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Abstrakt: Simulace ab initio molekulární dynamiky s atomovými jádry reprezen-
tovanými dráhovými integrály v imaginárním čase poskytují cenný vhled do
fyziky a chemie kondenzovaných vodíkově vázaných systémů na vysoké úrovni
přesnosti popisu. Zároveň tyto simulace představují metodologickou a výpočetní
výzvu zejména v případě, kdy jsou vyžadovány pokročilé metody teorie elek-
tronové struktury. V této práci ukazujeme naše příspěvky ohledně začlenění po-
tenciálů na bázi strojového učení do simulačních postupů s důrazem na použití
aktivního učení pro tvorbu tréninkové sady a na efetivní generaci tréninkových
geometrií samotných. S touto metodologií jsme provedli pokročilé simulace tří
různých molekulárních systémů. Jako první jsme prozkoumali chování radikál-
aniontu benzenu rozpuštěného v kapalném amoniaku: tento systém je významný
v kontextu chemie Birchovy redukce. Motivováni našimi zjistěními jsme pokračo-
vali rozsáhlou studií π-vodíkových vazeb v roztocích benzenu v kapalné vodě a
amoniaku s důrazem na strukturu, dynamiku a vibrační spektroskopii. Nakonec
jsme se přesunuli do oblasti fyziky povrchů, kde jsme se věnovali modelování
reakcí s přenosem protonu v dusíkatých derivátech benzochinonu v plynné fázi
a na povrchu zlata a popisu klíčové role jaderných kvantových jevů pro tuto
reaktivitu. Provedený výzkum je obsažen v pěti publikacích přiložených k této
práci.
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1 | Introduction

This thesis summarizes and discusses the main results of the research conducted
between 2019 – 2024 during the time of my doctoral studies at the Institute of
Physics of Charles University under the supervision of Dr. Ondřej Maršálek.
The research is based on simulations of ab initio molecular dynamics (AIMD)
of hydrogen-bonded systems. It consists of a part focusing on developing and
advancing computational methods, and another part, where we model and study
specific molecular systems overarched by the common theme of hydrogen bonding.
The studied systems mainly include liquids and solutions, but we also touch on
surface-bound and gas-phase systems.

The ensuing preamble in the rest of Chapter 1 provides a general overview of
the physical and computational context of the work as well as an introduction
to the specific research projects that will be discussed in the following Chapters.
Chapter 2 summarizes the employed theory and methodology. Chapters 3–6 focus
on the scientific results, and finally, Chapter 7 concludes the thesis.

1.1 | Hydrogen bonds as a key phenomenon in
nature

The official definition of the hydrogen bond by the International Union of Pure
and Applied Chemistry states that “The hydrogen bond is an attractive interaction
between a hydrogen atom from a molecule or a molecular fragment X–H in which
X is more electronegative than H, and an atom or a group of atoms in the same
or a different molecule, in which there is evidence of bond formation”.1 Since the
phenomenon of hydrogen bonding is the common denominator connecting all the
research projects discussed in this work, it makes sense to open the discussion
by breaking this definition down and explaining the key terminology. First of
all, it is worth noting that the definition is rather general and allows essentially
any oriented interaction between a polarized Xδ−–Hδ+ bond (called the donor),
which exhibits a localization of positive charge on the hydrogen atom, and any
arbitrary group of atoms (called the acceptor) to pass as a hydrogen bond. This
general formulation is needed to cover certain exotic cases (as we will witness, for
example, in Chapter 5 that focuses on π-hydrogen bonding); however, in practice,
the term hydrogen bond is typically reserved more selectively for interactions of
the type X–H · · · X’, where X and X’ represent either nitrogen, oxygen or a
fluorine atom, possibly embedded in a larger molecular structure (as an example,
the hydrogen bond network in liquid water is shown in Figure 1.1). In those
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Figure 1.1: A snapshot from an AIMD simulation of liquid water sample at 300 K with
instantaneous hydrogen bonds, determined by predefined, fixed criteria on H· · ·O’ dis-
tances and O–H· · ·O’ angles, shown in blue dashed lines. Periodic boundary conditions
(see Chapter 2 for details) apply at the box faces.

cases, the polarization of the donor molecule is strong enough that the bond
formation is dominated by polarizable electrostatics, which sets it apart from
weaker dispersion interactions that arise due to instantaneous charge fluctuations
only.2 However, more subtle effects like dispersion3,4 and charge transfer5 across
the hydrogen bond remain important ingredients to the full picture.

Without exaggeration, one can say that with no hydrogen bonding, there
would be no life as we know it on Earth since this quintessential non-covalent
interaction is present in nearly all materials that constitute a living organism and
in many other materials that surround us on a daily basis. Indeed, hydrogen
bonds are crucial for the structure of biopolymers,6 notably in the formation and
stability of the secondary, tertiary, and quaternary structures of proteins and
the structure of the double-stranded DNA helix. As such, they have fundamen-
tal implications for vitally important processes such as biosignaling, enzymatic
catalysis, cellular replication, and pharmaceutics binding, to name a few. Outside
of the biological context, hydrogen bonds give properties to numerous common
and important solid materials, including various molecular crystals7 and piezo-
electrics,8 polymers such as cellulose9 and nylon,10 and inorganic zeolites11 and
also have a profound effect on the properties of liquids. For instance, they are
the reason why water (H2O) exists as a liquid at ambient conditions and has a
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Figure 1.2: Boiling points of pnictogen (group V-A), chalcogen (group VI-A), and
halogen (group VII-A) hydrides over periods 2–4.

boiling point as high as 100.0 ◦C despite its very low molar mass. Looking down
the VI-A group of the periodic table, H2S does not form hydrogen bonds accord-
ing to the above definition, has nearly double the molar mass of water, and has
a boiling point of −59.5 ◦C. The effect on liquid water properties is spectacular
and is a result of a constructive combination of a relatively high hydrogen bond
strength and the number of hydrogen bonds that a water molecule can engage
in at a time (this was estimated using indirect interpretation of experiments on
average from 2.2 to 3.3 bonds per molecule12,13 and using ab initio simulations
from 3.61 to 3.77 bonds per molecule14) that hold the liquid together, but a sim-
ilar effect is observed between liquid NH3 and PH3 with boiling points of −33.3
and −87.7 ◦C and HF and HCl with +19.5 and −85.0 ◦C, respectively. This
effect, also additionally compared to the third-period hydrides that do not form
hydrogen bonds and thus follow the expected trend of increasing boiling points,
is shown in Figure 1.2.15 Solvents with strong hydrogen bonds represent an im-
portant class with special properties owing to their highly polar character. This
creates an ideal solution environment for polar and ionic species such as seen,
for instance, in the cellular matrix, in seawater, and in numerous industrial and
everyday applications.

Alongside the fundamental role of hydrogen bonds in soft matter structuring,
they can be viewed as a useful probe into the quantum nature of the atomic
nuclei in hydrogen-bonded systems. This is perhaps slightly in contrast with the
traditional chemist’s view of molecules as formed by quantum electrons orbit-
ing around classical, point-like nuclei. However, quantum-mechanical effects,16,17

1.1. Hydrogen bonds as a key phenomenon in nature 5



such as zero-point energy or quantum delocalization and tunneling, indeed repre-
sent an integral part of the behavior at the nuclear level, challenging the classical
picture: this is most pronounced for hydrogen nuclei due to their light mass.
Clearly, directly quantifying nuclear quantum effects (NQEs), defined as the de-
viation of the real, quantum-behaving system from its classical reference,18 in an
experimental setting is not possible because there is no experimentally available
classical reference to compare to. Therefore, quantum effects are experimen-
tally accessed indirectly using isotope substitution,19,20 which changes the mass
of an atomic nucleus, most often hydrogen. According to classical mechanics,
this should not affect any thermodynamic properties, since they do not depend
on mass, but it does affect them under the quantum description. A noteworthy
manifestation of an isotope effect can be observed in the so-called Ubbelohde ef-
fect,21,22 which refers to the change in the X–X’ equilibrium distance upon deuter-
ation of hydrogen-bonded molecular crystals and which has (classically forbidden)
measurable implications for macroscopic thermodynamic properties such as phase
behavior: for example, the differences in thermodynamic properties between H2O
and D2O are measurable and well-known.23 Still, the insight into the bare NQE
origin of the effect must rely on theoretical methods, where the ability to model
a quantum system implies the ability to model a simpler classical one. Using
simulations of molecular dynamics (MD) for a wide pool of hydrogen-boned sys-
tems, the origin of the changes in the X–X’ distance upon the inclusion of NQEs
was explained by the principle of competing quantum effects19,22,24 that affect
both the stretching and bending motion in the hydrogen bond. The two quan-
tum effects combine to a general result that causes classically strong hydrogen
bonds to become stronger and weak ones to become weaker by the inclusion of
NQEs, providing a non-trivial and system-specific overall behavior.22 In general,
due to the relatively large mass of nuclei, NQEs usually manifest as a correspond-
ingly small perturbation to the classical picture, which is normally able to give a
thorough understanding of the physics of most systems at close-to-ambient con-
ditions. Interestingly, liquid water exhibits a large degree of cancellation between
the competing quantum effects, which makes the total NQEs quite small, and the
classical approximation comes close to the quantum reality.25 The fine balance
between this cancellation can be changed by modifying the environment or the
thermodynamic state. However, NQEs become progressively more pronounced as
the temperature is lowered, and their inclusion becomes critical at ultra-cold con-
ditions both explicitly in molecular simulations and in interpreting experimental
data.26

1.2 | Describing molecular systems in silico

There are numerous approaches to simulating a molecular system using comput-
ers in order to predict its physical properties. Describing the electronic structure
of atoms and molecules at 0 K with clamped (i.e., classical) nuclear configu-
rations is the domain of quantum chemistry calculations,2 which mainly give
insight into electronic properties and only offer limited and approximate access
to thermal nuclear effects building on the harmonic vibrational analysis. Ther-
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mal motion of nuclei can be robustly included by studying thermal statistical
ensembles of nuclear configurations at non-zero temperatures. Such simulations
normally fall into two categories known as Monte Carlo (MC) and molecular dy-
namics (MD) simulations. Since these are not used in this work, we note only
in passing that Markov-chain MC simulations27 rely on a sequence of random
moves of atoms that are accepted or rejected in a way that ensures that the de-
sired ensemble is sampled. As such, MC simulations give robust convergence of
thermodynamic properties but do not yield meaningful dynamical information
due to their stochastic nature. In contrast, MD simulations build on dynamical
equations of motion to achieve the same goal of sampling statistical ensembles,
in principle yielding dynamical properties alongside correct static thermodynam-
ics. Generally speaking, MD simulations are becoming extremely relevant as
an in silico complement to various experimental methods in studying molecular
systems. As a standalone tool, they possess predictive qualities that can give
access to the computational estimate of experimentally available results. In tan-
dem with experiments, they provide atomistic resolution and the possibility to
identify individual phenomena that take place concurrently in the studied sys-
tems and of which the experiment typically only sees the overall effect. As such,
they can be instrumental in interpreting and disentangling experimental results.
This is especially true in the context of hydrogen-bonded systems where an indi-
rect exploration through various spectroscopies only shows convoluted imprints
of the effect of the hydrogen-bonded environment and a direct one by structure-
mapping methods such as scanning tunneling microscopy (STM) or X-ray diffrac-
tion typically lacks the resolution to resolve the structure of individual hydrogen
atoms.28,29

For this introduction, a brief context of the employed computational method-
ology is provided, while the detailed technical discussion is postponed to Chap-
ter 2. In this work, we pick AIMD as the primary simulation method of choice.
The name of MD in AIMD originates in the fact that such simulations use funda-
mental classical equations of motion to numerically propagate the atomic nuclei
in a representative microscopic sample of the studied system at an atomistic reso-
lution through time, given a differentiable many-body potential that describes the
interactions and forces between the atomic nuclei.27 Note that at this moment,
the only way electrons come into the simulation is through this potential, often
known as the potential energy (hyper)surface (PES). Methods of statistical me-
chanics are then applied to the obtained trajectory to extract static and dynamic
properties. NQEs are typically not included by switching from using the classical
description to a quantum one based on the Schrödinger equation and performing
full quantum dynamics, but rather rely on the Feynman path integral formalism
in imaginary time.30 This approach is generally called path integral molecular dy-
namics (PIMD) and exploits a computationally tractable isomorphism between
the full quantum system and an extended classical one.31 The term ab initio
(Latin for “from the beginning”) then refers to the way electrons are treated in
such simulations: AIMD uses a full quantum electronic structure calculation to
describe the many-body potential under the framework of the Born–Oppenheimer
approximation32 and, therefore, keeps explicit electrons in the system at every
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simulation step. This normally results in superior accuracy and flexibility of the
simulations over predefined, empirical interaction PESs, otherwise known as force
fields.27 Since the repeated evaluation of ab initio energies and forces is computa-
tionally challenging for realistically big systems,33 not every electronic structure
method is suited for use in AIMD, and one must compromise between accuracy
and computational cost. For this reason, most AIMD simulations are based on
density functional theory (DFT),34 which offers correlated electronic energies at
a price lower or comparable to Hartree–Fock electronic structure. Since most
density functionals, including those used in this work, describe the interaction
between electrons at a local or a semilocal level, they cannot describe non-local
dispersion interactions on their own. This is typically rectified by adding empiri-
cal dispersion corrections, making the method practical for condensed hydrogen-
bonded systems without raising its cost beyond the affordable limits.

1.3 | Context and aims of this work

At this point, we turn our attention from the general framing to the four distinct
research projects that constitute the body of this thesis. In the following sub-
sections, each project will be introduced and discussed in the context of previous
related research with the aim of situating it into a bigger picture.

1.3.1 Streamlining computational methodology

Recently, the world of AIMD simulations underwent a minor revolution when
machine learning techniques were introduced to mitigate the computational re-
quirements for the explicit quantum mechanical calculations in AIMD. In this
work, we oftentimes rely on the so-called machine learning potentials,35 specifi-
cally on Behler–Parrinello high-dimensional neural network potentials (NNPs),36

to circumvent the part of the calculation where the electronic energy and forces
are evaluated on the fly from nuclear configurations using standard quantum me-
chanics. The NNP, technically a type of an artificial neural network (NN),37

acts as a flexible and accurate fit to the underlying ab initio structure-to-energy
relationship, which allows us to run simulations at a fraction of the original com-
putational cost while maintaining simulation accuracy. Of course, one cannot
avoid ab initio calculations altogether: ab initio data is needed for the train-
ing (i.e., fitting) of the NNP. However, this typically represents a much smaller
number of energy evaluations than the one needed to converge statistics using
traditional AIMD simulations. Consequently, the approach can be expected to
offer a computational speed-up of several orders of magnitude. Employing NNPs,
unprecedented length and time scales of simulations became available for routine
use.38

A balanced and robust training set is a key ingredient to a highly accurate
NNP. Still, an NNP approximates the reference PES, meaning that it will always
be burdened by some degree of generalization error when predicting new output
for previously unseen data. Having trained an NNP on a given training set,
disregarding its quality for now, the predictive action of the NNP can be divided
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into two regimes. First, in the interpolation regime, the NNP is required to
predict outcomes on data that fall inside the subspace spanned by the original
training set. In that situation, the predictions are expected to be reliable with
low generalization errors unless a large part of the coverage by training points in
the relevant subspace was initially missing. Outside of this subspace, NNPs must
rely on extrapolation, which is typically accompanied by larger generalization
errors due to the fact that the NNP has never seen similar data and “does not
know” what the associated output should be. Ideally, during a simulation using
NNPs, one wants to stay in the interpolation regime with good coverage of the
underlying space. However, it was recently argued that in the high-dimensional
space of molecular geometry inputs, the NNPs always rely on extrapolation in
practice, since the probability that a new geometry will fall into the smallest
polygon enclosing the training set, i.e., the convex hull, gets increasingly smaller
due to the curse of dimensionality.39 Perhaps a better rationale in this case then
is, loosely speaking, that the NNP can extrapolate but should not venture too
far into the unknown.

In any case, achieving a well-balanced training set through optimizing the
selection of training points from a wider candidate set to maximize the efficiency
of the training process and the resulting accuracy is no simple task. While ini-
tially approached by simpler methods such as random point sampling3 or far-
thest point sampling,40 it is becoming more and more recognized these days
that active learning methods, in which the model itself is used to screen for the
next most relevant training point, offer finer control over the data selection and
faster, robust convergence to high-accuracy models. This is enabled by assem-
bling an ensemble of NNPs trained for the same purpose, known as a committee
NNP (C-NNP).41 Given that the individual committee members have some de-
gree of variance among them (achieved either by training to subsets of the full
training set or by providing different initial conditions at the entry to the training
process), one can easily evaluate the standard deviation of the C-NNP prediction,
known in our line of work as the committee disagreement.42 This quantity can be
used as a measure of the prediction quality of the models for a particular input:
its value remains low when the model is predicting in a well-trained region but
goes up when the members start to diverge as they move to an undertrained
region or start heavily extrapolating. Alongside the disagreement, the average
of the committee prediction is known to be a better estimate of the output than
that of the individual NNPs, which also makes C-NNPs immediately useful at
simulation run time.

In this work, we will discuss two publications that engage in the development
of computational methodology related to NNPs. The first paper43 introduces
our C-NNPs workflow, which relies on committee disagreement to build an active
learning procedure to generate the training set known as query by committee
(QbC),44,45 but also to monitor the quantity during simulation to control the
generalization error and to use it to bias the system to stabilize it when extending
the model to new, unexplored regions of the configuration space. To validate the
model, we perform classical and path-integral MD simulations of liquid water
with the obtained C-NNPs and discuss its performance. The second paper46
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recognizes that having AIMD simulations as the traditional source of ab initio
training data can be prohibitive in certain computationally demanding systems
and suggests a new methodology, which we call transition tube sampling (TTS),
that generates thermal training geometries using computationally much more
affordable premises than AIMD and thus opens the door to systems that would
be difficult to model otherwise, including systems with chemical reactions. The
published work illustrates the initial application of TTS to obtain C-NNP models
for several gas-phase molecules, including some with intramolecular hydrogen
bonds, followed by inference simulations. Possible generalizations of the method
into the condensed phase are discussed in Chapter 3, and first steps towards its
realization for a surface-bound system is presented in Chapter 6.

1.3.2 Radical anions in hydrogen-bonded liquid environ-
ments

The origins of this research date back at least to the year 2015, when Mason
and coworkers47,48 set out to understand the chemistry behind the well-known
dangerous explosions of alkali metals in liquid water. Using high-speed imaging
and spectroscopic methods, they observed the formation of blue hydrated elec-
trons after placing a drop of liquid NaK alloy on a water surface and identified
the reason for the following explosion as electrostatic positive supercharging of
the remaining metal drop, otherwise known as a Coulombic explosion. To elim-
inate the explosive behavior and thus to allow oneself to study the intriguing
physical properties of solvated electrons as inherently quantum-behaving solutes,
the aqueous environment can be exchanged for liquid ammonia, which leads to
the formation of deep blue solutions of solvated electrons that exhibit long-term
stability.49–51

To set the ground for a study of these systems, we first opted to explore the
neat liquid ammonia solvent, employing a new experimental and computational
strategy.52 On the experimental front, the chosen method was liquid microjet
X-ray photoelectron spectroscopy (XPS) due to its ability to provide a detailed
insight into the electronic structure of liquids (for more insight into this experi-
mental methodology, see the comment in Appendix B).53–56 From the computa-
tional standpoint, we approached the issue using a combination of classical AIMD
simulations using a semi-local density functional (this was before our group be-
gan to use NNPs on a regular basis) for the thermal sampling of both gas and
liquid ammonia followed by a G0W0 correction57 of the electronic structure to
obtain physically meaningful electron binding energies (the need for G0W0 calcu-
lations over density functional theory orbital energies will be discussed in detail in
Chapter 2). This provides the electronic density of states (EDOS), which can be
directly compared to experimental XPS spectra, albeit with certain reservations
that will be discussed in Chapter 4. The gas and liquid ammonia valence spectra
obtained using this combination of methods are reported in Reference 52 and
plotted for convenience in Figure 1.3. In the measured gas-phase XPS spectrum
(Figure 1.3, top panel, blue), we can notice a distinct three-peak feature over
the studied energy range that characterizes the three distinct electron binding
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Figure 1.3: Gas and liquid ammonia XPS spectra and EDOS.52 Top panel: Pure raw
liquid-phase data (black points) spectra and their Gaussian fit (green) obtained by sub-
tracting the gas-phase spectrum from the combined microjet gas-and-liquid spectrum.
Bottom panel: calculated EDOS for gaseous and liquid ammonia.

energy levels in the ammonia molecule at approximately −11, −16 and −27 eV.
Using simple molecular orbital theory, these levels can be connected to spatial
orbitals with 3a1, 1e, and 2a1 symmetries, which accommodate all 8 valence elec-
trons in the NH3 molecule since the 1e label represents a degenerate pair. The
corresponding liquid spectrum obtained from the microjet measurements can be
seen in the top panel of Figure 1.3 as raw experimental data in black and fitted
with Gaussians in green. It can be immediately noticed that the whole spectrum
retains its general shape but is shifted to higher binding energies by ∼2 eV, i.e.,
the electrons in the liquid sample are bound more weakly. This is a general effect
seen in gas-to-liquid transitions that is a consequence of the dielectric screening
by the condensed environment; we will revisit it in the discussion part of this
thesis in terms of a simple model based on a Born–Haber cycle in Chapter 4.58

The computational prediction reliably reproduces the experimental peak posi-
tions for both the gas and the liquid phase, suggesting that our computational
approach captures the relevant physics underlying the XPS experiment. Note
that the intensity in the middle peak of the EDOS, which corresponds to the
doubly degenerate state, is higher than that of the remaining ones (that the area
under the peaks in question is exactly twice larger can be shown rigorously by
integration).

The microscopic structure of the blue dilute solvated electron solutions in liq-
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Figure 1.4: Measured and calculated binding energies of excess electrons in liquid am-
monia.62 Left panel: Measured XPS spectra at three different concertations of Li metal
corresponding to the single electron (light blue), dielectron (blue), and metallic regimes
(orange). Top right: Calculated distribution of electron binding energies for solvated
electrons (light blue) and dielectrons (blue). Bottom right: Snapshot from the single
electron AIMD simulation showing the excess electron density (green, two different con-
tours) and its closest solvent molecules.

uid ammonia has been for a long time a matter of debate, wavering over the radical
anion picture 59 on one hand where the excess electron is localized over several
solvent molecules forming solvated (NH3)

–
n clusters, and the cavity picture 60 on

the other, in which the excess electron resides in a hollow cavity formed within
the solvent structure. Today, there is a general consensus that favors the validity
of a combined picture61 with most of the excess electron localized in a cavity
away from solvent molecules with an off-nuclear density maximum but also with
non-zero excess electron population on the atoms belonging to the first solvent
shell of the cavity. Gradually, as the metal concentration is increased, the solution
first becomes nearly black and opaque and enters the dielectron regime, which
features spin-singlet electron pairs still inside cavities and then turns golden in
color and a characteristic metallic sheen appears accompanied by a large change
in conductivity, suggesting that the system has acquired properties of a metal.

The immediate next step in our research thus was to introduce excess elec-
trons in liquid ammonia with the aim to map the intriguing electrolyte-to-metal
transition through the changes in electronic structure.62 Using the liquid micro-
jet technique applied to these solutions, we found that in the low concentration
regime, a new XPS feature appears at approximately −2.0 eV alongside what
initially was the neat ammonia spectrum, which corresponds to the ionization of
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the solvated excess electron (Figure 1.4). As the dielectron regime is reached, this
feature moves to −1.6 eV due to the mutual electrostatic destabilization of the
dielectron but does not change in character. However, the shape of the spectrum
changes dramatically with the gold solutions, where manifestly metallic features
appear that include both a Fermi edge and multiple plasmon peaks (Figure 1.4),
suggesting that the localized solvated electron state has transformed into a Bloch-
like delocalized state. Tackling the solvated electron in liquid ammonia compu-
tationally is much more daunting than the pure solvent. At the level of AIMD
simulations, this is primarily connected to the open-shell nature of the system as
well as stringent requirements on the employed density functionals and basis sets.
Specifically, the system must be described at a hybrid density functional theory
level to suppress delocalization issues pertaining to self-interaction error63 and,
at the same time, requires an augmentation of the basis set64,65 in order to be
able to describe cavities. Still, running such simulations is possible with sufficient
computational resources, and several ps-long simulations of a solvated electron
and dielectron were obtained.62 Most importantly, these simulations point to the
stability of cavities (Figure 1.4) over the studied time frame, corroborating pre-
vious indirect observations. The G0W0 approach was not applicable in this case
as it produced results that significantly deviated from the experiment: this was
likely due to an unfortunate combination of the notoriously difficult convergence
of G0W0 with basis set size66 and the elevated basis set requirements for this
system. Therefore, the EDOS over the whole energy range was not calculated in
Reference 62, but an alternative approach based on extraction of open thermal
clusters from the bulk AIMD simulations followed by explicit vertical ionization
calculations in a non-equilibrium polarizable continuum67 was used to model the
highest binding energy peak in the single electron and dielectron concentration
regime (Figure 1.4). This is in excellent agreement with the measured binding
energies, giving further credibility to the simulated cavity picture. The simulation
of the metallic system and the transition to it is a subject of ongoing research.

Apart from the intriguing physical properties of alkali-metal–ammonia solu-
tions, one should not forget that they can also act as useful chemical reagents.
One of the most well-known applications of the blue solutions of solvated electrons
in organic chemistry is the so-called Birch reduction68 of six-membered aromatic
rings to 1,4-cyclohexadienes using sodium in liquid ammonia, which has gained
enormous popularity in small-scale synthetic applications69 due to its versatil-
ity and has been employed at an industrial scale, for instance, in the delicate
synthesis of steroid derivatives.70 The widely accepted mechanism of the Birch
reduction is initiated by the attachment of the solvated electron to the aromatic
species to form a radical anion, which is then further reduced and protonated by
a viable proton source in several subsequent steps into the final product. Taking
benzene (C6H6) as the prototype example, we perform AIMD simulations of the
corresponding benzene radical anion intermediate to gain insight into the ini-
tial stages of the Birch reduction and understand problems like the microscopic
structure and solvation of the anion and its comparison to the neutral solute, and
the spatial distribution of the excess electron and its comparison to the solvated
electron case. The analysis and discussion of these simulations are described in
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two attached papers.71,72 Reference 71 focuses mainly on the issues of molecular
geometry while shedding light on issues such as the dynamic Jahn–Teller distor-
tion of the geometry of the benzene radical anion, solvation structure, vibrational
spectroscopy and π-hydrogen bonding (see the following Section for further de-
tails on this topic). Reference 72 then focuses on electronic structure aspects
of the system in question and shows computational predictions of XPS spectra,
effects of the solvent environment and on the electronic part of the Jahn–Teller
problem. Apart from these two first-author publications, the project gave rise
to three other publications73–75 co-authored by me to a lesser extent that are
not attached to this thesis, but their important findings will be mentioned in
the discussion in Chapter 4 to provide a more complete picture of the presented
research.

1.3.3 π-hydrogen bond: an exotic case

π-hydrogen bonds are an illustrative example of an exotic type of hydrogen bond
that benefits from the very general definition given at the beginning of this Chap-
ter: while the donor, in this case, is the usual solvent molecule, the acceptor is
an aromatic substrate, in particular, the elevated negative charge density over
the aromatic ring due to its π-electron cloud. Our finding that neutral benzene
and benzene radical anion likely form π-hydrogen bonds in ammonia in our work
in Reference 71 in combination with our general, group-wide focus on hydrogen
bonding systems triggered a follow-up research study on this topic to provide a
rounded understanding of the phenomenon not only in liquid ammonia but also
in water. The aqueous solution can be understood as a prototypical system aim-
ing to model notably the solvation of the exposed aromatic residues in proteins
in an aqueous environment or the water-miscible, benzene-rich fraction76 of oil
that dissolves in seawater after oil spills. Pertaining to the latter, the solubility of
benzene in water at ambient conditions is more than 20 mM77 and in ammonia
at −50 ◦C even more than 10 times higher.74

While that is perhaps a considerably high attainable concentration of a toxic
substance for aquatic life, it is not particularly high by the standards of the res-
olution of most experimental methods. Therefore, a limited number of published
studies focus on π-hydrogen bonding in bulk water, with most works focusing on
cold cluster systems in the gas phase and isolated matrices.79 An exception to
this is represented by the key work of Gierszal and coworkers,80 who report spec-
troscopic evidence of π-hydrogen bonding in an aqueous solution of benzene using
ultra-low noise Raman scattering. The work relies on a postprocessing method
known as Raman multivariate curve resolution,81 which allows for the extrac-
tion of solute-correlated components of the total measured spectrum, capturing
the vibrational features of the solute and the effect of its nearest surroundings.
Such spectra clearly show a new vibrational feature at 3610 cm−1, which is re-
markably higher than any natural frequency of the solute and which is therefore
attributed to the effect of the vibration of the π-hydrogen bonded molecule on
it. This particular frequency belongs to the high-frequency end of the inhomoge-
neously broadened water stretch peak (approximately 2800 – 4000 cm−1 in the
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Figure 1.5: Effect of hydrogen bonding on the potential energy of the covalent O–H
bond in the water dimer. The black curve shows the change in potential energy as the
length of one of the O–H bonds of the isolated water monomer varies. The blue curve
shows the same quantity upon variation of the length of the hydrogen-bond-forming
O–H bond in the water dimer at a fixed, optimal O · · · O’ distance of 2.95 Å. Both
curves were obtained as a rigid scan of the covalent O–H bond length using the ωB97M-
V78 range-separated hybrid density functional (see Chapter 2 for details on electronic
structure theory). Note that not only the potential at larger O–H distances is softer in
the dimer, but also the optimal bond length gets slightly larger (inset, bottom right).

water Raman spectrum), suggesting π-hydrogen bonds are weaker than water–
water hydrogen bonds and that molecules that participate in them are essentially
comparable to isolated molecules in the vibrational sense. To see why that is
the case, the observed effect should be understood as a reverse blueshift of a
preexisting redshift of this stretching frequency. This initial redshift is arguably
one of the most important spectroscopic manifestations of the hydrogen-bonding
environment in liquid water and is caused by the softening of the potential of
the O–H bond due to the presence of the attractive interaction when forming the
relatively strong water–water hydrogen bond (the explicitly calculated effect in
the water dimer is shown in Figure 1.5). A softer, more open potential indicates
closer spacing of vibrational levels and, consequently, a lowered characteristic fre-
quency of the vibration. As such, the whole stretching peak is redshifted in liquid
water compared to an isolated molecule in the gas phase. In addition, the effect
explains the above-mentioned inhomogeneity of the stretch peak broadening as
the breadth comes from contributions due to various temporally and spatially lo-
calized environments affecting individual O–H bonds.82 From here, the observed
effect can be explained simply by appreciating the fact that a benzene hydrogen
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bond acceptor, a much less polar molecule than water, does not have the ability
to open up the vibrational potential as much as a water acceptor and, therefore,
induces, if any, only a minor redshift. Consequently, the π-hydrogen bonded
water molecule appears blueshifted in comparison to the water bulk.

Theoretical investigations of π-hydrogen bonding in liquid water are uncom-
mon and do not provide a complete picture of the phenomenon. Allesch and
coworkers have performed simulations83 of liquid benzene–water mixtures and
report solvation structure that is consistent with our results presented later in
this work; however, their main focus is the comparison of description of the
π-hydrogen bonding phenomenon using very short classical AIMD simulations
with a generalized-gradient approximation (GGA) density functional and longer
simulations with empirical force fields, which they find to perform poorly for the
purpose.84 This immediately raises concerns pertaining to the common use of em-
pirical force fields in biochemical MD simulations, where the interaction between
liquid water and aromatic moieties in solvated proteins is abundant. Turning our
attention to the issues of dynamics and spectroscopy, a noteworthy contribution
is the simulation work of Choudhary and Chandra,85 which, among other find-
ings, addresses the lifetimes of π-hydrogen bonds to find that they are shorter
than those in the bulk solvent, suggesting an interaction that is weaker than the
average water–water hydrogen bond. At the GGA level of electronic structure
theory and using an approximate approach to model the vibrational frequency
spectrum based on wavelet transforms,86 they capture the trend of the blueshift
qualitatively consistent with the implication of the above-mentioned Raman ex-
periment.

Our work aims to provide a well-rounded picture of the phenomenon in terms
of structure, dynamics, and vibrational spectroscopy. Since the publication of the
previous theoretical studies, it was well recognized that GGA density functionals
are not entirely appropriate for the description of structure and dynamics of
hydrogen-bonded liquids and that the use of hybrid functionals leads to a much
more physically motivated and closer real-world correspondence, especially with
a path-integral description of the nuclei.4 In that light, we perform simulations
of benzene in liquid water and liquid ammonia at a hybrid DFT level of theory
while also addressing the need to include NQEs using the path integral approach.
Recognizing that the convergence of statistical sampling in the similar radical
anion simulations anion systems simulated using traditional classical AIMD was
sufficient, but perhaps borderline on noisiness,71 we prepared C-NNP models for
both systems to facilitate the simulation. Analyzing the obtained trajectories,
we gain insight into the structure of the solvation environment of benzene in
the two solvents and identify clear evidence for the formation of π-hydrogen
bonds in these systems. Using these results, we set up criteria on π-hydrogen
bond existence, which we use to address the issue of dynamics and lifetimes.
We also discuss the cooperativity of π-hydrogen bonds (since a single benzene
molecule simultaneously offers two binding sites for the solvent molecules), where
we find limitations that challenge the accuracy of the C-NNP description, despite
the initially inconspicuous-seeming nature of the studied system. Therefore, we
address the cooperativity issue using ab initio simulations. Finally, these are also
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used for the simulation of infrared (IR) spectra, where molecular dipole moments
must be known but cannot be obtained directly from the NNP. The main results
of this work are presented in Reference 87 and summarized and discussed in
Chapter 5.

1.3.4 Hydrogen-bonded supramolecules on Au(111)

In the last project, we will depart from the disordered liquid realm that domi-
nated the previous projects in favor of metal-surface-bound molecules that feature
hydrogen bonding in both the intra- and intermolecular sense. Such systems have
played the role of protagonists in many very active fields of research. This includes
nanoscale applications in electronics and motors88,89 and surface catalysis;90 they
are instrumental in biofilm formation,91 and in the sense of going towards the
hydrogen-bonded liquid–metal interface,92 they are key in questions of clean en-
ergy generation and storage. Clearly, there is a great need to understand the
microscopic processes happening in such systems, which is a suitable application
for molecular simulations. However, simulating these systems with sufficient ex-
tent both in time and space and with enough accuracy can be prohibitive even
with modern-day computational options.

Here, the initial motivation to study a hydrogen-bonded surface system using
advanced theoretical methods stems from scanning tunneling microscopy (STM)
and atomic force microscopy (AFM) findings of Cahlík and coworkers,93 who
studied the assembly of supramolecular structures of 2,5-diaminobenzoquinone-
1,4-diimine (DABQDI) molecules (molecular structure shown in Figure 1.6) on
Au(111) surface at liquid helium temperatures. These molecules are generally
observed to aggregate into one-dimensional hydrogen-bonded chains, where the
hydrogen bonding is enabled by interactions between the amine groups ( NH2,
as the donor) and the imine groups ( NH, as the acceptor) along the chain.
However, the particular properties of the chains depend on the conditions at
the deposition of the molecules on the surface before the sample is cooled down
for the ensuing microscopy. Specifically, molecules deposited at liquid helium
temperatures lead to the formation of linear chains which are robust and later-
ally manipulable without breaking and possess a straight geometry where each
monomer is aligned with the chain axis (Figure 1.7, left). In contrast, deposit-
ing the molecules at room temperature gives rise to brittle chains that cannot
be laterally manipulated without breaking, and which adopt an occasional “zig-
zag” deviation from linearity and which possess a canted geometry where the
monomers are oriented at an angle with the axis of the chain (Figure 1.7, right).
Accompanying DFT optimizations show that the classical PES minimum exhibits
the canted geometry with slanted individual monomers, and the symmetry of the
problem suggests that two equivalent minima must exist, each canted to one side
and connected by a complete proton exchange reaction across the conjugated
chain of hydrogen bonds.

The existence of the straight chains is interpreted as an NQE. Effectively, the
symmetric system can be represented by a double-well potential, in which each
well corresponds to one classical minimum, and the observed straight chain can
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Figure 1.6: Molecular structure of the DABQDI (2,5-diaminobenzoquinone-1,4-diimine)
monomer.

be explained as a delocalized quantum state over both wells or a superposition
thereof that dynamically evolves between the two wells, yielding a symmetric
microscopic image with concerted proton tunneling. The origin of the canted
chains is not discussed in depth in the original publication; the authors claim
that in that case, the superposition between states localized in the individual
wells is not possible “due to an external constraint” caused by the conditions at
the deposition of the molecules onto the substrate. As such, the canted chains are
understood as frozen in one of the wells, yielding a structure consistent with the
classical minimum-energy configurations. It is important to note, however, that
the canted chains cannot be understood as fundamentally classically behaving.
The above understanding has a good degree of computational support in the
form of path integral umbrella sampling free energy calculations,27 which predict
the free energy along a suitably chosen collective variable (CV) that describes
the proton-sharing reaction. These point to the fact that NQEs substantially
lower the barrier for the reaction compared to the classical picture and that
concerted proton tunneling is indeed the preferred mechanism at 10 K.93 However,
in order to reduce the computational cost of the extensive simulations and to make
them accessible in a reasonable time frame, they were performed at a QM/MM
level combining a semi-empirical Fireball PES94 for the DABQDI chains and a
fully empirical van-der-Waals representation of the gold surface (i.e., the surface
does not explicitly enter the electronic structure calculation, but only acts as
an external force on the surface-bound molecules). Such methodology might be
sufficient to successfully corroborate the interpretation of the experiment, but
it cannot be considered state of the art, certainly not for metal-surface-bound
systems, which are known to require very accurate electronic structure methods95

on top of the above-discussed requirements on the quality of the DFT description
of hydrogen bonding itself.

Therefore, our primary goal in this project was to deliver a state-of-the-art de-
scription of these systems using advanced ab initio electronic structure to validate
and extend the existing results. Clearly, performing these simulations, which re-
quire an explicit representation of several hundreds of heavy atoms, naively using
traditional AIMD methods is a futile effort, and an NNP description is neces-
sary. However, as it was alluded to in Section 1.3.1, even obtaining enough ab
initio data for the NNP training might be difficult or impractical, especially for
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Figure 1.7: Supramolecular structure of DABQDI chains.93 Top left: AFM detail of
the straight DABQDI chain. The black dashed line shows the axis of the chain that
is collinear with the long axis of the individual monomers. Bottom left: Proposed
molecular structure for the straight DABQDI chain with the exchangeable hydrogen
atoms symmetrically shared between the chain units. Top right: AFM detail of the
canted DABQDI chain. The black dashed line has the same meaning as above; the
monomer axis, which now deviates from collinearity with the chain axis, is shown in
red. Bottom right: Proposed molecular structure of the canted DABQDI chain with all
hydrogen atoms localized on their respective monomers. This corresponds to the DFT-
optimized minimum geometry. Reprinted (adapted) with permission from Reference 93.
Copyright 2021 American Chemical Society.

systems where a reaction must be well described, as is the case here. This issue
motivated us to start working on the above-mentioned TTS methodology, as it
should be, in principle, able to generate reactive training sets for such a system at
a significantly reduced cost compared to the traditional approach using AIMD.

While the TTS method itself is described in Chapter 3, we discuss our un-
published explorations of the physics and chemistry of various DABQDI-based
systems in Chapter 6. These calculations pave the way to the big simulations of
systems that directly relate to the experiments — these, however, remain an open
task at this moment. We approach the problem from the gas phase and address
the PESs of the isolated monomer and a few of the shortest chains to understand
the available configurations and the classically allowed proton-transfer mecha-
nism. At the level of the monomer, which itself is also a proton-sharing system
and can be understood as a chain consisting of only a single unit and two proton
transfers, we then introduce NQEs using ring polymer instanton rate theory,96

which allows us to calculate the thermal rate of tunneling through the proton-
sharing barrier and estimate the relevance of different proton-sharing mechanisms
as a function of temperature. For the surface-bound systems, we present sev-
eral minimum-energy geometries, estimate the surface–molecule coupling, and
proceed to take the first steps towards a C-NNP model for the surface-bound
monomer using TTS with no AIMD simulations performed at any stage of the
model generation.
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2 | Theory and methodology

The following chapter contains a brief perspective on the fundamental theory rel-
evant to the methods developed and applied in this work. The first section opens
briefly with the key concepts of the time evolution of quantum systems and in-
troduces a crucial tool of theoretical chemical physics: the Born–Oppenheimer
approximation,2,32,97 which splits the molecular problem into independent elec-
tronic and nuclear parts. The second section discusses practical approaches to
the solution of the electronic Schrödinger equation while focusing on methods
relevant to this work. In the third section, we then turn our attention to the
dynamics of nuclei and the application of statistical mechanics to calculate the
static and dynamic properties of molecular systems.

2.1 | Quantum dynamics of molecular systems

In the following, we will discuss the way from the fully general non-relativistic
quantum-mechanical time evolution down to the Born–Oppenheimer approxima-
tion, which provides a framework for the practical computational methods used
to study molecular systems that are at the heart of this work, including MD
simulations.

One of the pivotal postulates in quantum mechanics is that a quantum system,
described at a given initial moment in time t0 by the ket |Ψ(t = t0)⟩ defined on
a Hilbert space H, undergoes unitary evolution in time.17,98 The requirement of
unitarity, i.e., a mathematical property of a transformation to preserve the norm
of the ket on which it is acting,17 comes about rather naturally to fulfill the
fundamental law of matter conservation in the system. The mathematical core
of the postulate is the following equation

|Ψ(t)⟩ = e−
i
ℏ (t−t0) ˆ︁H |Ψ(t0)⟩ ≡ ˆ︁U(t− t0) |Ψ(t0)⟩ , (2.1)

where the complex exponential defines the evolution operator ˆ︁U , ˆ︁H is the Hermi-
tian (and here, for simplicity time-independent) Hamiltonian, i is the imaginary
unit, and ℏ is the reduced Planck constant. A fully equivalent statement of the
same is the time-dependent Schrödinger equation

iℏ
d

dt
|Ψ(t)⟩ = ˆ︁H |Ψ(t)⟩ , (2.2)

which can be obtained by differentiation of the previous equation with respect to
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time and which represents the equation of motion of quantum mechanics.a Gen-
erally speaking, the exact solution of the equation is complicated and analytically
feasible for only a few of the simplest systems. An exception to this, which is
quite significant in quantum physics, pertains to quantum states known as sta-
tionary states. Highly non-trivial dynamics of a general state can be expressed
as a linear combination of dynamics of stationary states, which themselves evolve
trivially in time. Specifically, these states are not fixed but rather undergo evolu-
tion where only a complex phase factor is allowed to rotate with a given frequency,
technically modifying a fixed vector part but not changing the ray in the under-
lying Hilbert space. As such, all observables calculated over stationary states
do not change in time. It is clear from Equation 2.1 that such states coincide
with the eigenstates of the Hamiltonian and, therefore, comply with a different,
time-independent formulation of the Schrödinger equationˆ︁H |Ψn⟩ = En |Ψn⟩ , (2.3)

where En is the corresponding energy eigenvalue. The knowledge of stationary
states is of major importance in quantum mechanics: they form an orthonormal
basis to the underlying Hilbert spaces and thus allow for the expression of any
arbitrary state as a superposition. At the same time, the energy spectrum carries
much information on the system and allows us to compare computational models
to experimental data.

In this work, we are primarily concerned with describing the properties and
dynamics of systems that contain atoms and molecules, and therefore, it is nat-
ural to look for an approximation that would allow us to simplify the dynamic
Schrödinger equation while accurately describing all components of the system.
For applications in chemical physics, two assumptions are usually made for the
atomic nuclei. First, the individual nuclei are typically considered pointlike parti-
cles because one is seldom interested in questions that touch on nuclear processes
at this level of study. Second, due to the relatively large mass of atomic nuclei,
particle indistinguishability is often neglected since it normally does not play a
significant role, except for very light and very cold systems such as superfluid
helium.31,99,100 On the other hand, the electrons are treated as indistinguishable
fermions in full agreement with the Pauli principle. The state vectors describ-
ing molecular systems thus exist on a Hilbert space that is formed by the direct
product of the nuclear and electronic subspaces

H = Hn ⊗He. (2.4)

The molecular Hamiltonianˆ︁H = ˆ︁Tn + ˆ︁Te + ˆ︁Vee + ˆ︁Ven + ˆ︁Vnn (2.5)

consists of the kinetic energies ˆ︁T for the nuclei and electrons and all their various,
appropriately indexed interactions ˆ︁V and acts on H. Ideally, the Hamiltonian

aNote that the subtle quantum prefactor iℏ that appears in the Schrödinger equation carries
significant physical meaning: the imaginary nature of the equation is the consequence of the
requirement on the unitarity of the time evolution and the Planck constant ℏ = h/2π ≈ 1.055 ·
10−34 J·s is a scale for the quantum-mechanical effects that is a fundamental property of nature.
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would be expressible as a sum of operators on the relevant subspaces, which
would, in turn, cast the exact molecular state vector into a separable tensor-
product form. However, this is not possible due to the presence of the electron–
nuclear interaction operator ˆ︁Ven. This renders the Hamiltonian inseparable and
does not allow us to address the dynamics of nuclei and electrons in an exact yet
uncoupled way. To exploit the separable form of the state vector anyway, which
is the main goal of the Born–Oppenheimer approximation, we must ask under
what conditions this represents a reasonable treatment.

To begin, we group the molecular Hamiltonian into the standalone nuclear
kinetic energy operator

ˆ︁Tn =
N∑︂
I=1

ˆ︁P2
I

2MI

= −
N∑︂
I=1

ℏ2

2MI

∇2
I (2.6)

and into an electronic Hamiltonian

ˆ︁He =
n∑︂

i=1

ˆ︁p2
i

2me

+
e2

4πε0

(︄∑︂
j<i

1

|ˆ︁ri − ˆ︁rj| −∑︂
i,I

ZI

|ˆ︁ri − ˆ︁RI |
+
∑︂
J<I

ZIZJ

|ˆ︁RI − ˆ︁RJ |

)︄
(2.7)

that contains all the remaining operators.b In these expressions, ˆ︁pi, ˆ︁ri, ˆ︁PI andˆ︁RI are respectively the momentum and position operators of the i-th electron
and I-th nucleus in the system, e is the elementary charge, ε0 is the vacuum
permittivity, me is the electron mass and ZI and MI are the charge and mass
of the I-th nucleus. We have included the position representation of the kinetic
energy operator using the del operator in Equation 2.6. With such grouping,
the nuclear kinetic energy operator, which clearly only acts on Hn, is separated
from the electronic Hamiltonian that keeps acting on full H. However, the action
of the electronic Hamiltonian on the nuclear degrees of freedom is trivial in the
sense that all dependence on them is through a simple Coulomb law function
of the position operator. With this in mind, one can make a convenient basis
set choice for Hn by picking the position basis |R⟩ where R denotes the nuclear
configuration — the one-dimensional vector of all nuclear coordinates {RI}NI=1.
With this choice, the action of the electronic Hamiltonian on a state defined as
a product of a vector from the nuclear position basis and an arbitrary vector in
He would be trivial on Hn, essentially parametrizing the electronic Hamiltonian
with a sharp value of R and reducing its domain into He only, where its action
remains non-trivial.c This new, reduced electronic Hamiltonian is further denoted
as ˆ︁He(R) to emphasize its parametrization.

bNote that including the internuclear interaction operator in the electronic Hamiltonian is
slightly counter-intuitive but gives a nicer equation in the end and does not alter any physics
whatsoever.

cUsing the position basis on the nuclear subspace is merely a convenient choice for per-
forming the Hilbert space algebra, not a move towards a classical description. In fact, it is
a common misconception that a classical treatment of the nuclei is necessary for the Born–
Oppenheimer approximation. On the contrary, the Born–Oppenheimer approximation repre-
sents a fully quantum-mechanical approach.
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Figure 2.1: A real-world example of a PES. Here, the energy is shown as a function of
geometric parameters δ1 and δ2, which describe collective motion of atomic nuclei in a
molecular system. The surface and the contours are colored according to the value of
the energy: the lighter the color, the higher the energy. We will return to this particular
surface, used here only as an illustration, in detail in Chapter 6.

At this point, one can define the separate stationary electronic problem for
the given nuclear configuration as

ˆ︁He(R) |n(R)⟩ = En(R) |n(R)⟩ (2.8)

and assume that we can solve it for the eigenstates |n(R)⟩, which form an or-
thonormal basis for He for each individual choice of R.d On its own, this is a
very complicated task that requires approximate numerical treatment for realis-
tic systems, some of which are discussed in Section 2.2. Since the Hamiltonian
was parametrized by the nuclear configuration, this parametrization translates
accordingly into the energy eigenvalue En(R) (see example in Figure 2.1). This
function plays a key role in the Born–Oppenheimer framework and is known as
the potential energy (hyper)surface (PES).

With all this in mind, one can re-express the molecular state vector using the
usual product-basis form by combining the electronic eigenstates and the nuclear
position basis as

|Ψ(t)⟩ =
∑︂
n

∫︂
dR cn(R, t) |n⟩ ⊗ |R⟩ , (2.9)

dIn the following, we will write |n⟩ in place of |n(R)⟩ to keep the notation clean, but the
parametric dependence of the electronic states on the nuclear configuration is of key importance.
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where the time dependence has been absorbed into the set of linear combination
coefficients cn without loss of generality. This expression is fully flexible and
can describe an arbitrary molecular state vector since all constituent bases are
complete.

Substituting the above Ansatz into the time-dependent Schrödinger equa-
tion 2.2 and multiplying by an arbitrary electronic bra ⟨m| to integrate out the
electronic degrees of freedom gives the following rather complicated set of dy-
namical equations for the nuclei

iℏ
∫︂

dR
d

dt
cm(R, t) |R⟩ =

− ℏ2

2

∑︂
I,n

1

MI

∫︂
dR

(︁
⟨m|∇2

I |n⟩+ ⟨m|∇I |n⟩ ·∇I

)︁
cn(R, t) |R⟩

+

∫︂
dR ˆ︁Tncm(R, t) |R⟩

+

∫︂
dR Ek(R)cm(R, t) |R⟩ ,

(2.10)

which couples the dynamics on all PESs in a non-trivial way through the coupling
coefficients in the first term on the right-hand side. These coefficients arise due
to the parametric dependence of the electronic states on the nuclear configura-
tion. Technically, the Born–Oppenheimer approximation amounts to neglecting
these coefficients.e This leaves one with an effective time-dependent Schrödinger
equation for the nuclei only

iℏ
d

dt
|ϕm(t)⟩ =

(︂ˆ︁Tn + ˆ︁Em

)︂
|ϕm(t)⟩ , (2.11)

where |ϕm(t)⟩ =
∫︁
dR cm(R, t) |R⟩ is the nuclear state vector of the m-th PES

(note that its position representation is given by the coefficient cm(R, t)) andˆ︁Em is the Hilbert space operator abstraction of the PES. As such, the Born–
Oppenheimer approximation allows one to describe the dynamics of the molecular
system in a decoupled way where the nuclei move in a potential given by a single,
well-defined PES.

So, what are the physical conditions under which we can neglect the coupling
coefficients to make the Born–Oppenheimer approximation a valid concept? First,
a general observation can be made about the proportionality of the coupling terms
in comparison to the total energy ˆ︁Tn+ ˆ︁Em. Specifically, the couplings are inversely
proportional to the mass of the nuclei, whereas the total energy is proportional
to 1/me — the cumbersome exact proof was delivered in the original contribution
by Born and Oppenheimer,32 but it can be alluded to easily by building on the
premise of tight-binding electrons.101 Therefore, the ratio between the masses of
electrons and nuclei between 10−4 and 10−5 is enough to claim that the couplings
are generally small unless a specific configuration causes the individual coupling
matrix elements to blow up. To see when this may happen, let us have a closer

eAlternatively, the adiabatic approximation only neglects the off-diagonal terms and keeps
the diagonal ones as static corrections to the Born–Oppenheimer PES.
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look at the definition of the coupling coefficients. In fact, out of the two types of
coefficients — a scalar one with the Laplacian ∇2

I and a vectorial one featuring
the gradient ∇I — it is only needed to discuss the vectorial one since the scalar
can be expressed in its terms.102 By differentiating the electronic Schrödinger
equation 2.8 with respect to R, we easily find for m ̸= n that

⟨m|∇I |n⟩ =
⟨m|∇I

ˆ︁He(R) |n⟩
En(R)− Em(R)

, (2.12)

which defines the conditions under which the coupling constant remains small.
In particular, due to the nature of the numerator, we require the change of the
electronic Hamiltonian with nuclear configuration to be vanishing, and, due to
the form of the denominator, we require a large energy separation between the
individual PESs. As such, the Born–Oppenheimer approximation is challenged
when the nuclear dynamics happens on a rapidly changing PES or when different
PES sheets come close or intersect. Systems that exhibit such behavior must
be modeled using methods of non-adiabatic dynamics:97,103 a typical example of
this is dynamics at conical intersections. However, for most molecular systems,
including the ones discussed in this work, the Born–Oppenheimer approximation
represents a widely applicable and very useful simplification that allows for highly
efficient simulation methods.

2.2 | The electronic problem

The most important conclusion of the above section is that one can approximate,
often very accurately, the evolution of a molecular system by evolving the nuclei
on a fixed PES given by the electrons. The way to the PES thus relies on the
solution of the electronic problem along the lines of Equation 2.8. Obviously,
this is no easy task on its own, as one is challenged with a correlated many-body
problem, which does not generally have a full, exact solution available at hand.
Therefore, we are forced to turn to approximate schemes once again to be able to
perform practical electronic structure calculations. In the following paragraphs,
we present and discuss three families of electronic structure methods relevant to
this work. We will begin, perhaps in a bit unusual way for works in this field,
by discussing the Green’s function (GF) perspective. This leads to the appear-
ance of the so-called Dyson equation, the value of which lies in the fact that
it provides a unified context for simple one-electron methods by formalizing the
concept of a one-electron state in a correlated many-body system. We will use
this perspective to discuss two commonplace methods used in quantum chem-
istry: the Hartree–Fock (HF) approximation and Kohn–Sham (KS) DFT. These,
combined together into a single method known as hybrid DFT, represent the
primary electronic structure methodology used in the present research. Finally,
we introduce the GW approximation — a particularly suitable method for the
calculation of condensed-phase XPS spectra employed widely in this work — and
discuss important practical aspects of electronic structure calculations.
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2.2.1 Green’s functions in molecular quantum mechanics

The concept of a GF originates in the mathematics of differential equations where
it represents an impulse response of a differential operator.17 In quantum mechan-
ics of a single particle, it is straightforward to show17 that the GF for the dynamic
Schrödinger equation is given by the following matrix element

G(x,x′, t− t0) = −
i

ℏ
Θ(t− t0) ⟨x| e−

i
ℏ (t−t0) ˆ︁H |x′⟩ (2.13)

and, as such, represents the amplitude of propagation of the particle from spatial
and spin coordinate x ≡ (r, s) to point x′ in time t for all t > t0 (ensured by the
Heaviside step function Θ). In the single-particle case, the knowledge of the GF
and the solution of the Schrödinger equation are equivalent.

Similarly, the many-body generalization of the single particle GF, usually
known as the one-particle GF G(1), measures how much adding or removing a
single electron from an n-electron system disrupts the dynamics of the system
in comparison to the undisturbed case. Mathematically, it is defined using the
Heisenberg picture98 as

G(1)(x,x′, t− t0) = −
i

ℏ
⟨ψ0|T

[︂ ˆ︁ψ(x′, t) ˆ︁ψ†(x, t0)
]︂
|ψ0⟩ , (2.14)

where |ψ0⟩ is the exact correlated ground state, ˆ︁ψ†(x, t) and ˆ︁ψ(x, t) are the
Heisenberg-represented field creation and annihilation operators17 and T is the
so-called time ordering superoperator which orders the operators from the left by
ascending time and includes a sign change when a flip is needed,

T
[︂ ˆ︁ψ(x′, t) ˆ︁ψ†(x, t0)

]︂
= Θ(t−t0) ˆ︁ψ(x′, t) ˆ︁ψ†(x, t0)−Θ(t0−t) ˆ︁ψ†(x, t0) ˆ︁ψ(x′, t). (2.15)

The inclusion of the time ordering superoperator into the definition is crucial
for the emergence of the complete picture: note that this breaks the GF into
two terms where the first one describes forward propagation with the addition of
a particle and the second backward propagation with the removal of a particle,
or equivalently, the addition of a hole. This sheds light on the seemingly little-
motivated inclusion of the step function into the definition of the single particle
GF above, where the hole part does not exist and the GF naturally remains zero
for all backward propagation.

Perhaps a more intriguing quantity than the time-dependent version of G(1)

from the point of view of spectroscopy is its Fourier transform, which is derived
in Appendix A and is known as the Lehmann representation,104,105

G(1)(x,x′, ω) =
∑︂
k

⟨ψ0| ˆ︁ψ(x′) |ψ+
k ⟩ ⟨ψ

+
k | ˆ︁ψ†(x) |ψ0⟩

ℏω − ϵ+k + iη

+
∑︂
l

⟨ψ0| ˆ︁ψ†(x) |ψ−
l ⟩ ⟨ψ

−
l | ˆ︁ψ(x′) |ψ0⟩

ℏω − ϵ−l − iη
.

(2.16)

Here, we have introduced a complete set of states |ψ+
k ⟩ of the system augmented

by one particle in the particle term and a complete set of states |ψ−
l ⟩ of the
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system missing one particle in the hole term and their corresponding eigenenergies
through ϵ+k ≡ E+

k − E0 and ϵ−l ≡ E0 − E−
l . Two important observations can

be made immediately after inspecting the Lehmann representation. First, it
diverges at frequencies corresponding to the differences in total electronic energies
between the studied system with n electrons (E0) and the auxiliary systems with
n±1 electrons where the propagation occurs (E±

i ). Formulated alternatively, the
simple poles of the GF can be found at values corresponding to the exact electron
addition and removal (binding) energies ϵ±i , which makes the GF very relevant in
the context of the theoretical description of various spectroscopies that are based
on electron addition and removal, including XPS. Second, note that the matrix
elements in the numerators represent states in the one-particle Hilbert space

χ+
k (x) = ⟨x|χ

+
k ⟩ = ⟨ψ

+
k | ˆ︁ψ†(x) |ψ0⟩ (2.17)

and
χ−
l (x) = ⟨x|χ

−
l ⟩ = ⟨ψ

−
l | ˆ︁ψ(x) |ψ0⟩ (2.18)

that are known as Dyson (or quasiparticle) orbitals and represent a parallel of
the single particle eigenstates, but now within the many-body setting where they
denote the attachment and ionization amplitudes for the added or removed elec-
tron. An insightful physical interpretation of the Dyson orbitals is presented in
Reference 57 where the authors identify these one-particle states as those that
best describe the corresponding excited (n ± 1)-particle states as single particle
additions or removals to the original ground state and define the quasiparticle
norm as a measure of the validity of this approximation.

Similarly to the single-particle case, where the knowledge of the GF is equiv-
alent to the solution Schrödinger equation, the one-particle GF can be shown
to encode many properties of the studied system. However, since we are only
considering the one-particle GF, one cannot expect it to be sufficient to access
all observables as one would with the knowledge of the full state vector. Rather,
the one-particle GF can be shown to give access to all observables in the ground
state due to one-body operators and, as a special exception, to the total energy
in case the Hamiltonian only contains two-body interactions as shown by the
Galitskii–Migdal relations, which relate observables to the residues of the GF.104

As such, the one-particle GF does not directly imply the full Schrödinger equa-
tion but implies a set of one-particle Schrödinger-like eigenvalue equations for the
Dyson orbitals. The way to these equations begins by considering a perturbation
expansion of the correlated GF. This relies on the separation of the Hamiltonian
into a non-interacting one-electron part ˆ︁H0 which gives rise to the non-interacting
GF G

(1)
0 and a two-body interaction ˆ︁V and allows us to write the Dyson equation

G(1)(x,x′, ω) =

G
(1)
0 (x,x′, ω) +

∫︂ ∫︂
dx′′dx′′′ G

(1)
0 (x,x′′, ω)Σ(x′′,x′′′, ω)G(1)(x′′′,x′, ω),

(2.19)

which intrinsically represents an infinite summation that allows for expressing the
full GF in terms of its non-interacting counterpart104 and the quantity Σ. This is
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known as the irreducible self-energyf, which contains a multitude of various terms
that systematically combine G(1)

0 and ˆ︁V . In the many-body case, the explicit ex-
pression of the perturbation series is extremely cumbersome. In fact, even the
lowest-order contributions are so complicated that a new pictorial representation
in the form of the so-called Feynman diagrams was developed to simplify the the-
ory and make it easier to navigate. The treatment using diagrammatic expansion
is unnecessary in this work; the interested reader is referred to the excellent ma-
terial in Reference 104. From here, it is straightforward to show that the Dyson
equation can be transformed into an eigenvalue equation for the individual Dyson
orbitals by inspecting the residues limℏω→ϵ±n

(ℏω − ϵ±n )G(1) at each corresponding
simple pole of the GF for both sides of the Dyson equation. For example, for the
hole quasiparticle states, this gives

ˆ︁H0χ
−
l (x) +

∫︂
dx′ Σ(x,x′, ϵ−l /ℏ)χ

−
l (x) = ϵ−l χ

−
l (x). (2.20)

The electron binding energies seen in the Lehmann representation have been
identified as the eigenvalues of these so-called quasiparticle equations; the self-
energy plays the role of a non-local energy-dependent interaction potential. It is
clear at this point that a multitude of practical computational methods can be
created by approximating the exact self-energy.

2.2.2 Hartree–Fock method and the correlation energy

One of the simplest yet very important electronic structure methods, which be-
longs to the family of so-called wavefunction methods, is the Hartree–Fock (HF)
approximation. While it can be systematically derived from the diagrammatic
expansion of Σ (see, for instance, the material in Chapter 10 of Reference 104),
here we will adopt the traditional chemist’s point of view, discuss its appearance
as a consequence of symmetry requirements of the state vector and observe that
it eventually yields equations consistent with the Dyson equation. Specifically,
the HF method is obtained when the n-electron ground state vector is assumed
to be expressible in the following form

|ψHF⟩ = ˆ︁a†nˆ︁a†n−1 . . .ˆ︁a†1 |0⟩ , (2.21)

where the operators ˆ︁a†i represent the fermionic creation operators for each of the
n electrons in the system and |0⟩ is the Fock vacuum.98 This form of the state
vector is known as the Slater determinant, and it is the simplest many-body form
that respects the Pauli principle by exploiting an antisymmetrized product of
auxiliary spin orbitals, |χi⟩ = ˆ︁a†i |0⟩. Since we are using an approximate Ansatz
of the wave function, the variational principle EHF = ⟨ψHF| ˆ︁He|ψHF⟩ ≥ E0 applies
and an optimal set of orthonormal spin orbitals can be found by minimizing

fThe formal explanation of the irreducibility of Σ goes well beyond the scope of this thesis. In
brief, it is called that way because it only contains the so-called irreducible Feynman diagrams,
unlike the related reducible Σ which contains all possible diagrams.
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the HF energy. This procedure leads to a set of one-body Schrödinger-like Fock
equations106 ˆ︁F |χi⟩ ≡ ( ˆ︁H0 + ˆ︁VHF) |χi⟩ = ϵi |χi⟩ , (2.22)
where the electron–electron interaction is treated in an effective, mean-field man-
ner through the Fock operator ˆ︁F with ϵi being its eigenvalues which approximate
the exact electron addition and removal energies. This operator encompasses all
the one-electron terms ˆ︁H0 as well as a new, effective one-electron potential ˆ︁VHF

known as the mean field which approximates the role of Σ in the HF theory. Its
matrix element is defined as

⟨χi| ˆ︁VHF |χj⟩ =
n∑︂

k=1

[︂
⟨χkχi| ˆ︁Vee (︂ˆ︁1 + ˆ︁P)︂ |χkχj⟩

]︂
(2.23)

with ˆ︁P being the hermitian two-fermion permutation operator, the action of which
is defined as ˆ︁P |χkχj⟩ = − |χjχk⟩. Since electrons are indeed charged fermions,
this effective potential felt by each electron consists not only of the electrostatic
(Hartree) repulsion from the remaining electrons (first term in Equation 2.23 cor-
responding to ˆ︁1), but also an additional term known as exchange energy (second
term in Equation 2.23 corresponding to ˆ︁P ) that represents an energy contribution
which arises due to the required antisymmetric form of the state vector ansatz.
Equations 2.22 and 2.23 constitute the computational engine of the HF method.
Note that they represent a self-consistent problem since the Fock operator ˆ︁F has
a dependence on the spin-orbitals, but it is also used to calculate them. This
kind of solution is known in the theory as self-consistent field (SCF). Formally
speaking, the same kind of iterative solution will be encountered in KS-DFT,
but the problem is computationally more challenging in the present case because
the mean-field part of the Fock operator changes when acting on each orbital
individually through the exchange term in Equation 2.23 (cf. Equation 2.33).

Finally, the total energy of the n-electron system is not simply equal to the
sum of the individual eigenvalues of the Fock equations due to the fact that in
each of these eigenvalues, the interaction of an electron with all remaining ones is
accounted for and a plain sum over them leads to double counting. However, it
can be straightforwardly shown17 to be equal to the following corrected expression

EHF =
n∑︂

i=1

(︃
ϵi −

1

2
VHF,ii

)︃
. (2.24)

Additional correlation between the electrons that goes beyond the exchange
effect is fully neglected by the HF method owing to the use of the mean field. This
quality can thus be used to precisely define a quantity known as the correlation
energy

Ec ≡ E0 − EHF. (2.25)
The aim to capture as much of Ec as possible is the purpose of correlated electronic
structure methods. On one hand, these are represented by advanced (or post-
HF) wavefunction methods that do so by systematically mixing excited Slater
determinants into the HF ground state. On the other hand, DFT attempts to
describe correlation effects by using approximate functionals of electron density,
as will be discussed next.
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2.2.3 Density functional theory

The immediate connection of DFT to the one-electron framework stemming from
the Dyson equation is not obvious. This is because in its formal foundation, it
replaces the key role of the full ground state vector by the ground state electron
density, which is a much simpler and computationally more tractable quantity,
and as such remains a many-body theory without any need to invoke one-particle
states.107,108 The following integral of the square modulus of the ground state
wavefunction defines the electron density due to the n electrons

ρ(r) ≡ n

+1/2∑︂
s1=−1/2

∫︂
dx2 . . . dxn |ψ0(x1, . . . ,xn)|2. (2.26)

and, therefore, is proportional to the probability density of finding any electron
at a given position, unlike the square modulus of the wave function that keeps
track of the identities of the individual electrons in the correctly antisymmetrized
state.

How is it possible that one can replace the wave function with the electron
density and still obtain a formally exact theory when information is clearly lost
by tracing out dimensions? It was first rigorously shown by Hohenberg and
Kohn34 that a one-to-one mapping exists between the ground state wave function
and the electron density and that the wave function can be expressed, at least
in principle, as a unique functional of the electron density. Consequently, all
expectation values of observables, including the total ground state energy, can be
expressed as functionals of electron density as well. Thus, in DFT, the solution
of the time-independent Schrödinger equation for the ground state is transformed
to a functional minimization problem

E0 = min
ρ(r)

E[ρ] (2.27)

again by exploiting the variational principle. The universal density functional
E[ρ] is of central importance in the theory and is the key to the exact solution of
the electronic problem. However, its explicit analytical form cannot be extracted
from the theory. In fact, there is no good reason for this to be possible in this
particular case when other formally exact electronic structure theories (think,
for instance, the GF framework or post-HF methods such as the configuration
interaction106) also fail to express the exact solution in a closed form useful for
practical calculations.

The best one can do at this point to go through with the present formulation
of DFT is to break down the universal functional into the various contributions
corresponding to the terms in the electronic Hamiltonian, express everything that
can be expressed as an explicit functional of electron density, and approximate
the rest. Specifically, this breakdown is

E[ρ] = T [ρ] + EHartree[ρ] + Ex[ρ] + Ec[ρ] + Eext[ρ], (2.28)

where T [ρ] represents the kinetic energy, Eext[ρ] is the interaction energy with
the nuclei, and the electron–electron interaction has been expressed as a sum of a
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classical (Hartree) self-repulsion term, an exchange term and a residual correlation
energy term following the above discussion of the (post-)HF treatment of a many-
electron system. In this expression, only the Hartree

EHartree[ρ] =

∫︂ ∫︂
drdr′

ρ(r)ρ(r′)

|r− r′|
≡
∫︂

dr ρ(r)VHartree(r) (2.29)

and external

Eext[ρ] = ⟨ψ0| ˆ︁Ven + ˆ︁Vnn |ψ0⟩ ≡
∫︂

dr ρ(r)Vext(r) (2.30)

terms are analytically expressible as they arise due to the interaction of the elec-
tron density with multiplicative, position-dependent, local potentials. Various
approximations to the remaining functionals are necessary to obtain practical
computational methods.

2.2.3.1 Kohn–Sham DFT

The dominant approach, known as KS-DFT,109 is built on a mapping of the
studied system onto an auxiliary one and subsequent restructuring of the exact
density functional that internally also exploits the concept of single-electron or-
bitals. This allows for creating efficient, practical computational schemes despite
the necessity to forfeit the simple and elegant formulation that relies on elec-
tron density only. In this approach, one maps the real many-body system onto
a fictitious, non-interacting one localized in an effective potential which ensures
that both systems share the same electron density. The fictitious KS system is
described exactly by a Hartree productg of spin orbitals |χi⟩. The reason for this
mapping is that the kinetic energy of the KS system is a good approximation to
the real kinetic energy and it is straightforward to express it in the basis of the
KS spin orbitals as

TKS =
1

2me

n∑︂
i=1

⟨χi| ˆ︁p2
i |χi⟩ , (2.31)

thus circumventing the need to know an explicit kinetic energy density functional.
Everything unknown, including the correlated remainder of the kinetic energy
as well as the exchange and other correlation contributions, is grouped into an
overarching quantity known as the exchange–correlation functional

Exc[ρ] ≡ (T [ρ]− TKS[ρ]) + Ex[ρ] + Ec[ρ] (2.32)

with the premise that it can be approximated well — these days, a wide selection
of approximate exchange–correlation functionals is available. In order to match
the density of the real and the KS system, one simply needs to set the effective KS

gLiterature often requires the KS wavefunction to take on the form of a Slater determinant.
While possible, it does not change any of the underlying algebra due to the missing interaction,
adds complexity to the resulting wavefunction, and gives identical kinetic energy.
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potential VKS(r) to that obtained by variation of the sum of the external, Hartree
and exchange–correlation functionals with respect to the electron density

VKS(r) ≡
δEHartree[ρ]

δρ
+
δEext[ρ]

δρ
+
δExc[ρ]

δρ
= VHartree(r) + Vext(r) + Vxc(r) (2.33)

This is trivial for the former two and can be done analytically for a particular
choice of the exchange–correlation functional. With this potential, one then solves
the KS system by solving a set of effective one-electron Schrödinger-like equations(︂ˆ︁TKS + ˆ︁VKS

)︂
|χi⟩ = ϵi |χi⟩ . (2.34)

Once again, the KS equations take on a form consistent with the Dyson equations,
where the role of Σ is being taken by the local KS potential. A formal bridge that
links KS-DFT with the exact self-energy operator is represented by the Sham–
Schlütter equation, which relates the two quantities.108,110 The obtained set of
orbitals gives rise to an electron density

ρ(r) =

+1/2∑︂
s=−1/2

n∑︂
i=1

⟨x|χi⟩ ⟨χi|x⟩ . (2.35)

Note that also in this case, the KS equations represent an SCF-type of problem,
since the KS potential can be obtained only with prior knowledge of the electron
density. However, unlike in HF where one has to deal with the non-local mean
field, here we are dealing with a local potential, which makes the calculation
generally less demanding and, at the same time, allows us to estimate Ec.

2.2.3.2 Hierarchy of approximate functionals

The hierarchy of practical exchange–correlation functionals is often compared to
the concept of Jacob’s ladder,111 in which various approximations are ordered
by ascending accuracy. The relatively least accurate exchange–correlation func-
tionals are fully local and are notably represented by the local density approxi-
mation (LDA) functionals112 which treat a system as a locally constant-density
homogeneous electron gas. A step higher is achieved by the family of semi-
local exchange–correlation functionals,113 which incorporate various differential
quantities derived from the electron density to account for the effect of local sur-
roundings. Semi-local functionals in the form of the GGA are widely used in
molecular electronic-structure calculations with success, and their still relatively
simple form has the advantage of high computational efficiency. To highlight a few
notable GGA functionals, we should not forget to mention the Perdew–Burke–
Erznerhof (PBE) functional,114 its revPBE revision115 and the Becke–Lee–Yang–
Parr (BLYP) functional.116,117 However, semi-local functionals are known to suffer
from an effect known as self-interaction error :63 in HF exchange (often referred to
as exact exchange in the DFT context) the self-interaction energy of an electron
exactly vanishes as ⟨χiχi| ˆ︁Vee (︂ˆ︁1 + ˆ︁P)︂ |χiχi⟩ = 0, but the approximate exchange
functional used semi-local DFT does not fully cancel with the exact contribution
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from the Hartree term, leaving behind a spurious, non-physical self-interaction.
This gives rise to noticeable artifacts such as, for example, the lengthening of co-
valent bonds4 or over-delocalization of excess electrons in open-shell systems.62,71

These shortcomings are significantly improved by hybrid functionals,114 which
incorporate a fraction of exact exchange into the semilocal exchange functional.
These functionals come in two flavors:

1. global hybrids, where the target exchange energy is a simple linear combi-
nation of the semilocal and HF contributions

Ex[ρ] = αEHF
x [{|χi⟩}] + (1− α)EGGA

x [ρ], 0 ≤ α ≤ 1 (2.36)

2. range-separated hybrids,118 where the interaction potential Vee(r) (with r =
|r− r′|) is split using an appropriate range-separating function, e.g.

Vee(r) = erfc(γr)Vee(r) + [1− erfc(γr)]Vee(r), (2.37)

and one term is used to evaluate the exact exchange and the other to eval-
uate the remaining GGA contribution; γ is a tunable range-separation pa-
rameter.

The hybrid generalizations of the aforementioned GGA functionals known as
PBE0119 and B3LYP120 represent important examples of global hybrids. The
inclusion of exact exchange makes calculations employing hybrid functionals sig-
nificantly computationally more demanding than those at the GGA level.

2.2.3.3 Dispersion in DFT

A major remaining shortcoming of hybrid DFT is its inability to include non-
local correlation effects such as dispersion (London) forces, especially in weakly
bonded systems where such interactions play a key role. The so-called London–
Eisenschitz formula, obtained using second-order perturbation theory,2 states
that the asymptotic behavior of energy thanks to the dispersion interaction be-
tween two atoms (say 1 and 2) at long distances is

ED(R) = −
3

2

I1I2
I1 + I2

α1α2
1

R6
≡ −C

(12)
6

R6
< 0, (2.38)

where IJ and αJ denote the ionization potential and static polarizability of atom J
and R the interatomic distance, giving the well-known R−6 asymptotic behavior of
the interaction scaled by the dispersion coefficient C6. In practice, the description
of non-covalent interactions is often treated empirically for general molecular
systems. One of the most popular approaches to this end is the DFT-D class of
methods,121–123 where the total energy, including the contribution of dispersion
interactions, is obtained by subtracting a correction to the raw KS energy

EDFT−D[ρ] = E[ρ]− ED(R), (2.39)
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where the overall dispersion correction is obtained as a sum over pairwise disper-
sion interactions

ED(R) =
∑︂
IJ

∑︂
n

snfn(RIJ)
C

(IJ)
n (R)

Rn
IJ

, n = 6, 8, 10. . . . (2.40)

Here, sn is a density-functional-dependent scaling coefficient, and fn is the so-
called damping function: both are employed to sanitize the numerical behavior
of the correction at short distances since the R−6 tail only holds for large sepa-
rations. The dispersion coefficients are obtained from empirical mixing rules or
using ab initio calculations. In the simpler DFT-D1121 and DFT-D2122 methods
the coefficients are without dependence on the molecular geometry; the commonly
used, newer DFT-D3123 method introduces coefficients that depend on the chem-
ical environment of individual atoms through coordination numbers. Specifically
concerning this work, the so-called revPBE0-D3124 global hybrid functional has
been shown to perform very well for liquid condensed systems with hydrogen
bonds and, as such, is the principal exchange–correlation functional of choice.

Apart from DFT-D, other possibilities to address dispersion interactions ex-
ist, such as the Tkatchenko–Scheffler125 or the many-body dispersion (MBD)126

methods, to name a few. A more systematic effort to describe these weak bond-
ing interactions is seen, for instance, in the fully non-local van-der-Waals density
functionals;127–129 these are not used in this work.

2.2.4 Accurate electron binding energies and the GW ap-
proximation

As both the HF theory and KS-DFT formally represent approximations to the
Dyson equation, the orbital energies appearing in those theories can be interpreted
as approximations of electron binding energies.130,131 However, an unfortunate
practical experience remains that estimates of electron binding energies from
HF and DFT orbital energies compared to experimental data are usually poor.
Since a major part of this work is focused on the modeling of XPS spectra,
we are in need of an electronic structure method that is able to give a more
rigorous picture of the energetics of electron binding in molecular systems. One
such method is known as the GW approximation57,66,104,132 and takes us back to
explicit attempts to approximate the irreducible self-energy within many-body
perturbation theory. Its name is derived from the fact that it approximates Σ as
the following convolution

Σ(x,x′, ω) ≈ i

2π

∫︂
dω′ G(1)(x,x′, ω − ω′)W (x,x′, ω) (2.41)

of the one-particle GF with the dynamically screened Coulomb interaction W .
The root of this quantity lies deep within many-body perturbation theory,132 and
we will not be spending excessive time on the discussion of its exact origin since
it goes beyond the presently relevant concept of one-particle GF. However, we
note two important things about W
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1. It can be calculated from the Dyson orbitals and, as such, carries informa-
tion about electron correlation.132

2. It can be shown that employing the bare Coulomb potential ˆ︁Vee instead of
W reduces the above Σ exactly to ˆ︁VHF.104,132

As such, the GW theory can be understood as HF theory augmented by additional
correlation effects.

Once again, we are standing in front of a self-consistent problem since the
Dyson orbitals and their corresponding energies are not known at the entry to
the calculation. This is approached trivially in the G0W0 variation66 of the GW
approximation, which exploits the knowledge of an easily accessible set of orbitals
(typically KS orbitals) and treats the target quasiparticle energies using first-order
perturbation theory and linearization of the Dyson equation. Specifically, one can
clearly write

Σ(x,x′, ω) = VKS(x) + [Σ(x,x′, ω)− VKS(x)] (2.42)

and, assuming that the KS framework is an acceptable approximation to the true
GW Σ, consider the term inside parentheses as a small perturbation. Then, the
GW binding energy approached using the first order of perturbation theory is the
following simple correction

ϵGW
i ≈ ϵi +

∫︂ ∫︂
dxdx′ χ∗

i (x
′)
[︁
Σ(x,x′, ϵGW

i /ℏ)− VKS(x)δ(x− x′)
]︁
χi(x). (2.43)

The problem with this expression is that it still contains a self-consistency issue,
as one needs to evaluate the self-energy at a frequency given by the GW binding
energy. This is approached by a local linearization of the energy dependence of
the self-energy that is justified by the same argument as the use of perturbation
theory itself: that the two energies are close enough. Then,

Σ(x,x′, ϵGW
i /ℏ) ≈ Σ(x,x′, ϵi/ℏ) +

(︁
ϵGW
i − ϵi

)︁ ∂Σ
∂ω

⃓⃓⃓⃓
ω=ϵi/ℏ

(2.44)

and by combining the last two expressions, one obtains

ϵGW
i ≈ ϵi + Zi

∫︂ ∫︂
dxdx′ χ∗

i (x
′) [Σ(x,x′, ϵi/ℏ)− VKS(x)δ(x− x′)]χi(x). (2.45)

where
Zi =

1

1−
∫︁ ∫︁

dxdx′ χ∗
i (x

′)∂Σ
∂ω

⃓⃓
ω=ϵi/ℏ

χi(x)
(2.46)

is a normalization factor related to the quasiparticle norm discussed in Reference
57. Therefore, within a course of a DFT-based G0W0 calculation (usually denoted
as G0W0@DFT), a set of KS orbitals is used to set up both G0 and W0. These
are then used to construct the self-energy Σ and approximate the corresponding
quasiparticle energies. The slightly more advanced eigenvalue-iteration evGW
method,66 which iteratively converges the eigenvalues while leaving the orbitals
untouched, as well as other flavors of GW that rely on a fully self-consistent
treatment of both the quasiparticle states and the corresponding eigenenergies,
are not used in this work.
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2.2.5 Practical calculations with orbital-based methods

The main one-electron equations of the HF and KS methods and the energy cor-
rections of the G0W0 method describe the essence of how the particular methods
work. However, since in their above form, they are differential equations involving
wave functions on a combined Hilbert space of the spatial and spin coordinates
x, they do not represent a practical prescription to employ those methods in a
computational treatment using spatial wavefunctions.

2.2.5.1 Treatment of the spin coordinate

To transform the one-electron equations into a practical form, a factorized form
must be assumed for the spin orbitals {|χi⟩}. For bound states, the one-electron
Hilbert spaceH(1)

e (withHe = H(1)
e ⊗· · ·⊗H(n)

e ) is composed of the vector space of
square-integrable spatial wavefunctions and a two-dimensional complex Euclidean
space of spin states L2(R3)⊗C2, where the latter has a simple basis |α⟩ ≡ (1, 0)T

and |β⟩ ≡ (0, 1)T that corresponds to the so-called spin-up and spin-down states.
Since ˆ︁He contains no spin-dependent terms, it commutes with both the total spin
operator ˆ︁S2 and the spin-projection ˆ︁Sz in the n-electron system[︂ ˆ︁He, ˆ︁S2

]︂
=
[︂ ˆ︁He, ˆ︁Sz

]︂
= 0. (2.47)

Together with the fundamental commutation
[︂ˆ︁S2, ˆ︁Sz

]︂
= 0, this implies that all

three operators share the same set of eigenstates and, therefore, the exact ground
state is a spin-pure state with a well-defined value of quantum numbers S and MS

corresponding to ˆ︁S2 and ˆ︁Sz. As clarified above, the HF and KS approximations
to this state are not exact eigenstates of the electronic Hamiltonian. Still, they
can be constructed as an eigenstate of the two spin operators and, therefore, to
comply with fundamental physical requirements. Doing so for the ˆ︁Sz operator is
straightforward as it only requires placing each electron into either |α⟩ or |β⟩ spin
state, which are themselves eigenstates on each individual single-particle sub-
space, and simultaneous ˆ︁S2-eigenstates are obtained by taking appropriate linear
combinations over the corresponding degenerate subspaces. However, ensuring
the eigenstate nature with respect to ˆ︁S2 places requirements on the spatial parts,
although the operator is not explicitly dependent on it. Specifically, this requires
restricted spin-orbitals

|χi⟩ , |χj⟩ → |φk⟩ ⊗

{︄
|α⟩
|β⟩ ,

k ∈ 1, . . . ,
n

2
(2.48)

where a shared spatial part is populated by two electrons with opposite spins. For
closed-shell systems, the single-determinant restricted ground state is always a ˆ︁S2-
eigenstate. For systems with open-shells, the restricted open-shell ground state
is a ˆ︁S2-eigenstate only if the unpaired electrons have parallel spins.106 However,
the imposed constraint in restricted spin orbitals may cause them to not be the
optimal variational solution in open-shell systems. A state with a lower energy
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can be obtained by using unrestricted spin orbitals

|χi⟩ , |χj⟩ →

{︄
|φα

k ⟩ ⊗ |α⟩
|φβ

l ⟩ ⊗ |β⟩ ,
k ∈ 1, . . . , nα, l ∈ 1, . . . , nβ (2.49)

where spatial parts can vary freely. Unrestricted determinants are not exact ˆ︁S2-
eigenstates. The measure of how much they deviate from the exact eigenstates
is known as spin contamination and can be used to assess the quality of the
unrestricted ground state.106

In the HF method, the use of restricted orbitals allows for integration over
the spin subspace that leads to the following new, spatial-only formulation of the
Fock equations (︂ ˆ︁H0 + ˆ︁VHF

)︂
|φi⟩ = ϵi |φi⟩ , (2.50)

where the mean-field operator now reads

⟨φi| ˆ︁VHF |φj⟩ =
n/2∑︂
k=1

⟨φkφi| ˆ︁Vee (︂2 · ˆ︁1− ˆ︁P)︂ |φkφj⟩ . (2.51)

A new factor of 2 appeared in the Hartree term due to the double occupation of
each restricted HF (RHF) orbital. The lack of this factor in the exchange term is
then because the exchange interaction only affects electrons with identical spins.
The restricted formulation allows the optimization of only half the number of
orbitals than there are electrons and, therefore, is rather computationally efficient,
but, on the other hand, it is fundamentally restricted to closed-shell ground state
calculations in this form (restricted open-shell calculations are possible, but more
complicated106). Similarly, in an unrestricted HF (UHF) calculation, one needs
to solve two sets of Fock equations for the α, and β spins, which are coupled
through the dependence of the mean field on the orbitals with the opposite spin

⟨φα/β
i | ˆ︁VHF |φα/β

j ⟩ =
nα/β∑︂
k=1

⟨φα/β
k φ

α/β
i | ˆ︁Vee (︂ˆ︁1− ˆ︁P)︂ |φα/β

k φ
α/β
j ⟩

+

nβ/α∑︂
k=1

⟨φβ/α
k φ

α/β
i | ˆ︁Vee |φβ/α

k φ
α/β
j ⟩

(2.52)

as the Hartree interaction between the different spin projections needs to be ac-
counted for. This can be understood as partitioning the 2-factor seen in the RHF
formulation between the spin subsystems that can now be populated unequally.

To allow for open-shell DFT calculations, the approximate functionals are
usually formulated in terms of two densities ρα(r) =

∑︁nα

k=1 |φα
k (r)|2 and ρβ(r) =∑︁nβ

l=1 |φ
β
l (r)|2 constructed individually using the appropriate KS orbitals to cor-

rectly incorporate the spin-dependent exchange and correlation effects

E = E[ρα, ρβ]. (2.53)

This formulation is known as spin-polarized DFT.108 Clearly, the electron density
in terms of these densities is just

ρ(r) = ρα(r) + ρβ(r). (2.54)
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It is useful to define a new quantity at this point

ρs(r) ≡ ρα(r)− ρβ(r) (2.55)

called the spin density, which is, like the electron density, a measurable observable
and receives a considerable amount of attention later in the course of this work.
ρ(r) and ρs(r) are complementary quantities in the sense that spin-DFT can be
formulated in their terms as an alternative to ρα(r) and ρβ(r). In the context of
the restricted KS (RKS) theory, the partitioning is only formal, as clearly ρα(r) =
ρβ(r) = 1

2
ρ(r) and ρs(r) = 0 and the whole framework can be formulated in

terms of the electron density and n/2 restricted spin-orbitals. In the unrestricted
KS (UKS) version, one again solves two sets of KS equations for nα and nβ

electrons, which are coupled by the total electron density ρ(r) that is contained
in both sets.

2.2.5.2 Periodic systems

Up to this point, we have formulated the theory in terms of finite systems, which
are characterized by a number of discrete quantum states with sharp energy
eigenvalues. However, it is often appropriate to apply periodic boundary condi-
tions (PBCs) either to naturally describe a crystal structure or to approximate
the disordered condensed phase with a finite representation of the system. In the
realm of electronic structure theory, this leads to the emergence of Bloch states
and band structure, where one no longer has discrete energy levels but locally
continuous regions of allowed energies, i.e., bands, that contain an infinity of
possible states.17 This behavior is captured by the Bloch theorem, which clarifies
that a state in a periodic potential (which in our case would correspond to an
effective one-electron potential, such as VKS, where the periodicity would be given
by the periodically repeated nuclear positions due to PBCs) has the form of

φjk(r) = eik·rujk(r), (2.56)

where j is the band index (which corresponds to the previous orbital labels),
ujk(r) is a spatial function with the same periodicity as the underlying potential
and ℏk is the so-called quasimomentum vector defined on the reciprocal space.
In other words, each state can be expressed as a wave function that consists of a
periodic part and a plane wave, which does not need to have the same periodicity
as the underlying potential. Therefore, the complete wavefunction also does not
need to have that same periodicity, specifically

φjk(r+ ai) = eik·aiφjk(r), (2.57)

given a lattice vector ai, i = 1, 2, 3. This puts a bound on the extent of quasi-
momenta that need to be considered, as the only non-trivial contributions come
from k ∈ [−2π/ai, 2π/ai]: a polygon in reciprocal space known as the first Bril-
louin zone. In effect, all quantities previously expressed as a sum over orbitals
in a finite system now need to be reformulated as a sum over bands together
with an integral over the first Brillouin zone in a periodic system. In a practical
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setting, the Brillouin zone is normally discretized into individual k-points, and
the convergence of the target quantities with the k-point grid is observed. Taking
only the most symmetric point in k = 0 is known as a Γ-point calculation, which
only features discrete states with no dispersion.

2.2.5.3 Basis sets

Now that we removed the spin dependence from the spin orbitals, the next step is
introducing a fixed basis set that transforms the differential character of the one-
electron equations into a matrix-based formulation that is more suitable for com-
putational treatment. First, let us assume a finite basis {|αn⟩ , n = 1, . . . , nbasis};
specific choices will be discussed once the general framework is clarified. The
basis is not necessarily orthonormal and, therefore, a non-trivial overlap matrix
exists and is given by

Smn = ⟨αm|αn⟩ . (2.58)

An orbital can be expanded using such basis as

|φi⟩ =
nbasis∑︂
n=1

|αn⟩ ⟨αn|φi⟩ ≡
nbasis∑︂
n=1

cni |αn⟩ . (2.59)

Then, inserting this expansion into the respective HF or KS equations (formally,
they take on the same form, so we shall discuss both in terms of a general one-
particle Hamiltonian ˆ︁F that we borrow for this purpose from the HF context)
along with appropriate identities gives

nbasis∑︂
n=1

Fmncni = ϵi

nbasis∑︂
n=1

Smncni, (2.60)

which can be expressed equivalently in matrix form as

FC = ESC. (2.61)

In the last expression, F represents the Fock or KS matrix, S is the overlap matrix,
C is a column matrix

C = (c1, c2, . . . , cnbasis
) (2.62)

of coefficient vectors cn that represent the orbitals, and E is the diagonal matrix
of energies ϵi. This matrix formulation of the one-electron equations is known,
especially in the HF context, as the Roothaan–Hall equation.106 It represents
a bridge between the solution of the electronic problem and methods of linear
algebra. Note that introducing a fixed basis set into the one-electron equations
leads to the need to compute the so-called four-center electron repulsion integrals
(ERIs) to evaluate the Hartree and, notably, the exchange term. These integrals
adopt the following form in the position representation

⟨kl|mn⟩ ≡
∫︂ ∫︂

drdr′ α∗
k(r)α

∗
l (r

′)
1

|r− r′|
αm(r)αn(r

′)
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and, due to the combinatorics of the four contributing indices, their number
grows rapidly with increasing size of the basis set as O(n4

basis).106 As such, they
represent the reason for unfavorable scaling of methods where the evaluation of
exact exchange energies is required.

Commonly, the basis expansion is formulated using the linear combination
of atomic orbitals (LCAO) approach.106,133 Here, the basis set comprises suit-
ably defined functions localized on the individual atomic nuclei of the studied
system. The choice of the specific form of the basis functions is to a certain
degree arbitrary, since atoms (except hydrogen) do not have an exactly solvable
set of atomic orbitals, and, after all, the basis itself has no physical meaning and
only needs to cover the underlying Hilbert space well. However, practical basis
sets are often motivated by the fundamental behavior of electrons hydrogen-like
atoms since this provides a physically founded starting point and, therefore, an
easier convergence to the desired result. A particularly computationally efficient
variation of the exact hydrogen-type orbitals (also known as Slater-type orbitals)
is the Gaussian-type orbitals. Here, each basis function is defined as a product
of a radial part and a spherical harmonic function

αi(r) = αi(r, θ, ϕ) ∝ rle−ζr2Ylm(θ, ϕ), (2.63)

but the exact exponentially decaying radial part of the hydrogen atom133 is re-
placed with a Gaussian with a width given by the exponent ζ. Note that the
origin of the spherical coordinate system for each basis function is located on a
nucleus. This significantly simplifies the evaluation of the four-center integrals due
to the simple rules of Gaussian multiplication and opens the door to efficient in-
tegral evaluation methods as, for instance, the Obara–Saika recursion scheme.134

In comparison to hydrogen-type orbitals, the plain Gaussian basis tends to be-
have incorrectly at very large and very small distances from the nuclei.106 This
is often corrected by defining a single basis function as a contraction, or a linear
combination, of several primitive Gaussians to better approximate the expected
asymptotics. Another layer of flexibility in Gaussian basis sets is achieved by
reserving more than one basis function to represent an orbital, typically in the
valence region, which corresponds most strongly to chemical bonding. This de-
sign is known as a split-valence basis and is commonplace in modern practical
calculations; the specific number of functions used for this purpose gives rise to
the often-heard double–, triple-ζ nomenclature, or similar. LCAO basis sets can
be implemented analytically in the sense of the above or numerically tabulated.

For calculations under PBCs, a plane wave basis set represents an efficient
alternative choice to LCAO. Here, the Bloch state is expanded into a Fourier
series of plane waves eiG·r, G ∈ Z with the lattice periodicity

φjk(r) =
1√
Ω

∑︂
G

cjk(G)ei(k+G)·r, (2.64)

where Ω is the unit cell volume. Plane-wave basis sets are orthonormal and
independent of the underlying molecular structure, which improves certain short-
comings of LCAO basis sets, such as the superposition error. In practice, the
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basis set is truncated at a chosen maximum value of G: typically, the control
parameter is given as an energy value in Rydberg units, defined as

Ecutoff =
h2c2

2
|Gmax|2. (2.65)

2.2.5.4 Software choices

The main computational engine in this work is the CP2K software.135 Through its
Quickstep module,136 it features a particularly efficient implementation of DFT
electronic structure based on the Gaussian and plane waves (GPW) method.
Here, one uses a dual basis of LCAO Gaussian basis set to represent the KS
orbitals and plane waves to represent the electron density. This allows for an
effectively linear-scaling performance for GGA functionals by avoiding the need
to calculate ERIs while evaluating the Hartree energy by using fast Fourier trans-
forms and solving the Poisson equation in reciprocal space. Hybrid DFT, which
requires the evaluation of exact exchange energies, is also available as a highly
efficient implementation.137–139 CP2K also gives access to post-HF methods such
as G0W0

66 and allows for calculations with C-NNPs. Due to its efficiency, CP2K
is appropriate notably for ab initio calculations of extended periodic systems such
as liquids and solids.33

To a lesser extent, we rely on the FHI-aims software140 to perform calculations
of molecules bound to metallic slabs. This package uses numerical atom-centered
basis sets140 and is designed for optimized calculations with this particular system
geometry by allowing for thick vacuum regions with essentially no computational
overhead and advanced dipole corrections for asymmetric surface slabs.141

2.3 | The nuclear problem

Once electronic structure methods have been established, one is, in principle,
equipped to address the properties of the nuclei, which represents the second
half of the Born–Oppenheimer approximation. While the need to address issues
connected to the indistinguishable fermionic nature of the electrons is allevi-
ated here since nuclei can normally be considered distinguishable at the range
of temperatures of interest, a new complication appears that can be motivated
experimentally. In electronic spectroscopy, which mainly probes the eigenvalue
spectrum of the electronic Hamiltonian, a typical separation between the energy
levels is at the eV level. This large magnitude of separation causes, even at am-
bient conditions, the equilibrium thermal population of excited electronic states
to be negligible and makes the problem open to ground-state-only theories such
as DFT. On the other hand, the nuclear (also known as vibrational) levels, as
explored by vibrational spectroscopy and traditionally measured in cm−1, exhibit
separations smaller by one or several orders of magnitude. This makes the ther-
mal populations of excited vibrational states non-negligible even at significantly
colder than room temperatures. In turn, one must turn to statistical approaches
to account for this new source of uncertainty.
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2.3.1 Statistical mechanics

The central quantity in quantum statistical mechanics is the density matrix op-
erator ˆ︁ρ.17 The power of the density matrix formalism becomes apparent when
dealing with a statistical mixture of states where the concept of a pure single state
becomes insufficient. Here, the density matrix is defined as a sum of projectors
on the states contributing to the statistical mixture

ˆ︁ρ ≡∑︂
i

wi |ϕi⟩ ⟨ϕi| (2.66)

weighted by their corresponding statistical probabilities wi. As such, the density
matrix can be understood as a generalization of the concept of a pure quantum
state which seamlessly reduces to that concept when only a single state is sta-
tistically relevant. In a canonical ensemble, the only statistical ensemble treated
explicitly in this work, the statistical probability wi of finding the i-th state in the
mixture is given by the Boltzmann factor e−βEi where β is the inverse temper-
ature (kBT )

−1. In turn, exploiting the eigenvalue decomposition of an operator
reveals that the canonical density matrix can be written as

ˆ︁ρ(β) =∑︂
i

e−βEi |ϕi⟩ ⟨ϕi| = e−β ˆ︁H (2.67)

This concept allows us to neatly address the expectation values of an observableˆ︁A in a mixed-state system as a Boltzmann-weighted average of the expectation
value of ˆ︁A in each contributing state

⟨A⟩ =
∑︁

i e
−βEi ⟨ϕi| ˆ︁A |ϕi⟩∑︁

i e
−βEi

=
Tr ˆ︁Aˆ︁ρ(β)
Tr ˆ︁ρ(β) . (2.68)

The normalization of the Boltzmann probabilities

Q(β) ≡ Tr ˆ︁ρ(β) (2.69)

is the canonical quantum partition function, which provides a link to the macro-
scopic properties of the system through the usual thermodynamic relations.31

2.3.1.1 Imaginary time path integral formulation

To prepare the ground for practical computational methods, we will now introduce
an alternative formulation for the partition functionQ(β) using the Feynman path
integral formalism. While this approach was originally formulated as a real-time
method,30 it was later shown142 that it can be seamlessly recast for the density
matrix using a Wick rotation between real and imaginary time, t→ τ ≡ it, since
the canonical density matrix is exactly equivalent to the imaginary time evolution
operator ˆ︁ρ(β) = ˆ︁U(−iℏβ) (2.70)

for τ = ℏβ. Let us first express the trace-based definition of the partition function
in the position basis as

Q(β) =

∫︂
dR(1) ⟨R(1)| e−β ˆ︁H |R(1)⟩ =

∫︂
dR(1) ⟨R(1)| e−β(ˆ︁T+ ˆ︁E0) |R(1)⟩ . (2.71)
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By employing the symbol ˆ︁E0, we restrict the subsequent discussion to electronic
ground state PESs. For reasons that will become clear shortly, we are calling the
nuclear position vector R(1) instead of the previous, more general R. To proceed
further, we note that the two terms of the Hamiltonian do not commute, and
an appropriate factorization of the exponential, such as the symmetric Trotter
formula,143 is needed. Applying it, we obtain

Q(β) = lim
P→∞

∫︂
dR(1) ⟨R(1)|

(︃
e−

β ˆ︁E0
2P e−

β ˆ︁T
P e−

β ˆ︁E0
2P

)︃P

|R(1)⟩ , (2.72)

which we extend further by inserting a position-represented identity relation∫︁
dR(i+1) |R(i+1)⟩ ⟨R(i+1)| between each i-th and (i+1)-th pair of the P consecu-

tive operators above. Each resulting integral is transformed by inserting another
momentum-represented identity relation to an analytically solvable Gaussian in-
tegral. Performing the integration yields the following closed formula31 for the
partition function

Q(β) = lim
P→∞

N∏︂
I=1

(︃
MIP

2πβℏ2

)︃ 3P
2
∫︂

dR(1) . . . dR(P ) e−βUP (R(1),...,R(P )) (2.73)

with momenta fully integrated out. The corresponding temperature-dependent
potential UP is

UP (R
(1), . . . ,R(P )) ≡

P∑︂
i=1

{︄
N∑︂
I=1

[︃
1

2
MIω

2
P

⃓⃓⃓
R

(i+1)
I −R

(i)
I

⃓⃓⃓2]︃
+

1

P
E0(R

(i))

}︄
,

(2.74)
where the first sum going up to P is subject to cyclic boundary conditions, which
ensure that R(P+1) = R(1). This is an analogy of a classical partition function
taken over an extended configuration space of P copies (replicas) of the classical
system, which are coupled by harmonic springs with frequencies ωP ≡

√
P/ℏβ.

The cyclic boundary conditions remain due to the initial need to evaluate a trace
to obtain the partition function. The configurations in this extended space are
commonly known as ring polymers (Figure 2.2). Importantly, note that within a
ring polymer, the extended configuration space as defined above allows physical
interactions through the PES only between atoms with the same replica index;
interactions between different replicas are rather trivial since they only connect
the neighboring ones through the harmonic spring terms.

The exact quantum system is represented by taking the limit of infinite P .
In this limit, the ring polymers take on the form of continuous cyclic trajectories
R(τ) with τ going from 0 to ℏβ. Recognizing that the harmonic coupling term
becomes an exact representation of the square of the first derivative of position
with respect to imaginary time, we can identify this term with kinetic energy
and, consequently, the whole potential with a Euclidean imaginary-time action
of the discretized ring polymer trajectory

SE[R(τ)] = ℏβ lim
P→∞

UP (R1, . . . ,RP )

=

∫︂ ℏβ

0

dτ

{︄
N∑︂
I=1

1

2

[︃
dRI(τ)

dτ

]︃2
+ E0[R(τ)]

}︄
;

(2.75)
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Figure 2.2: Comparison of a classical particle with P = 1 and a ring polymer with
P = 5.

note the positive sign between the kinetic and potential energy term which is a
result of the Wick rotation into the imaginary time domain. With this in mind,
we can express the quantum partition function as a functional integral over all
such cyclic trajectories

Q(β) ∝
∮︂
D[R(τ)]e−

1
ℏSE [R(τ)]. (2.76)

It is clear through this expression that the path integral formalism offers a deeply
insightful connection with classical physics by reintroducing the concept of a
trajectory and by identifying quantum effects as weighted fluctuations around
the classical trajectory with minimal action.

So far, we have shown that the imaginary time path integral framework can
be used to calculate the partition function of a quantum system. How about
observables according to Equation 2.68? It is not hard to see that we can only
repeat the above procedure for the term Tr ˆ︁ρ ˆ︁A if ˆ︁A represents an observable that
only depends on positions ˆ︁A = A(ˆ︁R), as this can be taken out of the position-
represented trace. For such observables, we get the straightforward result

⟨A⟩ = 1

Q(β)
lim
P→∞

N∏︂
I=1

(︃
MIP

2πβℏ2

)︃ 3P
2
∫︂

dR1 . . . dRP

[︄
1

P

P∑︂
i=1

A(Ri)

]︄
e−βUP (R1,...,RP ),

(2.77)
which tells us that the expectation value of ˆ︁A can be obtained by averaging the
expression inside the square brackets (known as the estimator of ˆ︁A) over the
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extended phase space. A particularly important estimator is that of the ring-
polymer centroid

Rc ≡
1

P

P∑︂
i=1

Ri. (2.78)

For other observables that depend on momenta as well, we cannot easily take
the operator out of the trace like it was possible with position-only dependent
operators. Consequently, their expectation values cannot be evaluated based on
the knowledge of the diagonal matrix elements of the density matrix, and open
paths are needed in addition to the cyclic paths. An exception is thermodynamic
observables that can be expressed knowing Q(β), since the partition function
itself is defined through cyclic paths only. This includes important quantities
such as pressure or total energy; estimators for the kinetic energy (a momentum-
only dependent quantity) can also be derived based on the difference between
total and potential energies. Various formulations of kinetic energy estimators
are available and are often used as a convergence indicator for the number of
replicas.31

2.3.1.2 Classical limit

Arguably, one of the most remarkable achievements of the path integral formu-
lation of quantum mechanics is its ability to naturally address the quantum–
classical correspondence in contrast to the traditional operator mechanics, where
the appropriate classical limits are often not easily found. For example, systems
are known to behave more classically at high temperatures, but the behavior of
the canonical density matrix as β → 0 is not particularly illuminating in that
sense. On the other hand, as β → 0, the springs of the ring polymer stiffen
as ωP → ∞ and the whole ring polymer collapses onto a single classical point,
consistently with the expected behavior. Therefore, restricting the path integral
description to P = 1 at conditions where the classical limit is not yet reached
amounts to making the classical approximation for the nuclei. Q(β) reduces to
the classical canonical partition function of distinguishable particles

Qc(β) =
N∏︂
I=1

(︃
MI

2πβℏ2

)︃ 3
2
∫︂

dR e−βE0(R) =
1

h3N

∫︂ ∫︂
dRdP e−βH(R,P) (2.79)

and the expectation value to the classical phase space Boltzmann average

⟨A⟩c =
∫︁ ∫︁

dRdP A(R,P)e−βH(R,P)∫︁ ∫︁
dRdP e−βH(R,P)

. (2.80)

The deviations of the behavior of the fully quantum system from the classically
approximated one are referred to as NQEs.

2.3.2 Molecular dynamics

At this point, we are equipped with the formal statistical tools to calculate the
quantum and classical properties of a system of interacting nuclei on a given PES.
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However, the corresponding formulae contain integrals that are not analytically
solvable in most practically relevant settings. Therefore, they must be solved
approximately by sampling the underlying configuration spaces and converging
statistics on the representative subset of configurations. One approach used for
this purpose is known as simulation of molecular dynamics (MD), which is based
on sampling the configuration space by a numerical simulation of the time evolu-
tion of the system under appropriate equations of motion. In the section below,
we will lead off with the discussion of classical MD and introduce the machinery
used to enforce canonical sampling. Then, we will reintroduce NQEs through the
above imaginary-time path-integral formalism to obtain path integral molecular
dynamics (PIMD) and briefly discuss the most important practical aspects of
simulation execution and our software choices for this work.

2.3.2.1 Classical molecular dynamics

A classical MD simulation models the evolution of nuclei in time under the clas-
sical approximation. The exact dynamics of the classical system is encoded in
the Hamilton equations

∇RH(R,P) =
dP

dt
∇PH(R,P) = −dR

dt
(2.81)

the formal solution of which is[︃
R(t)
P(t)

]︃
= eiL(t−t0)

[︃
R(t0)
P(t0)

]︃
, (2.82)

where iL is the so-called Liouville operator31

iL ≡ ∇PH(R,P) · ∇R −∇RH(R,P) · ∇P. (2.83)

The two parts of the operator do not commute, and the symmetric Trotter fac-
torization can be used to develop a useful numerical approximation (exactly as
was done above for the derivation of the quantum partition function in the path-
integral context). Specifically, if we call the two terms in Equation 2.83 iLA and
iLB, by applying the factorization, disregarding the P →∞ limit, and introduc-
ing a time step ∆t = (t − t0)/P , we find that the approximate evolution of the
system is obtained by successively applying the following propagator

eiL∆t = e
iLB∆t

2 eiLA∆te
iLB∆t

2 . (2.84)

Explicitly filling in that

1. ∇RH(R,P) = −∇RE0(R) = F(R) is the vector of forces for the given
configuration

2. ∇PH(R,P) = M−1P = V is the vector of velocities (where M is the
diagonal mass matrix diag(M1, . . . ,M3N))
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leads to the so-called velocity-Verlet propagator144

R(t0 +∆t) = R(t0) +V∆t+M−1F(R(t0))

2
(∆t)2

V(t0 +∆t) = V(t0) +M−1 [F(R(t0)) + F(R(t0 +∆t))]

2
∆t,

(2.85)

which ensures a symplectic, finite-time-step integration of the Hamilton equa-
tions. Since the Hamilton equations conserve the Hamiltonian and hence the
total energy by definition, using the velocity-Verlet propagator generates dynam-
ics in the microcanonical ensemble (also at times denoted as NVE for its constant
number of particles, volume, and energy).

2.3.2.2 Origins of potential energy surfaces

It follows naturally from the Born–Oppenheimer framework that the PES E0(R)
comes from an electronic structure calculation. In a typical setting, we do not
have access to the full surface as a function of the nuclear configuration. Rather,
we can calculate single-point energies and forces for a given configuration in line
with Equation 2.8. An MD simulation where one does so explicitly on the fly in
every simulation step is known as AIMD,97 which is the simulation method of
choice in this work. The non-negotiable benefit of an accurate electronic structure
is counter-weighted by the computational expense brought about by the need for
repeated energy and force evaluations. However, performing AIMD is not the only
option. In simulations of larger systems where the ab initio PES is prohibitively
expensive for running MD, one uses an empirical, physically motivated function of
R known as a force field27,145 to represent the PES. Empirical force fields usually
do not reach the accuracy of ab initio surfaces. A modern method that favorably
combines the accuracy of ab initio methods with the computational costs close
to a force field is represented by a family of potentials known as machine learning
potentials (MLPs),35 discussed in detail in Section 2.4.

2.3.2.3 Canonical sampling

While microcanonical statistics and dynamics are of interest for certain special
systems — for instance, molecular clusters isolated in the interstellar void, one
would often be interested in simulations in other ensembles that allow for a more
physical, real-world experimental correspondence. In the context of this work, we
focus on the canonical ensemble, NVT, which allows for fluctuations of energy in
exchange for a requirement of a constant thermodynamic temperature

T ≡
⟨︃
2Ekin

3NkB

⟩︃
. (2.86)

The canonical conditions are formally imposed by embedding the studied system
in a heat bath at temperature T with which it can exchange energy and which
fixes the average temperature at the desired value. How does one represent the
contact with the heat bath in the equations of motion without having to include a
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vast number of explicit additional degrees of freedom? The bath effect is modelled
by a new term31,146 in the Liouville operator

iL = iLA + iLB + iLO, (2.87)

which is commonly referred to as a thermostat: an abstract device that is used for
temperature control. This gives, as one possibility, the following finite time-step
propagator

eiL∆t = e
iLO∆t

2 e
iLB∆t

2 eiLA∆te
iLB∆t

2 e
iLO∆t

2 . (2.88)

Other options for the splitting exist and are equally valid, but they can lead
to differences in performance and accuracy for specific thermostat choices. The
explicit form of the O-termh is a matter of choice and numerous thermostat fla-
vors are available. For instance, the Nosé thermostat148 and its more practical
reformulation in the form of Nosé–Hoover chains149,150 extend the physical sys-
tem with auxiliary degrees of freedom defined in such a way that a sampling of
the microcanonical distribution in the extended phase space exactly generates a
canonical one in the physical system. Alternatively, the Andersen thermostat151

relies on a stochastic resampling of velocities from the Maxwell–Boltzmann dis-
tribution which also ensures a canonical distribution, although at the cost of a
significant disruption of the dynamics of the system. As a primary thermostat
choice in the simulations discussed in this work, a similar strategy of building on
random processes is employed in the family of thermostats based on Langevin
dynamics152

dR

dt
= V

dP

dt
= −∇RE0(R)− γP+

√︃
2γ

β
M

1
2ζζζ(t), (2.89)

which approach the canonical distribution by adding a deterministic friction term
(γP) and a stochastic term (represented by a vector of independent white noise
variables ζζζ) to the purely Hamiltonian forces.31 The two terms in the above
Equation are balanced in a way that ensures a constant temperature through the
so-called fluctuation–dissipation theorem.31 The damping coefficient γ, given in
units of inverse time, controls the time scale on which the thermostat converges
the distribution of momenta to the canonical one. Using the Liouville operator
formalism, one can find that the momentum update due to the thermostat is
composed of two parts: a scaling and an addition of a random noise147

Pi(t+∆t) = Pi(t)e
−γ∆t + ζi(t)

√︄
Mi

β
(1− e−2γ∆t). (2.90)

The Langevin thermostat is an example of a local thermostat: the thermostat
is coupled to and acts on the momentum of each degree of freedom individually.
The local action of the thermostat leads to a robust convergence to the canonical
distribution on the timescale ∼ γ−1. Still, it more easily disturbs the dynamics of

hThe origin of the label O for the thermostat term is connected to the introduction of the
Liouville operator formalism into the Langevin thermostat formulation where the stochastic part
of the momentum update can be identified with an Ornstein–Uhlenbeck random process.147
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the system enough so that no meaningful dynamic information can be extracted
from the thermostatted trajectory. As such, this formulation is appropriate for
equilibration simulations starting from even far-from-equilibrium initial condi-
tions where an aggressive thermalization is needed. For simulations targeting
canonical dynamic properties, one can use the stochastic velocity rescaling (SVR)
(or canonical sampling through velocity rescaling (CSVR)) thermostat,153 which
can be shown to be the global version of the Langevin thermostat.154 In this case,
the momentum update is a simple collective rescaling

P(t+∆t) = α(∆t)P(t), (2.91)

where the rescaling factor α is determined stochastically, ensuring correct canon-
ical sampling.154 The global thermostat thus offers a smoother action on the
momentum variables and is appropriate for production simulations intending the
freedom to address dynamic properties on timescales shorter than γ−1.

2.3.2.4 Path integral molecular dynamics

The classical isomorphism offered by the imaginary time path integral representa-
tion of quantum mechanics can be exploited to simulate static NQEs in a formally
exact way using the framework of classical MD in a method known as path inte-
gral molecular dynamics (PIMD).18,31 Unlike in classical MD simulations, which
in principle give access to both static and dynamic properties, PIMD simulations
should not be attributed any relevance regarding real-time dynamics since the ac-
cess to such properties was forfeited for staying in the computationally tractable
imaginary time domain. However, approximate real-time dynamics can be ob-
tained from PIMD simulations with some specifically tuned parameters: some
relevant options are discussed in Section 2.3.3. Here, we discuss PIMD purely as
a method of sampling “quantum geometries” needed to calculate the correspond-
ing static expectation values of observables according to Equation 2.77.

To obtain a dynamical scheme to propagate the ring polymers, one needs to
take a step back and reintroduce the momenta that were integrated out on the
way to Equation 2.73. Technically, this is performed through a “reverse” Gaussian
integration(︃

MIP

2πβℏ2

)︃ 3
2

=

∫︂
dP

(i)
I e

−β
4π2ℏ2(P(i)

I )
2

2MIP ≡
∫︂

dP
(i)
I e

−β
(P(i)

I )
2

2µI , (2.92)

which, when inserted back into the definition of Q(β) gives the following PIMD
Hamiltonian

HP (R
(1), . . . ,R(P ),P(1), . . . ,P(P )) =

P∑︂
i=1

⎧⎪⎨⎪⎩
N∑︂
I=1

⎡⎢⎣
(︂
P

(i)
I

)︂2
2µI

+
1

2
MIω

2
P

⃓⃓⃓
R

(i+1)
I −R

(i)
I

⃓⃓⃓2⎤⎥⎦+
1

P
E0(R

(i))

⎫⎪⎬⎪⎭ .
(2.93)

In the above, we have rigorously reintroduced the physical masses of all de-
grees of freedom through the parameters µI . However, since the mass-containing
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prefactors fully cancel in the definition of ⟨A⟩ (Equation 2.77) and such observ-
ables, therefore, do not depend on mass at all, one is free to choose the set of µI

arbitrarily to influence the integration time step and the rate of sampling.
However, naively using the Cartesian PIMD Hamiltonian to drive MD simu-

lations is not practical due to the wide range of characteristic frequencies present
in the ring polymers, which complicates thermalization and limits the simulation
time step that one can afford without significantly affecting the accuracy of the
integration.155 To address this issue, practical simulations are typically performed
in an alternative coordinate system based on the normal modes of the free ring
polymer.31 These are obtained as

Ω
(k)
I,α =

1√
P

P∑︂
i=1

TikR
(i)
I,α, I = 1, . . . , N ; α = x, y, z (2.94)

using a transformation matrix T (with dimension P × P ) defined so that it di-
agonalizes the harmonic part of the PIMD Hamiltonian for each α-th Cartesian
component of I-th atom separately.31 The transformed Hamiltonian then reads

HP (Ω
(1)
1,x, . . . ,Ω

(P )
N,z,Π

(1)
1,x, . . . ,Π

(P )
N,z) =

P∑︂
k=1

⎧⎪⎨⎪⎩
N∑︂
I=1

∑︂
α=x,y,z

⎡⎢⎣
(︂
Π

(k)
I,α

)︂2
2µ

(i)
I

+
1

2
M(i)

I ω
2
P

(︂
Ω

(i)
I,α

)︂2⎤⎥⎦
+

1

P
E0

[︂
R(i)

(︂
Ω

(1)
1,x, . . . ,Ω

(P )
N,z

)︂]︂}︃
,

(2.95)

where {Π(k)
I,α}Pk=1 are conjugate momenta to the set of normal modes {Ω(k)

I,α}Pk=1.
The auxiliary mode masses µ(i)

I can be again chosen arbitrarily (M(i)
I is fixed at

the value of the physical mass M (i)
I times the square of the mode frequency31).

The decoupled picture thus allows us to set the mode masses individually in a
way that shifts their frequencies with a positive impact on the accessible length
of the integration time step. The propagation proceeds fully in normal mode
coordinates except for when the PES needs to be evaluated, which is only possible
in the original Cartesian coordinates: each step, a backward transformation of
positions and a forward transformation of forces is, therefore, necessary. Efficient
implementations based on fast Fourier transform (FFT) are available.156

PIMD simulations require careful thermostatting to impose canonical condi-
tions. The original approach uses Nosé–Hoover chains locally for each normal
mode.146 More commonly these days, this is achieved by attaching a Langevin
thermostat to each degree of freedom in an approach known as local path-integral
Langevin equation (PILE-L),157 which offers superior computational efficiency at
comparable accuracy. A global Langevin tharmostatting scheme known as global
path-integral Langevin equation (PILE-G)157 is obtained by attaching a single
global SVR thermostat to the centroids of all the ring polymers while keeping
local thermostats attached to the higher modes.
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2.3.2.5 Practical remarks

As discussed above in the context of the electronic part of the problem, MD
simulations often need to be performed under PBCs to represent the condensed
phase. For the nuclei, this pertains to how interatomic distances are calculated.
Specifically, PBCs respect the so-called minimum image convention, where the
physically relevant distance between two atoms I and J is always taken to be
the one between the closest periodic images. For a general box described by
three lattice vectors (a1, a2, a3), the minimum image convention is achieved by
modifying a displacement vector between atoms I and J as

RIJ ← RIJ −
3∑︂

i=1

⌊︃
RIJ · ai

|ai|2

⌉︃
ai, (2.96)

where ⌊ ⌉ denotes the rounding operation. For cubic simulation boxes, which
are important in the context of simulations of liquid systems and which are fully
specified by a box length L, the above equation reduces to

RIJ ← RIJ − L
⌊︃
RIJ

L

⌉︃
. (2.97)

For visualization purposes, the raw atomic positions are commonly wrapped into
the original unit cell using

RI ← RI − L
⌊︃
RI

L

⌋︃
, (2.98)

where ⌊ ⌋ denotes the floor operation. Explicit wrapping of atoms is, however,
not strictly needed for successful simulation execution.

Finally, we sketch out how initial conditions for running MD simulations are
obtained. Clearly, this has to be physical in the sense that the chosen config-
uration and its attached momenta must lie, loosely speaking, in a reasonably
thermally accessible region of the phase space to minimize equilibration time and
prevent both SCF and numerical propagator failures. For isolated molecules in
the gas phase and ordered crystalline solids, a reasonable starting point is a struc-
ture optimized to a local minimum using a PES on par with the one intended
to be used to drive the simulation. Disordered systems such as neat liquids and
solutions are usually constructed by randomly placing a given number of solvent
molecules into the simulation box and running an equilibration simulation using
either a force field or a computationally inexpensive ab initio PES to accom-
modate the non-covalent interaction between the molecules. The corresponding
momenta are typically sampled from the Maxwell–Boltzmann distribution at the
target simulation temperature. Once an acceptable initial condition is obtained,
a several ps-long equilibration simulation is performed with the production-level
PES to properly thermalize all degrees of freedom. This trajectory is not intended
for statistical analysis and can be discarded; its last point is used as a properly
equilibrated initial condition for production simulations.
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2.3.2.6 Software choices

Besides being a highly optimized electronic structure package, CP2K can also
be used as an AIMD engine: all classical DFT- and MLP-based simulations in
this work have been performed using this software. PIMD simulations have been
accomplished using the i-PI program.158 Written in the Python programming
language, it is intended primarily as a simulation engine that relies on externally
provided forces. Notably, it does not independently perform electronic structure
calculations but relies on a socket interface to couple to various established elec-
tronic structure packages, including CP2K and FHI-aims, that calculate forces on
individual imaginary time slices. Simpler manipulation with atomic nuclei, e.g.,
geometry optimizations, and nudged elastic band (NEB) calculations,159 has been
accomplished using the Atomic Simulation Environment (ASE).160

2.3.3 Dynamical properties

So far, we have built the infrastructure to study static properties. However,
equilibrium dynamical properties such as diffusion constants, rates of chemical
reactions, and vibrational spectra are equally relevant to providing insight into
the behavior of molecular systems, and it is, therefore, the key to being able to
model those as well. The usual approach relies on linear response theory, which
relates dynamical properties to the so-called time correlation functions (TCFs)
and, therefore, sets up the task of calculating such functions from equilibrium
MD simulations.

2.3.3.1 Time correlation functions

The standard way to define a quantum-mechanical thermal equilibrium TCF
between observables ˆ︁A and ˆ︁B is31

cAB(τ) ≡ ⟨ ˆ︁A(t0) ˆ︁B(t0 + τ)⟩ = 1

Q(β)
Tr e−β ˆ︁H ˆ︁Aˆ︁U †(τ) ˆ︁B ˆ︁U(τ) (2.99)

where ˆ︁U †(τ) ˆ︁B ˆ︁U(τ) is the Heisenberg-evolved operator ˆ︁B to a delay time τ with
respect to an initial condition taken to be at t0. Alternatively, one can define the
Kubo-transformed version of the TCF161

c̄AB(τ) =
1

βQ(β)

∫︂ β

0

dλ Tr e−(β−λ) ˆ︁H ˆ︁Ae−λ ˆ︁H ˆ︁U †(τ) ˆ︁B ˆ︁U(τ), (2.100)

which is not exactly the same as cAB(τ), but the two (and also other formulations
of quantum TCFs) can be shown to be rigorously related in the Fourier domain
through31

ˆ︁cAB(ω) =

(︃
ℏβω

1− e−ℏβω

)︃ˆ︁c̄AB(ω). (2.101)

In contrast, under the classical approximation, the TCF is defined unambiguously
as

cAB(τ) =
1

Qc(β)

∫︂ ∫︂
dRdP A[R(t0),P(t0)]B[R(t0+τ),P(t0+τ)]e

−βH(R(t0),P(t0)),

(2.102)
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correlating the phase space functions separated by the delay τ .
Calculating classical TCFs is, therefore, quite straightforward as classical MD

simulations capture physically meaningful dynamics. Correctly, the calculation
of the canonical TCF is approached by sampling several initial conditions from a
thermostatted MD trajectory and running a set of NV E trajectories from each,
collecting time correlations along them. In practice, this rigorous approach is usu-
ally replaced by an approximate treatment in which time correlations are collected
along a single, long, weakly enough thermostatted NV T trajectory.31 Simulating
quantum TCFs represents a fundamentally more serious problem since PIMD sim-
ulations based on imaginary time path integrals do not contain physically mean-
ingful dynamics. Despite this limitation, it was proposed that given a reasonable
choice of replica masses, the auxiliary PIMD dynamics can, in fact, be used, at
least in an approximate way, to capture real-time dynamics. Two main types
of PIMD simulation that build on this premise are known as centroid molecular
dynamics (CMD)162 and ring polymer molecular dynamics (RPMD).163,164 In an
RPMD simulation, one assigns physical particle masses to each replica (µI =MI)
and runs the time evolution in the NV E ensemble. RPMD thermal correlation
functions are thus calculated by sampling initial conditions from a canonical,
thermostatted PIMD simulation and running multiple daughter RPMD trajecto-
ries from them. The obtained microcanonical dynamics of the replicas is used to
approximate the Kubo-transformed TCF through the following prescription

c̄AB(τ) ≈
1

(2πℏ)PQ(β)

∫︂ ∫︂
dPRdPP AP (t0)BP (t0 + τ)e−βHP

= ⟨AP (t0)BP (t0 + τ)⟩,
(2.103)

where the estimate of the quantum time-dependent observable is

AP (t) =
1

P

P∑︂
i=1

A[Ri(t)]. (2.104)

Note that for linear operators, this is equivalent to the observable being evaluated
at the position of the ring polymer centroid, but for non-linear operators, it first
needs to be evaluated for each replica separately and then averaged. The RPMD
prescription of the exact Kubo TCF can be shown to have the properties of
being exact in the harmonic limit and being a reliable approximation in the limit
of short delays.163 Historically, this gave it enough credibility to be routinely
used in approximate simulations of quantum dynamics despite the ad hoc nature
of its formulation. Later on, the specific RPMD formulae were given a more
rigorous footing by connecting it to real-time quantum dynamics by performing
approximations in the Matsubara dynamics formalism.165 Generally speaking,
RPMD is a very successful and efficient approach to approximating quantum
dynamics. However, its downside is that it exhibits spurious artifacts in simulated
vibrational spectra due to the resonance between internal ring modes and physical
molecular vibrations.166 This issue is solved by thermostatted RPMD (TRPMD),
where thermostats are carefully attached to the internal ring polymer modes to
dampen these spurious resonances.167 This requires the same kind of treatment
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as RPMD to obtain thermal correlation functions. In practice, one normally
attaches a weak thermostat also on the centroid and approaches the calculation
of correlation from a single, long NV T trajectory as discussed above for classical
TCFs.

Finally, a couple of notes on the properties of TCFs. Note that in the fol-
lowing, we will only use the classical, operator-less notation for TCFs for both
the quantum and the classical case since the quantum TCFs can now be calcu-
lated in a classical fashion over an extended phase space through RPMD. First,
given a long enough trajectory, one can rely on the same principle that holds for
static properties that a statistical average is equivalent to a time average. In the
present case, replacing the statistical average with an average over the trajectory
redefines the TCF as

cAB(τ) = lim
T→∞

1

T

∫︂ T

−T

dt0 A(t0)B(t0 + τ) ≡ A ∗B, (2.105)

which is consistent with the mathematical understanding of correlation functions
as convolutions of time series. Second, TCFs have specific symmetry properties
pertaining to time reversal. We have

cAB(−τ) = ⟨A(t0)B(t0 − τ)⟩ = ⟨A(t′0 + τ)B(t′0)⟩ = cBA(τ). (2.106)

Therefore, general cross-correlation functions between observables A and B do not
have any special properties regarding mirroring around the origin of the time axis,
e.g., evenness, but flipping the order of observables is equivalent to flipping the
time axis. An autocorrelation function (ACF), i.e., a TCF for a single observable,
clearly is an even function of time since

cAA(−τ) = cAA(τ). (2.107)

2.3.3.2 Vibrational spectra

As briefly mentioned in the opening of this Section, vibrational spectroscopy is
an experimental technique that measures the separations of nuclear energy levels
using light–matter interaction to induce the relevant transitions. Our computa-
tional treatment of nuclei presented so far does not offer a state-resolved solution
of nuclear degrees of freedom to calculate the vibrational transitions directly, but
they can be accessed via a TCF-based approach. Specifically for IR absorption
spectroscopy, the spectral intensity can be related to the Fourier transform of the
time ACF of the time derivative of the total dipole moment M of a system168

IIR(ω) ∝ F [cṀṀ(τ)] =

∫︂
dτ e−iωτ

⟨︄
dM

dt
(t0) ·

dM

dt
(t0 + τ)

⟩︄
= ω2

∫︂
dτ e−iωτ ⟨M(t0) ·M(t0 + τ)⟩.

(2.108)

where the second equality is based on the so-called ω2-theorem, which is a fun-
damental property of the Fourier transform and can be found derived in Ap-
pendix A. The reason why this holds can perhaps be gleaned from the fact that
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the light–matter interaction that introduces vibrational transitions can be the-
oretically described as a perturbation to the total Hamiltonian that depends
explicitly on M, hence its fundamental role in IR spectra. In fact, the tools of-
fered by time-dependent perturbation theory can be used to rigorously connect
this perturbation to Equation 2.108 using Fermi’s golden rule (with a bit of alge-
braic effort, as shown in Reference 31). Conveniently, theoretical simulation of IR
spectra allows for various useful decompositions of the total spectrum I(ω) that
are not experimentally accessible and can provide relevant insight. For instance,
the total dipole moment can be decomposed into molecular contributions for the
Nmol molecular entities in the system

M =

Nmol∑︂
i=1

µµµi, (2.109)

given a specific partitioning scheme: our simulation setup in CP2K relies on
maximally localized Wannier orbitals.169 This illustrates that an IR spectrum is
a highly non-trivial quantity since

⟨M(t0) ·M(t0 + τ)⟩ =
∑︂
ij

⟨µµµi(t0) · µµµj(t0 + τ)⟩

=
N∑︂
i=1

⟨µµµi(t0) · µµµi(t0 + τ)⟩+
∑︂
i,j ̸=i

⟨µµµi(t0) · µµµj(t0 + τ)⟩,
(2.110)

which tells us that the overall picture cannot be described only as a sum over in-
dividual molecular contributions (self-terms, first sum) but also cross-correlations
(second sum) that describe how dipoles on individual molecules are affected by
interacting with dipoles elsewhere in the system. Another highly useful spectrum
decomposition is that in the time variable, which will be discussed in Chapter 5.

As a computationally simpler vibrational quantity, which, however, does not
have an experimentally measurable equivalent, we use the vibrational density of
states (VDOS)

IVDOS(ω) ∝ F [cvv(τ)] =
∫︂

dτ e−iωτ

N∑︂
i=1

⟨vi(t0) · vi(t0 + τ)⟩, (2.111)

which is defined through atomic velocity autocorrelation self-terms only. As such,
it can be easily decomposed into any subsets of atoms in the studied system and,
since it only corresponds to atomic motion, it is not obfuscated by electronic
effects and selection rules like IR is. It is also possible to simulate other vibra-
tional spectra through the TCF approach, for example, Raman scattering170 or
sum-frequency generation spectra,171 but the corresponding theory will not be
discussed as these quantities are not modeled in this work.

2.3.3.3 Reaction rates

In Chapter 6, we will discuss the simulation of the rate constant of a proton
transfer reaction. Reaction rates represent another type of dynamic quantity
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that can be related to TCFs. Specifically, given a potential energy landscape
consistent with a reactive transition, the rate is related to the long time limit of
the so-called flux-side correlation function

k(β)Qr(β) = lim
τ→∞

cfs(τ)

= lim
τ→∞

⟨︄
dθ{s[R(t0)]}

dt
θ{s[R(t0 + τ ]}

⟩︄
,

(2.112)

where s(R) is a reaction coordinate, s(R) = 0 is a dividing surface that separates
the reactants from the products, dθ(s)/dt is the flux through that surface, θ(s)
is a step function representing a projector on the product side and Qr(β) is the
so-called reactant partition function.172 RPMD rate theory,173 i.e., using RPMD
simulations to sample cfs(τ), is a powerful approach to access thermal rate con-
stants including dynamic recrossings and tunneling NQEs, especially employing
the Bennett–Chandler factorization174 to facilitate the statistical sampling.

In this work, we do not use full RPMD theory to simulate reaction rates but
rather rely on a semiclassical approach known as ring polymer instanton rate the-
ory.96 While this can be rationalized by making a semiclassical approximation to
the flux-side correlation function,175 it is more commonly derived starting with
the so-called ImF (imaginary free energy) premise.96,176 Both versions of instan-
ton theory are equivalent but lead to different practical formulae for the tunneling
rates.177 The ImF premise can be rationalized by modeling the reacting system
as a decay of trapped resonances through the barrier175 with such considerations
leading to the expression for the thermal rate

k(β) ≈ −2

ℏ
ImF (β), (2.113)

where F (β) is a complex-valued free energy corresponding to the metastable
decaying system. Introducing a complex-valued partition functionR(β) = e−βF (β)

then allows us to write

k(β) ≈ 2

βℏ
ImR(β) =

2

βℏ
arctan

ImR(β)

ReR(β)
≈ 2

βℏ
ImR(β)

ReR(β)
, (2.114)

where the last approximation represents a linear approximation for the arctan
function for the expected relation ImR(β)≪ ReR(β). The real part of R(β) can
be shown to be connected to the reactant partition function Qr(β). This implies,
in a loose sense, that the imaginary part ImR(β) is correspondingly connected
to the barrier region and will be further referred to as the imaginary part of
the instanton partition function ImQinst(β),178,179 allowing us to re-express the
thermal rate as

k(β)Qr(β) =
2

βℏ
ImQinst(β). (2.115)

The ring polymer instanton theory is obtained by applying the discrete Feyn-
man path integral formalism in imaginary time to evaluate both partition func-
tions using Equation 2.76 and further approximating the resulting integral using
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the steepest descent approximation. Roughly speaking, this approach is equiva-
lent to expanding the action functional into a second-order Taylor series around a
local minimum, which is well justified because the exponential quickly quenches
fluctuations at high values, leaving the local minima to dominate the value of the
integral. This gives us

Q(β) ∝
∮︂
D[R(τ)]e−

1
ℏSE[R(τ)]

≈ lim
P→∞

∑︂
all minima

√︄[︃
2πℏ

detHSE
(Rmin)

]︃P
e−

1
ℏSE(Rmin),

(2.116)

where Rmin is a ring-polymer configuration that minimizes SE and HSE
is the

Hessian matrix of the action. Therefore, the calculation of the partition function
is reduced to an optimization of well-defined stationary imaginary time paths
and to the calculation of the determinant of the matrix of second derivatives
of the paths’ action with respect to replica displacements. Naturally, practical
calculations are performed using a finite P approximation. Finding a stationary
point of the action requires that

∇∇∇SE = 0. (2.117)

Explicit differentiation of the action gives

MI

R
(i+1)
I,α − 2R

(i)
I,α +R

(i−1)
I,α

(∆τ)2
= +

∂Em

∂R
(i)
I,α

, α = x, y, z (2.118)

with ∆τ = 1/ωP . This traces a classical, Newtonian trajectory on an inverted
PES. The reactant state corresponds to a minimum on the PES, and the only
way for such a stationary imaginary-time path to be arranged to comply with
the above conditions is with a ring polymer that is fully collapsed onto the PES
minimum. Evaluating Qr(β) in using the steepest descent method is thus trivial
and leads to the harmonic approximation for the reactant partition function.
The instanton then corresponds to a first-order saddle point on the extended
ring-polymer PES. It can be shown177 that at high temperatures, the geometry
of the instanton also corresponds to all replicas being collapsed onto the classical
transition state (TS), making the theory equivalent with classical transition state
theory. However, such a configuration ceases to be a first-order stationary point
at temperatures below the so-called crossover temperature96

Tc =
ℏωbarrier

2πkB
, (2.119)

with ωbarrier being the absolute value of the imaginary frequency at the barrier,
and a non-trivial instanton trajectory appears that falls down from the barrier
and retraces itself once back and forth. Using the steepest descent method on
such an imaginary-time trajectory is not as straightforward as for the reactant
state as we are dealing with a saddle point. That means that we can employ
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the approximation for all degrees of freedom given by normal modes with real
frequencies, but the mode corresponding to the unstable direction must be treated
specially by continuation into the complex plane. Moreover, the ring polymer has
a mode with a zero-valued frequency that represents the cyclic permutation of
the ring-polymer beads: this can also be integrated analytically.96,179 Once these
two modes are taken care of, the final expression for the instanton rate becomes

k(β) = A(β)e−
1
ℏSE(Rinst); (2.120)

note the resemblance with the classical Eyring equation. The preexponential fac-
tor A(β) contains all the terms originating from the steepest-descent treatment
of vibrational degrees of freedom as well as classical approxmations for the rota-
tional and translational components of the partition functions: the complete rate
formula can be found, for example, in Reference 179. Evaluating A(β) requires
the calculation of the second derivatives of the action with respect to all replica
positions. This yields the following sparse matrix

HSE
= ω2

P

⎛⎜⎜⎜⎜⎜⎝
H(1) + 2 · I1 −I1 I0 · · · −I1
−I1 H(2) + 2 · I1 −I1 · · · I0
I0 −I1 H(3) + 2 · I1 · · · I0
...

...
... . . . ...

−I1 I0 I0 · · · H(P ) + 2 · I1

⎞⎟⎟⎟⎟⎟⎠ ,

(2.121)
where H(i) is the mass-weighted Hessian of the i-th replica, I1 is the identity ma-
trix of size 3N and I0 is a zero-valued matrix of the same size. Calculating its
determinant is what primarily makes the instanton method computationally de-
manding at low temperatures, where high replica numbers are needed. Instanton
theory has been successfully deployed to calculate thermal rates of reactions in the
gas phase and on surfaces.178–180 Its applicability becomes limited once numer-
ous reaction channels start contributing to the total rate, e.g., in the condensed
phase, as they need to be considered one by one.

2.4 | Neural network potentials

Ab initio calculations with quantum electronic structure are a powerful tool to
conduct theoretical studies of molecular systems. However, the high computa-
tional demands connected to the ab initio calculations restrict the applicability
of the method to relatively small systems: for example, the simulation of a peri-
odic box containing 64 water molecules and a single benzene solute at a hybrid
DFT level (cf. systems discussed in Chapter 5) can already be considered a large
simulation project with timing of ∼95 s per MD step on a 32-core EPYC-based
compute node. The role of neural network potentials (NNPs) is to replace the
explicit quantum mechanical calculation and, therefore, to reduce the computa-
tional cost of the simulation while maintaining its accuracy.
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Figure 2.3: An example of a structure of a feedforward NN with a two-dimensional
input, a single hidden layer, and a one-dimensional output. Neurons are represented by
black circles, a selected set of weights in blue, and biases in orange.

2.4.1 The basic principle of a neural network

In general, an artificial NN is a mathematical structure inspired by biological
neural networks, where neurons take multiple inputs and produce an output that
is distributed to subsequent neurons to convey complex information. Feedforward
NNs,37 which are the kind of networks used for NNP applications in this work,
have a layered structure consisting of an input layer, one or several hidden layers,
and an output layer, each containing a given number of neurons connected by
weights w (Figure 2.3). In the following, we will consider one-dimensional outputs
only. Information flows unidirectionally from the input layer to the output layer,
creating a mapping y = y(x) (≡ y

(3)
1 in Figure 2.3) that establishes a unique

relationship between the input vector x and the output y through a specific choice
of the NN parameters. In addition to weights, these parameters also include biases
b, which act as an offset of the value predicted in the individual neurons. This
prediction is represented by the following function for a neuron at position i in
layer k > 1

y
(k)
i = f (k)

⎛⎝b(k)i +
N(k−1)∑︂
j=1

y
(k−1)
j w

(k−1)
ji

⎞⎠ , (2.122)

which connects the outputs of all neurons in the previous layer to the one in
question through the corresponding weights and biases. The so-called activation
function f (k) is a specifically selected non-linear function that gives the NN the
flexibility to fit complex, non-linear relationships. Often, smooth switch functions
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such as the logistic function or the hyperbolic tangent are used as activation func-
tions for regression problems. Importantly, the so-called universal approximation
theorem shows that infinitely large NNs are universal approximators that can fit
any arbitrary function.

As an important application, feedforward NNs are employed in regression
tasks in which, given a number of discrete samples of inputs and associated out-
puts representing the underlying relationship (i.e., the training set), the NN is
trained to yield the best possible fit through these data points. This is nor-
mally achieved by minimizing an appropriate loss function, for instance, the mean
square error between the predicted output y(xi) for a given input xi and the cor-
responding target value ti.

L(w, b; {xi, ti}) =
1

N

N∑︂
i=1

[y(xi)− ti]2 , (2.123)

with respect to the NN parameters. The optimization is normally performed
by various gradient descent approaches such as first-order-only backpropaga-
tion,181 more efficient second-order Levenberg–Marquardt182 or L-BFGS183–187

algorithms, or by alternative approaches, e.g., Kalman filtering.188 Given the in-
herent complexity of the loss function for many-dimensional data, it is nearly
certain that a trained model is based on a set of parameters that correspond to
a local rather than a global minimum. This is fully acceptable as long as the
fit error is reasonable, i.e., the minimum lies low enough to allow for reliable
predictions.

To bypass explicit ab initio calculations, NNs are used as NNPs to model the
ab initio PES as a function of the nuclear configuration

E0(R) = ⟨ψ0(R)| ˆ︁He(R) |ψ0(R)⟩ (2.124)

by training on a set of ab initio configurations and energies {Ri, Ei}. However,
training directly on Cartesian atomic positions would give rise to two detrimental
problems. First, it does not yield models that would exhibit translational, rota-
tional, and permutational symmetries (permutational in the sense of exchanging
coordinates of atoms of the same kind) as required by the invariance of ˆ︁He(R) to
such transformations. This is because transforming the input coordinates changes
the input for a model that does not have these symmetries fundamentally wired
into its structure. Second, such models would only work for a fixed system size
and not generalize to other arrangements. Both issues are addressed by the
Behler–Parrinello architecture.36

2.4.2 Behler–Parrinello high-dimensional NNPs

The main idea behind the Behler–Parrinello architecture (as well as several oth-
ers) is to split the total electronic energy into atomic contributions to the total
energy

E0 =
N∑︂
i=1

Ei (2.125)
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Figure 2.4: A schematic illustration of the Behler–Parrinello NNP architecture. The
atom centered symmetry functions (ACSF) Gµ

i describe the geometry of the system
and are derived directly from the Cartesian positions of the atoms. For each atom of a
given kind, its set of descriptors is fed to the corresponding atomic subnetwork, yielding
atomic energies Ei. These are finally summed to obtain the total electronic energy E.

and predict each Ei through individual subnetworks for each atom type (Fig-
ure 2.4) using a set of geometric descriptors that comply with the required sym-
metry properties to describe the local chemical environments of each atom. It
is important to realize that the atomic energies Ei do not have any physical
meaning and do not correspond to the electronic energies of isolated atoms. The
atomic subnetworks are self-standing NNs on their own and are not coupled to
the other ones in any other way than through Equation 2.125, which represents
the connection between the last two layers of the overall NN with unit weights
and no biases (Figure 2.4). In this way, all of the complications mentioned above
are addressed since

1. Contributions to the total energy Ei are additive and, therefore, the model
is applicable to arbitrary system sizes.

2. The exact same atomic subnetwork is used for all atoms of the same kind,
which ensures permutational symmetry.

3. The specific form of the atomic environment descriptors ensures rotational
and translational symmetry.

There is no unique set of descriptors to achieve the last point, and a convenient
choice must therefore be made. In their original paper, Behler and Parrinello em-
ploy the so-called atom centered symmetry functions (ACSF).36 These functions
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Figure 2.5: Atom-centered symmetry functions as defined in Reference 36. The first
row shows two types of radial functions: centered at a given value of µ with varying
values of η and on the left and shifted functions with a fixed value of η and varying
value of µ. The polar plots show four different angular functions depicted for a single
term from the sum in Equation 2.128, using ζ values of 1.0 and 8.0 and λ values of ±1.
The more purple regions correspond to high values of the ACSF.

are based on internal degrees of freedom, such as interatomic distances and an-
gles to describe the relevant chemical environment surrounding an atom which
renders them independent of a global coordinate frame. They fall into two cat-
egories: radial (two-atom) and angular (three-atom). Both types share a cutoff
function

fc(Rij) =

{︄
1
2

[︂
cos
(︂
π

Rij

Rc

)︂
+ 1
]︂

Rij < Rc

0 otherwise,
(2.126)

where Rij = |Rj −Ri| and Rc is a cutoff distance after which no neighbors are
included in the description. Normally, for practical purposes, this is fixed at
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12 a0.36 Radial ACSF are defined as

Gradial
i =

∑︂
j ̸=i

e−η(Rij−µ)2fc(Rij) (2.127)

and as such, they encode information about the distribution of distances between
atoms i and j through a Gaussian function centered at µ with a width given by
η, the user chooses these parameters. Radial functions themselves come in two
flavors: centered, where µ is fixed to zero distance and the Gaussian widths η are
varied (Figure 2.5, top left) and shifted, where the width is fixed and the position
is varied (Figure 2.5, top right); a combination of both is also possible.189,190 The
angular functions are then defined as

Gangular
i = 21−ζ

∑︂
j ̸=i

∑︂
k ̸=i,j

[1− cos(θijk)]
ζ

× e−η[(Rij−µ)2+(Rik−µ)2+(Rjk−µ)2]fc(Rij)fc(Rik)fc(Rjk).

(2.128)

and thus depend on both the angle θijk (with cos(θijk) = Rij ·Rik/RijRik) between
a triplet of atoms i, j and k and on the respective distances between those atoms
through the multiplication by corresponding radial functions. The parameter ζ
has a similar function as η in the case of radial functions to control the width.
λ = ±1 then defines the orientation of the function’s peak. A single term of the
sum in Equation 2.128 (i.e., a function of angle and a single distance) is shown
in the bottom part of Figure 2.5 for two values of ζ and λ.

In a practical setting, one has to predefine a set of ACSF for each atom combi-
nation, choosing parameters such that all configurations available to the studied
system can be well resolved by the descriptors. For example, a system composed
purely of H2O, hence containing only atoms H and O, in principle requires radial
ACSF for the pairs H–O and H–H for the hydrogen subnetwork and O–H and O–
O for the oxygen subnetwork and angular ACSF for the triples H–H–H, H–H–O,
O–H–O for the H hydrogen subnetwork (placing the relevant hydrogen atom in
the middle of each triplet) and, similarly, H–O–H, H–O–O and O–O–O for the
oxygen subnetwork. Clearly, the number of possible combinations grows quickly
with the number of atom kinds, which makes the ACSF method impractical for
systems with many different elements, and other types of descriptors must be
used. For the training of Behler–Parrinello NNPs, this work relies on the n2p2
software package,191 which uses a multistream adaptive extended Kalman filter
approach to efficiently optimize the NNP parameters exploiting the possibility to
tunably include atomic forces as training variables. This explicitly includes the
information on PES gradients into the training and was shown to lower force gen-
eralization errors while maintaining the accuracy in energy predictions compared
to models trained only on energies.191 The forces from the models — both for
training and simulation execution — are readily obtained by analytical differen-
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tiation of the predicted energy191 as

Fi = −∇∇∇iE0

= −∇∇∇i

N∑︂
j=1

Ej

=
N∑︂
j=1

∑︂
{µ}

− ∂Ej

∂G
(µ)
j

∇∇∇iG
(µ)
j .

(2.129)

Evaluating this expression requires analytic gradients of the employed ACSFs:
the corresponding relevant expressions can be found, for example, in Reference
192.
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3 | Towards robust and affordable
neural network potentials

In this Chapter, we present and discuss our work on developing the computa-
tional methodology for efficient generation of NNPs and their deployment in MD
simulations published in two publications referred to as Paper I and II and listed
as References 43 and 46.

3.1 | Paper I: Summary

In the first methodological paper “Committee neural network potentials con-
trol generalization errors and enable active learning” (Reference 43, reprinted
in Appendix C), we introduce a systematic workflow to enable committee NNPs
(C-NNPs) for routine use in molecular simulations. In this paper, I have par-
ticipated primarily by executing and analyzing all validation simulations and
preparing the corresponding parts of the manuscript.

A C-NNP is an ensemble combining N individual NNP models that have
been trained with different initializations of the NN parameters and, possibly, to
a different subset of the full training set. This introduces variation between the
models, which allows one to estimate the predicted energy as an arithmetic mean
of the individual committee predictions,

E =
1

N

N∑︂
i=1

Ei. (3.1)

All force components are predicted in an identical manner. Having a varied com-
mittee at hand also allows one to calculate the so-called committee disagreement
as a standard deviation of the committee energy (or equivalently, force) predic-
tions

σ(E) =

[︄
1

N

N∑︂
i=1

(Ei − E)2
]︄ 1

2

. (3.2)

This quantity is important in the proposed methodology for several reasons. First,
it enables the active-learning generation of a training set using the QbC method.
In this approach, one begins by training a preliminary C-NNP on a very small
number of randomly selected training structures and then predicts σ(E) for the
whole pool of candidate geometries from which the training set will be selected.
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Then, structures featuring the highest σ(E) values are added to the training
set batch-by-batch, retraining the committee after each addition. Like this, the
nascent C-NNP is able to isolate and target configurations that are, loosely speak-
ing, the most challenging for accurate prediction and train on them to learn the
corresponding regions of the PES. QbC is discussed in the parts of Paper I re-
volving around Figures 1 and 2, Figure 3 illustrates the superiority of the C-NNP
approach over individual NNP models; we typically pick 8-membered committees
as a practical compromise between the accuracy that the approach offers and the
computational cost of training as well as using a large number of models at once.
Second, σ(E) can be monitored on the fly to assess the stability of the MLP-
based simulation: once the simulated system ventures into an unknown region
of configuration space during time evolution, σ(E) tends to grow rapidly as the
predictions of the committee members start to diverge due to heavy extrapola-
tion. Finally, σ(E) can be used to prevent the system from embarking on such
high-disagreement excursions by adding an auxiliary harmonic bias

Vσ =

{︄
1
2
k [σ(E)− σ0]2 , σ(E) ≥ σ0

0, σ(E) < σ0
(3.3)

to the physical PES, with σ0 being a threshold disagreement for the activation of
the bias and k the stiffness of the harmonic potential (Paper I, Figure 4).

To gauge the efficiency and accuracy of the proposed workflow, we trained
and validated a C-NNP model for simulations of water in various states of mat-
ter, including liquid water at different temperatures, several ice phases, and the
air/water interface under the classical as well as path-integral description of nu-
clei over several generations of models. The various state points of water are
accessed by model bootstrapping: an improvement of the descriptive qualities of
the model using the model itself and only very few new ab initio calculations on
top of it.

In the present case, we start from a preexisting classical ab initio trajectory of
liquid water at 300 K to obtain an initial, first-generation C-NNP. This is then
used to drive new molecular dynamics simulations starting in the new state points
and also using a path integral description of the nuclei with the aim of sampling
new candidate geometries. As the next step, we rely on QbC (with a minimal
number of ab initio single point evaluations) to expand the training set in order
to train a model with improved capabilities in the new regions of configuration
space. In only four generations and with a training set consisting of only about
800 geometries, we were able to generate a C-NNP capable of describing all
of the above-mentioned states in the path integral context with very low error
(Paper I, Figure 5). The main results of the validation performed on liquid water
simulations at 300 K are then summarized in Figure 6 and showcase an excellent
agreement between the C-NNP and the original hybrid DFT data.
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3.2 | Paper I: Discussion

3.2.1 AML: QbC implemented

The ideas presented in the publication are the basis for a publicly available Python
implementation of QbC named AML (https://github.com/MarsalekGroup/
aml) that our group in Prague continually maintains and develops. In the latest
public version, the AML code relies on externally provided candidate geometries
(i.e., a wide pool of physically meaningful thermal geometries of the studied
system from which relevant training points are selected) labeled with the cor-
responding ab initio energies and forces. This comes naturally from an AIMD
simulation, where energies and forces are needed on the fly anyway, but once
only unlabeled data is at hand, a full recalculation would be needed in order to
be able to use the code as is. In a development version, a calculator interface to
various electronic structure codes (directly for CP2K, but notably also for ASE,
which opens the door to all electronic structure calculators inside it) has been
implemented, which allows for the calculation of energies and forces on the fly
during QbC for only the selected training structures. New releases of AML are
expected in the future.

3.2.2 Another perspective on model bootstrapping

Above, we discussed how model bootstrapping can be used to target unseen state
points of matter by using QbC and exploratory MD. Another useful application
of the same idea would not target new, unexplored regions of a given PES but
would allow us to promote the PES to a new one altogether by running QbC
with the new electronic structure method on a candidate set created by the old
model. Approaching computationally demanding electronic structure methods
through machine learning has been previously approached with the so-called ∆-
learning;193 this approach would represent an alternative that does not require
learning the difference of two PESs but rather can give access to an explicit
C-NNP for the new PES building only on the minimum necessary number of ab
initio single point evaluations as required by QbC. Such treatment would give
access to NNPs that are impossible to obtain using the direct approach through
AIMD simulations for extended, condensed-phase systems such as, for instance,
post-HF methods. Stable bootstrapping requires the model not to rely heavily on
extrapolation to the point that the committee disagreement tends to diverge: to
prevent this, the proposed biasing of committee disagreement represents a useful
tool. Testing of the approach for realistic systems is a subject of ongoing research
in our group.

3.2.3 New horizons in MLPs

Behler–Parrinello NNPs (and other invariant models) have successfully enabled
highly efficient and large-scale simulations of virtually all kinds of molecular sys-
tems. However, the specific form of the architecture based on scalar descriptors,
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symmetrically invariant features, and the use of hard-limit cutoff functions can
lead to inaccuracies in the description and relatively higher generalization errors
compared to more advanced models. An exemplary illustration of a qualitative
failure of an invariant model194 to describe the torsional energy profile of relative
cyclopentadiene ring rotations in a ferrocene molecule.195 These shortcomings are
addressed by the advent of equivariant message-passing models,196 NN architec-
tures with tensor-like features and equivariant internal transformations.195,197,198

By construction, such models allow for the propagation of structural information
regarding atomic environments beyond the given interaction cutoff: the ferrocene
problem is solved by employing the equivariant PaiNN model.195 In addition,
equivariant models are not limited by externally supplied descriptors, exhibit
comparable computational efficiency, and have been shown to have higher data
efficiency, therefore requiring smaller training sets than invariant models. These
considerations suggest that equivariant models are, in fact, the likely future di-
rection of MLP-oriented research. On another note, we mention the emergence
of foundational models, i.e., universal models trained on very large and diverse
data sets that offer accuracy and robustness over extensive parts of chemical and
configurational space.199 For example, this could mean that a single model will
be able to describe a liquid structure, isolated molecules, a reaction on a metal
surface, and a solid material with the same flexibility and precision. A univer-
sal MLP at a quantitative level of accuracy remains elusive as of this moment.
However, recent development has introduced several large-scale MLPs which aim
at being universal and which have been shown to attain qualitative descriptive
capabilities over a wide range of molecular systems.199,200 While these cannot
yet be used in an out-of-the-box fashion for applications in accurate molecular
modeling, they have the potential to become extremely useful as a physically
well-based starting point, for example, in our case, to generate cheap structures
for QbC completely free of ab initio simulations.

3.3 | Paper II: Summary

In “Reducing the cost of neural network potential generation for reactive molecu-
lar systems” (Reference 46, reprinted in Appendix C), we identify a potentially
serious drawback of the methodology proposed in Paper I pertaining to systems
where chemical reactions and other high-barrier transitions are to be described.
Specifically, the reactive equivalent of obtaining candidate geometries through
short AIMD simulations in non-reactive systems (or alternatively, in systems
with ultrafast reactions that can be sufficiently sampled thermally) is enhanced-
sampling AIMD. This may become prohibitive once accurate and computation-
ally demanding ab initio methods are required for substantially extensive sys-
tems. It is, therefore, desirable to devise a sampling method that will yield
thermal reactive geometries that can be used as candidates for QbC at a lower
computational cost than that of full-scale dynamical simulations. Here, we in-
troduce such methodology for gas-phase systems, which we call transition tube
sampling (TTS) and which combines the knowledge of a path through configu-
ration space that describes the reactive transition (such as, but not limited to, a
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minimum energy path (MEP)) and a set of local normal mode expansions with
an approach known as normal mode sampling (NMS) to obtain thermal geome-
tries along the whole reaction (Paper II, Figure 1). Existing literature contains
several definitions of NMS, most relying on random displacements from a uni-
form distribution of normal coordinates.201,202 In the present case, NMS stands
for essentially a correlation-free MC exact thermal sampling from the Gaussian
distribution of normal coordinates around a reference configuration at an inverse
temperature β = (kBT )

−1 (Paper II, Equations 1 and 2). Apart from being exact
under the harmonic approximation, it brings around the advantage of being easily
and exactly quantized by switching from the classical β to the so-called effective
quantum inverse temperature

β∗(β, ω) =
2

ℏω
tanh

(︃
βℏω
2

)︃
≤ β (3.4)

for each vibrational mode with frequency ω separately: this gives access to pre-
dicting thermal geometries consistent with path-integral replicas (the thermal
density of a quantum harmonic oscillator is Gaussian, see the Supporting in-
formation of Reference 46). This puts a perspective on methods that attempt
to incorporate quantum properties by elevating the physical temperature by a
constant shift: such an approach is not physically well founded, as according to
Equation 3.4, each vibrational mode has a different effective temperature, and,
therefore, the magnitude of the quantum effect is different as well. How pro-
nounced these quantum effects are is shown in Figure 3.1, which depicts the
dependence of the quantity β∗/β ≤ 1 on ω and β. This suggests that the most
affected modes are those with high frequencies and at low temperatures, and

Figure 3.1: Graphical representation of the relationship given in Equation 3.4. The
region of the classical limit at high temperatures and low oscillation frequencies with
β∗ → β corresponds to the light coloration of the surface; conversely, the region of
pronounced quantum effects corresponds to the dark coloration. For orientation, β at
the temperature of 300 K is equal to approximately 39 eV−1.
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conversely, softer modes at higher temperatures tend to behave more classically.
Note that at 300 K (which corresponds to the inverse temperature of approxi-
mately 39 eV−1), physical molecular vibrations on the order of 102 to 103 cm−1

are affected by quantum effects in very different ways.
The presented TTS methodology is tested on creating C-NNPs for three differ-

ent gas-phase molecules. First, we look at the simple example of benzene, which
has no reaction, and therefore, the TTS reduces to a simple, single-reference
NMS. This validates the correctness of the underlying physics given by Equa-
tion 3.4 in a simple, controllable context (as discussed below). Then, we address
two molecules with intramolecular proton-sharing reactions. On the one hand,
this is malonaldehyde, which we use to showcase that TTS can be efficiently
combined with active learning to obtain an accurate C-NNP despite the presence
of anharmonicities beyond the reaction that we are trying to describe. On the
other hand, we look at the DABQDI molecule (which will be discussed in detail
in Chapter 6). The implementation of the TTS method has been realized in the
Python programming language and is expected to be released as a part of a future
public version of the AML code.

3.4 | Paper II: Additional results and discussion

3.4.1 Normal mode distributions in gas-phase benzene

As it was stressed explicitly in Paper II, the TTS ensemble does not correspond
to any physical ensemble, and no physical quantities should be calculated over it:
it merely serves an auxiliary purpose in NNP training. However, in the simple
case of gas-phase benzene simulations at 300 K, an interesting similarity between
the true canonical ensemble and the TTS ensemble appears, since the thermally
available PES at this temperature is closely represented by its harmonic approxi-
mation — for that reason, benzene is often highlighted as an example of a “highly
harmonic system” that can be accurately described as a collection of independent
harmonic oscillators in individual normal coordinates. This is already clear from
the distributions of geometric properties in Figure 2 of Paper II, which shows
a comparison of MD and TTS statistics. However, it is useful to illustrate this
explicitly through the full, multivariate Gaussian distribution from which the
TTS samples are drawn. A plot comparing the distribution of all normal coordi-
nates from AIMD simulations (shaded areas) and TTS (solid lines) is shown in
Figure 3.2 for both the classical and quantum case (red and blue, respectively).
The values of the normal coordinate were obtained by projecting each immedi-
ate mass-weighted configuration Q ≡ M− 1

2R onto the corresponding normalized
normal mode vectors

Ωi = Q ·ΩΩΩi. (3.5)

Clearly, the TTS and the MD distributions exhibit a nearly perfect overlap in
both the classical and quantum case, which represents direct evidence for the
correctness of the physics encoded in Equation 3.4. The quantum TTS distribu-
tions retain their classical Gaussian shape but are non-trivially widened as the
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difference between β∗ and β grows with increasing oscillation frequency; this ef-
fect is reliably reproduced by ab initio PIMD simulations that make no harmonic
approximation. In less harmonic systems, such as the case of malonaldehyde dis-
cussed in detail in Paper II, the level of agreement between the true, anharmonic
distribution and that of the TTS samples would be lower, possibly requiring active
learning to provide good coverage of the anharmonic PES.

3.4.2 Distribution of malonaldehyde TTS geometries

As a supplementary plot to the ones presented in the malonaldehyde section of
Paper II, the distribution of the TTS samples is shown in Figure 3.3. In the
top panel, the proton-sharing MEP, which serves as the entryway into the TTS
procedure, is presented as a function of the dimensionless reaction coordinate ξ.

Figure 3.2: Statistical probability density distributions of normal mode coordinates
in gas-phase benzene at 300 K obtained by projecting the immediate geometry on a
set of normal mode vectors calculated for the optimal minimum geometry. The red-
shaded distributions originate in a classical AIMD simulation, whereas the blue ones
were obtained from an ab initio PIMD simulation. The red lines then represent the
distribution of classical TTS geometries, and the blue lines their quantum counterpart.
Each panel has the corresponding vibrational wavenumber in the units of cm−1 shown
in the top right corner.
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Figure 3.3: TTS of malonaldehyde. Top panel: the potential energy (PE) of the
molecule as a function of the proton-sharing MEP described by the dimensionless re-
action coordinate ξ. The reactant and product minima and the transition state are
highlighted in red. Bottom panels: the same reaction MEP (black with red highlights)
shown in a suitably chosen subspace of geometric descriptors dOO′ and δ to describe the
proton-sharing reaction (see main text for definitions). Each point in the scatter plots
represents a TTS-generated geometry projected into the same subspace. Points that
share the same color belong to one control point. Note the broadening of the quantum
distribution on the right compared to the classical distribution on the left.

The two end-point minima and the transition state, which are used as TTS control
points, are highlighted in red. The two bottom panels then show the same MEP
in the subspace given by two geometric coordinates: the oxygen–oxygen distance

dOO′ ≡ |RO −RO′ | (3.6)

and the proton-sharing coordinate

δ ≡ |RO −RH| − |RO′ −RH|. (3.7)

This pair of descriptors is commonly used to describe proton-sharing processes
because the heavy atoms are brought closer together during the course of the
reaction, creating the characteristic V-shaped path. Alongside the MEPs, Fig-
ure 3.3 contains a scatter plot of the geometries generated by TTS with the color
of each cluster denoting its correspondence to a given control point. This kind
of plot can be understood as a real-world equivalent of the illustrative TTS on
a model 2D PES shown in Figure 1 of Paper II. Note that the quantum TTS
distribution is broadened in the perpendicular direction to the MEP due to the
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inclusion of β∗ for the perpendicular modes (the same effect was illustrated in
Figure 3.2 for benzene).

3.4.3 Going beyond the gas phase

While gas-phase reactions clearly carry a great deal of relevance in molecular
physics ranging from atmospheric chemistry to industrial processes carried out
in the gas phase, it is important to realize that various condensed-phase and
hybrid arrangements, such as reactions in solutions, on surfaces, at interfaces,
and in solid materials, are perhaps of even larger technological and biological
significance. At the same time, the generation of reactive MLPs for gas-phase
systems could be comfortably brute-forced via explicit ab initio simulations on
modern supercomputers, technically making TTS not necessary, even though it
was clearly shown in Paper II to lead to a significant speed-up of the whole
process.

Therefore, to close this Chapter, we shall hypothesize about the possible gen-
eralizations of the TTS method beyond the gas phase, where methodology of
this sort is inevitable. As a standalone sampling method, TTS is fundamentally
limited by the harmonic approximation and the small number of configurational
minima one can take into account. As such, it can only be used for non-gas-
phase systems where the parts that do not actively participate in the reaction are
addressable, at least to a decent degree, by the harmonic approximation. This
includes, for instance, various crystals, reactive systems encased in isolated solid
matrices, or surface-bound molecules without significant surface diffusion; here,
TTS can potentially yield computationally affordable, first-generation C-NNP
models that can be further refined by active learning, if necessary. A bigger chal-
lenge is represented by reactive systems where disordered condensed phase comes
into play, e.g. liquids, solutions, and interfaces with a liquid component. In
this case, extremely many configurational minima are available, and using TTS
alone makes it practically impossible to probe even a relevant subset of them
for sufficient representation of configurations in the candidate set. On the other
hand, simulation methods such as MD are very efficient in scanning these slightly
rippling, nearly flat PESs of liquid systems. Therefore, one can imagine a com-
bined method that will use the capability of TTS to sample geometries along
a well-defined reaction path supplemented by sampling thermal configurations
using some kind of molecular simulation. The exact nature and extent of this
combination and its deployment to study realistic condensed-phase reactions will
be explored in future studies.
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4 | Electronic and molecular struc-
ture of solvated benzene radical
anion

The following Chapter summarizes and discusses our research focused on the
benzene radical anion solvated in liquid ammonia and the consequent questions
that it opens. The theoretical core of this relatively extensive research project
that combines theory with experiment is represented by two publications referred
to as Papers III and IV and listed as References 71 and 72, respectively, which are
reprinted in Appendix C). In both publications, I figure as the first author and
had a primary role in the performing of the simulations, design and execution of
the data analysis, and in the preparation of the manuscripts.

4.1 | Papers III and IV: Summary

The benzene radical anion is notably formed in the environment of liquid ammonia
when a solvated electron attaches to a molecule of benzene during the course
of the initial mechanistic step of the Birch reduction (Paper III, Equation 1).
Intrigued by the chemistry of solvated electrons and motivated to gain insight
into this technologically important process, we performed AIMD simulations of
the benzene radical anion in bulk liquid ammonia using the hybrid revPBE0-D3
density functional.

This choice of functional is shown in “Benzene radical anion in the context
of the Birch reduction: when solvation is the key” (Paper III) to be crucial for
a correct description of the studied system to prevent an overdelocalization of
the excess electron due to self-interaction error at the otherwise computationally
much more viable GGA level of theory. We show that at the hybrid DFT level,
the spin density stays spontaneously localized almost exclusively on the aromatic
solute (Paper III, Figure 1). This is consistent with the experimentally implied
fact that the solvated radical anion represents an electronically stable bound
state, unlike in the gas phase, where it can only be measured as a short-lived
resonance. Apart from these considerations, Paper III does not discuss electronic
structure problems, but rather addresses the questions of molecular geometry of
both the radical anion solute itself and its solvation structure, while comparing
them to neutral benzene in solution as a reference. Importantly, our simulations
demonstrate that the solute undergoes a dynamic Jahn–Teller effect (Paper III,
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Figures 2–4), which causes its geometry not to be a fixed, hexagonal one like in
the case of neutral benzene, but rather a dynamically evolving one switching be-
tween two distinct symmetries in a reduced-symmetry point group. The solvation
structure is analyzed via spatial distribution functions (SDFs) and their integrals
in the form of various angularly restricted radial distribution functions (RDFs)
(Paper III, Figures 5, 6). These point to the fact that two solvation regimes are
present in the studied systems: hydrophobic solvation that can be expected for
a hydrocarbon solvated in a polar solvent and a characteristic π-hydrogen bond
that is formed by the interaction of the polar hydrogen of the solvent molecules
with the π-electron density of the solute. Finally, the discussion in Paper III
revolves around the prediction of vibrational spectra and finds plausible evidence
for π-hydrogen bonding in the infrared spectrum (Paper III, Figure 7). Inter-
estingly, the very diffuse character of the excess electron in the benzene radical
anion causes its solvation to be only slightly more structured than in neutral
benzene. A detailed study of π-hydrogen bonds in solvated benzene, including
their structure, dynamics and vibrational spectroscopy, is presented in Paper V
in Chapter 5.

As the name suggests, the focus of “Electronic structure of the solvated benzene
radical anion” (Paper IV) is the complementary electronic part to Paper III. The
discussion there consists of two parts. First, we inspect the manifestation of
the Jahn–Teller effect on the spin density. Using a rather involved combination
of dimensionality reduction of the 3D spin density into a finite vector space of
Fourier coefficients with unsupervised machine-learning methods, we find that the
spin density also evolves dynamically between two distinct symmetries, closely
following the underlying molecular geometry (Paper IV, Figures 2–4). This shows,
loosely speaking, a certain level of inertness of the benzene radical anion to the
symmetry-breaking by the presence of the solvent: qualitatively, the observed
Jahn–Teller effect is consistent with symmetry arguments that would be valid
in the gas phase. Note, however, that unlike in the gas phase, the solution
environment allows one to actually observe this phenomenon in equilibrium, as
the species is stabilized here. The issue of solvent-induced electronic stability is
set on a rigorous footing in Paper IV by demonstrating that the benzene radical
anion represents a bound state (Paper IV, Figure 5). To this end, we model
the valence EDOS using the G0W0 method, which estimates the binding energy
of the excess electron to be around −2.3 eV relative to the vacuum level (note
that this is even slightly more bound than the binding energy of −2.0 eV of
the free solvated electron62). To inspect the EDOS projected on the various
molecular entities present in the system, we introduce the so-called projected
density of states (PDOS), which allows us to isolate these contributions. This
has multiple advantages, for instance, it uncovers solute states hidden under the
overwhelming solvent peaks (due to larger concentration) and also allows us to
inspect the radially resolved solvent PDOS to find a slight effect on the solvent
electron binding energies in the first solvent shell (Paper IV, Figure 6). These
results can be used to justify the usual isolation of experimental solute XPS
spectra by subtraction of the neat solvent, as projection is only possible in the
realm of theoretical modeling.
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4.2 | Papers III and IV: Follow-up research and
discussion

4.2.1 Solvent-induced stability

Arguably the most important result of Paper IV is the calculation of the excess
electron binding energy in the bulk liquid ammonia solution of the benzene radical
anion that proves the existence of a bound state. An indisputable advantage of
the G0W0 approach is the fact that it gives direct access to physically meaningful
bulk binding energies without having to rely on KS orbital energies or resort to
even lower levels of theory. On the other hand, the calculations performed in order
to obtain the data presented in Paper IV do not shed light on the stabilization
process itself, i.e., how and, perhaps more importantly, why the benzene radical
anion is stabilized upon transitioning from the gas phase to the solution. In
addition, we have previously seen the G0W0 method produce unphysical results
in the case of solvated electrons (as discussed in Chapter 1). This was most
likely due to basis set convergence issues owing to the stringent requirements
on the basis set needed to describe the off-atomic density peaks of the solvated
electrons. Since this is not a problem with the benzene radical anion, where the
excess electron density is localized on atoms as usual, we do not strictly have
a reason to doubt the obtained results, but having a consistency check at hand
would be reassuring.

For these reasons, we have revisited the calculation of the excess electron bind-
ing energy in the benzene radical anion from another methodological standpoint
using vertical ionizations in “Benzene radical anion microsolvated in ammonia
clusters: modeling the transition from an unbound resonance to a bound species” 73

(this publication is not attached to this thesis; as the second author, I supervised
the execution of the calculations and contributed to the manuscript preparation,
but did not perform calculations myself).

Figure 4.1: Binding energies calculated for small clusters consisting of ammoniated ben-
zene radical anion at the revPBE0-D3/def2-TZVP level of theory. The top horizontal
axis shows the average number of solvent molecules for the corresponding cluster radius
given at the bottom axis. The shading gives the magnitude of the standard deviation
of the binding energies.
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Here, one approaches the definition of Dyson equation eigenvalues rather lit-
erally and calculates the binding energy of the highest-energy electron as

EB = En
0 − En−1

0 , (4.1)

i.e., by explicitly calculating the ground state energies of the original anionic
system with n electrons and that of the neutral system after vertically remov-
ing a single electron and subtracting them. In contrast to the G0W0 approach,
this one cannot be used to model all binding energies since one is not free to
choose which electron gets detached — it will always be the top one according
to the aufbau principle — and cannot be used for periodic boxes due to the non-
convergence of the Madelung sum of the residual charged periodic system. There-
fore, these calculations were performed based on molecular clusters carved out of
the thermal periodic geometries sampled by AIMD simulations in open bound-
ary conditions, consistently with the aforementioned solvated electron work62 in
Chapter 1. This allowed us to answer several questions regarding the transition
from the gas phase into the solution by considering spherical clusters centered
around the solute with progressively increasing radii. First, we show that as few
as 6–8 ammonia molecules are needed to bring the binding energy into the neg-
ative numbers (Figure 4.1, top panel). Strictly speaking, the preceding positive
binding energies before reaching this point do not have a physical meaning since
an L2-integrable basis is used to evaluate them, which is not suitable for ad-
dressing resonances; once the binding energy becomes negative, the quantitative
values become meaningful. At the same time, the isolated benzene radical anion
submerged into a polarizable continuum with the dielectric constant ϵr = 22.6
corresponding to liquid ammonia already exhibits a binding energy very close to
the predicted bulk value of −2.3 eV. This suggests that the radical anion is sta-
bilized mainly by electrostatic screening via the dielectric environment produced
by the solvent rather than specific interactions with the ammonia molecules.

Finally, we explore what number of solvent molecules one needs to reach
the bulk limit without resorting to polarizable continuum solvation. Clearly,
the DFT calculation of clusters counting thousands of molecules is not an op-
tion due to its prohibitive computational requirements. These calculations were
thus approached using a special form of quantum mechanics/molecular mechan-
ics description known as effective fragment potentials203 to represent the solvent
beyond the molecules in the closest distance to the solute. Several particular
methods and numerical choices are compared in Reference 73; here, the binding
energy curve that gives the best agreement with the G0W0 results is shown in
Figure 4.2. A consistent value of −2.3 eV is obtained in clusters with >4000 sol-
vent molecules. In summary, these calculations point to the fact that the benzene
radical anion is stabilized by the electrostatic screening induced by the solvent
rather than chemically specific interactions, and while already very few solvent
molecules produce a bound state, a large number solvent molecules are needed to
reach the bulk behavior. The stability of the benzene radical anion was observed
experimentally in electron attachment experiments to ammonia clusters doped
with benzene molecules: here, the energy released by the binding of the incident
electron was observed to cause solvent molecules to evaporate from the clusters,
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measured by mass spectrometry.204

4.2.2 Experimental correspondence

The theoretical prediction of the EDOS of the benzene radical anion and of neutral
benzene in Paper IV raises the question of whether the corresponding experimen-
tal spectra can be measured by liquid microjet XPS.

In “Photoelectron spectroscopy of benzene in the liquid phase and dissolved
in liquid ammonia”,74 our experimentalist colleagues report that the solubility
of benzene in liquid ammonia at −50 ◦C of approximately 400 mM is sufficient
for the resolution of XPS by a large margin and successfully measure the XPS
spectrum of that solution (once again, despite my co-authorship of the publi-
cation, this paper is not attached to this thesis owing to my contribution by
data analysis and manuscript preparation, but not by adding relevant new cal-
culations). This exhibits excellent agreement with the theoretical predictions as
shown in Figure 4.3 for both the total spectra and the solute contribution ob-
tained, respectively, by projection and by subtraction in the calculation and the
experiment.

However, an identical experiment for the benzene radical anion (realized by
the addition of an alkali metal into the solution of benzene in liquid ammonia
in analogy with the solvated electrons/dielectrons XPS experiments discussed in
Chapter 1) was not successful and only showed spectroscopic evidence of neutral
benzene and a solvated electron: the excess electron feature at ca. −2 eV would
be indistinguishable between the solvated electron and the radical anion anyway,
but no shifts of the lower solute states were observed as predicted by theory (cf.
Paper IV, Figure 5). To explain why there is no benzene radical anion observed in
the XPS experiments, one has to come back to more fundamental considerations.
In particular, we have shown and discussed that the benzene radical anion in

Figure 4.2: Binding energies calculated for larger clusters consisting of ammoniated
benzene radical anion. The calculation was perfomed using a dual-potential approach:
the benzene radical anion and all solvent molecules up to 6 Å were treated at the
revPBE0-D3/def2-TZVP level of theory, while all solvent at larger distances was treated
using EFP. The top horizontal axis shows the average number of solvent molecules for
the corresponding cluster radius given at the bottom axis. The dashed horizontal line
gives the G0W0 prediction of the bulk value of −2.3 eV.
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Figure 4.3: Comparison of XPS measurements and G0W0 calculations of neutral ben-
zene solvated in liquid ammonia. Top panel: The measured total XPS spectrum, includ-
ing the solute as well the solvent (black points) was fitted with a smooth curve (black
line).74 The calculated EDOS is shown in green (same data as in Figure 5 of Paper
IV). Bottom panel: Same quantities as above, but only the contribution of the solute.
The experimental curve was obtained by subtraction of the neat solvent spectrum; the
theoretical curve was obtained by projection, as described in detail in Paper IV.

liquid ammonia forms an electronically stable bound state and a minimum at the
corresponding PES. However, we did not look at its thermodynamic stability, i.e.,
what does its equilibrium with solvated electrons in the liquid ammonia solution

C6H6 + e– C6H
•–
6 (4.2)

look like. Perhaps, the benzene radical anion is not a strongly populated state
despite its electronic stability. Addressing this question correctly from a computa-
tional perspective means addressing the free-energy difference ∆F between these
two states, which is by all means no simple task. Even without considering the
computational resources needed to perform some sort of an enhanced-sampling
simulation at a hybrid DFT level of theory with the extended basis set needed
to describe solvated electrons, it is unclear what the CV describing this reaction
should be in the first place. Nemirovich and coworkers205 have circumvented
the difficult explicit free energy calculation by making the approximation that
T∆S ∼ 0 for the reaction (which they present as a well-reasoned step in this
case) and thus ∆F ∼ ∆U , where ∆U is the adiabatic difference in potential
energies between the states that includes molecular relaxation. Interestingly,
building on these premises, they find that in the single solvated electron case, the
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Figure 4.4: Experimental XPS measurement of naphthalene and its radical anion in
tetrahydrofuran (THF).75 The top panel shows the spectrum for the neutral species,
the bottom one for the anion. Important spectral features are highlighted by the black
arrows.

radical anion is the favored state

C6H6 + e– C6H
•–
6 (4.3)

but at higher concentrations that feature dielectrons, the radical anion is disfa-
vored

C6H6 + e –
2 C6H

•–
6 + e–. (4.4)

Now, the resolution of the XPS experiment is limited by the concentration of the
solutes and does not allow one to measure in the single solvated electron regime
with an appropriate signal-to-noise ratio. Therefore, the performed experiments
rather targeted the dielectron regime and it is consistent with the theoretical
groundwork that no radical anion was observed. A more suitable experimental
approach capable of measuring much lower solute concentrations will be necessary
to capture the fingerprints of the benzene radical anion in liquid ammonia. Note
that this does not invalidate our calculations presented in Paper IV in any way
but also illustrates the fact that sometimes the overall picture is bigger than a
particular calculation can reveal.

At this point, a question was raised whether changing the chemistry of the
system, such as perhaps measuring a different aromatic radical anion solute in a
different solvent, can represent a problem more suitable for a liquid-microjet XPS
measurement. As a result of this discussion, a recently published paper “Stability
and reactivity of aromatic radical anions with relevance to Birch reduction” 75
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reports the measurement of the naphthalene radical anion in tetrahydrofuran,
which can be obtained at much higher concentrations; the measured spectra are
shown in Figure 4.4 (again, while I have a minor contribution to this publication,
it is not attached to this thesis but rather its highlights are discussed for the
sake of the big picture perspective). Importantly, note that the studied system
follows the same trend as the benzene radical anion discussed in Paper IV. Neutral
naphthalene has its highest-occupied state at around −7 eV, just at the onset of
the valence spectrum of the solvent (Figure 4.4, top panel). After binding the
electron, the resulting radical anion is recognizable for two reasons: first, a new
feature appears at −2.7 eV (cf. the −2.3 eV peak predicted for the benzene
radical anion) and, second, a non-trivial rearrangement of the solute spectral
features takes place in the region between −5 and −8 eV (Figure 4.4, bottom
panel).

4.2.3 Remarks on the interpretation of XPS spectra

To close this Chapter, we will address some of the details that were brought
up during the various discussions of XPS spectra both from the theoretical and
experimental points of view.

4.2.3.1 Origins of different peak broadenings and intensities between
XPS and EDOS

During the course of this text, we have observed numerous times (think of the
data in Figures 1.3 or 4.3) that experimental XPS peaks are broadened in com-
parison to the calculated EDOS peaks and have qualitatively different intensities.
The alteration of peak widths can be attributed to two origins. First, our simula-
tions at the time did not include NQEs and, therefore, the experimental spectra
are broadened by quantum effects which are not reflected in the simulations with
classical nuclei. Second, the experiment is affected by inelastic scattering pro-
cesses that take place during the realistic electron detachment from the sample,
which again contributes to the experimental broadening in comparison to the
calculated peaks that only contain idealized vertical binding energies. The spec-
tral intensities in the experiment reflect non-trivial absorption cross-sections for
each ionization, whereas the calculation considers all ionizations with the same
probability.

4.2.3.2 Gas-to-liquid shifts

Finally, let us relate to an intriguing physical problem of gas-to-liquid shifts shown
in Figure 1.3 where liquid ammonia exhibits a fairly constant gas-to-liquid shift of
1 – 2 eV over the studied energy range in comparison to the gas phase spectrum.
One would naturally expect this shift to be system-dependent. However, experi-
mental reality suggests otherwise: most, even chemically unrelated liquids, such
as ammonia, benzene, or tetrahydrofuran mentioned in this work,52,74,75 exhibit
similar shifts of their spectral features by 1 – 2 eV. This surprising lack of depen-
dence on the chemical nature of the liquid can be explained semi-quantitatively
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Figure 4.5: The Born–Haber cycle for predicting gas-to-liquid shifts in XPS spectra of
liquids.

using a very simple but insightful model, which models the liquid as a continuum
and approximates the solvation energy using the Born equation. To this end, we
build a Born–Haber cycle as shown in Figure 4.5: we are reluctant to call the
cycle “thermodynamic” as it contains vertical processes without geometry relax-
ation, but its principle is similar to true thermodynamic cycles. We start with
an uncharged, structureless spherical species S in the gas phase defined by an
effective radius R in the top left corner of the scheme: this can represent either a
single molecule of the liquid in question (e.g., ammonia in liquid ammonia) or a
solute (e.g., benzene in liquid ammonia). First, we perform a vertical ionization
of an electron from S for energy −E(gas)

B , giving us a nascent gas-phase cation

Liquid n R [Å] ∆EB predicted [eV] ∆EB observed (h. p.) [eV]
H2O206 1.33 2.24 1.40 1.45
NH3

74 1.39 1.72 2.01 1.97
THF75 1.40 2.63 1.36 1.28
C6H6

74 1.50 2.95 1.36 0.82

Table 4.1: Illustration of the gas-to-liquid shift prediction using the Born–Haber cycle
for examples of chemically distinct liquids. The abbreviation h. p. stands for “highest
peak”, referring to the shift of the spectral feature of the highest-energy electrons.
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S+. Then, we model the solvation of S+ in the liquid phase by submerging it
into a continuum with a dielectric constant ϵr: the Born solvation free energy for
the process is

∆Fs = −
Z2e2

8πR

(︃
1− 1

ϵr

)︃
(4.5)

with the charge Z = 1. Then, we vertically attach an electron to the solute
S+ restoring the neutral S and releasing the binding energy E

(liquid)
B . Finally,

we take the solute out of the solution to complete the path. However, there is
an important point to consider: in order for the cycle to close, the polarizable
continuum can only be allowed to relax electronically during the vertical binding
inside the solution. In turn, one has to accordingly modify Equation 4.5 only to
reflect the high-frequency limit of the dielectric constant that controls electronic
polarization

∆Fs = −
Z2e2

8πR

(︃
1− 1

ϵel

)︃
, (4.6)

with
ϵel = n2, (4.7)

where n is the refractive index. Another alternative point of view to illustrate
this need is to take the two possible paths from gas-phase S to solvated S+ (either
vertically ionizing in the gas phase and then solvating, or solvating first and then
vertically ionizing in the liquid), which gives the same outcome if and only if
solely the electronic relaxation of the solute is taken into account. With these
considerations, the closed cycle is

−E(liquid)
B +∆Fs + E

(gas)
B = 0 (4.8)

which is trivially rearranged to give the final expression

∆EB ≡ E
(liquid)
B − E(gas)

B = −∆Fs. (4.9)

Therefore, in this model, the gas-to-liquid shift only depends on the radius R
of S and the refractive index of the liquid. Since most liquids have refractive
indices in the range 1.3–2.0, the gas-to-liquid shifts can generally be expected
to be similar, even though the static dielectric constants ϵr may vary greatly
(some predicted and measured shifts are listed in Table 4.1). Note that the
Born–Haber model generally accounts for most of the experimentally observed
shifts; the only exception is benzene, where clearly the spherical approximation
is far from reality. The agreement with the experiment is quite surprising once
one considers the simplicity of the model, which cuts several important corners
through neglecting other relevant contributions such as cavitation energies during
solvation of the species, or the species’ internal structure.
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5 | π-hydrogen bonding in aqueous
and ammoniacal environments

The findings of our work on the solvation structure of the ammoniated benzene
radical anion and neutral benzene presented in the previous Chapter prompted
us to investigate the phenomenon of π-hydrogen bonding in more detail. This
resulted in Paper V (in the form of an arXiv preprint at the time of writing this
thesis), listed as Reference 87 and reprinted in Appendix C.

5.1 | Paper V: Summary

In “Elucidating the nature of π-hydrogen bonding in liquid water and ammonia”
(Paper V), we report the execution and analysis of classical and TRPMD simula-
tions of neutral benzene dissolved in liquid water and liquid ammonia. The work
aims to explore the phenomenon of π-hydrogen bonding in these two solvents
concerning its structure, dynamics, and, notably, vibrational spectroscopy.

From the structural perspective, we find similar solvation motives in both
solvents by inspecting the SDFs of the solvent heavy atoms and hydrogens around

Figure 5.1: A simulation snapnshot showcasing a benzene molecule and a π-hydrogen
solvent molecule (the rest of the periodic bulk solvent has been removed for visualization
purposes.)
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the benzene solute. This reveals the existence of the so-called π-hydrogen caps in
the respective SDFs (Paper V, Figure 1), which point to a characteristic, oriented
π-hydrogen bonding interaction. Further analysis of the possible orientations of
the molecules occurring in the π-hydrogen caps (Paper V, Figure 2) suggests that
while the nearly vertical configuration (i.e., the one with the solvent molecule
pointing its hydrogen atom towards the planar solute with the H–X · · · C6H6
angle not exceeding 40◦) is the most common (Figure 5.1), the pool of available
configurations is richer than that. Based on this knowledge, we set up a time-
dependent existence criterion to judge whether a given solvent molecule (or, more
precisely, a given replica of an imaginary time path-integral representation of a
given solvent molecule in the TRPMD case) is π-hydrogen bonded. This is defined
as

h(t) = Θ [rX(t)− r0] Θ [zX(t)− z0] Θ [θX(t)− θ0] , (5.1)

where r and z are the cylindrical radial and vertical distance with respect to the
plane of the benzene solute, rX and zX and the solvent heavy atom positions in this
coordinate system and θ is the π-hydrogen bond angle, and r0, z0 and θ0 are fixed
cutoff parameters (see Paper V for details); an example of this quantity is shown
in Figure 3 of Paper V. Note that the definition in the above Equation serves an
illustrative purpose; for the fully formal expressions, including all indices, refer
to the text of Paper V. With access to these existence time series, we address the
following questions.

First, we look into the cooperativity of π-hydrogen bonds since the benzene
molecule simultaneously offers two binding sites for π-hydrogen bond formation
(figuratively speaking, below and above the plane of the aromatic ring). We find
that ammonia exhibits essentially no cooperativity effects, and the two binding
sites behave independently. In contrast, water shows noticeable anticooperativ-
ity, where the formation of one π-hydrogen bond lowers the probability of the
concurrent formation of a second one (Paper V, Figure 4): a gas-phase insight
into this effect is presented and discussed in the following Section. Interestingly,
we could not reproduce this effect with a C-NNP and we attribute this to the fact
that the double-π-hydrogen bonded configuration extends beyond the standard
12 a0 Behler–Parrinello cutoff, which renders the C-NNP insensitive to it. This
affects not only the model itself but also the QbC-selected training set: this is
a possible reason why we were not able to improve the description by switching
to an equivariant NequIP model197 (which is not limited by a hard cutoff value)
trained on the same geometries. Additional research is needed to pinpoint the
reasons for the observed behavior and potential improvements.

Second, we autocorrelate the time-dependent existence time series to obtain
the so-called existence time-ACFs (Paper V, Figure 5), and then, using these, we
estimate the lifetimes of π-hydrogen bonds in both solvents. We observe shorter
lifetimes in water (1.8 ps) compared to the solvent–solvent hydrogen bond lifetime
(3.9 ps) and comparable lifetimes in ammonia (1.7 ps vs. 1.4 ps, respectively for
the π-hydrogen and solvent–solvent hydrogen bonds).

Finally, we model the VDOS and IR vibrational spectra of both studied sys-
tems and reproduce the experimentally observed phenomena discussed in Chap-
ter 1. We find an imprint of the blue-shifted OH-stretch vibration due to the
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Figure 5.2: ∆ρ(r) plots for the optimized gas-phase clusters shown at the ±3.5·10−4 a−3
0

contour (red for +, blue for −; see text for definition).

π-hydrogen bonded molecule in the water simulations. There is an equivalent
effect in ammonia but without vibrational shifts: this behavior is fundamentally
connected to the weak hydrogen bonding, which cannot soften the vibrations in-
side a solvent–solvent hydrogen bond as is the case in liquid water. To this end,
we present the real part of the π-hydrogen bond resolved spectra obtained by
correlating the simulated time-resolved vibrational spectra with the time series
h(t). The reasons why a non-trivial imaginary part of the time-resolved spectrum
exists and a justification for why it does not need to concern us in this case are
discussed below.

5.2 | Paper V: Discussion

5.2.1 Changes in electron density due to π-hydrogen bond-
ing

To provide a degree of insight into the observed anticooperativity of π-hydrogen
bonds in water, we resorted to a pair of auxiliary gas-phase calculations with the
aim of qualitatively exploring the changes in electron density with π-hydrogen
bonding. For this purpose, we optimized the geometries of the gas-phase double-
occupied configurations (Figure 5.2) at the revPBE0-D3(BJ)/def2-TZVP207,208

level of theory using the QChem software209 and calculated the electron density
of the optimized geometry ρ(r). Then, we have vertically split the system into
an isolated solvent molecule (Figure 5.2, black) and the remaining single-bonded
configuration (Figure 5.2, usual color-coding by elements) and also calculated the
electron densities of these fragments, say, ρA(r) and ρB(r), respectively. Finally,
from these densities, we have calculated a difference density

∆ρ(r) = [ρA(r) + ρB(r)]− ρ(r), (5.2)
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which shows the polarization of the system owing to the removal of one of the
water molecules. The positive and negative contours at ±3.5 ·10−4 a−3

0 are shown
in Figure 5.2 in red and blue, respectively.

In the case of water, the removal of the solvent molecule creates a pronounced
effect where the electron density is strongly drawn to the side of the remaining sol-
vent molecule, creating a large negative lobe at the side of the removed molecule
and a large positive lobe at the other. This can be linked with the observed an-
ticooperativity: as the density is depleted at the unoccupied side, the formation
of the second π-hydrogen bond is correspondingly more difficult. In ammonia,
the effect is much less pronounced already at the level of the gas phase. At the
same isovalues, the positive lobe is essentially non-existent and the negative is
considerably smaller in size in comparison to water. This is qualitatively consis-
tent with the observed independence of the binding sites in ammonia. Additional
effort would be necessary to perform a similar analysis on the fully condensed
geometries.

5.2.2 The complex character of simulated time-resolved vi-
brational spectra

In the discussion revolving around vibrational analysis presented in Paper V,
we have relied on correlating a time-dependent vibrational spectrum with the
existence time series to isolate the vibrational spectrum of π-hydrogen bonded
molecules. In the following paragraphs, we will conduct an extensive analysis of
the way how time-dependent spectra are calculated and what potential compli-
cations such an analysis brings around. For this purpose, we will assume infinite
continuous trajectories of observables to be able to discuss the matter using the
methods of calculus.

To begin with, we remind ourselves that the VDOS is calculated using atomic
velocities as

IVDOS(ω) =
N∑︂
i=1

∫︂ ∞

−∞
dτ e−iωτcvv,ii(τ),

cvv,ii(τ) = ⟨vi(t0) · vi(t0 + τ)⟩t0 ,
(5.3)

where the index i labels the atoms, and the IR intensity is calculated using
molecular dipoles as

IIR(ω) = ω2

Nmol∑︂
i,j

∫︂ ∞

−∞
dτ e−iωτcµµ,ij(τ),

cµµ,ij(τ) = ⟨µµµi(t0) · µµµj(t0 + τ)⟩t0 ,

(5.4)

where i and j labels the molecules. As the Fourier imagea of a real even function
is a real even function, it is clearly expected for both vibrational intensities to

aHere, we adhere to the tradition of using the symbol ˆ︁f(ω) to denote the Fourier image of
the function f(t) — this does not represent a quantum mechanical operator!
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Figure 5.3: IR cross-terms obtained from an AIMD simulation of liquid water. Here,
we illustrate the complex nature of the individual cross-terms. The top row shows the
sum over half of the cross terms that comply with j > i (e.g., ˆ︁c12(ω)), which has a non-
trivial imaginary part. The middle row than shows the sum over the complementary
set (j < i, e.g., ˆ︁c21(ω)), which also has a non-trivial imaginary part that is exactly the
negative of the first one. The fact that they exactly cancel is shown in the bottom row
which shows the sum over all molecular cross-terms — a purely real quantity.

be purely real quantities. For the VDOS, this is obvious as it only uses ACFs,
which are real and even by definition (Equation 2.107). The same goes for the
IR self-terms with i = j. A seeming complication arises for the cross-terms with
i ̸= j, as these are generally not even and, therefore, have a spectrum with a
non-vanishing imaginary component. However, this can be disregarded for any
practical purposes: thanks to the time reversal property of Equation 2.106, each
cij term is balanced out by a corresponding cji term which together combine to
an even function, too (this effect is shown in a realistic example of a liquid water
AIMD simulation4 in Figure 5.3). Another perspective on why the imaginary
parts of molecular cross-terms have to cancel is obtained by considering that
the contribution of all cross-terms combined can be alternatively obtained by
subtracting the purely real self-term contribution from the also purely real total
spectrum obtained as the autocorrelation of the total dipole. As both VDOS and
IR share these same properties, we will use a general A(t0) notation for the time-
dependent observables and keep in mind that these can represent either atomic
velocities or molecular dipoles based on the immediate context.

The key quantity to the time-dependent vibrational spectrum is the time
dependent ACF (which we can use instead of general CFs thanks to the argu-
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mentation above)
cAA(τ, t0) = A(t0)A(t0 + τ) (5.5)

for which clearly the full correlation function is recovered by integration

cAA(τ) =

∫︂ ∞

−∞
dt0 cAA(τ, t0), (5.6)

cf. Equation 2.105. Some previous works relied on an approximate treatment,
where not the raw ACF fragments cAA(τ, t0) were used for the calculation of the
time-dependent spectrum, but each of these fragments was additionally autocor-
related with itself.170 This results in a non-exact decomposition, but also in a
mathematically simpler structure with purely real time-dependent spectra and
works well for many practical purposes. Here, we aim to explore the possibility
of an exact time decomposition of time-ACFs as defined in Equation 5.5. Due
to the general nature of the functions A(t0), one cannot say anything about the
symmetry properties of each contribution cAA(τ, t0), for instance, whether it is
even. As a result, its Fourier transform, i.e., the time-dependent spectrum, is a
non-trivial complex-valued quantity. This is easily shown explicitly through

ˆ︁cAA(ω, t0) =

∫︂ ∞

−∞
dt0 e

−iωτcAA(τ, t0)

=

∫︂ ∞

−∞
dt0 e

−iωτA(t0)A(t0 + τ)

= A(t0)e
iωt0

∫︂ ∞

−∞
dt′ e−iωt′A(t′)

= A(t0) ˆ︁A(ω)eiωt0 :
(5.7)

ˆ︁cAA(ω, t0) has an explicit complex phase factor and the Fourier image of the raw
time series ˆ︁A(ω) is also generally complex-valued. As expected, this highly non-
trivial nature vanishes upon integration over the time domain, which recovers the
full, real spectrum:

ˆ︁cAA(ω) =

∫︂ ∞

−∞
dt0 ˆ︁cAA(ω, t0)

= ˆ︁A(ω)∫︂ ∞

−∞
dt0 A(t0)e

iωt0

= | ˆ︁A(ω)|2.
(5.8)

However, since Equation 5.8 holds, it must be true that the real part of ˆ︁cAA(ω, t0)
integrates to the full spectrum∫︂ ∞

−∞
dt0 Reˆ︁cAA(ω, t0) = ˆ︁cAA(ω), (5.9)

and, consequently, ∫︂ ∞

−∞
dt0 Imˆ︁cAA(ω, t0) = 0. (5.10)
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Figure 5.4: Time-dependent VDOS of a single-atom (indexed 1 in the employed topol-
ogy of the system) velocity time series obtained from a classical AIMD liquid water
simulation. The top row shows the real and imaginary part of the Fourier transform
ĉ11(ω, t0) of the time-resolved ACF c11(τ, t0). The middle row then shows the integral of
the data on both top panels over the time axis taken with three different strides through
the data: the full resolution (2 fs) and then with data points spaced by 20 and 200 fs.
The bottom row then shows the alternative representation of the same time-dependent
spectrum, using the absolute value and the argument.

This causes a non-uniqueness in the choice of the “correct” time-dependent spec-
trum since multiple choices that share the same real part are possible. Apart fromˆ︁cAA(ω, t0), this is ˆ︁cAA(ω, t0) and Reˆ︁cAA(ω, t0): all of these spectra are distinct,
but all integrate to the same static spectrum.

This may represent a problem when correlating the spectrum essentially with
any geometric property (e.g., the existence h(t) series in Paper V), as the result is
a static spectrum with potentially non-vanishing imaginary components. We have
tested this effect on the VDOS of neat liquid water, inspecting the velocity time
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series of a single hydrogen atom (we use the employed topology index 1 to refer
to it, but the specific choice is not critical as all the individual velocity time series
behave identically from the viewpoint of this discussion). The obtained spectra
(shown in Figure 5.4) are a testament to the analytical expressions derived above.
The top row shows the complex nature of the time-dependent VDOS with both
the real and the imaginary parts having a highly non-trivial character, exhibit-
ing both positive and negative values. The validity of Equations 5.9 and 5.10
is demonstrated in the middle panel. An integration with the full resolution of
the time-dependent data reconstructs the static VDOS through the real part and
makes the imaginary part vanish nearly exactly (small fluctuations of the imagi-
nary part, most likely an artifact of the finite data set size, the use of FFTs and
apodization, are about 6 orders of magnitude smaller than the real part). Taking
a stride through the data (which can mimic the correlation of the time-dependent
spectrum with h(t)) reveals that Equations 5.9 and 5.10 remain approximately
true: the imaginary part remains small in comparison to the real part. This is
further supported by inspection of the argument of the spectrum, which shows
a wildly oscillatory, quasi-random behavior, suggesting that integrating over a
large number of data points will eventually make the phase vanish.

These considerations justify the use of only the real part of the spectra in
Paper V as including the imaginary part only causes a small difference, especially
when taking into account the fact that the π-hydrogen bond is featured promi-
nently in h(t) and thus a large number of data points is being used. However,
the relevance and, perhaps more importantly, the meaning of the imaginary part
could be explored in more detail. Finally, as a technical note, the form of the
time-dependent spectrum given in Equation 5.7 implies that such spectra could
be calculated in a more streamlined way, only needing a single Fourier transform
of the raw time series and a trivial complex phase factor, rather than performing
a Fourier transform at every point along the time axis.

94 5.2. Paper V: Discussion



6 | DABQDI in the gas phase and
adsorbed on Au(111)

The final results-oriented Chapter focuses on the properties of the DABQDI
molecule as an isolated entity and bound to the surface of gold and offers a
compilation of various thus far unpublished results that we collected along the
way.

6.1 | Insight from the gas phase

We will begin by discussing the results concerning DABQDI and some of its
shorter chains in the gas phase mainly focusing on the proton-transfer reactivity.
First, we will inspect the proton-sharing PESs of these systems and the corre-
sponding MEPs, which makes it possible to discuss what reaction mechanisms
are classically allowed. Then, at the level of the DABQDI monomer, we will
introduce NQEs into the picture using instanton rate theory and discuss how
quantum effects modify the possible reaction mechanism.

6.1.1 Classically allowed proton-sharing mechanisms

Concerted proton tunneling has been suggested as a suitable mechanism for the
proton-transfer reaction in DABQDI chains on Au(111), as discussed in Chapter 1
and in Reference 93. Here, our aim is to explore whether concerted proton transfer
can be already observed in simpler systems, i.e., monomers or short chains in the
gas phase, and if yes, whether it is a manifestation of NQEs as suggested by
the interpretation of the experiment. The proton-sharing PES for the DABQDI
monomer in terms of proton-sharing coordinates δ (return to Paper II, Figure 6 for
definitions) was discussed in detail in Paper II as the molecule was used as one of
the original examples to illustrate the TTS procedure. For convenience, identical
data is shown also in Figure 6.1. It was obtained by performing a 2D relaxed
scan with the values of the two proton-sharing coordinates fixed using custom
constraints from the ASE library. The proton-sharing PES has a 4-minimum,
4-TS, and one-maximum structure: clearly this does not allow for a concerted
proton transfer from the classical perspective, as the reaction MEP would lead
through a higher-order saddle point (ca. 1.3 eV above the global basin that we set
as the zero-energy reference), coinciding with the diagonal line δ2 = δ1. Rather,
the actual MEP (calculated using the climbing-image NEB calculation159,210 and
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Figure 6.1: The PES of the DABQDI monomer shown as a function of two δ-coordinates
that describe the transfer of the individual exchangeable protons (blue). The classical
MEP on this PES is shown as a black line. The important stationary points along this
MEP are highlighted in orange (minima) and in red (TSs).

our C-NNP46) winds around the central barrier (Figure 6.1, black) through a
lower-lying, first-order TS (ca. 0.8 eV above zero) and an off-diagonal minimum
(ca. 0.6 eV above zero). As such, the classically allowed mechanism of the
proton-sharing reaction is sequential, where one proton is transferred first (this
corresponds to the “horizontal” part of the MEP where δ1 changes while δ2 stays
almost constant) and the other proton follows after the first one (this corresponds
to the remaining “vertical” segment).

For the dimer and the trimer, one cannot straightforwardly visualize the mul-
tidimensional PES in all the relevant δ-coordinates as was done for the monomer,
but the energy dependence along the MEP can be inspected with ease. It was
found that a qualitatively identical discussion arises for the dimer and the trimer
and, therefore, the results only for the trimer are presented in Figure 6.2 to il-
lustrate the general rule. Just like the monomer, the trimer exhibits a MEP that
corresponds to a fully sequential proton transfer. The direction and order of the
proton-transferring steps of the whole reaction are illustrated on the snapshot in
Figure 6.2 by arrows and numbers. The reaction starts from the global minimum
at ξ = 0 by transferring one of the outer protons at the edge of the chain (step
1). This creates a potential energy minimum structure, which is defective in the
sense that no Lewis structure can be produced. The initial proton transfer is
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Figure 6.2: The MEP of the complete proton-transfer in the gas-phase DABQDI trimer.
The dependence of the potential energy on the dimensionless reaction coordinate ξ is
shown in black, with the corresponding minima in highlighted in orange and the TSs in
red. The bracketed numbers pertain to the order of the steps of the sequential proton
transfer: each transfer of an individual proton as numbered on the snapshot of the chain
corresponds to a peak on the MEP with the same number. The presented curves were
obtained at the revPBE0-D3/TZV2P level of theory.

followed by the transfer of the pair of adjacent inner protons (steps 2 and 3),
that is predicted at the employed revPBE0-D3/TZV2P level of theory to happen
also sequentially, albeit through a very subtle minimum. As such, the possibility
that this is an artifact of the chosen DFT method cannot be excluded and one
has to consider an alternative picture where steps 2 and 3 happen in a concerted
fashion (we note in passing that such a two-proton concerted mechanism was
observed, for example, in the acetic acid dimer211). Then, the same happens for
the other pair of inner protons (steps 5 and 6), and the reaction path is closed
by the exchange of the final outer proton, ending in the second global minimum.
Therefore, a general trend can be devised: the classical MEP always starts with
the exchange of one of the edge protons, which creates a defect that is propa-
gated through the chain consecutively from one molecule to another and finally
quenched by closing the sequence by the second outer proton. From this per-
spective, the monomer can be understood as a chain consisting of a single unit.
The consideration of gas-phase chains with >3 units is mostly hypothetical as the
structures tend to twist upon geometry optimization; in principle, the presence of
an inert surface sanitizes this behavior, as seen in the STM/AFM experiments.93

The conclusion of the above calculations is that the proton-sharing PESs of the
gas-phase DABQDI chain do not permit classical concerted proton transfer as
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Figure 6.3: Calculated ring-polymer instanton paths of the DABQDI monomer at differ-
ent temperatures projected onto the (δ1, δ2)-PES. Two different types of instantons can
be seen which correspond to the two types of proton-transfer mechanisms: sequential
and concerted. A depiction of the instanton path going through the fully dimensional
configuration space is presented in the two inset snapshots.

this process is connected with high barriers.

6.1.2 Quantum effects on the proton-sharing reaction

The appropriate question at this point is what happens quantum-mechanically
when tunneling through the central barrier is allowed. In this thesis, this problem
is addressed at the level of the gas-phase monomer using ring-polymer instanton
theory; instanton calculations for the trimer in the gas phase were unsuccess-
ful due to twisting of the chain geometry when optimized and the workflow for
obtaining surface-bound C-NNPs is a matter of ongoing research.

The instanton paths for the isolated DABQDI monomer, optimized using the
C-NNP obtained in Paper II in tandem with the i-PI program using 1024 full-
ring replicas, are shown in Figure 6.3 for three different temperatures. Below the
crossover temperature for this system of Tc = 284 K, we find two types of sta-
ble instantons for this molecule that correspond to the concerted and sequential
reaction mechanisms. The sequential one derives from the classical TS (cf. Fig-
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Figure 6.4: The temperature dependence of the sequential, concerted and total proton
transfer reaction rates in the isolated DABQDI monomer. The sequential rates have
been multiplied by 2 to account for the presence of two alternative sequential tunneling
paths.

ure 6.1) and represents quantum proton tunneling between the global basin and
the higher-lying minimum of the defective structure, with only one proton being
exchanged at a time (Figure 6.3, bottom right snapshot). A typical temperature
dependence is observed: as the system is cooled down, the instanton paths grows
longer as quantum effects become more pronounced. As a new feature that was
established as classically disallowed and therefore has no parallel in Figure 6.1,
we find stable instantons for the concerted proton transfer once tunneling is ac-
counted for by the instanton theory. These lie on the main diagonal δ2 = δ1 and
thus represent tunneling from one of the global minima to the other where both
protons are exchanged at the same time (Figure 6.3, top left snapshot). The ex-
istence of both instanton paths tells us that the tunneling of the quantum system
happens through both of the two corresponding mechanistic channels.

The question of which of the channels is dominant at which temperature is
not answerable simply from the knowledge of the paths, and their rates must be
calculated. These are shown in Figure 6.4. The total tunneling rate is given by
the sum

k = kc + 2ks, (6.1)

where kc is the rate constant evaluated for the concerted instanton trajectory
and, accordingly, ks is the rate constant of the sequential reaction. The factor of
2 accounts for the fact that two distinct sequential paths are possible which cor-
respond to the order of the proton tunneling. At high temperatures above 160 K,
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where the system is expected to behave more classically, the sequential rate is
clearly the dominant pathway, with the concerted tunneling only as a negligible
contribution. As the temperature is lowered, the two curves come closer together
until they finally intersect at approximately 130 K, and the concerted proton tun-
neling starts to take over. At low temperatures, the concerted mechanism clearly
dominates as the concerted rate exhibits a plateau, while the sequential rate
keeps exponentially decreasing: this behavior can be tracked to the magnitude
of the difference between the energy of the zero-point energies of the reactants
and the products in each mechanistic step.180 Finally, we note that one should
focus more on the trends predicted by instanton theory and take the absolute
values of instanton tunneling rates with a grain of salt unless extremely accurate
electronic structure methods (such as, for example, coupled cluster theory106) are
employed. This is due to the exponential dependence of the rate on the action of
the instanton path, which itself directly depends on the shape of the underlying
PES, including both the barrier height and its curvature: relatively small errors
in both can cause several orders of magnitude of difference in the estimated rate.

6.2 | Surface-bound systems

The emergence of concerted proton tunneling at low temperatures in the gas-
phase monomer supports the interpretation of the initial experiment as a con-
certed tunneling of protons in the surface-bound chains, albeit it does not repre-
sent a complete computational proof. The fact that this temperature-dependent
effect occurs already in the gas phase suggests that the surface does not strongly
interact with the deposited molecules (weak surface–substrate interaction is also
initially suggested by experimental evidence) rather than being a key element in
the sense that it would change the prevalent proton-sharing mechanism through
a strong and non-trivial interaction. In the following Section, we address some
of the properties of the DABQDI monomer and dimer bound to the gold surface
regarding molecular geometry and the strength of the molecule–surface interac-
tion.

6.2.1 Optimized geometries

Using the FHI-aims software,140 we first optimized the lattice parameters of bulk
gold for the chosen MBD-corrected PBE density functional and the “light” de-
faults. This was achieved by performing a fixed-angle cell optimization of the fully
periodic face-centered cubic one-atom bulk while monitoring the k-point conver-
gence of the lattice parameters. Scalar zeroth-order regular approximation212 was
employed to address relativistic effects and the optimal lattice constant was found
to be 4.132 Å. With the optimized cell parameters, we proceeded by building the
(111) surface slab (4 × 3 × 4 atoms) using ASE tools and centering the DABQDI
monomer over the slab. The geometry of such a system was then optimized us-
ing the BFGS optimizer183–186 with a maximum force component threshold of
5 · 10−3 eV Å−1. For the optimization, we have employed full PBCs with a 50 Å
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Figure 6.5: Optimized DABQDI monomer (top row) and dimer (bottom row) geometries
on Au(111) (yellow) viewed from the top and the side. The slab is described using PBCs.

vacuum in the z-direction and a 4 × 5 × 1 Γ-centered k-point grid; a valida-
tion of these choices was performed. A dipole correction was employed.141 For
the surface-bound dimer an essentially identical approach was taken, just using a
larger slab of 8 × 3 × 4 atoms and a smaller 2 × 5 × 1 Γ-centered k-point grid.

The obtained optimized geometries are shown in Figure 6.5. In general, the
molecular geometry of DABQDI compares well with the one in the gas phase in
terms of intramolecular structure of the monomers and the spacing of the chain
units in the dimer. In both systems, the side view reveals a twist of the molec-
ular geometry where the imine nitrogen atoms are brought closer to the surface,
distorting the planarity of the molecule. The twist persists after a reoptimization
with the hybrid HSE06 density functional118 and “medium” defaults. The dimer
geometry shows that the twist is stronger at the non-hydrogen-bonded imine
groups at the ends of the chain, implying that a competition between the hydro-
gen bonding within the chain and the molecule-surface interaction is taking place.
The presence of the twist is in contrast with the original supporting calculations
in Reference 93, which report fully planar surface-bound monomers. Compar-
ing the monomer and dimer suggests the possibility of several different unique
equilibrium positions on the surface: the monomer has the center of the carbon
ring positioned at the bridge between two gold atoms, whereas the dimer has the
centers over gold atoms. A relaxed lateral scan of the DABQDI position with
respect to the slab will be needed to provide a conclusive answer on the locations
and energetics of equilibrium surface-bound positions. Finally, a curious fact to
notice about the surface-bound dimer is that the spacing of the monomer units
(7.72 Å for imine groups, 7.76 Å for amines) nearly exactly coincides with the
naturally occurring spacing of gold atoms within the metal lattice in one partic-
ular direction (7.71 Å). This is not a surface-mediated effect, i.e., the binding to
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Figure 6.6: The binding curve of the DABQDI monomer to the Au(111) slab, calculated
vertically in the geometric coordinate defined by the slab and monomer center-of-mass
(COM) distance. The inset shows a detail on the binding energy minimum.

the surface does not alter the unit spacing to comply with the surface geometry,
but rather a preexisting geometric property of the DABQDI dimer already at the
gas-phase level. It points to a relevant question of whether this surprising agree-
ment of spacings makes the Au(111) surface special for binding the DABQDI
chains. As of now, we tend to believe, also based on the results summarized in
the following Section, that this is merely a coincidence that will not have further
consequences for the physics and chemistry of the studied systems.

6.2.2 Molecule–surface interaction

The original paper93 speculates on the basis of several plausibility arguments that
the molecule-surface dispersive interaction is not strong in the DABQDI/Au(111)
systems, including the fact that the chains are oriented irrespective of the herring-
bone reconstruction of the experimental surface. To get insight into the magni-
tude of the DABQDI–surface interactions, we performed two different calculations
on the surface-bound monomer.

In the first analysis, we predicted the binding energy curve of the monomer
to the surface (Figure 6.6). This was calculated by a gradual vertical removal
of the molecule from the slab, i.e., starting from the bound minimum geometry
and only changing the distance between the center of mass of the slab and of
the molecule without any geometry relaxation. The curve adopts a typical shape
consisting of a repulsive part at close distances and an attractive part at longer
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Figure 6.7: The full Hessian matrix of the DABQDI monomer/Au(111) system in Carte-
sian coordinates. Degrees of freedom 0–53 correspond to the motion of monomer atoms,
the remaining 144 degrees of freedom to the gold slab.

distances; the optimized minimum lies approximately 0.4 eV under the E∞ value,
which is understood here as the energies of the isolated slab and monomer com-
bined and used as the zero-energy level. Such values are consistent with binding
energies corresponding to the physisorption of other small molecules on metal
surfaces, including Au(111). For example, it is more than values up to 0.1 eV for
benzene213 (depending on the specific configuration), and comparable to pyridine
at 0.36 eV.214 This suggests, consistently with the small change in molecular ge-
ometry upon absorption, that no chemically significant changes take place in the
DABQDI molecule and, while it is important to take the explicit surface into con-
sideration for an accurate overall picture, one can get a fairly good idea about the
character of the absorption using, e.g., an empirical van-der-Waals representation
of the surface (as was done in Reference 93).

The second analysis focuses on the coupling of the vibrations between the
molecule and the surface. For this purpose, we calculated the Hessian matrix
for the whole DABQDI monomer/Au(111) system using the i-PI software with
FHI-aims forces. The calculated Hessian is shown in Figure 6.7 as a visual repre-
sentation of the matrix, showing the magnitude of the ∂2E0/∂RI,α∂RJ,β elements
(with RI,α being the Cartesian components of the atomic position vector RI)
using a color map. As expected, the Hessian is a symmetric matrix and can be
divided into 4 distinct blocks. The first square diagonal block corresponds to the
DABQDI degrees of freedom (0–53) and has a non-trivial internal structure. The
remaining block on the main diagonal (54–198) corresponds to the vibrations of
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Figure 6.8: Characterization of the surface-bound DABQDI proton-sharing MEP and
the validation of the resulting C-NNP model. Top panel: the energy dependence of
the calculated MEP as a function of the distance along the path. Left bottom panel:
correlation of energies between DFT and the obtained C-NNP. The mean of the ener-
gies evaluated by each method was subtracted from the respective values to remove a
constant arbitrary shift between the ab initio method and the C-NNP model. Middle
bottom panel: Correlation of force components DFT and the obtained C-NNP in the
direction parallel to the gold slab (x and y). Right bottom panel: Correlation of force
components for the direction perpendicular to the metal slab (z).

the metal slab. The numbering of the Cartesian degrees of freedom inside the
slab is as follows: 54–89 correspond to the bottom layer of the slab, 90–125 and
126–161 the middle layers and 162–197 to the top layer directly underneath the
adsorbed molecule. From the graphical representation of the Hessian, we find that
the vibrational coupling inside the slab is the strongest within a given layer and
that the inter-layer coupling is generally much weaker. Importantly, the remain-
ing off-diagonal rectangular blocks correspond to the molecule–surface vibrational
coupling, which is essentially non-existent between the molecule and the distant
layers and small between the molecule and the top layer. The single interacting
gold atom corresponding to a position in the middle of the slab (∼120th coordi-
nate) is curious and remains unexplained; possibly, this is an artifact due to the
finite precision of the numerical evaluation of the PES derivatives. Diagonaliza-
tion of the DABQDI block from this matrix and diagonalization of the same block
calculated with the surface frozen reveals essentially identical vibrational frequen-
cies of the DABQDI molecule, further suggesting that the vibrational coupling
is very weak. As such, one can make a reasonable approximation by keeping the
surface frozen, as this can be expected to only have a small effect on the motion
of the molecule.
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6.2.3 Towards a surface-bound C-NNP

The above analysis gives us a level of understanding of the interaction of the
absorbed DABQDI molecule and the gold surface. Ideally, one would consider a
fully flexible surface that explicitly enters the electronic structure calculation to
obtain the most accurate possible description with a given ab initio PES, but this
makes the desired AIMD simulations quite computationally challenging already
in the instance of the surface-adsorbed monomer treated at the GGA level of
DFT as the proton-transfer reaction must be described at the ab initio level.
Therefore, we initiated our efforts to obtain a C-NNP model for this system by
invoking a TTS-like sampling with the surface included. Clearly, as a standalone
method outside of the gas phase, TTS has limitations that were discussed in
detail in Chapter 3: here, these pertain mainly to the surface diffusion of the
molecule that is outside of the scope of a description offered by a single MEP.
However, invoking TTS can give rise to a first-generation model that can be
further improved by the aforementioned methods; here, we take an exploratory
stance and attempt to create a very preliminary model with the aim of mapping
whether these goals are possible at all.

To begin, we have optimized the two endpoint configurations on Au(111):
these correspond to one branch of the reaction MEP shown in Figure 6.1 for the
gas-phase molecule (i.e., a transfer of a single hydrogen). Then, we optimized
an MEP connecting these configurations to obtain the TS geometry. This was
achieved using the climbing image NEB implementation within the i-PI software
and relying on FHI-aims forces, consistently staying at the PBE-MBD level of
theory. The resulting energy dependence of the MEP of the surface-bound sys-
tem is shown in the top panel of Figure 6.8. It shows certain deviations from
the gas phase MEP. First, the calculated reaction path now contains only slowly
changing, almost plateau-like regions (ca. 0.0 – 0.5 Å and 0.8 – 1.1 Å) that
correspond to a molecular reorientation against the surface with no intramolec-
ular rearrangement (rotation–translation) taking place. This takes place rather
abruptly (0.5 – 0.8 Å) with a pronounced change in energy and a TS located
approximately 0.7 eV above the reactant minimum. In addition, it appears that
the presence of the surface stabilizes the defective minimum by approximately
0.3 eV compared to the gas phase. A potential shortcoming of this MEP can be
glimpsed straight away: the i-PI implementation appears to enforce equidistance
of the NEB replicas, which causes the replicas to cluster into either side of the
δ coordinate as a simple rotation–translation of the DABQDI molecule against
the surface takes place (where many atoms move just slightly) and the reaction
itself (where effectively only the hydrogen is moving) is not sufficiently resolved.
To combat this effect, either a refinement of the NEB in the reactive region, or
a change of implementation to one that does not have this constraint, will be
needed.

Disregarding the numerical qualities of the obtained MEP for the time be-
ing, we proceeded to perform a TTS sampling of it. As per usual, we have
calculated the Hessians of the two minima and the TS (while invoking the frozen-
surface approximation to make these exploratory-level calculations a little less
computationally challenging) and used the obtained modes to generate distorted
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geometries through the standard procedure described in Paper II. Taking these
as the candidate set, we proceeded to perform a QbC, yielding a total of 220
training structures, and training a standard C-NNP model. We first validated
the resulting model by correlating the predicted energies and forces for a selected
handful of geometries from the TTS ensemble against the target energies and
forces evaluated by the original ab initio method (Figure 6.8, bottom row). This
shows very promising results, pointing to the fact that the C-NNP reliably re-
produces the PES within the set of candidate geometries. A more stringent test
is the capability of the model to run MD. Here, the answer is slightly less un-
equivocally positive as we have seen both stable and unstable trajectories starting
from different candidate geometries at canonical conditions and the temperature
of 100 K. Typically, we observed stable trajectories starting from configurations
close to the minima, whereas trajectories starting from around the TS exhibited
more instabilities. We attribute this behavior to the insufficient resolution of the
actual reaction by the optimized MEP: as the proton transfer is essentially de-
scribed by 3 points on the MEP, there is no guarantee that the generated TTS
geometries copy the actual reaction valley in the configuration space rather than
cutting a corner. In turn, that would lead to an insufficient coverage of the MD-
relevant PES and the observed extrapolation failures. To this end, we will need to
benchmark other NEB implementations and explore the possibilities of densifying
the replicas in the reactive section of the MEP, as this problem is pertinent to all
surface-bound hydrogen transfers. Another obvious shortcoming of the presented
procedure is the number of training structures which will very likely need to be
raised to reach the stability and accuracy levels we have learned to expect from
C-NNPs. However, these are practical limitations and the above correlations
suggest that improving them will improve the model accordingly. These results
thus serve as a proof of principle that a TTS-based sampling approach will be in-
strumental in a computationally affordable training of reactive machine-learning
potentials for surface-bound systems. Making this approach robust and reliable
will be the objective of our immediate research efforts.
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7 | Conclusions and outlooks

AIMD simulations of condensed and surface-bound systems with explicit treat-
ment of the quantum nature of nuclei through path integrals in imaginary time
can be very insightful, but also represent a major methodological and compu-
tational challenge. In this thesis, we have contributed to new developments in
the integration of MLPs into the world of molecular simulations by introducing
and testing a QbC workflow for efficient C-NNPs as well as the TTS method for
gas-phase reactive models. Furthermore, we have employed (ab initio as well as
MLP-enhanced) AIMD simulations to study three different types of molecular
systems: the benzene radical anion dissolved in liquid ammonia, neutral benzene
in water and ammonia, and DABQDI molecules in the gas phase and on a gold
surface. The discussed research was published in 4 peer-reviewed publications
and one preprint attached to this thesis, as well as in several additional publi-
cations. The common theme of hydrogen bonding that connects the individual
research projects was manifested in different ways: for the benzene radical anion,
it played a role in the structure of the stabilizing solvent environment; for the
DABQDI-containing systems, it was a centerpiece of the research focus and in
the π-hydrogen bonding perhaps a combination of both.

From the methodological perspective, our tests and validation of the com-
mittee approach to NNPs points to undoubted advantages over using individual
NNPs regarding accuracy and robustness. Combined with its low computational
overhead and the possibility of active learning, it seems that C-NNP indeed rep-
resents a superior approach. Further research efforts will exploit model boot-
strapping to achieve highly advanced levels of electronic structure theory for MD
simulations. In parallel, we have proposed the TTS method to obtain C-NNPs
for gas-phase reactions efficiently. The method was shown to perform excellently
for the chosen examples. The next immediate step is to include the ideas behind
TTS into a wider workflow to enable reactive simulations in more complex set-
tings than the gas phase, notably focusing on solid interfaces and the condensed
phase, where the “standard” AIMD-based approach (as described in Paper I) is
hardly applicable due to its inherently high computational cost.

The carefully benchmarked open-shell, hybrid-DFT simulations of solvated
benzene radical anion chronologically fall before the introduction of MLPs into
our routine workflow, hence the explicit ab initio PES. These simulations let
us observe several intriguing properties of the solute, including its complex elec-
tronic structure and the dynamic Jahn–Teller effect, its electronic stabilization by
the liquid environment, and its solvation structure. Alongside the value of these
results and the subsequent discussion from the perspective of quantum physics
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and chemistry, as well as their role as a testament to the need for advanced elec-
tronic structure methods to achieve descriptive accuracy, these simulations point
to an interesting fact that the representation of reaction mechanisms in organic
chemistry is often very simplified. While our work here does not report a sim-
ulation of the whole mechanistic sequence of the Birch reduction from benzene
all the way down to cyclohexadiene, but rather a simulation of a single interme-
diate within this mechanism, we can already see at this instance that the highly
non-trivial and dynamic distribution of the excess electron in the benzene radi-
cal anion is in contrast with the traditional representation using a fully localized
“dot” on one of the carbon atoms. Organic mechanisms, built on a set of em-
pirical rules and chemical intuition, have undeniably succeeded in interpreting
and predicting the course of various reactions. However, our observations raise
the question of whether such a simplified view can lead to an erroneous under-
standing of the underlying reactivity in certain cases. Experimental validation of
mechanisms normally relies on spectroscopic evidence of the short-lived interme-
diates and often represents a complicated process, if possible at all. In this light,
AIMD simulations, especially enhanced by effective MLPs, can provide rigorous,
insightful, and relatively easily accessible complementary evidence that includes
thermal effects (unlike simpler quantum chemistry calculations). We should ex-
pect to see more MD-based insights in the field of organic chemistry as accurate
simulations (and the corresponding infrastructure around them) become more
and more accessible to non-expert users.

In the part focused on π-hydrogen bonds, we have performed a thorough inves-
tigation of the structure, dynamics, and vibrational spectroscopy of π-hydrogen
bonds in solutions of benzene in liquid water and ammonia. This was motivated
by our own previous results, as well as Raman spectroscopy experimental evi-
dence.80 We find that π-hydrogen bonds are a prominent structural motif in our
simulations and, therefore, it is important to take care of their description in
empirical force fields due to their relevance in the solvation of biological systems;
currently available force fields have been shown to perform insufficiently for this
purpose.84 Our exploration of π-hydrogen bonding in the two solvents also serves
as a probe of the differences between the character of hydrogen bonding in liquid
water and ammonia themselves. As a particular manifestation, in our benzene–
water simulations, we observed a reasonable degree of anticooperativity between
the two binding sites of benzene, while in ammonia, the sites behave effectively
independently. Interestingly, we could not reproduce this effect faithfully using
MLPs. We have identified a possible cause of this effect due to the cutoff-related
limitations of standard Behler–Parrinello NNPs, but more research will be nec-
essary to fully grasp why precisely this particular system is a challenge and what
the possible solutions are. MLPs are clearly not omnipotent, and showing their
shortcomings and, more importantly, how to deal with these shortcomings, al-
lows for a deeper understanding of these potentials and gives one finer control
over their performance.

In the last application part of this thesis, we have focused on the hydrogen
bonding of DABQDI molecules, intending to understand and theoretically cor-
roborate experimental AFM findings presented in Reference93. Specifically, we
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were looking for evidence of concerted proton transfer, which is required to ex-
plain the experimental findings. Using ring polymer instanton theory, we have
clearly demonstrated the emergence and dominance of concerted proton transfer
in the isolated DABQDI monomer at low temperatures. Our additional find-
ings make it seem very plausible that concerted proton transfer will also be the
dominant proton-sharing mechanism in the longer, surface-bound chains. How-
ever, this remains to be shown explicitly using highly accurate, reactive NNPs
for the surface-bound systems. As mentioned above, obtaining such potentials
will require additional method development and further research to optimize the
workflow to generalize the TTS method beyond the gas phase.

The simulations presented in this thesis can be understood as an illustration
of the progress that computational methodology has undergone in the past years:
hybrid DFT, not so long ago reserved only for electronic structure calculations of
small gas-phase systems, has been employed here to drive AIMD simulations of
bulk liquid solutions on a routine basis. This is possible through rapid advances
in hardware and availability of efficient computational methodology electronic
structure codes. However, arguably even more stunning is the speedup offered
by MLPs, where one can expedite the practical simulation runtime by many
orders of magnitude in comparison to the naive ab initio execution, especially for
computationally demanding methods like hybrid DFT and higher up the DFT
Jacob’s ladder. Does this imply that machine learning is the future of molecular
simulations and explicit ab initio simulation of MD will soon be surpassed? This
is probably true in a certain sense and we will gradually see more works depart
from explicit quantum electronic structure PESs and rely to a larger extent on
MLPs (and other machine learning tricks) to accelerate the desired calculations.
For now, an AIMD expert is, at least to some degree, a specialist in multiple fields,
including quantum electronic structure, statistical mechanics, and computational
science. Even with the current state of the art, ab initio reference evaluations
are still an integral part of the process, even though the production simulation is
realized without them, and one has to remain in control of both aspects to deliver
a successful simulation. However, with the advent of, for instance, large universal
models, it can soon become a reality that one will be able to run ab initio-quality
simulations just by using appropriate MLPs off the shelf, without needing to run
any ab initio reference calculations at all. As such, we will likely witness a more
pronounced split of the expertise of scientists engaging in AIMD simulations into
one direction focusing on the development of potentials and another focusing
on executing the simulations (as seen in the force field community); time and
experience will show what advantages and disadvantages this effect might bring
around. In any case, machine learning will keep us approaching new horizons in
the field of molecular simulations by allowing us to simulate molecular systems at
unprecedented time and length scales with unprecedented levels of PES theory,
bringing us closer to the holy grail of simulating macroscopically relevant systems
with quantum-mechanically accurate interactions and converged NQEs.
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A | Derivations

In this Appendix, we present a compilation of mathematical derivations that are
important for the completeness of the discussion of important concepts in the
main text, but are too detail-oriented to be included there.

A.1 | Fourier transform of the step function

For the reason of completeness of the non-trivial derivation of the Lehmann rep-
resentation of the one-particle GF, we will now derive for future convenience the
Fourier transform of the Heaviside step function

Θ(t− t0) =

{︄
1, t ≥ t0

0, t < t0,
(A.1)

which can be represented as the following limit

Θ(t− t0) = lim
ϵ→0+

{︄
e−

ϵ
ℏ (t−t0), t ≥ t0

0, t < t0.
(A.2)

With this definition, the Fourier transform

Θ(ω) =

∫︂ +∞

−∞
dτ eiωτΘ(τ), (A.3)

where we use τ = t− t0, can be written as

Θ(ω) = lim
ϵ→0+

∫︂ +∞

0

dτ eiωτe−
ϵ
ℏ τ = − lim

ϵ→0+

ℏ
i

1

ℏω + iϵ
. (A.4)

When the time argument of Θ is flipped to t0 − t, the Fourier transform changes
the sign both before the whole expression and before the regularizer iϵ, because
of the need to evaluate a growing exponential e

ϵ
ℏ (t−t0) between −∞ and 0 rather

than a decaying one between 0 and ∞.

A.2 | Lehmann representation

Equipped with the Fourier transform of the step function, we can proceed to
derive the Fourier transform of the one-particle GF, which is the Lehmann rep-
resentation introduced in Equation 2.16. First, we transform the time-dependent
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GF into a more convenient form. Expanding its Heisenberg-picture definition in
Equation 2.14, we have

G(1)(r, r′, t− t0) = −
i

ℏ
Θ(t− t0) ⟨ψ0| e

i
ℏ
ˆ︁Ht ˆ︁ψ(r′)e− i

ℏ
ˆ︁Hte

i
ℏ
ˆ︁Ht0 ˆ︁ψ†(r′)e−

i
ℏ
ˆ︁Ht0 |ψ0⟩

+
i

ℏ
Θ(t0 − t) ⟨ψ0| e

i
ℏ
ˆ︁Ht0 ˆ︁ψ(r′)e− i

ℏ
ˆ︁Ht0e

i
ℏ
ˆ︁Ht ˆ︁ψ†(r′)e−

i
ℏ
ˆ︁Ht |ψ0⟩ .

(A.5)

Straightforward operator manipulations give

G(1)(r, r′, t− t0) = −
i

ℏ
Θ(t− t0)e

i
ℏE0(t−t0) ⟨ψ0| ˆ︁ψ(r′)e− i

ℏ
ˆ︁H(t−t0) ˆ︁ψ†(r′) |ψ0⟩

+
i

ℏ
Θ(t− t0)e

i
ℏE0(t0−t) ⟨ψ0| ˆ︁ψ†(r′)e−

i
ℏ
ˆ︁H(t0−t) ˆ︁ψ(r′) |ψ0⟩ .

(A.6)

At this point, we introduce an identity operator to the right of the remaining
propagators in the form of a full set of states of a system with an added particle
|ψ+

k ⟩ to the first term (particle part) and a full set of states with a missing particle
|ψ−

l ⟩ to the second term (hole part), which yields

G(1)(r, r′, t− t0) = −
∑︂
k

i

ℏ
Θ(t− t0)e

i
ℏ (E

+
k −E0)(t−t0) ⟨ψ0| ˆ︁ψ(r′) |ψ+

k ⟩ ⟨ψ
+
k | ˆ︁ψ†(r′) |ψ0⟩

+
∑︂
l

i

ℏ
Θ(t0 − t)e

i
ℏ (E0−E−

l )(t−t0) ⟨ψ0| ˆ︁ψ†(r′) |ψ−
l ⟩ ⟨ψ

−
l | ˆ︁ψ(r′) |ψ0⟩ .

(A.7)

From this point, evaluating the Fourier transform

G(1)(r, r′, ω) =

∫︂ +∞

−∞
dτ G(1)(r, r′, τ)eiωτ (A.8)

is performed easily term by term by invoking the above-derived Fourier represen-
tation of the step function and gives the Lehmann representation

G(1)(r, r′, ω) = lim
ϵ→0+

∑︂
k

⟨ψ0| ˆ︁ψ(r′) |ψ+
k ⟩ ⟨ψ

+
k | ˆ︁ψ†(r) |ψ0⟩

ℏω − (E+
k − E0) + iε

+
∑︂
l

⟨ψ0| ˆ︁ψ†(r) |ψ−
l ⟩ ⟨ψ

−
l | ˆ︁ψ(r′) |ψ0⟩

ℏω − (E0 − E−
l )− iε

,

(A.9)

as shown in Equation 2.16.

A.3 | ω2-theorem

We assume a function f(t) that has a finite integral over the real axis so that its
Fourier image ˆ︁f(ω) = ∫︂ ∞

−∞
dt e−iωtf(t) (A.10)
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exists. Then, for the Fourier image of the derivative of f(t) it holds that

ˆ︂df
dt

(ω) =

∫︂ ∞

−∞
dt e−iωtdf

dt

=
[︁
e−iωtf(t)

]︁∞
−∞ −

∫︂ ∞

−∞
dt f(t)

d

dt
e−iωt

= iω

∫︂ ∞

−∞
dt e−iωtf(t)

= iω ˆ︁f(ω),
(A.11)

which is known as the derivative theorem. Next, we define a function g(t), which
is has the same properties as f(t) (actually, it can even be the same function).
Then, for the Fourier transform of the convolution of f ∗ g, we have

ˆ︁f ∗ g(ω) =
∫︂ ∞

−∞

∫︂ ∞

−∞
dtdτ e−iωτf(t)g(t+ τ)

=

∫︂ ∞

−∞

∫︂ ∞

−∞
dtdt′ e−iωt′eiωtf(t)hgt′)

= ˆ︁f(ω)ˆ︁g(ω),
(A.12)

which is the convolution theorem. Now, by combination of the two theorems, we
can evaluate that the Fourier image of the convolution of derivatives

ˆ︂df
dt
∗ dg
dt

(ω) = (−iω)(iω) ˆ︁f(ω)ˆ︁g(ω) = ω2 ˆ︁f(ω)ˆ︁g(ω), (A.13)

which is the ω2-theorem discussed in Chapter 2. Clearly, for the case g = f the
Fourier image is represented by the power spectrum ω2| ˆ︁f(ω)|2, which is known in
the literature specifically as the Wiener–Khinchin theorem.
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B | A small experimental detour

The research presented in this thesis is theoretical. However, the research project
discussed in Chapter 4 has an integral experimental component; therefore, we
provide a short comment on liquid microjet XPS in this Appendix.

In XPS, a sample under ultra-high vacuum is illuminated with a beam of
X-ray photons with well-defined and known energies up to several hundreds of
eV, typically originating from a synchrotron light source, which liberates elec-
trons bound inside the sample through the photoelectric effect. Measuring the
kinetic energies of the outgoing electrons then allows one to map the distribution
of electron binding energies (cf. Equation 4.1) in the sample. The measurement
of condensed static samples in this way is only possible for solids since, in liquid
samples, the high vapor pressure obscures the beam from efficiently reaching the
bulk of the liquid. The door to bulk liquid spectra is opened by the so-called
liquid microjet technique pioneered by Faubel,53 in which a thin laminar-flowing
filament of the liquid (Figure B.1) is collided with the beam, which allows mea-
suring a combined but resolvable spectrum of the gas and liquid phases. Since
its discovery, the method has been routinely used for room temperature samples;
however, making a stable microjet of liquid ammonia presents an additional chal-
lenge as it needs to be maintained in its liquid window between −77 and −33 ◦C

Figure B.1: A neat liquid ammonia microjet. In the top left corner, one can notice the
glass nozzle from which the microjet escapes as a thin stream of liquid. To the right is
the entrance to the electron analyzer, which reports the kinetic energies of the detached
photoelectrons. The photography is a courtesy of Dr. H. Christian Schewe.

141



and thus requires a cryogenic kit. The technical solution for our purpose was de-
veloped primarily by Mason, Buttersack and Schewe54 at the Institute of Organic
Chemistry and Biochemistry of the Czech Academy of Sciences in Prague and
mounted to the SOL3PES experimental beamline set up built and maintained by
Seidel and coworkers55 at the BESSY II synchrotron facility56 at the Helmholtz-
Zentrum Berlin (Berlin-Adlershof research campus) where our XPS spectra were
measured.
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C | Attached papers

The following Appendix contains reprints of the publications presented in the
main text of this thesis and listed in the above List of Publications. Copyrighted
publications without open access rights are reprinted with permission of the re-
spective publishing houses, as detailed in each subsection.

143



144


	Introduction
	Hydrogen bonds as a key phenomenon in nature
	Describing molecular systems in silico
	Context and aims of this work
	Streamlining computational methodology
	Radical anions in hydrogen-bonded liquid environments
	π-hydrogen bond: an exotic case
	Hydrogen-bonded supramolecules on Au(111)


	Theory and methodology
	Quantum dynamics of molecular systems
	The electronic problem
	Green's functions in molecular quantum mechanics
	Hartree–Fock method and the correlation energy
	Density functional theory
	Accurate electron binding energies and the GW approximation
	Practical calculations with orbital-based methods

	The nuclear problem
	Statistical mechanics
	Molecular dynamics
	Dynamical properties

	Neural network potentials
	The basic principle of a neural network
	Behler–Parrinello high-dimensional NNPs


	Towards robust and affordable neural network potentials
	Paper I: Summary
	Paper I: Discussion
	AML: QbC implemented
	Another perspective on model bootstrapping
	New horizons in MLPs

	Paper II: Summary
	Paper II: Additional results and discussion
	Normal mode distributions in gas-phase benzene
	Distribution of malonaldehyde TTS geometries
	Going beyond the gas phase


	Electronic and molecular structure of solvated benzene radical anion
	Papers III and IV: Summary
	Papers III and IV: Follow-up research and discussion
	Solvent-induced stability
	Experimental correspondence
	Remarks on the interpretation of XPS spectra


	π-hydrogen bonding in aqueous and ammoniacal environments
	Paper V: Summary
	Paper V: Discussion
	Changes in electron density due to π-hydrogen bonding
	The complex character of simulated time-resolved vibrational spectra


	DABQDI in the gas phase and adsorbed on Au(111)
	Insight from the gas phase
	Classically allowed proton-sharing mechanisms
	Quantum effects on the proton-sharing reaction

	Surface-bound systems
	Optimized geometries
	Molecule–surface interaction
	Towards a surface-bound C-NNP


	Conclusions and outlooks
	References
	List of Abbreviations
	List of Publications
	Derivations
	Fourier transform of the step function
	Lehmann representation
	ω2-theorem

	A small experimental detour
	Attached papers

