
BACHELOR THESIS

Teodora Stojcheska

Fine-tuning Code Generation Models with
Compiler Feedback

Faculty of Mathematics and Physics

Supervisor of the bachelor thesis: Martin Pilát

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

First and foremost, I would like to thank my supervisor Martin Pilát for his support

and patience throughout the work of this thesis. He is always positive and willing

to help solve all issues at hand, which helped tremendously.

Next I would like to thank Alexander Bezzubov for always giving me a push

when needed and keeping me accountable. And for the invaluable guidance that

he has offered.

Lastly I would like to thank JetBrains for the support, as this work was done

in collaboration with them. Doing this thesis without the resources they offered

like access to Cadence plugin would have been much more difficult.

ii

Title: Fine-tuning Code Generation Models with Compiler Feedback

Author: Teodora Stojcheska

Department: Faculty of Mathematics and Physics

Supervisor: Martin Pilát, Department of Theoretical Computer Science and Math-

ematical Logic

Abstract: Large Language Models (LLMs) that are pre-trained on code have

become the leading method for program synthesis. These models however mainly

rely on predicting the next token, which may fail to capture the syntax and

meaning of code. Coarse-Tuning Models of Code with Reinforcement Learning

Feedback [1] paper hypothesized that teaching the model to provide compilable

code by providing compiler feedback will improve performance on downstream

tasks. This project expands on that idea with the main difference that compiler

feedback is provided to the model in an RL free way, by using methods such

as such as Kahneman Tversky Optimization (KTO) [2] and Direct Preference

Optimization (DPO) [3]. Both methods use feedback to ground the LLM, albeit in

slightly different contexts. This thesis seeks to assess the effectiveness of these

approaches and their ability to generate compilable code ultimately contributing

to advancements, in program synthesis.

Keywords: LLM compiler DPO KTO

iii

Contents

Introduction 3

1 Background 6
1.1 Neural Networks Background 6

1.1.1 Neural Networks structure 7

1.1.2 Neural Networks training process 7

1.2 Reinforcement Learning . 8

1.3 Code Generation Models . 9

1.3.1 Structure of Transformer Models 9

1.3.2 Code generation model training process 10

2 Related Research 12
2.1 Reinforcement Learning from Compiler Feedback 12

2.1.1 Reinforcement Learning from Compiler Feedback model 13

2.2 Human aware loss functions . 14

2.3 Kahneman-Tversky Optimization 14

2.4 Direct Preference Optimization 15

3 Proposed Approach 17
3.1 Data . 17

3.1.1 Seed Dataset . 18

3.1.2 Base Dataset . 19

3.1.3 Compiler Enriched Dataset 19

3.2 Model . 20

3.2.1 KTO with compiler feedback 20

3.2.2 DPO with compiler feedback 21

3.3 Evaluation . 22

3.3.1 MBXP . 22

3.3.2 HumanEval . 23

3.3.3 Metrics . 23

3.4 Resources . 23

1

4 Results and Discussion 25
4.1 Project . 28

Conclusion 29

A Code Search Net Filtering 32

2

Introduction

In recent years there have been major advancements in the machine learning field,

especially in Natural Language Processing (NLP) with the rise of transformer

models. Although originally meant for machine translation, the impact trans-

formers have made is much bigger than just NLP, and spans over other domains

including software engineering.

Code Generation Code generation is the task of creating code from natural

language using ML models. This is important in software engineering since it

accelerates the development process and allows for quick prototyping. Moreover

it allows developers to focus on more complex and creative aspects of software

by automating repetitive and boilerplate tasks.

Problem statement Code generation, as a subdomain of NLP, has had a lot of

fruitful research revolving around this field. However, there are still many weak

points that models solving this task face.

State-of-the-art Large Language Models (LLMs) trained on code, especially

smaller scale ones, can sometimes make basic mistakes that human programmers

would likely not make and even compiler can detect. For example, it is common

for LLM-generated code to use uninitialized variables, produce non-terminating

loops or use incorrect types.

This seemingly easy problem is relevant because even if the underlying so-

lution proposed by the model is logically sound, one is unable to evaluate the

generation properly. In that case using execution based metrics is not an option,

so we must rely solely on similarity metrics. Moreover fixing compilation errors

doesn’t provide the best user experience, which is the end goal.

So the issue of producing code with compiler errors undermines the potential

and utility models hold in practical coding environments.

Current solutions Currently, this problem is addressed by scaling up - either

enlarging the model size or increasing the volume of training data. This approach

3

has proven to be very effective and has shown great results in many downstream

tasks and as a side result it helps the issue of producing code that doesn’t compile.

However, scaling is expensive as it requires a lot of resources for obtaining

and cleaning data, as well as hardware resources for training the models. Current

research is skewed towards larger models and it sidelines the potential smaller

model architectures hold.

In light of that, this thesis proposes the use of a 1-billion parameter model for

all experiments, in order to illustrate the challenges that smaller models face in

one narrower context - compilation of outputs; and explore a possible solution

besides obtaining code that compiles more often.

The central hypothesis of this project revolves around the effect of incorpo-

rating compiler feedback in the training process. Specifically, testing whether

teaching models to produce compilable code will enhance model performance on

downstream tasks.

Employed Solution The approach explored throughout this work is to utilize

feedback during the training process. The usual way that feedback is looped back

to the model is by using some Reinforcement Learning approaches. Although

reinforcement learning has done a great job at aligning models with (usually

human) feedback, which has as a result improved performance on downstream

tasks, it’s less stable and very sensitive to hyperparameter changes.

So, this thesis experiments with recently published reinforcement learning

free methods for model alignment with feedback. Using Reinforcement Learning

(RL) free methods is promising not only performance-wise, but also in terms of

stability and scalability of the training process.

Usually all of those approaches that incorporate feedback rely on human

annotated data that is fed to the model. However, this work uses compiler results

as feedback, which is very cost-effective and directly addresses the core issue that

is being solved, which is generating compilable code.

To summarize, this thesis tries to improve the performance of models on

downstream code tasks, by combining state of the art research that is less re-

source intensive, specifically using compiler feedback and RL free approaches for

feedback incorporation. This research aims to increase the impact task specific

fine-tuning has by teaching model to generate compilable code.

Thesis structure The opening chapter lays out the background and moti-

vation. It provides information about the current state of the art approach to

program synthesis, details of the architecture and training process. The second
chapter dives deeper into previous research on RL free methods for feedback

incorporation and utilizing compiler feedback. The third chapter presents the

4

practical aspects of the solution. It provides implementation and methodology

details. The fourth chapter is dedicated to showcasing the research outcomes.

It outlines the experiments layout (data, prompts and hyperparameters) and

analyzes the findings. The concluding chapter encapsulates the project’s signif-

icance and draws together the key findings and their implications, efficacy and

impact. It also points out the contributions made by the thesis as well as potential

directions for future research.

5

Chapter 1

Background

Over the past years code generation has evolved a lot, as subset of text generation.

Early efforts focused on rule-based methods that defined explicit rules for code

construction which soon got substituted by ML. Recently, deep learning and trans-

former architectures revolutionized the field, and now based on that advancement

many sophisticated and capable code generation models are being trained. This

chapter provides an overview of the current most common technique of training

models for code generation,. It provides detail of model structure, specifically

transformer based models and training process.

1.1 Neural Networks Background
Neural networks are the building block for deep learning models. A neural

network is a computational model inspired by the human brain’s structure and

functioning. [4]

Perceptron is a basic ML computational unit which mimics simple decision

making process. It takes as input a vector, applies weights and activation function

in order to produce an output.

ŷ =
n∑︂

i=1
xiwi + bi (1.1)

Neural Network is structured as a collection of perceptions organised in layers.

These layers work together to process complex patterns in the data.

6

Figure 1.1 Neural Network structure. [5]

1.1.1 Neural Networks structure
There are three most important parts of the neural network, the input output and

hidden layers as depicted in Figure 1.1. The input layer receives the raw data and

passes it to the following layers. The hidden layers whose goal is to detect features

or patterns, transform the data through intermediate computations. Finally, the

output layer produces the final prediction. Neural networks learn to adjust the

weights throughout the training process in order to produce expected outputs.

hi = f

⎛⎝∑︂
j

xjw
(h)
j,i + b

(h)
i

⎞⎠ (1.2)

yi = a

⎛⎝∑︂
j

hjw
(y)
j,i + b

(y)
i

⎞⎠ (1.3)

1.1.2 Neural Networks training process
Training the neural network is the process of optimizing the neural network’s

weights by minimizing the loss. The purpose of the loss function is to measure

the error (e.g., Mean Squared Error, Cross-Entropy) and choosing the right loss

depends on the task.

Training of a neural network is executed in three stages: initialization, feed-

forward propagation and backpropagation.

• Initialization: Random values are assigned to the weights and biases.

• Feedforward propagation: The input is passed though the network in order

to get the output without modifying the weights.

7

Figure 1.2 Reinforcement Learning environment dynamics. [7]

• Backpropagation: In this step the weights are adjusted based on the loss

function, which is a measure of difference between the model’s predicted

outputs and the ground truth. The most common method for doing this is

gradient descent which calculates the gradient of the loss with respect to

the weights and subtracts it from the weights to minimize the loss.

1.2 Reinforcement Learning
Reinforcement Learning (RL) [6] is a framework for training models for solving

certain tasks. There is an agent in an environment that tries to solve the task at

hand. At each time-step the agent chooses an action and receives a rewards from

the environment and natually wishes to maximize the reward.

Markov decision process (MDP) is a discrete-time stochastic control process

that has the Markov property. The Markov property states that the next state

depends on the previous state. It is discrete because there are concrete states that

the agent is in where all properties are well defined. Since the agent decides on

the next action based on a probability distribution, the whole process is stochastic

and not deterministic.

An MDP is a quadruple (S,A, p, γ)

• S is a set of states

• A is a set of actions

• p(St+1 = s′, Rt+1 = r | St = s, At = a) is a probability that action a ∈ A
will lead from state s ∈ S to s′ ∈ S , producing a reward r ∈ R

• γ ∈ [0, 1] is a discount factor

A policy π represents distribution of actions in a given state. It’s equivalent

to the probability of performing an action a in state s.

8

To evaluate a policy a state value function is used that is defined by 1.4.

vπ(s) def= Eπ [Gt | St = s] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1 | St = s

]︄
(1.4)

A key concept in RL is exploration vs exploitation, which is a balance of

exploring the environment to discover new knowledge and exploiting known

information to maximize rewards.

1.3 Code Generation Models
Simple neural network architectures evolved into complex model architectures

solving huge variety of tasks starting from simple classification problems to text

generation. The most prominent model in text generation today is the transformer

model which state of the art models like ChatGPT are based on. As code generation

is in reality a subset of text generation same high level state of the art principals

that apply for the latter apply for the former as well.

1.3.1 Structure of Transformer Models
Transformer-based models [8] consist of an encoder-decoder structure for se-

quence generation, depicted in Figure 1.2. Each Transformer block comprises

multi-head self-attention mechanisms and position-wise feed-forward neural

networks.

The architecture typically includes:

1. Input Embeddings: Neural networks cannot directly process textual input,

so the input needs to be encoded. Hence, both natural language descriptions

and code tokens are converted into dense vectors - embeddings. However,

embeddings do not incorporate information about word position, which

is why they are always coupled with positional encodings that retain the

order of tokens.

2. Encoder: consists of stacked attention blocks, which calculate the attention

scores for weighing the importance of elements in the input sequence. Each

attention block contains multi-head self-attention and feed-forward layers.

For code generation, the encoder reads the input (that consists of natural

language and code) and constructs a contextual representation of the input.

A key component of the encoder model is the self attention layer which

weighs the importance of different tokens in the input sequence. It allows

the model to focus to different parts of the input sequence simultaneously,

enabling it to capture relationships between code tokens over long distances.

9

Figure 1.3 Figure of transformer architecture. [9]

3. Decoder is similarly structured as the encoder. It generates the target

sequence of code tokens, using the context provided by the encoder. The

decoder employs masked self-attention, which ignores certain positions in

the input sequence during the computation of attention scores. The goal of

this is to ensure that it generates the code sequentially and it doesn’t look

into the future.

1.3.2 Code generation model training process
Code generation models are usually based on the transformer architecture. So

training a code generation model starts with pre-training a transformer based

model and then specializing it for the task of code completion.

The steps that are usually taken when training a model on code completion

are the following:

• Pre-training: transformer based model is fed large-scale data in order to

get a broad and deep understanding of code and text.

• Fine-tuning: continue training on a smaller dataset focused on one specific

task with the goal of refining the model and enhancing its capabilities in a

narrower context.

• Reinforcement Learning from Human Feedback (RLHF): align the model

with human feedback with the goal of optimizing the model to produce

more relevant and high-quality code. This ensures that the model per-

forms well not only on similarity or execution based metrics but also meets

expectations of end-users.

10

Pre-training the Model

Pre training a model consists of initializing a model and training it on a large and

diverse dataset. The goal of this step is for the model to learn general data features

and patterns. Models intended for code tasks are trained on a big corpus of natural

language and code. The code part of the corpus should be collected from many

repositories and cover various programming languages, libraries, and frameworks.

The goal is enabling the model to develop a foundational understanding of syntax,

structure and standard library usage for many programming languages.

Common tasks a model is trained on during pre-training are Masked Language

Modeling (MLM) - model should predict randomly masked tokens from the input

sequence; Next Sentence Prediction (NSP) predicting whether a given sentence B

is the actual sentence that follows sentence A.

Supervised Fine-tuning (SFT)

Fine tuning step takes a pre trained model and trains it further on a smaller,

high quality task-specific dataset. The goal narrows down to predicting the most

probable token for the downstream task.

Fine-tuning is typically done in a supervised manner where the model is

optimized over a dataset representative of the deployment scenario. For example

for code completion it’s similar to language modeling (next token prediction)

where the model predicts the next sequence token, but in the domain of code.

Reinforcement Learning with Human Feedback (RLHF)

RLHF is a fine tuning phase that uses human annotators that provide direct

feedback of the outputs the model has generated. This step has shown great

success in aligning the model to human preference by addressing issues like

code quality, readability and context relevance, which are harder to capture by

automated metrics alone. This step consists of three intermediate steps:

• Collect Human Feedback: Human experts on the task evaluate outputs

generated by the fine-tuned model based on some predetermined criteria.

• Reward Modeling: The collected human feedback is used to train a reward

model that should quantify the quality and utility of the outputs the model

produces in reference to the user query. This reward function R(x, a)
assigns higher scores to outputs preferred by humans.

• Policy Optimization: Then the model is trained using a reinforcement

learning algorithm like Proximal Policy Optimization (PPO) [10]. The

objective now is to maximize the expected reward.

11

Chapter 2

Related Research

This chapter introduces the previous research which this thesis is built on. The

inspiration behind this thesis mostly lies in the work of Reinforcement Learning

from Compiler Feedback (RLCF) [1] paper described below. There is one key

difference between this work and their work which is that we utilize RL free

methods for fine tuning the model like KTO and DPO, which are explained in

more detail in this chapter.

2.1 Reinforcement Learning from Compiler Feed-
back

Using compiler feedback for improving model performance on downstream coding

tasks is an idea that was introduced by RLCF paper [1]. They take inspiration from

RLHF procedure that aligns model to human preferences and frame the problem

as: model’s output not aligned with the user’s desired outcome of compilable

code.

In order to alleviate that misalignment, they introduce an additional step,

called coarse tuning whose goal is to align the model’s output with compilable

code more often.

The way they approach it is by formulating the problem of writing code as

a Markov Decision Process (MDP). An MDP is a mathematical framework used

to describe an environment in which an agent operates. This environment is

characterized by states, rewards and transition probabilities. In this definition,

the pre-trained model acts as a policy and we train a reward mode consisting of

two parts: a compiler and a discriminator.

12

2.1.1 Reinforcement Learning from Compiler Feedback
model

The problem we are trying to minimize is:

E(x,y)∼F
[︂
Lanc(θ′|x, y, θ) + αEy′∼fθ′ (·|x) [D(x, y, y′)]

]︂
(2.1)

Where, D is the reward, Lanc is anchor loss, which should ensure the parame-

ters don’t change too rapidly, so one option for this function is divergence between

each token. F is the distribution from which x, the input (textual description of

program or partially finished program) and y, the reference are sampled from:

(x, y) ∼ F and y′
is the generated solution that comes from the model.

The loss function is the second part of the above mentioned expectation,

which we try to minimize.

Reward (D) The reward consists of two parts: compiler and discriminator. The

first part of the reward is the compiler/static analysis, which simply compiles/an-

alyzes both y and y′
and returns a binary output 1 when it compiles and -1 when

it doesn’t compile. But also it provides some sort of localization by returning the

tokens up until the error and a reward of -1.

The discriminator is called only if both y and y’ compile, otherwise the reward

is -1. The goal of the discriminator is to try and predict whether the code given to

it was generated by a model. The code is fed into the discriminator as embeddings

obtained from CodeBERT [11] model. The discriminator is represented by:

gω(x, y0, y1) ≡ tanh (MLP (CodeBERT(x ◦ y0))−MLP (CodeBERT(x ◦ y1)))
(2.2)

Additionally, the reward of each token is modified by the anchor loss.

j ∈ {1, . . . , |y′|}, rj ← −β log
(︄

fθ′(i)(y′
j|x, y′

<j)
fθ(y′

j|x, y′
<j)

)︄
(2.3)

Training The reward model and the policy are plugged in Proximal Policy

Optimization (PPO) [10], which is the algorithm used to improve the policy.

PPO requires a critic as well, which is initialized as the pre-trained LLM with

the head replaced for an MLP head used for value estimation. The loss used for

training the critic is Mean Square Error (MSE). For the loss of the policy and the

critic we also need the advantages and estimated returns. To obtain these, they

use GAE (Generalized Advantage Estimate).

13

2.2 Human aware loss functions
Human aware loss functions (HALO) is a family of loss functions, that incorporate

human biases.

Let πθ be the model being trained. The model maps input x ∈ X to a proba-

bility distribution over possible outputs y ∈ Y

πθ : X → P(Y) (2.4)

πref is the reference model; rθ the implied reward;

In order for a loss (f : X × Y → R) to qualify as a HALO it needs to satisfy

the following:

1. Reference point distribution

Q(X ′
, Y

′ |x, y) over X × Y (2.5)

2. Value function vf : R→ R that is non-decreasing everywhere and concave

in (0,∞) such that f is linear in:

vf (rθ(x, y)− EQ[rθ(x
′
, y

′))]]) (2.6)

2.3 Kahneman-Tversky Optimization
Kahneman-Tversky Optimization (KTO) [2] is a HALO that directly maximizes

the utility of generations instead of maximizing the log-likelihood of preferences,

as other methods. KTO does not need preferences, only a binary signal of whether

on output is desirable or undesirable for a given input. Good results of offline

PPO with dummy +1/-1 rewards suggests that—with the right inductive biases—a

binary signal of good/bad generations may be sufficient to reach DPO-level

performance.

The inspiration for KTO comes from Tversky and Kahneman’s (1992) model

[12], specifically the Prospect Theory, that looks into why humans make decisions

that don’t maximize expected output and looks into human biases. For example

it is known that humans are loss averse, meaning that they are more sensitive to

losses than gains.

The loss function for KTO is:

LKT O(πθ, πref) = Ex,y∼D[λy − v(x, y)] (2.7)

where

14

Figure 2.1 KTO method figure. [2]

Figure 2.2 DPO method figure. [3]

rθ(x, y) = log
πθ(y|x)

πref (y|x) (2.8)

z0 = Ex′∼D[KL(πθ(y′|x′)∥πref (y′|x′))] (2.9)

v(x, y) =

⎧⎨⎩λDσ(β(rθ(x, y)− z0)) if y ∼ ydesirable|x
λUσ(β(z0 − rθ(x, y))) if y ∼ yundesirable|x

(2.10)

2.4 Direct Preference Optimization
Instead of training a reward from preferences and then optimizing the policy, as

RL methods would do, Direct Preference Optimization (DPO) [3] re-expresses the

loss function to directly incorporate human preferences such that it can be used

to train the policy directly.

This loss function is constructed such that it aligns the model’s output proba-

bilities with user preferences, so it directly optimizes the language model over

preference data. If users prefer output y1 over y2 for input x, the loss function

increases the likelihood of y1 and decreases that of y2 under the model’s policy.

15

The way it does that is by leveraging an analytical mapping from reward

functions to optimal policies and it expresses the reward function though the

optimal and reference policy, which in turn means there’s no need to train a

reward model. It leverages a particular choice of reward model parameterization

that enables extraction of its optimal policy in closed form, without an RL training

loop.

LDPO(πθ; πref) =

= −E(x,yw,yl)∼D

[︄
log σ

(︄
β log

(︄
πθ(yw | x)
πref(yw | x)

)︄
− β log

(︄
πθ(yl | x)
πref(yl | x)

)︄)︄]︄
(2.11)

Where D is the discriminaator; πθ and πref are the optimal and reference

policy respectively. yw is the preferred label and yl is the dis-preferred label.

The first part of the substitution aims to increase the likelihood of yw and the

second part to decrease the likelihood of yl.

This approach aims to maximize the likelihood of generating preferred out-

comes yw over less preferred outcomes yl.

16

Chapter 3

Proposed Approach

The approach that was introduced in Reinforcement Learning from Compiler

Feedback paper removes a biased and expensive part of training - human labeling.

However, it still depends on RL which is unstable. So in this thesis the idea

introduced by RLCF paper is expanded by using RL free HALOs for coarse tuning,

as expained in the previous chapter instead of the RL PPO.

The experiments were executed with two HALOs: KTO and DPO. The coarse

tuning will have a bit different definition based on the model (KTO or DPO).

But in general the idea is to fine tune a pre-trained model with the feedback of

whether or not generated examples compile. The goal of coarse tuning is to train

a model that will produce compilable results more often, hence providing better

performance on downstream tasks. For KTO there is simply a binary signal that is

propagated back to the model. Whereas for DPO, it’s a bit more fine grained. If the

binary signal responds with compiled, there is a discriminator that is trained to

distinguish between model and human generated code. And if it doesn’t compile

it provides a localized error description.

3.1 Data
Creating the dataset for both KTO and DPO follows the same few steps.

1. Seed: Initial dataset - CodeSearchNet (Appendix A).

2. Base: Dataset consisting of predictions collected from the pre-trained model.

3. Compiler enriched: Contains compiler feedback. This dataset is different

for both training models (KTO/DPO), which is explained in the following

sections.

17

3.1.1 Seed Dataset
CodeSearchNet The dataset based on which all models are trained is Code

Search Net. This dataset was introduced by GitHub in collaboration with the

research community to facilitate the development of models capable of search-

ing and understanding code. It is specifically designed to support code search

tasks, making it highly relevant for our research. It is a dataset that consists of

(documentation, function) pairs. The dataset schema is as follows:

• id: Arbitrary number

• repository_name: Name of the GitHub repository

• func_path_in_repository: Path to the file which holds the function in

the repository

• func_name: Name of the function in the file

• whole_func_string: Code + documentation of the function

• language: Programming language in which the function is written

• func_code_string: Function code

• func_code_tokens: Tokens yielded by Treesitter

• func_documentation_string: Function documentation

• func_documentation_string_tokens: Tokens yielded by Treesitter

• split_name: Name of the split to which the example belongs (one of train,

test or valid)

• func_code_url: URL to the function code on GitHub

The dataset comprises over 6 million functions from open-source repositories

across six programming languages: Python, JavaScript, Java, PHP, Ruby, and Go.

The dataset is filtered based on a few heuristics. More details can be found in

Appendix A. This dataset is used for supervised fine tuning of the base models

without any alterations (after filtering).

18

Figure 3.1 Distribution of length of datapoints for Python of original CSN dataset.

3.1.2 Base Dataset
The base dataset contains all columns from CodeSearchNet, as well as predictions

collected using the pre-trained model (deepseek-coder1.3b) [13], given a certain

prompt. The prompt used for most experiments is empty, as it’s proven to be the

best one.

In Figure 3.2 is the original distribution of reference lengths in characters.

Displayed in Figure 3.3 you can find the distribution of tokenized references of

the filtered CSN dataset. The amount of references that have more than 1K tokens

is very low. Which is why the base dataset is collected with a fixed max tokens

value of 1000.

3.1.3 Compiler Enriched Dataset
The final dataset that is used for training KTO and DPO which require some form

of feedback or preference is the compiler enriched dataset.

The compilation process for Java involves invoking the ‘javac‘ compiler and

capturing the output. The references that come from the seed dataset CodeSearch-

Net are plain function that are not placed in a class. Javac cannot compile that

as is, so the function is put in a class before compiling. The dataset also doesn’t

include imports, so most references don’t compile which is why import errors

are ignored.

19

Figure 3.2 Distribution of length of tokenized references for Python after filtering.

For python code compilation leverages the built-in ‘compile‘ function with

the ‘’exec’‘ mode to evaluate whether the code can be executed without syntax

errors.

Although there are slight differences in the way the data is represented, the

main component added in this step to the dataset is the signal of whether or not

the generated code from the previous step compiles or not.

3.2 Model

3.2.1 KTO with compiler feedback
KTO requires data with binary signal of whether that is a good or bad example.

Usually this requires a human signal classifying the examples as bad or good. In

this case instead of using a human in the loop, we use compiler in the loop. So

the good/bad signal is actually compiles/doesn’t compile signal.

Data The predictions from the base dataset get classified based on whether or

not they compile. The final dataset consists of the prompt and completion, as

well as a label of good or bad. The predictions that don’t compile got classified as

bad and the ground truth completions are classified as good.

20

Example of a datapoint which consists of three parts prompt, completion

and a flag of whether or not it was rejected.

Prompt

def isprime(number):
"""
Check if a number is a prime number
:type number: integer
:param number: The number to check
"""

Completion

if number == 1:
return False

for i in range(2, int(number ** 0.5) + 1):
if number % i == 0:

return False
return True

Label

True

3.2.2 DPO with compiler feedback
DPO requires data that expresses preference of whether it is a good or bad

example. Typically this would be human preference, i.e. labeled data where

humans express preference of one over the other example. We replace the human

in the loop component with a compiler in the loop approach, using the binary

signal of the compiler (code did or did not compile) as representation of good or

bad examples.

Data The predictions are classified based on whether they compile or not. The

final dataset than contains pairs of reference solution (as a positive example)

and a prediction that does not compile (as a negative one). This means that any

prediction that compiles cannot not used in the dataset, as it is not a negative

example. Therefore, we introduce small modifications to those predictions that

compile, such as removing a special symbol, or misspelling a keyword, so that it

does not compile.

21

Example of a datapoint which consists of three parts prompt, rejected com-

pletion and the chosen completion out of the two. The chosen completion is

always the reference.

Prompt

def isprime(number):
"""
Check if a number is a prime number
:type number: integer
:param number: The number to check
"""

Chosen

if number == 1:
return False

for i in range(2, int(number ** 0.5) + 1):
if number % i == 0:

return False
return True

Rejected

if number % 2 == 1:
return False

return True

3.3 Evaluation
Evaluation is done on two benchmarks - MBXP and HumanEval.

3.3.1 MBXP
MBXP [14] is a benchmark used for the evaluation of code completion. It consists

of roughly 1000 examples for every language. One datapoint in the benchmark is

a triple of:

• Function definition and documentation

• Reference solution

22

• A set of tests the generated solution is run on

It is designed to be solvable by entry-level programmers, covering programming

fundamentals, standard library functionality.

3.3.2 HumanEval
HumanEval [15] is another benchmark used for evaluating performance of models

in the domain of programming and code generation. It consists of 160 problems.

The structure of this benchmark is the same as above. It consists of a problem,

solution and a set of tests.

3.3.3 Metrics
The metrics used for evaluation are pass@k, compile@k and exec@k. All metrics

require k generations from the model on the same input. Then, each metric is

calculated over those k generations.

pass@k represents the percentage of the datapoints that have at least one of

the k generations (on the same input) that passes the tests from the benchmark.

exec@k is a softer variant of the metrics, where it calculates the percentage

of datapoints where at least one generation can be executed without any errors.

comp@k calculates the percentage of datapoints where at least one generation

can be compiled without any errors.

Mxeval is a library used for computing execution based metrics. Mxeval

provides support for calculating pass@k on both benchmarks - MBXP and Hu-

manEval, given predictions. However, as mxeval doesn’t include comp@k and

exec@k, which is why we extended mexeval to support those metrics as well

3.4 Resources
TRL [16] is a library built on top of the transformers library that provides the

implementation for KTO and DPO, as well as SFT training. It’s a full stack tool to

fine-tune and align transformer language and diffusion models using methods

like KTO, DPO, SFT.

Model DeepSeek Coder [13] is a family of code language models, each trained

from scratch on a dataset encompassing of 2 trillion tokens. The training corpus

comprises 87% code and 13% natural language datapoints in both English and

Chinese. The model series offers various sizes, ranging from 1 billion to 33 billion

23

parameters. Models are trained on project-level code corpus by employing a

window size of 16K and a extra fill-in-the-blank task, to support project-level

code completion and infilling.

The model used throughout this thesis for all experiment is deepseek-

coder1.3b. This model has not been trained on CSN.

Cadence Fine tuning a model of size bigger than 1B parameters becomes in-

creasingly challenging in terms of hardware resources. For that I used cadence

plugin [17] which allows you to run a project on AWS machines without hav-

ing to deal with syncing the project at every change and setting up the project

environment.

HuggingFace All models’ weights are uploaded to HuggingFace. All predic-

tions collected for the benchmarks are also uploaded as HuggingFace datasets.

Weights & Biases Wandb is used to track models’ losses during training and

models’ performance on the mentioned benchmarks during evaluation.

24

Chapter 4

Results and Discussion

This chapter presents the conducted experiments and their outcomes. By assessing

the base model’s performance across different prompts, as shown in the table 4.1,

we can see the empty prompt performs best. That is why for the majority of fine

tuning experiment the empty prompt was used.

Language Prompt pass@1 mbpp pass@1 humaneval

Python empty 0.195 0.128

Python oneshot 0.165 0.146

Python markdown 0.113 0.097

Java empty 0.203 0.137

Java oneshot 0.151 0.043

Java markdown 0.180 0.118

Table 4.1 Performance of base model on MBPP and HumanEval

The core hypothesis of the thesis revolves around the influence compiler

feedback has on model performance. Moreover, it hypothesizes that model perfor-

mance on downstream tasks, specifically code generation improves. To evaluate

this hypothesis, we select a pre-trained LLM, deepseek coder 1.3B, and coarse

tune it with compiler feedback with an RL free HALO method. Then that model

is optionally fine tuned for the task of function completion. The experiments are

run for two languages - Java and Python, and subsequently assess whether these

refined models show better results than the original base models.

The data size on which most models were trained on was usually in the range

of 5000-20000 datapoints.

25

Coarse Tuning Results
Purely coarse tuning using KTO or DPO on provides either minor improvements or

even slight worsening of the performance on MBPP and HumanEval benchmarks

for Python, although not so for Java. Results are shown in Table 4.2 for Python

and Table 4.3 for Java. The KTO and DPO models were trained on 5000 examples.

Except for the KTO model trained for Java as shown in Table 4.3, which was

trained on 7500 examples.

Model pass@1 mbpp pass@1 humaneval

deepseek1B 0.194 0.128

deepseek1B + KTO 0.217 0.152

deepseek1B + DPO 0.191 0.128

Table 4.2 Performance of fine tuned model for Python on MBPP and HumanEval

Model pass@1 mbjp pass@1 humaneval

deepseek1B 0.203 0.137

deepseek1B + KTO 0.365 0.174

deepseek1B + DPO 0.241 0.112

Table 4.3 Performance of fine tuned model for Java on MBJP and HumanEval

Ablation study for KTO and DPO effect on final
performance
A small ablation study is conducted that shows that applying SFT on top of the

coarse tuned model seems to provide better results than the purely supervised

fine tuned model. It aims to evaluate the impact of different training methods on

the performance of the "deepseek1B" model. Specifically, we examine the effects

of Supervised Fine-Tuning (SFT), Knowledge Transfer Optimization (KTO), and

Data Preference Optimization (DPO), as well as SFT over DPO and KTO fine tuned

models. The metrics that are used for evaluation include "pass@1," "exec@1,"

and "compile@1" for two different benchmarks: on MBXP and HumanEval. Each

configuration of the model provides insights into the individual and combined

contributions of these techniques.

For both Java and Python pass@1 increases over both the base model and SFT

model. More details can be found in Table 4.4 and Table 4.5

26

The supervised fine tuning was all done with the same configuration of

hyperparameters and the size of the data was 5000.

Whereas KTO and DPO were trained on 7500 examples. The KTO and KTO +

SFT, as well as DPO and DPO + SFT were trained with the same KTO and DPO

configuration of hyperparameters. DPO was trained for 5 epochs, with learning

rate 1e-6, and KTO was trained for 3 epoch with learning rate of 5e-5.

Dataset mbxp humaneval

Method pass exec comp pass exec comp

deepseek1B 0.194 0.557 0.822 0.128 0.658 0.914

deepseek1B + SFT 0.235 0.524 0.816 0.235 0.524 0.816

deepseek1B + KTO + SFT 0.281 0.543 0.830 0.201 0.623 0.927

deepseek1B + DPO + SFT 0.247 0.508 0.806 0.207 0.610 0.945

deepseek1B + KTO 0.150 0.290 0.450 0.146 0.372 0.5

deepseek1B + DPO 0.184 0.578 0.805 0.195 0.713 0.933

Table 4.4 Performance of all method combinations for Python. All metrics are @1, i.e.
pass@1, exec@1, and comp@1.

Dataset mbxp humaneval

Method pass comp pass comp

deepseek1B 0.203 0.690 0.137 0.596

deepseek1B + SFT 0.239 0.659 0.106 0.640

deepseek1B + KTO + SFT 0.281 0.731 0.137 0.652

deepseek1B + DPO + SFT 0.268 0.734 0.118 0.621

deepseek1B + KTO 0.218 0.735 0.106 0.590

deepseek1B + DPO 0.224 0.711 0.111 0.652

Table 4.5 Performance of all method combinations for Java. All metrics are @1, i.e.
pass@1, exec@1, and comp@1.

SFT on bigger datasets for Python
In order not to attribute success to the size of the data, we ran experiments for

SFT on bigger datasets, of sizes 10000 and 20000. The same hyperparameters were

used for all experiments, and from the metric results it seems that the models

might be slightly over-fitting.

The results can be observed in Table 4.6

27

Model Dataset Size pass@1 mbpp pass@1 humaneval

deepseek1B 5K 0.235 0.235

deepseek1B 10K 0.235 0.220

deepseek1B 20K 0.215 0.146

Table 4.6 Performance of SFT 5k 10k 20k model on MBPP and HumanEval for Pyhton

Experiments conclusion From the above data it’s visible that coarse tuning

on compiler feedback is significantly useful. Looking at Table 4.2 there is a 10%

increase in pass@1 after training the model with KTO on only 7500 examples.

Additionally, from the ablation study we can see that only fine tuning in a

supervised way has lower results than doing a coarse tuning step before that

either with KTO or DPO.

Note that this was a small sized experimentation, as the dataset size is limited

and the model used had 1B parameters. So scaling things up looks promising.

4.1 Project
The project can be found on GitHub. And instruction for how to use it are included

in the README.md. The models and datasets can be found on HuggingFace.

28

https://github.com/stojchet/RLCFModel
https://huggingface.co/stojchet

Conclusion

Conclusion This thesis has successfully managed to experiment with incorpo-

rating compiler feedback into RL free HALO methods, specifically KTO and DPO.

The results have shown that using compiler feedback indeed improves the model

performance on downstream tasks. But also helps model learn how to provide

compilable code more often.

This thesis touches upon a bigger topic, which is improving the performance

of smaller scale language models. That topic still has a lot of research that needs

to be done, however that is a much more complex problem, whose resolution lies

beyond the scope of this thesis.

Practical use Practical use case of this work is evident - it improves code

generation capabilities of models. That is a big topic in software development

industry today, so making that process a bit more efficient by producing compilable

code is very important. But also doing so in an inexpensive and more stable way

by using compiler feedback and RL free HALOs.

Future research First, this reseach was smaller scale, so future research could

start by scalling dataset size and model size in order to make the improvement

more noticeable. Additionally, one could build on top of this research by integrat-

ing run-time error analysis and other static code checks, such as those provided

by integrated development environments (IDEs), into the model training process.

29

Bibliography

[1] A. Jain et al. “Coarse-Tuning Models of Code with Reinforcement Learning

Feedback”. 2023. url: https://arxiv.org/abs/2305.18341.

[2] K. Ethayarajh et al. “KTO: Model Alignment as Prospect Theoretic Opti-

mization”. In: 41 st International Conference on Machine Learning (2024).

url: https://arxiv.org/abs/2402.01306.

[3] R. Rafailov et al. “Direct Preference Optimization: Your Language Model

is Secretly a Reward Model”. In: 37th Conference on Neural Information
Processing Systems (2023). url: https://arxiv.org/abs/2305.18290.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[5] Milan Straka. Multiclass Logistic Regression, Multilayer Perceptron. NN pic-

ture. 2022. url: https://ufal.mff.cuni.cz/~straka/courses/
npfl129/2223/slides.pdf/npfl129-2223-04.pdf.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. Cambridge, MA, USA: A Bradford Book, 2018. isbn: 0262039249.

[7] Milan Straka. Introduction to Reinforcement Learning. MDP picture. 2022.

url: https://ufal.mff.cuni.cz/~straka/courses/npfl122/2223/
slides.pdf/npfl122-2223-01.pdf.

[8] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL]. url: https://arxiv.org/abs/1706.03762.

[9] Azmat Anwar et al. Constructing Uyghur Named Entity Recognition System
using Neural Machine Translation Tag Projection. Transformer picture. 2020.

url: https://www.researchgate.net/publication/344911225_
Constructing_Uyghur_Named_Entity_Recognition_System_using_
Neural_Machine_Translation_Tag_Projection.

[10] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv:

1707.06347 [cs.LG]. url: https://arxiv.org/abs/1707.06347.

30

https://arxiv.org/abs/2305.18341
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2305.18290
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2223/slides.pdf/npfl129-2223-04.pdf
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2223/slides.pdf/npfl129-2223-04.pdf
https://ufal.mff.cuni.cz/~straka/courses/npfl122/2223/slides.pdf/npfl122-2223-01.pdf
https://ufal.mff.cuni.cz/~straka/courses/npfl122/2223/slides.pdf/npfl122-2223-01.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.researchgate.net/publication/344911225_Constructing_Uyghur_Named_Entity_Recognition_System_using_Neural_Machine_Translation_Tag_Projection
https://www.researchgate.net/publication/344911225_Constructing_Uyghur_Named_Entity_Recognition_System_using_Neural_Machine_Translation_Tag_Projection
https://www.researchgate.net/publication/344911225_Constructing_Uyghur_Named_Entity_Recognition_System_using_Neural_Machine_Translation_Tag_Projection
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

[11] Zhangyin Feng et al. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. 2020. arXiv: 2002.08155 [cs.CL]. url: https:
//arxiv.org/abs/2002.08155.

[12] DANIEL KAHNEMAN AMOS TVERSKY. Advances in Prospect Theory:
Cumulative Representation of Uncertainty. 1992. url: https : / / link .
springer.com/article/10.1007/BF00122574.

[13] Daya Guo et al. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. 2024. arXiv: 2401.14196
[cs.SE]. url: https://arxiv.org/abs/2401.14196.

[14] Ben Athiwaratkun et al. Multi-lingual Evaluation of Code Generation Models.
2023. arXiv: 2210.14868 [cs.LG]. url: https://arxiv.org/abs/2210.
14868.

[15] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021.

arXiv: 2107.03374 [cs.LG]. url: https://arxiv.org/abs/2107.
03374.

[16] Leandro von Werra et al. TRL: Transformer Reinforcement Learning. Ver-

sion 0.2.1. url: https://github.com/huggingface/trl.

[17] A. Trofimov et al. “JetTrain: IDE-Native Machine Learning Experiments”.

In: ACM ISBN (2024). url: https://arxiv.org/abs/2402.10857.

31

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://link.springer.com/article/10.1007/BF00122574
https://link.springer.com/article/10.1007/BF00122574
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/huggingface/trl
https://arxiv.org/abs/2402.10857

Appendix A

Code Search Net Filtering

From CSN dataset I’ve used several heuristics to collect a subset, approximately

1/4 of the original size of the 2 datasets:

• Filter by documentation size (number of characters): [60, 2000]

• Filter by code size (number of characters): [60, 4000]

• Filter by space count: [6, inf]

• Filter out datapoints whose documentation contains: "todo", "fixme", "tbd"

• Filter out documentation that contains the name of the method itself

• Filter documentation based on keywords it should contains, for explain the

parameters, and functionality of the code

• Filter code by number of lines [0, 70)

• Filter out code that has exact match lines (code repetitiveness)

• Filter code by number of parameters a function accepts - [0, 8)

• Filter code by number of nested blocks - [0, 6)

• Filter out documentation - code ratio (0.1, 1]

After post-processing the number of datapoints was cut down to 72K.

32

Figure A.1 Distribution of length of datapoints after postprocessing.

33

	Introduction
	Background
	Neural Networks Background
	Neural Networks structure
	Neural Networks training process

	Reinforcement Learning
	Code Generation Models
	Structure of Transformer Models
	Code generation model training process

	Related Research
	Reinforcement Learning from Compiler Feedback
	Reinforcement Learning from Compiler Feedback model

	Human aware loss functions
	Kahneman-Tversky Optimization
	Direct Preference Optimization

	Proposed Approach
	Data
	Seed Dataset
	Base Dataset
	Compiler Enriched Dataset

	Model
	KTO with compiler feedback
	DPO with compiler feedback

	Evaluation
	MBXP
	HumanEval
	Metrics

	Resources

	Results and Discussion
	Project

	Conclusion
	Code Search Net Filtering

