
Inlining is a very important optimization pass of today’s compilers. It saves func-
tion call overhead and provides more context for other optimization passes by replacing
function’s call site with its body. We revisit the current “greedy” inliner in GNU Com-
piler Collection, which was written more then 20 years ago and propose an alternative
algorithm suitable for parallel processing. We combine the current approach of using
a priority queue and the approach of the early inliner of traversing the callgraph in re-
verse post order by running the RPO traversal multiple times with increasing limits. Our
measurements suggest the presented algorithm is worth further research and that prop-
erly tuning the constants may put it on a par with the current inliner all while allowing
space for future parallelization of the IPA phase.


