 | 0.84 | 0.81 | 0.78 | False
MLP 1000 0.8 [0.85(0.9 |0.72 | False
MLP 500 500 0.8 |0.83]0.76 | 0.84 | False
Bagging 0.79 1 0.85 | 0.89 | 0.71 | False
AdaBoost 0.79 |1 0.84 | 0.87 | 0.72 | False
XGBoost 0.79 | 0.83 | 0.78 | 0.8 | False
Random Forest 0.79 |1 0.83 | 0.79 | 0.79 | False
KNN 0.78 1 0.82 | 0.76 | 0.81 | False
SVC 0.78 1 0.82 | 0.76 | 0.79 | False
Extra Trees 0.77 1 0.78 | 0.67 | 0.91 | True
Bagging 0.77 1 0.78 | 0.67 | 0.9 | True
Naive Bayes 0.7710.79 | 0.68 | 0.9 | True
AdaBoost 0.77 1 0.78 | 0.67 | 0.9 | True
MLP 1000 relu 0.001 | 0.77 | 0.78 | 0.67 | 0.9 | True
MLP 1000 relu adam | 0.77 | 0.78 | 0.67 | 0.9 | True
MLP 1000 tanh 0.77 1 0.78 | 0.67 | 0.9 | True
MLP 300 200 100 0.77 | 0.78 | 0.67 | 0.91 | True

Table 3.4 Results for Amazon-Google using TF-IDF (only text data).

Using only the name feature is outperformed by using all features for this
dataset.

3.2.2 Word2Vec
Overview of Word2Vec

Word2Vec [25] Word2Vec is the representation of words as vectors in high-
dimensional space—a technique in natural language processing. The vectors
capture semantic meaning based on the context in which they are used. Some
shallow neural network architecture will train the word2vec model on huge text
corpora to learn word associations from the surrounding text.

Formalizing these two critical aspects of word2vec, there are basically two ways
to implement it: CBOW: The model is going to predict the current word from its
context. It creates an average of the vectors of the context words and uses this
as a prediction for the current word. Skip-gram: The model predicts the context
words based on the current word. In this case, each pair of contexts is treated
as a new observation. Both models rely on a method called negative sampling,
in which the model is trained to distinguish a target word against random noise
samples. Thus, this improves the quality and speed of training.

List of Word2Vec Models

We used the following models in our experiments for getting the embeddings
of text data. After getting the embeddings, we used cosine similarity to find the

36

similarity distance between corresponding features (e.g., "namel" vs. "name2',
"short_ descriptionl" vs. "short_description2"). Some of them proved to be better
than others ones.

o fasttext-wiki-news-subwords-300
« conceptnet-numberbatch-17-06-300
e word2vec-ruscorpora-300

« word2vec-google-news-300

o glove-wiki-gigaword-50

» glove-wiki-gigaword-100

» glove-wiki-gigaword-200

o glove-wiki-gigaword-300

o glove-twitter-25

o glove-twitter-50

o glove-twitter-100

o glove-twitter-200

. testing_ word2vec-matrix-synopsis

Results and Explanation

We tried the models on ProMapEn, ProMapCz and Amazon-Google datasets.
We do not include the results of Amazon-Walmart as it was not competitive with
the results of using other text preprocessing models and didn’t give us insights
about the datasets and what can be improved.

Results on ProMapEn

We trained models using only the name feature and all features. Particularly,
"glove-wiki-gigaword-300" and "word2vec-google-news-30" showed higher results.
We can see that using only the name attribute with 'word2vec-google-news-3007,
we get similar results when using all features. Interestingly, using only names
gives higher recall, meaning that more positive results are predicted correctly. The
best result that has the highest accuracy and F1 score is done by using Logistic
Regression 1.4

37

Model Name | F1 | Prec | Rec | Acc | Classifier
wiki-gigaword-300 | False | 0.61 | 0.58 | 0.63 | 0.73 | Logistic Regression
wiki-gigaword-300 | False | 0.61 | 0.56 | 0.66 | 0.72 | MLP 1000 tanh
google-news-300 True | 0.61 | 0.49 | 0.8 | 0.67 | Naive Bayes
google-news-300 True | 0.61 | 0.49 | 0.8 | 0.67 | MLP 1000 tanh
google-news-300 True | 0.61]0.49 | 0.8 | 0.67 | MLP 1000 relu adam
google-news-300 False | 0.61 | 0.49 | 0.79 | 0.67 | MLP 1000 relu adam
wiki-gigaword-300 | True | 0.6 | 0.58 | 0.62 | 0.73 | Logistic Regression
wiki-gigaword-300 | True | 0.6 | 0.58 | 0.62 | 0.73 | Naive Bayes
wiki-gigaword-300 | True | 0.6 | 0.58 | 0.62 | 0.73 | MLP 1000 relu adam
google-news-300 True | 0.6 |05 |0.77 | 0.67 | Logistic Regression
google-news-300 False | 0.6 | 0.47 | 0.81 | 0.64 | MLP 1000 tanh
wiki-gigaword-300 | True | 0.59 | 0.58 | 0.6 | 0.73 | MLP 1000 tanh
wiki-gigaword-300 | True | 0.59 | 0.53 | 0.66 | 0.7 | AdaBoost
wiki-gigaword-200 | False | 0.59 | 0.57 | 0.61 | 0.73 | MLP 1000 relu adam
google-news-300 True | 0.59 | 0.51 | 0.69 | 0.68 | MLP 500 500
google-news-300 True | 0.59 | 0.51 | 0.69 | 0.68 | AdaBoost
wiki-gigaword-200 | True | 0.59 | 0.53 | 0.65 | 0.7 | Logistic Regression
wiki-gigaword-200 | True | 0.59 | 0.54 | 0.65 | 0.7 | MLP 1000
wiki-gigaword-200 | True | 0.59 | 0.54 | 0.65 | 0.71 | MLP 500 500
wiki-gigaword-200 | True | 0.59 | 0.53 | 0.66 | 0.7 | MLP 300 200 100
wiki-gigaword-200 | True | 0.59 | 0.54 | 0.65 | 0.7 | MLP 1000 relu 0.001
wiki-gigaword-200 | True | 0.59 | 0.52 | 0.67 | 0.69 | AdaBoost
google-news-300 False | 0.59 | 0.47 | 0.81 | 0.64 | Logistic Regression
google-news-300 False | 0.59 | 0.48 | 0.76 | 0.65 | Naive Bayes
wiki-gigaword-200 | False | 0.58 | 0.5 | 0.68 | 0.68 | MLP 1000 tanh

Table 3.5 Top 25 results for ProMapEn using Word2Vec models (only text data).

Reuslts on ProMapCz

Like ProMapEn, we trained the models by using only the name and all text
features. Compared to ProMapEn, the results are lower. Using only the name
attribute proves to be more effective. We can assume that glove-wiki-gigaword-***
models better understand the Czech language than other Word2Vec models. The
highest result is achieved by using MLP architecture 1.4

38

Model Name | F1 | Prec | Rec | Acc | Classifier
wiki-gigaword-200 | True | 0.53 | 0.38 | 0.89 | 0.49 | MLP 300 200 100
wiki-gigaword-200 | True | 0.52 | 0.35 | 0.99 | 0.39 | Random Forest
wiki-gigaword-200 | True | 0.52 | 0.37 | 0.88 | 0.46 | MLP 1000
wiki-gigaword-200 | True | 0.52 | 0.36 | 0.95 | 0.42 | MLP 500 500
wiki-gigaword-200 | True | 0.52 | 0.37 | 0.88 | 0.46 | MLP 1000 relu 0.001
wiki-gigaword-200 | True | 0.52 | 0.35 | 0.98 | 0.4 | Extra Trees
google-news-300 False | 0.52 | 0.36 | 0.93 | 0.43 | KNN

twitter-100 False | 0.52 | 0.35 [0.98 | 0.4 | SVC
wiki-gigaword-100 | False | 0.52 | 0.39 | 0.8 | 0.53 | MLP 300 200 100
wiki-gigaword-300 | True | 0.52 | 0.35 | 0.99 | 0.39 | MLP 1000
wiki-gigaword-300 | True | 0.52 | 0.35 | 0.97 | 0.41 | MLP 500 500
wiki-gigaword-300 | True | 0.52 | 0.35 | 0.95 | 0.42 | MLP 300 200 100
wiki-gigaword-300 | True | 0.52 | 0.35 | 0.99 | 0.39 | MLP 1000 relu 0.001
wiki-gigaword-50 | True | 0.52 | 0.37 | 0.84 | 0.48 | SVC

twitter-200 False | 0.52 | 0.37 | 0.9 | 0.46 | MLP 1000
twitter-200 False | 0.52 | 0.37 [0.9 | 0.46 | MLP 1000 relu 0.001
twitter-50 True | 0.51 | 0.34 | 0.96 | 0.38 | MLP 500 500
twitter-50 False | 0.51 | 0.34 | 0.99 | 0.36 | Random Forest
twitter-50 False | 0.51 | 0.36 | 0.89 | 0.44 | KNN
wiki-gigaword-200 | True | 0.51 | 0.34 | 0.97 | 0.38 | Logistic Regression
wiki-gigaword-200 | True | 0.51 | 0.35 | 0.92 | 0.42 | SVC
wiki-gigaword-200 | True | 0.51 | 0.34 | 0.97 | 0.38 | Naive Bayes
wiki-gigaword-200 | True | 0.51 | 0.34 | 0.97 | 0.38 | MLP 1000 tanh
wiki-gigaword-200 | True | 0.51 | 0.35 | 0.98 | 0.39 | Gradient Boosting
twitter-100 True | 0.51] 0.34 | 0.99 | 0.36 | Logistic Regression

Table 3.6 Top 25 results for ProMapCz using Word2Vec models (only text data).

Results on Amazon-Google

word2vec-google-news-300 proves to be the best model compared to other
models, both using the name feature and using all of the features. Similar results
can mean that the name feature alone has important information about the
product, and a long description has lots of repetitive information in most of the

products. The best F1 score is 0.92 is achieved by MLP architecture 1.4

39

Model Name | F1 | Prec | Rec | Acc | Classifier
google-news-300 | False | 0.92 | 0.93 | 0.92 | 0.94 | MLP 500 500
google-news-300 | False | 0.92 | 0.93 | 0.91 | 0.94 | Extra Trees
google-news-300 | True | 0.91 | 0.92 | 0.89 | 0.93 | Logistic Regression
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | SVC
google-news-300 | True | 0.91 | 0.92 | 0.89 | 0.93 | Naive Bayes
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | MLP 1000
google-news-300 | True | 0.91 | 0.92 | 0.89 | 0.92 | MLP 500 500
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | MLP 1000 tanh
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | MLP 1000 relu 0.001
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | AdaBoost
google-news-300 | True | 0.91 | 0.94 | 0.88 | 0.93 | Extra Trees
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | Bagging
google-news-300 | True | 0.91 | 0.93 | 0.89 | 0.93 | Linear SVC
google-news-300 | False | 0.91 | 0.94 | 0.88 | 0.93 | Logistic Regression
google-news-300 | False | 0.91 | 0.94 | 0.89 | 0.93 | Naive Bayes
google-news-300 | False | 0.91 | 0.94 | 0.88 | 0.93 | MLP 1000
google-news-300 | False | 0.91 | 0.94 | 0.89 | 0.93 | MLP 300 200 100
google-news-300 | False | 0.91 | 0.94 | 0.88 | 0.93 | MLP 1000 tanh
google-news-300 | False | 0.91 | 0.94 | 0.89 | 0.93 | MLP 1000 relu adam
google-news-300 | False | 0.91 | 0.94 | 0.88 | 0.93 | MLP 1000 relu 0.001
google-news-300 | False | 0.91 | 0.94 | 0.89 | 0.93 | AdaBoost
google-news-300 | False | 0.91 | 0.93 | 0.89 | 0.93 | Bagging
google-news-300 | False | 0.91 | 0.94 | 0.88 | 0.93 | Linear SVC
google-news-300 | False | 0.91 | 0.93 | 0.88 | 0.93 | SGD
google-news-300 | True | 0.9 | 0.9 | 0.89 | 0.92 | MLP 300 200 100

BERT-base-uncased is one of the versions of the BERT with the following
characteristics

o Layers: 12

3.3.1 BERT Models

BERT [7] architecture brings advancements in NLP applications. One of the
advantages of transformer architecture is that it allows the model to track the
position of the words in a sequence, which we find beneficial in the Product
Mapping task. [26] We will see how the models based on BERT architecture have
advantage towards traditional NLP methods.

BERT-base-uncased

e Hidden Units: 768

e Attention Heads: 12

40

3.3 Transformer-Based Models

Table 3.7 Top 25 results for Amazon-Google using Word2Vec models (only text data).

e Parameters: 110 million

e uncased: no difference between lowercase and uppercase

When we compare cased and uncased models, we can see that the case is
important in the Product Matching task.
Results and Explanation

We tried the models on ProMapEn, ProMapCz, Amazon-Google, and Amazon-
Walmart.
Results on ProMapEn

The highest F1 result that we reached using all text features is 0.55 with MLP
model architecture 1.4 The results are worse than those of the previous techniques,
which proves the case’s importance in our task.

Model F1 Acc | Prec | Rec | Name
MLP 1000 tanh 0.55 | 0.68 | 0.5 0.6 | False
Logistic Regression 0.53 | 0.61 | 0.44 | 0.67 | False
MLP 1000 relu adam | 0.53 | 0.5 | 0.38 | 0.87 | False
AdaBoost 0.52 | 0.69 | 0.53 | 0.51 | False
Naive Bayes 0.52 | 0.57 | 0.41 | 0.7 | False
MLP 300 200 100 0.52 | 0.49 | 0.37 | 0.84 | False
MLP 500 500 0.51 | 0.53 | 0.39 | 0.74 | False
Random Forest 0.5 | 0591|042 | 0.63 | False
SVC 0.5 [0.36 | 0.33 | 0.99 | False
Extra Trees 0.49 |1 0.39 | 0.34 | 0.91 | False
Gradient Boosting 0.49 1 0.32 | 0.32 | 1.0 | False
XGBoost 0491 0.32]10.32 | 1.0 | False
MLP 1000 relu 0.001 | 0.49 | 0.43 | 0.35 | 0.85 | False
MLP 1000 0.49 | 0.43 | 0.35 | 0.85 | False
KNN 0.47 |1 0.41 | 0.33 | 0.81 | False
Bagging 0.25] 0.63 | 0.36 | 0.19 | False
Linear SVC 0.0 [0.68|0.0 0.0 | False
SGD 0.0 |0.681]0.0 0.0 | False

Table 3.8 Results for ProMapEn dataset using bert-base-uncased (only text data).

ProMapCz dataset

The highest F1 result we reached using all text features is 0.52 with MLP
model 1.4

Again, the results prove to be less than those of previous techniques. The
brand names are treated as regular words (e.g., Apple = apple).

41

Model F1 Acc | Prec | Rec | Name
MLP 1000 0.53 1 0.49 | 0.38 | 0.88 | True
MLP 500 500 0.53 0.5 |0.38 | 0.88 | True
MLP 1000 relu adam | 0.53 | 0.49 | 0.38 | 0.88 | True
MLP 1000 relu 0.001 | 0.53 | 0.49 | 0.38 | 0.88 | True
Logistic Regression 0.53 | 0.49 | 0.38 | 0.88 | True
MLP 300 200 100 0.53 1 0.47 | 0.37 | 0.89 | True

Naive Bayes 0.5310.49 | 0.38 | 0.88 | True
MLP 300 200 100 0.52 [0.42 | 0.36 | 0.94 | False
AdaBoost 0.52 [0.44 | 0.36 | 0.92 | True
MLP 1000 tanh 0.52 [0.49 | 0.38 | 0.86 | True
Naive Bayes 0.51] 0.39 | 0.35 | 0.95 | False
MLP 1000 0.51 0.4 |0.35 | 0.97 | False
MLP 500 500 0.51 0.4 |0.35 | 0.97 | False
MLP 1000 tanh 0.51 | 0.42 | 0.35 | 0.92 | False
Random Forest 0.51 | 0.43 | 0.36 | 0.91 | True
MLP 1000 relu 0.001 | 0.51 | 0.4 | 0.35 | 0.97 | False
Extra Trees 0.51 | 0.57 | 0.41 | 0.69 | True

Logistic Regression 0.51 | 0.37 | 0.34 | 0.99 | False
MLP 1000 relu adam | 0.51 | 0.43 | 0.36 | 0.92 | False
SVC 0.5 10341033 | 1.0 | True

Table 3.9 Results for ProMapCz dataset using bert-base-uncased (only text data).

The results of using only the name feature are higher. The important obser-
vation is that Naive Bayes outperformed MLP models by being faster and using
fewer resources. The highest F'1 score for the name feature is 0.53.

Amazon-Walmart dataset

We got the same results for both the name feature and all text features. The
highest F1 result is achieved by the AdaBoost 1.4.

e n__estimators: 1000
« random__ state: 0

e learning rate: 0.01

42

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu 0.001 | 0.76 | 0.82 | 0.74 | 0.79 | False
SVC 0.76 | 0.82 | 0.74 | 0.78 | False
AdaBoost 0.76 | 0.82 | 0.74 | 0.77 | True
MLP 1000 0.76 | 0.82 | 0.74 | 0.79 | False
AdaBoost 0.76 | 0.83 | 0.75 | 0.78 | False
Linear SVC 0.75 1 0.82 | 0.76 | 0.74 | False
Naive Bayes 0.75 1 0.81 | 0.73 | 0.77 | True
MLP 1000 0.75 1 0.82 | 0.74 | 0.77 | True
MLP 500 500 0.75 1 0.82 | 0.74 | 0.77 | True
Extra Trees 0.7510.81] 0.71 | 0.8 | False
MLP 300 200 100 0.75 1 0.82 | 0.74 | 0.77 | True
MLP 1000 tanh 0.75 1 0.81 | 0.73 | 0.77 | True
SVC 0.75 1 0.82 | 0.74 | 0.77 | True
MLP 1000 tanh 0.75 1 0.81 | 0.72 | 0.79 | False
MLP 300 200 100 0.75 1 0.81 | 0.73 | 0.77 | False
MLP 500 500 0.75 1 0.81 | 0.71 | 0.8 | False
MLP 1000 relu 0.001 | 0.75 | 0.82 | 0.74 | 0.77 | True
Random Forest 0.75 1 0.82 | 0.75 | 0.75 | False
Logistic Regression 0.75 1 0.81 | 0.73 | 0.77 | True
Linear SVC 0.74 | 0.82 | 0.75 | 0.73 | True

Table 3.10 Results for Amazon-Walmart dataset using bert-base-uncased (only text
data).

Amazon-Google dataset

The highest F1 result achieved is 0.84 with MLP 1.4. The models trained by
only the name feature have worse results, and it means that other attributes have
valuable information that the name doesn’t provide.

43

Model F1 Acc | Prec | Rec | Name
MLP 1000 0.84 | 0.87 | 0.85 | 0.82 | False
MLP 300 200 100 0.84 | 0.87 | 0.84 | 0.84 | False
MLP 1000 relu 0.001 | 0.84 | 0.87 | 0.85 | 0.82 | False
Bagging 0.84 | 0.87 | 0.85 | 0.83 | False
AdaBoost 0.83 | 0.87 | 0.86 | 0.8 | False
Extra Trees 0.83] 0.86 | 0.83 | 0.83 | False
SVC 0.83 | 0.87 | 0.83 | 0.84 | False
Naive Bayes 0.83] 0.86 | 0.83 | 0.82 | False
MLP 500 500 0.83 | 0.87 | 0.84 | 0.82 | False
MLP 1000 relu adam | 0.83 | 0.86 | 0.83 | 0.84 | False
Random Forest 0.82 1 0.86 | 0.83 | 0.82 | False
Logistic Regression 0.81 | 0.84 | 0.79 | 0.84 | False
SGD 0.81 | 0.84 | 0.79 | 0.84 | False
Linear SVC 0.81 | 0.85 | 0.81 | 0.82 | False
XGBoost 0.81 | 0.85 | 0.83 | 0.79 | False
MLP 1000 tanh 0.81 1 0.85 [0.79 | 0.84 | False
KNN 0.81 1 0.85 | 0.83 | 0.79 | False
Linear SVC 0.8 1084108 0.8 | True
MLP 1000 0.8 [0.83]0.79 | 0.81 | True
Bagging 0.8 084 |0.81 | 0.78 | True

Table 3.11 Results for Amazon-Google dataset using bert-base-uncased (only text
data).

BERT-large-uncased

BERT-large-uncased is one of the versions of the BERT with the following
characteristics

o Layers: 24

« Hidden Units: 1024

o Attention Heads: 16

o Parameters: 340 million

o uncased: no difference between lowercase and uppercase

Results and Explanation

We tried the models on ProMapEn, ProMapCz, Amazon-Google, and Amazon-
Walmart datasets.

ProMapEn dataset

The highest F1 result that we reached using all text features is 0.54 with MLP
model 1.4

The best result is less than the result in bert-base-uncased. This is because it
becomes more challenging to concentrate on small domains with large contexts.

44

We can see that the results are worse than those of the previous techniques. That
proves the case importance in our task.

Model F1 | Acc | Prec | Rec | Name
Logistic Regression 0.56 | 0.59 | 0.43 | 0.8 | True
Naive Bayes 0.56 | 0.59 | 0.43 | 0.8 | True
SVC 0.55 | 0.63 | 0.46 | 0.68 | True
MLP 1000 tanh 0.55 | 0.58 | 0.42 | 0.8 | True
MLP 300 200 100 0.55 | 0.59 | 0.43 | 0.75 | True
MLP 500 500 0.54 | 0.63 | 0.45 | 0.67 | True
MLP 1000 tanh 0.54 1 0.54 | 0.4 | 0.81 | False
Logistic Regression 0.53] 0.55 | 0.4 | 0.77 | False
Naive Bayes 0.52 1054 |04 |0.77 | False
KNN 0.51 | 0.54 | 0.39 | 0.72 | True
MLP 1000 0.51 1 045 0.36 | 0.9 | True

MLP 300 200 100 0.51 | 0.44 | 0.36 | 0.89 | False
MLP 1000 relu adam | 0.51 | 0.38 | 0.34 | 0.98 | False

MLP 500 500 0.51 | 0.41 | 0.35 | 0.93 | False
MLP 1000 relu 0.001 | 0.51 | 0.45 | 0.36 | 0.9 | True
Extra Trees 0.5 1037|034 | 0.98 | True
XGBoost 0.5 |0.39]0.34 | 0.92 | False
XGBoost 0.5 | 0381034 | 0.96 | True

Gradient Boosting 0.5 1043 |0.35 | 0.86 | False
MLP 1000 relu 0.001 | 0.5 | 0.36 | 0.34 | 0.99 | False

Table 3.12 Results for ProMapEn dataset using bert-large-uncased (only text data).

However, using only name feature with bert-large-uncased and Naive Bayes
gives the highest F1 score (0.56) out of all previously used BERT methods.
ProMapCz dataset

The highest F1 result that we reached using all text features is 0.52 with
the Random Forest classifier. Again, the best result is less than the result in
bert-base-uncased.

45

Model F1 Acc | Prec | Rec | Name

Random Forest 0.52 1 0.45 [0.36 | 0.9 | False
XGBoost 0.51 | 0.48 | 0.37 | 0.81 | False
Naive Bayes 0.51 104 |0.35 | 0.94 | True
MLP 1000 tanh 0.51 [0.39 | 0.34 | 0.95 | False

MLP 300 200 100 0.51 | 0.38 | 0.34 | 0.98 | False
Logistic Regression 0.51 | 0.38 | 0.34 | 0.96 | False
Logistic Regression 0.5 1039|034 | 0.94 | True
Extra Trees 0.5 1034|033 | 1.0 | False
AdaBoost 0.5 042 |0.35 | 0.88 | False
MLP 1000 relu 0.001 | 0.5 | 0.35 | 0.33 | 1.0 | False
MLP 1000 relu adam | 0.5 | 0.45 | 0.36 | 0.84 | False

MLP 500 500 0.5 1034|033 | 1.0 | False
MLP 1000 0.5 1035|033 | 1.0 | False
Naive Bayes 0.5 1039|034 | 0.93 | False
SVC 0.5 1033|033 | 1.0 | False
XGBoost 0.5 |04 |0.34 |0.92 | True

MLP 300 200 100 0.5 1035033 | 0.99 | True
MLP 1000 relu 0.001 | 0.5 | 0.34 | 0.33 | 0.99 | True
MLP 1000 0.5 1034033 | 0.99 | True
MLP 500 500 0.5 1034033 | 0.99 | True

Table 3.13 Results for ProMapEn dataset using bert-large-uncased (only text data).

Amazon-Walmart dataset

AdaBoost model 1.4 with the following parameters has the highest F1 score
0.72. It is less than in bert-base-uncased (0.76).
Again, the best result is less than the result in bert-base-uncased.

46

Model F1 Acc | Prec | Rec | Name

AdaBoost 0.72 1 0.78 | 0.67 | 0.77 | False
SVC 0.72 1 0.77 | 0.65 | 0.79 | False
Logistic Regression 0.71] 0.77 | 0.65 | 0.79 | False
Extra Trees 0.71] 0.78 | 0.67 | 0.76 | False
MLP 1000 tanh 0.71] 0.77 | 0.64 | 0.8 | False

MLP 300 200 100 0.7 1 0.76 | 0.63 | 0.78 | False
Logistic Regression 0.7 1077|066 | 0.75 | True

SGD 0.7 10.76 | 0.66 | 0.74 | True
MLP 500 500 0.7 |0.76 | 0.64 | 0.78 | False
Naive Bayes 0.7 10.77 | 0.65 | 0.76 | False
Naive Bayes 0.69 | 0.77 | 0.67 | 0.71 | True
MLP 1000 relu 0.001 | 0.69 | 0.75 | 0.63 | 0.77 | False
SVC 0.69 | 0.77 | 0.67 | 0.7 | True
MLP 1000 0.69 | 0.75 | 0.63 | 0.77 | False
MLP 1000 tanh 0.68 | 0.76 | 0.67 | 0.69 | True
MLP 300 200 100 0.68 | 0.76 | 0.67 | 0.7 | True
Random Forest 0.68 | 0.75 | 0.64 | 0.73 | False
MLP 1000 relu 0.001 | 0.68 | 0.76 | 0.67 | 0.7 | True
MLP 500 500 0.68 | 0.76 | 0.66 | 0.71 | True
MLP 1000 0.68 | 0.76 | 0.67 | 0.7 | True

Table 3.14 Results for Amazon-Walmart dataset using bert-large-uncased (only text
data).

Amazon-Google dataset

The results for bert-large-uncased and bert-base-uncased are the same for this
dataset. It is 0.84, and in this case, it is reached by MLP classifier 1.4.
Again, the best result is less than the result in bert-base-uncased.

47

Model F1 Acc | Prec | Rec | Name
MLP 300 200 100 0.84 | 0.87 | 0.87 | 0.81 | False
MLP 1000 relu adam | 0.84 | 0.87 | 0.82 | 0.85 | False
MLP 1000 relu 0.001 | 0.83 | 0.86 | 0.82 | 0.84 | False
Random Forest 0.83 | 0.87 | 0.84 | 0.83 | False
Extra Trees 0.83 |1 0.86 | 0.83 | 0.83 | False
MLP 1000 0.83 | 0.86 | 0.82 | 0.84 | False
MLP 500 500 0.83 | 0.87 | 0.84 | 0.83 | False
AdaBoost 0.82 1 0.85 | 0.81 | 0.83 | False
KNN 0.81 [0.84 | 0.77 | 0.85 | False
Gradient Boosting 0.81 | 0.85 | 0.85 | 0.77 | False
XGBoost 0.8 [0.84|0.81 | 0.8 | False
Bagging 0.79 1 0.84 | 0.83 | 0.75 | False
SVC 0.78 1 0.84 | 0.87 | 0.7 | True
Naive Bayes 0.78 1 0.84 | 0.88 | 0.69 | True
SVC 0.78 | 0.83 | 0.79 | 0.78 | False
MLP 500 500 0.78 | 0.84 | 0.88 | 0.69 | True
Naive Bayes 0.78 1 0.83 | 0.8 | 0.76 | False
Bagging 0.78 1 0.84 | 0.87 | 0.7 | True
MLP 1000 relu 0.001 | 0.77 | 0.83 | 0.86 | 0.7 | True
MLP 1000 relu adam | 0.77 | 0.83 | 0.86 | 0.7 | True

Table 3.15 Results for Amazon-Google dataset using bert-large-uncased (only text
data).

3.3.2 RoBERTa Models
RoBERTa has the same architecture as BERT but is trained on a larger corpus.

RoBERTa-base

Roberta-base has a similar architecture as bert-base-uncased, but it was trained
on a larger corpus and is not uncased (e.g., Apple and Apple are different).

o Layers: 12

o Hidden Units: 728 in each layer
« Attention Heads: 16

o Parameters: 340 million

« uncased: no difference between lowercase and uppercase

Results and Explanation

We tried the models on ProMapEn, ProMapCz, Amazon-Google, and Amazon-
Walmart datasets.

48

Results on ProMapEn

The highest F1 result that we reached using all text features is 0.53 with an
MLP model 1.4. Bert-large-uncased and Bert-base-uncased have higher results
(0.56, 0.55) than Roberta for this dataset.

Model F1 | Acc | Prec | Rec | Name
MLP 500 500 0.53 | 0.45 | 0.37 | 0.93 | False
MLP 1000 relu adam | 0.53 | 0.61 | 0.44 | 0.68 | False
MLP 1000 0.52 1 0.56 | 0.4 | 0.74 | False
MLP 300 200 100 0.52 1 0.44 | 0.36 | 0.92 | False
MLP 1000 relu 0.001 | 0.52 | 0.56 | 0.4 | 0.74 | False
MLP 1000 tanh 0.5 |0.4110.35 |09 | False
Extra Trees 0.5 [0.35(0.33 | 1.0 | False
SVC 0.5 [0.38 10.34 | 0.96 | False
KNN 0.5 |0.42|0.34 | 0.88 | False
Naive Bayes 0.5 1047 |0.36 | 0.81 | False
AdaBoost 0491 0.3210.32 | 1.0 | False
Gradient Boosting 0.49 1 0.32 | 0.32 | 1.0 | False
XGBoost 0.49 1 0.32 1032 | 1.0 | False
Logistic Regression 0.49 1 0.32 1 0.32 | 1.0 | False
Random Forest 0.49 | 0.33 [0.33 | 1.0 | False
Bagging 0.07 | 0.66 | 0.33 | 0.04 | False
Linear SVC 0.0 [0.68 0.0 0.0 | False
SGD 0.0 [0.68 0.0 | 0.0 | False

Table 3.16 Results for ProMapEn dataset using roberta-base (only text data).

Result on ProMapCz

Naive Bayes 1.4 has the highest result with only the name feature. Again,
bert-base-uncased and bert-large-uncased performed better than roberta-base
(with F1 scores 0.52 and 0.53)

49

Model F1 Acc | Prec | Rec | Name

Naive Bayes 0.51]0.42 | 0.35 | 0.92 | True
MLP 500 500 0.51]0.42 | 0.35 | 0.92 | True
Naive Bayes 0.51 | 0.43 | 0.36 | 0.89 | False
XGBoost 0.5 1036 | 0.34 | 0.97 | True
MLP 1000 tanh 0.5 |0.42 | 0.35 | 0.89 | False

Logistic Regression 0.5 10341033 | 1.0 | True
MLP 300 200 100 0.5 10331033 | 1.0 | True

Extra Trees 0.5 [0.33[0.33 | 1.0 | False
MLP 1000 relu 0.001 | 0.5 | 0.38 | 0.34 | 0.94 | False
Random Forest 0.5 | 0371034 | 0.97 | True
MLP 300 200 100 0.5 |0.421]0.35 | 0.9 | False
MLP 500 500 0.5 |0.371]0.34 | 0.95 | False
MLP 1000 0.5 | 0.3810.34 | 0.94 | False
Extra Trees 0.5 |0.371]0.34 | 0.98 | True
SVC 0.49 [0.3310.33 | 1.0 | True
MLP 1000 relu adam | 0.49 | 0.33 | 0.33 | 1.0 | True
MLP 1000 tanh 0491 0.3310.33 | 1.0 | True
AdaBoost 0491 0.3310.33 | 1.0 | True
MLP 1000 0.49 [0.33 1 0.33 | 1.0 | True

Gradient Boosting 0.49 | 0.33 | 0.33 | 1.0 | True

Table 3.17 Results for ProMapCz dataset using roberta-base (only text data).

Amazon-Walmart dataset

We achieve the highest result in bert-based models (bert-base-uncased, bert-
large-uncased, and roberta-base) with roberta-large on the Amazon-Walmart
dataset. We get an F1 score of 0.8 with the AdaBoost classifier 1.4.

Roberta-base outperforms bert-base-uncased (F1 score of 0.72) but is still less
than bert-large-uncased (F1 score of 0.76)

50

Model F1 Acc | Prec | Rec | Name
AdaBoost 0.74 1 0.79 | 0.68 | 0.81 | False
MLP 1000 0.73 1 0.79 | 0.68 | 0.78 | True
MLP 1000 relu 0.001 | 0.73 | 0.79 | 0.68 | 0.78 | True
AdaBoost 0.73 1 0.78 | 0.67 | 0.79 | True
MLP 1000 relu adam | 0.73 | 0.81 | 0.74 | 0.71 | True
Extra Trees 0.72 1 0.8 [0.73 | 0.71 | False
MLP 300 200 100 0.72 1 0.78 | 0.66 | 0.79 | True
MLP 500 500 0.72 1 0.8 |0.72 | 0.72 | True
Naive Bayes 0.7210.79 | 0.71 | 0.73 | True
SVC 0.72 1 0.79 | 0.71 | 0.73 | True
Logistic Regression 0.72 1 0.77 | 0.65 | 0.8 | True
Extra Trees 0.72 1 0.79 | 0.7 0.73 | True
MLP 1000 tanh 0.72 1 0.79 | 0.7 0.74 | True
MLP 1000 tanh 0.72 1 0.8 [0.72 | 0.73 | False
MLP 300 200 100 0.72 1 0.78 | 0.67 | 0.79 | False
MLP 500 500 0.72 1 0.79 | 0.7 | 0.75 | False
Naive Bayes 0.72 1 0.79 | 0.71 | 0.74 | False
MLP 1000 relu 0.001 | 0.71 | 0.79 | 0.72 | 0.7 | False
Bagging 0.71 1 0.8 | 0.75 | 0.68 | False
MLP 1000 0.71 1 0.79 | 0.72 | 0.7 | False

Table 3.18 Results for Amazon-Walmart dataset using roberta-base (only text data).

Results on Amazon-Google

All text features are useful in the Amazon-Google dataset as they outperform
models trained by only name features. We got an F1 score of 0.8 with Extra trees
1.4.

Roberta-base is under performed by both Bert models for this dataset (F1
score 0.84)

51

Model F1 Acc | Prec | Rec | Name
Extra Trees 0.8 10.85(0.85 | 0.76 | False
MLP 1000 0.8 10.84 |0.83 | 0.78 | False
MLP 300 200 100 0.8 [0.85(0.86 | 0.75 | False
MLP 1000 relu 0.001 | 0.8 | 0.84 | 0.83 | 0.78 | False
Random Forest 0.79 |1 0.85 | 0.89 | 0.71 | False
AdaBoost 0.79 | 0.84 | 0.86 | 0.73 | False
Gradient Boosting 0.78 1 0.85 | 0.92 | 0.68 | False
MLP 300 200 100 0.78 | 0.83 | 0.82 | 0.74 | True

MLP 500 500 0.78 1 0.83 | 0.82 | 0.74 | True
MLP 1000 0.78 1 0.83 | 0.82 | 0.74 | True
Naive Bayes 0.78 1 0.83 | 0.82 | 0.74 | True
MLP 1000 relu 0.001 | 0.78 | 0.83 | 0.82 | 0.74 | True
SVC 0.78 1 0.83 | 0.82 | 0.74 | True
MLP 1000 tanh 0.78 1 0.83 | 0.82 | 0.74 | True
MLP 1000 tanh 0.78 | 0.83 | 0.82 | 0.75 | False
MLP 500 500 0.78 1 0.83 | 0.82 | 0.74 | False
Naive Bayes 0.78 1 0.83 | 0.81 | 0.76 | False
SVC 0.78 1 0.83 | 0.8 | 0.76 | False
MLP 1000 relu adam | 0.77 | 0.82 | 0.82 | 0.73 | True
AdaBoost 0.77 1 0.82 | 0.79 | 0.75 | True

Table 3.19 Results for Amazon-Google dataset using roberta-base (only text data).

RoBERTa-large

Roberta-large is larger than Roberta-base, which makes the model find more
complex patterns. However, it is also computationally more expensive.

o Layers: 24
o Hidden Units: 1024 in each layer
» Attention Heads: 16

e Parameters: 355 million

Results and Explanation

We tried the models on ProMapEn, ProMapCz and Amazon-Walmart datasets.

ProMapEn dataset

With the Naive Bayes classifier 1.4, we gain an F'1 score of 0.62. It outperforms
all Bert models and the roberta base we used. This means that having a bigger
context helps us understand the small domains better.

52

Model F1 Acc | Prec | Rec | Name

Naive Bayes 0.62 | 0.71 | 0.55 | 0.71 | False
MLP 1000 relu adam | 0.62 | 0.74 | 0.59 | 0.66 | False
MLP 1000 tanh 0.61 | 0.73 | 0.57 | 0.65 | False
Logistic Regression 0.61 | 0.71 | 0.54 | 0.69 | False
AdaBoost 0.61 | 0.74 | 0.59 | 0.63 | False
SVC 0.6 | 0.7 |0.53 | 0.69 | False
Extra Trees 0.59 | 0.71 | 0.54 | 0.64 | False
Random Forest 0.58 | 0.57 | 0.43 | 0.91 | False
Bagging 0.57 | 0.75 | 0.65 | 0.51 | False
XGBoost 0.56 | 0.59 | 0.43 | 0.8 | False
KNN 0.55 | 0.65 | 0.47 | 0.64 | False

Gradient Boosting 0.53 | 0.68 | 0.5 | 0.56 | False
MLP 1000 relu 0.001 | 0.52 | 0.56 | 0.4 | 0.74 | False

MLP 1000 0.5210.56 | 0.4 | 0.74 | False
MLP 300 200 100 0.51 1062|044 | 0.6 | False
MLP 500 500 0.49 | 0.46 | 0.36 | 0.8 | False
Linear SVC 0.48 | 0.75 1 0.76 | 0.35 | False
SGD 0.45 | 0.75] 0.78 | 0.32 | False

Table 3.20 Results for ProMapEn dataset using roberta-large (only text data).

Results on ProMapCz

The absence of improvement in Czech data means that the larger corpus has
a small amount of Czech data. Naive Bayes 1.4 achieves the highest F'1 score.
Again, we can see that the name feature has results comparable to those of all
the other features.

93

Model F1 Acc | Prec | Rec | Name

Naive Bayes 0.51 | 0.53 | 0.38 | 0.74 | False
XGBoost 05 10341033 | 1.0 | True
Random Forest 0.5 (0341033 | 1.0 | True
SVC 0.5 [0.3710.34 | 0.95 | True
Extra Trees 0.5 10351033 | 1.0 | False
Naive Bayes 0.5 1039|034 | 0.92 | True
AdaBoost 0.5 |0.341]033 |10 | False
MLP 500 500 0.49 [0.33 | 0.33 | 1.0 | True
MLP 1000 0.49 [0.33 1 0.33 | 1.0 | True

MLP 300 200 100 0.49 [0.33 | 0.33 | 1.0 | True
Logistic Regression 0.49 1 0.33 | 0.33 | 1.0 | False
MLP 1000 tanh 0.49 1 0.33 | 0.33 | 1.0 | True
MLP 1000 relu adam | 0.49 | 0.33 | 0.33 | 1.0 | True
MLP 1000 relu 0.001 | 0.49 | 0.33 | 0.33 | 1.0 | True

AdaBoost 0.49 | 0.33 | 0.33 | 1.0 | True
Gradient Boosting 0.49 1 0.33 | 0.33 | 1.0 | True
Extra Trees 0.49 1 0.33 | 0.33 | 1.0 | True
Logistic Regression 0.49 1 0.33 | 0.33 | 1.0 | True
XGBoost 0.49 | 0.33 | 0.33 | 1.0 | False

MLP 300 200 100 0.49 |1 0.33 | 0.33 | 1.0 | False

Table 3.21 Results for ProMapCz dataset using roberta-large (only text data).

Amazon-Walmart dataset

Using the name feature has competitive results with all other text features.
The MLP classifier 1.4 has the highest F1 score of 0.8.

o4

Model F1 Acc | Prec | Rec | Name
MLP 300 200 100 0.8 [0.85(0.77 | 0.82 | False
AdaBoost 0.8 [0.85(0.77 | 0.83 | False
SVC 0.79 | 0.84 | 0.77 | 0.81 | True
Random Forest 0.79 |1 0.84 | 0.76 | 0.83 | False
Naive Bayes 0.79 1 0.85 | 0.78 | 0.79 | True
MLP 1000 0.79 | 0.85 | 0.78 | 0.79 | True
MLP 500 500 0.79 | 0.85 | 0.78 | 0.79 | True
MLP 300 200 100 0.79 | 0.85 | 0.79 | 0.79 | True
MLP 1000 tanh 0.79 | 0.85 | 0.78 | 0.79 | True
Extra Trees 0.79 |1 0.84 | 0.76 | 0.82 | False
MLP 1000 relu 0.001 | 0.79 | 0.85 | 0.78 | 0.79 | True
MLP 500 500 0.79 | 0.84 | 0.76 | 0.82 | False
AdaBoost 0.78 | 0.83 | 0.72 | 0.85 | True
Bagging 0.78 1 0.84 | 0.81 | 0.74 | True
KNN 0.78 | 0.84 | 0.77 | 0.78 | False
Naive Bayes 0.78 1 0.83 | 0.74 | 0.83 | False
Extra Trees 0.78 1 0.83 | 0.75 | 0.81 | True
MLP 1000 relu 0.001 | 0.77 | 0.81 | 0.68 | 0.89 | False
MLP 1000 0.77 | 0.81 | 0.68 | 0.89 | False
Bagging 0.77 1 0.84 | 0.79 | 0.76 | False

Table 3.22 Results for Amazon-Walmart dataset using roberta-large (only text data).

Amazon-Google dataset

The roberta-large is very effective on Amazon datasets. It reaches a 0.88 F'1
score with Extra trees 1.4.
Again Roberta-large outperformed other bert-based models that we tried.

95

Model F1 Acc | Prec | Rec | Name
Extra Trees 0.88 1 0.91 0.9 0.87 | False
Random Forest 0.88 1 0.9 |0.89 | 0.86 | False
AdaBoost 0.88 1 0.9 |0.88 | 0.88 | False
Naive Bayes 0.87 1 0.89 | 0.89 | 0.84 | False
KNN 0.86 | 0.89 | 0.88 | 0.85 | False
Gradient Boosting 0.86 | 0.89 | 0.95 | 0.78 | False
MLP 1000 0.85 | 0.88 | 0.87 | 0.84 | False
MLP 500 500 0.85 | 0.88 | 0.87 | 0.84 | False
MLP 300 200 100 0.85 1 0.89 | 0.92 | 0.8 | False
MLP 1000 tanh 0.85 1 0.89 | 0.92 | 0.79 | False
MLP 1000 relu 0.001 | 0.85 | 0.88 | 0.87 | 0.84 | False
XGBoost 0.85 | 0.88 | 0.84 | 0.87 | False
MLP 1000 tanh 0.84 | 0.88 | 0.88 | 0.81 | True
Extra Trees 0.84 | 0.88 | 0.91 | 0.77 | True
Bagging 0.84 | 0.88 | 0.92 | 0.77 | True
MLP 300 200 100 0.84 | 0.88 | 0.88 | 0.81 | True
MLP 500 500 0.84 | 0.88 | 0.88 | 0.81 | True
MLP 1000 0.84 | 0.88 | 0.88 | 0.81 | True
Naive Bayes 0.84 |1 0.88 | 0.88 | 0.81 | True
SVC 0.84 | 0.88 | 0.88 | 0.81 | True

Table 3.23 Results for Amazon-Google dataset using roberta-large (only text data).

3.3.3 DistilBERT Models
DistilBERT-base-uncased

DistilBERT is based on a BERT architecture. It is a faster and smaller version
of BERT.

o Layers: 6
o Hidden Units: 768 in each layer
o Attention Heads: 12

o Parameters: 66 million

Results and Explanation

We tried the models on ProMapEn, ProMapCz, Amazon-Walmart, and
Amazon-Google datasets.

Results on ProMapEn dataset

We got F1 score of 0.56 with MLP classifier 1.4 with only using the name
feature. This shows that roberta-large is better for this dataset than other Bert
based models, however DistilBert has better results than roberta-base even though
it has significantly less number of parameters.

o6

Model F1 Acc | Prec | Rec | Name

MLP 1000 tanh 0.56 | 0.61 | 0.44 | 0.76 | True
Logistic Regression 0.55] 0.9 | 0.42 | 0.77 | True
MLP 1000 tanh 0.55 | 0.61 | 0.44 | 0.71 | False
Naive Bayes 0.55] 0.61 | 0.44 | 0.75 | True
MLP 1000 relu adam | 0.54 | 0.61 | 0.44 | 0.7 | True
MLP 1000 0.53 1 0.51 | 0.39 | 0.85 | True
Naive Bayes 0.53] 0.53 | 0.39 | 0.8 | False
MLP 500 500 0.53 1 0.51 | 0.39 | 0.85 | True

MLP 300 200 100 0.53 | 0.55 | 0.4 | 0.78 | True
MLP 1000 relu adam | 0.53 | 0.57 | 0.41 | 0.76 | False
MLP 1000 relu 0.001 | 0.53 | 0.51 | 0.39 | 0.85 | True
SVC 0.52 | 047 | 0.37 | 0.88 | True
MLP 300 200 100 0.52 | 0.52 | 0.39 | 0.78 | False
Logistic Regression 0.51] 0.46 | 0.36 | 0.88 | False
MLP 1000 relu 0.001 | 0.51 | 0.43 | 0.35 | 0.91 | False

MLP 500 500 0.51 [0.54 | 0.39 | 0.74 | False
MLP 1000 0.51 | 0.43 | 0.35 | 0.91 | False
Extra Trees 0.5 | 0371034 | 0.98 | False
Random Forest 0.5 |0.351]0.33 | 0.99 | True
Extra Trees 05 |04 |0.34 | 091 | True

Table 3.24 Results for ProMapEn dataset using distilbert-base-uncased (only text
data).

ProMapCz dataset

The highest F1 that we get is 0.51 with different MLP structures. This shows
that the training corpus of roberta doesn’t include big czech data.

o7

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu adam | 0.51 | 0.38 | 0.34 | 0.97 | False
MLP 1000 tanh 0.51 0.4 |0.35 | 0.93 | False
MLP 500 500 0.51 [0.54 | 0.39 | 0.71 | True
MLP 300 200 100 0.51 [0.39 | 0.35 | 0.95 | True
Logistic Regression 0.51] 0.54 | 0.39 | 0.71 | True

XGBoost 0.5 [0.47 |0.36 | 0.81 | True
Extra Trees 0.5 |10.361]0.34 | 0.99 | True
Extra Trees 0.5 [0.43|0.35 | 0.85 | False
MLP 1000 relu 0.001 | 0.5 | 0.37 | 0.34 | 0.96 | False
MLP 500 500 0.5 [0.36 | 0.33 | 0.97 | False
MLP 1000 0.5 [0.3710.34 | 0.96 | False
Naive Bayes 0.5 1039 0.34 | 0.94 | False
Logistic Regression 0.5 1039 |0.34 | 0.95 | False
XGBoost 0.5 [0.38 [0.34 | 0.93 | False

Gradient Boosting 0.5 1039 0.34 | 0.94 | True
MLP 1000 relu adam | 0.5 | 0.54 | 0.39 | 0.71 | True

Random Forest 0.5 1036 | 0.34 | 0.99 | True
Naive Bayes 0.5 1041|035 |0.92 | True
MLP 1000 tanh 0.5 10.53]0.39 | 0.72 | True
MLP 1000 0.5 1041|035 | 0.92 | True

Table 3.25 Results for ProMapCz dataset using distilbert (only text data).

Amazon-Walmart dataset

The highest F1 score we achieved is 0.78 with the AdaBoost classifier 1.4.

o8

Model F1 | Acc | Prec | Rec | Name
AdaBoost 0.78 1 0.83 | 0.74 | 0.82 | False
MLP 300 200 100 0.78 1 0.83 | 0.73 | 0.83 | False
SGD 0.77 1 0.83 | 0.76 | 0.77 | False
MLP 1000 0.77 1 0.82 | 0.71 | 0.84 | False
MLP 1000 relu 0.001 | 0.77 | 0.82 | 0.71 | 0.84 | False
Extra Trees 0.77 1 0.83 | 0.73 | 0.82 | False
Naive Bayes 0.77 1 0.82 | 0.71 | 0.82 | False
Linear SVC 0.77 1 0.83 | 0.76 | 0.77 | False
MLP 500 500 0.76 | 0.81 | 0.71 | 0.81 | True
MLP 300 200 100 0.76 | 0.82 | 0.73 | 0.8 | True
MLP 1000 tanh 0.76 | 0.82 | 0.73 | 0.8 | True
MLP 1000 0.76 | 0.81 | 0.71 | 0.81 | True
MLP 1000 relu 0.001 | 0.76 | 0.81 | 0.71 | 0.81 | True
Naive Bayes 0.76 | 0.82 | 0.73 | 0.8 | True
SVC 0.76 | 0.82 | 0.72 | 0.81 | True
MLP 500 500 0.76 | 0.81 | 0.7 | 0.84 | False
Linear SVC 0.76 | 0.83 | 0.76 | 0.76 | True
Logistic Regression 0.76 | 0.82 | 0.72 | 0.81 | True
Logistic Regression 0.76 | 0.8 | 0.69 | 0.83 | False
Bagging 0.76 | 0.83 | 0.77 | 0.76 | False

Table 3.26 Results for Amazon-Walmart dataset using distilbert (only text data).
Amazon-Google dataset

Distilbert achieved similar results to roberta-large on the Amazon-Google
dataset using MLP classifier 1.4

99

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu adam | 0.87 | 0.89 | 0.88 | 0.85 | False
XGBoost 0.86 | 0.88 | 0.86 | 0.85 | False
Random Forest 0.86 | 0.89 | 0.87 | 0.84 | False
AdaBoost 0.86 | 0.89 | 0.9 0.82 | False
MLP 1000 relu 0.001 | 0.86 | 0.9 | 0.92 | 0.82 | False
MLP 300 200 100 0.86 | 0.89 | 0.91 | 0.82 | False
MLP 500 500 0.86 | 0.9 [0.93 | 0.81 | False
MLP 1000 0.86 | 0.9 [0.92 | 0.82 | False
Extra Trees 0.86 | 0.89 | 0.93 | 0.8 | False
KNN 0.85 | 0.88 | 0.88 | 0.81 | False
SVC 0.84 | 0.86 | 0.82 | 0.85 | False
Gradient Boosting 0.84 1 0.88 | 0.9 | 0.79 | False
Bagging 0.84 | 0.88 | 0.89 | 0.8 | False
Naive Bayes 0.84 | 0.87 | 0.83 | 0.84 | False
MLP 1000 tanh 0.83 | 0.86 | 0.83 | 0.83 | False
Logistic Regression 0.83] 0.86 | 0.82 | 0.83 | False
Linear SVC 0.82 1 0.86 | 0.84 | 0.8 | False
SVC 0.81 [0.85|0.86 | 0.77 | True
Naive Bayes 0.81]10.85|0.82 | 0.8 | True
MLP 1000 0.81 [0.85|0.82 | 0.8 | True

Table 3.27 Results for Amazon-Google dataset using distilbert (only text data).

3.4 Sentence Transformers

Sentence Transformers [27] is a family of models specifically designed to create
high-quality sentence embeddings. These models are fine-tuned on Bert and
roberta to optimize the embeddings for sentence-level tasks.

3.4.1 all-MiniLM-L6-v2

The all-MiniLM-L6-v2 model balances performance and computational effi-
ciency, making it suitable for applications requiring quick and accurate sentence
embeddings.

o Layers: 6
e Hidden Units: 384
e Attention Heads: 16

e Parameters: 22 million

Results and Explanation

We tried the models on ProMapEn, ProMapCz, Amazon-Walmart and Amazon-
Google datasets.

60

Results on ProMapEn

We get promising results by using sentence transformers. The highest F1
value is 0.61 with the Naive Bayes 1.4 model using all text features. Interestingly,
having 16 times fewer parameters, it performs as well as roberta-large.

Model F1 | Acc | Prec | Rec | Name
Naive Bayes 0.61 | 0.68 | 0.51 | 0.75 | False
Logistic Regression 0.61 | 0.69 | 0.51 | 0.76 | False
SVC 0.6 |0.68 | 0.51 | 0.72 | False
SVC 0.6 |0.66 | 0.48 | 0.78 | True
MLP 1000 tanh 0.6 |0.68|0.5 |0.76 | False
MLP 1000 relu adam | 0.6 | 0.66 | 0.48 | 0.78 | True
MLP 500 500 0.59 | 0.63 | 0.46 | 0.81 | True
MLP 300 200 100 0.59 | 0.61 | 0.45 | 0.85 | True
MLP 1000 0.59 | 0.63 | 0.46 | 0.82 | True
Naive Bayes 0.59 | 0.64 | 0.47 | 0.81 | True
MLP 1000 tanh 0.59 | 0.65 | 0.48 | 0.78 | True

Logistic Regression 0.59 | 0.65 | 0.47 | 0.79 | True
MLP 1000 relu 0.001 | 0.59 | 0.63 | 0.46 | 0.82 | True

AdaBoost 0.58 | 0.61 | 0.45 | 0.83 | True
AdaBoost 0.56 | 0.55 | 0.41 | 0.86 | False
Extra Trees 0.55 | 0.58 | 0.42 | 0.78 | False
MLP 1000 relu adam | 0.55 | 0.59 | 0.43 | 0.78 | False
Random Forest 0.55 053] 04 0.87 | False
Random Forest 0.54 | 0.49 | 0.38 | 0.91 | True
Bagging 0.53 | 0.69 | 0.53 | 0.52 | False

Table 3.28 Results for ProMapEn dataset using all-MiniLM-L6-v2 (only text data).

ProMapCz dataset

The highest F1 that we get is 0.54 with different MLP structures. This is the
best bet-based model so far, outperforming even Roberta-large.

61

Model F1 Acc | Prec | Rec | Name
MLP 300 200 100 0.54 | 0.57 | 0.42 | 0.78 | False

MLP 1000 0.54 | 0.63 | 0.45 | 0.67 | True
MLP 300 200 100 0.54 | 0.52 | 0.39 | 0.86 | True
Extra Trees 0.5410.5 |0.38 | 0.89 | True
MLP 1000 relu 0.001 | 0.54 | 0.63 | 0.45 | 0.67 | True
MLP 1000 tanh 0.53 | 0.45 | 0.37 | 0.96 | False
MLP 1000 0.53 1 0.59 | 0.42 | 0.72 | False
Naive Bayes 0.53 | 0.44 | 0.37 | 0.94 | False

MLP 1000 relu adam | 0.53 | 0.47 | 0.37 | 0.91 | False
MLP 1000 relu 0.001 | 0.53 | 0.59 | 0.42 | 0.72 | False
Logistic Regression 0.53 | 0.44 | 0.37 | 0.95 | False
Logistic Regression 0.53 1 0.63 | 0.45 | 0.65 | True

XGBoost 0.53 [0.51 | 0.39 | 0.85 | True
MLP 1000 relu adam | 0.53 | 0.63 | 0.46 | 0.63 | True
MLP 1000 tanh 0.53 | 0.62 | 0.45 | 0.65 | True
MLP 500 500 0.53 | 0.61 | 0.44 | 0.68 | True
Naive Bayes 0.53 1 0.63 | 0.45 | 0.65 | True
SVC 0.53 | 0.63 | 0.45 | 0.65 | True
Random Forest 0.53 | 0.47 | 0.37 | 0.9 | True

Gradient Boosting 0.53 | 0.44 | 0.37 | 0.94 | True

Table 3.29 Results for ProMapCz dataset using all-MiniLM-L6-v2 (only text data).

Amazon-Walmart dataset

With Extra Trees 1.4, we get an F1 value of 0.9.

62

Model F1 Acc | Prec | Rec | Name
Extra Trees 0.9 10.920.86 | 0.94 | False
Bagging 0.9]0.92|0.87 | 0.93 | False
MLP 1000 relu adam | 0.89 | 0.92 | 0.89 | 0.89 | False
Linear SVC 0.89 | 0.92 | 0.87 | 0.91 | False
MLP 300 200 100 0.89 |1 0.91 | 0.86 | 0.91 | False
SVC 0.89 | 0.92 | 0.86 | 0.93 | False
Random Forest 0.89 |1 0.92 | 0.86 | 0.92 | False
Logistic Regression 0.89 | 0.91 | 0.85 | 0.92 | False
SGD 0.88 1 0.92 | 0.92 | 0.84 | False
AdaBoost 0.88 [0.91 | 0.83 | 0.93 | False
MLP 1000 tanh 0.88 1 0.91 | 0.85 | 0.91 | False
Naive Bayes 0.88 1 0.91 | 0.83 | 0.94 | False
KNN 0.88 1 0.91 | 0.86 | 0.89 | False
SGD 0.88 | 0.91 | 0.86 | 0.89 | True
Linear SVC 0.88 [0.91 | 0.86 | 0.89 | True
Gradient Boosting 0.88 1 0.91 | 0.86 | 0.89 | False
AdaBoost 0.88 1 0.91 | 0.86 | 0.89 | True
Extra Trees 0.88 10911 0.86 | 0.9 | True
MLP 1000 0.8710.9 |0.83 | 0.92 | False
MLP 1000 relu 0.001 | 0.87 | 0.9 | 0.83 | 0.92 | False

Table 3.30 Results for Amazon-Walmart dataset using all-MiniLM-L6-v2 (only text
data).

Amazon-Google dataset

This case is also the best one compared to previously tried models. The
training is done with all text features. All-MiniLM-L6-v2 gives us the greatest
performance on the Amazon-Google dataset, using all textual data and an MLP
classifier 1.4 or Random Forest 1.4.

63

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu adam | 0.99 | 0.99 | 0.98 | 0.99 | False

Random Forest 0.99 |1 0.99 | 0.99 | 0.98 | False
Naive Bayes 0.99 | 0.99 | 0.98 | 0.99 | False
AdaBoost 0.99 | 0.99 | 0.99 | 0.98 | False
MLP 1000 tanh 0.98 1 0.99 | 0.98 | 0.99 | False
SVC 0.98 1 0.99 | 0.98 | 0.99 | False
KNN 0.98 1 0.99 | 0.98 | 0.99 | False
MLP 1000 0.98 1 0.99 | 0.98 | 0.98 | False
MLP 300 200 100 0.98 | 0.98 | 0.98 | 0.98 | False
XGBoost 0.98 | 0.98 | 0.97 | 0.98 | True

Logistic Regression 0.98 1 0.98 | 0.97 | 0.98 | True
MLP 1000 relu 0.001 | 0.98 | 0.99 | 0.98 | 0.98 | False
Gradient Boosting 0.98 | 0.98 | 0.97 | 0.98 | False

Extra Trees 0.98 1 0.99 | 0.98 | 0.99 | False
Bagging 0.98 [0.99 | 0.98 | 0.99 | False
Linear SVC 0.98 1 0.99 | 0.98 | 0.98 | False
Logistic Regression 0.98 1 0.99 | 0.98 | 0.99 | False
XGBoost 0.98 | 0.98 | 0.98 | 0.98 | False
SGD 0.98 [0.98 | 0.99 | 0.96 | True

MLP 1000 relu adam | 0.98 | 0.98 | 0.97 | 0.98 | True

Table 3.31 Results for Amazon-Google dataset using all-MiniLM-L6-v2 (only text
data).

3.4.2 all-mpnet-base-v2

The architecture of all-mpnet-base-v2 is as follows
o Layers: 12

o Hidden Units: 768

« Attention Heads: 12

e Parameters: 110 million

Results and Explanation
ProMapEn dataset

With Naive Bayes, we got an F1 score of 0.58, and all-MiniLM-L6-v2 outper-
forms this model with a 0.61 F1 score.

64

Model F1 | Acc | Prec | Rec | Name
Naive Bayes 0.58 | 0.69 | 0.52 | 0.64 | False
MLP 1000 relu adam | 0.57 | 0.67 | 0.49 | 0.67 | True
MLP 300 200 100 0.57 | 0.68 | 0.51 | 0.63 | True
MLP 1000 tanh 0.57 | 0.63 | 0.46 | 0.76 | False
MLP 1000 relu adam | 0.57 | 0.59 | 0.44 | 0.84 | False
Logistic Regression 0.57 1 0.67 | 0.49 | 0.67 | True
Logistic Regression 0.57 | 0.62 | 0.45 | 0.76 | False

AdaBoost 0.56 | 0.67 | 0.5 0.63 | True
MLP 1000 tanh 0.56 | 0.65 | 0.47 | 0.69 | True
MLP 500 500 0.56 | 0.65 | 0.47 | 0.7 | True
MLP 1000 0.56 | 0.64 | 0.46 | 0.71 | True
Naive Bayes 0.56 | 0.65 | 0.48 | 0.69 | True
MLP 1000 relu 0.001 | 0.56 | 0.64 | 0.46 | 0.71 | True
SVC 0.55 | 0.66 | 0.48 | 0.65 | True
AdaBoost 0.55 | 0.56 | 0.41 | 0.82 | False
Extra Trees 0.54 | 0.56 | 0.41 | 0.78 | False
SVC 0.54 |1 0.55] 04 0.82 | False
Random Forest 0.54 | 0.59 | 0.42 | 0.74 | False
Extra Trees 0.53 | 0.45 | 0.37 | 0.95 | True
MLP 500 500 0.53 1 0.54 | 0.4 | 0.8 | False

Table 3.32 Results for ProMapEn dataset using all-MiniLM-L6-v2 (only text data).

ProMapCz dataset

The highest F1 we get with Random Forest is 0.53. For this dataset, too, the
all-MiniLM-L6-v2 has better results.

65

Model F1 Acc | Prec | Rec | Name

Random Forest 0.53 | 0.58 | 0.42 | 0.72 | False
MLP 500 500 0.53 1 0.52 | 0.39 | 0.82 | False
MLP 1000 relu adam | 0.53 | 0.63 | 0.45 | 0.63 | False
Extra Trees 0.53 |1 0.56 | 0.4 0.76 | False
Gradient Boosting 0.52 1 0.5 | 0.38 | 0.82 | False
XGBoost 0.51] 0.43 | 0.35 | 0.91 | True
MLP 500 500 0.51 | 0.42 | 0.36 | 0.93 | True
Random Forest 0.51 | 0.51 | 0.38 | 0.79 | True

Logistic Regression 0.51]0.42 | 0.36 | 0.93 | True
Logistic Regression 0.51 | 0.51 | 0.38 | 0.77 | False
MLP 300 200 100 0.51]0.44 | 0.36 | 0.89 | True
MLP 1000 tanh 0.51]0.42 | 0.35 | 0.93 | True
MLP 1000 relu adam | 0.51 | 0.43 | 0.36 | 0.92 | True
MLP 1000 relu 0.001 | 0.51 | 0.45 | 0.36 | 0.86 | False
MLP 1000 relu 0.001 | 0.51 | 0.38 | 0.34 | 0.98 | True

Naive Bayes 0.51]0.42 | 0.36 | 0.93 | True
MLP 1000 tanh 0.51 | 0.45 | 0.36 | 0.88 | False
AdaBoost 0.51 104 |0.35 | 0.94 | True
MLP 1000 0.51 | 0.45 | 0.36 | 0.86 | False
Naive Bayes 0.51]0.44 | 0.36 | 0.91 | False

Table 3.33 Results for ProMapCz dataset using all-mpnet-base-v2 (only text data).

Amazon-Google dataset

All-mpnet-base-v2 proves to be very effective compared to most of the models
we have tried so far. The interesting part is that using only the name feature has
the highest F1 score with the Stochastic Gradient Descent Classifier 1.4. In other
models, using all of the text features had better results than using only the name
feature.

66

Model F1 Acc | Prec | Rec | Name

SGD 0.98 1 0.98 | 0.97 | 0.98 | True
MLP 1000 0.98 1 0.98 | 0.97 | 0.98 | True
MLP 500 500 0.98 1 0.98 | 0.97 | 0.98 | True
SVC 0.98 1 0.98 | 0.97 | 0.98 | True

MLP 300 200 100 0.98 | 0.98 | 0.97 | 0.98 | True
Logistic Regression 0.98 1 0.98 | 0.97 | 0.98 | True
MLP 1000 tanh 0.98 | 0.98 | 0.97 | 0.98 | True
MLP 1000 relu adam | 0.98 | 0.98 | 0.97 | 0.98 | True
MLP 1000 relu 0.001 | 0.98 | 0.98 | 0.97 | 0.98 | True

Bagging 0.98 | 0.99 | 0.98 | 0.98 | False
Extra Trees 0.98 | 0.98 | 0.97 | 0.99 | False
AdaBoost 0.98 | 0.99 | 0.98 | 0.99 | False

MLP 1000 relu 0.001 | 0.98 | 0.98 | 0.99 | 0.97 | False
MLP 1000 relu adam | 0.98 | 0.98 | 0.97 | 0.99 | False

MLP 1000 tanh 0.98 | 0.98 | 0.96 | 0.99 | False
MLP 1000 0.98 | 0.98 | 0.99 | 0.97 | False
Naive Bayes 0.98 | 0.98 | 0.97 | 0.99 | False
KNN 0.98 | 0.98 | 0.97 | 0.98 | False
SVC 0.98 [0.99 | 0.98 | 0.99 | False
Random Forest 0.98 | 0.98 | 0.98 | 0.98 | False

Table 3.34 Results for Amazon-Google dataset using all-mpnet-base-v2 (only text
data).

3.4.3 stsb-roberta-large

The architecture of stsb-roberta-large is as follows
o Layers: 24

o Hidden Units: 1024

o Attention Heads: 16

e Parameters: 355 million

Results and Explanation

We tried the models on ProMapEn and ProMapCz datasets. The reason is
that stsb-roberta-large has promising results on ProMap datasets.
ProMapEn dataset

stsb-roberta-large gives us the highest F1 score for the ProMapEn dataset out
of all the models we have tried. The F1 score is 0.65 with only using the name
feature with MLP classifier 1.4.

67

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu adam | 0.65 | 0.78 | 0.67 | 0.62 | True
Naive Bayes 0.65 | 0.78 | 0.68 | 0.62 | True
MLP 1000 tanh 0.65 | 0.78 | 0.67 | 0.62 | True
SVC 0.64 | 0.77 | 0.66 | 0.62 | True
Logistic Regression 0.64 | 0.77 | 0.66 | 0.62 | True
MLP 1000 0.63 | 0.77 | 0.64 | 0.62 | True
MLP 500 500 0.63 | 0.75 | 0.61 | 0.65 | True
MLP 1000 relu 0.001 | 0.63 | 0.77 | 0.64 | 0.62 | True
Naive Bayes 0.62 | 0.71 | 0.55 | 0.71 | False
AdaBoost 0.61 | 0.74 | 0.59 | 0.63 | False
Logistic Regression 0.61 | 0.71 | 0.54 | 0.69 | False
SVC 0.6 |[0.7 [0.53 | 0.69 | False
MLP 1000 tanh 06 | 067105 0.77 | False
SGD 0.59 | 0.7 | 0.53 | 0.67 | False
MLP 300 200 100 0.59 | 0.68 | 0.5 0.71 | True
Extra Trees 0.59 | 0.7 | 0.53 | 0.67 | False
Random Forest 0.59 | 0.75 | 0.63 | 0.54 | False
AdaBoost 0.58 | 0.66 | 0.48 | 0.73 | True
MLP 1000 relu adam | 0.57 | 0.59 | 0.43 | 0.82 | False
Bagging 0.57 | 0.75 | 0.65 | 0.51 | False

Table 3.35 Results for ProMapEn dataset using stsb-roberta-large (only text data).

ProMapCz dataset

The same as for the ProMapEn dataset, the model performed the highest F1
score compared to previous models. We get a 0.64 F1 score using all text features
with the MLP classifier.

68

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu adam | 0.64 | 0.68 | 0.51 | 0.86 | False

Naive Bayes 0.64 | 0.7 | 0.52 | 0.83 | False
Logistic Regression 0.63 | 0.7 | 0.53 | 0.78 | False
SVC 0.63 | 0.66 | 0.49 | 0.9 | False
Extra Trees 0.63 | 0.67 | 0.49 | 0.87 | False
AdaBoost 0.63 | 0.69 | 0.52 | 0.79 | False
MLP 1000 tanh 0.63 | 0.7 | 0.52 | 0.8 | False

MLP 1000 relu adam | 0.62 | 0.68 | 0.5 | 0.8 | True
Logistic Regression 0.62 068 | 0.5 |0.8 | True

Naive Bayes 0.62 | 0.68 | 0.5 | 0.8 | True
MLP 500 500 0.62 | 0.68 | 0.51 | 0.78 | True
Random Forest 0.62 | 0.68 | 0.51 | 0.82 | False
MLP 1000 relu 0.001 | 0.61 | 0.68 | 0.51 | 0.78 | True
MLP 1000 0.61 | 0.68 | 0.51 | 0.78 | True
MLP 1000 tanh 0.61 | 0.67 | 0.5 0.81 | True
SVC 0.61 | 0.68 | 0.5 0.78 | True
AdaBoost 0.61 | 0.66 | 0.48 | 0.82 | True
MLP 300 200 100 0.61 | 0.67 | 0.5 0.8 | True
Extra Trees 0.6 | 0.61]0.45 | 0.88 | True
Bagging 0.6 |0.73 | 0.58 | 0.61 | False

Table 3.36 Results for ProMapCz dataset using all-mpnet-base-v2 (only text data).

3.5 Natural Language Inference (NLI) Models

Models for Natural Language Inference (NLI) [27] are vital when it comes
to understanding and foretelling the connections between two sentences which
is essential for various NLP tasks. These models have been trained on huge
datasets like the Multi-Genre Natural Language Inference (MNLI) dataset in
order to comprehend if one sentence entails, contradicts, or is neutral towards
another. Here we will discuss the following NLI models: nli-roberta-base-v2,
nli-bert-base, nli-distilroberta-base-v2, and nli-mpnet-base-v2.

3.5.1 nli-roberta-base-v2

The model nli-roberta-base-v2 is a fine-tuned version of RoOBERTa archi-
tecture optimised for natural language inference tasks. This particular model
is trained on the same BERT model with a bigger training dataset, extended
training time, and dynamic masking strategies employed. It has been fine-tuned to
the MNLI data set, which uses different genres to establish relationships between
sentence pairs (entailment, contradiction, or neutral).

3.5.2 nli-bert-base

The nli-bert-base model is based on the BERT architecture. It is fine-
tuned for natural language inference tasks using datasets like MNLI to identify
entailment, contradiction, and neutrality

69

Use Cases The nli-bert-base model is suited for:

o Textual Entailment: Evaluating logical relationships between sentence
pairs.

e Sentiment Analysis: Guessing sentiment by comprehending context.

« Dialog Systems: Producing suitable responses given a context.

Performance Fine-tuned on NLI datasets, the nli-bert-base model excels in
understanding and predicting sentence relationships.

3.5.3 nli-distilroberta-base-v2

NLI-DistilRoBERTA-Base-V2 is a distilled version of RoBERTa, which is
optimized for efficiency while still performing well on NLI tasks. Size reduction
through distillation makes it faster and more suitable for deployment into resource-
constrained environments. Using databases such as MNLI, it has been perfected
to perform best in sentence pair classification tasks.

Use Cases The nli-distilroberta-base-v2 model is effective for:
o Real-Time Inference: Quick check of sentence pairs
» Mobile Applications: Working on limited devices efficiently

o Text Classification: Classifying relationships between sentences.

Data Used This model was trained on the MNLI dataset.

3.5.4 nli-mpnet-base-v2

The nli-mpnet-base-v2 model leverages the MPNet architecture, which
combines masked language modeling and permuted language modeling to capture
dependencies and relationships between words and sentences. It has been fine-
tuned on the MNLI dataset to enhance its performance in natural language
inference tasks.

Use Cases The nli-mpnet-base-v2 model can be used for:

o Textual Entailment: Assessing entailment, contradiction, and neutrality
between sentences.

e Semantic Similarity: Measuring the similarity between sentence pairs.

o Information Retrieval: Enhancing the retrieval of relevant documents
based on sentence queries.

We used nli-roberta-base-v2, nli-bert-base, nli-distilroberta-base-v2, nli-mpnet-
base-v2 processing methods.

70

Results We tried ProMapEn and ProMapCz datasets with the following pre-
processing methods, which have interesting and promising results.
ProMapEn dataset

The highest F1 score gives nli-mpnet-base-v2. The following MLP architecture
1.4 is used to get the result.

Model F1 | Acc | Prec | Rec | Name | Processed Model
MLP 1000 relu 0.001 | 0.61 | 0.69 | 0.52 | 0.73 | True | mpnet-base-v2
Logistic Regression 0.61 | 0.68 | 0.51 | 0.75 | True | mpnet-base-v2
MLP 1000 0.61 | 0.69 | 0.52 | 0.73 | True | mpnet-base-v2
MLP 1000 relu adam | 0.6 | 0.65 | 0.47 | 0.83 | False | mpnet-base-v2
MLP 1000 tanh 0.6 | 0.65|0.47 | 0.81 | False | mpnet-base-v2
Naive Bayes 0.6 | 0.68 0.5 |0.75 | True | mpnet-base-v2
MLP 300 200 100 0.6 | 0.68 | 0.5 0.75 | True | mpnet-base-v2
MLP 1000 tanh 0.6 | 0.68 | 0.5 0.75 | True | mpnet-base-v2
MLP 1000 relu adam | 0.6 | 0.68 | 0.5 0.75 | True | mpnet-base-v2
Naive Bayes 0.59 | 0.66 | 0.49 | 0.75 | False | mpnet-base-v2
Logistic Regression 0.59 | 0.65 | 0.48 | 0.78 | False | mpnet-base-v2
MLP 500 500 0.59 | 0.67 | 0.49 | 0.75 | True | mpnet-base-v2
MLP 1000 relu adam | 0.58 | 0.73 | 0.58 | 0.57 | True | bert-base
AdaBoost 0.58 | 0.68 | 0.5 | 0.7 | True | mpnet-base-v2
MLP 1000 tanh 0.57 | 0.72 | 0.56 | 0.57 | True | bert-base
MLP 300 200 100 0.57 | 0.72 | 0.58 | 0.56 | True | bert-base
AdaBoost 0.57 | 0.56 | 0.42 | 0.9 | False | mpnet-base-v2
MLP 500 500 0.57 | 0.72 | 0.56 | 0.57 | True | bert-base
Extra Trees 0.57 | 0.54 | 0.41 | 0.92 | True | mpnet-base-v2
Logistic Regression 0.57 | 0.71 | 0.56 | 0.57 | True | bert-base

Table 3.37 Top 20 results for ProMapEn data using NLI models (only text data).

ProMapCz dataset

nli-distilroberta-base-v2 has a better context of the Czech language than other
NLI models. The F1 score is 0.58 using Extra Trees.

71

Model F1 Acc | Prec | Rec | Name | Processed Model
Extra Trees 0.58 | 0.66 | 0.48 | 0.73 | False | distilroberta-base-v2
MLP 300 200 100 0.58 | 0.66 | 0.49 | 0.71 | False | distilroberta-base-v2
MLP 300 200 100 0.57 | 0.76 | 0.67 | 0.5 | True | bert-base

MLP 300 200 100 0.57 | 0.72 | 0.57 | 0.57 | False | bert-base

Logistic Regression 0.57 | 0.75 1 0.66 | 0.5 | True | bert-base

MLP 1000 0.57 1 0.59 | 0.43 | 0.83 | False | mpnet-base-v2

SVC 0.57 | 0.75 | 0.66 | 0.5 | True | bert-base

Naive Bayes 0.57 | 0.68 | 0.51 | 0.63 | False | distilroberta-base-v2
MLP 300 200 100 0.57 1 0.69 | 0.52 | 0.62 | False | mpnet-base-v2

MLP 500 500 0.57 1 0.75 [0.66 | 0.5 | True | bert-base

MLP 1000 relu 0.001 | 0.57 | 0.59 | 0.43 | 0.83 | False | mpnet-base-v2

MLP 1000 0.57 1 0.75 [0.66 | 0.5 | True | bert-base

MLP 1000 tanh 0.57 1 0.75 [0.66 | 0.5 | True | bert-base

AdaBoost 0.57 1 0.76 | 0.67 | 0.5 | True | bert-base

Random Forest 0.57 | 0.67 | 0.49 | 0.67 | False | distilroberta-base-v2
Extra Trees 0.57 |1 0.7 | 0.53 | 0.61 | False | mpnet-base-v2
Bagging 0.57 | 0.76 | 0.67 | 0.5 | True | bert-base

MLP 1000 relu adam | 0.57 | 0.71 | 0.55 | 0.58 | False | mpnet-base-v2
MLP 1000 relu 0.001 | 0.57 | 0.75 | 0.66 | 0.5 | True | bert-base
MLP 1000 relu adam | 0.57 | 0.75 | 0.66 | 0.5 | True | bert-base

Table 3.38 Top 20 results for ProMapCz data using NLI models

3.6 Specialized Models

3.6.1 abbasgolestani/ag-nli-DeTS-sentence-similarity-v1

The abbasgolestani/ag-nli-DeTS-sentence-similarity-v1l model [28] is
a Cross-Encoder for sentence similarity tasks. It predicts a similarity score between
two sentences, ranging from 0 (not similar) to 1 (very similar). This model was
trained using the SentenceTransformers Cross-Encoder class on six different NLI
datasets, including Multi-NLI and NLI Fever datasets.

Use Cases This model can be used for various NLP applications, such as:
o Semantic Search: Finding sentences or documents with similar meanings.

o Paraphrase Detection: Identifying sentences that convey the same mean-
ing.

o Textual Similarity: Measuring the similarity between different texts for
applications like duplicate detection.

Performance and results The abbasgolestani/ag-nli-DeTS-sentence-similarity-vi]
model has significantly improved sentence similarity benchmarks, making it a
good choice for tasks requiring precise and context-aware embeddings.

72

Results We experimented on ProMapEn and ProMapCz datasets. The reason
is that ag-nli-DeT'S-sentence-similarity-v1 gave superior results on both datasets,
and we got the highest F1 scores out of all preprocessing models that we have
tried so far.

ProMapEn dataset

The model gives the highest F1 value for the ProMapEn dataset. We get 0.72
with Extra Trees 1.4.

Model F1 Acc | Prec | Rec | Name
SVC 0.72 1 0.81 | 0.7 |0.73 | False
Extra Trees 0.72 1 0.8 | 0.66 | 0.79 | False
Extra Trees 0.71 |1 0.8 | 0.67 | 0.76 | False
MLP 1000 0.71 1 0.78 | 0.62 | 0.83 | False
AdaBoost 0.71 1 0.8 |0.67 | 0.75 | False
MLP 1000 relu 0.001 | 0.71 | 0.78 | 0.62 | 0.83 | False
SVC 0.71 |1 0.8 | 0.68 | 0.74 | False
Random Forest 0.7 | 0.78 1 0.63 | 0.78 | False
SVC 0.7 [0.78 | 0.64 | 0.76 | False
MLP 300 200 100 0.69 | 0.77 | 0.63 | 0.76 | False
AdaBoost 0.69 | 0.77 | 0.62 | 0.78 | False
MLP 500 500 0.69 | 0.76 | 0.6 | 0.81 | False
MLP 300 200 100 0.69 | 0.77 | 0.61 | 0.8 | False
Random Forest 0.69 | 0.77] 0.61 | 0.8 | False
MLP 1000 tanh 0.69 | 0.77 | 0.62 | 0.77 | False
MLP 1000 relu adam | 0.69 | 0.77 | 0.62 | 0.77 | False
Logistic Regression 0.69 | 0.78 | 0.64 | 0.76 | False
XGBoost 0.69 | 0.79 | 0.68 | 0.69 | False
MLP 1000 0.68 | 0.76 | 0.6 | 0.77 | False
MLP 500 500 0.68 | 0.76 | 0.6 | 0.77 | False

Table 3.39 Results for ProMapEn data (only text data).

ProMapCz dataset

The model also performs well on ProMapCz data. With the support vector
machines classifier, we get a 0.68 F1 score.

73

Model F1 Acc | Prec | Rec | Name
MLP 1000 relu 0.001 | 0.68 | 0.76 | 0.6 0.8 | False

MLP 1000 0.68 | 0.76 | 0.6 0.8 | False
AdaBoost 0.67 | 0.74 | 0.57 | 0.81 | False
Bagging 0.67 | 0.75 | 0.58 | 0.79 | False
MLP 300 200 100 0.67 | 0.73 | 0.56 | 0.82 | False
MLP 500 500 0.67 | 0.73] 0.56 | 0.84 | False
SVC 0.67 | 0.76 | 0.6 0.76 | False
Extra Trees 0.66 | 0.73 | 0.56 | 0.79 | True
MLP 1000 relu adam | 0.66 | 0.74 | 0.57 | 0.79 | False
MLP 1000 tanh 0.66 | 0.74 | 0.58 | 0.77 | False

Logistic Regression 0.66 | 0.75 | 0.6 | 0.72 | False
Logistic Regression 0.66 | 0.74 | 0.58 | 0.78 | True
Bagging 0.66 | 0.76 | 0.62 | 0.71 | True
SVC 0.66 | 0.74 | 0.57 | 0.79 | True
MLP 1000 relu 0.001 | 0.66 | 0.73 | 0.57 | 0.8 | True
MLP 1000 relu adam | 0.66 | 0.73 | 0.57 | 0.8 | True

MLP 1000 tanh 0.66 | 0.73 | 0.57 | 0.8 | True
AdaBoost 0.66 | 0.74 | 0.58 | 0.78 | True
MLP 300 200 100 0.66 | 0.74 | 0.57 | 0.79 | True
MLP 500 500 0.66 | 0.73 | 0.57 | 0.8 | True

Table 3.40 Results for ProMapCz data using (only text data).

3.7 Fine-Tuning BERT for Sentence Similarity

In this section, we discuss our approach to fine-tuning a BERT-based model
for Product Mapping. We have tried two different approaches for fine-tuning.

3.7.1 First Fine-Tuned model

The architecture of the fine-tuned BERT model for sentence similarity consists
of several key components:

e Input Layers:

— Input IDs: Encoded token IDs generated by the BERT tokenizer,
with a shape of (max_length,) and data type tf.int32.

— Attention Masks: Binary masks indicating which tokens should be
attended to, with a shape of (max_length,) and data type tf.int32.

— Token Type IDs: Binary masks identifying different sequences within
the input data, with a shape of (max_ length,) and data type tf.int32.

« BERT Model:

— A pretrained BERT model (bert-base-uncased) is used. The BERT
model’s layers are frozen to retain its pretrained features.

+ Bidirectional LSTM:

74

— A Bidirectional LSTM layer with 64 units is applied to the sequence
output from the BERT model. This layer has return_sequences=True
to output the full sequence.

 Hybrid Pooling;:

— Global Average Pooling: The average value of the features across
the sequence.

— Global Max Pooling: The maximum value of the features across the
sequence.

— The outputs of the pooling layers are concatenated.
e Dropout Layer:

— A dropout layer with a rate of 0.2 is added to prevent overfitting.
e Dense Layer:

— Sigmoid activation function. It is used to produce the final binary
similarity score.

Model Compilation

The model is compiled with the following configuration:
o Optimizer: Adam optimizer.
e Loss Function: Binary cross-entropy loss.

o Metrics: Accuracy, F1 score, precision, and recall.

Results The fine-tuned model achieved good results on ProMapCz, Amazon-
Walmart, and Amazon-Google datasets. However, it was problematic with
ProMapEn because it failed to avoid overfitting.

Accuracy | F1 | Precision | Recall
ProMapEN 0.73 0.46 | 0.73 0.39
ProMapCZ 0.78 0.72 | 0.69 0.79
AmazonWalmart | 0.96 0.93 | 0.94 0.94
AmazonGoogle | 0.99 0.98 | 0.99 0.98

Table 3.41 Results of Fine-tuned Bert (only text data).

The biggest improvement was in Czech data when we compared the results of
using Bert models without fine-tuning.

75

3.7.2 Fine-Tuning BERT for Product Matching with
Triplet-Loss

This section discusses our approach to fine-tuning a BERT-based model for
Product Mapping, leveraging triplet loss for similarity learning. The architecture
and the training methodology are inspired by the work presented in "BERT-based
similarity learning for Product Mapping" by Tracz et al. (2020) [26]. We extend
their approach by incorporating advanced encoder architectures and custom batch
construction strategies to enhance model performance.

Model Architecture and Triplet Loss

The ProductMatchingModel utilizes the bert-large-cased model from the
Hugging Face Transformers library as its backbone. The architecture includes:

« BERT Model: A pretrained bert-large-cased model provides contextual
embeddings for input text sequences.

« Embedding Layer: A linear layer reduces the dimensionality of the BERT
pooled output to 768 dimensions.

o Trainable Parameters: All parameters of the BERT model are set to be
trainable, allowing the model to adapt specifically to the Product Mapping
task.

To address the Product Mapping problem, we use a similarity learning approach
with triplet loss. The triplet loss function encourages the model to learn an
embedding space where:

o Similar products (anchor and positive) are closer to each other.

 Dissimilar products (anchor and negative) are further apart.

The triplet loss is defined as:

L(o,p™,p~) = max(0,m + d(Ep(0), Ey(p")) — d(Ey(0), Es(p™))),

where o is the anchor, p™ is the positive (matching product), p~ is the negative
(non-matching product), d is the cosine distance, and m is a margin hyperpa-
rameter. This loss helps create a robust embedding space for Product Mapping,
addressing issues like data heterogeneity and varying levels of data quality [26].

Finding Negative Samples for Triplet Loss

We select negatives from the same category as the anchor and positive samples.
This ensures that the model learns to distinguish between visually similar products
that are not actual matches, thus enhancing its ability to identify matching
products correctly.

76

Problem Addressed by Triplet Loss

Triplet loss is particularly effective for Product Mapping as it optimizes the
distance between matched and non-matched products in the embedding space.
This method is crucial for handling the high heterogeneity and large volume of
products in e-commerce datasets. By minimizing the triplet loss, the model learns
to distinguish between similar and dissimilar products more accurately, improving
the overall performance of the Product Mapping system.

Models Utilized and Training with Triplet Loss

We utilized several BERT-based models and fine-tuned them using the triplet
loss approach. The models include:

« BERT-base-uncased

« BERT-large-uncased

o DistilBERT-base-uncased
« nli-roberta-base-v2

« nli-bert-base

o nli-distilroberta-base-v2
e nli-mpnet-base-v2

The triplet loss function encourages the model to learn an embedding space
where similar products (anchor and positive) are closer to each other while
dissimilar products (anchor and negative) are further apart. This method is
particularly effective for Product Mapping, as it optimizes the distance between
matched and non-matched products in the embedding space.

3.7.3 Performance Evaluation

The models were evaluated using the F1 score, measuring a test’s accuracy.
The F1 scores for the models trained with triplet loss on various datasets are as
follows:

e ProMapEn: 0.54
e ProMapCz: 0.53
e Amazon-Google: 0.77

o Amazon-Walmart: 0.61
These results highlight the effectiveness of the triplet loss approach in improving

the model’s performance on different product-matching datasets.
The training process involved:

7

« Batch Construction: Using strategies such as category hard (CH) and
batch hard (BH) to select triplets that contribute effectively to the learning
process.

e Pretraining and Fine-Tuning: Pretraining the models on a large corpus
followed by fine-tuning with triplet loss on the Product Mapping dataset.

o Evaluation: Measuring the performance using metrics such as accuracy
and F1 score to ensure robust Product Mapping capabilities.

By employing these strategies and models, we significantly improved the
performance of the Product Mapping system, making it more efficient and accurate
in identifying similar products across diverse e-commerce platforms [26].

3.8 Conclusion

The evaluation of traditional models, transformer-based models, and fine-
tuned BERT architectures has highlighted the strengths and weaknesses of each
approach in the context of Product Mapping. Traditional models like TF-IDF
and Word2Vec demonstrated consistent performance across various datasets, with
TF-IDF showing adaptability to new domains. Although more complex, advanced
models like BERT and RoBERTa provided nuanced embeddings that effectively
captured contextual information. The following are the best F1 results we get
using text data.

ProMapEn : 0.72 3.6.1

— Processing method: abbasgolestani/ag-nli-DeTS-sentence-similarity-
vl

— Classifier: SVC

ProMapCz: 0.72 3.7.1
— Model: Fine-Tuned bert
e Amazon-Google: 0.99 3.7.1
— Model: Fine-Tuned bert
o Amazon-Walmart: 0.93 3.7.1

— Model: Fine-Tuned bert

Fine-tuning BERT models showed big improvements in Product Mapping. This
approach addressed data heterogeneity and varying quality challenges, enhancing
the model’s ability to distinguish between similar and dissimilar products. How-
ever, despite these advancements, the overall performance varied across datasets,
emphasizing the need for domain-specific adjustments. The comprehensive evalu-
ation underscores the importance of choosing the suitable model and fine-tuning
strategy to achieve optimal results in Product Mapping applications.

78

4 Combining Text and Image
Data

This part describes combining text and image data for product mapping tasks
on ProMapEn and ProMapCz datasets. Integrating multimodal data is meant to
capitalize on the power of textual and visual features and improve the performance
levels of product-mapping models. Amazon-Google and Amazon-Walmart are not
involved as they do not contain any image data.

4.0.1 Methodology

We utilized the subsequent methodologies for combining text and image data:

o Text Feature Extraction: We have already seen that ag-nli-DeT'S-
sentence-similarity-v1 is the best, not finetuned, model for extracting texts.
Therefore, we will use this model for text extraction.

o Image Feature Extraction: Comparison between pre-trained image mod-
els combining the text data.

o Feature Concatenation: To know which works better among all these
image models, we compute cosine similarities between text features extracted
by ag-nli-DeTS-sentence-similarity-v1l and images.

o Classification Models: We trained the data with models like Logistic
Regression, Support Vector Classifier (SVC), Multi-Layer Perceptron (MLP),
etc.

4.0.2 Results on ProMapEn Dataset

The results of combining text and image data on the ProMapEn dataset are
presented in Table 4.1. The highest F1 score for ProMapEn is 0.73, using all the
features. Let us note that it is the highest score for the dataset that we got. The
pre-trained image model is efficientnet, and the classifier is MLP 1.4.

We can also see that top models used all of the text features for training. This
means that using only the name feature with image data does not have

The interesting point is that initially, VGG16 performed the worst out of all
image-pre-trained models. However, when combined with the text feature, it gives
competitive results.

79

Model F1 | Acc | Prec | Rec | Name | Image
MLP 1000 tanh 0.73 1 0.8 |0.66 | 0.8 | False | efficientnet
SVC 0.72 1 0.81 | 0.7 | 0.73 | False | vgg

Extra Trees 0.72 1 0.8 | 0.66 | 0.79 | False | vgg

Extra Trees 0.72 1 0.81 | 0.68 | 0.77 | False | efficientnet
AdaBoost 0.7110.8 | 0.67 | 0.75 | False | resnet
SVC 0.71 1 0.8 | 0.68 | 0.74 | False | resnet
AdaBoost 0.71 1 0.8 | 0.69 | 0.72 | False | efficientnet
Extra Trees 0.7110.8 | 0.67 | 0.76 | False | resnet
Random Forest 0.71 1 0.8 | 0.66 | 0.78 | False | efficientnet
Random Forest 0.7 10.79 | 0.67 | 0.73 | False | MaxOutputEnsemble
XGBoost 0.7 0.8 |0.69 | 0.71 | False | MaxOutputEnsemble
Random Forest 0.7 | 0.78 | 0.63 | 0.78 | False | resnet
Naive Bayes 0.7 10.79] 0.65 | 0.76 | False | efficientnet
MLP 1000 0.7 | 0.81 | 0.72 | 0.67 | False | efficientnet
MLP 1000 relu 0.001 | 0.7 | 0.81 | 0.72 | 0.67 | False | efficientnet
MLP 300 200 100 0.7 | 0.79 | 0.66 | 0.74 | False | efficientnet
MLP 1000 tanh 0.69 | 0.77 | 0.62 | 0.77 | False | resnet
MLP 500 500 0.69 | 0.76 | 0.6 0.81 | False | vgg

MLP 300 200 100 0.69 | 0.77 | 0.63 | 0.76 | False | vgg
AdaBoost 0.69 | 0.77 | 0.62 | 0.78 | False | vgg

Table 4.1 Results for combined text and image data on ProMapEn dataset.

4.0.3 Results on ProMapCz Dataset

The results of combining text and image data on the ProMapCz dataset are
presented in Table 4.2.

80

Model F1 | Acc | Prec | Rec | Name | Image

MLP 500 500 0.69 | 0.75 | 0.58 | 0.87 | False | efficientnet
AdaBoost 0.68 | 0.76 | 0.6 | 0.78 | False | MaxOutputEnsemble
MLP 1000 relu adam | 0.67 | 0.71 | 0.53 | 0.91 | False | efficientnet

MLP 300 200 100 0.67 | 0.71 | 0.53 | 0.91 | False | MaxOutputEnsemble
Bagging 0.67 | 0.76 | 0.61 | 0.76 | False | MaxOutputEnsemble
MLP 300 200 100 0.67 | 0.73 | 0.55 | 0.84 | False | efficientnet

MLP 1000 relu 0.001 | 0.67 | 0.73 | 0.56 | 0.83 | False | MaxOutputEnsemble

MLP 1000 0.67 | 0.73 | 0.56 | 0.83 | False | MaxOutputEnsemble
SGD 0.67 | 0.76 | 0.6 | 0.77 | True | MaxOutputEnsemble
MLP 1000 tanh 0.66 | 0.75 | 0.59 | 0.76 | False | MaxOutputEnsemble
MLP 1000 relu adam | 0.66 | 0.74 | 0.58 | 0.78 | True | vgg

AdaBoost 0.66 | 0.74 | 0.58 | 0.77 | False | efficientnet

MLP 1000 tanh 0.66 | 0.73 | 0.56 | 0.8 | False | efficientnet

SVC 0.66 | 0.74 | 0.58 | 0.76 | False | MaxOutputEnsemble
MLP 1000 relu adam | 0.66 | 0.74 | 0.58 | 0.78 | True | MaxOutputEnsemble
Random Forest 0.66 | 0.75 | 0.59 | 0.74 | False | efficientnet

Bagging 0.66 | 0.76 | 0.62 | 0.7 | True | efficientnet

Logistic Regression 0.66 | 0.75 | 0.59 | 0.74 | False | MaxOutputEnsemble
MLP 500 500 0.66 | 0.72 | 0.54 | 0.84 | False | vgg

MLP 300 200 100 0.66 | 0.73 | 0.56 | 0.8 | False | vgg

Table 4.2 Results for combined text and image data on ProMapCz dataset.

The highest F1 score of 0.69 was achieved using the efficientnet and MLP
classifier 1.4.

Here, we can also see that the top image pretrained models are efficientnet
and MaxOutputEnsemble.

4.0.4 Comparative Analysis of F1 Scores

After testing on datasets such as ProMapEn, ProMapCz, Amazon-Google,
and Amazon-Walmart, our findings indicate that fine-tuning and employing
multimodal approaches significantly enhance accuracy and F1 scores. Specifically,
our experiments yielded the following highest F1 scores:

« ProMapEn: 0.73 using all features (text + images) with an MLP classifier
1.4, and 0.72 using only text features with an SVC classifier 1.4.

o ProMapCz: 0.72 with a fine-tuned BERT model.
o Amazon-Google: 0.99 with a fine-tuned BERT model.
o Amazon-Walmart: 0.93 with a fine-tuned BERT model.

To contextualize our results, we compare them with those reported by in
ProMap datasets for Product Mapping in e-commerce [6]. Table ?? presents a
comparative analysis, showcasing the performance metrics side by side.

81

Dataset Our F1 Score | Their F1 Score | Difference
ProMapEn 0.73 0.7 0.03
ProMapCz 0.72 0.77 -0.05
Amazon-Google 0.99 0.99 0.0
Amazon-Walmart | 0.93 0.93 0.0

Table 4.3 Comparison of F1 Scores: Our Models vs. reference results from [6].

Table ?? provides a comparative analysis of the F1 scores achieved by our

models and those reported by Mackova and Pilat [6]. The analysis reveals several

key insights:

e ProMapEn: Our model achieved an F1 score of 0.73, which is an im-
provement of 0.03 over the reference results. This improvement can be
attributed to the use of multimodal features (text and images) and use of
Serialized model for sentence similarity 3.6.1. Also, lets notice that we, also,

outperformed the result by 0.02 without using the image data.

o« ProMapCz: Our model achieved an F1 score of 0.72, which is 0.05 lower

than the reference results [6]. This difference may be due to the specific

techniques and feature selection methods employed in their approach. Also,

let’s note that the image data is not used to achieve an F'1 score of 0.72.

« Amazon-Google: Both our model and the reference results [6] achieved
an identical F1 score of 0.99. This consistency suggests that the fine-tuned

BERT model is highly effective for this dataset.

e« Amazon-Walmart: Similarly, both models achieved an F1 score of 0.93,

indicating that the methodologies used are robust for this dataset.

Overall, the comparative analysis demonstrates that our models are competi-
tive, achieving higher F1 scores on certain datasets and performing equally well

on others.

82

Conclusion

We ran the experiments by applying deep-learning techniques for Product
Mapping. The thesis starts with traditional text classification approaches like
TF-IDF and Word2Vec and moves on to using BERT-based architectures for
text data. We used Convolutional Neural Networks like VGG16, ResNet50,
Inception, and EfficientNet for image processing. We have tested our approaches
on ProMapEn, ProMapCz, Amazon-Google, and Amazon-Walmart datasets with
the help of machine learning and deep learning approaches ??7. We found that
fine-tuning BERT and multimodal approaches improves accuracy and F1 scores.
This observation highlights the importance of deep learning in Product Mapping.
We got a value of 0.73 for the F1 score with the ProMapEn data using MLP
classifiers and 0.72 with text features only using an SVC classifier. For the
ProMapCz dataset, the best score was 0.72 using the fine-tuned BERT model.
Using a fine-tuned BERT model, we achieved an F1 of 0.99 in the Amazon-Google
dataset and 0.93 in the Amazon-Walmart dataset.

Other results are also shown for comparison purposes [6]. More precisely, our F1
score on the ProMapEn dataset has increased for both image and text data and
F1 for text data only. While the F1 score was not high in the ProMapCz dataset,
it has huge potential to fine-tune the multitask training process when integrated
with data from images. The comparative analysis showed that our models are
competitive, with even higher F'1 on some datasets and equal on others.

This opens many promising avenues for improvement in developing Product
Mapping. In this view, it can be important to have big language models to find
text and image similarity. Such models as ChatGPT, LLama3, and Gemini would
enhance better understanding and precision in matching product descriptions
to images. Moreover, category-specific training models will show much better
performance in catching the peculiarities of categories. Such an approach may
improve the precision of matching products in a particular domain.

Other features such as brand names or other characteristics could also be
included to enhance the data processing techniques. This enriched representation
would lead to more accurate product mappings. More advanced deep learning
methods and architectures could also be explored, such as self-supervised learning,
generative models, or ensemble learning, which may bring new insights and
improvements to product mapping. This thesis discusses the analysis of the
different techniques and their performance on varied datasets, creating a solid
ground for future work in Product Mapping.

83

Bibliography

1. PRIMPELI, Anna; PEETERS, Ralph; BizER, Christian. The WDC training
dataset and gold standard for large-scale product matching. In: Companion
Proceedings of The 2019 World Wide Web Conference (WWW ’19). New
York, NY, USA: Association for Computing Machinery, 2019, pp. 381-386.
Available from DOI: 10.1145/3308560.3316609.

2. NAUMANN, F. Amazon-Walmart dataset [https://hpi . de/naumann/
projects/repeatability/datasets/amazon-walmart-dataset . html].

IN.d.].

3. RanM, E.; PEUKERT, D.E.; SAEEDI, A.; NENTWIG, M. Benchmark datasets
for entity resolution [https://dbs.uni-leipzig.de/research/projects/
object_matching/benchmark_datasets_for_entity_resolution]. [N.d.].

4. RAHM, Erhard; PEUKERT, Eric; SAEEDI, Alieh; NENTWIG, Markus. Bench-
mark datasets for entity resolution |[https://dbs . uni-leipzig . de/
research/projects/object_matching/benchmark_datasets_for_entity_|
resolution]. [N.d.]. Accessed: 2024-07-17.

5. KOPCKE, Hanna; THOR, Andreas; RAHM, Erhard. Evaluation of entity
resolution approaches on real-world match problems. Proceedings of the
VLDB Endowment. 2010, vol. 3, no. 1-2, pp. 484-493. Available from DOTI:
10.14778/1920841.1920904.

6. MACKOVA, Katefina; PILAT, Martin. ProMap: Datasets for Product Mapping
in E-commerce. 2023. Available from arXiv: 2309.06882 [cs.LG].

7. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA, Kristina.
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. 2018. Available from arXiv: 1810.04805 [cs.CL].

8. CHEN, Tianqgi; GUESTRIN, Carlos. XGBoost: A Scalable Tree Boosting
System. In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. San Francisco, California, USA:
ACM, 2016, pp. 785-794. KDD ’16. 1SBN 978-1-4503-4232-2. Available from
DOI: 10.1145/2939672.2939785.

9. Cox, David R. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological). 1958, vol. 20, no. 2,
pp. 215-232.

10. Ho, Tin Kam. Random decision forests. In: Proceedings of 3rd international

conference on document analysis and recognition. IEEE, 1995, vol. 1, pp. 278~
282.

11. CorrtES, Corinna; VAPNIK, Vladimir. Support-vector networks. Machine
learning. 1995, vol. 20, no. 3, pp. 273-297.

12. Fix, Evelyn; HODGES, Joseph L. Discriminatory Analysis. Nonparamet-
ric Discrimination: Consistency Properties. 1951. Report. USAF School
of Aviation Medicine, Randolph Field, Texas. Available also from: https:
//archive.org/details/discriminatory-analysis.

84

https://doi.org/10.1145/3308560.3316609
https://hpi.de/naumann/projects/repeatability/datasets/amazon-walmart-dataset.html
https://hpi.de/naumann/projects/repeatability/datasets/amazon-walmart-dataset.html
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://doi.org/10.14778/1920841.1920904
https://arxiv.org/abs/2309.06882
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2939672.2939785
https://archive.org/details/discriminatory-analysis
https://archive.org/details/discriminatory-analysis

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

SAMMUT, Claude; WEBB, Geoffrey 1. (eds.). TF-IDF. In: Encyclopedia
of Machine Learning. Boston, MA: Springer US, 2010, pp. 986-987. ISBN
978-0-387-30164-8. Available from DOI: 10.1007/978-0-387-30164-8_832.

HAYKIN, Simon. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

SCHAPIRE, Robert E. Explaining adaboost. In: Empirical inference. Springer,
2013, pp. 37-52.

FrRIEDMAN, Jerome H. Greedy function approximation: a gradient boosting
machine. Annals of statistics. 2001, pp. 1189-1232.

GEURTS, Pierre; ERNST, Damien; WEHENKEL, Louis. Extremely randomized
trees. Machine Learning. 2006, vol. 63, no. 1, pp. 3-42. Available from DOTI:
10.1007/s10994-006-6226-1.

FaN, Wei; ZHANG, Kun. Bagging. In: Encyclopedia of Database Systems.
Ed. by LIU, LING; OZSU, M. TAMER. Boston, MA: Springer US, 2009,
pp. 206-210. 1SBN 978-0-387-39940-9. Available from DOI: 10.1007/978-0-
387-39940-9_567.

RUDER, Sebastian. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747. 2016.

SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. Available from arXiv: 1409.1556
[cs.CV].

DENG, Jia; DONG, Wei; SOCHER, Richard; Li, Li-Jia; L1, Kai; FEI-FEI,
Li. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE

conference on computer vision and pattern recognition. leee, 2009, pp. 248—
255.

HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual
Learning for Image Recognition. 2015. Available from arXiv: 1512.03385
[cs.CV].

SZEGEDY, Christian; L1u, Wei; JI1A, Yangqing; SERMANET, Pierre; REED,
Scott; ANGUELOV, Dragomir; ERHAN, Dumitru; VANHOUCKE, Vincent;
RABINOVICH, Andrew. Going Deeper with Convolutions. 2014. Available
from arXiv: 1409.4842 [cs.CV].

TaAN, Mingxing; LE, Quoc V. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. 2019. Available from arXiv: 1905. 11946
[cs.LG].

MikoLov, Tomas; CHEN, Kai; CORRADO, Greg; DEAN, Jeffrey. Efficient
Estimation of Word Representations in Vector Space. 2013. Available from
arXiv: 1301.3781 [cs.CL].

TRACZ, Janusz; WOJCIK, Piotr Iwo; JASINSKA-KoOBUS, Kalina; BELLUZZO,
Riccardo; MROCZKOWSKI, Robert; GAWLIK, Ireneusz. Proceedings of Work-
shop on Natural Language Processing in E-Commerce. BERT-based similarity
learning for product matching. Ed. by ZHAO, Huasha; SONDHI, Parikshit;
BAcH, Nguyen; HEWAVITHARANA, Sanjika; HE, Yifan; S1, Luo; J1, Heng.
Barcelona, Spain: Association for Computational Linguistics, 2020. Available
also from: https://aclanthology.org/2020.ecomnlp-1.7.

85

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-0-387-39940-9_567
https://doi.org/10.1007/978-0-387-39940-9_567
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1301.3781
https://aclanthology.org/2020.ecomnlp-1.7

27.

28.

REIMERS, Nils; GUREVYCH, Iryna. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for Com-
putational Linguistics, 2019. Available also from: http://arxiv.org/abs/
1908.10084.

GOLESTANI, Abbas. ag-nli-DeTS-sentence-similarity-vl [https://huggingfacel
co/abbasgolestani/ag-nli-DeTS-sentence-similarity-vi]. 2023. Ac-
cessed: 2023-07-12.

86

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://huggingface.co/abbasgolestani/ag-nli-DeTS-sentence-similarity-v1
https://huggingface.co/abbasgolestani/ag-nli-DeTS-sentence-similarity-v1

List of Figures

2.1 Comparison of product images with double-sided arrows indicating
comparisons and highlighting the most similar pairs..

87

List of Tables

1.1 Comparison of Machine Learning Methods on Various Datasets . 12

2.1 Detailed results for VGG16 model on ProMapEn dataset using

several machine learning algorithms. 20
2.2 Detailed results for VGG16 model on ProMapCz dataset using
several machine learning algorithms. 21
2.3 Detailed results for ResNet50 model on ProMapEn dataset. 22
2.4 Detailed results for ResNet50 model on ProMapCz dataset. 23
2.5 Detailed results for Inception V3 model on ProMapEn dataset (only
image data). 24
2.6 Detailed results for Inception V3 model on ProMapCz dataset (only
image data). 25
2.7 Detailed results for EfficientNet model on ProMapEn dataset (only
image data) Lo 26
2.8 Detailed results for EfficientNet model on ProMapCz dataset (only
image data). 27
2.9 Detailed results for MaxOutputEnsemble custom model on ProMapEn
dataset (only image data). L 28
2.10 Detailed results for MaxOutputEnsemble custom model on ProMapCz
dataset (only image data). L. 29
2.11 Detailed results for MaxOutputEnsemble custom model on ProMapEn
dataset (only image data) L 30
2.12 Detailed results for MaxOutputEnsemble custom model on ProMapCz
dataset (only image data) L. 31

3.1 Results for ProMapEn using TF-IDF (only text data). The Name
column shows if only "name" features were used for comparison or

all text features.o 33
3.2 Results for ProMapCz using TF-IDF (only text data). 34
3.3 Results for Amazon-Walmart using TF-IDF (only text data). . . . 35
3.4 Results for Amazon-Google using TF-IDF (only text data). 36
3.5 Top 25 results for ProMapEn using Word2Vec models (only text

data). 38
3.6 Top 25 results for ProMapCz using Word2Vec models (only text

data). ... 39
3.7 Top 25 results for Amazon-Google using Word2Vec models (only

text data). 40
3.8 Results for ProMapEn dataset using bert-base-uncased (only text

data). 41
3.9 Results for ProMapCz dataset using bert-base-uncased (only text

data). 42
3.10 Results for Amazon-Walmart dataset using bert-base-uncased (only

text data). 43
3.11 Results for Amazon-Google dataset using bert-base-uncased (only

text data). 44

38

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

3.25
3.26

3.27
3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39
3.40

Results for ProMapEn dataset using bert-large-uncased (only text

data). 45
Results for ProMapEn dataset using bert-large-uncased (only text
data). 46
Results for Amazon-Walmart dataset using bert-large-uncased (only
text data). 47
Results for Amazon-Google dataset using bert-large-uncased (only
text data). 48

Results for ProMapEn dataset using roberta-base (only text data). 49
Results for ProMapCz dataset using roberta-base (only text data). 50
Results for Amazon-Walmart dataset using roberta-base (only text

data). . ..o 51
Results for Amazon-Google dataset using roberta-base (only text
data). . .. 52

Results for ProMapEn dataset using roberta-large (only text data). 53
Results for ProMapCz dataset using roberta-large (only text data). 54
Results for Amazon-Walmart dataset using roberta-large (only text

data). 55
Results for Amazon-Google dataset using roberta-large (only text
data). 56
Results for ProMapEn dataset using distilbert-base-uncased (only
text data). 57
Results for ProMapCz dataset using distilbert (only text data). . 58
Results for Amazon-Walmart dataset using distilbert (only text
data). 59

Results for Amazon-Google dataset using distilbert (only text data). 60
Results for ProMapEn dataset using all-MiniLM-L6-v2 (only text

data). . ..o 61
Results for ProMapCz dataset using all-MiniLM-L6-v2 (only text
data). . ..o 62
Results for Amazon-Walmart dataset using all-MiniLM-L6-v2 (only
text data). 63
Results for Amazon-Google dataset using all-MiniLM-L6-v2 (only
text data). 64
Results for ProMapEn dataset using all-MiniLM-L6-v2 (only text
data). 65
Results for ProMapCz dataset using all-mpnet-base-v2 (only text
data). 66
Results for Amazon-Google dataset using all-mpnet-base-v2 (only
text data).o 67
Results for ProMapEn dataset using stsb-roberta-large (only text
data). ... 68
Results for ProMapCz dataset using all-mpnet-base-v2 (only text
data). . ..o 69
Top 20 results for ProMapEn data using NLI models (only text data). 71
Top 20 results for ProMapCz data using NLI models 72
Results for ProMapEn data (only text data). 73
Results for ProMapCz data using (only text data). 74

89

3.41

4.1
4.2
4.3

Results of Fine-tuned Bert (only text data). 75

Results for combined text and image data on ProMapEn dataset. 80
Results for combined text and image data on ProMapCz dataset. 81
Comparison of F1 Scores: Our Models vs. reference results from [6]. 82

90

List of Abbreviations

e TF-IDF: Term Frequency-Inverse Document Frequency

e« Word2Vec: Word to Vector

« BERT: Bidirectional Encoder Representations from Transformers
o CNN: Convolutional Neural Network

« VGG16: Visual Geometry Group 16

 ResNet50: Residual Network 50

e SVC: Support Vector Classifier

o MLP: Multi-Layer Perceptron

e ProMapEn: Product Mapping English dataset

e ProMapCz: Product Mapping Czech dataset

91

A Attachments

A.1 Source Code

o Code Repository: https://gitlab.mff.cuni.cz/teaching/nprg045/
mackova/hovsepyan_mkrtich

A.2 Datasets

e ProMap, Amazon-Google, and Amazon-Walmart: https://github.
com/kackamac/Product-Mapping-Datasets

92

https://gitlab.mff.cuni.cz/teaching/nprg045/mackova/hovsepyan_mkrtich
https://gitlab.mff.cuni.cz/teaching/nprg045/mackova/hovsepyan_mkrtich
https://github.com/kackamac/Product-Mapping-Datasets
https://github.com/kackamac/Product-Mapping-Datasets

	Introduction
	Product Mapping
	Product Mapping Task
	The Importance of Product Mapping
	Techniques in Product Mapping

	Datasets
	Existing Datasets
	Chosen Datasets
	ProMap Datasets

	State of the Art
	Traditional Approaches
	State of the Art Models

	Machine Learning and Deep Learning Models Used in the Thesis

	Comparison of Image Representation Models
	Image Preprocessing Methods
	Data Processing Approach
	Feature Extraction Models
	VGG16
	ResNet50
	Inception V3
	EfficientNet
	EfficientNet Variants
	MaxOutputEnsemble Custom Model
	Conclusion about using only image data

	Comparison of Text Representation Models
	Introduction
	Data Processing Workflow

	Traditional Models
	TF-IDF
	Word2Vec

	Transformer-Based Models
	BERT Models
	RoBERTa Models
	DistilBERT Models

	Sentence Transformers
	all-MiniLM-L6-v2
	all-mpnet-base-v2
	stsb-roberta-large

	Natural Language Inference (NLI) Models
	nli-roberta-base-v2
	nli-bert-base
	nli-distilroberta-base-v2
	nli-mpnet-base-v2

	Specialized Models
	abbasgolestani/ag-nli-DeTS-sentence-similarity-v1

	Fine-Tuning BERT for Sentence Similarity
	First Fine-Tuned model
	 Fine-Tuning BERT for Product Matching with Triplet-Loss
	Performance Evaluation

	Conclusion

	Combining Text and Image Data
	Methodology
	Results on ProMapEn Dataset
	Results on ProMapCz Dataset
	Comparative Analysis of F1 Scores

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Source Code
	Datasets

