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Introduction
GCC is one of the most used compilers of the C/C++ language in the world.

It is well-known for being easily adaptable to new CPU architectures (so called
back-ends) and new languages (front-ends). Despite this flexibility, it is capable of
many advanced optimizations making it a common choice for CPU benchmarking.
It was the only supported compiler by the Linux kernel until 2010. New features
are contributed regularly including the recent initial support for the Rust and Go
programming languages.

An important part of its success is the ability to do complex optimization, that
is to produce a different program with equivalent observable behavior but a shorter
runtime and/or smaller binary size. A precise and comprehensible definition of
observable behavior is crucial as unexpected optimizations are a common source of
bugs. The problem of perfect optimization is difficult from the theoretical point
of view. Depending on the precise requirements, it is either unsolvable (Lemma 1)
or NP-hard (Lemma 2).

Lemma 1. Consider the RAM computational model as defined by Mareš&Valla
in [1, Chapter 2.5]. The goal of opt is to take a program as input and transform
it to one with equivalent observable behaviour and shortest possible runtime with
the least amount of instructions. The only observable behavior is the final contents
of the memory. No such opt can exist.

Proof. Let prog be some program for RAM s. t. opt(prog) = prog. Consider
the following program

Algorithm 1
1: Call prog
2: A← A + 1 ▷ A is a memory cell

opt must omit the second line if and only if prog never terminates. The
complexity of opt must therefore be at least the complexity of the halting problem,
which is unsolvable [2].

Lemma 2. Consider the RAM computational model as defined by Mareš&Valla
in [1, Chapter 2.5]. The goal of opt is to take a program as input and transform
it to one with equivalent observable behaviour and shortest possible runtime. The
only observable behavior is the final contents of the memory. opt is NP-hard.

Proof. Let SAT be some program for RAM that gets a logical formula of length n
in memory cells A1 to An and sets A0 = 1 if the formula is satisfiable and sets
A0 = 0 otherwise. Consider the following program

n is a constant from the point of view of SAT so its runtime is trivially in O(1),
but we are interested in the runtime of opt and it treats n as an input parameter.

Despite n being a constant for the SAT solver, it is the length of the input for
opt. We know the output must look like

Every line sets the contents of distinct memory cells, so this program must be
optimal. To obtain it, opt most select the correct variant of line 5 by solving the
SAT problem. Mareš&Valla prove SAT to be NP-complete [1, Chapter 19.4]. opt
is at lest as hard as SAT, therefore opt is NP-hard.
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Algorithm 2 SAT with constant input
1: A1 ← x1
2: A2 ← x2

3:
...

4: An ← xn

5: Call SAT

Algorithm 3 Optimal SAT for constant input
1: A1 ← x1
2: A2 ← x2

3:
...

4: An ← xn

5:

⎧⎨⎩A0 ← 1, if the formula is satisfiable
A0 ← 0, otherwise

Given the lemmata above we will evaluate our proposed changes by experiments
on real common hardware instead of relying on theoretical guarantees. We will
also study the structure of ordinary computer programs and focus on them instead
of the worst case scenarios.
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1 GCC internals
We will describe the current state of GCC. We will introduce the process of

compilation, the optimization passes involved and where they reside in the source
code tree. We will primarily focus on inter-procedural optimization (IPA) and its
inlining passes and describe the algorithm and data structures used.

Compilation of a single translation unit can be divided into three stages:

1. Parse the source code and destructure it to a common internal representation
named GIMPLE [3, Chapter 12] (front end)

2. Perform common optimization and possibly other transformations including
conversion to even simpler intermediary languages such as SSA form or RTL
(middle end)

3. Output machine code for selected target (back end)

All of these stages perform optimization, but we try to concentrate it in middle
end as much as possible so that all languages and all targets can benefit from it.
The end-to-end compilation process is often more complicated including running
the preprocessor and assembler but these steps are out of scope of this thesis.

An important property of a modern compiler is reproducibility of its output.
If you compile the same source with the same options (including implicit ones),
you must get the same output not only in terms of functionality, but really byte-
by-byte identical binary. This makes it easier to reproduce and therefore fix bugs
and more importantly makes the whole software supply chain more trustworthy.
If the source and build process is known, one can verify whether given binaries
are genuine. Special care must be taken while developing compilers to fulfil this
requirement. All randomized algorithms must be seeded with a known constant or
derived from input data and parallel algorithms must be thoroughly analyzed to
prove they give the exact same results independent of the order of execution. As
of today, GCC’s compilation is fully reproducible. To make this property very well
tested, GCC is compiled multiple times and mutually compared during a default
bootstrap.

The middle end itself is composed of multiple phases each consisting of many
passes. We will briefly list some of the passes, their full list can be found at [3,
Chapter 9]. We present those we expect to be most positively affected by inlining.
Most of them operate inside each function separately and therefore will benefit
from the extended context caused by inlining.

• IPA passes

– inline is the pass we want to modify
– constant propagation checks what arguments are passed to functions

and whether their bodies can be simplified using this observation

• tree SSA passes

– dead code elimination drops statements without side effects and
with unused results
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– forward store motion moves assignments closer to their use point
– unrolling of small loops completely unrolls loops with few iterations
– dead store elimination removes stores to memory that are never

used

• RTL passes

– common subexpression elimination merges redundant computa-
tions inside basic blocks

– loop optimization is a larger collection of transformations including
loop invariant motions, unrolling and peeling

Most of these passes are well-known and time-tested. We may get the im-
pression they are very cheap in terms of computing power since they are old
and computers got orders of magnitude faster in the meantime. Not only do
we have to account for code side increase as well, an important game changer
was the introduction of LTO to GCC in 2009 [4]. Link time optimization is the
process of running interprocedural optimization passes across translation unit
boundaries. This brings important improvements to both speed and code size,
but puts extreme pressure on IPA passes to be performant and not too memory
hungry. Despite having link time in its name, the optimization can be done neither
by a regular linker nor with regular object files. Machine code lacks necessary
metadata to make the optimization possible. GCC solves this problem by dumping
GIMPLE serialization to the object file and replacing the linker with almost the
full compiler [3, Chapter 25]. In the high level overview, this resembles splitting
the compiler around the middle-end dumping the output to a file and then later
continuing.

Inlining is the process of replacing a function call with the callee’s body. This
can save a couple of instructions of code size if the callee is short, saves a couple
of instructions of overhead for the call itself, but most importantly it allows for
other optimization passes to provide better results. This is especially important
for languages with support for generic programming. The current inliner in
GCC was initially written and continuously improved by Jan Hubička in 2003 [5,
gcc/ipa-inline.cc]. It operates on a callgraph, which is a directed multi-graph
with loops. Nodes represent functions and edges point from caller to callee. They
are stored as a list of pointers to neighbors [5, gcc/cgraph.h]. The callgraph is
suited for single-threaded access only at the time of writing, but we are not aware
of any obstacle in adding a lock to each node other than having to repetitively
modify large parts of the compiler. If lock access collisions are infrequent, we
expect the performance cost to be negligible. It will still require some thought to
cope with the reproducibility requirements mentioned earlier, but still there is no
fundamental obstacle.

During the inlining phases, functions have already been partly optimized
and their summaries have been generated. There are two subpasses; pass_
early_inlining and pass_ipa_inline. Both of them share a large amount of
helper code [5, gcc/ipa-inline.cc] [5, gcc/ipa-utils.cc] [5, gcc/ipa-inline-
transform.cc] [5, gcc/ipa-inline-analysis.cc]. It makes their algorithms
easy to reason about yet capable of complex and powerful decisions. One of the
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most important utility function is estimating edge growth and computing edge
badness.

Edge growth tells us the increase (or decrease in case of negative growth)
in code size in case we inline the selected edge. It is an integer representing
the change in an amount of instructions. The problem is IPA is part of the
middle-end and as such does not operate on instructions. We do not even know
the target architecture in this phase. All calculations are therefore approximated
with idealized instructions derived from the intermediary language. It tends
to overestimate the size a little as it can not account for target specific SIMD
instructions. We could not prove however that it does not underestimate in special
cases.

Badness is a combined metric to compare edges by the usefulness of their
inlining. It is a real number represented by GCC’s own sreal data type. Its
unusual sign orientation was chosen so that it fits the usual variant of heaps –
minimal heaps. The central idea is to compute a speed/size trade-off as

− instructions saved · execution count of caller
growth of caller · overall growth · combined size

with operands estimated from the profile. Dynamic profile (a measurement of
runtime characteristics) is preferable and it makes badness a global property of
each function. If it is not available, static profile (a prediction of the runtime
characteristics) is used. That makes badness a property of each edge as it tries to
estimate the importance by looking at the surroundings of the functions call. It is
also possible to explicitly disable the static profile and base badness on the depth
of nested loops in callee (so called loop nest) and the overall size growth. In each
case, the base badness is then adjusted multiple times to account for other signals
as well. We will provide a couple of such modifications, the full list can be found
at the source code of the edge_badness function [5, gcc/ipa-inline.cc].

• strongly prefer edges with non-positive growth

• prefer functions with little callers (if it gets inlined to all of them, it can be
excluded from the binary)

• prefer edges that turn indirect calls to directs ones when inlined

• prefer functions declared inline

1.1 Early inliner
Early inlining is focused on obviously beneficial cases only therefore being

algorithmically simple and performant. Its goal is to eliminate high abstraction
penalty in C++ code and possibly other similar languages like Rust [6]. It traverses
the callgraph in reverse post order (“bottom up”). Functions have already been
optimized in this order of traversal, so more of them appear as good-fit for inlining.
The decision heuristics are very simple, namely:

• inline functions with always_inline attribute
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• recursively inline functions with flatten attribute

• inline so small functions, that inlining them decreases total code size

• inline so small leaf functions, that inlining them increases the total code
size by at most early_inlining_insns (it is believed this tiny penalty will
later disappear thanks to other optimizations)

• skip recursive edges

1.2 Greedy inliner
The full pass_ipa_inline does a generic traversal called inline_small_

functions and then some special-case transformations.

Algorithm 4 Pseudocode of inline_small_functions

1: E ← all edges reachable from exported nodes
2: while unit growth wasn’t reached and E ̸= ∅ do
3: e← edge with lowest badness from E
4: if e is inlinable & inlining e is profitable then
5: Inline e
6: Recursively update summaries of callers of e
7: Add newly discovered edges to E a

8: end if
9: E ← E \ e

10: end while
ainlining may turn indirect edges to direct ones

To make updates of E fast, it is backed by a fibonacci heap [1, Chapter 18.4].
It is a fast heap both in theory and as used in GCC, but it can not be used in
SMP scenarios directly. While there exist attempts to modify fibonacci heaps for
SMP [7], we believe avoiding it completely is a better long-term choice improving
both performance and comprehensibility.

Decisions on line 4 are mostly governed by can_inline_edge_p and want_
inline_small_function_p. Recursive edges are still skipped. For each callee, it
is checked whether it’s size is not too large and also whether the unit won’t grow
above param_inline_unit_growth after the inlining operation. The parameter
is local for each function, so no short-circuiting of the loop is possible. Given
the priority queue E, it is equally important to have a low badness score to get
inlined.

While there are many special tweaks, the main idea of badness is to prefer
small (ideally negative) code size increase and to prefer hot edges (those called
frequently). This approach is common in compiler design [8, Chapter 1].

An edge is marked for inlining by calling inline_call [5, gcc/ipa-inline-
transform.cc]. The transformation is not done right away, the edge is marked
and all are processed later. We need to push this information to the callee as well
not to confuse later IPA stages (unused unexported functions shall be removed for
example). This is done by creating a so-called inline clone. This implementation
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detail is not important for the current inliner, but it will have to be handled by
our proposed solution.

f0

f1 f2

f3 f4

f2′

Figure 1.1 Callgraph after inlining (f0, f2′) edge
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2 The naive inliner
We propose a different implementation of the inline_small_functions of

the pass_ipa_inline. We want to achieve at least the speed of the current
implementation, deliver optimized code with not much worse speed/size ratio and
use only SMP-friendly algorithms and data structures. As stated in chapter 1, the
callgraph is not prepared for concurrent access, so we can not bring any immediate
performance improvements over the current inliner. The goal of the thesis is
therefore to make some first steps in making the inlining phase parallel and also
to prove that making the necessary changes for concurrent access to the callgraph
is justifiable.

Our approach is led by the intuition of where most of the hot code resides in
the callgraph and by observations of common C++ abstraction patterns. Because
of relying on such non-exact hints, we call our result the naive inliner. We are
aware of a similar concept being used in the LLVM [9, mlir/lib/Transforms/
Utils/Inliner.cpp]. That itself is not a guarantee of positive results as the
overall result largely depends on other optimization passes (including GCC’s
inline_small_functions) and how exactly the profitability of inlining each edge
is approximated. We will therefore provide our own measurements.

The central part of the naive inliner is

Algorithm 5 Naive inline_small_functions

1: F ← all functions sorted in reverse post order
2: for f ← F do ▷ loop over all elements of F
3: for e← {e|e ∈ fcallees&¬e inlined} do ▷ loop over noninlined calls in f
4: if e is inlinable and profitable & growth of e ≤ threshg & badness of

e ≤ threshb then
5: Inline e
6: Update summaries of caller of e
7: end if
8: end for
9: for e← {e|e ∈ fcallees&e inlined} do ▷ loop over inlined calls in f

10: Call inline_inlined(e)
11: end for
12: end for

We iterate over the callgraph bottom-up and inline all “good-enough” edges
that do not inflate the program too much. To keep the promise of easy par-
allelization, both threshg and threshb must be constant during naive inline_
small_functions’ execution. We no longer have the guarantee of keeping the
total growth strictly bellow limits as there exists adversarial programs that can
grow almost arbitrarily. As an example, consider a program with all edge growths
equal to γ. By varying the threshg either no edges get inlined (hurting resulting
performance) or all edges do (increasing the program size by γ ·∑︁ |fcallees|). While
it may be possible to come up with values of the thresholds such that real-world
scenarios behave reasonably, predicting them is very difficult since properties of
functions change as other ones are inlined into them.
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Directly accounting the modifications described above would bring us back to
the current implementation – precise but nonparallelizable. We choose a different
path and run the inline_small_functions multiple times called rounds. We
schedule a single threshg for all rounds, but we keep slowly increasing threshb.
Adversarial programs still exist (optimal inlining is NP-complete [10]), but we can
stop soon-enough for sane cases by simply not running another round. Another
important benefit is however in revisiting skipped nodes. This simulates the
original priority queue without requiring synchronization.

Unlike the current inliner that collects all edges in advance and later traverses
them, the naive inliner walks through functions collected in advance. If more
functions are created during a round (e. g. inline clones) they will not be considered
in later rounds with looser thresholds. Take for example Figure 1.1 in page 12.
Edge (f0, f2′) was inlined during round 1. After rising thresholds for round 2,
edge (f2, f4) may become acceptable for inlining. Doing so is pointless however
as f2 is effectively unused. More importantly, we will never visit f2′ to learn
about (f2′, f4) to consider it for inlining. This is the problem we try to solve with
inline_inlined.

Algorithm 6 inline_inlined(e)
1: if callee of e is marked as inlined then
2: Call inline_inlined(callee of e)
3: else
4: Consider e for inlining the same way naive inline_small_functions does
5: end if

In the language of Figure 1.1, when we see a dashed edge, we start a depth
first search for non-dashed ones (f0 might have gotten inlined in the meantime
for example) and consider those for inlining.

It remains to decide the correct values of threshg and threshb. GCC currently
has a flag inline-unit-growth to specify the maximum allowed growth factor
for each translation unit. It could then be applied as

current_size + edge_growth ≤ initial_size · inline-unit-growth.

inline-unit-growth can be adjusted per each function, but it does not matter
for the above formula. The real problem is with maintaining up-to-date value of
current_size in a concurrent computation. We therefore use the formula

size_at_round_start + edge_growth ≤ initial_size · inline-unit-growth.

This way we only guard against extreme momentary growths. The total one will
have to be protected by having short rounds therefore making size_at_round_
start reasonably accurate. What remains for controlling round size is threshb. We
did some experimenting with picking its values statically based on the structure
of some reference programs, but it turned out the distribution of badness is far
from uniform as can be seen in Figure 2.1.
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Figure 2.1 Distribution of badness in Tramp3Dv4 [11]. x-axis shows values of
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3 Experimental results
An important part of altering a compiler is justifying the change. Led by the

observation that execution the actual inlining transformations is much slower than
planning them, we will concentrate instead on the speed of the resulting binaries.
We have confirmed this expectation by compiling clang ?? with both inliners and
comparing the length of the inlining phase as output by the -Q option. Another
reason for this approach is the fact, that the main performance benefits will be
unleashed by parallelization of the rounds, which is far out of the scope of this
theses as explained earlier.

The SPEC benchmark is exceptional for this thesis as it is not freely available
and had to be executed by the supervisor. Its details are mentioned in its
subsection. All other benchmarks were executed on a common HW, namely
a computer with:

• CPU AMD Ryzen 5 7600 (6 cores ×2 hyper-threading, 3.8 GHz base, up
to 5.1 GHz)

• RAM consisting of 2 modules of Crucial Pro 16 GB DDR5-5600 (DDR5,
46-45-45)

• storage Samsung SSD 970 EVO Plus 1TB

• Linux kernel identifying itself as 6.1.0-21-amd64 #1 SMP PREEMPT_DY
NAMIC Debian 6.1.90-1 (2024-05-03) x86_64 GNU/Linux

• virtualisation was not used

We want to avoid synthetic measurements and therefore we try to capture
events observable by end user (e. g. total execution time) in environments used
by end users (commodity HW, common kernel version…). Each test was executed
multiple times to counter hard-to-control reproducibility issues (the state of CPU
caches for example). We call each test execution a run and a full series of runs
a batch. The default batch size was 10. The kernel page cache was emptied
before each batch with sync && echo 3 > /proc/sys/vm/drop_caches. It was
intentionally left out between individual runs as syscall patterns can be affected
by inlining and therefore the performance difference is relevant. It is also true
that caches are used during normal execution.

Whenever we measure the size of a binary, we concentrate on its .text section
only. This is to exclude debugging symbols and other contents other contents not
related to the actual code size.

3.1 SPEC
SPEC CPU® 2017 by Standard Performance Evaluation Corporation is an

industry standard benchmark to evaluate performance of both CPUs and compil-
ers [12] [13]. Its source code is not freely available, but it is otherwise well known
to compiler designers so that is why we present it here. The tests were executed
by the supervisor on a machine equipped with AMD EPYC CPU. Table 3.1
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and Table 3.2 list the difference of the original inliner and the naive one for each
test.

The Imagemagick benchmark is known to be sensitive to inlining for reasons
that are not understood by the inlining heuristics. In particular, when certain
functions are not inlined, data-structures containing RGBA data are stored by
pieces in the caller and loaded as a vector in the callee. This causes CPU to
perform long penalty on mismatches between sizes of loads and stores. The
Exchange benchmark is producing difficult sudoku tables. It is written as a self-
recursive function which recurses at most 10 times. With -Ofast GCC produces
10 clones of this function and the overall performance is highly sensitive on how
individual inline decisions corellate with the tree of recursion which is unknown
to the compiler.

Other performance results are pretty close, especially for the -O2 variant. We
consider the isolated performance drops not a fundamental flaw of the naive
inliner’s idea and we believe it can be reduced with further investigation and
tuning of the constants driving the inliner’s decisions. The size results are a bit
worse with up to 1

4× increase. This is caused by the fact the naive inliner does not
measure the accumulated size increase precisely and therefore tends to overgrow
the set limit. There is a natural question of how this overgrowing relates to the
number of rounds. We will elaborate on it in the analysis of Tramp in Section 3.2.

3.2 Tramp3Dv4
Tramp3Dv4 is a program computing extensive physical simulations [11]. It is

written in C++ in a very high-level way (we say there is a high abstraction penalty)
which is why it is commonly used to benchmark compilers and especially their
ability of inlining as missing an important opportunity is immediately visible [6]
[14]. It is also distributed as a single source file and produces an easy to run
binary without additional input data making the benchmarking simple. During
the development of the naive inliner, it was observed that disabling the IPA inline
small functions completely has little to no effect. This is caused by the early
inliner, which specializes at removing C++’s abstraction penalty, as stated in
Chapter 1. We will therefore provide some batches with the early inliner disabled.
The results given are an average of the batch unless stated otherwise.

Tramp3Dv4 was compiled with the following command line (and optionally
-fipa-naive-inline)

g++ -fpermissive -O3 -march=native -fno-early -inlining
tramp3d -v4.cpp

The source code had to be modified by adding
using std::isinf;
using std::isnan;

right under the block of #includes to accommodate to changes in the language
and its standard library. This is also the cause of the -fpermissive option.
To utilize the extended context for other optimizations caused by inlining, we
employed the -O3 and -march=native options.
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Rate Rate Size SizeTest name
-O2 -Ofast -O2 -Ofast

503.bwaves_r 0.22 % 0.25 % 0.00 % 0.00 %
507.cactuBSSN_r −1.21 % −2.99 % 0.16 % 1.76 %
508.namd_r −3.18 % 0.92 % 0.00 % 11.34 %
510.parest_r 3.05 % 0.71 % 7.96 % 11.55 %
511.povray_r −6.85 % −10.00 % −2.73 % 13.14 %
519.lbm_r −0.95 % −1.31 % 0.20 % −0.87 %
521.wrf_r 1.71 % 1.23 % 0.01 % −0.03 %
526.blender_r −2.04 % 0.52 % 3.10 % 16.72 %
527.cam4_r −0.24 % 0.88 % 0.04 % −0.18 %
538.imagick_r −0.37 % 37.03 % 2.27 % 11.34 %
544.nab_r 0.14 % −0.12 % 0.00 % 3.03 %
549.fotonik3d_r −0.46 % 0.38 % 0.00 % 0.00 %
554.roms_r −1.56 % 0.00 % 0.00 % 0.09 %
Geometric average −0.92 % 1.56 %
Arithmetic average 0.85 % 5.22 %

Table 3.1 Relative rate differences of the SPEC CPU 2017 floating point benchmark
for different optimization flag sets taking a median of three evaluations. Positive numbers
mean the original inliner provided better results.

Rate Rate Size SizeTest name
-O2 -Ofast -O2 -Ofast

500.perlbench_r −3.68 % 3.39 % −5.07 % 11.90 %
502.gcc_r 0.86 % 1.78 % 5.52 % 15.50 %
505.mcf_r 1.23 % −0.72 % −2.71 % −0.71 %
520.omnetpp_r −1.03 % 4.77 % 10.36 % 19.02 %
523.xalancbmk_r 7.01 % 2.68 % 15.30 % 12.52 %
525.x264_r −0.35 % 0.85 % 2.85 % 3.34 %
531.deepsjeng_r 0.40 % 0.00 % 0.81 % −0.86 %
541.leela_r 1.90 % 1.75 % 3.16 % 17.44 %
548.exchange2_r 0.00 % 8.47 % 0.00 % −0.01 %
557.xz_r 0.53 % 5.74 % 23.22 % 17.01 %
Geometric average 0.67 % 2.75 %
Arithmetic average 5.34 % 9.52 %

Table 3.2 Relative rate and size differences of the SPEC CPU 2017 integer benchmark
for different optimization flag sets taking a median of three evaluations. Positive numbers
mean the original inliner provided better results.
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We opted for the runtime options provided by Tramp’s help and only requested
a particular number of iterations by

./tramp3d -v4 --cartvis 1.0 0.0 --rhomin 1e-8 -n 100

Size Runtime
original inliner 581776 B 37.08 s
naive inliner 593168 B 2.49 s

relative difference 2 % -1489 %

Table 3.3 Results of benchmarking Trump3Dv4 with early inliner disabled

The orders of magnitude large difference in Table 3.3 is caused by the absence
of early inlining. We will therefore redo the test with -fno-early-inlining
removed for the original inliner only.

Size Runtime
original inliner 649310 B 2.48 s
naive inliner 593168 B 2.49 s

relative difference -9.5 % 0.4 %

Table 3.4 Results of benchmarking Trump3Dv4 with early inliner disabled for the
naive variant

The combination of Table 3.3 and Table 3.4 may indicate that the naive inliner
replaces the early inliner in certain circumstances and that the reverse post order
traversal is a better overall choice.

We also asked ourselves how the behavior of both inliners is affected by the
limits, most notably inline-unit-growth. We therefore measured the speed and
size of Tramp3Dv4 with varying this parameter and keeping the early inliner
on for the original inliner only. The limits of 1000 and 10000 produce identical
binaries proving that they act as local ∞ and that the inliner was limited by
can_inline_edge_p only.

The results of Figure 3.2 further hint us that the crucial part of removing
abstraction penalty is the reverse post order, not the continuous execution of
other optimizations. We will investigate whether this generalizes to speeding up
programs with little abstraction penalty when benchmarking GCC in Section 3.4.

The combination of Figure 3.1 and Figure 3.2 nicely highlight that running
inliners with arbitrarily high limits causes binary sizes explosion without justifiable
performance gains. Both inliners begin inlining rather cold edges at approximately
the same limits. It is also interesting to observe the behavior of the original inliner,
which clearly misses a single important edge (or possibly all calls of a single
function) for a while and then finally gets the budget to realize it (see drops at
limit 10 and 50). The edge however doesn’t cause any size increase if inlined in
different order as can be seen at the naive inliner with limit 0. We will try to find
out the offending function by inspecting the runtime profile by the Linux specific
tool perf right before the drop and right after it, see Table 3.5 and Table 3.6. The
symbol names consist of the full template argument assignment making it with up
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Figure 3.1 Size of .text section of Tramp3Dv4 in millions of bytes based on the value
of inline-unit-growth parameter. Orange line corresponds to the original inliner,
blue line to the naive one.
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Figure 3.2 Duration of execution of Tramp3Dv4 in seconds based on the value of
inline-unit-growth parameter. Orange line corresponds to the original inliner, blue
line to the naive one.
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Overhead Symbol
9.61 % UniformRectilinearMesh<…>::cellPosition
5.82 % UniformRectilinearMesh<…>::cellPosition
4.82 % UniformRectilinearMesh<…>::vertexPosition
4.33 % MultiArgKernel<…>::run
4.19 % KernelEvaluator<…>::evaluate<…>

Table 3.5 Top 5 functions of Tramp3Dv4 with inline-unit-growth=5

Overhead Symbol
6.17 % KernelEvaluator<…>::evaluate<>
5.43 % KernelEvaluator<…>::evaluate<>
4.58 % MultiArgKernel<…>::run
4.21 % MultiArgKernel<…>::run
4.00 % MultiArgKernel<…>::run
3.89 % MultiArgKernel<…>::run

Table 3.6 Top 5 functions of Tramp3Dv4 with inline-unit-growth=10

to 900 characters unsuitable for typesetting on a page. We therefore provide very
limited overview with all template arguments left out to illustrate the method
and direct readers with further interest to attachments in Section A.2.

We also see the tendencies of the naive inliner to grow the binary slightly
above the set limits. While we get a general idea by measuring the difference in
Figure 3.1, it can not be used for exact calculations. The limit is specified relative
to the normal binary size and both algorithms differ slightly in the accounting
method. The original inliner relates it to the minimum size achieved until now, so
inlining edges with negative growth makes the absolute value of the limit smaller.
The naive inliner can not keep track of the minimum size and therefore relates
everything to the initial one at the beginning of the phase. This is especially
observable when using inline-unit-growth=0, because the naive inliner will first
inline edges with non-positive growth thus buying itself some size reserve and
then inlines even growing edges.

3.3 OpenSCAD
OpenSCAD is a computer aided design software used to produce 3D models

based on declarative textual program description [15]. It was selected as an
example of a moderately complex software which is widely known in the technical
community. Thanks to its command line interface, it is possible to exactly measure
the performance of its core functionality, which is an otherwise complex problem
for most user-facing software [16]. We will task the software with materializing the
geometry of a conceptually simple shape, we will however request high precision
of the operation. The model is as follows

$fn=200;
size=100;

difference() {
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cube(size);
sphere(r=size);

}

OpenSCAD is an extensive software yet it utilizes some external libraries,
which may prove critical for the overall performance. We will therefore have to
recompile them with the naive inliner as well. It would be easy to make mistakes
in this process especially for libraries used by other libraries, so we will use the
Nix build system [17] [18] to rebuild all transitive dependencies with the modified
GCC as proposed in Chapter 2. To enable the naive inliner as reliably as possible
we alter the source to make it the default choice. We otherwise base the build
on nixpkgs’ version current at the time of writing, which is release-24.05 at
commit 0f8e5a078ae2ba3c07424c7d7312d7bd11ad7037. To give both inliners
as many opportunities as possible, we enable LTO for the build. This is difficult
to do globally as a lot of software fails to compile if you simply pass -flto to the
build system. We will therefore do so for OpenSCAD and its direct dependencies
which we consider performance critical, namely eigen, opencsg, cgal_4 and boost.

We simply instruct OpenSCAD to materialize the above model and output it
as textual STL by

openscad -o output.stl model.scad

Size Runtime
original inliner 5706519 B 7.57 s
naive inliner 5852919 B 7.71 s

relative difference 2.6 % 1.8 %

Table 3.7 Results of benchmarking OpenSCAD

The results in Table 3.7 fit the general tendencies set by other benchmarks.

3.4 GCC
The details of this software is already described in Chapter 1. We use it as an

example of a complex software with large codebase but low abstraction penalty.
We have already shown in Section 3.2 that the naive inliner excels in removing
high abstraction penalty. We will make conceptually similar measurements on
GCC to observe the behavior on a rather conservative source code.

We do the full boostrap of the compiler in the version proposed in Chapter ??
with LTO enabled and with varying the inline-unit-growth parameter. The
following snippet starts the build assuming there is a src folder with GCC’s source
code in process working directory

mkdir build && cd build
../src/configure --with-build -config=bootstrap -lto
make BOOT_CFLAGS="-O2 -g --param

inline -unit-growth=<growth > bootstrap

We will benchmark each compiler by simply using it to compile Tramp3Dv4
with the same options as in Section 3.2 with the naive inliner. To stay consistent
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Figure 3.3 Size of .text section of GCC [5] in bytes based on the value of inline-
unit-growth parameter. Orange line corresponds to the original inliner, blue line to
the naive one.
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Figure 3.4 Duration in seconds of compilation of Tramp3Dv4 using GCC [5] with
varying value of inline-unit-growth parameter. Orange line corresponds to the
original inliner, blue line to the naive one.
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with other benchmarks, we will measure the performance with the time command
despite GCC having its own -ftime-report.

Both inliners seem to exhibit similar size change when the inline-unit-
growth parameter grows, however the naive one always produces a smaller binary
(Figure ??). For performance, this relation is reversed – both behave similarly,
but the original one is always faster (Figure ??).

3.5 clang
We also decided to inspect the clang compiler of the LLVM suite [9]. It

is a compiler of similar scope as GCC, but it is much younger, which can be
seen on the source code. It utilizes more C++ features accounting for a higher
abstraction penalty while being written with performance in mind. As with
GCC, we benchmark it by letting it compile the Tramp3Dv4 project. We were
unfortunately unable to make the compiler work. LLVM is known for targeting
itself only, so its code exhibits undefined behavior from time to time when compiler
by a different compiler. We therefore used it with the -fsyntax-only flag to only
run the parser.

This benchmark was run on the same machine as the SPEC suite (Section 3.1)
so only relative data are relevant.

Size Runtime
-11.24 % 21.07 %

Table 3.8 Relative results of benchmarking clang. Positive values mean the original
inliner scored better.

The results in Table 3.8 agree with the observations about GCC (Section 3.4).
The naive inliner produces significantly smaller binaries with significantly large
runtime. This applies however to large programs only.
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4 User guide
GCC is a developer oriented software and as such does not provide any graphical

user interface by default. The command line interface is rich and thoroughly
documented in various formats [5, gcc/doc]. We do not intend to reproduce it
here as that would not provide any new value to the reader.

The only new option added is -fipa-naive-inline. When used, it replaces
the standard IPA inline_small_functions with the naive algorithm. It still
honors the inline-unit-growth parameter and other relevant ones.

Our patches are not part of the official repository at the time of writing,
so they can be found in Attachment A.1 with instruction how to apply to the
source tree. The compiler can then by built with similar techniques as during the
benchmarking, that is (assuming the modified source code is in src subdirectory
of the process working directory)

mkdir build && cd build
../src/configure
make bootstrap

It is also possible to enable LTO for the build by passing --with-build-config=
bootstrap-lto to the configure script (this does not affect the ability of the
resulting compiler to do LTO). Very large time savings can be obtained on common
hardware when running multiple threads of the build with -j<n>.

The resulting executables can be found at build/gcc/xgcc and build/gcc/
xg++, but it can be difficult to use them because of their assumptions on the
environment. One can instead install it to an empty destination with

cd build
make DESTDIR=/path/to/destination install

and use /path/to/destination/usr/local/bin/gcc without issues.
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Conclusion
We present an implementation of an alternative inliner algorithm (the naive

inliner) in GNU Compiler Collection. Its goal is to allow for easy parallelization
after modifying other parts of the compiler while not being too much worse than
the current algorithm. The naive inliner traverses the callgraph in reverse post
order instead and tries to prioritize most profitable edges by running such a round
repeatedly, with looser limits each time. It was argued that a single round can
be processed by multiple threads at the same time thus fulfilling the goal of
parallelizability. We then present numerous benchmarks inspecting performance
and size of the resulting executables. The overall results suggest that the naive
inliner consistently produces slightly larger binaries and that the performance is
slightly worse in most cases. We believe this meets the set goals and consider it
a success in this early stage of exploring the idea.

Apart of the overall comparison, there are also numerous interesting character-
istics of the naive inliner. It seems to perform better on small and medium-sized
programs (compare Section 3.3 with Section 3.5). On the other hand, it handles
the abstraction penalty well (see code size decrease in Section 3.5) and can even
replace the early inliner (see Section 3.2). Section 3.2 even suggests it excels with
low inline-unit-growth parameter and only gets outrun by the original inliner
with larger values of the limit. This statement however needs further investigation
as the interpretation of the limit differs between the inliners.

We have shown the bottom-up traversal provides interesting results and we
believe it shall be researched further. We propose to investigate the influence of
the number of rounds in future works as the current value of 10 was chosen rather
arbitrarily. It would also be made a configurable parameter of the compiler and
possible have different default values for different optimization levels.
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List of Abbreviations
• CPU – central processing unit

• GCC – GNU Compiler Collection

• HW – hardware

• IPA – interprocedural analysis

• LLVM – despite the capitalization, this is not an abbreviation, it is the full
name of a compiler related project

• LTO – link time optimization

• RAM – random access memory or random access machine, intended expan-
sion shall be clear from the context of usage

• RTL – register transfer language

• SAT – satisfiability

• SIMD – single instruction multiple data

• SMP – symmetric multiprocessing

• SSA – single static assignment

• STL – stereolithography
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A Attachments
A.1 Patches

The output of this thesis is a modification of GCC’s source code. It is attached
in electronic form as multiple patches based on the version cited throughout this
paper [5]. The file naive-inline.patch contains the actual inliner as described
in Chapter 2. Details on how to use it can be found in Chapter 4. The file
fixes.patch contains modifications irrelevant to the main goal of this thesis.
None of them is known to affect the behavior of the compiler; they were uncovered
during attempts to understand GCC’s source code. It was also discovered that
the caching mechanism used to speed up function size estimations provides stale
data in certain cases after discovering new direct edges. This makes the compiler
fail on an assertion [5, gcc/ipa-fnsummary.cc:3480]. We have reported this
problem, but it has not been fixed yet. To overcome this limitation, we provide
the temporaries.patch path. Its use shall become unnecessary in later releases
of GCC.

The patches can be used separately as well as combined. The order of appli-
cation does not matter. Either can be applied as (assuming GCC is cloned in
process working directory)

git reset --hard cbed07845708f01a122e02016660a9152e5c14ff
git clean -dfx
git am /path/to/patch

A.2 Tramp3Dv4 perf
Tramp3Dv4 is analyzed in Section 3.2 with perf, its output is however too

large to be included in the document’s body. The files perf-tramp-5.txt and
perf-tramp-10.txt provide the output of perf report --stdio after running
Tramp as described in its section. The suffix number corresponds to the value of
inline-unit-growth used during compilation.
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