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ABSTRACT
It is well known in the field of machine learning that committee models improve accuracy, provide generalization error estimates, and enable
active learning strategies. In this work, we adapt these concepts to interatomic potentials based on artificial neural networks. Instead of a single
model, multiple models that share the same atomic environment descriptors yield an average that outperforms its individual members as well
as a measure of the generalization error in the form of the committee disagreement. We not only use this disagreement to identify the most
relevant configurations to build up the model’s training set in an active learning procedure but also monitor and bias it during simulations to
control the generalization error. This facilitates the adaptive development of committee neural network potentials and their training sets while
keeping the number of ab initio calculations to a minimum. To illustrate the benefits of this methodology, we apply it to the development of
a committee model for water in the condensed phase. Starting from a single reference ab initio simulation, we use active learning to expand
into new state points and to describe the quantum nature of the nuclei. The final model, trained on 814 reference calculations, yields excellent
results under a range of conditions, from liquid water at ambient and elevated temperatures and pressures to different phases of ice, and the
air–water interface—all including nuclear quantum effects. This approach to committee models will enable the systematic development of
robust machine learning models for a broad range of systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016004., s

I. INTRODUCTION

Machine learning has emerged in recent years as a powerful
tool for the description of complex chemical systems.1–5 A major
contribution has been the development of machine learning poten-
tials (MLPs)—models that represent potential energy surfaces cre-
ated by explicit ab inito calculations—which enables the study of
chemical systems for long timescales and on large length scales, even
with chemical reactivity included. The first method based on arti-
ficial neural networks that is, in principle, scalable to arbitrary sys-
tem sizes was the high-dimensional neural network potential (NNP)
methodology6,7 combined with atom-centered symmetry functions
to describe atomic environments.8 Over the years, many other dis-
tinct methods have been proposed for this difficult task based on a

range of descriptors and either on artificial neural networks9–16 or
on kernels.17–22 Since their introduction, NNPs have been success-
fully applied to solvents,23–25 solids,12,26,27 solid–liquid interfaces,28
and reactive processes in solution29 or at interfaces,30,31 and have
therefore repeatedly demonstrated their reliability for the under-
standing of complex molecular systems and materials. However, a
crucial component of any MLP is a robust and representative train-
ing set whose construction can easily become the most challenging
part of the development of such a model, especially for condensed
phase systems.

At the same time, it is well known in themachine learning com-
munity that the predictive power of a machine learning approach
can be substantially improved by combining multiple individual
models.32–36 Instead of a single model, multiple models are trained
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independently to form a committee that offers several benefits. Aver-
aging over the predictions of an ensemble of committee members
usually provides an improved accuracy of the prediction compared
to the individual members.33,37–39 In addition, the disagreement of
the committee, as measured by the standard deviation of the pre-
dictions of the members, provides access to an estimate of the
generalization error.34,40,41 Moreover, the committee model can sub-
stantially reduce overfitting issues.42 Finally, by adding previously
unlabeled data with maximal committee disagreement to the train-
ing set, the model can be systematically improved—an active learn-
ing strategy known as query by committee (QbC).34,43

Despite the rise of machine learning in molecular simulations
and materials science, committee models are not considered stan-
dard tools and have mainly been used in pioneering work. This
includes the well-established practice to use the difference between
two NNP models for the manual improvement of the training
set,23,44,45 as first described in Ref. 46, but without combining the
predictions of the twomodels.More recently, the use of twomachine
learningmodels has been proposed for the simulation of the infrared
spectra of gas-phase molecules either in an ensemble averaging
approach47 or for the error estimation in post-processing.48 Addi-
tionally, the disagreement of NNPs has been shown to be crucial
for the automated fitting of NNPs at coupled cluster accuracy for
protonated water clusters.49 Ensemble methods were also recently
proposed for uncertainty estimation in chemical machine learning.50
Besides these examples, QbC strategies have been leveraged for the
development of moment tensor potentials51 and more recently for
deep potential models.52 QbC has also been successfully utilized
for active learning in chemical space,53 which additionally demon-
strated the improvements in accuracy obtained by using the com-
mittee average for predictions. In the realm of Gaussian approxi-
mation potentials,17 data-driven learning strategies54 have recently
been shown to be crucial for the automated development of machine
learning potentials. Finally, complementary strategies such as far-
thest point sampling55 have been tested for the construction of
uniform datasets.56

In this work, we exploit the established benefits of commit-
tee models known in the field of machine learning to create robust
MLPs with controlled generalization errors in an automated fashion.
Conceptually, our approach is based on a combination of multi-
ple models of the well-established NNP formalism.6,7 The resulting
committee intentionally shares the same atom-centered symmetry
functions8 as descriptors for the atomic environments, thus lead-
ing to a small, often negligible, computational overhead in produc-
tion runs. We show that, compared to the individual NNPs, this
approach results in improved accuracy for predictions and at the
same time gives direct access to the committee disagreement, an esti-
mate of the generalization error. This disagreement—being straight-
forward to compute during a simulation—can thus be monitored
and even biased to stabilize the simulation. It also enables active
learning via QbC techniques, which expands the training set, sys-
tematically improving the model. These benefits allow us to build an
adaptive workflow for the development of committee NNP models
and the systematic generation of their training sets. We finally illus-
trate the capabilities of the resulting methodology on the description
of water in the condensed phase at various state points and make the
resulting training set andmodel parameters available to the commu-
nity. This methodology integrates the aspects of committee models

with new features such as our adaptive active learning workflow and
the biasing of the committee disagreement into a unified framework
and will yield robust MLPs for a broad range of systems.

II. COMMITTEE NEURAL NETWORK POTENTIALS
Before we introduce the principal ideas underlying committee

NNPs (C-NNPs), we first briefly summarize the original Behler–
Parrinello NNPmethodology. To represent an interatomic potential
by NNPs, the atomistic structure is first transformed using atom-
centered symmetry functions8 into translationally and rotationally
invariant descriptors of atomic environments. These serve as the
input for atomic neural networks that output the auxiliary com-
ponents of the total potential energy, which is then obtained as a
sum of contributions from all atoms in the system. The resulting
permutationally invariant structure–energy relation can be analyt-
ically differentiated to obtain forces, for example, to drive molecular
dynamics, and is scalable to essentially arbitrary system sizes.6 The
whole model is trained by optimizing the parameters (weights and
biases) of the atomic neural networks, one per element, to repro-
duce the reference energies and optionally forces of a training set. In
contrast, the network architecture and the particular choice of sym-
metry functions are hyperparameters that need be be specified by the
user. For further details on the original NNP methodology, we refer
the reader to Ref. 7.

In order to extend this methodology to a committee model, we
propose to use multiple NNPs that have been optimized indepen-
dently using the same training set. However, every individual NNP
is trained to a slightly different subset of the full training set, while a
small fraction is intentionally left out in each case. This strategy, also
known as random subsampling in themachine learning community,
introduces variation between the committee members as shown, for
example, in Ref. 34 for artificial neural networks. Together with the
intrinsic stochastic nature of the neural network optimization due
to the initialization of the weights and the optimizer itself, these
different contributing factors provide a sufficiently diverse commit-
tee of NNPs. Given the predictions of potential energies and atomic
forces by the committee of NNPs, {Ei(q)}ni=1 and {−∇αEi(q)}ni=1, as
a function of the positions of all the atoms q ≡ �qα�

N
α=1, the C-NNP

prediction for any given structure is obtained as an average,

E(q) = 1
n

n
�
i=1

Ei(q),

Fα(q) =
1
n

n
�
i=1

Fiα(q) = −
1
n

n
�
i=1
∇αEi(q),

(1)

where i-indexed quantities represent the predictions of the n indi-
vidual committee members, the non-indexed ones represent the
averaged C-NNP prediction, and α is the atomic index. As we have
a set of predictions for each structure, we can define the committee
disagreement as the standard deviation of the individual NNPs,
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where we introduce the notation �Ei ≡ E − Ei. These disagreements
can be easily computed and monitored on-the-fly during a produc-
tion run and provide an estimate of the uncertainty of the C-NNP
prediction for a given configuration. The energy disagreement gives
global information, while the force disagreement is locally resolved
for each atom and can therefore highlight the weaknesses of the pre-
diction for a local environment within a given configuration. Thus,
access to the disagreement enables direct validation of the predic-
tions of a C-NNP model, in particular, since it is known that the
committee disagreement provides a measure of the generalization
error.34,40,41

At this point, it is clear that due to the correlation of disagree-
ment and generalization error, it is beneficial to have small disagree-
ment during a production run. This will be the case for a well-trained
robust committee model, but before we obtain one, we can take steps
to ensure that the disagreement is controlled. To achieve that, we
define a biasing potential E(b) that acts on the energy disagreement,
for example, using a shifted harmonic form

E(b)[σE(q)] = θ(σE − σ0)
1
2
k(b)(σE − σ0)2, (3)

where θ is the Heaviside step function that activates the bias only
upon reaching a threshold disagreement σ0. In principle, other func-
tional forms of the biasing potential are possible, which will be
explored in future work. The above choice makes it particularly easy
to compute the associated biasing forces as

−∇αE(b) = θ(σE − σ0)k(b)
σE − σ0
σE

⋅ 1
n

n
�
i=1
−�Ei∇α�Ei, (4)

which can be used to keep the disagreement within reasonable upper
limits in a molecular dynamics run. Biasing of the committee dis-
agreement, therefore, provides a unique way to stabilize a simu-
lation that employs a committee model. By shifting the onset of
the biasing potential to larger committee disagreements, the influ-
ence on the simulation can be fine tuned and minimized so that
the biasing potential only acts as a safeguard against rare excur-
sions of very high disagreement. Biasing the energy disagreement
in this way allows the system to move freely in parts of configura-
tion space that are well-described by the C-NNP while effectively
erecting a barrier at the boundary of this region, which prevents the
simulation from entering configurations with high generalization
errors. As an alternative that is more local but potentially also more
invasive, separate biases can be introduced on individual atomic
force disagreements, as we detail in the Appendix. We also note
in passing that approaches to sample intermediate disagreement,
in the spirit of various enhanced sampling techniques, could pro-
vide a new direction to efficiently generate relevant structures to
be included in training sets of MLPs as part of an active learning
procedure.

In the present case, we intentionally decided to share the same
set of symmetry functions for the representation of atomic environ-
ments between the C-NNP members. This has the advantage that
the evaluation of the symmetry functions and their derivatives is
only performed once for the whole committee, which is typically
the computationally most demanding step. Then, only the atomic

neural networks are evaluated separately for each committee mem-
ber, incurring only a small overhead compared to using a single
NNP.

To highlight the benefits of the committee NNP approach, we
illustrate some of its main features in Fig. 1. A crucial step in the
development of any machine learning potential is the preparation
of the training set, which we address in detail in Sec. III. The train-
ing set needs to be representative of the planned simulations and
dense enough to generate reliable interpolation between the training
points. Most preparations of training sets, therefore, start from sim-
ulations with the chosen reference method, typically in the spirit of
ab initiomolecular dynamics (AIMD).57 A first training set can then
be generated by choosing uncorrelated configurations from such a

FIG. 1. Illustration of the committee model compared to the individual NNP mem-
bers of the committee and of the QbC procedure for 64 water molecules in the
liquid phase. (a) Ab initio reference trajectory and first selection of training points
equally spaced along the trajectory. (b) Predicted energy along the original tra-
jectory from eight independent NNP fits to the same training points. (c) Predicted
energy along the original trajectory of the committee model composed of the eight
NNPs. (d) Active improvement of the model via query by committee. The additional
new training point is highlighted in red. (e) Performance of the committee model
after seven query by committee iterations. The committee disagreement has been
reduced, and the prediction has improved.
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trajectory, as shown in Fig. 1(a). Training multiple NNPs with dif-
ferent initial conditions or to different subsets of the full training
set leads to varying performance between them, as highlighted in
panel (b). In previous work, the user would then select the best
performing NNP as the model of choice. However, if the different
models are combined to a committee NNP, the prediction is sub-
stantially improved, as shown in panel (c). At the same time, the
committee disagreement allows the identification of configurations
for which the uncertainty of the model is high, enabling active learn-
ing strategies based on QbC techniques to iteratively improve the
model. As shown in panels (d) and (e), adding selected configura-
tions to the training set substantially reduces the committee’s dis-
agreement while improving its prediction compared to the reference
data. To select new configurations for the training set, it is possible
to use either the global total energy disagreement or the local infor-
mation contained in the atomic force disagreement, after a suitable
reduction over all atoms in the given frame. Overall, these features
allow for a data-driven approach to developing C-NNP models, as
presented in detail in Sec. III.

The methodology to make use of the benefits of committee
models has been implemented in the CP2K simulation package58
for Behler–Parrinello NNPs and will be made available in the next
release. This includes the on-the-fly evaluation of the energy and
force disagreement and the associated biasing of the energy dis-
agreement. In practice, a committee NNP model can be obtained
by performing individual fits with any NNP training code, for exam-
ple, with the open-source n2p2 code27 or the RuNNer code.59 One
can therefore see that the proposed concepts are straightforward to
adapt for a broad range of existing MLPs while introducing benefits
and additional features.

III. ACTIVE LEARNING PROCEDURE FOR COMMITTEE
NEURAL NETWORK POTENTIALS

Let us now address a crucial step in the development of
any MLP, the preparation of the training set. A machine learn-
ing model can only be as good as its underlying data, which needs
to be representative of the situations encountered when using the
final model. As discussed in the Introduction, the selection of
configurations for the training of machine learning potentials has
recently seen great progress toward data-driven and automated
approaches.21,45,47,49,51–54,60,61 In a similar spirit, here, we present an
adaptive active learning workflow for the construction of robust
C-NNPs for classical and path integral molecular simulations. The
approach developed here builds on the automated fitting of NNPs at
the coupled cluster level of theory for gas-phase clusters.49,62

We make use of two basic properties of the committee model
to automate the development of C-NNPs. First, as shown in Sec.
II, the committee disagreement can be used as an estimate of the
generalization error of the model. By adding configurations to the
training points that feature the highest committee disagreement, the
most important points for an improvement of the model can be iter-
atively selected. This is the main principle behind active learning via
QbC.43 Second, the C-NNP is many orders of magnitude cheaper
than the reference electronic structure method, and new configu-
rations can therefore be generated rapidly using the C-NNP. These
large sets of configurations can then be efficiently screened using

QbC, and expensive reference calculations are only performed for
these selected points.

We organize the active learning workflow into different gen-
erations, each of them comprising multiple QbC cycles and other
operations, as outlined in Fig. 2 for the condensed phase of water.
Each generation includes new state points and yields a C-NNP that
will be used to generate new candidate structures for the next gen-
eration. The on-the-fly monitoring and biasing of the committee
disagreement provide invaluable tools to guarantee the stability of
these simulations and the validity of the new configurations. Only
at the beginning of the first generation, the process is seeded from
an AIMD simulation in order to provide an initial set of structures.
If the new conditions are not structurally drastically different from
those in the previous generation and we use disagreement biasing
to keep molecular dynamics stable, we can start with a single state
point and gradually expand into new regions without the need to run
additional expensive AIMD simulations. If the final model should
be applied together with a quantum description of the nuclei, this
can also be adaptively included over the generations by gradually
increasing the quantum character of the nuclei in imaginary time
path integral simulations.63,64

Within a generation, QbC is used to adaptively extend the
training set by selecting the most representative configurations sep-
arately for each state point, improving its description, as schemati-
cally shown in the bottom left panel of Fig. 2. With this procedure,
multiple state points can easily be treated in parallel. At the very
beginning of each QbC cycle, a small number of random config-
urations are chosen to train the first committee, while in subse-
quent iterations, new configurations are selected based on the high-
est committee disagreement.We chose to use the force disagreement
(rather than the total energy disagreement) for this selection, since
it is sensitive to the local environments within a configuration and
insensitive to the global offset of the whole potential energy sur-
face. Convergence of these individual QbC cycles can be detected
by monitoring this disagreement. If the structures were generated
by AIMD simulations, as is the case at the beginning of the first
generation, the associated reference forces and energies are already
known and the improved C-NNP model can be trained directly
to the growing training set. In subsequent generations, candidate
structures are generated by the molecular dynamics of the previous
generation’s C-NNP, and explicit electronic structure reference cal-
culations are only needed for the small number of actively selected
points. Once all QbC cycles for the selected conditions in a given
generation are converged, the individual training sets are combined
and a final tight optimization of that generation’s resulting C-NNP is
performed.

The adaptive improvement of the model and its training set
is completed after several generations, when all desired conditions
have been included and the final C-NNP exhibits the required accu-
racy in subsequent production simulations. In these simulations,
the committee disagreement on energy and forces can be moni-
tored on the fly and compared to the disagreement known from
the active learning process. If this disagreement stays within the
range encountered for these known conditions included in the train-
ing process, it is expected that the final model reaches the desired
accuracy also in the production simulations. Thus, utilizing the
properties of committee models, the data-driven workflow outlined
above helps automate the development of robust machine learning

J. Chem. Phys. 153, 104105 (2020); doi: 10.1063/5.0016004 153, 104105-4

Published under license by AIP Publishing

 31 August 2023 13:09:24

148 C.1. Paper I



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Illustration of the adaptive improvement of the committee NNP over multiple generations. The top panel summarizes the expansion into new target phases and the
iterative improvement of the description of the nuclei in each generation. Within each generation, the most important points for an improvement of the model are actively
selected using QbC based on the highest committee disagreement, separately for each selected state point (bottom left). Afterward, the reference energy and forces, if
previously unknown for these structures, are obtained from explicit electronic structure calculations. These points are added to the training set, and the committee members
are trained to the expanded training set. QbC iterations are repeated until the committee disagreement converges (see the text for details). At the end of each generation, all
training points are gathered in order to perform a final extended fit of the committee model (bottom middle). The resulting C-NNPs can consecutively be applied for exhaustive
(PI)MD sampling at various new state points (bottom right). These simulations provide the structures for the next generation in the adaptive improvement.

potentials and subsequent production simulations with controlled
accuracy.

IV. APPLICATION OF COMMITTEE NEURAL NETWORK
POTENTIALS TO WATER

A. Development of the committee model
In order to showcase the benefits of the committee NNP

methodology, we develop a C-NNP model for water at various state
points, including also the quantum nature of the nuclei, follow-
ing the data-driven workflow described above. All specific settings
used here are listed in Sec. VI, while the training input files, train-
ing set, and parameters of the final model are publicly available at
http://doi.org/10.5281/zenodo.4004590. In the first active learning
generation, we seed the procedure with 300 ps of classical AIMD
simulation of liquid water (LW) at 300 K obtained at the hybrid

density functional theory (DFT) level65 and perform a single QbC
cycle targeting this state point. This QbC cycle uses a committee of
8 NNPs and is initialized with 20 structures randomly selected from
the ensemble. Ten new configurations with the highest disagreement
are added in each subsequent iteration. After the training of the indi-
vidual members, the energies and forces of 5000 random structures
from the original trajectory are predicted in order to compute the
committee disagreement. We intentionally use only a subset of the
large pool of candidate structures in order to make the QbC itera-
tions computationally more efficient. For the same reason, the QbC
NNPs are optimized relatively loosely (15 epochs) within each QbC
iteration. In order to select the most relevant configurations for an
improvement of the model, we chose to use the mean force dis-
agreement of each configuration to rank the candidate structures.
If a newly selected configuration has already been included in a pre-
vious QbC iteration, it is not added again to the training set. Such
occasions indicate that the QbC process is reaching the limits of
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the provided set of configurations, since structures are selected more
than once. Given that the DFT energies and forces are already known
in the first generation, the selected points are directly added to the
training set.

Monitoring of the committee disagreement during a QbC cycle
allows the user to easily gauge the convergence of the process. The
evolution of the atomic force disagreement during the first QbC pro-
cess is shown in the top panel of Fig. 3 separately for the structures
in the training set, the newly selected structures, and the 5000 can-
didates, from which the next ten structures for the training set are
chosen. At the beginning of the QbC process, the newly selected
points feature substantially larger disagreement compared to the
large set of candidate structures and the training set. As more and
more points with the highest disagreement are added to the training
set, the disagreement of all three sets of structures decreases mono-
tonically. However, the disagreement of the selected points decreases
faster and approaches that of the training set and the candidate
structures, indicating that the newly selected points are not adding
further value for an improvement of the model anymore. The dis-
agreement for the training set and the set of candidates is similar,
only slightly higher for the training structures for most of the pro-
cess, which shows that the training set picks up the outliers of the
ensemble, but without substantially deteriorating the quality of the
model. The force disagreement for all considered sets of structures

FIG. 3. Convergence of the QbC process in the first generation with respect to
the number of structures in the training set. The top panel shows, in the logarith-
mic scale, the mean force committee disagreement averaged over the given set
of structures �σF� for the training set (Training), the large set of potential new
candidates (Candidates), and the actual newly selected configurations (Selected).
The bottom panel shows, in the logarithmic scale, the force root mean square
error (RMSE) of the C-NNP model for different committee sizes from one to eight
members. It was evaluated on 500 independently generated configurations for
the target state point of liquid water at 300 K with classical nuclei (see Sec. VI
for details). The final number of training points (111) used from the QbC cycle is
marked with a vertical dashed line.

eventually decreases more slowly, indicating that the active learn-
ing process is well converged after roughly 100 structures have been
added to the training set.

Let us next focus on the actual performance of the C-NNP
model for water at the chosen starting condition. As mentioned
previously, the committee disagreement is an estimate of the gen-
eralization error, and so we should expect the accuracy of the model
to improve over the QbC process as the disagreement decreases. In
order to validate this expectation for the C-NNP approach, the evo-
lution of the force root mean square error (RMSE) along the QbC
cycle for an independently generated test set at the chosen condition
is shown in the bottom panel of Fig. 3. In addition to the RMSE of
the full committee with eight members, we also include the perfor-
mance of all possible committees with four, two, and one members
(i.e., individual NNPs) for comparison. As anticipated from the evo-
lution of the committee disagreement, the force RMSE of the full
eight-member C-NNP starts at roughly 60 meV/Å at the beginning
of the QbC process and converges monotonically to a value of about
40 meV/Å after roughly 100 points have been added to the train-
ing set. At the same time, the performance of the smaller commit-
tees, and most notably the individual NNPs, is substantially worse,
especially at the beginning, where the individual NNPs show an
RMSE that is twice as large as that of the full C-NNP. Although the
large initial differences decrease as the QbC process progresses, the
difference remains clear even when convergence has been reached
with roughly 100 training points, where the committee still out-
performs the individual members and reduces the RMSE from an
average of 48 meVÅ for the individual NNPs to 42 meV/Å for the
full eight-member C-NNP. Given the slower convergence with an
increasing number of structures, it is clear that it would take a much
larger training set for the individual NNPs to reach the performance
of the C-NNP. Thus, this analysis highlights the added accuracy
of the committee approach, known from other machine learning
applications.33,37–39

Overall, this detailed analysis of the first QbC cycle shows that
only a relatively small number of points are needed to reach conver-
gence for the starting point of our active learning procedure. The 111
structures identified after the first 10 QbC iterations are therefore
used as the final training set of the first generation C-NNP model.
After stringent re-optimization of the individual NNPs—see Sec. VI
for details—the C-NNP model is ready to be used for the gener-
ation of new structures at state points neighboring to the original
ensemble of liquid water at 300 K. For these simulations, the on-the-
fly computation of the committee disagreement is crucial in order
to judge if the new configurations are physically meaningful. In
addition, the biasing of the committee energy disagreement derived
above can be used to prevent the system from entering regions of
configuration space where the model is not well determined by the
training set.

To illustrate the benefits of this feature, we used the C-NNP
model of generation 1 for the simulation of the air–water interface
at 300 K. In Fig. 4, we show the resulting probability distributions of
the total potential energy and atomic force disagreement. The dis-
tributions from unbiased simulations feature a very long tail for the
energy disagreement, which is to be expected from a model that has
not been trained on gas-phase clusters or interfaces. The interface
is confirmed as the culprit by inspecting the spatial distribution of
the disagreement, as shown in the inset in the bottom panel of Fig. 4,
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FIG. 4. Comparison of the distribution of the committee disagreement with and
without biasing. The plots show the normalized probability densities of the energy
(top panel) and force (bottom panel) committee disagreement for a water slab with
216 water molecules at 300 K. Two simulations were performed for the generation
1 C-NNP model—with and without applying a biasing potential acting on the energy
disagreement. The offset of the biasing potential is chosen such that the bias only
acts on configurations with an energy disagreement per water molecule larger than
0.33 meV per molecule. The resulting functional form is included in the top panel
as a red dotted line. The force disagreement distribution obtained for the training
set of the generation 1 C-NNP model is shown in gray in the bottom panel, and
the averages of the respective distributions are marked as horizontal lines. The
inset in the bottom panel shows a snapshot of the air–water interface with atoms
color-coded by their respective force disagreement, where yellow indicates high
and purple indicates low disagreement.

where individual atoms are colored by their value of the atomic force
disagreement. Indeed, the highest values are found for atoms at the
interface whose environments deviate from those in the bulk liq-
uid. Compared to the force disagreement of the same model for its
training set (gray distribution in the bottom panel of Fig. 4), the
distribution from the slab simulation remains close but exhibits a
heavier tail due to the interfacial atoms. The application of a bias to
the energy disagreement suppresses the tail of its distribution and
yields a more compact distribution. In contrast, it has only a very
subtle effect on the distribution of force disagreement, which high-
lights the relatively mild influence of the biasing potential on the
local behavior of the system. Therefore, the energy disagreement
biasing can be understood as a global safeguard that prevents the
system from moving into regions of configuration space with large
disagreement while keeping local perturbations low. In light of this
analysis, we chose to use a weak biasing potential for all simulations
used to generate configurations under new conditions, as detailed in
Sec. VI, to ensure the stability of the simulations without substantial
distortion of the structures.

In order to select the target state points for the next generation
in the adaptive improvement of the C-NNP model, we performed
test simulations under a variety of conditions with the generation

1 model. After a careful analysis of the observed disagreement for
these simulations, we chose hexagonal ice at 250 K and liquid water
at increased temperatures up to 400 K as the targets for the sec-
ond generation of the active learning process. Moreover, the quan-
tum character of the nuclei is targeted by separate path integral
molecular dynamics (PIMD) simulations for the same state points.
To introduce quantum delocalization gradually, we use undercon-
verged path integral discretization to stay structurally closer to the
classical ensemble of generation 1. We employ a separate QbC pro-
cess to select new structures for each condition to ensure that they
are optimally covered by the training set independently of the others.
This has the additional advantage of increased computational effi-
ciency, as these QbC cycles can easily be run in parallel. In contrast
to the first generation, the QbC iterations are seeded by choosing
20 random structures from the training set of the previous gener-
ation. The DFT reference energy and forces are unknown for the
newly selected configurations and, thus, are computed during the
QbC cycle. Good convergence of these QbC processes is reached
after only 3–5 iterations, and generation 2, therefore, adds a total of
roughly 250 new configurations to the combined training set from
the eight independent QbC cycles.

In the final two generations of the active learning workflow,
additional conditions were targeted. This includes high pressure liq-
uid water, a water slab to represent the air–water interface,66 and
finally the high pressure ice phase VIII, as well as the quantum
nature of the nuclei, as summarized in the top panel of Fig. 2. All
details on these target conditions and the relevant simulations can be
found in Sec. VI. During generation 3 and 4, 240 and 205 additional
reference configurations at the various state points were added to
the training set, respectively. The final result after four generations
of our active learning procedure is a training set of 814 structures
and the corresponding tightly optimized C-NNP, which are able
to describe a broad range of conditions with classical or quantum
nuclei. The whole process was originally initialized from a single
classical AIMD simulation at 300 K, with no ab initio path inte-
gral molecular dynamics (AIPIMD) required at any point. This pro-
cess could be continued to expand into additional thermodynamic
regions in case they are of interest for specific scientific questions.
However, we consider the diversity of the training set sufficient to
showcase the ability of our approach to generate robust and accu-
rate C-NNP models and their training sets in a data-driven and
automated fashion.

B. Validation of the committee model
After presenting the details of the active learning procedure

for the development of a C-NNP model for water at various state
points including quantum nuclei, we analyze the improvement of
the model over the different active learning generations and vali-
date, in particular, the quality of the final generation 4 model. For
this purpose, we explicitly benchmark static and dynamical thermal
properties against AIMD and AIPIMD simulations available for a
single state point (liquid water at 300 K) with and without nuclear
quantum effects, while we compare RMSE values for all the state
points considered. The RMSE analysis is performed for an indepen-
dently created test set, which spans the same thermodynamic state
points as targeted during the development of themodel, but has been
generated by separate simulations with the final generation 4 model,
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FIG. 5. Force root mean square error (RMSE) of the C-NNP models over the four
generations of our active learning workflow. For each generation, we show the
force RMSE relative to the revPBE0-D3 reference evaluated over an indepen-
dently generated test set. The RMSE is averaged over all the state points in each
case, separately for classical and quantum structures.

as detailed in Sec. VI. This test set comprises a total of 8000 configu-
rations, split equally between classical and quantum configurations,
for which DFT reference energies and forces have been calculated.
It, therefore, features one order of magnitude more configurations
than the final training set of generation 4 and enables a comprehen-
sive performance analysis of the improvement of the model for the
various conditions.

To summarize the progress over the different generations, we
report in Fig. 5 the force RMSE for the independently generated

test set averaged over the various state points but separate for quan-
tum and classical structures. Classical structures show only a minor
improvement across the generations, as they are described already
very well by the generation 1 model. On the other hand, quan-
tum structures, which were not included at all in the training set
of generation 1, improve substantially with each generation. The
final C-NNP model of generation 4 reproduces the forces in the
independent test set with a RMSE of 40 meV/Å and 52 meV/Å for
classical and quantum structures, respectively. This is overall slightly
smaller compared to previous work employing NNPs for water with
a classical description of the nuclei23,24 and substantially smaller
compared to a model including quantum nuclei25 while covering
diverse regions of the phase diagram and including the quantum
nature of the nuclei with a training set of just ∼800 configurations.
We believe that the surprising robustness of the model with such a
small training set is mainly due to a combination of two factors. The
active learning process selects structures that are the most important
for the improvement of the model while at the same time avoid-
ing extreme structures that would distort the fit in regions relevant
for simulations. Furthermore, the fact that the C-NNP is an aver-
age of multiple models lends it stability that is not available to the
individual members.

To validate the performance of the final generation 4 C-
NNP model for the calculation of equilibrium properties at a finite
temperature, we compare against reference AIMD and AIPIMD
trajectories of liquid water at 300 K.65 We used the final C-NNP

FIG. 6. Comparison of several local and global static properties as well as the vibrational density of states obtained by explicit revPBE0-D3 ab initio simulations and the final
C-NNP generation 4 model. The three panels on the left show the normalized probability density for the O–H bond lengths (top), the proton-sharing coordinate δ (middle),
and the hydrogen bond angle (bottom) for both a classical and quantum description of the nuclei. The two panels in the middle display the comparison of the O–O radial
distribution functions, while the two panels on the right compare the hydrogen atom vibrational density of states for a classical (top) and a quantum (bottom) description of
the nuclei.
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model to obtain two sets of NVT production trajectories, one with
classical nuclei and one with quantum nuclei. A comparison of both
static and dynamical properties of the system is shown in Fig. 6. Of
the static properties, we focus first on the local structure of indi-
vidual molecules (O–H bond lengths) and their hydrogen bonds
(proton-sharing coordinate δ and hydrogen bond angle). The C-
NNP model exhibits excellent agreement with the reference AIMD
data for these properties in both the classical and quantum cases.
This includes the tail of the quantum distribution of δ that corre-
sponds to strong proton sharing, as shown in Fig. S4. We then char-
acterize the intermolecular structure using radial distribution func-
tions (RDFs), which are, again, captured accurately in both cases.
There is a negligible shift of the second peak of the O–O RDF to
shorter distances in the quantum case (Fig. 6), while the O–H and
H–H RDFs in Figs. S1 and S2 show essentially perfect agreement.
Likewise, the vibrational dynamics of the system, encoded in the
vibrational density of states, is reproduced reliably by the C-NNP
model, as seen for hydrogen atoms in the right column of Fig. 6
and in Fig. S3 on a logarithmic scale. In the classical spectrum, the
bending peak at ∼1700 cm−1 is ever so slightly broadened, resulting
in a small decrease in the peak height, while the rest of the spec-
trum is essentially a perfect match, including low-intensity features
only visible on the logarithmic scale. In the thermostatted ring poly-
mer molecular dynamics (TRPMD) spectrum, the C-NNP model
exhibits a very small red shift in the bending and stretching regions
but shows a very good match of the spectrum as a whole. Note that
a contributing factor to the already very small remaining differences
in the quantum case is the incomplete convergence of ring polymer
contraction in the reference AIPIMD simulations, as suggested by
the comparisons of contraction to 1 and 4 replicas in the supplemen-
tary material of Ref. 65. Overall, we can see that our C-NNP model
matches the reference ab initio method accurately in the descrip-
tion of the structure and vibrational dynamics of liquid water. This is
particularly remarkable in the quantum case, as no explicit AIPIMD
simulations were required in the parameterization of the model.

In the next step, we again widen the analysis of the performance
of the developed C-NNP model for water. As just demonstrated,
it is certainly possible to explicitly validate various properties with
respect to AIMD or even AIPIMD simulations under selected con-
ditions. However, this type of analysis quickly gets out of scope for
all targeted state points that we considered in the present case. In
addition, the whole purpose of the development of MLPs is usually
to replace expensive ab initio sampling. We therefore come back to
a detailed analysis of the RMSEs for energies and forces for the dif-
ferent conditions accessible in our independent test set. As shown in
Fig. 7, the final model scores overall quite well for all considered con-
ditions, usually with slightly larger RMSE values for quantum struc-
tures. The water slab performs the worst in this analysis, indicating
the more complex nature of these configurations due to the presence
of an interface, but still features RMSE values similar to or lower than
those reported for previous work on water.23–25 At the same time, the
two phases of ice are reproduced best, as expected from the simpler
nature of these systems based on the arrangement of the molecules
on a lattice. Although nuclear quantum effects lead to substantially
larger and broader potential energy distributions, the performance
of the final model is convincingly good across the board. Comparing
the score of liquid water for classical and quantum nuclei at 300 K
to the other conditions makes us confident that also the associated

FIG. 7. Root mean square error (RMSE) comparison for the final generation 4 C-
NNP model. The bar chart shows RMSEs of energies and forces for the C-NNP
model with respect to the revPBE0-D3 reference for an independently generated
test set. The independent test set consists of 8000 uncorrelated configurations
covering the thermodynamic conditions targeted during the development of the
C-NNP model and is decomposed into the individual conditions of liquid water
(LW) at different temperatures and pressures, hexagonal ice Ih and ice VIII, as
well as the air–water interface (LW slab), separately for a classical and quantum
description of the nuclei (see Sec. VI for details on the creation of the independent
test set).

properties are reproduced with similarly convincing agreement to
explicit ab initio sampling.

Having seen the performance of the final model, it is worth-
while to step back and see how it emerges from the active learning
process. To do that, we repeat the same validation procedure as
above for the model from generation 1, i.e., a C-NNP trained on 111
structures selected from classical AIMD trajectories of liquid water
at 300 K using QbC. The results of comparison to explicit AIMD and
AIPIMD for equilibrium properties shown in Figs. S6 and S10 clearly
demonstrate that even this model does very well in simulations. For
classical nuclei, it is, in fact, as good as the more extensively trained
final model. Remarkably, it performs well even in the quantum case,
despite the fact that no path integral structures at all were used in
its training. The only noticeable deviations are the red shift in the
infrared region of the vibrational spectrum and the increased pro-
ton sharing, both only slightly larger than for the final model. We
have already seen in Fig. 3 how the RMSE against revPBE0-D3 ener-
gies and forces evaluated on the independent test set for liquid water
at 300 K converges during the QbC process that generates the train-
ing set for this model. When we look at the RMSEs also for other
conditions in Fig. S5, it is clear that the generation 1 model performs
worse than the final one, especially for quantum structures, which
are entirely absent from the training set. However, forces for classical
structures are at the level of the generation 4 C-NNP, with the excep-
tion of ice VIII and the air–water interface. These states are not only
absent from the small training set of the generation 1 model but also
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structurally substantially different from liquid water, and so it should
be expected that they are represented less accurately. This combina-
tion of performance characteristics offers an opportunity to gauge
the meaning, or possibly the limitations, of RMSEs when it comes to
molecular dynamics. While the force RMSEs are roughly three times
as high for quantum structures as they are for the classical ones for
the generation 1 model, these forces are sufficient to generate path
integral trajectories that match the reference almost as well as in the
classical case. In terms of computational cost, the ten iterations of
a single QbC process selecting structures from a pre-existing AIMD
trajectory took 6.7 h on a single AMD EPYC computational node
with 32 cores. Given that this C-NNP is rather easy and computa-
tionally cheap to create, this seems to offer an efficient way to extend
existing ab initio simulations using an MLP from which we do not
expect broad generality.

V. CONCLUSIONS
In summary, we have shown how committee models can be

exploited in the context of machine learning potentials, which we
demonstrated specifically using Behler–Parrinello neural network
potentials, obtaining a compact training set and a robust C-NNP
model with a range of advantages. While the committee prediction
outperforms its individual member NNPs, the committee disagree-
ment provides a way to monitor and control the accuracy of the
model relative to its parent ab initio method and its training set.
Using a bias of the committee disagreement that we introduced, C-
NNP simulations can be stabilized by effectively erecting a barrier
at the boundary of regions of configuration space described well
by the training set, thus preventing such simulations from enter-
ing regions of high uncertainty and high generalization errors. The
computational overhead of our approach is low compared to using
a single NNP, as we intentionally share descriptors of atomic envi-
ronments between the committee members, which means only the
atomic neural networks need to be evaluated multiple times.

Making use of the committee disagreement and repeated query
by committee processes, we designed an active learning procedure
capable of generating training sets in a largely automated and data-
driven fashion while also keeping the number of required reference
ab initio calculations to a minimum. To demonstrate the bene-
fits of this methodology, we developed a C-NNP machine learning
potential—made freely available—for water under a variety of con-
ditions with both a classical and a quantum description of the nuclei.
Even though its training set comprises only ∼800 configurations,
the final model shows excellent agreement with the DFT reference
method in comparison of energies and forces as well as in compari-
son of the properties calculated in classical and quantum molecular
dynamics simulations.

The promising results presented in this work make us con-
fident that the methodology introduced here can be used to sys-
tematically develop robust and general C-NNP models applicable
across broad regions of the phase diagram and under a variety of
conditions for systems of increasing complexity. Given the remark-
able performance of the first generation C-NNP model trained on a
small number of samples from a single AIMD simulation, we see
great potential in the development of simpler C-NNP models for
the direct extension of ab initio simulations for a given state point.

Thanks to the much smaller size of the resulting training set com-
pared to previous work, it will be possible to use more advanced
reference ab initio methods in the condensed phase. Finally, we
expect that the described concepts can be applied directly to other
MLPs based on artificial neural networks and can also be transferred
to kernel-based MLPs after the introduction of stochastic elements
into their training process. We hope that, thanks to the low addi-
tional complexity and required effort, the committee-based models
can become a routine component of the development of machine
learning potentials.

VI. COMPUTATIONAL DETAILS
We implemented the active learning workflow in Python, inter-

leaving datamanipulation and execution of various simulation pack-
ages to perform specific tasks, such as the optimization of indi-
vidual NNPs, the evaluation of DFT reference energies and forces
for the selected configurations, and the sampling of new configura-
tions. With this code, the workflow for the development of a C-NNP
model for water described in Sec. IV A was carried out over four
generations.

All NNP optimizations were performed with the open-source
n2p2 code,27 and unless stated otherwise, all of the optimization
parameters have been chosen according to the detailed benchmark-
ing of this code for water.27 We decided to use an established set
of symmetry functions, which has been shown to be able to repro-
duce the properties of water over a large range of conditions.23
The values of each symmetry function were centered around the
respective average value of the training set and normalized to val-
ues between zero and one. These atomic environment vectors serve
as the input for the atomic NNs consisting of two hidden layers of
20 neurons each with hyperbolic tangent activation functions for
these two hidden layers and a linear activation function for the out-
put neuron. The eight-member C-NNP models were constructed by
random subsampling of the full set of reference data for each com-
mittee member, where 10% of the points were randomly left out in
each case. After a different random initialization for each committee
member, the weights and biases of the NNs were optimized using
the parallel multistream version27 of the adaptive global extended
Kalman filter,67,68 as implemented in n2p2. C-NNPs used for QbC
were optimized for 15 epochs with 8 streams, while the final C-NNPs
for each generation, to be used for simulations, were optimized for
100 epochs with 32 streams.

The DFT reference calculations were all performed with the
CP2K simulation package58,69 and its Quickstep module70 using
the exact same electronic structure setup for the revPBE0-D3 func-
tional71–74 employed in Ref. 65. As shown therein, this choice of
functional provides reliable properties of water, especially with
quantum nuclei, and is therefore the ideal choice for the develop-
ment of our C-NNP model.

The simulations using the C-NNPmodels used to generate can-
didate structures for the next active learning generation were all per-
formed with amodified version of the CP2K simulation package.58,69
All classical simulations were propagated for 0.5 ns with a time step
of 0.5 fs and a global canonical sampling through velocity rescal-
ing (CSVR) thermostat75 with a 30 fs time constant to sample the
NVT ensemble. From these simulations, every 20th configuration
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was saved to ensure uncorrelated statistics, resulting in 50 000 con-
figurations for all classical ensembles. All PIMD simulations were
propagated for 0.25 ns with a time step of 0.25 fs and a path integral
Langevin equation thermostat76 to sample the quantum canonical
ensemble. Partially converged path integral simulations were real-
ized with four replicas to discretize the path integral, which corre-
sponds approximately to the midpoint between classical simulations
and converged path integral simulations, as shown, for example, in
Ref. 77 for the prototypical hydrogen bond in the Zundel cation. Full
PIMD simulations were performed with 16 replicas for all simula-
tions except at 250 K, where 32 replicas were used. In all quantum
cases, every 40th configuration from four path integral replica tra-
jectories was used to generate the set of candidate structures for
the QbC cycles, resulting in a total of 100 000 configurations for
every quantum ensemble. After careful testing of the influence of the
energy committee disagreement biasing derived above, mild bias-
ing with a harmonic constant k(b) = 0.95/eV per atom and a shift of
σ0 = 0.1 meV per atom was used for all simulations during the active
learning process. The C-NNP model of generation 1 was used for
the simulation of liquid water along an isochor in a cubic box of
size 12.42 Å with 64 water molecules at three temperatures of 300 K,
350 K, and 400 K. The proton disordered phase ice Ih was simulated
at 250 K in supercells under periodic boundary conditions including
96 water molecules, where the lattice size and initial conditions were
chosen according to Ref. 78. These four state points were targeted
with both a classical and partially converged quantum description
of the nuclei for the generation 2 C-NNP model. The resulting C-
NNP model of generation 2 was used to perform converged PIMD
simulations along the same isochor of liquid water as well as for ice
Ih. Besides these four simulations, a water slab was simulated with
216 molecules in a 15 × 50 × 15 Å3 periodic box starting from an
initial condition from Ref. 79 with both classical and partially con-
verged quantum nuclei. Finally, the generation 3 C-NNP model was
employed to simulate liquid water along an isotherm for two pres-
sures of 2 kbar and 4 kbar, resulting in cubic boxes with sizes of
12.13 Å and 11.93 Å for 64 water molecules. In addition, ice VIII
was simulated at 250 K with 64 molecules in a 9.70 × 9.70 × 14.11
Å3 periodic box. These six simulations were performed for both
classical and converged quantum nuclei. Finally, the water slab was
simulated as in the previous generation, but now with converged
quantum nuclei.

In order to generate an independent test set to validate the per-
formance of the C-NNP models at the individual generations and
the various state points, we used the final C-NNP model of genera-
tion 4 to perform independent simulations at all previously targeted
conditions and state points. All classical and quantum simulations
were propagated for 50 ps and 25 ps, respectively, with otherwise
identical settings as for the above-mentioned simulations. The path
integral has been fully converged for all these simulations by using
128 replicas for all simulations at and above 300 K and 256 repli-
cas for the ice phases at 250 K. The biasing of the energy commit-
tee disagreement has been switched off for these production runs.
From these eight classical and eight quantum ensembles in total, 500
uncorrelated structures were extracted in each case, and the refer-
ence revPBE0-D3 energies and forces were evaluated. This set of
8000 reference calculations, spanning very different conditions for
both classical and quantum nuclei, was consequently used to validate
the performance of the C-NNP models.

Finally, the performance of the generation 1 and 4 C-NNP
models for static and dynamical properties was benchmarked
against the previously published AIMD and AIPIMD results for liq-
uid water.65 For this purpose, 64 water molecules in a cubic box of
size 12.42 Å were simulated at 300 K in the NVT ensemble to match
exactly the setup of the reference ab initio simulations. We per-
formed classical simulations with both C-NNP models using a time
step of 0.5 fs and a global CSVR thermostat75 with a time constant
of 1 ps. Results including nuclear quantum effects were obtained
from TRPMD simulations76,80 with 32 path integral replicas using
a 0.25 fs time step. We accumulated a total simulation length of
2 ns in each case for bothmodels. Again, no biasing of the committee
disagreement was used for these production simulations.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional benchmarking
results for the final generation 4 C-NNPmodel and detailed analysis
of the performance of the C-NNP model obtained in generation 1.
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APPENDIX: BIASING OF FORCE DISAGREEMENT
An alternative approach to biasing due to the committee dis-

agreement that provides sensitivity to local structural changes can be
based on the force disagreement introduced in Eq. (2). Rather than
bias the total energy disagreement, one can bias the disagreement of
each atomic force vector separately. The atom α that enters a region
with a force disagreement larger than σ0 brings a contribution to
its biasing energy into the system given again by a shifted harmonic
form as

E(b)
α = θ(σFα − σ0)

1
2
k(b)(σFα − σ0)

2. (A1)

This affects all the other atoms in the system, say, β, and the
corresponding biasing force exerted on them is

F(b)βα = −∇βE
(b)
α

= −θ(σFα − σ0)k
(b)(σFα − σ0)∇βσFα . (A2)

At this point, we have to express ∇βσFα in order to obtain a use-
ful expression for the biasing force. Differentiating through the
definition given in Eq. (2), we get
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as the desired result. A second derivative matrix operator ∇β∇α
appears, which generally requires an evaluation of analytical or
numerical second derivatives for all 3N degrees of freedom, and
thus, its applicability for practical calculations in this raw form is
limited. However, we note that in this case, the second derivative
is projected on the direction of the force Fiα. This suggests that
finite difference methods that limit the number of numerical deriva-
tive evaluations to only the one in the desired direction to evalu-
ate the directional derivative could result in a practical computa-
tion scheme.81,82 Still, in addition to having to deal with the second
derivatives, this biasing has to be evaluated separately for each atom
α and would therefore incur a substantial computational cost. For
this reason, we have not implemented it and used only the bias-
ing of the total energy disagreement given by Eq. (3), which worked
sufficiently well in practical simulations.

DATA AVAILABILITY

The data that support the findings of this study are openly
available in paper-c-nnp at http://doi.org/10.5281/zenodo.4004590.
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ABSTRACT: Although machine learning potentials have recently had
a substantial impact on molecular simulations, the construction of a
robust training set can still become a limiting factor, especially due to
the requirement of a reference ab initio simulation that covers all the
relevant geometries of the system. Recognizing that this can be
prohibitive for certain systems, we develop the method of transition
tube sampling that mitigates the computational cost of training set and
model generation. In this approach, we generate classical or quantum
thermal geometries around a transition path describing a conforma-
tional change or a chemical reaction using only a sparse set of local
normal mode expansions along this path and select from these
geometries by an active learning protocol. This yields a training set
with geometries that characterize the whole transition without the need
for a costly reference trajectory. The performance of the method is evaluated on different molecular systems with the complexity of
the potential energy landscape increasing from a single minimum to a double proton-transfer reaction with high barriers. Our results
show that the method leads to training sets that give rise to models applicable in classical and path integral simulations alike that are
on par with those based directly on ab initio calculations while providing the computational speedup we have come to expect from
machine learning potentials.

1. INTRODUCTION
Owing to the detailed atomistic insight into the structure and
dynamics of molecular systems and materials, the relevance of
computer simulations of molecular dynamics (MD) in current
research is undeniable. MD simulations represent a valuable
analytic and predictive tool in multiple fields of both basic and
applied research including physical chemistry, materials
science, or drug design.1�5 They also provide a way to explain
and corroborate experimental data that might be difficult to
interpret otherwise. For many systems of interest, MD
simulations can be routinely performed under the Born�
Oppenheimer approximation in the electronic ground state,
with the nuclei being treated either classically or quantum-
mechanically within the imaginary time path integral formal-
ism. This makes the choice of the potential energy surface
(PES) a key decision that determines the accuracy of the
resulting simulation. Out of the available options, ab initio
molecular dynamics6 (AIMD) is a state-of-the-art method-
ology that relies on a full, on-the-fly quantum electronic
structure calculation7,8 at every step of the simulation to
evaluate the potential energy and forces. This is most
commonly performed at the level of density functional
theory8�10 (DFT), which provides correlated electronic
energies at a computational cost accessible in practice, but
for smaller systems, the use of correlated wave function
methods is feasible as well.11�13 In any case, the computational

cost of AIMD simulations is typically largeespecially so for
advanced hybrid DFT functionals in the condensed phase
and can easily become prohibitive in the light of the ever-
growing demand for larger time and length scales of the
relevant simulations.
This issue can be mitigated by the recent development of the

so-called machine learning potentials (MLPs).14,15 These use
various machine learning approaches16�20 to faithfully
approximate the desired ab initio PES by training on a
reference data set consisting of a relatively modest number of
ab initio geometries and their corresponding energies and,
optionally, forces. As such, they indeed combine the best of the
two worlds: they are able to maintain the accuracy of the
parent ab initio method, but they also circumvent the need for
explicit electronic structure calculations at each step of the MD
simulation. Thus, they evaluate the potential energy and forces
at a significantly reduced computational cost.21 One particular
flavor of MLPs of major practical importance is represented by
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neural network potentials (NNPs), which rely on artificial
neural networks combined with a set of appropriate atomic
descriptors to accurately represent the molecular geometry-to-
energy relationship, including all its symmetries.16,22 NNPs
have repeatedly proved their worth in modeling a plethora of
various molecular systems ranging from liquids and solutions
to interfaces and solids.20,23�26 Our recent study,26,27 building
on the findings of previous studies focusing on NNPs,28�30

shows that rather than using a single NNP to represent the
PES, it is advantageous to build a model as a committee31,32 of
NNPs (C-NNP) that comprises a small number of NNPs, each
trained individually to a subset of the main training set. The
advantage is twofold: first, the energy prediction obtained as
the committee average is known to be a better approximation
of the ab initio energy than the estimates of the individual
members.29,33 Second, the committee disagreement,34 repre-
sented by the standard deviation of the individual member
estimates of energies or forces, serves as a valuable indicator of
prediction reliability and can be used to monitor and optionally
ensure the stability of the simulation.27 Crucially, this
disagreement can be used as the key ingredient of the active
learning process called query by committee35 (QbC) that
systematically builds the training set in a data-driven
way.27,34,36
An accurate and stable NNP can only be obtained on a

foundation of robust, high-quality training data. This is
typically based on a reference AIMD trajectory, from which
geometries are selected for the training set, together with the
corresponding energies and forces. However, the trajectory is
highly correlated in time and thus most of the expensive AIMD
data do not contribute useful information for the training of
the model. This selection has been approached in different
ways from random sampling and manual selection to more
data-driven procedures,25,27,30,37�43 with QbC being a
particularly efficient method. QbC considers a set of candidate
structures, in this case, the whole AIMD trajectory, and
iteratively builds up the training set. It starts by training a C-
NNP on a very small set of initial configurations and using its
disagreement to screen the candidate configurations for those
with the most uncertain prediction. A small number of these
configurations are then added to the training set, a new C-
NNP is trained, and the process is iteratively repeated until
some convergence criteria are met. In comparison to random
selection, this approach is known to generate more compact
training sets that give rise to robust models of similar
accuracy.30,39 Even though the initial AIMD trajectory is
typically the most expensive part of the procedure, numerous
successful MLPs have been generated on top of reasonably
short AIMD simulations.26
However, for many purposes, this process involving AIMD is

still too expensive to be practical. For instance, the require-
ments on a high-level electronic structure method can raise the
computational demands above a reasonable threshold. One
might also be interested in a system that features rare events,
such as chemical or conformational changes, which will happen
quickly and occur infrequently or not at all in a direct AIMD
simulation. In turn, these crucial configurations are under-
represented in the set of candidates and enhanced sampling
simulations would be required in order to construct a robust
training set, which typically raises the computational cost
further by one or more orders of magnitude.
In case such a situation occurs, one needs to adhere to an

approximate method of candidate generation that relieves

some of the computational expenses while maintaining the
quality of the resulting candidate set. For simple systems with a
single potential energy minimum, the solution is fairly
straightforward. In this case, one can benefit from a random
sampling of displacements in the directions of a fixed set of
normal modes to obtain a set of distorted configurations. This
approach, sometimes called normal mode sampling (NMS) in
the literature,18 avoids the cost of a full AIMD simulation by
replacing it with a more manageable combination of a Hessian
matrix evaluation and a number of single-point electronic
structure calculations for the generated geometries. The
sampling of the known normal mode distribution itself yields
uncorrelated samples by definition and requires no ab initio
calculations; therefore, its cost is negligible. Various versions of
this approach were successfully used to generate structures for
the training of MLPs. Using a scaled uniform random sampling
of the normal modes, the method was used to obtain auxiliary
structures used in model validation44 and with approximate
thermal distortions in NNP training set generation around
configurational minima18 as well as to construct an NNP
model for a gas-phase ammonia molecule.42 Clearly, the utility
of NMS is limited when the harmonic approximation becomes
insufficient. This can be the case if individual modes are
strongly anharmonic or coupled, or if the system features
conformational changes or reactions, where multiple local
minima come into play. The need for reactive training data sets
was recognized in a recent work introducing the Transition-1x
data set,45 which includes training points along a converged
minimum energy path (MEP) obtained through a nudged
elastic band calculation46 and its surrounding arising from
prior unconverged iterations of the optimization.
In this work, we propose transition tube sampling (TTS), a

robust and general approach to the generation of training sets
and models that are able to accurately describe processes that
feature transitions over potential energy barriers, which
includes both conformational flexibility and chemical reactivity.
We achieve this by generating thermally distorted candidate
geometries along a reaction pathway with the help of multiple
normal mode expansions and screening these candidates using
QbC. The role of the minimum geometry in NMS is taken by
the MEP that describes the course of the reaction through
configuration space. Local harmonic expansions are performed
in a small number of relevant configurations along the MEP
and physically relevant candidate configurations are generated
with uniform distribution along the MEP and with classical or
quantum thermal weights in all perpendicular directions based
on one of the sets of normal modes. An arbitrary number of
these candidate configurations can be generated at a negligible
computational cost and submitted to the QbC process, which
selects the most important ones to have ab initio calculations
performed and to be included in the training set. This results in
compact and robust training sets and models that maintain
consistent accuracy along the reaction path, making them
suitable for MD simulations of the reactive process, including
enhanced sampling simulations, while no AIMD trajectories
are required as part of this process. We test this method on
three different molecules in the gas phase to illustrate its
capabilities.
The rest of the paper is organized as follows. In Section 2,

we begin by formalizing thermal NMS, which samples the
exact classical or quantum canonical distribution under the
harmonic approximation. With the obtained framework, we
then proceed to introduce the MEP into the picture and
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describe the technical details of TTS. In Section 3, we describe
how we used TTS to create C-NNP models, the simulations
performed with these models, and other related computational
details. In Section 4, we apply this approach to three different
gas-phase systems of increasing complexity represented by the
molecules of benzene, malonaldehyde, and 2,5-diaminobenzo-
quinone-1,4-diimine (DABQDI) and discuss its successes and
possible pitfalls. Section 5 concludes the paper and offers
outlooks concerning the generalization and the limitations of
the method beyond the gas phase.

2. THEORY
In this section, we discuss the theoretical basis of the TTS
method. In this approach, we rely on the harmonic
approximation and the vibrational normal mode formalism to
obtain ab initio training data for the construction of C-NNPs
for reactive systems without the need to run expensive
sampling simulations, such as full AIMD. First, we present the
simple key idea behind NMS which relies on the harmonic
approximation to describe the underlying PES and thus is
expected to work well for systems that are close to harmonic
around a single given minimum geometry at the temperature of
interest. Clearly, this does not yield a flexible and general
method, since the harmonic approximation is readily
challenged by many realistic systems, notably those that
exhibit more pronounced configurational flexibility or chemical
reactivity. Therefore, we propose a more general approach to
sampling candidate geometries based on NMS which is
applicable even to systems described by multiple minima
separated by barriers. This is achieved using the harmonic
expansion locally along an MEP in a way that eventually
generates a balanced training set.
2.1. NMS for Thermal Sampling around Minimum

Geometries. To open the discussion of the theory behind
TTS, we first turn our attention to the simple case represented
by a PES with a single minimum geometry R0 on which the
nuclear motion is described by classical mechanics. Assuming a
reasonable extent of validity of the harmonic approximation to
capture the thermally accessible potential energy landscape, the
classical thermal probability density �c at temperature T is
approximated by

( , ..., ) exp 1
2N

i

N

i ic 1
1

2 2
int

int

=

ikjjj y{zzz (1)

In this expression, �i and �i denote, respectively, the natural
frequency and the normal coordinate corresponding to the i-th
normalized vibrational normal mode vector �i, and � is the
inverse temperature equal to 1/kBT (with kB representing the
Boltzmann constant). Nint is the total number of internal
degrees of freedom of the species, typically 3N � 6 for N
atoms. Hence, in the harmonic approximation, the thermal
density is described as a multivariate, yet uncoupled normal
distribution where each i-th orthogonal degree of freedom has
the standard deviation of 1/i i

2= .
As such, it is straightforward to generate completely

uncorrelated thermal geometries R by distorting the minimum
geometry R0 independently in the direction of each of the
normal mode vectors. The appropriate magnitude of the
distortions is given by a randomly generated value of the
corresponding normal coordinate �i from the distribution in
eq 1. The instrumental prescription for this procedure is the

inverse coordinate transformation from normal modes back to
Cartesian coordinates

R R
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= +
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where represents the diagonal mass matrix. Thus, by
drawing samples of normal coordinates and transforming them,
we obtain correctly distributed thermal samples in Cartesian
coordinates.
We can now perform thermal NMS by sampling from this

auxiliary harmonic ensemble as a source of candidate
geometries to be potentially included in the training set of
an MLP. The auxiliary ensemble is thus never used directly and
no expectation values are calculated over it. It only needs to
provide good coverage of the thermally accessible region of the
PES, which will be the case as long as the harmonic
approximation is reasonably accurate for the system of interest.
Specifically, we construct a training set in our active learning
procedure by generating a large number of these NMS
candidate geometries and screening them in a QbC process
using a C-NNP model. In each QbC iteration, electronic
structure calculations are performed only for a small number of
selected structures to obtain their potential energies and
possibly forces, which then comprise the final training set once
the process converges. The computational cost is thus
determined primarily by the geometry optimization procedure,
the Hessian calculation, the C-NNP prediction required for
screening, and the electronic structure calculations for the
selected geometries. The cost of the sample generation is
negligible. This approach is substantially less computationally
demanding when compared to the more conventional
approach of sampling the candidate geometries for QbC
from an AIMD trajectory, which requires a large number of
electronic structure calculations for very similar geometries
that do not contribute diversity to the training set. In contrast
to that, NMS generates fully decorrelated geometries by
construction, and electronic structure calculations are only
needed for the relatively small number of the most important
geometries selected by the subsequent QbC process.
So far, we have focused on the situation where NMS is used

to sample a classical distribution on the studied PES. However,
since the harmonic approximation describes a molecule as a set
of independent one-dimensional harmonic oscillators, we can
readily generalize the above classical case to a quantum one as
the analytic solution of the quantum harmonic oscillator is
known. Specifically, it is straightforward to show (see Section
S1 of the Supporting Information) that the canonical thermal
density of a quantum harmonic oscillator at a given
temperature is Gaussian just as its classical counterpart, but
broader. This broadening is encoded in the quantum effective
inverse temperature47

( , ) 2 tanh
2

* = ikjjj y{zzz (3)

at which a classical harmonic oscillator would have the same
thermal width as a quantum harmonic oscillator at a reference
inverse temperature �. Since �* is by definition a frequency-
dependent quantity, one cannot describe the whole molecule
by a single quantum effective temperature but instead has to
assign one to each individual mode. In turn, the quantum
thermal density is given by

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00391
J. Chem. Theory Comput. 2023, 19, 6589�6604

6591

C.2. Paper II 161



( , ..., ) exp 1
2

( , )N
i

N

i i iq 1
1

2 2
int

int

*
=

ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑ (4)

This simple modification allows one to generate an auxiliary
quantum ensemble at practically the same cost as the classical
one that would otherwise need to be approached from a
significantly more demanding perspective, perhaps based on
sampling techniques using the imaginary time path integral
formalism.
2.2. Transition Tube Sampling. Up to this point, we have

relied on the ability of the harmonic expansion around a single
minimum to approximate the real PES so that the generated
samples cover sufficiently all the relevant regions for the
purpose of generating an MLP. Arguably, this is a reasonable
requirement for most stable molecules with a single minimum
geometry where the onset of the anharmonic region connected
to the dissociation of the molecule is not thermally accessible.
On the other hand, it is a stringent requirement for molecular
systems which display conformational changes or chemical
reactivity and, therefore, are represented by multiple PES
minima connected by MEPs: features not captured by a single
harmonic expansion. However, in such cases, it is desirable for
the resulting model to be able to describe the potential energy
landscape not only around local potential energy minima but
also in the transition regions. This is vital in the case of low-
kBT barriers, where spontaneous transitions occur during direct

MD. Nonetheless, it cannot be omitted even in the case of
high-kBT barriers where an enhanced sampling simulation
would be required to cross the barrier. Even if the transition
does not actually occur, the presence of the transition state
may introduce substantial anharmonicity within the original
PES basin that an eventual MLP should learn. However, in the
case of barrier transitions it is not desirable to attempt to build
the C-NNP model starting from a candidate set representing
the true thermal ensemble, even if we could obtain it, since this
would lead to a possibly detrimental under-representation of
the high-energy configurations close to the transition state in
the resulting candidate set and, in turn, to poor performance of
the resulting model in the transition regions.
Therefore, we propose the TTS method: a generalization of

NMS for systems with transitions that employ local normal
modes along an MEP to sample uniformly along the path and
with proper thermal weights in all perpendicular directions.
This leads to an auxiliary harmonic ensemble that differs
significantly from the true thermal one but enables the
construction of MLPs with uniform accuracy along the whole
transition. The TTS method naturally reduces to thermal NMS
as described above for single-minimum systems in the zero
MEP length limit. The process, illustrated in Figure 1, starts by
finding the MEP R(�) on the given PES (panel A). Here, � is a
dimensionless reaction coordinate along the MEP curve
through configuration space normalized to the interval from

Figure 1. Schematic depiction of the TTS approach proposed for reactive systems. Panel A: an illustrative MEP winding through a model two-
dimensional configuration space given by V(x,y) = (1/6){4(1 � x2 � y2)2 + 2(x2 � 2)2 + [(x + y)2 � 1]2 + [(x � y)2 � 1]2 � 2}. Panel B: control
points are selected and their local normal modes (gray arrows) are calculated. Here, the control points are taken as the two end-point minima on
the MEP (purple and brown dots) and the transition state (yellow�green). Panel C: a much denser set of uniformly distributed reference
geometries is generated along the MEP. Panel D: each of the reference geometries is distorted using the local modes of their assigned control point
(as detailed in panel E) to become a candidate geometry. Panel E: a detailed view showing how each reference geometry is assigned to a set of local
modes. A set of reference geometries on the MEP is assigned to each control point following eq 5. At the MEP edges, standard Gaussian thermal
NMS is performed outside of the reaction coordinate (decaying purple and brown tails of the total density).
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0 to 1. In the following, we shall assume that the MEP is
available as a continuous, differentiable function of the
parameter �. In practice, this can be achieved by spline fitting
of the discretized representation of the MEP originating from,
for instance, a nudged elastic band calculation.46 Note that by
definition, the MEP is a minimum of the PES in all directions
perpendicular to it. Once the relevant MEP is known, we
continue by selecting a sparse set of control points Rc, c = 1, ...,
Np along the MEP at positions �c for which the Hessian
matrices are calculated and diagonalized to give the set of local
normal mode vectors �c,i and their corresponding frequencies.
For instance, this can be the two end-point minima and the
transition state between them (Figure 1, panel B), although
there is no constraint on how densely one might select the
control points along the MEP other than the limiting
computational expense of the Hessian matrix calculation.
The selection of the control points is performed by hand by
the user, ensuring a homogeneous coverage of the MEP.
Formally, the expansion of the PES along the MEP becomes
exact under the harmonic approximation in the limit of a large
number of control points Np. Since we want to achieve uniform
sampling along the MEP, we now proceed to the generation of
reference geometries on the MEP that do have this property.
Specifically, to each control point Rc, we first assign a
probability distribution pc(�) defined on the interval [�c�1,
�c+1] (Figure 1, panel E, interval between purple and brown
control points) as
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Once this is done for all Np control points, the identity

p p( ) ( ) 1
c

N

c
1

p

= =
= (6)

holds over the whole length of the MEP (Figure 1, panel E
over the range of �). Note that the choice of squares of
harmonic functions is only one out of many possibilities, and
any other pair of complementary functions that sum up to
unity would work in this case. Next, we generate an arbitrary
number of reference geometries R0(�) at a chosen linear
density by drawing random values of � from the above
distributions and passing them to the continuous prescription
of the MEP, all while keeping track of the parent c-th control
point (Figure 1, panel C). Analogously to the distortion of the
minimum geometry in the single-minimum case through eq 2,
we distort each of these reference geometries using the normal
modes and frequencies of its parent control point using

R R ( ) 1 ( )
i

c i c i0
1/2

, ,= + [ ]
(7)

where the normal coordinate values �c,i are sampled thermally
according to eq 1 or 4 (Figure 1, panel D); the prime indicates
that modes with imaginary frequencies are omitted from the
sum. The matrix ( ) is the projector on the tangent direction
at the point � which can be constructed analytically from

dR(�)/d�. This is used to obtain distortions strictly
perpendicular to the MEP and thus to correct for the
approximate validity of the normal mode expansion calculated
at �c for all the displaced geometries. However, the use of the
decaying probability distributions (eq 5) favors the use of the
local modes close to their origin. Through this procedure, one
obtains a set of candidate geometries distributed inside a tube
around the MEP the width of which is given thermally. At this
point, this tube still has open ends cut sharply by the planes
defined by normal vectors equal to the MEP tangent vector at
the end points of the MEP. Since these points are (usually)
also well-defined minima on the PES, the presence of these
sharp edges is easily sanitized by appending the usual thermal
NMS samples at these minima, although only adding the
configurations away from the MEP (Figure 1, decaying purple
and brown lines). In other words, just one-half of the
multivariate Gaussian is appended to the tube that does not
overlap with it. In our TTS implementation, we ensure that the
uniform density of the sampling along the MEP and the one at
the peak of the half-Gaussian are seamlessly matched (as
described in Section S1 of the Supporting Information).
Using the described sampling approach leads to an auxiliary

ensemble of candidates that does not correspond to the true
thermal ensemble, but contains a balanced selection of
geometries distributed uniformly along the MEP with classical
or quantum thermal displacements around it. Just like with
plain NMS, we submit these samples as candidates to the QbC
procedure, where in each iteration a large number of them is
screened and a small number of those is selected to be
included in the training set. Ab initio calculations are only
required for these selected geometries. This enables the
building of diverse training sets in which all representative
structures that might be encountered in a future simulation are
contained so that the resulting model is, in fact, able to
accurately describe the PES along the whole MEP, even in
regions that have negligible thermal populations. Similar to
NMS, the computational cost of TTS is determined primarily
by the MEP optimization procedure, the Hessian calculation,
the C-NNP prediction required for screening, and the
electronic structure calculations for the selected geometries.
In general, this can be expected to be substantially less
computationally demanding than executing direct, or even
enhanced sampling, classical, or path integral AIMD
simulations and sampling from their trajectories.

3. COMPUTATIONAL DETAILS
3.1. Ab Initio Electronic Structure. Two different levels

of electronic structure theory were used in the simulations
presented in this work. In both cases, we used the
implementation provided by the CP2K software package48
with its Quickstep DFT module.49,50 We described the
electronic structure of the benzene molecule in the gas phase
at the self-consistent charge density-functional tight binding51
(SCC-DFTB) level with third-order diagonal corrections. The
system was enclosed in a 10 Å wide cubic box with open
boundary conditions. For malonaldehyde and DABQDI
systems, we used the revPBE0-D3 hybrid density func-
tional52�55 combined with the TVZ2P Gaussian basis
set49,56,57 to represent the molecular orbitals and a plane
wave basis with a 600 Ry cutoff to represent the density. The
core electrons of the heavy atoms were represented using
Goedecker�Tetter�Hutter pseudopotentials.58 In addition,
we used the auxiliary density matrix method59 with the cpFIT3
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fitting basis set for the DABQDI molecule. Both systems using
hybrid DFT were centered in a 15 Å wide cubic box with open
boundary conditions and the wavelet Poisson equation solver.
3.2. C-NNP Model Generation. Throughout all of our

investigations, we used committees consisting of eight different
Behler�Parrinello NNPs,16 where for each of them, a different
initialization of weights and a different 90% subset of the full
training data set was used to ensure a diverse committee. The
models consisted of two hidden layers of 20 nodes each and
were trained using the multistream60 adaptive extended
Kalman61,62 filter with 32 streams. The input features were a
standard set of atom-centered symmetry functions.26 The
training of the individual models was done using the n2p2
package60 and the selection of training structures by QbC was
done with a development version of our AML package63
following the procedures outlined in refs 26 and 27. For
benzene, 20 structures were randomly sampled initially and in
each of the 40 QbC iterations, 10 new structures with the
highest committee force disagreement were added to the data
set, for a total of 420 training geometries. The final NNPs were
trained for 2000 epochs. For the first generation of
malonaldehyde and DABQDI models, 20 initial structures
were sampled randomly and then 15 structures were selected
and added to the data set in each of the 40 QbC iterations, for
a total of 620 training geometries. The selection process is
based on the standard deviation of the force prediction of the
individual committee members and in each iteration, a
predetermined number of structures with the highest disagree-
ment of the candidate structures is selected. In our case, adding
15 structures at each iteration forms a compromise between
choosing only the optimal structure and limiting the number of
QbC iterations (which each require training a new committee)
necessary to get to a sufficient training set size. For
malonaldehyde, where additional generations of models were
required (as detailed in Section 4), the original training set was
supplemented by additional structures QbC-sampled from an
MD trajectory which was produced using the previous C-NNP
model. Here, 15 structures were added in each iteration until
the force committee disagreements for the selected structures
and the remaining candidate structures were similar. Like in
our previous work, we chose this stopping criterion over a
predetermined force disagreement threshold because it works
well on its own, whereas an additional calibration against the
force error would have been necessary to determine a suitable
threshold. All reference calculations were done using CP2K
and the electronic structure settings described above.
3.3. Geometry Optimization and Vibrational Anal-

ysis. The optimization of the minimum reference geometries
for benzene and DABQDI was executed natively in the CP2K
software. It was performed using the BFGS optimizer64
combined with threshold criteria of 0.07 eV Å�1 for the
maximum change in force components, 0.009 Å for the change
in atomic positions, and 0.13 eV for the change in total energy.
For the malonaldehyde molecule, we employed the Atomic
Simulation Environment (ASE)65 together with CP2K and
performed the optimization using the FIRE optimizer66 while
specifying only a force criterion of 0.01 eV Å�1. Additional
constrained optimizations in the case of DABQDI needed for
the relaxed PES scan were performed using the constraint
functionality provided by ASE together with its FIRE
optimizer. The Hessian matrix evaluation on the optimized
structures was performed in each case using CP2K and a
Cartesian atomic displacement of 0.0005 Å.

3.4. Nudged Elastic Band Calculations. The relevant
MEPs needed for the TTS procedure were obtained through
the climbing-image67 nudged elastic band46 (CI-NEB)
optimization procedure as implemented in CP2K. The initial
band geometries in this work consisted of 15 replicas of the
molecule in question including the two fixed, preoptimized
endpoints, and were obtained through linear interpolation. The
spring constant of the harmonic links between the neighboring
replicas was kept constant at the value of 4.86 eV Å�2. We used
a force convergence criterion of 0.007 eV Å�1 and the
minimization of the band energy was performed using a DIIS
optimizer.

3.5. MD Simulations. All MD simulations involving both
ab initio as well as C-NNP potentials33 were run using the
CP2K package. The simulations with the classical representa-
tion of the nuclei were propagated at a temperature of 300 K
using a time step of 0.5 fs to numerically integrate the Langevin
equation with the friction coefficient � of 0.02 fs�1 to achieve
canonical sampling. The path integral simulations that include
nuclear quantum effects were performed using imaginary-time
ring polymers consisting of 64 replicas using the RPMD
propagator. The canonical distribution at 300 K was sampled
using the local path integral Langevin equation thermostat68
(PILE-L) with the time constant for the centroid motion of
200 fs while the integration time step was kept at 0.25 fs.

3.6. Umbrella Sampling. The initial conditions for each
umbrella sampling window were extracted from a steered MD
trajectory, which was performed in the CP2K v2022.1 software
package combined with the PLUMED plugin.69�71 In this case,
the value of the proton-sharing coordinate �1 (as detailed in
Section 4) was biased from �1.2 to 1.2 Å during a 10 ps long
simulation using a moving harmonic restraint with the force
constant � of 500.0 kJ mol�1 Å�2. The simulation was
performed classically with an integration time step of 0.5 fs in
the canonical ensemble at 300 K using a local CSVR
thermostat72 with a time constant of 50 fs.
30 equidistant umbrella sampling windows separated by 0.08

Å were set up from the above steered MD simulation.
Individually in each window, the value of �1 was biased by a
static harmonic restraint of 500.0 kJ mol�1 Å�2 and simulated
for 50 ps using the same setup as for the steered MD
simulation above. The overlap of the corresponding histograms
of �1 values observed in each simulation window is shown in
Section S2 of the Supporting Information. The value of �2 was
kept unbiased in each simulation window but was monitored
for use in the following analysis. The biased configurations
were reweighed to the unbiased ensemble using a Python
implementation of the multistate Bennet acceptance ratio73,74
(MBAR) procedure to obtain both a one-dimensional free
energy profile for the proton-transfer along �1 as well as a two-
dimensional free energy surface showing the dependence on
both proton-sharing coordinates. This was done by determin-
ing the thermal weight associated with each configuration in
the biased simulations and using these to obtain the probability
distribution in the �1, �2 subspace, and from that the
corresponding free energy surface.

4. RESULTS AND DISCUSSION
To showcase the performance of the TTS procedure in the
creation of models for realistic potentials, we select three
different gas-phase molecules with an increasing complexity of
their PES. We begin with benzene, which represents a single-
minimum system with a close-to-harmonic potential at room
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temperature and thus allows us to illustrate the simple thermal
NMS procedure. This is followed by a study of the enol form
of 1,3-propanedial (malonaldehyde), which exhibits reactivity
by sharing the acidic proton between the two oxygen atoms
spontaneously at ambient conditions.75 Finally, we focus on a
more involved proton-sharing system represented by 2,5-
diaminobenzoquinone-1,4-diimine (DABQDI), which has two
proton-sharing sites.76 Spontaneous proton transfer is hindered
by a barrier thermally insurmountable at room temperature,
and an enhanced sampling simulation is necessary to
determine the free energy profile.
4.1. Benzene. To lead off the discussion of the ability of

TTS to seed a training set for the creation of C-NNP models
for realistic systems in the gas phase, we focus on the benzene
molecule. It represents an ideal example to illustrate the basic
idea of thermal NMS using a single normal mode expansion at
an optimal geometry since it features a single configurational
minimum and the surrounding PES exhibits almost no
anharmonic effects.
To prepare the ground for comparison with the relevant C-

NNP data, we initially performed one 250 ps AIMD simulation
of gas-phase benzene at 300 K at the DFTB level using a
classical representation of the atomic nuclei as well as a 100 ps
PIMD simulation using 64 replicas to approximate the
imaginary time path. Two C-NNP models were then based
on candidate sets obtained from a thermal NMS of gas-phase
benzene using a Hessian matrix calculated at the same DFTB
level of theory as the (PI)-AIMD simulations at 300 K for the
classical model and with the appropriate effective temperatures
at 300 K for the quantum one. The resulting models were
evaluated on test sets consisting of 1000 structures sampled
from the two AIMD trajectories. Both models performed very
well with an energy root-mean-square error (RMSE) of 1.66
and 5.90 meV for the model constructed for the use without
and with path integral structures, respectively. The RMSE for a
single force component was 14.9 and 30.4 meV A�1.
Subsequently, the models were used to obtain new 500 ps
long MD and 100 ps PIMD simulations at 300 K.
The comparison of the C-NNP models to the corresponding

(PI)-AIMD trajectories in terms of molecular geometry
properties is summarized in Figure 2. In general, we can see
the expected broadening of probability distributions due to
nuclear quantum effects when we compare the left and right
columns of Figure 2. In both the classical and quantum case,
we observe a perfect match between the ab initio (green
shading) and C-NNP distributions (blue dashed lines) in C�C
bond lengths (panels A and B), C�H bond lengths (panels D
and E), C�C�C angles (panels E and F), and C�C�C�C
dihedrals (panels G and H). The two types of covalent bonds
have expected distributions; the mean of the C�C�C angle is
located at 120° which shows the average hexagonal arrange-
ment of the aromatic ring subject to planarity, which is, in turn,
demonstrated by the (signed) C�C�C�C dihedral angle
peaking at 0° as expected. This level of agreement suggests that
the final models used for production MD represent excellent
approximations of the original DFTB PES. The negligible
deviations between the C-NNP and the (PI)-AIMD results are
quantified by the differences shown in the small sub-panels in
Figure 2 in blue. Additionally, we show the distributions of the
NMS structures (orange dotted lines) alongside the
anharmonic distributions. These exhibit significant overlap
with both the (PI)-AIMD and C-NNP data. This suggests that
the harmonic approximation to the original ensemble is

relatively good and confirms the assumed high degree of
harmonicity of the 300 K gas-phase benzene PES, even in the
quantum case. However, note that the match of the NMS data

Figure 2. Thermal geometry properties of benzene in the gas phase at
300 K from classical MD (left column) and path integral MD (right
column) compared between simulations using the reference DFTB
potential, the harmonic TTS ensemble, and simulations using a C-
NNP model building on the thermal NMS geometries. Panels A and
B show the distribution of C�C bond lengths, panels C and D the
distribution of C�H bond lengths, panels E and F the distribution of
C�C�C angles, and, finally, panels G and H the distribution of the
C�C�C�C dihedral angles. The smaller panels below each labeled
panel show the deviations of the NMS and C-NNP data from the
DFTB reference, using the same color coding as in panel A.
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with the (PI)-AIMD data is not nearly as perfect as that of the
C-NNP data and certain deviations are, in fact, present. As
discussed in Section 2, these are to be expected since the NMS
ensemble is only auxiliary and its goal is to provide sufficient
coverage of the accessible PES which ultimately leads to an
accurate C-NNP model. The differences of the NMS ensemble
from the ab initio reference are again quantified as differences
in Figure 2. Using thermal NMS, we were thus able to
construct a C-NNP that accurately describes the original PES

of benzene based on a single Hessian evaluation and 420
single-point electronic structure calculations.

4.2. Malonaldehyde. The enol form of malonaldehyde is a
simple organic molecule that has been used in MD
simulations75 to illustrate a simple intramolecular proton-
transfer reaction

Figure 3. TTS sampling of the malonaldehyde proton transfer and the MD simulation with the resulting C-NNP model. The top left panel shows
the relevant MEP (orange) with the three selected control points in the two configurational minima and the transition state highlighted and the
distribution of the TTS geometries (blue). The top right panel shows a scatter plot of a subset of geometries (selected with a stride of 37.5 fs)
obtained during a 250 ps MD simulation using the C-NNP model built on top of the TTS ensemble. Each point is colored by the norm of the force
committee disagreement on the carbon atoms and the mean of the quantity is shown in the box. Note the high force disagreement in the high �
tails of the distribution. The bottom panel shows the Boltzmann-inverted free energy profile (red) and the corresponding binned average potential
energy of the system (black, aligned to zero) along the proton transfer reaction as observed in the MD simulation. The error of the free energy,
obtained by block averaging, is �2 meV, which roughly corresponds to the thickness of the red line.

Figure 4. Evolution of the force disagreement of the carbon atoms through multiple instances of QbC. The left panel shows a subset of
configurations originating from an MD simulation using a model trained on data selected directly from the TTS candidate set (identical data as in
the top right panel of Figure 3 are shown). The force disagreement (depicted using the color scale) in the vicinity of the two configurational
minima and along the proton-sharing reaction is adequately low; however, for structures with a high absolute �, it is more than 1 order of
magnitude higher. The central panel shows configurations and disagreements obtained from an MD simulation using a model trained on the initial
training data augmented by QbC-selected high-disagreement configurations from the data in the left panel. In turn, the right panel shows data
obtained by improving the model using the new data sampled in the simulation shown in the central panel. Most notably, structures at the tails of
the populated configuration space are substantially improved. The mean force disagreement over all configurations in each data set is shown in the
framed box in each panel. The � and dOO� coordinates are illustrated in the snapshot to the left of the panels.
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in which the proton is moved from the enol oxygen to the
aldehyde oxygen with a simultaneous electronic rearrangement
which altogether causes the reactant and the product to
become symmetrically mirrored, chemically identical structures
(eq 8). As such, malonaldehyde is a convenient molecule to
demonstrate the ability of TTS to describe a simple reaction.
With the aim to describe the proton-sharing process

accurately, we decided to model the original ab initio PES at
the hybrid DFT level using the revPBE0-D3 functional.
Thanks to the ability to use quantum normal coordinate
distributions in the TTS method, we produced both classical
and quantum models and classical and PIMD trajectories for
malonaldehyde to test and showcase this functionality.
However, we focus mostly on the classical case in the main
text and discuss the complementary quantum results, for which
qualitatively similar conclusions arise, in the Supporting
Information, Section S2. The starting point of the TTS
procedure is the proton-sharing MEP, which was discretized
into 15 replicas and optimized using the CI-NEB procedure
and the revPBE0-D3 density functional. For illustration
purposes, we decided to use the full MEP with both the
reactant and product explicitly represented: this is strictly
speaking not necessary since the symmetry of the reaction
allows the use of only one nontrivial half of the MEP for TTS.
Out of the optimized full-length MEP, three control points
were selected in the two minima (reactant and product) and in
the transition state. For the visualization of the multidimen-
sional configuration data, we choose the reduction into a 2D
space of two geometric parameters: the proton-sharing
coordinate �(R) = |RO � RH| � |RO� � RH| and the
oxygen�oxygen dOO�(R) = |RO � RO�|, where O and O� denote
the two oxygen atoms that share the proton H. The obtained
optimized MEP and the selected control points in this
representation are shown in the top left panel of Figure 3 in
orange. The chosen parameters, illustrated in the snapshot on
the left of Figure 4, are not relevant for the execution of TTS
itself, which takes place in the full dimension, but allow to
conveniently show the results of the sampling in a reduced-
dimensionality parameter space that is physically meaningful
and suitable for the characterization of a proton transfer
process. The TTS classical candidate structures were then
generated using the procedure outlined in Section 2 at the
temperature of 300 K, linear sampling density along the MEP
of 1 � 105 Å�1, and matched-density sampling at the minima.
The distribution of the obtained configurations is shown in the
top left panel of Figure 3 as blue contours. The same
distribution colored by the assignment of each candidate to the
individual control points (corresponding to the situation
shown in panel D of Figure 1) is shown in Section S2 of the
Supporting Information. Note that this particular presentation
of the data does not do justice to the uniformity of the sample
distribution along the MEP as the regions around the minima
seem to be more populated than the transition state. This is an
effect of the deformation of the configuration space by the
projection on the selected subspace; the samples are
distributed uniformly in the full dimension. After passing the
resulting set of candidates through the QbC selection and
training a C-NNP model on the obtained training set, the
model was used to run a direct 250 ps MD simulation of gas-
phase malonaldehyde at 300 K. A subset of the obtained
configurations is shown in the form of a scatter plot in the top
right panel of Figure 3 colored by the decadic logarithm of the
norm of the force committee disagreement on carbon atoms in

the usual � and dOO� representation. Additionally, a 1D free-
energy profile obtained by a Boltzmann inversion of the
probability density of configurations along the �-axis is shown
in the bottom panel of Figure 3; the height of the barrier is
approximately 120 meV which corresponds to roughly 5 kBT at
300 K. This accounts for the expected low, but existing
population surrounding the transition state at � = 0 Å. We
estimated the error of the free energy by the block-averaging
method followed by extrapolation to infinite block size. This
gives errors lower than 2 meV over the studied range of �,
which corresponds to the fact that the transition is sampled
often during the simulation and the fact that the raw profile is
already symmetric. Alongside the free energy profile, we show
the corresponding average potential energy as a function of �.
An important observation can be made from the presented

data. By comparison of the two distributions in the top panels
of Figure 3, it is clear that the TTS distribution populates a
smaller volume of the configuration space than the data
obtained from the MD simulation. In this particular case, it
means that TTS does not directly provide good enough
coverage and the resulting model is undertrained in the
missing, yet thermally accessible regions. Specifically, the C-
NNP model performs poorly in the large dOO� tails of the
shown distribution, as quantified by the larger force disagree-
ment values. On the contrary, in regions around the proton-
sharing MEP, the coverage is good and the force disagreement
remains small, despite the tiny thermal population. Regardless
of the elevated model uncertainty for some configurations,
these MD simulations remain stable. The observed increased
disagreement can be interpreted in the following way: going in
the opposite direction from the minima as the proton-sharing
MEP, the true anharmonic PES has a potential wall that grows
slower than the harmonic wall captured by the TTS
distribution and, therefore, the thermal coverage of the TTS
configurations cannot reach far enough. In principle, this
behavior is caused by either the strongly anharmonic character
of the chemical bonds leading to bond dissociation or, more
likely in this case, the presence of another reactive process
leading to a new transition state. In the following two
paragraphs, we present two possible solutions to the issue. The
first one relies on an active-learning-based iterative improve-
ment of the model which has the advantage of requiring no
knowledge of the origin of the anharmonicity but is tedious to
perform since several intermediate simulations and model
generations need to be created. Meanwhile, the other solution
relies on the chemical intuition of the user to identify the
reactive nature of the issue with the aim to extend the initial
TTS, which leads to a fully capable C-NNP model straight
away.
The QbC process can be used to fill in an already existing

training data set that has gaps, perhaps due to an incomplete
TTS candidate set in the QbC selection for the initial model.
We illustrate this process in Figure 4, where the left panel
shows the same data as the top right panel of Figure 3 as a
starting point. Regions of configuration space not covered well
in the training set of this generation 1 model can be easily
identified by the high committee disagreement, as can be seen
in the tails of the distribution. Hence, one can start a new QbC
using the existing training data set augmented by structures
from an MD simulation performed with the initial C-NNP.
Depending on the size of the gaps in the initial training data
set, only a few iterations of QbC are typically necessary.
However, adding these structures to the training data set can
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lead to substantial changes in the previously inaccurate regions
of the PES, resulting in an MD simulation that again reaches
new regions of the configuration space where the shape of the
PES is yet unknown to the model and the committee
disagreement is high. This can be seen in the generation 2
model shown in the middle panel of Figure 4. Therefore,
multiple repetitions of the MD�QbC cycle might be necessary
until a highly accurate model that exhibits low and uniform
disagreements over the sampled data is reached, as is the case
for the generation 3 model in the right panel of Figure 4. As
such, the approach could become practically cumbersome
when the regions of high disagreement coincide with regions of
high free energy and long MD simulations are needed to
uncover these structures, but nonetheless represents a general
solution to the anharmonicity problem. Overall, repeating the
cycle of sampling MD configurations with a given generation of
a C-NNP model followed by training a new generation on a
training set enhanced by high-disagreement QbC-selected
structures from the previous MD simulations leads to a force
disagreement that is lower in the problematic PES regions and,
therefore, more uniform overall. In addition, we observe a
decrease in the mean of the force disagreement of the sampled
configurations due to the fact that the size of the training set
increases in each generation. Specifically, 620 structures were
used for the original model in the left panel of Figure 4, 800
structures for the model in the middle panel, and 950
structures for the last model in the right panel. This approach
can be beneficial in systems where it is difficult to identify the
origin of the anharmonicity of the original PES but is rather
demanding from the point of view of both computational
requirements and user involvement due to the need for the
semi-supervised iterative procedure.

However, in the case of malonaldehyde, the general active
learning iterative procedure to improve the model might be
excessive. The possible reasons for the softer-than-harmonic
wall due to conformational flexibility are few and the particular
direction against which the first generation of the model is
pushing can be easily identified with the s-cis and s-trans
torsional isomerism

which is mediated by rotation around the C�C single bond in
the propane backbone (eq 9). The optimized MEP
corresponding to this torsion displays a perfect continuation
in the correct direction when projected into the � and dOO�
subspace, as shown in the top left panel of Figure 5 in orange.
Although this pair of descriptors is not appropriate for the
whole torsion MEP, which entails a more complicated motion,
it is accurate enough at small deviations from the equilibrium
geometry. To include structures along this MEP into the initial
(first generation) proton-sharing TTS, two control points were
chosen in the minimum (shared by the two MEPs) and in the
new transition state (not shown in Figure 5, as it is around
dOO� = 3.8 Å). We do not need to use the s-trans minimum at
all, as we are not interested in including the transition itself,
only the shape of the PES on the side of the global minimum.
A new TTS was performed between these control points with
the same parameters as the initial one and the resulting
distribution of the combined sets of configurations is shown in
blue in the top left panel of Figure 5. Running a 250 ps long
MD simulation with a new C-NNP model trained on the QbC-
selected training set from this combined candidate set leads to
the distribution shown in the top right panel in Figure 5.

Figure 5. TTS sampling of the extended malonaldehyde MEP containing the proton transfer reaction as well as the single C�C bond torsion and
the MD simulation with the resulting C-NNP model. Identical quantities as in Figure 3 are shown with the free energy being plotted here for both
classical (solid line) and path-integral (dashed line) data. The orange curve shown in the top left panel is a union of the MEPs corresponding to the
proton transfer and the C�C bond torsion; the projection of the latter into the �, dOO� subspace is not, strictly speaking, a physically meaningful
concept, but clearly visualizes the fact that MEP is the continuation in the desired direction. As such, the C-NNP model trained on the combined
TTS structures has no further deficiencies as shown by the overall uniform force disagreement in the top right panel.
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Clearly, the distribution reaches all the expected thermally
accessible regions, the force disagreement is evened out across
the configurations, and the high-disagreement tails are no
longer present. The mean value of the disagreement is
comparable to that of the first-generation model, as these
two models are based on training sets of the same size. The
bottom panel of Figure 5 shows the potential energy and the
free energy profile along �, where the latter is shown for both
classical and path-integral data. In all three curves, one can
observe a softening of the barrier in the high |�| regions in
comparison to the data shown in Figure 3 resulting from the
present C-NNP being aware of the anharmonic nature of the
PES in these regions. The transition-state free energy of 43
meV for the quantum simulation is �4 times lower than in the
classical case, which is a manifestation of proton tunneling
through the barrier. This is qualitatively consistent with
existing literature but quantitatively different from the results
reported for the BLYP functional, where the classical free
energy barrier is somewhat higher and the quantum effect is
substantially smaller, decreasing the barrier by a factor of only
�2.75
For further insights, a test set independent of the training set

data was created by generating 500 structures using TTS and
sampling 500 structures from the classical MD trajectory
shown in Figure 5, and evaluating their energies and forces
with the revPBE0-D3 reference method. The generation 3 C-
NNP of the iterative approach as well as the extended TTS C-
NNP performs well with an energy RMSE of 1.80 and 3.44
meV and a force component RMSE of 18.3 and 24.4 meV A�1,
respectively. The slightly elevated RMSE of the extended TTS
approach is due to the broader coverage of the training set. It
includes a range of geometries along the C�C single bond
torsion, even in regions that are not populated during MD,
leading to a less dense coverage of the rest of the configuration
space. The validation errors of the intermediate models of the
iterative approach and the distribution of errors within
configuration space are discussed in more detail in the
Supporting Information, Section S2.
Both of the approaches above thus yield highly accurate

models for the description of the proton-sharing reaction in

malonaldehyde for classical and quantum nuclei. The
advantage of one over the other therefore depends mostly
on the specific situation in which the need for any of them
should arise: if the reaction coordinate of the complementary
transition can be identified, then the latter approach using the
extended TTS reaches the desired result with higher efficiency.
Note that this approach can also be used when multiple
different transitions are to be included in a single model.
Finally, it is worth noting that an MLP trained on structures
selected only from the quantum formulation of TTS and
PIMD trajectories performs well for classical MD simulations
of malonaldehyde, too, as detailed in Section S2 of the
Supporting Information.

4.3. DABQDI. The most complex reactive system used to
demonstrate the performance of the TTS method is
represented by the DABQDI molecule. This nitrogenated
benzoquinone derivative can exchange two protons between
the neighboring amine and imine groups

again accompanied by an electronic rearrangement that
maintains the �-electron conjugation throughout the process
(eq 10). However, this time, the proton-sharing does not take
place at ambient conditions, which suggests high barriers to the
process.
The corresponding PES reduced to the relevant �1 and �2

subspace (illustrated in the snapshot in Figure 6), where each
proton-sharing coordinate describes a single proton-sharing
site, was obtained at the revPBE0-D3 level of electronic
structure theory through a relaxed scan of the molecular
potential energies while applying appropriate constraints and is
shown in the left panel of Figure 6. The shown data was
aligned so that the global minimum of the PES corresponds to
the zero-energy level. The typical structure of the PES
featuring four distinct configurational minima and four
transition states corresponds to a sequential double proton
transfer at the level of an MEP. Here, one proton is first fully
exchanged to reach an intermediate state located at a higher

Figure 6. Comparison between the reference ab initio revPBE0-D3 and the C-NNP proton-sharing PESs of the DABQDI molecule. The left panel
shows the projection of the reference DFT PES into the �1, �2 subspace using a color scale as well as individual isoenergetic contours. Furthermore,
the minimal nontrivial MEP which describes a single proton transfer is depicted in white with the selected control points highlighted. A sparse
subset of the TTS geometries sampled around the MEP at 300 K is shown in green. The middle panel shows the corresponding PES projection
calculated with the resulting C-NNP. Finally, the right panel shows the difference between the two PESs aligned to the global minima. The black
contours range from �1.5 kBT to 1.5 kBT and are spaced by 0.5 kBT at 300 K. The two � coordinates are illustrated in the snapshot of the DABQDI
molecule to the left of the panels.
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potential energy and only then the other proton follows. The
height of the potential energy barrier for this sequential process
of roughly 0.8 eV indicates that its thermal rate should be
negligible. The alternative concerted proton transfer path that
is seen in other species including carboxylic acid dimers77 is
classically disallowed in this case by a tall (>1.2 eV) potential
barrier in the middle of the presented PES which represents a
second-order saddle point and, as such, no MEP can go
through it. The symmetry of the DABQDI PES allows us to
explicitly address only a single proton transfer: unlike in the
previous example, we exploit this feature here for the C-NNP
model generation. The relevant nontrivial MEP connecting the
two chemically distinct minima was obtained using the CI-
NEB optimization at the revPBE0-D3 level of theory and is
shown in white in the left panel of Figure 6. From there, the
straightforward TTS candidate generation was performed
using the three usual control points in the two minima and
in the transition state at 300 K with the linear sampling density
of 1 � 103 Å�1. A subset of the candidate geometries is shown
in the left panel of Figure 6 as green points. The obtained C-
NNP model was used to recreate the 2D proton transfer PES
which is shown in the middle panel of Figure 6 with the
energies aligned in the same way as in the DFT case.
Qualitatively, the C-NNP model captures all the features of the
original ab initio PES including the position of the minima, the
transition state, and the barriers, as well as the potential energy
values. Note that the good agreement in the representation of
the central barrier in spite of the lack of corresponding

geometries in the TTS candidates is due to the successful
extrapolation by the model. The quantitative difference
between the ab initio and C-NNP potential energy landscape
is captured in the right panel of Figure 6 which shows the
difference between them relative to the global minima, with
contours in multiples of 0.5 kBT for reference. It is important
to view this deviation in the context of the height of the barrier,
which is 0.71 eV (27.3 kBT, deviation of ��1.25 kBT), and the
relative energy of the two minima, which is 0.45 eV (17.3 kBT,
deviation of �0.5 kBT). A test set calculated over the TTS
auxiliary ensemble quantifies the error in the thermal vicinity of
the reaction coordinate to 0.88 meV/atom for energies and
47.6 meV/A for forces. These errors are comparable to test set
errors of accurate nonreactive models for water using the same
NNP architecture.27,60 This difference could be decreased
further, if desired, by optimizing hyperparameters of the
model, by completely changing the architecture of the MLP, or
by increasing the size of the training set beyond the current
intentionally rather small set of 620 structures.
Since DABQDI features barriers that are not practically

accessible by direct MD, it serves as a useful example to
illustrate the power of the TTS-based C-NNP model to
perform an enhanced sampling calculation to correctly
estimate the free energy profile of the double proton transfer
at 300 K. This was obtained using an umbrella sampling
simulation in the coordinate �1 with the C-NNP PES (as
described in Section 3) followed by a multistate Bennet
acceptance ratio (MBAR) reweighing of the biased config-

Figure 7. Umbrella sampling simulation of the single proton transfer in the DABQDI molecule along the �1 collective variable using the C-NNP
potential. The top panel shows the obtained free energy profile in blue. For validation purposes, we also show the DFT free energy profile (orange,
dashed) obtained by reweighting the C-NNP configurations as described in the text. Note that no umbrella sampling using the DFT potential was
performed to obtain the DFT free energy profile. The bottom panel shows the full 2D free energy surface obtained by weighting the distribution in
the two proton-sharing coordinates by the thermal Boltzmann factors extracted from the biased simulation and symmetrizing the resulting
histogram.
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urations. The obtained 1D free energy profile in �1 is shown in
blue in the top panel of Figure 7. The transition state is located
at roughly 0.8 eV above the global minimum. Comparing this
with the value of the corresponding potential energy suggests
that the entropic contribution in the gas-phase system is small
and that the population at the barrier is clearly negligible at
300 K. The maximum error of the free energy profile is ±2
meV, which was estimated by the error analysis infrastructure
of the PyMBAR implementation of MBAR73 (shown in Figure
S6 of the Supporting Information). To validate the obtained
free energy profile, we perform a reweighing of a subset of the
obtained configurations in each umbrella window to the
original DFT ensemble. This is achieved by additionally
multiplying each MBAR-obtained unbiased weight by the
corresponding factor e���E, where the energy difference �E is
the difference between the C-NNP and DFT potential energy
for each configuration. For this purpose, we used a total of
3000 configurations obtained by selecting 100 geometries
evenly spaced in time from each of the 30 umbrella sampling
windows. The resulting profile, which is a good approximation
to the full-DFT free energy profile, is displayed as the orange
dashed line in Figure 7 and shows very good correspondence
with the profile obtained using the C-NNP model alone. This
procedure thus at the same time validates the C-NNP model
and provides DFT data for a fraction of the cost of the
hypothetical purely ab initio enhanced sampling simulation.
Monitoring the values of the collective variable �2 along the
umbrella sampling simulation and using the thermal weights
obtained from the MBAR treatment of the biased simulations
also allows for recovering the 2D free energy surface in �1 and
�2. Its symmetrized version is shown in the bottom panel of
Figure 7.
4.4. Computational Efficiency. The computational

speedup due to using TTS rather than the traditional sampling
based on AIMD simulations is not straightforward to measure
as it depends on the particular system in question. At least, one
can give a rough estimate of the order of magnitude of the
difference between the number of single-point evaluations
required by both approaches. For TTS, its dominant
computational requirements arise due to the parts of the
algorithm that require ab initio calculations: the MEP
optimization, the calculation of the Hessians at the chosen
control points, and the evaluation of training energies and
forces during QbC. Therefore, the total number of single-point
energy and force evaluations is

N N N N
SP SP

MEP

SP

Hessian

SP

QbC= + + (11)

where

N NN6
SP

Hessian

p
= (12)

when analytic forces are available. For the MEP optimization, a
reasonable expectation is an NEB with low tens of replicas that
converges to the desired path on the order �102 steps, which
means the total number of single-point evaluations NSP

MEP on
the order of 103. For the Hessians, we typically require three
control points (maybe five in more challenging cases not
encountered in this work), which yields NSP

Hessian on the order of
102. Similarly, for the QbC we find that a converged training
set size is as small as several hundred thermal geometries. In
total, the number of single-point evaluations required for TTS
is thus on the order of 103. For simple NMS, where the MEP is
replaced by optimization of a single structure to potential

energy minimum and where only one Hessian is required, we
expect the number of single points to be an order of magnitude
less than TTS. The number of single-point evaluations for the
AIMD alternative is again not clear, as it depends on the
system-dependent correlation time scale. For a small gas-phase
molecule with a single minimum such as benzene, a reasonable
(although still optimistic) estimate is that a 20 ps long classical
direct AIMD trajectory with a 0.5 fs integration time step,
which allows us to extract 400 geometries with a 50 fs stride,
should be sufficient to provide decorrelated data for the
training of a C-NNP. This already requires �104 single-point
evaluations. However, more complex systems typically require
longer simulations to provide sufficient sampling. Crucially,
reactivity increases the computational cost of a hypothetical
reference AIMD simulation dramatically. Already in the
reactive case of malonaldehyde, adequately sampling the
barrier regions (Figure 5) required �106 MD steps of direct
sampling, which would have to be performed at the ab initio
level without TTS. Systems with higher barriers that will not
be crossed by direct AIMD on reasonable time scales would
require the use of enhanced sampling techniques, and the
construction of a model compatible with quantum nuclei
would require path integral simulations. These would, again,
raise the cost of the simulations by at least an order of
magnitude eachthink, for instance, low tens of umbrella
sampling windows to cover a reaction coordinate and tens to
hundreds of path integral replicas to converge quantum
properties. All in all, we expect TTS to be always computa-
tionally superior to running AIMD simulations. Especially
when enhanced sampling and path integral simulations are
needed for an appropriate description of the studied system,
we expect the difference between the methods to be three to 4
orders of magnitude.
Another facet of the considerations of computational

efficiency is the simulation performance of the resulting C-
NNP in comparison to the original ab initio electronic
structure method itself, which we illustrate on the DABQDI
enhanced sampling simulation, where the acceleration of the
C-NNP umbrella simulation in comparison to the naive
execution with the original DFT method is substantial. To
illustrate the computational savings, we can compare the times
required for one MD step with the implementations in CP2K
used in this work. With the hybrid functional, one MD step
takes 272 s on a single core or 17 s on 32 cores (a full node) of
our EPYC-based cluster. With the C-NNP, one step takes
0.006 s and does not scale meaningfully to more cores due to
the small system size. This yields a speedup of � 45,000� on
identical resources or �2800� with more resources given to
the DFT calculation. Obviously, the specific numbers will
depend on the details of the electronic structure setup and the
MLP architecture used, as well as the specific implementations
and hardware used, but this behavior of our particular setup
should provide a general idea.

5. CONCLUSIONS
In this work, we have introduced the TTS method to sample
thermal geometries around MEPs that describe barrier-
crossing transitions in molecular systems. The goal of the
method is to provide a physically meaningful set of candidate
structures for the creation of MLPs without the need to run
computationally demanding ab initio simulations. In our case
specifically, we submit these geometries to QbC and construct
a C-NNP model, but the same candidates could be used for
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other types of models as well. The execution of the TTS
protocol as a whole entails a relatively modest computational
cost with respect to the original ab initio method that is given
by the MEP optimization, several Hessian evaluations, and a
small number of single-point ab initio calculations for the
QbC-selected geometries. In terms of application to realistic
systems, the TTS method yields highly accurate C-NNP
models in all studied cases. This was achieved either by using
the generated candidate set directly or by letting the resulting
C-NNP model undergo additional active learning generations
to compensate for a pronounced anharmonic effect as seen in
the case of malonaldehyde. As such, the performance of TTS
in the presented test systems demonstrates its robustness and
efficiency and suggests applicability in most gas-phase systems,
including highly anharmonic cases.
A noteworthy feature of the TTS method is its ability to

provide thermal geometries sampled from the quantum
thermal distribution at essentially the computational cost of
the classical case. As such, models that are appropriate for use
in path integral simulations are made readily available without
the need to run expensive PI-AIMD simulations at all.
However, it is important to recognize that although the
present formulation of TTS can address quantum behavior, it
has limitations in this regard that derive from the
fundamentally classical nature of the MEP. Nuclear quantum
effects, in particular quantum tunneling through the potential
barrier, can cause the configuration-space probability density of
the system to deviate from the transition tube around the MEP
in a way that renders the coverage by TTS samples insufficient.
To account for this, the above formulation of TTS can be

straightforwardly generalized from sampling around classical
MEPs to ring-polymer instantons,78 which represent the paths
of optimal tunneling. While this modification requires
essentially no adaptation of the TTS theory and implementa-
tion itself, one can anticipate an elevated computational cost
due to the required instanton optimization at the explicit ab
initio level. The approach will find applications beyond the gas
phase, in systems where vibrational normal modes are a
meaningful concept, such as in the study of materials,
molecular crystals, or in surface science for the description of
growth and molecular adsorption. Disordered condensed
phase, including liquids, represents a more challenging case
in which TTS alone is not applicable for efficient thermal
sampling of geometries. However, the auxiliary use of the TTS
protocol in obtaining more diverse thermal structures of
liquids, for instance with the help of local normal modes,
should be explored. Our research anticipates the need to
address some of these condensed-phase systems in the near
future and we expect TTS to be a valuable tool in the creation
of accurate, yet computationally accessible potentials that will
enable the accurate description of these more complex systems
at unprecedented sizes and simulation time scales.
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ABSTRACT: The benzene radical anion is an important intermediate in the Birch reduction of
benzene by solvated electrons in liquid ammonia. Beyond organic chemistry, it is an intriguing
subject of spectroscopic and theoretical studies due to its rich structural and dynamical
behavior. In the gas phase, the species appears as a metastable shape resonance, while in the
condensed phase, it remains stable. Here, we approach the system by ab initio molecular
dynamics in liquid ammonia and demonstrate that the inclusion of solvent is crucial and indeed
leads to stability. Beyond the mere existence of the radical anion species, our simulations explore
its condensed-phase behavior at the molecular level and offer new insights into its properties.
These include the dynamic Jahn−Teller distortions, vibrational spectra in liquid ammonia, and
the structure of the solvent shell, including the motif of a π-hydrogen bond between ammonia
molecules and the aromatic ring.

One of the most prominent roles of the benzene radical
anion (C6H6

•−) in organic chemistry is that of a reactive
intermediate in the Birch process1−6 (eq 1) used to reduce
benzene or related derivatives into 1,4-cyclohexadienes. Such
reduction is realized through the action of excess electrons.
Specifically, the reaction7

is initiated by introducing the aromatic substrate together with
a proton source (usually a simple alcohol) into the dark blue
solution of solvated electrons8 in liquid ammonia,9,10 created
by dissolution of an alkali metal.11 Already in the reaction’s
first step, the benzene radical anion is formed when a neutral
benzene molecule accepts an excess electron from the
surrounding solution, allowing the substrate to enter the
reduction pathway. The Birch reduction has proved to be an
important tool for selective reduction of organic substrates
both industrially and in organic synthesis.12−14 However,
interest in the anion reaches beyond organic chemistry. Its
open-shell electronic structure defined by a highly symmetric
molecular geometry gives rise to phenomena that have been
the subject of numerous theoretical and spectroscopic studies
since the 1950s.15−19 Computationally, the anion presents a
challenge due to its need for both a large basis set and a
sufficient level of electronic structure theory to accurately
capture its properties in the gas phase. Recently, Bazante and
co-workers20 have published a detailed gas-phase ab initio
study focusing on the isolated species, specifically its molecular

geometry, including the Jahn−Teller (JT) distortions, electron
paramagnetic resonance (EPR) spectroscopy parameters, and
on confirming its previously suggested15 character of a
metastable shape resonance in vacuum. Experimentally, the
character of the gas-phase benzene radical anion as a
metastable resonance was studied using electron transmission
spectroscopy21,22 where the results even determine the
extremely short lifetime of the species on the order of 10 fs.
In contrast, the species has been observed in the condensed
phase using multiple experimental approaches. This includes
spectroscopic studies of film-like co-deposits of an alkali metal
with benzene using vibrational spectroscopy18 and in the
presence of a polar organic solvent using ESR,16,23 or
electronic spectroscopy.17 The issue of electronic stability in
solvated environments was directly addressed experimentally in
the context of small aqueous clusters,24 and the thermody-
namic equilibrium with solvated electrons was measured at
various temperatures in a tetrahydrofuran solution.25 These
studies point to the presence of a radical species and suggest
that its gas-phase metastability is removed in the condensed
phase: a stable bound state is observed. Electrochemical
properties and the reactivity of the radical anion in solution
have also been studied by cyclic voltammetry in dimethoxy-
ethane with a proton source.26 The condensed-phase-induced
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stability is also implied by the high experimental yields1,27−29

of the Birch reduction that would not be achievable in case an
intermediate was electronically unstable. This experimental
evidence shows that this stabilization is not solvent specific but
rather general to a broad class of polar solvents, implying that
the stabilizing effect of the solvent is due to the dielectric
environment that it creates around the anion. It is therefore
clear that the solvent environment plays a crucial role in the
stabilization of the benzene radical anion in solution.
Our aim in this work is to shed new light on this species

using a computational approach. To this end, we use ab initio
molecular dynamics (AIMD) to gain insight into and
understand in detail the static and dynamic properties of the
benzene radical anion in solution, in contrast with previous
gas-phase studies, because experimentally the inclusion of the
solvent appears to be the key to obtaining an electronically and
thermodynamically stable species. Specifically, we perform our
condensed-phase simulations in explicit liquid ammonia, as this
is the natural environment for excess electrons in the context of
the Birch reduction. Using these simulations, we characterize
the JT distortions of the radical anion, explore the solvent
structure of liquid ammonia around the anionic solute, and
predict its contribution to vibrational spectra, comparing to its
neutral counterpart in all cases.
The subsequent discussion of our results is based on AIMD

simulations of the benzene radical anion and neutral benzene
in liquid ammonia at 223 K under periodic boundary
conditions using a hybrid density functional theory (DFT)
electronic structure calculation on the fly. AIMD methodology
at the hybrid DFT level is required to obtain an electronically
stable anionic species with most of the excess electron density
localized on the aromatic ring [around 95% as determined by
the Hirshfeld population analysis30 (see Figures S1 and S2)],
as expected for an electron occupying a bound state in
solution. This is necessary only due to the presence of the
anionic radical species: liquid ammonia itself is already well
described at lower levels of DFT theory.31 A detailed
discussion of the employed methodology32,33 is presented in
the Supporting Information; here, we show a snapshot
illustrating the localization of the excess electron density
(green and violet contours of the spin density) on the aromatic
ring in Figure 1 and a trajectory video file (detailed in section
S6) that shows also the time evolution of the system, including
the spin density.

With regard to the molecular structure of the radical anion,
quantum theory predicts that a symmetry breaking of the
initially perfectly hexagonal molecule of benzene is expected
via a JT distortion after the addition of the excess electron to a
degenerate lowest unoccupied electronic state. More precisely,
the initial E2u electronic state in the D6h point group distorts to
two possible distinct states labeled Au and B1u in the D2h
nearest lower-symmetry point group. A geometric relaxation of
the molecular structure follows, resulting in two possible
shapes that can be roughly described as contracted (B1u) and
elongated (Au) hexagons that have been previously predicted
by gas-phase calculations15,20 and experimentally.23 For
comparison, the related but computationally simpler benzene
radical cation, which has almost identical distortions, does exist
as a stable species already in the gas phase and has been
studied by AIMD before.34 The energy barriers between the
two JT structures of the radical anion are expected to be low
enough to allow for a dynamic JT effect where the structure is
not rigid but undergoes a pseudorotation20 (Figure 2 and the

video file detailed in section S6). Below, we analyze the
structural distortions of the anion as observed in our
condensed-phase simulations and discuss whether and how
the JT behavior manifests in solution.
Initially, we analyze the structure of the solute by correlating

pairs of carbon−carbon bond lengths around the aromatic ring.
Specifically, we first correlate all pairs of directly neighboring
bonds (1−2 correlation), all bond pairs with one additional
bond in between (1−3 correlation), and finally all bond pairs
neighboring over two extra bonds (1−4 correlation). The
resulting bivariate probability densities are shown in Figure 3
for both neutral benzene (top row, blue) and benzene radical
anion (bottom row, green).
The neutral benzene reference data show unimodal

distributions in all three panels positioned on the main
diagonal. This implies a hexagonal symmetry of the neutral
solute and together with the mean carbon−carbon bond length
of 1.39 Å suggests that its structure is very similar to that in the
gas phase: this is expected as no symmetry-lowering distortions
are anticipated at this point. In contrast, adding the excess
electron to the solute changes these results dramatically.
Bimodal distributions appear, and moreover, the 1−2 and 1−3
correlations now clearly show a negative correlation; on the
contrary, the remaining 1−4 correlation displays a positive one.
These observations are consistent with the predicted Au and

Figure 1. Representative snapshot from the hybrid DFT AIMD
simulation. On the left, we show a snapshot of the whole simulation
box containing one benzene, 64 ammonia molecules, and an excess
electron with the spin density of the system colored green (positive
part) and violet (negative part). The close-up shows a detail of the
localization of the spin density distribution over the benzene radical
anion.

Figure 2. JT pseudorotation of the benzene radical anion. The central
hexagonal structure distorts to attain one of the lower-symmetry and
lower-energy structures around the pseudorotational path around
which it then circles.
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B1u JT structures that require a bond length heterogeneity in
the 1−2 and 1−3 pairs (i.e., having a shorter and a longer bond
in the pair, respectively) and a homogeneity in the 1−4 pair
where the bond lengths have to match due to the presence of a
center of symmetry in the D2h point group.
The analysis presented above using bond length correlations

unarguably shows the presence of symmetry-lowering molec-
ular distortions of the anion that agree with the previously
predicted JT structures. However, as it averages over all bond
pairs around the ring, it is in fact insensitive to distinguishing
the individual pseudorotamers. Moreover, the bond lengths do
not provide a meaningful reaction coordinate for evaluating the
energetics of the distortions. Therefore, we present a
complementary analysis where we project the immediate
distortions of the solute onto the harmonic vibrational normal
modes of the neutral benzene gas-phase reference and observe
the correlations of degenerate pairs of modes of the JT active
e2g symmetry. Only one of the four possible JT active normal
mode pairs yields a correlation that rises above thermal
fluctuations, and thus, we track the JT distortions using this
particular pair of modes, averaging over all remaining degrees
of freedom (Figure 4). The pair in question describes the
vertical elongation of the carbon ring and its sideways-skewing
motion,35 is located at a frequency of 1654 cm−1 in the gas
phase, and will be denoted further as Qx and Qy. Linear
combinations of these two modes can reconstruct the crucial

features of the distortions sketched in Figure 2. A video file
detailed in section S6 visualizes the propagation of the benzene
ring along a circular trajectory in the subspace spanned by
these two modes.
Once again, a trivial, origin-centered peak appears in the

neutral system, which corresponds to a symmetric structure
with respect to the two studied modes. Its narrowness implies a
certain level of structural rigidity. In contrast, the anion
displays a typical “Mexican hat” shape with the area around the
center being depopulated and the main population residing in
a ridge around it. This ridge directly corresponds to the
pseudorotational path sketched in Figure 2. Such an
observation is in agreement with the prediction of the JT
effect and indeed shows that the structure of the radical anion
is not rigid, but rather flexible and dynamic. As we discuss in
the Supporting Information and show in Figure S5, the JT
distortion changes on a very short time scale of no more than
100 fs. While the symmetric structure with respect to the two
studied modes is penalized by a free energy barrier of around 2
kT, the free energy variation along the pseudorotational path
turns out to be small relative to thermal fluctuations, as
detailed in Figure S4 and the corresponding discussion in the
Supporting Information.
Having addressed the features of the intrinsic structure of

the solute, we now turn our attention to the structure of the
solvent. The specific solvation structure is captured in the
nitrogen spatial distribution functions (SDFs) around each of
the two (anionic and neutral) solutes shown in Figure 5. The

SDFs take on a cagelike form with maxima in strips around the
carbon−carbon midbond regions and in the areas above and
under the ring. Intuitively, these areas, clearly separated from
the rest of the solvation patterns, can be interpreted as a
manifestation of the π-hydrogen bonding phenomenon, as
discussed below. The SDFs of both species look similar to the
naked eye: the only visible difference is a more blurred
character in the neutral benzene case, suggesting that the
diffuse negative charge on the anion does provide a structuring
effect on the solvent arrangement, but not a very substantial
one. The JT distortions of the anion are not expected to alter
the symmetry of the solvation structure: the distortions happen
symmetrically in three different directions, which would lead to
a cancellation of their effect on the shape of the SDF in the
long time limit. Moreover, the solvent does not have enough
time to rearrange and accommodate the immediate JT

Figure 3. Correlations of carbon−carbon bond lengths (d) between
bonds of different neighboring schemes. The uncharged system data
can be found in the top row (blue), whereas the bottom row contains
the anionic data (green).

Figure 4. Correlations of carbon ring-deforming JT active normal
mode amplitudes for the neutral (left, blue) and anionic (right, green)
systems.

Figure 5. Spatial distribution functions of ammonia nitrogen atoms
around the center of mass of the aromatic ring. Anionic data are
shown on the left (green solute), and neutral data on the right (blue
solute). The blue−purple contour shows regions where the density is
4.5 times that of a non-interacting solvent. For the purpose of
presentation, the three-dimensional histograms were convolved with a
σ = 1 Å Gaussian filter.
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distortions of the solute anyway due to their previously
mentioned very short time scale.
In Figure 6, we plot the plane-restricted radial distribution

functions (RRDFs) of ammonia nitrogen atoms around the

center of mass (COM) of both the neutral and anionic solutes,
obtained formally by partial angular integration of their
respective SDFs (see the Supporting Information for the
specifics of the procedure and Figure S3 for its convergence).
These RRDFs describe the radial solvent distribution close to
certain given planes instead of the whole sphere (as in the
usual plain RDF). Therefore, they provide more detailed
information about the anisotropic solvation environment than
a plain unrestricted RDF does. In total, there are three
categories of perpendicular significant planes with respect to
the geometry of the studied solutes: the horizontal (h) plane in
which the aromatic ring of ideal geometry would lie, three
equivalent vertical planes (a) perpendicular to h cutting
through a pair of distal carbon atoms, and three more
equivalent vertical planes (b) perpendicular to both h and a
and cutting through two opposing carbon−carbon bonds
(Figure 6, top row). A comparison between the RRDFs in both
presented panels further quantitatively confirms the previous
qualitative assessment based on the SDFs that the solvent

structure around the anionic and the neutral structures is,
despite minor differences, similar. We shall discuss mainly the
anionic data (Figure 6, middle panel) while keeping in mind
that a similar discussion applies to neutral benzene. In the gh
RRDF (dark green), which addresses the shape of the solvation
structure around the horizontal plane, one can observe a rather
late onset due to steric shielding by the solute itself followed by
a single peak. The maximum of the first solvation shell of the
benzene anion in the horizontal direction is located
approximately 5.6 Å (5.0 Å for benzene) from the center of
mass. The ga RRDF (medium shade of green) shows a similar
shape, even though the onset is at a much shorter distance in
this case as there is no steric shielding by the solute in the
vertical direction. The observed peak at 3.7 Å (3.5 Å for
benzene) corresponds to the π-hydrogen cloud and is followed
by a wide shallow minimum as there is no significant density of
solvent around the carbon atoms. In contrast, the gb RRDF
(light green) shows a second additional peak at 5.0 Å (4.7 Å
for benzene) arising from the SDF areas not belonging to the
π-hydrogen cloud. Both peaks of the RRDF thus belong to the
first solvation shell. This splitting slightly transfers to the ga
plane of neutral benzene (medium blue), which can be
considered a sign of its more diffuse (weaker) solvation
structure in comparison to that of the anion. However, we note
in passing that the solvation cavity of the anion is
systematically larger in all directions. The onset of the second
solvation shell can be noticed in the vertical RRDFs above 6 Å
but is cut short by the employed simulation box size of
approximately 14 Å. The second solvation shell is not captured
in the horizontal RRDF at all.
To close the discussion, we turn briefly to the phenomenon

of π-hydrogen bonding, i.e., bonding between the polar solvent
and the π-electron cloud of the solute. This behavior has been
found in aqueous solutions of benzene both experimentally36

and computationally.37 In our liquid ammonia simulations, we
observe a well-separated peak in both SDFs, symmetrically
located above and under the h plane, indicative of the presence
of a π-hydrogen bond. Visual inspection of the solvent
molecules bound at the site reveals a solvent orientation
consistent with π-hydrogen bonding. These occurrences are
found to have a temporary character: molecules do bind and
unbind on the simulated time scales. Once again, we use the
procedure of RDF restriction to quantify the π-hydrogen cloud
of the SDFs: this time we restrict the RDF to an axis in a
manner complementary to the planar restrictions above (again,
see the Supporting Information for additional details). A
natural choice of this axis is the normal of the benzene
horizontal plane, i.e., its C6 axis. In this case, the restriction
angle was set to ω = 21° purely on the basis of the SDF
geometry to completely isolate the whole π-hydrogen cloud
from the rest of the SDF. The obtained RRDFs can be found
in the bottom panel of Figure 6 for both the anionic solute and
the neutral solute. The π-hydrogen peak here is massive,
reaching a magnitude of 9−10 (cf. the gray shaded unrestricted
RDF reference). In the same panel, we also present the
corresponding coordination numbers to quantify the solvent
population of one of the two π-hydrogen binding sites located
above and under the planar solute. Even here, it appears that
the two studied solutes behave rather similarly and the excess
charge on the anion only slightly enhances the interaction: the
specific populations are ∼0.65 and ∼0.70 molecule per binding
site for the neutral and anionic solutes, respectively.

Figure 6. RRDFs of ammonia nitrogen atoms around the COM of the
aromatic ring. RRDFs restricted to significant planes of the solute
geometry (top row) under a restriction angle of ω = 15° are shown in
the top (neutral benzene) and middle (radical anion) panels. The
gray shading represents the unrestricted RDF (ω = 90°) in both cases.
In the bottom panel, axis RRDFs focus on the π-hydrogen cloud with
a restriction angle of ω = 21° for the radical anion (green) and neutral
benzene (blue) with the gray shaded neutral benzene unrestricted
RDF for size comparison. Dashed lines show the per-site running
coordination numbers of the axis RRDFs.
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To be able to relate to spectroscopic measurements, we
predict the vibrational spectra of both species in liquid
ammonia in the form of the vibrational density of states
(VDOS) and infrared intensity (IR). Theoretical calculations
of vibrational spectra allow, unlike their experimental measure-
ment, for a division of the overall spectrum into atomic (or
molecular) contributions. Figure 7 shows, for both systems, the

atomic VDOS of the solute and the solute-associated IR
spectrum, i.e., only terms including a contribution by the solute
dipole. Methodological details and a further decomposition of
the IR spectrum into the solute-only and solute−solvent terms
can be found in Figure S6. In comparison to its harmonic gas-
phase frequencies (stick spectrum in Figure 7), neutral
benzene in solution manifests vibrational patterns that can
be clearly related to this reference by peak positions. For the
anion, this remains obvious only in the well-separated C−H
stretch region (∼3200 cm−1). In the aromatic fingerprint
region, the JT distortions nontrivially alter the spectrum;
substantial peak broadening and shifts mean that peak
assignment is no longer straightforward. A possible way to
identify the anionic species in IR could be based on comparing
the regions around 700 and 1500 cm−1, where the pronounced
peaks of the neutral species are no longer present in the
spectrum of the anion. Consistent with experimental findings
in metal−benzene films,18 we observe a slight red shifting in a
majority of the anionic peaks that can be related to their
neutral counterparts. Interestingly, we observe additional peaks
in the IR that are not present in the VDOS of the solute.
Namely, this is the group of peaks around 3500 cm−1 whose
presence suggests that a dipole response exists in the solute
without a corresponding change in its atomic positions. These
peaks likely arise as a consequence of the perturbation of the
electronic structure of the solute caused by the presence of π-
hydrogen bonds. This is supported by several facts such as the
high frequency of the vibration comparable to the N−H
stretch in ammonia,38 the fact that isolated benzene contains
no normal modes at the corresponding frequencies, the fact
that the solute−solvent cross-term spectrum (see the
Supporting Information) shows a contribution to these
peaks, and the fact that benzene solvated in nonpolar

environments (such as liquid benzene itself) does not show
these additional peaks in the IR spectra.39

The presented condensed-phase AIMD simulations bridge
the gap between experimental observations and gas-phase
calculations of the benzene radical anion, while providing
crucial insights into the structure and dynamics of the species
at the molecular level. Using a combination of advanced
computational methodology and an explicit representation of
the solvent environment, we were able to simulate a radical
anion that is electronically stable in solution over extended
periods of time, in agreement with its real-world behavior. Our
observation of the localization of the spin density over the
aromatic ring points to the existence of a bound state. Explicit
confirmation that the excess electron on the radical anion is
bound with respect to the vacuum level is a possible subject of
a follow-up study that would build on the simulations
presented here. Although our results do not directly address
the thermodynamic stability of the benzene radical anion
relative to solvated electrons, the species persists in our
simulations for tens of picoseconds, enough to be characterized
in a meaningful way. Furthermore, its thermodynamic stability
is implied, at least in the sense of equilibrium with solvated
electrons, by the fact that the radical anion is experimentally
measurable. The most prominent structural feature of our
condensed-phase benzene radical anion is the presence of JT
distortions that are structurally consistent with previous
experimental studies and theoretical studies of the gas-phase
metastable species in finite basis sets. We also identified clear
differences between the vibrational spectra of the radical anion
and its neutral counterpart. Because of the explicit
representation of the solvent environment, our results also
offer information about the structure and dynamics of the
solvation shell. A particularly intriguing aspect of the behavior
of the solvent arises in the form of π-hydrogen bonding. This
interaction appears clearly in our solvent distributions and
leaves a specific imprint in the IR spectrum associated with the
solute, enabled by the dipole response of the solute to the
vibrational motion of the solvent. Our simulations do not
contain the proton source, such as an aliphatic alcohol,
required for the Birch reduction to proceed. We can, however,
hypothesize that should it be introduced, its participation in
this π-hydrogen bond might constitute the initial protonation
step of the Birch reduction mechanism sketched schematically
in eq 1. Thus, the demonstrated ability of AIMD to treat this
solute has the potential to bring us closer to explicit modeling
of the chemical reactivity in the Birch reduction as a whole.
Such a study would provide a complement to the treatment of
reaction mechanisms in organic chemistry that is often
empirical and simplified, as illustrated, for instance, by the
“organic” representation of the radical anion with a localized
dot in eq 1. This is in contrast with the highly complex
delocalized distribution of spin density over the anion observed
in our simulations that follows the dynamic JT distortions of
the ring. While experimental data are currently not available for
some of the properties calculated in this work, we anticipate
that this will change in the future so that a more detailed
understanding of the system can arise from a combination of
theoretical and experimental work.
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Figure 7. Solute-associated vibrational spectra of neutral benzene
(blue) and benzene radical anion (green) in liquid ammonia. The top
panel shows the VDOS, while the bottom panel shows the IR
intensity. Gas-phase calculated harmonic vibrational frequencies of
neutral benzene are shown in the form of black sticks (doubled in
length for degenerate modes). The red triangle points to the group of
peaks discussed in the text.
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Description of the computational methodology, details
of data analysis, additional information about the
energetics of the JT distortion of the benzene radical
anion, and additional computational treatment of the
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Video file visualizing the pseudorotational motion of the
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Video file visualizing the simulated trajectory of the
benzene radical anion, including the evolution of the
spin density (MP4)
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ABSTRACT
The benzene radical anion is a molecular ion pertinent to several organic reactions, including the Birch reduction of benzene in liq-
uid ammonia. The species exhibits a dynamic Jahn–Teller effect due to its open-shell nature and undergoes pseudorotation of its geo-
metry. Here, we characterize the complex electronic structure of this condensed-phase system based on ab initio molecular dynamics
simulations and GW calculations of the benzene radical anion solvated in liquid ammonia. Using detailed analysis of the molecular
and electronic structure, we find that the spatial character of the excess electron of the solvated radical anion follows the underly-
ing Jahn–Teller distortions of the molecular geometry. We decompose the electronic density of states to isolate the contribution of the
solute and to examine the response of the solvent to its presence. Our findings show the correspondence between instantaneous molec-
ular structure and spin density; provide important insights into the electronic stability of the species, revealing that it is, indeed, a
bound state in the condensed phase; and offer electronic densities of states that aid in the interpretation of experimental photoelectron
spectra.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076115

I. INTRODUCTION

Liquid ammonia is particularly well-known as a solvent that
sustains long-lived solvated electrons formed by the dissolution of
alkali metals.1 Recently, we used the flexible combination of refrig-
erated liquid microjet x-ray photoelectron spectroscopy (XPS)2,3

and advanced ab initio calculations to characterize the electronic
structure of neat liquid ammonia4 as well as the alkali metal solu-
tions.5 In the latter, the hallmark XPS feature of the solvated electron
is located at the electron binding energy of −2.0 eV relative to
the vacuum level and its concentration dependence was used to
experimentally map the electrolyte-to-metal transition.5 Solvated
electrons, essentially localized electrons bound in cavities formed
within the solvent structure, act as powerful chemical reducing
agents and, as such, find applications in numerous organic reduc-
tions. Arguably, the best known example is the Birch reduction of
benzene in the environment of solvated electrons with the addi-
tion of an aliphatic alcohol.6 During the course of the reaction, the
solvated electron binds to the benzene molecule, forming the ben-
zene radical anion as the first reactive intermediate. This chemical

role of the benzene radical anion and its prominent position as
the simplest example of an aromatic anion has prompted several
experimental7–10 and theoretical11,12 studies of the species in the
past. A particularly intriguing conclusion that arises from these stud-
ies is that the stability of the species is environment-dependent. In
particular, the isolated benzene radical anion represents an unbound
metastable shape resonance with a lifetime on the femtosecond
time scale, which was consistently demonstrated both by ab initio
calculations11,12 and by electron scattering experiments10 in the gas
phase. In contrast, the feasibility of the Birch reduction and various
spectroscopic experiments performed in different polar solvents,7–9

which measure the species over extended time scales, imply the sta-
bility of the electronic structure of the benzene radical anion as
well as its thermodynamic stability in the context of a chemical
equilibrium with solvated electrons.13 In addition to the non-trivial
behavior of the electronic structure with respect to solvation, the
presence of an excess electron in an initially energetically degenerate
quantum state gives rise to a dynamic multimode E⊗ e Jahn–Teller
(JT) effect,14,15 which results in complex behavior of the electronic
structure and the molecular geometry. In particular, the optimal
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molecular structure of the benzene radical anion is not a highly
symmetric hexagonal one like that of the neutral benzene par-
ent molecule but is rather represented by a continuum of lower-
symmetry structures that form the so-called pseudorotation path.12

Anticipating a future XPS measurement of the benzene rad-
ical anion as a natural continuation of the metal–ammonia solu-
tion research, we have previously investigated the benzene radical
anion in a liquid ammonia solution using computational methods
with the aim to shed light on its structure, dynamics, and spec-
troscopy and to provide a theoretical basis to aid the interpretation
of various experimental data. In our original work,16 we performed
ab initio molecular dynamics (AIMD) of the explicitly solvated
anion under periodic boundary conditions. These simulations were
realized at the hybrid density functional theory (DFT) level of
the electronic structure, which we have shown to be, despite its
high computational cost, a necessary methodological component
to obtain a physically meaningful description of the benzene radi-
cal anion. At this level of theory, the excess electron spontaneously
localizes on the benzene ring and remains stable for the length
of the simulation, indicating the presence of a bound electronic
state. Based on these simulations, we then addressed the structure
of the solute and tracked the systematic geometry distortions and
pseudorotation due to the dynamic JT effect that persists in the ther-
malized bulk system. More recently, we approached the problem
of the solvent-induced stability of the benzene radical anion from
the point of view of molecular clusters derived from the original
condensed-phase AIMD simulations.17 In that study, we calculated
the excess electron vertical binding energy using explicit ionization
in clusters of increasing size and found results ranging from −2.0 to
−3.0 eV at the infinite cluster size limit depending on the specific
methodology.

The aim of the present work is to shed light on the elec-
tronic structure of the benzene radical anion by employing advanced
electronic structure calculations and analysis performed on our orig-
inal AIMD thermal geometries. In the spatial domain, we describe
the probability distribution of the excess electron and its corre-
lation with the underlying JT distortions of molecular geometry
using unsupervised machine learning methods.18 These methods
have been used to analyze molecular dynamics trajectories and
characterize representative molecular configurations of the stud-
ied systems in a bias-free way.19,20 Here, we employ clustering
analysis not only to the distribution of nuclear configurations of
the benzene radical anion, but we also use it in conjunction with
dimensionality reduction to characterize the electronic structure.
Then, in the energy domain, we aim to predict the binding ener-
gies of all the valence electrons in the studied system, which can be
directly compared to XPS data. To avoid the unphysical orbital ener-
gies directly available from the AIMD on-the-fly Kohn–Sham (KS)
DFT electronic structure, we perform computationally demanding
condensed-phase G0W0 calculations21,22 on the AIMD geometries
to predict the electronic densities of states (EDOS). To better under-
stand the contributions of the individual species in the system in
question, we additionally employ an approach which projects the
EDOS on local atomic orbitals to resolve the calculated data by
species and in space.

The rest of this paper is organized as follows. In Sec. II, we
discuss the details of the performed simulations and calculations
and describe the technical foundations of the employed analysis.

The main findings are then presented and discussed in Sec. III.
There, we first focus on the results pertaining to the JT effect
on the electronic structure and its correlation with the under-
lying molecular geometry. Then, we move on to the energet-
ics of the electronic structure and the question of the stabil-
ity and binding energy of the solvated benzene radical anion.
These results are referenced against those for neutral ben-
zene solvated in liquid ammonia and neat liquid ammonia
itself. Finally, we summarize our results and draw conclusions
in Sec. IV.

II. METHODOLOGY
A. AIMD simulations

The original AIMD simulations of the benzene radical anion
and neutral benzene in liquid ammonia under periodic boundary
conditions were realized using the CP2K 5.1 package23–25 and its
Gaussian and plane wave26 electronic structure module Quickstep.27

Both simulated systems consisted of one solute molecule and 64
solvent molecules in a cubic box of a fixed side length of 13.745
and 13.855 Å for the benzene radical anion and neutral benzene,
respectively. The nuclei were propagated with a 0.5 fs time step
in the canonical ensemble at 223 K using the stochastic velocity-
rescaling thermostat.28 The electronic structure was calculated using
the revPBE0-D3 hybrid density functional29–32 to limit the self-
interaction error, as required for the localization of the excess
electron and the stability of the benzene radical anion.16 The KS
wavefunctions were expanded into the TZV2P primary basis set,33

while the density was expanded in an auxiliary plane wave basis with
a 400 Ry cutoff. Goedecker-Teter-Hutter pseudopotentials34 were
used to represent the core 1s electrons of the heavy atoms. Addition-
ally, the auxiliary density matrix method35 with the cpFIT3 auxiliary
basis set35 was used to accelerate the computationally demanding
hybrid DFT electronic structure calculations. The total simulated
time was 100 ps for both systems, each collected from five 20 ps
trajectories initialized from decorrelated and equilibrated initial
conditions.

B. G0W0 calculations
In this work, we use the G0W0 method,21,22 which gives access

to physically meaningful one-electron energy levels of the investi-
gated condensed-phase periodic systems. This is in contrast with
orbital energies of the underlying KS DFT, which should not for-
mally be considered as one-electron energies. For each solute, these
calculations are performed on top of 205 DFT-AIMD thermal struc-
tures extracted from the AIMD trajectories with a 0.5 ps stride with
the revPBE0-D3/TZV2P KS wavefunctions being used as a start-
ing point to obtain the corrected G0W0 energies. These calculations
are realized using the CP2K package, version 7.1. The self-energy
is described analytically over the real frequency axis using the Padé
approximation, and the Newton–Raphson fixed point iteration is
employed for numerical solution of the corresponding algebraic
equations. The influence of periodic boundary conditions on the
G0W0 energies is minimized by employing a periodicity correc-
tion scheme.36 The resulting EDOS, obtained as the distribution
of the G0W0 energies, is described as a continuous probability
density function through the kernel density estimation method
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using a Gaussian kernel with a 0.02 eV bandwidth. The G0W0
calculations performed in periodic boundary conditions do not
directly provide the absolute values of electron binding energies
due to the absence of the explicit liquid-vacuum boundary. Thus,
to access the absolutely positioned EDOS, the whole spectrum must
be shifted on the energy axis by a suitable constant. In other works,
this was achieved by auxiliary slab calculations that provide an esti-
mate of the shift.37,38 In our previous work on neat liquid ammonia
combining G0W0 calculations with liquid XPS,2,4 we aligned the
average energy of the calculated liquid 3a1 peak to −9.09 eV, the
average of the same peak obtained experimentally. This bypassed the
need for additional ab initio calculations and facilitated the compar-
ison of the whole spectrum between theory and experiment. Here,
we exploit the fact that, as detailed in Sec. III, the electronic per-
turbation of the liquid ammonia solvent by the presence of the
benzene radical anion is minor. As such, the total EDOS was shifted
to match the same experimental valence liquid ammonia peak as
in our previous work. The value of the shift was determined from
the mean energy of the 3a1 ammonia peak of the total EDOS with
the solute included (other options are discussed in Sec. S2 of the
supplementary material).

To gain insight into the contributions of individual chemi-
cal species to the total G0W0 EDOS, we decompose this quantity
into separate densities for each species and address the differences
between the neat ammonia data and the data from systems with
solutes. Specifically, we rely on the original formulation of the pro-
jected density of states (PDOS) for KS orbitals,39 which projects
the total EDOS on the respective part of the atomic orbital basis
set of every atom in the system individually. Extending the orig-
inal approach, we use these projections for the G0W0-corrected
binding energies since the spatial orbitals are identical between
KS DFT and G0W0. For each atom and each configuration, each
G0W0 energy is assigned a weight based on the magnitude of the
projection of the corresponding orbital on that atom. Naturally,
these atomic contributions can be collected into molecular contri-
butions as needed for each particular system. The total EDOS can be
expressed as the following ensemble average over the contributing
structures:

ρ(E) = ��
n

δ(E − En)�, (1)

where En are the G0W0 one-electron energy eigenvalues and angle
brackets denote an average over the ensemble of thermal structures.
To decompose it, we use a projection on an atom-centered linear
combination of atomic orbitals (LCAO) basis set {�Iγ�}. This basis
satisfies the completeness relation over the spanned space

�
I
�

γ
�Iγ��Iγ� = 1̂, (2)

where the summation runs over all atoms I and all additional
quantum numbers γ and 1̂ denotes the identity operator. Using
the orthonormality of the original KS orbitals �ψn� that remain
unchanged during the G0W0 calculation, we can expand the total
EDOS definition as a sum over atomic projections as

ρ(E) = ��
n
�ψn�ψn�δ(E − En)�

= ��
n
�

I
�

γ
�ψn�Iγ��Iγ�ψn�δ(E − En)�

=�
I
��

n
�

γ
��ψn�Iγ��2δ(E − En)�

≡�
I
�SI(E)� ≡�

I
ρI(E), (3)

where we have labeled the overlap-weighted kernel of the thermal
average SI(E) and the whole thermally averaged atomic projection
ρI(E). These atomic projections can then be summed over arbi-
trary subsets of atoms to obtain a PDOS on any species in question.
Moreover, we can further resolve the atomic contributions as a func-
tion of distance r from a chosen point of reference as the following
two-dimensional distribution:

ρ(E, r) = 1
4πr2g(r)�I

�SI(E)δ(r − rI)�, (4)

where rI is the distance of the Ith atom from the point of reference
and the normalization factor in the denominator based on the radial
distribution function g(r) of the chosen species around the same
point of reference ensures a uniform marginal distribution in r.

C. Clustering analysis
The clustering of the relevant feature space vectors is based on

the Gaussian Mixture Model (GMM) as implemented in the scikit-
learn Python library.40 For the molecular geometries, we assign
features as all vibrational normal modes with JT-active symmetry
to naturally describe the distortions in an 8D configuration space.
For the electronic structure, we use a high-dimensional abstract fea-
ture space that relies on a Fourier decomposition of the respective
spin densities. Both feature spaces are described in detail in the
following paragraphs. The GMM algorithm was chosen over the
commonly used k-means clustering since it allows us to reach a sim-
ilar goal in a more flexible and general way and, moreover, yields
a continuous parametrization of the obtained clusters in terms of
high-dimensional Gaussian functions that can be used to evaluate
the cluster membership probability. The full covariance in all dimen-
sions was employed to account for possible spatial anisotropy of the
clusters, and a tight convergence limit of 10−5 was used.

III. RESULTS AND DISCUSSION
In the following paragraphs, we focus on the spatial character of

the excess electron of the benzene radical anion using the spin den-
sity, an observable quantity obtained directly from an unrestricted
Kohn–Sham (KS) DFT calculation. We aim at a description of the
evolution of the spin density in the context of the condensed-phase
JT effect, which governs the distortions of the underlying molecular
geometry of the benzene radical anion solvated in liquid ammonia.16

Specifically, we ask if the molecular distortions correlate with the
immediate shape of the spin density and, therefore, if information
about the JT state of the solute can be extracted directly from the
electronic structure of the solvated species, similarly to how it can be
extracted from its molecular geometry. Later on, we turn our atten-
tion to the energetics of the electronic structure, predict electronic
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densities of states for the studied system, and then discuss in detail
in the context of the question of the stability of the solvated benzene
radical anion and from the perspective of interpretation of XPS data.

A. The Jahn–Teller effect on the molecular
and electronic structure

The essence of the JT effect in the benzene radical anion is as
follows. As the D6h-symmetric benzene molecule accepts an excess
electron, the formed degenerate E2u electronic state of the radical
anion becomes unstable since it corresponds to a conical intersec-
tion between two adiabatic potential energy hypersurfaces (APESs).
This instability is resolved by a symmetry-lowering distortion along
the JT-active normal modes of e2g symmetry, which brings the sys-
tem into a minimum on the pseudorotational path on the lower
branch of the JT-split APES. At the same time, the symmetry of
the initial electronic state is reduced as well, with two new possible
lower symmetries, Au and B1u, corresponding to the ground state
of the benzene radical anion in the two opposite distortions of the
molecular geometry.

1. Clustering of molecular geometries
The natural coordinates to describe the molecular distortions

are the four degenerate pairs of JT-active normal modes. These are
adopted here consistently with our previous work from the vibra-
tional normal modes of an optimized neutral benzene molecule since
it shares the same molecular structure and the point group with
the radical anion in its reference undistorted geometry. A physically
meaningful observation of the JT pseudorotation can be made by
averaging the full 8D data over all modes that do not exhibit a strong
enough JT split to be observable in the thermal system. Thus, the
pseudorotation can be represented as a 2D distribution in the pair
of remaining e2g modes at 1654 cm−1, which show an appreciably
strong JT effect. In this case, the free energy landscape of the pseu-
dorotation valley is essentially flat and the path around it is described
by the pseudorotation angle θ = arctan2(Qy�Qx), a scalar parameter
which represents the polar angle in the 2D subspace of the relevant
normal mode coordinates labeled Qx and Qy.16

In order to analyze the full 8D distribution, we applied the
GMM clustering algorithm to the normal modes dataset with the
aim to find representative distortions. However, unlike in the case
of the electronic structure discussed in the following paragraphs, the
resulting clustering of the data is not satisfactory for several reasons.
Motivated by the threefold symmetry of the reference gas-phase
APES, we attempted to separate the data into both three and six clus-
ters. In both cases, clustering of comparable quality was obtained,
which implies that there is no clear number of natural clusters in
the dataset. This is further supported by additional attempts to clus-
ter the data into a number of clusters that does not respect the
inherent symmetry of the problem: again, similar outputs were pro-
duced. Moreover, the clustering is generally not reproducible and
inconsistent positions of clusters are obtained each time. As a mea-
sure of clustering performance, we use silhouette coefficients, which
range from −1 (wrong clustering) through 0 (poor clustering) to +1
(excellent clustering).41 If we cluster our data into three groups, the
average silhouette coefficient does not exceed the value of ∼0.08,
which quantifies the insufficient separation of the data (a silhou-
ette plot is presented in Sec. S2 of the supplementary material). This

demonstrated lack of clear separation in the molecular geometries
suggests that the remaining modes do not bring much additional
structure to the dataset in comparison to the reduced 2D distribution
in Qx and Qy, and the essentially flat character of the probabil-
ity distribution around the pseudorotation valley generalizes to the
full dimensionality. Therefore, we adhere to the simpler continuous
parametrization by the pseudorotation angle θ to describe molecular
distortions in the following analysis.

2. Spin density dimensionality reduction
To motivate the analysis of the electronic structure of the

solvated species, we consider optimized gas-phase benzene radical
anion structures where the excess electron is artificially localized
due to a finite orbital basis set. The spin density distributions for
the two distinct JT distortions are shown in Fig. 1. The spin density
of the Au state (left) is characterized by four atom-centered max-
ima and two less pronounced minima localized along one of the
C2 symmetry axes; the B1u spin density (right) exhibits two max-
ima localized on distal carbon atoms along the corresponding C2
axis and two elongated bridge-like positive deviations over a pair
of carbon–carbon bonds parallel with this C2 axis. We also have to
take into account that the high symmetry of the benzene molecular
geometry allows for distortion in three equivalent directions corre-
sponding to the three horizontal apex-to-apex C2 axes in the D6h
point group. These distortions are represented by two sets of three
equivalent stationary points around the point of high symmetry on
the pseudorotation APES, each separated by a pseudorotation angle
of 60○ from its opposite-kind neighbors and by 120○ from its pseu-
dorotated images. As a consequence, three equivalent Au-type and
three equivalent B1u-type spin densities exist, which correspond to
the six APES stationary points. The pseudorotation of the nuclear
geometry between these minima is discussed in detail in Ref. 16; a
video file illustrating the evolution of the spin density on top of the
pseudorotating geometry in the idealized gas-phase case is included
in Sec. S3 of the supplementary material.

FIG. 1. The spin densities of the Au and B1u electronic states of the benzene rad-
ical anion. The presented idealized geometries and spin densities were obtained
from a finite basis set gas-phase calculation at the hybrid DFT level, as used for the
AIMD simulations; similar spin densities are, however, observed in the condensed-
phase simulations. The positive deviations of the spin density are shown in green
at two contours, 0.025 a−3

0 (opaque) and 0.006 a−3
0 (transparent), while the neg-

ative deviations are shown in purple at the same isovalues with a negative sign.
The molecular structure of the benzene radical anion is shown in gray as a whole.
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Eventually, we want to analyze the thermal data in the con-
densed phase—the natural environment where the solvated benzene
radical anion is electronically stable and physically relevant observa-
tion of the JT effect, and the associated spin density can be made.
For this purpose, we design a two-step dimensionality reduction
procedure that represents the spin densities in a feature space of rea-
sonable dimension in such a way that the two idealized JT-distorted
cases can be distinguished. The periodicity of the spin density along
the aromatic ring makes it advantageous to express its spatial depen-
dence in terms of a local spherical coordinate system r, �, and φ
(where φ is the polar angle ranging from 0 to 2π). These coordinates
are obtained by the usual transformation from a local Cartesian sys-
tem in which the x, y plane is represented by the molecular plane of
the benzene radical anion and the z axis is represented by its nor-
mal with its origin at the solute center of mass (see Sec. S1 of the
supplementary material for details). The spherical coordinates rep-
resent a natural description for the systems in question and allow
us to reduce the dimensionality of the full spin density into a one-
dimensional (1D) function by partial integration. As documented in
Sec. S2 of the supplementary material, the 1D spin densities in r and
� show practically perfect overlap for the two spin density types and
thus bring no distinction between them. The information that dis-
tinguishes the two types is contained in the remaining possible spin
density in φ,

ρs(φ) = �
π

0
�

rmax

0
d�dr r2 sin �ρs(r, �, φ), (5)

which describes the character of the spin density around the ben-
zene ring. Its shape can be traced back to the spatial characteristics
of the full spin densities through the respective sequence of the 1D
maxima and minima along the aromatic ring, as shown for the ide-
alized spin densities in Fig. 2, top panel, full lines. In terms of ρs(φ),
the pseudorotation of each type of the full spin density by 120○
simply translates into a 120○ shift on the φ axis.

FIG. 2. The relevant 1D spin densities ρs(φ) for the Au and B1u states (Fig. 1).
The original functions are shown as the black solid lines. The N = 20 Fourier-
reconstructed curves are shown as the blue and orange dashed lines, respectively.
The bottom panel illustrates five samples equidistant in their degree n from the
employed N = 20 Fourier basis with the sine components shown in dark gray and
cosine components in light gray.

At this point, the 3D spin density is reduced to a 1D func-
tion that is still fully capable of distinguishing between the two spin
density types. An additional level of simplification that opens the
door to numerical analysis is achieved by mapping the continuous
2π-periodic 1D spin densities onto discreet vectors by means of a
Fourier series and noting that only the first few harmonics are nec-
essary to achieve a highly accurate decomposition as demonstrated
by the dashed curves in the top panel of Fig. 2. This set of Fourier
coefficients clearly distinguishes the two idealized spin densities in
relatively few dimensions. While the technical aspects of this step are
discussed in detail in Sec. S1 of the supplementary material, we note
here that the Fourier decomposition was performed using the first
20 harmonics, yielding an 82-dimensional Euclidean feature vector
for each spin density sample [a total of 2(2N + 1) real coefficients
are needed for a Fourier series counting N harmonic functions].

3. Clustering of the electronic structure
We are now able to represent each spin density distribution

in a compact way and can move to the analysis of the electronic
structure of the condensed-phase system. A visual inspection of the
trajectory16 of the solvated benzene radical anion clearly reveals
the presence of two limiting spin density structures similar to the
optimized ones. Therefore, we aim to perform an analysis that
will allow us to divide the observed ensemble of condensed-phase
spin densities into six categories centered around each of the limit-
ing spin density structures and including the surrounding thermal
population. Once this is established, one can examine the correla-
tion between the immediate electronic structure and the underlying
molecular geometry of the solute.

To categorize the spin densities of the thermal solvated sys-
tem, we turn again to GMM clustering to separate the data now
concisely represented as feature vectors constructed out of Fourier
coefficients. GMM is able not only to split the data into natural clus-
ters but also to provide a continuous parametrization of each cluster
through evaluation of posterior probabilities of cluster membership.
Indeed, in this case, the dataset splits cleanly into six clusters, as
shown by the cluster silhouettes presented in Fig. 3, which average
to the mean silhouette coefficient of ∼0.4 and contain no outliers for

FIG. 3. Characterization of the clustering of the electronic structure by the means
of silhouette plots. The top three clusters represent the Au clusters, and the bottom
three clusters represent the B1u clusters.
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the Au state and only a small number of outliers (negative silhouette
coefficients) for the B1u state. Additional clustering validation is doc-
umented in Sec. S2 of the supplementary material. The centers of the
six clusters then correspond to the electronic structure at the six pos-
sible D2h distortions, and the population of each cluster corresponds
to the thermal fluctuations around these minima. This is directly
shown by summing up the Fourier series defined by the coordi-
nates of the cluster centers to obtain new 1D spin densities. These
exhibit physically meaningful properties such as close-to-reference
shapes (such as those shown in Fig. 2) and the expected 120○ shifts
within each type group (see the supplementary material, Sec. S2).
While these findings show that the excess electron structure is anal-
ogous to that found for the benzene radical anion in the gas phase
using a comparable finite orbital basis set, it is important to keep in
mind that such a system converges to an unbound state when the
size of the basis set is increased. Only in the condensed phase is the
species actually bound and its JT effect observable and are the elec-
tronic states physically meaningful and potentially experimentally
measurable.

4. Correlation between the electronic structure
and molecular geometry

To quantify the correlation between the molecular struc-
ture and the spin density, we exploit the features of the trained
Gaussian mixture model to assign a posterior probability of belong-
ing to a specific cluster to each spin density data point. Thus, a
generalized single-valued parameter p(Au), which can be defined as
a sum over all Au-type cluster probabilities, gives the overall proba-
bility that a data point is of the Au-type, including all three possible
pseudorotations. Clearly, the same can be done for the B1u-type clus-
ters and the identity for complementary probabilities that p(Au)
+ p(B1u) = 1 has to hold. Now, since each spin density data point
has a unique molecular geometry associated with it, the proposed
probability parameters can be directly correlated with the underly-
ing molecular distortions characterized by the pseudorotation angle
θ as defined above.

We use these electronic probability parameters to weight each
point contributing to the probability distribution in θ, which is
almost uniform originally. This splits it into two distinct distri-
butions, each with three well-defined peaks separated by a 120○
increment. These are shown in Fig. 4, exploiting a representation
in polar coordinates with an offset origin. The presented comple-
mentary distributions clearly show that the individual symmetries
of the molecular distortions are accompanied by spin densities of
the same type, as can be deduced from the fact that the distortion at
θ = 0○ is uniquely identified with the distortion of molecular geome-
try corresponding to the Au electronic state. It thus appears that the
electronic character of the JT effect of the benzene radical anion in
liquid ammonia closely follows the predicted gas-phase theory, while
the solvent acts as a stabilizing, but non-perturbing environment.
Due to the correlation shown in Fig. 4, we conclude that similar
information about the JT effect can be extracted from the immedi-
ate spin density and from the immediate molecular geometry of the
solute.

Even though the molecular geometries undergo almost free
pseudorotation with effectively no free energy barriers and cannot
therefore be clustered into distinct populations of different pseu-
dorotamers, the situation is different for the electronic state of

FIG. 4. Correlation of the electronic structure with the distortion of nuclear
geometry. Each molecular distortion is characterized here by the value of the pseu-
dorotation angle θ. The distributions of θ weighted by the corresponding electronic
parameters p(Au) (blue) and p(B1u) (orange) are shown in polar coordinates with
an offset zero-distance.

the system. As it moves along the pseudorotation path, it transi-
tions rather sharply between ground-state spin densities of the two
possible symmetries, as revealed by our analysis.

B. Energetics of the electronic structure
At this point, we turn our attention to the energetics of the

electronic structure of the whole studied system in terms of one-
electron levels. The single-electron energies are calculated using the
G0W0 method21,22 on an ensemble of 205 structures drawn with a
0.5 ps stride from our previously published hybrid DFT trajectories
of the benzene radical anion and neutral benzene for compari-
son. The absolute energies of the whole spectrum were shifted, as
detailed in Sec. II. The distribution of the obtained G0W0 quasi-
particle energies, which accurately approximate electron binding
energies, represents the EDOS and is shown in Fig. 5(a). The dom-
inant three-peak pattern in both systems can be readily related to
the neat liquid ammonia EDOS,4 shown here in gray shading for
reference. In our systems with solutes, it is accompanied by a mul-
titude of low-intensity features along the whole range of energies.
We can now use the projection approach detailed in Sec. II to
isolate these features and examine the solute and solvent spectra
separately.

Focusing first on the benzene radical anion, we obtain the solute
PDOS shown in Fig. 5(b). Clearly, this component isolates the low-
intensity features that do not overlap with the neat ammonia EDOS
and, moreover, uncovers additional ones that were previously con-
tained in the high-intensity solvent peaks. Most notably, this solute
PDOS suggests that the highest energy state, occupied by the excess
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FIG. 5. The solvated benzene radical and neutral benzene total G0W0 EDOS and
the PDOS projections on the solutes. (a) The total EDOS of the benzene rad-
ical anion (red) and neutral benzene (black) in liquid ammonia. The calculated
pure liquid ammonia EDOS4 is shown in gray. Consistently with the published
pure ammonia data, the corresponding peaks are labeled by the symmetry labels
of the gas-phase ammonia molecular orbitals. (b) PDOS of the benzene radical
anion. The projection shows a detailed account of the electronic structure of the
anion, including the highest occupied state, marked by its binding energy and a
black triangle. (c) The benzene radical anion PDOS resolved for the two types of
JT-relevant electronic structure symmetries. Note that the small differences
between the blue (Au) and orange (B1u) curves, caused by sampling from the
corresponding smaller subsets of the calculated G0W0 energies, are insignificant
within the available statistics. The PDOS of both JT structures is therefore identical.
(d) PDOS of neutral benzene in liquid ammonia.

electron, is fully accounted for by the solute, consistent with the pre-
viously observed spatial localization of the spin density.16 Its mean
binding energy of −2.34 eV and the absence of tails extending into
the positive values prove that the excess electron on benzene is
bound relative to the vacuum level, thus conclusively answering the
question of stability of the molecular structure of the anion as long
as it is solvated in liquid ammonia. This is in excellent agreement
with the vertical electron binding energy of −2.30 eV obtained by
explicit ionization calculations of benzene radical anion and ammo-
nia gas-phase clusters in the infinite cluster size limit.17 Compared
to neutral benzene [Fig. 5(d)], the whole G0W0 anion solute PDOS
is systematically shifted toward weaker binding energies by several

electronvolts. Its shape is modified as well, including several peak
splittings not observed in the neutral system. These are likely due
to the overall lower symmetry of the anion, rather than due to the
presence of two distinct JT pseudorotamers, which give rise to iden-
tical PDOS within the available statistical sampling, as shown in
Fig. 5(c). Since the excess electron binding energy in the benzene
radical anion is close to the binding energy of the solvated electron
of −2.0 eV,5 an overlap might arise in an experimental photoelec-
tron spectrum if the two species coexist in equilibrium, leading to a
single broader peak or perhaps a double peak feature. This suggests
that the excess electron binding energy itself might not be sufficient
to prove the presence of the benzene radical anion. However, a viable
workaround exists in the predicted changes of the lower electronic
levels of benzene after the addition of the excess electron. These
are large enough to be measured, and several bands are localized in
the regions where no overlap with the solvent signal is expected, as
clearly shown by the projected densities.

Next, we concentrate on the solvent subspace. In Fig. 6, the
solvent PDOS shown in the left-hand side panels in gray shading
features subtle differences compared to the EDOS of neat ammonia.
These appear because of the changes of the electronic structure of
the solvent molecules induced by the interaction with the radical
anion solute. To better quantify this perturbation, we exploit the
molecular resolution of the PDOS projection to resolve the solvent
PDOS as a function of distance between the solute center of mass
and the ammonia nitrogen atoms (Fig. 6, main panels). The unifor-
mity of the resolved distribution along the distance axis is achieved

FIG. 6. Electronic density of states projected onto the solute subspace and
resolved as a function of distance from the center of mass of the radical anion.
The black dashed lines denote the mean of each peak again as a function of
distance. The left-hand side panels show the total solute PDOS in gray.
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by factoring out the probability density in this distance. In an infi-
nite system, this is proportional to 4πr2 g(r), where g(r) is the radial
distribution function. For our finite simulation cell, this quantity is
shown in the bottom panel of Fig. 6; note the decay starting after
∼7 Å that corresponds to half the length of the simulation box. The
distance resolution reveals a small systematic shift toward weaker
electron binding energies in the proximity of the charged solute,
up to 0.4 eV in the case of the 1e peak. The origin of this effect
can be attributed to the presence of the excess electron since neu-
tral benzene does not have a similar effect on liquid ammonia; its
resolved peaks are essentially flat over the studied distance range
(see Sec. S2 of the supplementary material). The small magnitude
of the perturbation of solvent one-electron levels by the solute can
be used to justify the alternative method of spectrum resolution by
subtraction of the neat solvent that is typically used in an experi-
mental setting where a projection is not an option.42 The possible
causes of the observed effect include the screening of the electro-
static interaction with the excess charge by the bulk solvent and are
discussed in Sec. S2 of the supplementary material in terms of molec-
ular clusters in open boundary conditions. Additionally, we present
a detailed validation of the required PDOS properties in Sec. S2 of
the supplementary material.

IV. CONCLUSIONS
The reported analysis of the electronic structure of the solvated

benzene radical anion in liquid ammonia complements the analysis
of molecular geometry from our previous work and provides results
that can be directly related to future experimental measurements of
the system studied here.

The JT behavior of the solvated radical anion is analogous to
that predicted for the idealized gas-phase species based on funda-
mental theory and symmetries. The electronic state and its associ-
ated spin density strongly correlate with the dynamic distortion of
the molecular geometry as it undergoes motion through the almost
flat pseudorotation valley. It, thus, turns out that the presence of the
solvent is key to stabilize the studied system electronically but does
not perturb it substantially from the perspective of the JT effect.
This sets the stage for possible experimental studies of the conse-
quences of the JT effect on the molecular and electronic structure of
the benzene radical anion, which is not an option in the gas phase
where the radical anion does not exhibit long-term stability. How-
ever, such experiments would have to rely on ultrafast techniques
so that the individual JT structures are observed rather than their
high-symmetry average.

We quantified the solvent-induced stability of the benzene
radical anion using accurate and computationally demanding
condensed-phase G0W0 calculations performed on thermal geome-
tries sampled from a hybrid DFT-AIMD simulation. We estimated
the binding energy of the excess electron to be −2.34 eV relative
to the vacuum level, clearly showing that the excess electron rep-
resents a bound quantum state in solution. Moreover, the density of
states obtained from such calculations predicts the complete valence
electronic structure and, thus, provides a way to interpret future
photoelectron spectroscopy measurements.

The present work showcases the descriptive power of accu-
rate molecular simulations and detailed analysis of their outputs.
We captured subtle quantum effects in both the spatial and energy

domains and obtained a detailed description of the solvated ben-
zene radical anion in liquid ammonia and a prediction of its elec-
tronic density of states that complements our previous prediction
of the vibrational density of states. The immediate next step lies in
exploiting the synergy between the calculations reported here and
future liquid photoelectron spectroscopy measurements. Referenc-
ing the results against the baseline of the solvated neutral benzene
molecule further aids the interpretation of the anticipated experi-
mental results. This combination has the potential to experimentally
corroborate the solvent-induced stability of the benzene radical
anion. One remaining issue is the computational description of the
thermodynamic equilibrium between the benzene radical anion and
solvated electrons that will provide additional insight into the exper-
imentally observable chemical properties of the solvated benzene
radical anion as well as an entryway to the theoretical exploration
of the chemistry of the Birch reduction.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional data analysis
details; additional results concerning the spin density dimensionality
reduction, the evaluation of the GMM clustering, and the projected
densities of states; and a video file visualizing the evolution of spin
density over the pseudorotating molecular structure of the benzene
radical anion.
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Aromatic compounds form an unusual kind of hydrogen bond with water and ammonia molecules, known as
the ⇡-hydrogen bond. In this work, we report ab initio path integral molecular dynamics simulations enhanced
by machine-learning potentials to study the structural, dynamical, and spectroscopic properties of solutions
of benzene in liquid water and ammonia. Specifically, we model the spatial distribution functions of the
solvents around the benzene molecule, establish the ⇡-hydrogen bonding interaction as a prominent structural
motive, and set up existence criteria to distinguish the ⇡-hydrogen bonded configurations. These serve as
a structural basis to calculate binding a�nities of the solvent molecules in ⇡hydrogen bonds, identify an
anticooperativity e�ect across the aromatic ring in water (but not ammonia), and estimate ⇡-hydrogen bond
lifetimes in both solvents. Finally, we model hydration-shell-resolved vibrational spectra to clearly identify
the vibrational signature of this structural motif in our simulations. These decomposed spectra corroborate
previous experimental findings for benzene in water, o�er additional insights, and further emphasize the
contrast between ⇡-hydrogen bonds in water and in ammonia. Our simulations provide a comprehensive
picture of the studied phenomenon and, at the same time, serve as a meaningful ab initio reference for an
accurate description of ⇡-hydrogen bonding using empirical force fields in more complex situations, such as
the hydration of biological interfaces.

I. INTRODUCTION

A ⇡-hydrogen bond is a hydrogen bonding interaction
formed between a partially positively charged hydrogen
atom of a donor molecule and the ⇡-electron density of an
aromatic acceptor. Such interactions have been observed
with a variety of donor molecules including halogen hy-
drides,1 aliphatic hydrogens,2 alcohols,3 liquid ammonia4

and water.5,6 The interaction of aromatics with liquid wa-
ter (H2O) bears everyday-life pertinence due to its role
in the solvation of aromatic residues at biological inter-
faces, structural stabilization inside proteins,7 as well as
contamination of sea waters by oil-derived aromatic sub-
stances dissolved during oil spills.8 For instance, the pro-
totypical aromatic compound benzene has a surprisingly
high solubility of up to 20 mM in liquid water at ambient
conditions.9 Chemically similar to water, liquid ammonia
(NH3) is a noticeably better solvent for aromatics10 and
such mixtures are significant from the synthetic and in-
dustrial viewpoint as an entryway to Birch chemistry.11

In general, water and ammonia in their liquid state are
considered to be similar based on their molecules both be-
ing simple first-period, isoelectronic hydrides, as well as
on the formation of hydrogen-bonded structures. How-
ever, because of the less electronegative nature of the
nitrogen atom in ammonia, the hydrogen bond strength
is substantially lowered when compared to water, which
causes numerous remarkable di�erences between the two
liquids.12,13 At the macroscopic level, this can repre-
sented, for instance, by the large di�erence in their boil-
ing points of 133 K despite their nearly identical molar
masses.14 At the molecular level, the di�erent hydrogen
bond strength manifests in various properties of the two
liquids, including both structural and dynamic quanti-
ties such as for example, infrared (IR) vibrational spec-

tra. Here, water exhibits a pronounced red shift of the
OH stretch in comparison to the gas phase from approx-
imately 3700 to 3400 cm�1 owing to the softening of the
e�ective bond potential in the presence of the hydrogen
bond acceptor.15 On the other hand, ammonia remains
nearly unchanged in this aspect.16

To study the nature of ⇡-hydrogen bonds in these pro-
tic solvents, limiting oneself to benzene as the proto-
typical aromatic species gives a general picture of the
phenomenon. In this regard, a key experimental con-
tribution reports the measurement of the multivariate-
curve resolution Raman spectrum17 of benzene in water.6

In this study, the authors present the so-called solute-
correlated (SC) spectrum, which represents a contribu-
tion to the overall Raman intensity that captures the vi-
brational character of the benzene solute as well as that
of its immediate surroundings. This reveals an unex-
pected vibrational feature at approximately 3610 cm�1,
which is interpreted as an imprint of the e�ect of the wa-
ter molecules engaging in ⇡-hydrogen bonds on the solute
vibrations.6 The particular frequency of the observed ⇡-
hydrogen bond peak suggests that water molecules par-
ticipating in a ⇡-hydrogen bond are vibrationally blue-
shifted compared to water molecules in the liquid bulk
and, as such, have more of a character of an isolated
molecule since they are not fully involved in the water–
water hydrogen bond network. Our recent work focus-
ing on the corresponding liquid ammonia solutions using
ab initio molecular dynamics (AIMD) with dispersion-
corrected hybrid density functionals finds the equivalent
⇡-hydrogen bond spectral feature in the IR SC spec-
trum of benzene obtained by exact decomposition of
the dipole–dipole autocorrelation function Fourier trans-
forms.4 Additionally, the blue shift of water has been
given a degree of computational support at the level of
individual OH bond frequency analysis in AIMD simula-
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tions using the BLYP density functional18,19 to describe
the condensed-phase system.20,21

The solvation structure of benzene at the atomistic
level has been studied using MD simulations22,23 at the
PBE level of theory24 in water and, as part of our previ-
ous work,4 using the revPBE0-D3 density functional24–27

in liquid ammonia. Both works come to a qualitatively
comparable conclusion concerning the shape of the spa-
tial distribution function (SDF) which suggests a sub-
stantial degree of similarity of structural aspects in both
solvents. The reported SDFs have a geoid-like shape with
pronounced maxima in the pole regions above and below
the planar benzene molecule, where ⇡-hydrogen bonds
were found to occur, implying a major role of ⇡-hydrogen
bonds as a binding motive in benzene solvation.

All of the above-mentioned simulations employ a clas-
sical approximation for the atomic nuclei. However, a
⇡-hydrogen bond, just like any other hydrogen bond,
is an interaction that features the very light hydrogen
nucleus and, therefore, can be expected to exhibit pro-
nounced nuclear quantum e�ects (NQEs) even at ambi-
ent conditions.28,29 The overall change in the character
of a particular hydrogen bond upon inclusion of quantum
nuclei into the picture is derived from a fine balance be-
tween the so-called competing NQEs, which can have a
two-way e�ect of strengthening already strong hydrogen
bonds, but also weakening initially weak ones.28,30 This
can have profound manifestations in the structure and
dynamics of a hydrogen-bonded system at the local level
but can also act at longer scales by a�ecting, for instance,
the cooperativity of hydrogen bonds. As such, the multi-
ple research works up to this point provide a qualitative
picture of various isolated aspects of ⇡-hydrogen bonds,
but a rounded computational treatment with highly ac-
curate electronic structure and the inclusion of quantum
nuclei is missing. At the same time, having access to an
accurate ab initio reference is important as ⇡-hydrogen
bonding is prominent in biological systems, but common
force fields were found to be unreliable for this purpose.23

To provide a comprehensive picture of the phe-
nomenon, we perform thermostatted ring polymer molec-
ular dynamics31 (TRPMD) simulations of dilute solu-
tions of benzene in liquid water (at 300 K) and ammonia
(at 223 K) using revPBE0-D3 hybrid density functional
theory to model the interaction potential. Such simula-
tion exploits the classical isomorphism of the imaginary-
time path-integral formalism, where quantum particles
are represented as harmonically-coupled ring polymers
of replicas of the classical system. This allows for the use
of classical AIMD techniques at a computational cost el-
evated linearly with the number of path-integral replicas
to address NQEs of both structural and dynamical prop-
erties of studied systems. Performing these simulations
naively using the traditional on-the-fly electronic struc-
ture calculation approach to AIMD is possible, but ob-
taining long enough trajectories for tightly converged sta-
tistical properties is impractical due to the increased cost
of the path integral simulations. Therefore, we approach

this issue mainly by combining the traditional approach
with Behler–Parrinello high-dimensional neural network
potentials32,33 (NNPs) to fit the reference ab initio poten-
tial energy surface and perform 2 ns long simulations at
a drastically reduced computational cost while maintain-
ing the accuracy of the simulations. The shorter 250 ps
ab initio trajectories themselves are used for the train-
ing of the NNPs, their validation, and the calculation
of molecular dipole moments, which are not directly ac-
cessible through NNPs. A comprehensive summary of
the employed computational methodology is available in
Section S1 of the Supporting Information. With this
methodology, we address the molecular-level solvation
structure, discuss the ⇡-hydrogen bond orientation, coop-
erativity, lifetimes, and, finally, vibrational spectroscopy,
where we provide theoretical insight with immediate rele-
vance for the interpretation of the underlying experimen-
tal work.

II. RESULTS AND DISCUSSION

In the following paragraphs, we present and discuss
the results obtained in this work. In Section II A, we
analyze the molecular solvation structure with focus on
the geometry of the ⇡-hydrogen bonds. This allows us
to set up a time-dependent existence criterion to assess
whether a solvent molecule is or is not participating in a
⇡-hydrogen bond at a given instant, which is then used in
Section II B to address the issue of ⇡-hydrogen bond co-
operativity across the two binding sites that the benzene
molecule o�ers. In Section IIC, we exploit the existence
criterion again to look into the kinetics of ⇡-hydrogen
bond formation and, finally, we look into the problem
of vibrational spectroscopy in Section IID by modeling
the influence of the benzene solute on the vibrational
spectra from ab initio data, finding an e�ect consistent
with the above experimental observations and connect-
ing its origin to vibrational features in the solvent part of
the spectrum mainly due to ⇡-hydrogen bonded solvent
molecules.

A. Solvation structure

A global picture of the solvation of benzene by water
and ammonia is encoded in the SDF G(r, z, �) of the sol-
vent around the solute. The SDF is a 3D histogram of
the positions of a selected atomic species described con-
veniently in this case in standard cylindrical coordinates
r, z, and � with the origin located in the solute center
of mass and the plane of the solute aligned with z = 0.
The SDFs for both solvents were obtained as statisti-
cal averages of heavy-atom positions over the 1 ns long
C-NNP trajectories and the resulting data is shown in
Figure 1, in panel A for water and in panel C for ammo-
nia. Both SDFs share similar features and thus will be
discussed concurrently. Their overall shape can be com-
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FIG. 1. Spatial distribution functions of water (top row) and
ammonia (bottom row) around the benzene solute. Panel A
shows two di�erent contours of the 3D SDF G(r, z, �) for the

oxygen atoms of water at 95 Å
�3

(transparent) and 130 Å
�3

(solid). Panel B shows the same SDF integrated around the
polar angle �, zoomed in on the �-hydrogen bond cap regions
and resolved for the oxygen atoms (red) and the hydrogens
(gray). Panels C and D show the same data for the ammonia
simulations with the nitrogen-related quantities colored blue.

pared to that of a rotational ellipsoid with the shorter
axis in the z direction and they comprise two distinct
regions: a set of hexagonally arranged stripe-like lobes
around the solute plane that feature a hydrophobic sol-
vation regime34 (this issue will not be discussed in detail
in this work) and two caps at the poles surrounding r = 0
which represent global maxima of the SDF and which will
be identified as the regions in which ⇡-hydrogen bonds
are formed. Benzene thus simultaneously o�ers two bind-
ing sites for solvent molecules to form ⇡-hydrogen bonds
that we will denote for later use as site A (above the
ring, z > 0) and site B (under the ring, z < 0). The
only noticeable di�erence between the two SDFs is the
less structured hydrophobic part of the ammonia SDF
than that of the water SDF; the ⇡-hydrogen bond caps
look comparable. This suggests that the solvation struc-
ture of the benzene solute is similar in the two solvents,
and the slightly stronger polarity of water molecules does
not play a structure-defining role in this instance. Note
that the data shown in panel C of Figure 1 is directly
comparable to our previous data shown in Reference 4.
However, unlike in our previous work, where the ab initio
data required a smoothing procedure, the C-NNP data
here is presented raw and originates from TRPMD sim-
ulations.

More insight into the nature of the ⇡-hydrogen bond
caps is achieved by calculating a similar SDF for the hy-
drogen atoms. For graphical clarity, we integrate the 3D

SDFs around the polar angle � and show the resulting 2D
SDFs G(r, z) for both the heavy atoms and the hydrogens
in panels B and D of Figure 1, respectively, for the two
solvents and averaged over both binding sites A and B.
Note that the shown extent focuses on the ⇡-hydrogen
bond caps only. Here, each colored, heavy-atom peak
has a gray, hydrogen peak approximately 0.8 Å under it,
which suggests that an oriented interaction C6H6 · · · HX
(X = O, N) is formed where the XH bond faces the solute
along the z axis with its hydrogen pointing towards it.
This interaction, prominently featured in the simulation
data in both solvents, is the ⇡-hydrogen bond.

Next, we want to explore how are the two indepen-
dent 2D SDF clouds correlated, or, in other words, what
possible orientations of ⇡-hydrogen bonds occur in our
simulations. For that purpose, we define an existence
criterion for ⇡-hydrogen bonds which picks all molecules
that are located inside a cylinder that isolates the ⇡-
hydrogen bond caps from the rest of the SDFs. This
criterion is a time series over the simulated trajectory
and is defined individually for each n-th solvent molecule
and k-th imaginary time replica as

h(A)
nk (t) = � [rnk(t) � r0] � [znk(t) � z0]

=

(
1 in a ⇡-hydrogen bond

0 out of ⇡-hydrogen bond

(1)

for binding site A and identically as

h(B)
nk (t) = � [rnk(t) � r0] � [znk(t) + z0] (2)

for binding site B. In both definitions, � is the step
function, and rnk and znk are the cylindrical coordinates
of the heavy atom X of a given molecule and replica.
The parameters r0 and z0 are selected based on the
shape and extent of the individual SDFs: for water we
set r0 = 0.12 nm and z0 = 0.40 nm and for ammonia
r0 = 0.14 nm and z0 = 0.41 nm. Next, we define a set of
angles �j for each solvent molecule (j = 1, 2 for water and
j = 1, 2, 3 for ammonia) which denote the angles between
each HX bond and the z axis where a 0� angle is defined
as the HX bond being collinear with z and with the hy-
drogen atom pointing towards the solute. All angles are
then ordered in j by the vertical distance of the hydro-
gen atom from the solute so that �1 is the angle of the
⇡-hydrogen bond. The distributions of these angles for

replicas that comply with h(S)
nk (t) are shown in Figure 2

averaged over both binding sites S = A, B. For water
(Figure 2, top panel), we observe a V-shaped distribution
with a maximum in �1 ⇠ 10� and �2 ⇠ 110�. This corre-
sponds to the expected, albeit slightly tilted orientation
of the ⇡-hydrogen bond with the solvent molecule point-
ing one of its hydrogen towards the solute: the value of
�2 here derives from the equilibrium bond angle in water
of 104.5� (Figure 2, snapshot A). The tilt originates as a
result of the contribution of the orientational entropy to
the shown population: since there is only a single way to
realize the perfectly oriented �1 = 0� configuration, this is
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FIG. 2. Analysis of the orientation of solvent molecules around the benzene solute. Top left panel: the orientation of water
molecules is described by two angles, �1 and �2 which describe the angle between the O–H bond and the solute normal with
�1 describing the hydrogen that is closer to the solute and �2 the further one. Both angles reach 0� when the bond is oriented
towards the solute with the hydrogen atom. Panels A, B, C, and D: snapshots of representative orientations of water molecules
that occur in the cylinder defined by the criterion h(k)

i (t). Only panel A is clearly an oriented �-hydrogen bond. Top right panel:
identical type of plot for ammonia (as for water on the left) with the addition of the angle �3 describing the orientation of the
third hydrogen atom. The 3D distribution itself is shown as a scatter plot of a subset of points selected from the simulations.
The 2D marginal distributions capturing the correlations of the orientation of two di�erent N–H bonds are shown on the
corresponding coordinate planes. Panels E, F, G, and H: representative configurations of solvent molecules in the �-hydrogen
bond cylinder.

practically not seen during the simulation. The fact that
it is indeed the energetically most favored configuration
is shown by factoring out the entropic sine contributions
as shown in Section S2 of the Supporting information.
However, the extent of the distribution points to the fact
that a richer pool of configurations is encountered in the
simulations than just the idealistic ⇡-hydrogen bond. In

fact, the selection of molecules that comply with h(S)
nk (t)

also includes molecules that are not in a ⇡-hydrogen bond
at all and just happen to be located in the region of
space, but likely engaging in regular water–water hydro-
gen bond network (Figure 2, snapshots B, C and, as a
borderline case, D). Therefore, based on this analysis,
we update the selection criterion to also reflect the ⇡-

hydrogen bond angle:

h(S)
nk (t) �= � [�1,nk(t) � �1,0] , (3)

where the cuto� angle was set to �1 = 40� for both sol-
vents. A discussion along the same lines arises for ammo-
nia. The 3D distribution in the corresponding angles is
shown in the top right panel of Figure 2 and representa-
tive configurations in panels E, F, G, and H of the same
Figure. Here, we remark that the preferred ⇡-hydrogen
bond configuration is also oriented vertically towards the
solute with a slightly larger tilt of ⇠ 20�.
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FIG. 3. An illustration of the �-hydrogen bond existence
time series. Snapshot: a single simulation frame showing the
simulated periodic system consisting of water solvent and ben-
zene solute for a single path-integral replica. Water molecules
that fulfill the existence criterion are highlighted in the van
der Waals representation and in green. Bottom panel: A
graphical representation of the time dependence of hA

n,k=0(t)
(Equation 1) over a 100 ps long segment of one the simulated
C-NNP path-integral trajectories and for a single replica. The
molecular index n is represented by the di�erent colors of the
curves, showcasing the sampling of the exchange of molecules
in the binding site A.

B. �-hydrogen bond cooperativity

As established above, the benzene molecule can engage
in two ⇡-hydrogen bonds at a time by binding a solvent
molecule in sites A and B. Here, we ask what the popu-
lations of the zero-, one- and two-bonded configurations
are in the simulated trajectories and to what extent the
two coexisting hydrogen bonds cooperate or whether they
can be considered independent.

To begin such analysis, we calculated the ⇡-hydrogen
bond existence criterion for the solute in our ab initio
simulations (not C-NNP, see below) by summing over
the time series of individual solvent molecules and sites

as

hk(t) =
X

n,S

h(S)
nk (t) =

8
><

>:

0 ⇡-hydrogen bonds

1 ⇡-hydrogen bond

2 ⇡-hydrogen bonds.

(4)

The probabilities for the individual species (p(0) for 0 ⇡-
hydrogen bonds, p(1) for a single ⇡-hydrogen bond, and
p(2) for both binding sites occupied) were calculated as
a simple average over the time variable and the P path
integral replicas

p(N) =
1

PT

Z T

0
dt

PX

k=1

� [hk(t) � N ] (5)

for each N = 0, 1, 2. The obtained numbers p(N) are
shown in Figure 4 using the darker bars. In both sol-
vents, the most likely configuration is that with only a
single ⇡-hydrogen bond with 51.9 % in water and 48.6 %
in ammonia. This is followed by the configuration with
no ⇡-hydrogen bonds populated at 37.0 % in water and
33.3 % in ammonia, and the least probable configuration
is the one with the maximal occupancy of 2 ⇡-hydrogen
bonds with 11.1 % in water and 18.0 % in ammonia.
The probabilities p(N) are related to the probabilities
of occupying the specific binding sites A and B as fol-
lows (for this purpose, we borrow the notation A and
B for referring to the sets of microstates corresponding
to a solvent molecule being bound at the given binding
site). By the symmetry of the problem, we clearly have
p(A) = p(B). Then, p(2) = p(A � B) = p(A)p(A|B),
p(1) = p(A � B) � p(A � B) = 2p(A) � p(2), and, by
completeness, p(0) = 1 � p(1) � p(2).

The possible cooperativity was examined by compar-
ing the observed populations to a model that assumes
the independence of both binding sites. This model
was constructed based on the premise that indepen-
dent occurrences of binding to sites A and B (the cor-
responding probabilities are denoted as pind) comply
with pind(A|B) = pind(A), which implies that pind(2) =
p2
ind(A). This leads to a single equation for two un-

known independent probabilities, pind(0) and pind(1),
giving us the freedom to fix one of these quantities. In
this work, we choose to preserve the free-energy dif-
ference between states 0 and 1, which requires setting
pind(1)/pind(0) = p(1)/p(0). This allows us to estimate
all the independent probabilities pind(N). These results
are shown in Figure 4 using the lighter shading next to
the bars for the true observed probabilities p(N). For
benzene in water, comparing the real and independent
probabilities is curious because it points to an anticooper-
ativity e�ect between the two binding sites: the observed
11.1 % population of the double-bonded state is signifi-
cantly lower compared to the value of 17.0 % predicted
by the independent model. We explain this observation
by considering the stronger impact a water molecule has
on the solute, drawing the ⇡-electron density of the aro-
matic ring to its side upon the formation of a ⇡-hydrogen
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FIG. 4. Probabilities of finding the zero-, one- and two-
bonded configurations within our simulated trajectories. The
darker bars show real, observed populations. The lighter
bars then show probabilities that are calculated based on the
premise of binding site independence. The error bars have
been estimated using the block averaging method individu-
ally for each �[hk(t) � N ] time series.

bond. This way, it weakens the other binding site and
makes it less prone to forming a second ⇡-hydrogen bond
at the same time. In ammonia, this e�ect does not arise,
and the independent model represents an excellent ap-
proximation of the real system. An illustration of this
e�ect on electron density in gas-phase clusters consisting
of a single benzene molecule and two ⇡-hydrogen bonded
solvent molecules is presented in Section S2 of the Sup-
porting information.

Finally, we comment on the performance of C-NNP
models in the simulation of ⇡-hydrogen bond cooperativ-
ity. Our initial attempts to investigate the ⇡-hydrogen
bond cooperativity in C-NNP trajectories revealed that
the anti-cooperativity e�ect for aqueous systems is repro-
duced poorly by the committee of Behler–Parrinello (BP)
NNPs — it is considerably lower than in the original ab
initio trajectories. ⇡-hydrogen bond cooperativity is a
very subtle e�ect and, hence, more di�cult to accurately
reproduce than other properties such as spatial distri-
bution functions or vibrational spectra. A quantitative
investigation into the accuracy of the employed models
can be found in Section S2 the Supporting information
and shows that the force errors are below the threshold
typically needed to reproduce most standard properties.
One challenge for the C-NNP description of ⇡-hydrogen
bonds is that the typical distance between the center of
the benzene ring and the oxygen atom of a water molecule
is between 3.0 and 3.5 Å (as shown in Figure 1). This
suggests that in configurations with two simultaneous ⇡-
hydrogen bonds, the water molecule at the opposite site is
at the very edge of the neighborhood cuto� radius of the
BP NNP, which we set, as per usual, to 12 a0 (⇡ 6.35 Å).

FIG. 5. Time ACFs of the �-hydrogen bond existence cri-
terion. The top panel shows the ACF for both water and
ammonia on the interval of lag time from 0 to 20 ps on a log-
arithmic scale. The bottom panel shows the integrated ACFs
to estimate the correlation times as the long time limit of
these ACFs — this is shown as the dashed lines.

Since the resolution of the atom-centered symmetry func-
tions towards the edge of the cuto� radius is poor, an
accurate prediction of this long-range e�ect is unlikely
by these local MLPs. The more advanced equivariant
message-passing graph NNPs such as NequIP can miti-
gate this downside, as the message-passing architecture
extends the e�ective field of view beyond the set cuto� ra-
dius.35 For this reason, we trained a NequIP model36 for
the classical benzene–water system and ran the same MD
simulations with it as well. However, we observed no im-
provement in these trajectories, as the anti-cooperativity
e�ect remains severely underestimated. Further research
will be necessary to disentangle the reasons why both BP
and equivariant NNPs fail to reproduce this e�ect quan-
titatively. One plausible explanation lies in the training
data set, which has been selected using query by com-
mittee (QbC) with BP NNPs and was used to train both
model architectures. It is possible that due to the short-
range nature of BP NNPs, structures required for an ac-
curate description of the anti-cooperativity e�ect have
been left out of the training data set and that only a
NequIP-specific QbC will lead to an NNP that repro-
duces all aspects of this system correctly.

C. �-hydrogen bond lifetimes

The time dependence of the solvent existence criteria

h(S)
nk (t) (Equation 3) can be used to estimate the charac-

teristic lifetime of the ⇡-hydrogen bond. To calculate the
time correlation function, we first evaluate the RPMD
time-dependent observable37 as

h(S)
n (t) =

1

P

PX

k=1

h(S)
nk (t) (6)
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by averaging over all the path-integral replicas for each
molecule and each site separately. This quantity no
longer has discreet values between 0 and 1 but can ac-
quire a continuum of values between these two bounds:
this can be interpreted as the quantum-delocalized sol-
vent molecule only partially fulfilling the ⇡-hydrogen
bond existence criterion due to its replicas entering and
leaving the relevant region. The autocorrelation function
is then

c(⌧) =
1

2Nsol

X

n,S

hh(S)
n (t0)h

(S)
n (t0 + ⌧)i

h[h(S)
n (t0)]2i

(7)

and, as such, gives the probability that a ⇡-hydrogen
bond still exists after a delay ⌧ if it initially existed at
time t0. Such autocorrelation functions for both solvents
are shown in Figure 5 over the range of 20 ps and feature
a typical shape with a sharper decrease at very short de-
lays followed by a less abrupt, long, and monotonously
decaying exponential regime. Integration of these func-
tions over the time variable reveals the time scale at
which these correlations decay, which can be interpreted
as the characteristic lifetime of ⇡-hydrogen bonds. Inter-
estingly, these lifetimes are comparable in both solvents:
for water, we obtained an autocorrelation time of approx-
imately 1.8 ps, while for ammonia, a just slightly shorter
value of 1.7 ps. We propose that this agreement is co-
incidental as the solutions are at di�erent temperatures
and have di�erent viscosities. To set the ground for com-
parison, we additionally calculated the hydrogen bond
lifetimes for the neat solvents as well using preexisting
trajectories: the lifetime of water–water hydrogen bonds
is approximately 3.9 ps and ammonia–ammonia hydro-
gen bonds approximately 1.4 ps. This indirectly suggests
that solvent–solvent hydrogen bonds are stronger than ⇡-
hydrogen bonds in water but comparable or even ever so
slightly weaker in ammonia.

D. Vibrational spectroscopy

Finally, we turn our attention to the simulation of vi-
brational spectra of both solutions in order to relate to
the previous experimental findings6 and to gain insight
into the influence of the aromatic solute on the solvent.
In this regard, we present a qualitative perspective based
on vibrational densities of states (VDOS) and infrared
(IR) intensities. VDOS is defined through the Fourier
transform of the autocorrelation function of atomic ve-
locities vi,

Cvv,i(t) = hvi(t0) · vi(t0 + t)it0 ,

IVDOS(!) /

X

i

Z
dt e�i�tCvv,i(t),

(8)

where we write the total VDOS as a sum of atomic con-
tributions. While it has no experimentally measurable
counterpart, it is the most direct and local probe into

FIG. 6. Vibrational characterization of the benzene solute in
liquid water (light red for classical and dark red for TRPMD
trajectories) and ammonia (light blue for classical and dark
blue for TRPMD trajectories). Top panel: Vibrational den-
sity of states of the solute carbon and hydrogen atoms com-
bined. Bottom panel: IR absorption self-term due to the
benzene molecular dipole moment. Harmonic frequencies of
gas-phase benzene calculated at the revPBE0-D3 hybrid DFT
level are shown as black ticks at the bottom of each panel.

the mechanical vibrations of molecules. Similarly, IR in-
tensities, which correspond to experimentally measurable
IR signals, can be related to the Fourier transform of the
autocorrelation function of the total dipole moment M
of the studied system,

CMM (t) = hM(t0) · M(t0 + t)it0 ,

IIR(!) / !2

Z
dt e�i�tCMM (t).

(9)

Given a partitioning method to decompose the total
dipole to molecular contributions as M =

P
n µµµn, the

total IR intensity can also be decomposed to contribu-
tions of pairs of molecules as

IIR(!) = !2
X

n,m

Z
dt e�i�t

hµµµn(t0) · µµµm(t0 + t)it0 , (10)

where not only the molecular self-terms (n = m), but
also cross-correlation terms (n 6= m), contribute to the
total intensity. In the following analysis, the quantum
vibrational spectra are considered to be the primary out-
come, but we will frequently relate to the corresponding
classical simulations, owing to the insight they provide
into the interpretation of the presented spectral curves.
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To motivate the discussion, we first inspect the vibra-
tional character of the solute in both solvents. The so-
lute component of the VDOS in the region of benzene
CH stretch modes between 2750 and 4250 cm�1 is shown
in the top panel of Figure 6 for water as well as am-
monia. Classically, the CH vibrations present in the
VDOS as a relatively narrow peak located just above
3200 cm�1 with an almost identical shape in both sys-
tems. Its position closely corresponds to the position of
gas-phase harmonic frequencies of the isolated benzene
molecule (Figure 6), suggesting that the vibrational mo-
tion of the solute is not strongly a�ected by its solva-
tion. The TRPMD VDOS exhibits a typical vibrational
manifestation of NQEs, where the quantum spectrum is,
compared to the classical one, broader and redshifted —
in this case by approximately 100 cm�1. There is no
substantial di�erence between this vibrational motion of
the benzene molecule in liquid water or ammonia and no
higher-frequency vibrations of the solute than the CH
stretches are present. The bottom panel of Figure 6
shows the component of the IR absorption spectrum due
to the solute–solute dipole moment correlations, with the
aim of isolating and inspecting the solute-only contribu-
tion to the total IR spectrum. The classical solute–solute
self-terms (light blue and light red) contain the expected
CH vibration peak at approximately 3200 cm�1 that is
consistent with the VDOS peak as well as the harmonic
frequencies. However, the spectra now contain new ad-
ditional features at higher frequencies, too. In water,
these form a broad region of vibrational intensity between
3250 – 4000 cm�1 in the classical spectrum that can be
interpreted as a double-peak structure with maxima lo-
cated at 3700 cm�1 and 3850 cm�1. With a quantum
description, we can once again see NQEs in the form of
a broadening and redshift of the spectral features to the
point where the CH peak nearly fuses with the new fea-
tures, almost leading to a single broad structure, where
the original peaks are basically unrecognizable. In con-
trast, in ammonia, the additional feature presents as a
single sharp peak at 3625 cm�1 under the classical ap-
proximation; the TRPMD IR spectrum of the ammonia
solution was not calculated for reasons explained below.
Since these new features do not correspond to any peak
in the solute VDOS, they cannot be ascribed to the vi-
brational motion of the atoms of the solute. Rather, they
must arise as an e�ect due to the solvent, which, through
its own vibration, a�ects the dipole moment of the solute,
leading to this feature in the solute–solute self-term spec-
trum. This is consistent with the interpretation of the
Raman experiment, which reports an equivalent feature
in the SC spectrum and assigns it to the water molecule
that forms a ⇡-hydrogen bond.

However, the results presented until this point do not
clarify whether the solvent-induced features in the solute-
only IR spectrum are caused directly by solvent molecules
that are in a ⇡-hydrogen bond with the solute, as implied
by the interpretation of the experiment. To gain insight
into the origin of the e�ect, we time-resolve the correla-

FIG. 7. Vibrational characteristics of solvent molecules en-
gaging in a �-hydrogen bond. Panel A: TRPMD VDOS of
water hydrogen atoms for the full system (gray shading) and
for selected hydrogens that engage in a �-hydrogen bond. In
addition, the same quantity is shown for hydrogen atoms in
the first solvent shell that do not engage in a �-hydrogen bond
Panel B: TRPMD IR water self-term, again shown for the
full system (gray shading) and the corresponding �-hydrogen
bond subselection (red). The black triangle marks the rele-
vant blueshifted feature. Note that the oscillation at the low-
frequency end of the spectrum is a numerical artifact related
to the practical execution of the Fourier transforms for the
filtered spectra (see Section S1 of the Supporting information
for details). Panel C: same data as in panel B, but obtained
using classical mechanics. Note the pronounced split-peak
feature in the OH stretch peak for molecules in a �-hydrogen
bond. Panel D: same data as in Panel A, but for the liquid
ammonia simulations.

tion functions that contribute to the solvent VDOS and
the whole IR spectrum and correlate them with the afore-
mentioned ⇡-hydrogen bond existence criteria. This al-
lows us to isolate the vibrational signature of molecules
that are in a ⇡-hydrogen bond at a given moment: this is
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possible given the lifetime of a ⇡-hydrogen bond is much
larger than the vibrational period. The key results of
this analysis for the simulations with quantum nuclei are
summarized in Figure 7.

Let us first turn our attention to the aqueous solu-
tion. The overall (unresolved) solvent hydrogen TRPMD
VDOS is shown in panel A of Figure 7 as the gray-shaded
reference; it has the typical three-peak structure rou-
tinely observed for liquid water.38 Restricting the pre-
sented VDOS to those solvent hydrogen atoms actively
participating in a ⇡-hydrogen bond shows a contribution
that di�ers strongly from the total spectrum (Figure 7,
panel A, dark red). Notably, the maximum of the stretch
band is blueshifted from 3575 cm�1 to 3750 cm�1, sug-
gesting that the vibration in a ⇡-hydrogen bond is sti�er
than those in the bulk water–water hydrogen bond net-
work. In turn, this implies that the ⇡-hydrogen bond vi-
bration is more like a dangling or isolated OH bond, the
vibration of which is also not softened by the presence of a
relatively strong hydrogen bonding partner. In contrast,
the terahertz peak is shifted to lower frequencies, which is
again consistent with the ⇡-hydrogen bond being weaker
than a water–water hydrogen bond and thus hindering
rotation of the water molecule less. To verify that the
described VDOS shifts are specific for ⇡-hydrogen bonds
rather than a general e�ect of molecules in proximity to
the solute, we also inspect the VDOS of solvent molecules
that belong to the first solvent shell in terms of distance
but are excluded by the ⇡-hydrogen bond existence cri-
teria. We find that such molecules possess a vibrational
signature essentially identical to the overall VDOS with
no observable shifts (Figure 7, panel A, light red).

To explain these solvent-induced features in the solute-
only IR component, we now turn our attention to the
solvent–solvent self-term IR spectra. The overall (unre-
solved) TRPMD water–water self-term IR spectrum is
shown in panel B of Figure 7 as a starting point, again
in gray. In this case, the ⇡-hydrogen bond resolved coun-
terpart brings around a more complicated structure of
the OH stretch band (Figure 7, panel B, dark red) be-
cause, unlike VDOS, IR spectra cannot be resolved all the
way to individual atoms and the e�ect of both OH-bond
stretches is imprinted in the observed spectral feature. As
such, the faster vibration of the OH bond that partici-
pates in a ⇡-hydrogen bond manifests as a high-frequency
shoulder just below 3750 cm�1 on the OH stretch peak
(marked by a black arrow), while the rest of the dipole
moment, including the second OH bond that points away
from the solute and participates in the regular bulk hy-
drogen bond network, leads to a maximum at 3500 cm�1.
The same split of the stretch peak due to di�erent chemi-
cal environments of the two OH bonds is better visible in
the classical IR spectrum (Figure 7, panel C, dark red),
where a pronounced double-peak feature arises with max-
ima located at 3600 cm�1 and 3850 cm�1. The frequen-
cies of the observed double-peaks in both the classical and
TRPMD case of the ⇡-hydrogen bond resolved solvent-
only IR spectrum correspond to those observed in the ⇡-

hydrogen bond resolved solute-only IR spectrum shown
in Figure 6. This suggests that the e�ect observed in the
solute-only IR spectrum is caused by the vibrating dipole
of the solvent molecule inducing a dipole on the benzene
solute at the frequency of this vibration. Thus, the ob-
served phenomenon in the solute-only spectrum is not
specifically due to the ⇡-hydrogen bond, but rather rep-
resents a general e�ect due to solute–solvent correlations.
However, since the interactions responsible for these cor-
relations decay with distance and the ⇡-hydrogen bonded
molecule is the closest a solvent molecule can get to the
solute (as demonstrated in Figure 1), it is expected that
the ⇡-hydrogen bonded molecules have the strongest con-
tribution to the e�ect; this interpretation is further sup-
ported by the fact that we found the imprint of the vi-
bration of the distal OH bond, which does not directly
participate in the formation of the ⇡-hydrogen bond, in
the solute-only IR spectrum as well. The extent of par-
ticipation of ⇡-hydrogen bonded molecules in forming the
solute-only spectral features could be directly tested, in
principle, by calculating the solute-only spectrum in the
absence of ⇡-hydrogen bonds. However, this is not tech-
nically possible with the present direct MD simulations:
given the vibrational period, the characteristic length of
the window where no ⇡-hydrogen bonds exist is too short
to be able to get a resolved spectrum corresponding to
this state. Simulations with the addition of a suitable
biasing potential would be needed to obtain continuous
trajectories free of ⇡-hydrogen bonds.

The ammonia TRPMD VDOS (Figure 7, panel D)
has one extra peak compared to the water spectra at
around 1100 cm�1 due to the umbrella vibration. Inter-
estingly, no frequency shifts are observed in the ammonia
solutions after resolving the total solvent spectrum into
the ⇡-hydrogen bond and non-⇡-hydrogen bond first-shell
contributions: all spectra are essentially identical. This
result has a simple physical explanation: unlike in wa-
ter, where the bulk hydrogen bond structure is strong,
in ammonia, it is nearly non-existent, and, as such, the
molecule in a ⇡-hydrogen bond does not di�er substan-
tially from the other solvent molecules in the bulk. For
this reason, the ammonia counterpart of the solvent-
induced peak in the solute-only spectrum (Figure 6, bot-
tom panel in blue) is represented by a single narrow peak
and not a complicated double-peak structure as it is in
water.

In summary, the vibrational character of molecules en-
gaging in ⇡-hydrogen bonds is di�erent in both solvents,
but this di�erence is due to the di�erence in the hydro-
gen bond strength within the respective solvent bulks,
not a di�erence in the nature of the ⇡-hydrogen bonds
themselves.

III. CONCLUSIONS

The reported TRPMD simulations of solutions of ben-
zene in liquid water and ammonia provide a detailed com-
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putational perspective on the phenomenon of ⇡-hydrogen
bonding. To this end, we relied on the combination of
accurate ab initio electronic structure with high compu-
tational e�ciency in the form of C-NNPs to converge
the statistical properties of interest. In this work, we
found clear evidence of ⇡-hydrogen bonding in the sol-
vation structure of benzene in both solvents and charac-
terized it in several complementary ways. We discussed
the orientational flexibility of ⇡-hydrogen bonded solvent
molecules, described the strength of the interaction by its
equilibrium population, showed evidence of its anticoop-
erativity in water, and determined its lifetimes in both
solvents. Furthermore, we modeled the VDOS and IR
spectra of these systems and, employing a spatial and
temporal decomposition that is only available in a com-
putational approach, found and explained imprints of the
⇡-hydrogen bonding interaction that are consistent with
previous experimental findings in water. Our simulations
point to the fact that ⇡-hydrogen bonding is a promi-
nent interaction present in the studied systems most of
the time. This suggests relevance for situations where
aromatic species come into contact with water, such as
in the solvation of biological residues; some authors even
suggest a possible role of ⇡-hydrogen bonding in biologi-
cal scenarios such as signaling.6 An accurate description
by empirical force fields would thus be instrumental, yet
it is currently not available.23 Our work provides insight
as well as an extensive ab initio reference for the future
development of adequate force fields.

The question of why ⇡-hydrogen bond anticoopera-
tivity presents a challenge for machine learning poten-
tials, as identified by our ab initio simulations, remains
open. Rectifying this issue will provide insight into the
functionality and shortcomings of these potentials and
will enable accessing other hard-to-converge aspects of
⇡-hydrogen bonding, such as the further details of the
thermodynamics of the formation of this bond. An ad-
ditional level of improvement will be achieved by em-
ploying machine-learned models for predicting molecular
dipoles and polarizabilities,39 which will give access to
better converged IR spectra and open the doors to com-
putationally accessible Raman spectroscopy as well.
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