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Abstract: We propose a novel SAT-based approach to calculating the number
of non-isomorphic algebraic structures of a given type, a significant challenge for
current automated tools. Our program uses canonizing sets to build compact
lexleader symmetry breaking constraints, enabling the construction of propositional
formulas solved with state-of-the-art SAT solvers. In this thesis, we apply this
method to effectively identify all non-isomorphic models across finite algebraic
structures with a single binary operation, including structures such as semigroups
and loops. We provide an implementation of our program and evaluate it on
various such structures. The experimental results demonstrate the efficacy of our
approach, as we successfully computed previously unknown counts for certain
structures, highlighting its potential to address complex enumeration problems.
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Abstrakt: Predstavujeme nový prístup k výpočtu neizomorfných algebraic-
kých štruktúr daného typu, založený na probléme splniteľnosti SAT. Enumerácia
všetkých neizomorfných modelov je významným problémom pre dnešné auto-
matické nástroje. Náš program využíva kanonizujúce množiny na vytvorenie
kompaktných lexleader obmedzujúcich podmienok na odstránenie symetrií. Tým
dosiahneme vytvorenie výrokových formulí, ktorých riešenie nám sprostredkú-
vajú moderné SAT solvery. V tejto diplomovej práci využívame túto metódu na
efektívnu identifikáciu neizomorfných modelov naprieč konečnými algebraickými
štruktúrami s jednou binárnou operáciou, ako sú napríklad semigrupy a lupy.
Ponúkame implementáciu nášho programu, ktorú vyhodnotíme na rôznych týchto
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Introduction
In this thesis, we focus on the automatic counting and enumeration of all finite

algebraic structures with a single binary operation, which are closed under the
operation. These structures are commonly referred to as magmas (or, more rarely,
groupoids). We utilize the axiomatic definitions of these structures, expressed by
a first-order equational theory. The objective is to implement a program that,
given the axioms of a magma and a small natural number n, enumerates or counts
all magmas of order n, up to isomorphism, that satisfy the given axioms. For the
given problem, we aim to provide an encoding in the language of propositional
logic in conjunctive normal form. The resulting formula is such that from all of
its satisfying assignments, we can construct all non-isomorphic magmas satisfying
the input axioms.

The problem of counting all satisfying assignments to a SAT formula (known
as #SAT) is a well-known #P-complete problem. As a consequence of Toda’s
theorem, if we could solve #SAT in polynomial time, we would also be able to
solve in polynomial time every problem in the polynomial hierarchy. Therefore,
we can deduce that the enumeration of all satisfying assignments in the general
case is intractable. However, with our program, we were able to enumerate the
correct numbers of several well known magmas for small orders. Additionally, we
present the enumeration of magmas for orders that remain unknown to this day.

Counting algebraic structures is of interest to mathematicians. The On-line
Encyclopedia of Integer Sequences (OEIS) maintains a record of the currently
known counts of various algebraic structures. The history of counting Latin squares
dates back to at least the 18th century. Euler knew the number of reduced Latin
squares of order 5 [Eul82], and this number was also known to Cayley [Cay90].

We begin by introducing the basic concepts of first-order logic in the Prelimi-
naries. This includes setting the notation used in the thesis and providing concepts
and definitions related to Cayley tables of magmas. In Chapter 2, we describe the
method by which we encode the model finding problem into SAT. This method,
known as MACE, is adapted to our problem using some modifications presented
in Paradox. Chapter 3 details our approach to avoiding the search for isomorphic
solutions. We employ the well known lexleader method for canonically labeling
algebraic structures, which, to our knowledge, has not been previously used in the
context of MACE-style model finding. Chapter 4 includes a modification to the
lexleader method, enhancing its effectiveness. Originally used in the context of
graph search problems, canonizing sets make the lexleader method more compact.
Finally, we present our experimental results in the last chapter.
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1 Preliminaries
Throughout the thesis, we work with first-order logic (FOL) with equality. Let

us begin by introducing basic terminology and notation used in the thesis. Arity
is a function, assigning to each function and predicate symbol the fixed number
of arguments it takes. We use a fixed signature (sometimes called language)
Σ = ⟨Σp,Σf , ar⟩ consisting of a disjoint union of:

• a set Σp of predicate symbols, each P ∈ Σp has associated arity ar(P ) ∈ N0,
we use one special predicate symbol = of arity 2, representing equality,

• a set Σf of function symbols, each F ∈ Σf has associated arity ar(F ) ∈ N0.

Constants are regarded as function symbols of arity 0. Variables form a countable
set disjoint from Σ. Terms are defined inductively:

• every variable is a term,

• whenever F ∈ Σf is of arity n and t1, . . . , tn are terms, then F (t1, . . . , tn) is
a term.

A ground term is a term that does not contain any variables. An atom is defined
inductively:

• whenever t1, t2 are terms, t1 = t2 is an atom,

• whenever P ∈ Σp is of arity n and t1, . . . , tn are terms, then P (t1, . . . , tn) is
an atom.

A literal is an atom, or its negation. Negated atoms are written using the negation
operator ¬ as ¬A for A ∈ Σp and negated equalities as t1 ̸= t2 for terms t1, t2. A
formula is defined inductively:

• every atom is a formula (sometimes called an atomic formula),

• whenever φ, ψ are formulas, then (φ ∧ ψ), (φ ∨ ψ),¬φ, (φ ⇒ ψ), (φ ⇔ ψ),
true, false are formulas,

• whenever φ is a formula, x is a variable, then ∃xφ,∀xφ are formulas.

A variable is called free if it is not in the scope of any quantifier, otherwise
it is called bound. A formula is closed if it has no free variables. A theory is a
set of closed formulas. A clause is a set of literals connected by disjunction. All
variables in a clause not in the scope of any quantifier are implicitly universally
quantified. That is, a clause has no free variables. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. For brevity, we often refer to
a formula in CNF simply as a CNF. A CNF is often regarded as a set of clauses,
thus a formula in CNF is sometimes called a theory. A formula is in negation
normal form (NNF) if the negation operator is applied only to atoms and the
only logical connectives used are conjunction and disjunction. Similarly, we often
refer to a formula in NNF simply as an NNF.

For the signature Σ we define a Σ-interpretation (alternatively Σ-structure)
I = ⟨D, A⟩ consisting of:
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• a non-empty set D called the domain,

• an assignment A which assigns:

– to each P ∈ Σp a subset P I ⊆ Dar(P ), where =I (d1, d2) evaluates to
true iff d1 is the same domain element as d2,

– to each F ∈ Σf a function F I : Dar(F ) → D.

An interpretation is called finite if D is a finite set. For a clause C, we say I
satisfies C iff C evaluates to true under standard semantics. We say I satisfies a
CNF ψ iff for every clause C ∈ ψ, I satisfies C. Such I is called a model of ψ,
which we denote by

I |= ψ.

Given a Σ-interpretation I with a domain D and a bijection f : D → D′, we
construct a Σ-interpretation I ′ with a domain D′ isomorphic to I as follows:

P I(a1, . . . , an)⇔ P I′(f(a1), . . . , f(an))
for all n-ary predicate symbols P ∈ Σp and a1, . . . , an ∈ D,

F I′(f(a1), . . . , f(an)) = f(F I(a1, . . . , an))
for all n-ary function symbols F ∈ Σf and a1, . . . , an ∈ D. We denote the fact
that I and I ′ are isomorphic by I ≃ I ′. Now, given ψ, we have I |= ψ iff
I ′ |= ψ. This implies that in finite model finding only the size of the domain
matters; we can always construct a model in which the domain elements are
renamed according to some bijection between domains. Thus, for the remainder
of the thesis we simply choose D = {0, 1, . . . , n − 1} for all domains D of size
n. We call D a numerical domain. An interpretaion with a numerical domain is
called a numerical interpretation. From the choice of our domain, we extend Σ by
a set of new distinct constants {0, 1, . . . , n− 1}, each interpreted as itself, that is,
k is interpreted as k for every k ∈ D. We call these domain constants.

In our setting we consider Σ-formulas in CNF where Σp contains a single
predicate symbol = (such system is sometimes called equational logic), Σf contains
a function symbol ∗ of arity 2 (written in infix notation), a function symbol ′

of arity 1 (written after the term it applies to) and constants a, b, c, e. We
note, however, that our initial formulas do not contain domain constants. We
use w, x, y, z to denote variables. Our formulas do not contain any quantifiers;
existential quantifiers are removed via a process called Skolemization and all
variables in a clause are implicitly universally quantified, thus universal quantifiers
are omitted. We focus on CNF formulas that are the axioms of a particular type
of a magma1, such as the non-abelian group axioms

(e ∗ x = x) ∧ (x ∗ e = x) ∧ (x ∗ x′ = e) ∧ (x′ ∗ x = e)
∧ (x ∗ (y ∗ z) = (x ∗ y) ∗ z) ∧ (a ∗ b ̸= b ∗ a) .

Models to such formulas are clearly the respective algebraic structures, in this
case non-abelian groups. For the remainder of the thesis, we consider only finite
models.

1By a magma we mean an algebraic structure that includes an underlying domain equipped
with a single binary operation that is closed under this operation, but it can also include
functions of other arities. These other functions, however, only propose additional requirements
on the binary function symbol.
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0 1 2
0 1st 2nd 5th
1 3rd 4th 6th
2 7th 8th 9th

Figure 1.1 Concentrically sorted cells with highlighted layers.

1.1 Cayley Tables
Let A be a finite model (alternatively viewed as the respective magma), with

some fixed domain size n. A finite model is often represented by the operation
tables of its function and predicate symbols. Consequently, our primary focus is
on the Cayley tables of the respective magmas.

Consider the Cayley table of A. It can be viewed as an n×n table representing
the function ∗A assigned to the binary function symbol ∗ by model A. For
d1, d2 ∈ D we denote by A(d1, d2) the cell of the Cayley table with indices d1, d2.
We write A(d1, d2) = d for d ∈ D iff d1∗Ad2 = d. From the cells of the Cayley table
of A we can form a sequence A(x1, y1), A(x2, y2), . . . , A(xn2 , yn2), where A(xi, yi)
denotes the i-th cell of the sequence, containing each cell of the Cayley table of A
exactly once. Such sequence of cells is referred to as the ordering of cells of the
Cayley table of A. By the ordering of cells of an n× n Cayley table, we mean an
ordering of cells that applies to all n× n Cayley tables.

We say that the cells of the Cayley table of A are ordered row by row when
the sequence of cells is of the form

A(0, 0), A(0, 1), . . . , A(0, n− 1), A(1, 0), . . . , A(n− 1, n− 1).

We construct concentric ordering as follows. The k-th layer of the Cayley table
consists of those cells whose maximal index is k. We order the cells first by layers
in ascending order. Then, within each layer, the cells are ordered row by row. An
example of concentrically ordered cells is given in Figure 1.1.

We define a total order on magmas of a given order as follows. Assume a fixed
ordering of cells of an n× n Cayley table (such as row by row, concentric, or any
arbitrary ordering of cells). For magmas A,B of some order n. We write

A ⪯ B

for when the sequence of domain elements x1 ∗A y1, x2 ∗A y2, . . . , xn2 ∗A yn2 is
lexicographically smaller or equal to the sequence x1 ∗B y1, x2 ∗B y2, . . . , xn2 ∗B yn2 .
We write

A ≺ B

for when the sequence x1 ∗A y1, x2 ∗A y2, . . . , xn2 ∗A yn2 is lexicographically strictly
smaller than the sequence x1 ∗B y1, x2 ∗B y2, . . . , xn2 ∗B yn2 .

Usually, we do not order arbitrary magmas but rather isomorphic ones. For
a magma A and a permutation of numerical domain elements π ∈ SD we write
π(A) to denote a magma defined as

x ∗π(A) y = π(π−1(x) ∗A π−1(y)).

9



⋄ 0 1 2 3 4
0 0 1 0 3 0
1 2 2 0 4 1
2 0 0 0 4 0
3 4 3 1 0 4
4 0 3 0 1 0

◦ 0 1 2 3 4
0 0 1 0 3 0
1 4 0 3 1 4
2 0 4 0 0 0
3 2 4 0 2 3
4 0 3 0 1 0

Figure 1.2 Application of τ = (1 3) on the Cayley table of A = ⟨D, ⋄⟩.

⋄ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

◦ 0 1 2 3
0 1 0 3 2
1 0 1 2 3
2 3 2 1 0
3 2 3 0 1

Figure 1.3 A = ⟨D, ⋄⟩ and π(A) = ⟨D, ◦⟩ for π = (1 2 0).

That is, a magma isomorphic to A under the permutation π. It is easy to observe
how π affects the Cayley table of π(A); it is obtained by simultaneously permuting
with π the rows and columns of the Cayley table of A and then applying π on the
entries of the resulted table. Also observe that since we choose all domains to be
numerical, A ≃ B iff B = π(A) for some π ∈ SD.
Example 1. Figure 1.2 depicts the effect of a transposition τ = (1 3) on a magma
A = ⟨D, ⋄⟩ of order 5. Rows 1, 3 and columns 1, 3 of the respective Cayley
table are simultaneously swapped. This results in the cells A(1, 1), A(3, 3) and
A(1, 3), A(3, 1) being swapped crosswise. The non-highlighted cells are not affected
by the permutation of rows and columns. Finally, τ is applied on all entries of
the Cayley table of A. The result is a magma τ(A) = ⟨D, ◦⟩.

Example 2. Another example of a magma A = ⟨D, ⋄⟩ and an isomorphic magma
π(A) = ⟨D, ◦⟩ for π = (1 2 0) is given in Figure 1.3. Here A is the Klein four-group,
therefore π(A) is also the Klein four-group. Notice that when we consider cells
are ordered row by row, we have A ≺ π(A). In fact, we have A ⪯ ρ(A) for all
ρ ∈ SD, that is, A is the least element with respect to ⪯ in its isomorphism class.
We will further study such models in the following chapters.
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2 MACE-style Model Finding
Let us recall that the objective of this thesis is to develop an algorithm that

solves the following problem.

Model Finding Problem

Input: FOL axioms of an algebraic structure, domain size n

Output: All non-isomorphic models to the given axioms of order n

Our strategy is as follows. Assume that the input always provides an FOL
formula in CNF. We encode the given set of FOL axioms into a propositional
clausal formula. Then, a SAT solver is applied to this propositional formula. The
encoding ensures that there exists a model for the original FOL axioms if and only
if there exists a satisfying assignment for the new propositional formula. If the
SAT solver determines that the propositional formula is satisfiable, we can request
a satisfying assignment and extract the corresponding model for the input axioms.
However, our goal is to find all models up to isomorphism. We will address this
problem later in this chapter.

This idea is originally due to McCune [McC94], where he developed a tool
called MACE (Models And CounterExamples) that searches for small finite models
of FOL theories. At its core is a DPLL based SAT solver. Modifications to this tool
were presented by Claessen and Sörensson [CS03]. Using their novel techniques,
they developed a tool called Paradox that uses an incremental DPLL SAT solver.
We implement some of the techniques used in Paradox. However, at the core
of our program run various state-of-the-art CDCL SAT solvers, which provide a
more efficient way in deciding propositional problems given in CNF.

We introduce the following propositional variables, which we later use to
construct a Σ-interpretation A. For each constant symbol c ∈ Σ and each
domain element d, we introduce a propositional variable [c = d] representing
the fact that cA = d. For each pair of domain elements (d1, d2), we introduce a
propositional variable [d′

1 = d2] representing the fact that d′ A
1 = d2. For each triple

of domain elements (d1, d2, d3), we introduce a propositional variable [d1 ∗ d2 = d3]
representing the fact that d1 ∗A d2 = d3. In other words, these variables represent
that the equalities of the respective ground terms are satisfied by A. For example,
[d1 ∗ d2 = d3] is true means A |= d1 ∗ d2 = d3. Consequently, [d1 ∗ d2 = d3] is false
means A |= d1 ∗ d2 ̸= d3.

Observe that we need to encode with these variables that each function symbol
in Σ is, in fact, a total function on D. For example, we want to avoid satisfying
assignments such that both [d1 ∗ d2 = d3] and [d1 ∗ d2 = d4] for d3 ̸= d4 are set
true. On the other hand, at least one of [d1 ∗ d2 = d] for d ∈ D has to be true
for every pair d1, d2. That is, we aim to encode that exactly one of the variables
[d1 ∗ d2 = d] is set true. Such encoding is referred to as one-hot in the literature.

To ensure one-hot encoding of a function symbol F with arity n we impose
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the following constraint

one-hot(F ) ≡
⋀︂

a1,...,an ∈ D

(
⋁︂

d ∈ D

[F (a1, . . . , an) = d] (2.1)

∧
⋀︂

d, d′ ∈ D
d < d′

¬[F (a1, . . . , an) = d] ∨ ¬[F (a1, . . . , an) = d′] .

The constraint ⋁︁
d ∈ D[F (a1, . . . , an) = d] is the totality definition. It represents

the fact that a function must return at least one value for each argument n-tuple.
The constraint ⋀︁

d, d′ ∈ D, d < d′ ¬[F (a1, . . . , an) = d] ∨ ¬[F (a1, . . . , an) = d′] is the
functional definition, representing the fact that a function can not return two
different values for the same argument.

We remark that the constraint 2.1 is an encoding of a so called cardinality
constraint. When we regard a true propositional variable as having value 1 and
value 0 if it is false, we aim to find an assignment such that⋀︂

a1,...,an

∑︂
d

[F (a1, . . . , an) = d] = 1 .

Using these constraints, we can conveniently encode that, for example, the function
symbol F is injective⋀︂

a1,...,an

∑︂
d

[F (a1, . . . , an) = d] = 1 ∧
⋀︂
d

∑︂
a1,...,an

[F (a1, . . . , an) = d] ≤ 1 . (2.2)

Observe that since D is finite, the above constraint also encodes that F is surjective.
That is, for F with ar(F ) = 1, the constraint 2.2 encodes that F is a permutation
on D. The various methods for encoding cardinality constraints to CNF are
presented in [RM21; Sin05].

2.1 Flattening
Our objective is to create the necessary constraints on the above propositional

variables. First, we require the FOL clauses contain only literals of certain form.
Example 3. Consider the literal x ∗ c = c and domain D = {0, 1}. Notice that we
cannot directly encode this literal with the above propositional variables, because
we do not know the value of cA. However, we can condition the encoding on cA

([c = 0]⇒ [0 ∗ 0 = 0]) ∧ ([c = 0]⇒ [1 ∗ 0 = 0]),
([c = 1]⇒ [0 ∗ 1 = 1]) ∧ ([c = 1]⇒ [1 ∗ 1 = 1]).

Definition 1 (Shallow Literal). A FOL literal is shallow iff it has one of the
following forms

1. c = x or c ̸= x, for all constant symbols c ∈ Σ,

2. x′ = y or x′ ̸= y,

3. x ∗ y = z or x ∗ y ̸= z,

4. x = y.
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The next step in the encoding, after introducing the new propositional variables,
is to transform the input FOL clauses into clauses only containing shallow literals.
We call this process flattening.

There are two cases when a literal is not shallow

1. it contains a subterm t which is not a variable, although it should be,

2. it is of the form x ̸= y.

In the first case, we can replace the term t in any literal occuring in a clause C
with a new variable v not occuring in C. That is, we apply the following rewrite
rule

C[t] −→ t ̸= v ∨ C[v] (v not in C).
We note that if t occurs more than once in C, we introduce only one new variable v
for t and replace all occurrences of t in C. In the second case, since all variables in
a clause are implicitly universally quantified, for all instances of a clause containing
the literal x ̸= y, in which x and y are not the same domain element, the clause
is automatically satisfied. We can thus remove the literal x ̸= y and replace all
occurrences of y in the clause with x. That is, we apply the following rewrite rule

C[x, y] ∨ x ̸= y −→ C[x, x].

We repeatedly apply the above rules until all literal in the formula are shallow.
Example 4. Consider the literal x ∗ c = c from the previous example. After
flattening, the clause looks as follows

(c ̸= v0) ∨ (x ∗ v0 = v0) .

Example 5. Consider the semigroup axiom (x∗ y)∗ z = x∗ (y ∗ z). After flattening,
the clause looks as follows

(x ∗ y ̸= v1) ∨ (v1 ∗ z ̸= v0) ∨ (y ∗ z ̸= v2) ∨ (x ∗ v2 = v0) .

2.2 Grounding
After all clauses in our FOL formula are flattened, we generate all instances of

each clause for the given domain size n, a process called grounding.
Example 6. Consider a subset of the quasigroup axioms

(x ∗ y = x ∗ z ⇒ y = z) .

First, we transform this formula to a clause

(x ∗ y ̸= x ∗ z ∨ y = z) .

After flattening, we obtain the the following clause with 4 variables

(x ∗ z ̸= v0 ∨ x ∗ y ̸= v0 ∨ y = z) .

13



The grounding for D = {0, 1} then generates the following CNF with 16 clauses

(0 ∗ 0 ̸= 0 ∨ 0 ∗ 0 ̸= 0 ∨ 0 = 0) ∧ (1 ∗ 0 ̸= 0 ∨ 1 ∗ 0 ̸= 0 ∨ 0 = 0)
∧ (1 ∗ 0 ̸= 0 ∨ 1 ∗ 1 ̸= 0 ∨ 1 = 0) ∧ (1 ∗ 1 ̸= 0 ∨ 1 ∗ 1 ̸= 0 ∨ 1 = 1)
∧ (1 ∗ 1 ̸= 1 ∨ 1 ∗ 1 ̸= 1 ∨ 1 = 1) ∧ (0 ∗ 1 ̸= 1 ∨ 0 ∗ 1 ̸= 1 ∨ 1 = 1)
∧ (0 ∗ 1 ̸= 1 ∨ 0 ∗ 0 ̸= 1 ∨ 0 = 1) ∧ (0 ∗ 0 ̸= 1 ∨ 0 ∗ 0 ̸= 1 ∨ 0 = 0)
∧ (0 ∗ 1 ̸= 0 ∨ 0 ∗ 0 ̸= 0 ∨ 0 = 1) ∧ (0 ∗ 0 ̸= 0 ∨ 0 ∗ 1 ̸= 0 ∨ 1 = 0)
∧ (1 ∗ 0 ̸= 1 ∨ 1 ∗ 0 ̸= 1 ∨ 0 = 0) ∧ (1 ∗ 1 ̸= 0 ∨ 1 ∗ 0 ̸= 0 ∨ 0 = 1)
∧ (0 ∗ 0 ̸= 1 ∨ 0 ∗ 1 ̸= 1 ∨ 1 = 0) ∧ (0 ∗ 1 ̸= 0 ∨ 0 ∗ 1 ̸= 0 ∨ 1 = 1)
∧ (1 ∗ 1 ̸= 1 ∨ 1 ∗ 0 ̸= 1 ∨ 0 = 1) ∧ (1 ∗ 0 ̸= 1 ∨ 1 ∗ 1 ̸= 1 ∨ 1 = 0) .

Generally, we substitute each variable in a flattened clause C with a domain
constant and generate all such substitutions. Let {x1, . . . , xn} be the set of all
variables in C. We use the following rewrite rule

C[x1, . . . , xn] −→
⋀︂

d1,...,dn∈D

C[x1 ← d1, . . . , xn ← dn] .

Thus, we obtain a formula containing only ground terms. After grounding, we
simplify all clauses containing literals of the form d1 = d2; we either remove the
whole clause if d1 and d2 are equal, or simply remove the literal if d1 and d2 are
not equal.

Recall that ground shallow literals function as the propositional literals we
introduced in the beginning of this chapter. From the simplified FOL clauses, we
generate a propositional CNF by replacing each ground shallow literal with its
corresponding propositional literal.
Example 6 (Continued). Next, we simplify the formula and replace the ground
shallow literals with the corresponding propositional variables

(¬[1 ∗ 0 = 0] ∨ ¬[1 ∗ 1 = 0]) ∧ (¬[0 ∗ 1 = 1] ∨ ¬[0 ∗ 0 = 1])
∧ (¬[0 ∗ 1 = 0] ∨ ¬[0 ∗ 0 = 0]) ∧ (¬[0 ∗ 0 = 0] ∨ ¬[0 ∗ 1 = 0])
∧ (¬[1 ∗ 1 = 0] ∨ ¬[1 ∗ 0 = 0]) ∧ (¬[0 ∗ 0 = 1] ∨ ¬[0 ∗ 1 = 1])
∧ (¬[1 ∗ 1 = 1] ∨ ¬[1 ∗ 0 = 1]) ∧ (¬[1 ∗ 0 = 1] ∨ ¬[1 ∗ 1 = 1]) .

Altogether, we first flatten the input FOL clauses. Next, we perform grounding
on the flattened clauses for the given domain size n. The resulting clauses are
then simplified and translated into a propositional CNF. Lastly, we add to this
CNF the one-hot constraint 2.1 for each function symbol occurring in the input
formula. If we can find a propositional model that satisfies all of these clauses, we
can construct a finite model A satisfying the input FOL clauses; for each function
symbol F with ar(F ) = n and every n-tuple of domain elements (d1, . . . , dn), the
value of FA(d1, . . . , dn) is then the unique d ∈ D, for which [F (d1, . . . , dn) = d] is
set true.

2.3 Clause Splitting
Observe that, in grounding, the number of all instances of a clause is exponential

in the number of variables it contains. For a clause containing k variables, the
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number of instances needed is nk. Furthermore, clause flattening introduces new
auxiliary variables to the clause. The idea is to replace a clause by several new
clauses, each containing fewer variables than the original clause.
Definition 2 (Binary Split). Assume a clause (C[x] ∨D[y]) where x, y are the
sets of variables occurring in the subclauses C,D respectively. Then C and D
constitute a binary split of the given clause iff there exists at least one variable
x ∈ x such that x ̸∈ y, and at least one variable y ∈ y such that y ̸∈ x. For a new
predicate symbol S, the resulting two clauses are

(C[x] ∨ S(x ∩ y)) ∧ (¬S(x ∩ y) ∨D[y]) .

We note that we need to introduce new propositional variables for the new
predicate symbol S to encode the resulting FOL clauses into SAT. Assume S is of
arity m. For every m-tuple (d1, . . . , dm) we introduce the propositional variable
[S(d1, . . . , dm)]. Observe that each of the resulting two clauses contains fewer
variables from the properties of x, y. In addition, the resulting two clauses can
possibly be split further. However, there may be various ways how to split a
clause, and some of them could destroy the possibilities for further splitting. We
now describe the heuristic presented in [CS03] that addresses this issue.
Definition 3. Given a clause C, we say that two variables in C are connected if
there is some literal in C in which they both occur.

This heuristic finds a variable x which is connected to the least number of
other variables in C. When such x is found, we take all literals containing x on
the left side of the split, and all other literals on the right side.
Lemma 1. Using the described heuristic, all the variables in the left split are
connected to each other.
Proof. First, observe that the splitting variable x is trivially connected to all the
other variables in the split. Now, let us consider a variable v different from x. If
it does not occur as an argument in the fresh predicate symbol S, then v is not
connected to any variable occurring in the right split. By our choice of x, v must
be connected to at least as many variables as x (that is, all the variables in the
left split). If it does occur as an argument of S, then it is connected to all the
other variables occurring in S, but also to all the variables not occurring in S by
previous argument.

From the above lemma, we know that the left side of the split cannot be split
any further. It therefore suffices to focus only on the right side of the split.
Example 7. Consider the semigroup axiom (x ∗ y) ∗ z = x ∗ (y ∗ z). From an earlier
example, we know that after flattening, the clause looks as follows,

(x ∗ y ̸= v1) ∨ (v1 ∗ z ̸= v0) ∨ (y ∗ z ̸= v2) ∨ (x ∗ v2 = v0) .

That is, there are n6 instances of this clause. After splitting, we obtain the
following two clauses

((v1 ∗ z ̸= v0) ∨ (x ∗ v2 = v0) ∨ S(v1, v2, x, z)),
(¬S(v1, v2, x, z) ∨ (x ∗ y ̸= v1) ∨ (y ∗ z ̸= v2)).

Notice that by splitting, we decreased the number of variables from 6 to 5 in each
clause. Thus, we reduced the number of instances from n6 to 2n5.
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2.4 Symmetry Breaking
For the remainder of the thesis, it is convenient to define the propositional

formula generated for an instance (that is, a set of axioms and a natural number
n) of the model finding problem.
Definition 4. We say φ encodes an instance of the model finding problem if φ is
a propositional CNF formula generated by the above constructions.

We will denote such formula by φ. Since there is a one-to-one correspondence
between an instance of the model finding problem and the propositional formula φ
encoding it, it is natural to think of magmas that are models of the input axioms
as models of φ.
Definition 5. For a magma A, model to an instance of the model finding problem
encoded by formula φ, we say A is a model of φ. We denote this by A |= φ.

We remark that in the above definition A is formally a model of a FOL theory,
while φ is a propositional formula. However, a magma A can be viewed as an
assignment to propositional variables in the sense of the above constructions. We
introduced the notation A |= φ merely for convenience. We can lift the notion to
any formula σ containing the newly introduced propositional variables and write
A |= σ iff the assignment of propositional variables induced by A satisfies σ.

Our encoding produces a formula φ that defines a set C of magmas of some
given order n, such that A |= φ for every magma A ∈ C. However, the way
we have encoded an instance of the model finding problem as a propositional
CNF formula makes the SAT problem unnecessarily difficult. For every model
A ∈ C of φ and every π ∈ SD, the isomorphic model π(A) is also in C. Therefore,
the original encoding introduces n! symmetries1 to every model, as well as to
non-models. To break these symmetries, we introduce additional constraints to φ.
Definition 6 (Symmetry Breaking Constraint). Let φ be a formula encoding
an instance of the model finding problem. We say a propositional CNF σ is a
symmetry breaking constraint for φ iff
(1) for every A, such that A |= φ, there exists π ∈ SD, such that π(A) |= φ ∧ σ.
We say σ is complete if all the models of φ ∧ σ are pairwise non-isomorphic.
Otherwise, σ is partial.

For a set C of magmas defined by the original encoding φ, the objective is to
find σ, such that the formula φ ∧ σ induces a new set C ′ ⊂ C, such that for every
A ∈ C there exists an isomorphic model π(A) ∈ C ′. That is, σ makes the new
set smaller, but also preserves all the isomorphism classes of C. Note, that any
isomorphism class on the set of magmas of order n either contains only models of
φ, or contains no models of φ. This indicates why a symmetry breaking constraint
can be used to reduce search and thus make the SAT problem easier; instead of
visiting each truth assignment, we can determine if φ has a model by visiting each
isomorphism class.

1For a propositional CNF formula T , we say that a permutation of its variables θ is a
symmetry, or automorphism, of T iff θ(T ) = T (when regarded as a set of clauses). In our
encoding, every π ∈ SD induces a permutation on the set of ground flattened clauses. To see
this, recall that we generate all instances of a clause during grounding. Transforming these
clauses to a propositional CNF thus yields the original set of propositional clauses.
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2.4.1 The Least Number Heuristic
Originally introduced in [Zha96], the least number heuristic (LNH) was designed

to address the symmetry problem in finite model finding. In this subsection, we
adapt this heuristic to our specific context. The underlying concept is as follows.
Assume an ordering of cells of an n× n Cayley table. Suppose M is a magma of
order n. The maximal designated number for a cell M(xi, yi) is

mdni :=
⎧⎨⎩1 if i = 1,

max(x1, . . . , xi, y1, . . . , yi, x1 ∗M y1, . . . , xi−1 ∗M yi−1) + 1 if i > 1.

We say that M satisfies the LNH iff for each i, M(xi, yi) = d, where d ≤ mdni.
Observe that once for some k the mdnk = n − 1, the LNH does not impose
any constraints on the values of the cells M(xk+1, yk+1), . . . ,M(xn2 , yn2). When
encoded to CNF, the LNH is a symmetry breaking constraint in the sense of
Definition 6.

Lemma 2. The LNH is a symmetry breaking constraint for any φ encoding an
instance of the model finding problem.

Proof. We prove that the LNH preserves all isomorphism classes of models and
thus satisfies (1). Assume M |= φ. We construct a magma π(M), for some π ∈ SD,
that satisfies the LNH. We proceed as follows.

Suppose i is the smallest number such that there exists a cell M(xi, yi) with
M(xi, yi) = d, where d > mdni. If no such i exists, then M satisfies the LNH.
Otherwise, denote m = mdni. Let τ = (m d) and denote M ′ = τ(M). We have
that the sequences x1 ∗M y1, . . . , xi−1 ∗M yi−1 and x1 ∗M ′

y1, . . . , xi−1 ∗M ′
yi−1 are

identical, since for k ∈ {1, . . . , i− 1}, all of xk, yk, xk ∗M yk, xk ∗M ′
yk are smaller

than m and thus remain unaffected by τ . What is more, M ′(xi, yi) = m. We
repeat this process on M ′.

Notice that the effectiveness of LNH varies with different cells orderings. For
example, when rows are ordered row by row, the maximal designated number
trivially increases with each cell, and for all i ≥ n − 1, mdni = n − 1. Con-
versely, when cells are ordered concentrically, the LNH becomes a substantially
stronger constraint. For example, when we consider a Cayley table of order 9,
max(x1, . . . , x9, y1, . . . , y9) is 8 when cells are ordered row by row, but only 2 when
cells are ordered concentrically. We note that, generally, the LNH is a partial
symmetry breaking constraint.

Next, we demonstrate how to encode the LNH as a propositional constraint.
We introduce the following notation. Since we now focus on the Cayley tables of
models of φ it is intuitive to denote by A(xi, yi) = d the propositional variable
[xi ∗ yi = d] introduced in the beginning of this chapter. Similarly, A(xi, yi) ̸= d
denotes the propositional literal ¬[xi ∗ yi = d].

The value of the cell M(xi, yi) can, without any condition, be in the range
0, . . . ,mi, where mi := max{x1, . . . , xi, y1, . . . , yi}+ 1. Note that we do not know
the values x1 ∗M y1, . . . , xi−1 ∗M yi−1 when building the formula, therefore we also
do not know the maximal value of the preceding cells. However, we always know
that the value can be k, where k > mi, if there exists some j < i, such that
xj ∗M yj = k − 1.
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It is thus straightforward how to encode the LNH to SAT. Suppose, for the
cell M(xi, yi), the set of all values larger than mi is D′

i. We generate the following
constraints for the cell M(xi, yi)⋀︂

d ∈ D′
i

A(xi, yi) ̸= d ∨
⋁︂

j < i

A(xj, yj) = d− 1 .

2.5 Finding All Non-isomorphic Models
In this section, we briefly describe the standard method for finding all non-

isomorphic finite models for our model finding problem. The LNH, or another
partial symmetry breaking constraint, is used to partially eliminate symmetries
from the search space. After a model M has been found, a so called blocking clause
is generated. Originally due to McMillan [McM02], this technique is simplistic
but suffices for our purposes. The blocking clause is of the form⋁︂

d1,d2 ∈ D

¬[d1 ∗ d2 = d1 ∗M d2] . (2.3)

In other words, we look at all pairs (d1, d2) and the values d1 ∗M d2, and propose
a constraint blocking the found model M . Recall that the CDCL-based solvers at
the core of our program support incremental SAT solving. Therefore, we can add
the blocking clause to the SAT solver without having to rebuild the formula. The
SAT solver is then called again, and if it determines the formula is satisfiable, the
new satisfying assignment will produce a model different from M . We can repeat
this process to generate all the different models. Note that the blocking clause
alone does not guarantee that the new model is non-isomorphic to the previously
found models.

The standard procedure is as follows. First, block the model M and then
construct a special graph GM that represents M . Next, apply a graph isomorphism
tool to determine the canonical form of GM . Here we highlight the nauty sys-
tem [McK90; MP14], which is considered state-of-the-art for graph isomorphism.
This form is canonical in the sense that the two constructed graphs from any two
isomorphic magmas will give the same canonical graph. When a new model is
found, its canonical graph is computed and compared with previously obtained
canonical graphs. If the new graph is distinct from all previous ones, it indicates
we have found a new, non-isomorphic model.

Instead, we take a different approach. In the next chapter, we propose a
complete symmetry-breaking formula that is satisfied only by a specific form of a
model. This constraint is augmented to the encoding of the instance of the model
finding problem. After a model is found, we simply add the blocking clause to the
SAT solver. This approach eliminates the need to address graph isomorphism after
a new model is found, as all solutions found by the SAT solver will be pairwise
non-isomorphic. Moreover, the standard method is impractical in our setting. For
instance, using our approach, we were able to find 34,810,736 different isomorphism
classes of implication zroupoids of order 6. Finding such a large number of non-
isomorphic models using the standard method would clearly be inefficient; we
would need to store a canonical representative from each isomorphism class and
compare every new model with millions of previous models.
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3 Lexleader Models
To find all non-isomorphic magmas that satisfy a given set of axioms, we

aim to generate a single representative from each isomorphism class. In the
previous chapter, we explained that the standard methods for generating all
non-isomorphic models are not effective in our context. To address this issue,
we propose a complete symmetry breaking constraint that is satisfied only by a
specific form of magma.

3.1 Canonical Forms
We previously suggested that there exists a canonical form of a magma, where

two magmas are isomorphic if and only if their corresponding canonical forms are
identical. Now, we will provide a formal definition of this canonical form.

Definition 7. Let C be a set of all magmas that are models to an instance of the
model finding problem. A function CF : C → C is a canonical form iff

• for all A ∈ C, A ≃ CF (A) and

• for all A,B ∈ C, A ≃ B iff CF (A) = CF (B).

We base our canonical form of a magma A on its Cayley table. Given a total
order on magmas ⪯, as the canonical form of A we choose the least magma with
respect to ⪯ that is isomorphic to A.

Definition 8 (Lexleader). Magma A is the lexleader in its isomorphism class iff
for all π ∈ SD we have A ⪯ π(A). We say magma A is the lexleader of magma B
iff A is the lexleader and A ≃ B.

Definition 9 (Canonicity). We say a magma A is canonical iff A is the lexleader
in its isomorphism class.

We remark that assigning the lexleader to a magma is a canonical form in the
sense of Definition 7. Indeed, since we choose all domains to be numerical, all
models in C are numerical. Therefore, for all A ∈ C, the lexleader of A is also in
C and is of the form ρ(A) for some ρ ∈ SD. Furthermore, ⪯ is total, so in each
isomorphism class the lexleader is unique. Thus, to enumerate all non-isomorphic
magmas that are models to a given formula, it suffices to generate the lexleaders
as the representatives of each isomorphism class.

We note that a similar idea has been used as early as 1955 to enumerate all
distinct1 semigroups of order 4 [For55]. More recently, an approach based on this
idea has also been used to find the complete number of distinct semigroups of
order 10 [Dis+12].

Assigning a canonical form to a mathematical structure is beneficial for many
reasons. Canonical forms provide a simplified version of mathematical structures,
making them easier to understand, manipulate, and analyze. They offer a standard
way to represent structures, which aids in consistency and clarity.

1Two semigroups are here considered distinct if they are neither isomorphic nor anti-
isomorphic.
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⋄ 0 1 2 3 4 5 6
0 3 5 1 4 6 0 2
1 5 2 6 0 3 1 4
2 1 6 4 5 0 2 3
3 4 0 5 6 2 3 1
4 6 3 0 2 1 4 5
5 0 1 2 3 4 5 6
6 2 4 3 1 5 6 0

◦ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Figure 3.1 A = ⟨D, ⋄⟩ and its lexleader ρ(A) = ⟨D, ◦⟩ for ρ = (5 0 6 3).

Example 8. [Jan+24] A motivating example is shown in Figure 3.1. It is relatively
easy to observe that the Cayley table of magma A = ⟨D, ⋄⟩ obeys the Latin square
property, therefore A is a quasigroup. It is also apparent that that A is a loop
with identity element 5. However, the further structure of this magma is not
immediately clear. On the other hand, if we take the lexleader of A with respect
to row by row ordering, magma ρ(A) = ⟨D, ◦⟩ for ρ = (5 0 6 3), we can see that
the operation ◦ corresponds to addition modulo 7. Therefore, A is, in fact, the
group Z7.

Generally, we associate each object in an isomorphism class with a vector and
then order all the vectors lexicographically; the canonical form will be the object
with the smallest vector (alternatively, we can choose the largest vector too). The
lexleader canonical form has been applied to various mathematical structures.
To list a few examples, the lexicographically largest string of the non-diagonal
elements of an adjacency matrix of a graph has been used as the canonical form
in [Rea78; IC16; Itz23]. In constraint programming, lexleader has been utilized to
find the smallest assignment to a matrix model [Wal12; KNW10; NW13].

Our goal is to find a formula that is satisfied by only the lexleader in each
isomorphism class. That is, we aim to identify a specific, complete symmetry
breaking constraint.
Definition 10 (Canonizing Symmetry Breaking Constraint). Let φ encode an
instance of the model finding problem. We say σ, a complete symmetry breaking
constraint for φ, is canonizing iff all the models of φ ∧ σ are canonical.

We note that in the following lemma, we provide a symmetry breaking con-
straint σ defined in a metalanguage, rather than as a propositional formula as
required by the definition. In addition, so far we have defined ⪯ only for concrete
magmas of order n. Here, however, A is a placeholder for any magma of order n.
That is, A ⪯ π(A) represents a propositional formula such that for every magma
M we have M |= A ⪯ π(A) iff M ⪯ π(M). The specific form of this formula is
described in the next chapter.
Lemma 3. Define a symmetry breaking constraint σ as

σ =
⋀︂

π ∈ SD

A ⪯ π(A).

Then for any instance of the model finding problem with domain size n, σ is a
canonizing symmetry breaking constraint.
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Proof. Let φ encode an instance of the model finding problem with domain size n.
To prove that σ is canonizing, we need to prove that any model A of the formula
φ ∧ σ is canonical. This trivially follows from our definitions of the lexleader and
canonicity and the fact that any magma isomorphic to A is of the form π(A).

What remains to be shown is the encoding of the constraint

A ⪯ π(A)

into a propositional CNF. Once this is done, we can augment the formula φ with
the canonizing symmetry breaking constraint ⋀︁

π ∈ SD
A ⪯ π(A) and apply a SAT

solver to this new formula to incrementally generate all non-isomorphic models
by adding a blocking clause after each SAT call. This then gives an algorithm
solving the model finding problem.

Algorithm 1 Model Finding Problem Algorithm - Naive Approach

φ← encoding of the input instance
σ ← encoding of

⋀︂
π ∈ SD

A ⪯ π(A)

BC ← true // Empty blocking clause
while SAT(φ ∧ σ ∧BC) do

find M such that M |= φ ∧ σ ∧BC
print model M
BC ← BC ∧

⋁︂
d1,d2∈D

¬[d1 ∗ d2 = d1 ∗M d2] // Block the current model

end while

3.2 Encoding Lexleader to SAT
In this chapter, we give the promised encoding of A ⪯ π(A) to a propositional

CNF. We do this in two parts. First, we encode the original definitions of A ⪯ B
and A ≺ B, which involves linearizing the Cayley tables and then lexicographically
comparing the respective sequences. From this, we then propose the encoding
of A ⪯ π(A) as a symmetry breaking constraint to SAT. We remind the reader
that we assume a fixed ordering M(x1, y1),M(x2, y2), . . . ,M(xn2 , yn2) of cells of
an n× n Cayley table (that is, an ordering that applies to all magmas of order n)
and the induced total order ⪯ on magmas of order n.

3.2.1 Encoding of the Total Order
In this subsection, we demonstrate how to encode the definition of A ⪯ B. The

following constraints, written in a metalanguage, should help to better understand
the encoding of A ⪯ π(A) described in the next subsection. First, we introduce
new variables r1, r2, . . . , rn2−1 and new notation. We write A(xi, yi) < B(xi, yi)
when xi ∗A yi < xi ∗B yi and A(xi, yi) = B(xi, yi) when xi ∗A yi = xi ∗B yi. Then,
we propose the following constraints on the entries of the cells of the Cayley tables
of A and B. For the first cell the constraints

A(x1, y1) < B(x1, y1) ∨ (A(x1, y1) = B(x1, y1) ∧ r1) ,
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for all i ∈ {2, . . . , n2 − 1} the constraints

ri−1 ⇔ (A(xi, yi) < B(xi, yi) ∨ (A(xi, yi) = B(xi, yi) ∧ ri)) ,

and for the last cell the constraints

rn2−1 ⇔ (A(xn2 , yn2) < B(xn2 , yn2) ∨ A(xn2 , yn2) = B(xn2 , yn2)).

The variable ri checks if the last n2−i cells of A are lexicographically less than or
equal to the last n2−i cells of B. Indeed, if ri is set true, for these constraints to be
satisfied either A(xi+1, yi+1) < B(xi+1, yi+1) holds or A(xi+1, yi+1) = B(xi+1, yi+1)
holds and ri+1 is set true as well.

We now introduce two new variables. First, we need to define the inequality
A(xi, yi) < B(xi, yi) by variable less,

lessi ≡
⋀︂

d∈D

(A(xi, yi) = d ⇒
⋁︂

d<d′
B(xi, yi) = d′) ,

then, we define the equality A(xi, yi) = B(xi, yi) by variable equal,

equali ≡
⋀︂

d∈D

(A(xi, yi) = d⇔ B(xi, yi)) = d) .

Altogether, we get an equivalent definition of ⪯

A ⪯ B ≡ (less1 ∨ (equal1 ∧ r1)) ∧
⋀︂

i∈{2,...,n2−1}
ri−1 ⇒ (lessi ∨ (equali ∧ ri))

∧ (rn2−1 ⇒ (lessn2 ∨ equaln2)) . (3.1)

The translation of A ≺ B is constructed from A ⪯ B with the addition of the
constraint ⋁︁

1 ≤ i ≤ n2 ¬equali, ensuring that not all cells of A and B are equal

A ≺ B ≡ A ⪯ B ∧
⋁︂

1 ≤ i ≤ n2

¬equali . (3.2)

3.2.2 Encoding of the Symmetry Breaking Constraint
We base the encoding of A ⪯ π(A) as a symmetry breaking constraint on

the encoding of A ⪯ B. For the remainder of this subchapter, assume a fixed
π ∈ SD. Assume M is a magma of order n. Recall that A ⪯ π(A) represents
a propositional formula such M |= A ⪯ π(A) iff M ⪯ π(M). That is, A
represents a placeholder instead of a concrete magma of order n. We introduce
new variables rπ,1, rπ,2, . . . , rπ,n2−1 along with new notation, similar to the notation
used in Subsection 2.4.1. We denote by A(xi, yi) = d the propositional variable
[xi ∗ yi = d], similarly for whenever any of xi, yi, d is mapped under some π ∈ SD.
By A(xi, yi) ̸= d, we denote the propositional literal ¬[xi ∗ yi = d]. We denote
by A(xi, yi) < π(A(π−1(xi), π−1(yi))) a propositional formula such that M |=
A(xi, yi) < π(A(π−1(xi), π−1(yi))) iff xi ∗M yi < xi ∗π(M) yi. Lastly, A(x1, y1) =
π(A(π−1(x1), π−1(y1))) denotes a propositional formula such that M |= A(xi, yi) =
π(A(π−1(xi), π−1(yi))) iff xi∗M yi = xi∗π(M)yi. The specific formulas are described
below.
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We impose the following propositional constraints on the cells of an n × n
Cayley table. For the first cell the constraints

A(x1, y1) < π(A(π−1(x1), π−1(y1)))
∨ (A(x1, y1) = π(A(π−1(x1), π−1(y1))) ∧ rπ,1),

for all i ∈ {2, . . . , n2 − 1} the constraints

rπ,i−1 ⇔ (A(xi, yi) < π(A(π−1(xi), π−1(yi)))
∨ (A(xi, yi) = π(A(π−1(xi), π−1(yi))) ∧ rπ,i)),

and for the last cell the constraints

rπ,n2−1 ⇔ (A(xn2 , yn2) < π(A(π−1(xn2), π−1(yn2)))
∨ A(xn2 , yn2) = π(A(π−1(xn2), π−1(yn2)))).

Just like in Constraint 3.1, the variable rπ,i checks if the last n2 − i cells
of A are lexicographically less than or equal to the last n2 − i cells of π(A).
Again, if rπ,i is set true, for these constraints to be satisfied either A(xi+1, yi+1) <
π(A(π−1(xi+1), π−1(yi+1))) holds or A(xi+1, yi+1) = π(A(π−1(xi+1), π−1(yi+1)))
holds and rπ,i+1 is set true as well. In this way, the variables rπ,i chain together
the cells of A.

We represent A(xi, yi) < π(A(π−1(xi), π−1(yi))) by variable lessπ,

lessπ,i ≡
⋀︂

d∈D

(A(xi, yi) = d ⇒
⋁︂

d′∈D
d<π(d′)

A(π−1(xi), π−1(yi)) = d′),

then, we represent A(xi, yi) = π(A(π−1(xi), π−1(yi))) by variable equalπ,

equalπ,i ≡
⋀︂

d∈D

(A(xi, yi) = d ⇔ A(π−1(xi), π−1(yi)) = π−1(d)).

Finally, the symmetry breaking constraint A ⪯ π(A) becomes

(lessπ,1 ∨ (equalπ,1 ∧ rπ,1)) ∧
⋀︂

i∈{2,...,n2−1}
rπ,i−1 ⇒ (lessπ,i ∨ (equalπ,i ∧ rπ,i))

∧ (rπ,n2−1 ⇒ (lessπ,n2 ∨ equalπ,n2)). (3.3)

In order to apply a SAT solver to this formula, we need to translate it into
CNF. First, the definitions of variables lessπ and equalπ are easily translated into
NNF by the semantics of ⇒ and ⇔:

lessπ,i ≡
⋀︂

d∈D

(A(xi, yi) ̸= d ∨
⋁︂

d′∈D
d<π(d′)

A(π−1(xi), π−1(yi)) = d′),

equalπ,i ≡
⋀︂

d∈D

(A(xi, yi) ̸= d ∨ A(π−1(xi), π−1(yi)) = π−1(d)))

∧ (A(xi, yi) = d ∨ A(π−1(xi), π−1(yi)) ̸= π−1(d))) .
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Then, we add clauses that substitute the variables lessπ and equalπ with their
definitions using the Tseytin transformation2. For variable lessπ, the clauses

⋀︂
d∈D

¬lessπ,i ∨ A(xi, yi) ̸= d ∨
⋁︂

d′∈D
d<π(d′)

A(π−1(xi), π−1(yi)) = d′)

for the direction ⇒ and the clause

lessπ,i ∨
⋁︂

d∈D

lπ,i,d

for the direction ⇐. Here we have used new variables lπ,i,d which are defined as

lπ,i,d ≡ A(xi, yi) = d ∧
⋀︂

d′∈D
d<π(d′)

A(π−1(xi), π−1(yi)) ̸= d′

for all d ∈ D. We then again apply the Tseytin transformation similarly. For the
variable equalπ, we add the clauses⋀︂

d∈D

((¬equalπ,i ∨ A(xi, yi) ̸= d ∨ A(π−1(xi), π−1(yi)) = π−1(d))

∧ (¬equalπ,i ∨ A(xi, yi) = d ∨ A(π−1(xi), π−1(yi)) ̸= π−1(d)))

for the direction ⇒ and the clause

equalπ,i ∨
⋁︂

d∈D

eπ,i,d ∨ eπ,i,d

for the direction⇐. Here we have used new variables eπ,i,d, eπ,i,d which are defined
as

eπ,i,d ≡ A(xi, yi) = d ∧ A(π−1(xi), π−1(yi)) ̸= π−1(d)),
eπ,i,d ≡ A(xi, yi) ̸= d ∧ A(π−1(xi), π−1(yi)) = π−1(d))

for all d ∈ D. These definitions are easily translated into CNF using the se-
mantics of and ⇔ and then distribution. Lastly, we distribute the conjuncts in
Constraint 3.3:

A ⪯ π(A) ≡ (3.4)
((lessπ,1 ∨ equalπ,1) ∧ (lessπ,1 ∨ rπ,1)) ∧ (¬rπ,n2−1 ∨ lessπ,n2 ∨ equalπ,n2)
∧

⋀︂
i∈{2,...,n2−1}

((¬rπ,i−1 ∨ lessπ,i ∨ equalπ,i) ∧ (¬rπ,i−1 ∨ lessπ,i ∨ rπ,i)) .

Observe that for π ∈ SD and k, l ∈ D such that π(k) = k and π(l) = l these
constraints add a redundant overhead; M(k, l) is the same cell as M(π(k), π(l)).
In these cells, it is impractical to consider the whole domain as a candidate for
d in variables lessπ and equalπ. Let us denote by Dπ = {d ∈ D : π(d) = d} the
set of all fixed points of π. For such fixed points, we instead propose constraints

2Due to Tseytin [Tse68], the Tseytin transformation allows for an easier translation into CNF.
It works by substituting a sub-formula φ of a formula ψ with a new variable v. To substitute,
generate clauses in both directions of ⇔ that make v equivalent to φ. Then replace every
occurrence of φ in ψ with v and add the generated clauses to ψ.

24



restricting the possible candidates for d in the respective cells. In particular, for
each i such that xi, yi ∈ Dπ, the variable lessπ becomes

lessπ,i ≡
⋁︂

d∈D
d<π(d)

A(xi, yi) = d ,

and the variable equalπ becomes

equalπ,i ≡
⋁︂

d∈Dπ

A(xi, yi) = d .

These definitions are once again translated into CNF using the Tseytin transfor-
mation, which we omit here for brevity.

3.3 Insight into Complexity
Notice, however, the excessive size of this symmetry breaking formula. If we

wanted to break all symmetries to find exactly the lexleaders in each isomorphism
class, using this naive approach, we would need to augment the original formula
with the canonizing symmetry breaking constraint⋀︂

π ∈ SD

A ⪯ π(A) .

That is, we would require a symmetry breaking formula of size Ω(n!), which even
for not too large n becomes intractable for most commercial computers.

The set of all symmetries of a propositional theory T over a set of variables
L is a subgroup of SL and is denoted by Aut(T ). It has been proven that the
problem of computing, for any T , a predicate true of only the lexicographic
leader in each equivalence3 class of models is NP-hard [Cra+96]. This result is
particularly interesting because it is closely related to our problem. In our model
finding problem, symmetries of the input axioms are permutations of the domain
constants. Each such π ∈ SD when applied to a ground clause, produces the same
clause but with different grounding. That is, each such π corresponds to some θ ∈
Aut(φ) where φ encodes an instance of the model finding problem. Thus, it is
reasonable to assume that the lexleader verification in our setting is also NP-hard.

Babai and Luks [BL83] have observed that the general problem of deciding
whether the adjacency matrix of a graph is the lexleader is NP-hard. In particular,
from the knowledge of this matrix, we can deduce the size of the largest independent
set of the respective graph. To see this, assume the cells of the adjacency matrix
are ordered in a way that each upper left square always precedes its complement
(e.g. concentric ordering). Then the upper left square of the lexleader consists of
a block of zeros, which represents an independent set with the largest size.

The isomorphism problem for magmas can be reduced to graph isomor-
phism [Boo78]. Recall that two magmas are isomorphic iff their lexleaders are
identical. Thus, the problem of assigning the lexleader to a magma is GI-hard.

3A is equivalent to B iff B = θ(A) for some θ ∈ Aut(T ).
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⋄ 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 2

◦ 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1

Figure 3.2 A that satisfies the LNH with τ(A) ≺ A.

3.4 Transpositions
The complexity of complete symmetry breaking formulas should not discourage

us from studying the lexleader for breaking symmetries in finite model finding.
In the next chapter, we propose a surprising result; for a complete symmetry
breaking constraint, in many cases it suffices to use only a small subset of SD. For
the remainder of this chapter, we focus on a subset of SD for partial symmetry
breaking. We show this approach can be thought of as an alternative to the LNH.
We get positive results using just

(︂
n
2

)︂
elements of SD, specifically, the set of all

transpositions.

Definition 11. We say a magma A is minimal with respect to the set of all
transpositions iff for all transpositions τ ∈ SD we have A ⪯ τ(A).

Lemma 4. Any model minimal with respect to the set of all transpositions also
satisfies the LNH.

Proof. Suppose we have a model A and the smallest i such that there exists a
cell A(xi, yi) with A(xi, yi) = d where d is larger than the maximal designated
number m. Then this model does not satisfy the LNH. Moreover, for this model
also holds τ(A) ≺ A for τ = (m d), therefore A also is not minimal with respect
to the set of all transpositions.

Example 9. Suppose A = ⟨D, ⋄⟩ is a magma of order 4 with 3 ∗A 3 = 2 and
x ∗A y = 0 for all other x, y ∈ D. Then A is permitted by the LNH. However, A
is not minimal with respect to the set of all transpositions since for τ = (1 2) and
τ(A) = ⟨D, ◦⟩ we have τ(A) ≺ A. A and τ(A) are depicted in Figure 3.2.

From Example 9 and Observation 4 we can conclude that requiring minimality
under all transpositions is, in fact, a stronger symmetry breaking constraint than
the LNH. We note that this holds for any arbitrary ordering of cells, including
concentric or other natural orderings for the LNH, where the upper left square
of the Cayley table always precedes its complement. We thus obtain a compact
partial symmetry breaking constraint of polynomial size.
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4 Canonizing Sets
We described a complete symmetry breaking constraint ⋀︁

π ∈ SD
A ⪯ π(A) in

Chapter 3. However, this constraint was deemed intractable due to its factorial
complexity. Originally due to Itzhakov and Codish [IC16], an algorithm has
been developed for graph search problems that computes a compact canonizing
symmetry breaking constraint. In this chapter, we propose modifications and
expansions of this algorithm to make it applicable to our model finding problem.

Definition 12 (minΠ ). For a set of permutations Π ⊆ SD, we define the predicate
over magmas with domain D

minΠ (A) ≡
⋀︂

π ∈ Π
A ⪯ π(A) .

Definition 13 (Canonizing Set). Let φ be a formula encoding an instance of the
model finding problem and Π ⊆ SD. We say Π is canonizing for φ iff for every
magma A such that A |= φ we have

minΠ (A)⇔ minSD
(A) .

Observation. Let Π be canonizing for φ. Then minΠ (A) is a canonizing symmetry
breaking constraint for φ.

For every Π ⊆ SD, the predicate minΠ (A) is trivially a partial symmetry
breaking constraint for any φ. It is also evident that Π is canonizing if we put
Π = SD. Our goal is to develop an algorithm that computes a small proper subset
of SD\{id} that is canonizing for given φ. We remark that a canonizing set is, in
a sense, a form of quantifier elimination1; we eliminate the universal quantifier in
∀π ∈ SD A ⪯ π(A) and replace the formula with ⋀︁

π∈Π A ⪯ π(A) where, desirably,
|Π | is significantly smaller than n!.

4.1 Computing Canonizing Sets
To compute a canonizing set of permutations for an instance of the model

finding problem φ, we first start with an empty Π . We then repeatedly search for
a magma A and a permutation π that serve as counterexamples, indicating that
Π is not yet a canonizing set. The found π is then added to Π . We repeat this as
long as such A and π exist.

Lemma 5. Algorithm 2 always terminates and returns a canonizing set Π for
the given instance of the model finding problem φ.

Proof. First, observe that a permutation ρ cannot be found repeatedly by the
algorithm. If it were, we would have for some A that ρ(A) ≺ A and simultaneously
A ⪯ ρ(A), since A satisfies minΠ (A) and ρ has already been added to Π in
a previous iteration. Similarly, a magma M cannot be found repeatedly by

1A quantifier elimination procedure is an algorithm that constructs an equivalent quantifier-
free formula from a given formula. It is predominantly used in deciding satisfiability in the
theories of linear integer arithmetic [Coo72] and real arithmetic [FR75].

27



Algorithm 2 Compute a Canonizing Set for φ

1: Π = ∅
2: while ∃A such that A |= φ, ∃π ∈ SD such that minΠ (A) and π(A) ≺ A do
3: Π = Π ∪ {π}
4: end while
5: return Π

the algorithm. If it were, we would have for some π that π(M) ≺ M and
simultaneously M ⪯ π(M), since M satisfies minΠ (M) in one of the subsequent
iterations. Because the search space is finite, the algorithm always terminates. In
the last iteration of the while cycle, there are no counterexamples A, π such that
both minΠ (A) and π(A) ≺ A hold. That is, for A such that minΠ (A) holds, we
also have that A ⪯ π(A) for any π, therefore, minΠ (A)⇔ minSD

(A) holds and
Π is canonizing for φ.

Definition 14. We say that a canonizing set Π for φ is redundant if for some
π ∈ Π, Π\{π} is also canonizing for φ. Otherwise, Π is irredundant.

Observation. The identity permutation is not included in any irredundant canon-
izing set.

We remark that Algorithm 2 does not guarantee that Π is irredundant. For
instance, a permutation added during the early iterations of the while loop may
become obsolete in view of permutations added later. The respective canonizing
symmetry breaking constraint minΠ is then unnecessarily large. We address this
in the following algorithm by linearly traversing through Π and testing each
permutation to see if it can be removed.

Algorithm 3 Reduce the Canonizing Set Π for φ

1: for each π ∈ Π do
2: if ∀A such that A |= φ we have minΠ \ {π}(A)⇒ A ⪯ π(A) then
3: Π = Π \ {π}
4: end if
5: end for
6: return Π

Lemma 6. Algorithm 3 always returns an irredundant subset of the given canon-
izing set Π .

Proof. Suppose |Π | = m. Let Π0 = Π and denote by Πi the set obtained after the
i-th iteration of the for loop. Assume Πi is canonizing. After the next iteration,
either Πi+1 = Πi or for some π ∈ Πi we have Πi+1 = Πi\{π}. In the first case, Πi+1
is trivially canonizing. In the second case, the removed π satisfies for every A, such
that A |= φ, that minΠi \ {π}(A) ⇒ A ⪯ π(A), that is minΠi

(A) ⇔ minΠi+1(A).
Since minΠi

(A)⇔ minSD(A), we have that Πi+1 is canonizing. At the end of the
algorithm, Πm is irredundant because for any π ∈ Πm there exists A such that
A |= φ for which we also have minΠm \ {π}(A) ∧ π(A) ≺ A. Therefore, Πm\{π} is
not canonizing.

28



Definition 15. Canonizing set Π for φ is minimal if for any other canonizing
set ∆ for φ we have |Π | ≤ |∆|.

It is important to note that the canonizing set Π returned by Algorithm 3
is not necessarily minimal, although it is always irredundant. We will further
discuss the size of these sets in Section 4.3.

Based on the discussion in Section 3.3 we do not expect to find a polynomial
algorithm to compute a canonizing symmetry breaking constraint. Therefore,
efficient implementations of Algorithm 2 are unlikely. As in [IC16], we base
our implementation of Algorithms 2 and 3 on SAT solving. We describe the
implementation in detail in the next section, including the encoding of all essential
predicates to SAT and the specific techniques used to optimize the performance
of our algorithms. Below, we propose Algorithm 4, a modification of Algorithm 1,
that solves the model finding problem by utilizing canonizing sets.

Algorithm 4 Model Finding Problem Algorithm - Canonizing Set

φ← encoding of the input instance
Π ′ ← Algorithm 2 (φ)
Π ← Algorithm 3(φ,Π ′)
σ ← encoding of

⋀︂
π ∈ Π

A ⪯ π(A)

BC ← true // Empty blocking clause
while SAT(φ ∧ σ ∧BC) do

find M such that M |= φ ∧ σ ∧BC
print model M
BC ← BC ∧

⋁︂
d1,d2∈D

¬[d1 ∗ d2 = d1 ∗M d2] // Block the current model

end while

4.2 SAT Based Implementation
In the previous section, we introduced Algorithm 2, which computes a canon-

izing set Π , and Algorithm 3, which computes an irredundant subset of Π . We
implement these algorithms using SAT solving. To do so, we need to encode the
loop conditions of the respective algorithms into propositional CNF. Recall that
we already know how to encode minΠ (A) from Chapter 3 by encoding A ⪯ π(A)
for every π ∈ Π . Once we have a CNF formula encoding the loop condition, we
can repeatedly apply a SAT solver to this formula to simulate the loop. However,
here we present propositional formulas that are not in CNF, but rather in an
easily understandable form. It is then straightforward to transform these formulas
into CNF using the Tseytin transformation, as described in Subsection 3.2.2.

We remind the reader that we assume a fixed ordering of cells of an n × n
Cayley table and the induced total order ⪯ on magmas of order n. We adapt the
notation from Subsections 2.4.1 and 3.2.2, in particular, A(xi, yi) = d denotes the
propositional variable [xi ∗ yi = d].
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4.2.1 Computation Algorithm
We begin by describing the implementation of Algorithm 2. First, we present

the encoding of the loop condition

∃A such that A |= φ,∃π ∈ SD such that minΠ (A) and π(A) ≺ A

based on the original idea proposed in [IC16]

alg1(Π , φ) ≡ φ ∧ one-hot(B) ∧ perm(π) ∧ iso(A,B, π)
∧ minΠ (A) ∧ B ≺ A . (4.1)

Let us introduce the new notation. Recall that φ encodes an instance of the
model finding problem. Specifically, it defines constraints for some magma A
such that A |= φ iff A satisfies the axioms and is of the order given on the input.
The formula φ already defines constraints on the binary function of A, ensuring
that it is a total function on D. Here, we are looking for two magmas, A and
B. Therefore, it is also necessary to encode the totality of the binary function
of B. We do that by adding the constraint one-hot(B) (constraint 2.1 applied to
the binary operator of B). Again, think of the symbols A,B as placeholders for
concrete magmas.

Note that in the loop condition of Algorithm 2, both A and π are variables. It
is therefore necessary to encode the new function symbol π as a bijective function
on D. We denote by π(d1) = d2, for d1, d2 ∈ D, a propositional variable which,
based on its truth value, is later used to construct π. This is the same concept
as in the beginning of Chapter 2 (for improved readability, square brackets have
been omitted from the notation). Let us define a new propositional formula

injective(π) ≡
⋀︂

i, j, d ∈D
i < j

π(i) ̸= d ∨ π(j) ̸= d .

We then use the one-hot constraint in conjunction with injective to produce
the constraint

perm(π) ≡ one-hot(π) ∧ injective(π) ,

which ensures2 that π is in fact a permutation of the set of domain elements D.
To ensure B is an isomorphic to A under π generate the following constraint

iso(A,B, π) ≡
⋀︂

i, j, x ∈ D

(B(i, j) = x ⇔
⋁︂

i′, j′, y ∈ D

(π(i′) = i ∧ π(j′) = j ∧ π(y) = x

∧ A(i′, j′) = y)) .

Observe that for each i, j ∈ D we require that the value of the cell B(i, j) is the
same as the value of the cell A(π−1(i), π−1(j)) when mapped under some π. Thus,
A and B are indeed isomorphic.

2We note that this can alternatively be done using cardinality constraints as in 2.2.
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Combining these constraints with minΠ (A) and B ≺ A (analogue of the
constraint 3.2 where A,B are not conrete magmas) yields the proposed SAT
encoding of the loop condition of Algorithm 2.

To simulate the algorithm, we incrementally apply a single invocation of a SAT
solver to find a satisfying assignment to 4.1. From this assignment, we construct
the permutation π using the techniques from Chapter 2, add it to Π , and update
the formula minΠ (A) (we add the clauses encoding A ⪯ π(A)). We repeat this
process until we obtain unsatisfiable, at which point Π consists of permutations
comprising a canonizing set for φ.

Notice how cumbersome it is to work with the new symbol B; we need to first
introduce new variables and then add the constraints one-hot(B) and iso(A,B, π).
For this reason, we propose our modification to the Constraint 4.1 that avoids the
use of B

algb
1(Π , φ) ≡ φ ∧ perm(π) ∧ minΠ (A) ∧ π(A) ≺ A . (4.2)

Specifically, we replace B with π(A) and encode the corresponding properties of
B within the constraint π(A) ≺ A.

The encoding of π(A) ≺ A in 4.2, where both π and A are not concrete, is a
bit more involved. First, let us define variables greaterb and equalb

greaterb
i ≡

⋀︂
d ∈ D

(A(xi, yi) = d ⇔
⋁︂

k,l,m,d′∈D
d′ < d

(π(k) = xi ∧ π(l) = yi ∧ π(m) = d′

∧ A(k, l) = m)),

equalbi ≡
⋀︂

d ∈ D

(A(xi, yi) = d ⇔
⋁︂

k,l,m∈D

(π(k) = xi ∧ π(l) = yi ∧ π(m) = d

∧ A(k, l) = m)).

Again, we need to add a clause that guarantees the sequences of cells of A and
π(A) are not equal: ⋁︂

1 ≤ i ≤ n2

¬equalbi .

Let us introduce new variables r1, . . . , rn2−1. Finally, the constraint π(A) ≺ A in
4.2 becomes

π(A) ≺ A ≡ (greaterb
1 ∨ (equalb1 ∧ r1))

∧
⋀︂

2 ≤ i ≤ n2−1
ri−1 ⇒ (greaterb

i ∨ (equalbi ∧ ri))

∧ (rn2−1 ⇒ (greaterb
n2 ∨ equalbn2))

∧
⋁︂

1 ≤ i ≤ n2

¬equalbi . (4.3)
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Unlike in 3.3, here the variable ri checks if the last n2 − i cells of A are
lexicographically greater than or equal to the last n2 − i cells of π(A). What
remains the same is the essence of this variable; it chains together the cells of A.

Another optimization we have developed is as follows. Consider a magma with
a constant symbol e (such as group or loop). For each such magma, there exists
an isomorphic magma in which e is equal to 0. For such instances of the model
finding problem, it is sufficient to look for models where e = 0 and permutations
π where π(0) = 0. The encoding of the loop condition is then the following

algb
1(Π , φ) ≡ φ ∧ perm(π) ∧ minΠ (A) ∧ π(A) ≺ A

∧ π(0) = 0 ∧ [e = 0] .

4.2.2 Reduction Algorithm
We proceed by describing the implementation of Algorithm 3. The objective

is to encode the loop condition

∀A such that A |= φ we have minΠ \ {π}(A)⇒ A ⪯ π(A).

We choose π ∈ Π and generate the following constraint

alg2(Π , π, φ) = φ ∧ minΠ \ {π}(A) ∧ π(A) ≺ A . (4.4)

The SAT encoding of the loop condition works by negating the implication; if
Constraint 4.4 is unsatisfiable then there is no A model of φ for which simultane-
ously minΠ \ {π}(A) and π(A) ≺ A hold. That is, the negation of this conjunction,
¬minΠ \ {π}(A) ∨ A ⪯ π(A) (⇔ minΠ \ {π}(A) ⇒ A ⪯ π(A)), holds for every A
model of φ. Therefore, we check for unsatisfiability of 4.4, in which case the
counterexample permutation π is redundant and removed from Π . The process is
then repeated for the next permutation in Π . Once all permutations in Π have
been tested, we end up with an irredundant canonizing set for φ.

The encoding of π(A) ≺ A in 4.4 (note that here π is concrete) is similar to
the encoding of A ⪯ π(A) (Constraint 3.3). We use the same definition of the
variable equalπ, but instead of the variable lessπ we use the variable greaterπ

defined as follows

greaterπ,i ≡
⋀︂

d∈D

(A(xi, yi) = d ⇒
⋁︂

d′∈D
π(d′)<d

A(π−1(xi), π−1(yi)) = d′) ,

for the general case, and for all the fixed point pairs xi, yi ∈ Dπ we define it as

greaterπ,i ≡
⋁︂

d∈D
π(d)<d

A(xi, yi) = d .

We then add a clause ensuring that the sequences of cells of A and π(A) are not
equal ⋁︂

1 ≤ i ≤ n2

¬equalπ,i .
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Finally, with the use of new variables sπ,1, . . . , sπ,n2−1 we obtain the encoding of
the constraint

π(A) ≺ A ≡ (greaterπ,1 ∨ (equalπ,1 ∧ sπ,1))
∧

⋀︂
2 ≤ i ≤ n2−1

sπ,i−1 ⇒ (greaterπ,i ∨ (equalπ,i ∧ sπ,i))

∧ (sπ,n2−1 ⇒ (greaterπ,n2 ∨ equalπ,n2))
∧

⋁︂
1 ≤ i ≤ n2

¬equalπ,i . (4.5)

Notice that after each iteration, the constraints minΠ \ {π}(A) and π(A) ≺ A
in 4.4 are completely altered. Unlike in 4.2, where we could simply add new
clauses to the original constraint, here we need to check for unsatisfiability of a
different constraint after each SAT call. To avoid creating new invocations of a
SAT solver, we modify the original idea from [IC16] and introduce assumptions to
our encoding.

Modern CDCL SAT solvers allow calls with a set of assumptions For proposi-
tional literals a1, . . . , ak, the call SAT({a1, . . . , ak}) checks the satisfiability of a
formula under the assumption that all a1, . . . , ak are satisfied. Assumptions can
be used to effectively disable a clause. Instead of a clause C, we add a clause
C ∨ vC for a new variable vC . Then, the call SAT({¬vC}) enables C; the call
behaves as if it were using the original formula. However, the call SAT({vC})
disables the clause C; by assuming vC is true, the clause C ∨ vC is automatically
satisfied.

Denote by ψ the propositional encoding of the constraint A ⪯ π(A) for π ∈ Π .
Replace each clause C ∈ ψ with C ∨ a⪯

π , where a⪯
π is a new variable. Similarly,

replace each clause C in the propositional encoding of π(A) ≺ A with C ∨ a≺
π

for a new variable a≺
π . Let us denote the new formulas A ⪯ π(A) ∨ a⪯

π and
π(A) ≺ A ∨ a≺

π respectively. Finally, the new encoding of the loop condition is

algb
2(Π , φ) = φ ∧

⋀︂
π∈Π

A ⪯ π(A) ∨ a⪯
π ∧

⋀︂
π∈Π

π(A) ≺ A ∨ a≺
π . (4.6)

The SAT implementation of the modified Algorithm 3 is then described in the
following algorithm.

Algorithm 5 Reduce the Canonizing Set Π for φ - SAT Implementation

1: Π ′ ← Π
2: SAT ← algb

2(Π , φ) // Add formula to SAT solver
3: for each π ∈ Π do
4: Π ′ ← Π ′\{π}
5: r← SAT({a⪯

ρ | ρ ∈ Π\Π ′}∪{¬a⪯
ρ | ρ ∈ Π ′}∪{a≺

ρ | ρ ∈ Π\{π}}∪{¬a≺
π })

6: if r = satisfiable then
7: Π ′ = Π ′ ∪ {π}
8: end if
9: end for

10: return Π ′
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4.3 Size of Canonizing Sets
As previously mentioned, Algorithm 3 does not necessarily produce a minimal

canonizing set. We remark that the problem of finding a minimal canonizing set
is related to the problem of finding an irredundant equivalent subset of clauses.
Given a set of clauses, we search for a subset that is both equivalent (having the
same set of models as the original) and irredundant (where removing any clause
changes the set of models). It has been proven that the problem of deciding the
existence of an irredundant equivalent subset of a given size is Σp

2-complete [Lib05].
Consequently, the problem of actually finding such a subset is likely more complex,
as it involves constructing the solution rather than merely deciding its existence.

Therefore, Algorithm 3 should not be considered an algorithm that finds a
minimal canonizing set; rather, it linearly prunes a canonizing set generated by
Algorithm 2. This theoretical insight is supported by our experimental results. In
the next chapter, we will present a set of permutations produced by the canonizing
set algorithms, as illustrated in Example 10, which clearly is not minimal.

Generally, we do not expect canonizing sets to be small. Itzhakov [Itz23]
points out that if there exists a canonizing symmetry breaking constraint ψ for
graph search problems of polynomial size, then deciding if a given adjacency
matrix of a graph is the lexleader in its isomorphism class can be done efficiently;
given the adjacency matrix A of a graph, take the formula ψ(A). Then, A is
the lexleader iff ψ(A) reduces to true. Considering the lexleader problem for
graphs is NP-hard [BL83] and unless P=NP, then canonizing sets are likely to be
superpolynomial.
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5 Experiments
We implemented our program in Python 3.10.12 using the PySAT pack-

age [IMM18]. The repository containing our program implementation is included
in Attachment A.1. PySAT enables fast prototyping with SAT oracles and related
technologies and provides a simple API for interacting with several state-of-the-art
SAT oracles. All propositional formulas in our program are constructed in Python
and processed using PySAT. To determine satisfiability of propositional formulae
and find satisfying assignments, we use the CaDiCaL 1.9.5 [Bie+20] SAT solver
via its API.

In our experiments, we use the axiomatic definition of an algebraic structure
and consider small orders from 2 to 10. For each order, we follow these steps: first,
we encode the respective instance of the model finding problem into SAT. Then,
we compute a canonizing set using our implementation of Algorithm 2, which is
subsequently reduced using our implementation of Algorithm 3. Finally, we build
a canonizing symmetry breaking constraint that we add to the encoding of the
instance. For our experiments, we adopt the natural row-by-row ordering of cells
of an n× n Cayley table and the induced orders on magmas ⪯ and ≺.

Recall that our program builds a propositional formula, such that all of its
possible satisfying assignments correspond to all the non-isomorphic models of
the input instance of the model finding problem. Moreover, all these models
are canonical in the sense of Definition 9. Our program can generate all the
models by augmenting the formula with a blocking clause after each model
is found (see Section 2.5). Enumerating models using Python is slow due to
its interpreted nature and general-purpose design, which are not optimized for
intensive computational tasks. For these experiments, we computed the counts
of all satisfying assignments1 of the final formula using the model counter tools
D4 [LM17] and clingo [Geb+19].

The experiments were run on a server with four AMD EPYC 7513 32-Core
Processor @ 2.6GHz and with 504 GB of memory. For each problem, we set a
memory limit of 50 gigabytes and a timeout of 24 hours.

5.1 Used Algebraic Structures
We tested our program on various algebraic structures, detailed in Table 5.1.

To find the canonical forms of these structures, it is sufficient to search for the
lexleader Cayley table. This approach is straightforward for structures involving
only the function symbol ∗ or well-known magmas, like groups. We now provide
explanations for the less intuitive cases: inverse property loop and implication
zroupoid.

Inverse property loop: Suppose we have a Cayley table of a model of this theory.
We show this table cannot correspond to two different models. Fix x, y ∈ D. Now,
if there existed two different assignments to ′, denoted ′ 1, ′ 2, such that x′ 1 ̸= x′ 2

and the two corresponding models were non-isomorphic, then the Cayley table
would need to have two occurrences of y in column (x ∗ y) and two occurrences of

1We note that it suffices to count different assignments only for the variables [A(d1, d2) = d3]
corresponding to the distinct entries of the Cayley table.
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Structure Definition in FOL
AG-groupoid (x ∗ y) ∗ z = (z ∗ y) ∗ x
Commutative
quasigroup

(x ∗ y = x ∗ z ⇒ y = z) ∧ (y ∗ x = z ∗ x⇒ y = z)
∧ (x ∗ y = y ∗ x)

Group (x ∗ (y ∗ z) = (x ∗ y) ∗ z) ∧ (x ∗ e = x) ∧ (e ∗ x = x)
∧ (x ∗ x′ = e) ∧ (x′ ∗ x = e)

Implication
zroupoid

((x ∗ y) ∗ z = (((z ∗ e) ∗ x) ∗ ((y ∗ z) ∗ e)) ∗ e)
∧ ((e ∗ e) ∗ e = e)

Inverse
semigroup

(x ∗ (y ∗ z) = (x ∗ y) ∗ z)
∧ (x = x ∗ (x′ ∗ x)) ∧ (x′ = x′ ∗ (x ∗ x′))
∧ ((x ∗ x = x ∧ y ∗ y = y)⇒ x ∗ y = y ∗ x)

Inverse property
loop

(x ∗ y = x ∗ z ⇒ y = z) ∧ (y ∗ x = z ∗ x⇒ y = z)
∧ (e ∗ x = x) ∧ (x ∗ e = x) ∧ (x′ ∗ (x ∗ y) = y)
∧ ((y ∗ x) ∗ x′ = y)

Loop (x ∗ y = x ∗ z ⇒ y = z) ∧ (y ∗ x = z ∗ x⇒ y = z)
∧ (e ∗ x = x) ∧ (x ∗ e = x)

Magma no requirement
Monoid (x ∗ (y ∗ z) = (x ∗ y) ∗ z) ∧ (x ∗ e = x) ∧ (e ∗ x = x)
Quasigroup (x ∗ y = x ∗ z ⇒ y = z) ∧ (y ∗ x = z ∗ x⇒ y = z)
Rectangular
groupoid

(w ∗ x = y ∗ z)⇒ (w ∗ x = w ∗ z)

Right involutory
magma

(x ∗ y) ∗ y = x

Semigroup x ∗ (y ∗ z) = (x ∗ y) ∗ z

Table 5.1 FOL definitions of the used algebraic structures. For further reference, see:
AG-groupoids [PS95], implication zroupoids [CS21], rectangular groupoids [Boy13], and
right involutory magmas [CM23].

y in row (y ∗ x). This is in conflict with the latin square property of the Cayley
table ensured by the formula

((x ∗ y = x ∗ z)⇒ (y = z)) ∧ ((y ∗ x = z ∗ x)⇒ (y = z)).

Implication zroupoid: This represents a special case of an algebra with only
one constant symbol. For any model of this theory, there is an isomorphic model
where e is equal to 0. Thus, without loss of generality, we can simplify our search
by assuming e = 0 and focusing on the corresponding Cayley table to determine
the canonical form. Consequently, we can add the unit clause [e = 0] to the input
formula and modify Algorithm 2 to only search for permutations π where π(0) = 0.
This way, for a model A such that eA = 0, we search only for models π(A) with
eπ(A) = 0. We remark that this modification can be automatically used for all
input formulas with only one constant symbol (recall that our input formulas
do not contain literals of the form a ̸= 0). Note that originally, an implication
zroupoid is defined as an algebra A = ⟨A,→, 0⟩ where A satisfies the identities
(x→ y)→ z ≈ ((z′ → x)→ (y → z)′)′, where x′ := x→ 0, and 0′′ ≈ 0. Here, we
simply translated the definition into our language.
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We also note that for the FOL definition of an inverse semigroup, we used the
following equivalent formulation: An inverse semigroup S is a semigroup in which
every element has at least one inverse, and idempotents commute.

5.2 Results
Next, we present the results of our experiments. We start with the example

mentioned in Section 4.3, illustrating a reduced canonizing set for a specific magma,
computed by the canonizing set algorithms, which is clearly not minimal.
Example 10. Consider the FOL unit clause x ∗ y = z ∗ w. For any of its model
A we have A(x, y) = d for all x, y ∈ D for some fixed d ∈ D. For every domain
size there exists exactly one isomorphism class and the lexleader Cayley table
consists of all zeros (with respect to any ordering of cells). It is easy to check that
there exists a minimal canonizing set for a domain of size n containing exactly
the permutation (n− 1 n− 2 . . . 1 0). However, when our implementations of
Algorithm 2 and Algorithm 3 are run on this formula encoded for domain size 8,
they produce the following canonizing set of size 4:

{(0 7)(1 6)(2 5)(3 4), (0 7 1 6 2 5 3), (0 7 1 6 2)(5 3), (0 7 1)(6 2)(5 3)}.

We have created a table with the resulting data for each of the algebraic
structures used. Let us now describe these tables in detail, using Table 5.2 for a
magma as an example.

• First column: Contains domain sizes n, ordered in increasing order from
top to bottom. This table lists data for domain sizes 2 to 6. Domain size
1 was not tested, as it only yields trivial models. The highest domain size
listed is the largest size for which we could compute a canonizing set within
the memory limit. None of our experiments ran out of time during the
computation of a canonizing set.

• Second column: Lists the values of n!.

• Third and fourth columns: Show the sizes of the canonizing sets for the
corresponding domain size computed by Algorithm 2, and the time taken
for the computation, respectively.

• Fifth and sixth columns: Show the sizes of the reduced canonizing sets for
the corresponding domain size computed by Algorithm 3, and the time taken
for this computation, respectively. The size of the reduced canonizing set is
shown in bold.

• Seventh, eighth, and ninth columns: Present data from the model counting
tools D4 and clingo. The seventh column shows the computed counts2 for
the corresponding domain sizes, while the eighth and ninth columns list
the computation times for D4 and clingo, respectively. The symbol (–)
indicates that the computation either ran out of memory or exceeded the
time limit.

2The counts obtained using both tools were consistent across all experiments, except in
cases where one of the tools ran out of time or exceeded the memory limit, preventing it from
computing a solution.
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The time in all tables is measured in seconds and rounded to the nearest second.
For example, a time of 0 seconds indicates that the computation took less than
half a second.

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 10 0 0
3 6 5 0 5 0 3,330 0 0
4 24 23 3 23 0 178,981,952 146 2,266
5 120 119 61 119 2 – – –
6 720 719 3,392 719 55 – – –

Table 5.2 Magma (no restrictions). The counts are consistent with those listed in the
OEIS sequence for magmas [Inc24a].

The values of n! are provided for comparison with the sizes of the reduced
canonizing sets. Recall that the lexleader constraint can be encoded trivially by
encoding A ⪯ π(A) for all π ∈ SD. In most tables, the differences are substantial.
However, in the case of a magma, the size of the reduced canonizing set is only
smaller by 1.

Notice that if φ encodes only the one-hot restriction on ∗ (Constraint 2.1) for
the given order n, then the solutions to φ are all magmas of order n. Applying
Algorithms 2 and 3 to such φ then generates a set that is canonizing for all instances
of the model finding problem of the given order. If we could build a compact
canonizing symmetry breaking constraint for such φ, we could use this constraint
for all instances of the model finding problem with order n. We refer to such
a constraint as an instance-independent symmetry breaking constraint. With a
compact, instance-independent canonizing symmetry breaking constraint, we could
eliminate the need to compute a canonizing set in the model finding Algorithm 4.
It suffices to precompute the instance independent symmetry breaking constraint
for each n and then apply the constraint for order n whenever we are given an
instance of that order.

However, our findings, as shown in Table 5.2, indicate that the canonizing
symmetry breaking constraint for such φ requires encoding A ⪯ π(A) for all
π ∈ SD except the identity permutation. This connects to the discussion in
Section 4.3, where we noted that canonizing symmetry breaking constraints for
graph search problems are expected to be superpolynomial, assuming P̸=NP. In
contrast, we are addressing an even more challenging problem with magmas. The
Cayley table of a magma typically contains a wider range of entries than just 0
and 1, unlike the adjacency matrix of a graph. Based on our findings, we expect
that canonizing symmetry breaking constraints for magmas are of exponential
size, unconditionally.

We also note that there is no non-trivial lower bound on the size of a minimal
canonizing set. For example, in Example 10, we presented an algebra where the
canonizing symmetry breaking constraint requires only a single permutation.

Next, we present the results in Table 5.3 for AG-groupoids and Table 5.4 for
implication zroupoids. To our knowledge, the number of AG-groupoids of order 7
is unknown. However, we identified 643,460,323,187 distinct satisfying assignments
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for the propositional formula encoding this instance, which took 72,825 seconds
to compute.

For implication zroupoids, the table lists canonizing sets for domain sizes 2
to 8. We were unable to compute the count for domain size 8, and the counts
for domain sizes 6 and 7 are also unknown according to the surveyed literature.
Using our method, we computed 34,810,736 non-isomorphic models of order 6
in 42 seconds and 600,767,308,670 non-isomorphic models of order 7 in 49,167
seconds.

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 3 0 0
3 6 4 0 3 0 20 0 0
4 24 9 0 6 0 331 0 0
5 120 28 6 21 1 31,913 3 3
6 720 82 56 62 6 40,104,513 81 5,645
7 5,040 285 815 240 111 643,460,323,187 72,825 –
8 40,320 1,306 22,284 1,154 4,027 – – –

Table 5.3 AG-groupoid. The counts of AG-groupoids for orders 2 to 6 are consistent
with those reported in [DSS11].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 0 0 0 0 3 0 0
3 6 1 0 1 0 17 0 0
4 24 4 0 3 0 249 0 0
5 120 12 1 11 0 22,707 2 10
6 720 41 11 40 3 34,810,736 42 14,988
7 5,040 188 307 173 50 600,767,308,670 49,167 –
8 40,320 1,007 6,730 958 1,489 – – –

Table 5.4 Implication zroupoid.

Below is the Table 5.5, which presents the results of testing rectangular
groupoids. We attempted to count the number of non-isomorphic rectangular
groupoids of order 6, a count that, to our knowledge, is not yet known. Un-
fortunately, both of our model counting tools exceeded the time limit for this
computation. An indication of the problem’s difficulty is the size of the reduced
canonizing set for domain size 6, which is 633. This situation is similar to what
we observed in Table 5.2 for a magma, where the size of the reduced canonizing
set approaches n!.

Next, we present Table 5.6, which lists the results for groups. The findings are
particularly notable because, for each order, the sizes of the reduced canonizing
sets are the smallest among all the algebraic structures tested. This is intuitive,
as the structure of a group imposes the most restrictions on the binary symbol
∗ compared to the other tested magmas. Therefore, for each order, the fewest
magmas A satisfy the loop condition in Algorithm 2, which computes a canonizing
set. Consequently, the fewest permutations π are found such that π(A) ≺ A.
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Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 5 0 0
3 6 5 0 5 0 49 0 0
4 24 20 1 20 0 1,864 0 0
5 120 112 26 107 5 200,704 62 43
6 720 660 1,007 633 118 – – –

Table 5.5 Rectangular groupoid.

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 0 0 0 0 1 0 0
3 6 0 0 0 0 1 0 0
4 24 2 0 1 0 2 0 0
5 120 3 0 2 0 1 0 0
6 720 9 1 4 0 2 1 1
7 5,040 13 3 8 0 1 2 2
8 40,320 24 12 10 1 5 8 5
9 362,880 29 55 12 3 2 12 13
10 3,628,800 76 180 18 20 2 31 26

Table 5.6 Group.

To compare the sizes of the reduced canonizing sets across different algebraic
structures, please refer to the tables presented in the remainder of this chapter. The
captions of these tables include references to literature related to the enumeration
of all non-isomorphic models for these structures.

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 0 0 0 0 2 0 0
3 6 1 0 1 0 7 0 0
4 24 4 0 3 0 35 0 0
5 120 13 1 7 0 228 0 0
6 720 39 11 24 2 2,237 5 4
7 5,040 114 99 81 17 31,559 76 42
8 40,320 469 1,370 333 250 1,668,997 2,398 1,865

Table 5.7 Monoid. The computed counts align with those in [Inc24f].
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Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 2 0 0
3 6 3 0 3 0 5 0 0
4 24 8 0 7 0 16 0 0
5 120 15 2 12 0 52 1 1
6 720 36 8 24 1 208 6 3
7 5,040 67 58 51 10 911 56 18
8 40,320 144 681 92 48 4,637 270 74
9 362,880 279 3,646 164 220 26,422 1,273 364
10 3,628,800 569 16,652 317 1,511 169,163 9,220 –

Table 5.8 Inverse semigroup. The computed counts are consistent with the data
in [Mal19].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 1 0 0
3 6 2 0 2 0 3 0 0
4 24 8 0 7 0 7 0 0
5 120 18 1 10 0 11 0 0
6 720 113 39 78 7 491 17 8
7 5,040 512 639 379 139 6,381 770 151

Table 5.9 Commutative quasigroup. The computed counts align with those reported
in [Inc24e].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 0 0 0 0 1 0 0
3 6 0 0 0 0 1 0 0
4 24 2 0 1 0 2 0 0
5 120 3 0 2 0 1 0 0
6 720 9 1 6 0 2 0 0
7 5,040 10 5 9 0 2 1 2
8 40,320 41 24 17 3 8 4 5
9 362,880 94 77 44 17 7 13 24
10 3,628,800 125 390 46 25 47 59 36

Table 5.10 Inverse property loop. The computed counts match those found in [AS08].
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Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 0 0 0 0 1 0 0
3 6 0 0 0 0 1 0 0
4 24 2 0 1 0 2 0 0
5 120 5 0 4 0 6 0 0
6 720 40 2 29 1 109 2 2
7 5,040 394 144 350 73 23,746 290 101

Table 5.11 Loop. The computed counts are consistent with [Inc24c].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 1 0 0
3 6 3 0 2 0 5 0 0
4 24 13 0 9 0 35 0 0
5 120 83 12 72 3 1,411 7 4
6 720 582 440 545 91 1,130,531 4,236 1,380

Table 5.12 Quasigroup. The computed counts are consistent with [Inc24d].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 3 0 0
3 6 4 0 4 0 16 0 0
4 24 23 1 21 0 475 0 0
5 120 112 21 111 2 100,666 23 16
6 720 702 828 696 95 267,954,164 44,517 –

Table 5.13 Right involutory magma. The computed counts match [Inc24g].

Algorithm 2 Algorithm 3 D4 clingo
n n! size time size time count time time
2 2 1 0 1 0 5 0 0
3 6 4 0 3 0 24 0 0
4 24 12 1 7 0 188 0 0
5 120 35 8 24 1 1,915 2 2
6 720 108 98 81 8 28,634 37 33
7 5,040 449 1,102 323 182 1,627,672 1,232 1,689
8 40,320 2,017 20,387 1,568 6,274 – – –

Table 5.14 Semigroup. The computed counts are consistent with [Inc24b].
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Conclusion
Calculating the number of non-isomorphic algebraic structures of a given type

is a significant yet challenging mathematical problem, particularly for state-of-the-
art automated tools. In this master’s thesis, we developed a program to tackle
this problem. We explored the implementation and testing of our program on
various algebraic structures, demonstrating its effectiveness and providing valuable
insights into the complexities involved.

Our program employs a novel technique by computing a canonizing set for a
given instance of the model finding problem. This approach allows us to build a
compact canonizing symmetry breaking constraint for most instances, which, in
turn, enables the construction of propositional formulas whose satisfiability can be
decided using modern SAT technologies. By analyzing the satisfying assignments,
we can effectively construct the desired algebraic structures.

Notably, our technique enabled us to calculate the numbers of non-isomorphic
implication zroupoids of orders 6 and 7, which are unknown according to the
surveyed literature. Additionally, we determined the number of non-isomorphic
AG-groupoids of order 7, another figure that is unknown to our knowledge. Our
program also provided correct counts for well-known algebras and aligned with the
counts listed in the literature for lesser-known algebras, showcasing the potential
and accuracy of our approach.

However, our implementation generally struggles with algebras of orders higher
than 10. We have not utilized many of the known optimization techniques for
MACE-style finite model finding, and we have only implemented minor improve-
ments that we discovered. Overall, our implementation is not highly optimized.

We also attempted to compute an instance-independent canonizing symmetry
breaking constraint but found this approach to be intractable. From our imple-
mentation of the canonizing set algorithms, it appears that for any permutation
π, there exists a magma A such that π(A) ≺ A and for all other permutations
π′, we have A ⪯ π′(A). Consequently, it seems that an instance-independent
canonizing symmetry breaking constraint for magmas would be of size Ω(n!). We
leave proving this conjecture for future work.

For future work, there are several potential improvements for our program.
First, we have not explored advanced optimizations for the propositional encoding
of the order relations ⪯ and ≺ on magmas, aside from optimizations related to
fixed points of permutations. In the encoding, some clauses might be implied
by others and could be removed from the formula. Additionally, the encoding of
⪯ and ≺ could potentially be instance-dependent, with the complexity varying
depending on the specific algebraic structure. Another significant improvement
would be to implement our program in a lower-level language. Currently, our
implementation is in Python, which may limit its performance.

Additionally, we did not explore any heuristics regarding the computation of
a canonizing set. Our program computes a canonizing set by searching for any
counterexample π and then prunes the canonizing set by testing all permutations in
the order they appear in the canonizing set (implemented as a list data structure).
Based on Example 10, it would be reasonable to first impose additional constraints
on the searched π. Similarly, using a heuristic to decide the order in which
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permutations are tested in the reduction algorithm could potentially result in a
smaller set.

Lastly, our current input language is quite limited. We only allow structures
with a single binary function, a single unary function, and a few constants. By
generalizing the order relations ⪯ and ≺ to depend on all function tables of a
finite model, rather than just the Cayley table of a magma, we could extend our
program to find models for a broader range of algebraic structures.
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A Attachments
A.1 Repository

In the attachment, we provide a current snapshot of the GitHub repository
containing the implementation of our program. The up-to-date repository is
available at https://github.com/MarekDanco/diplomka. It contains all our
Python source codes, text files with test inputs, compiled propositional formulas
in DIMACS encoding the tested instances of the model finding problem, and all
logs from our conducted experiments. The specific organization of the repository
is the following.

The root directory contains three folders:

1. dimacs: Contains folders for each tested structure with all propositional
formulas in DIMACS format that we used with the model counting tools D4
and clingo.

2. logs: Contains three folders:

(a) canset: Logs from the computation of canonizing sets for each instance.
(b) clingo: Logs from the enumeration of all models with clingo.
(c) d4: Logs from the enumeration of all models with D4.

3. structures: Text files with the FOL axioms of the tested algebraic struc-
tures.

Additionally, the root directory contains the following Python source codes:

1. argparser.py, basics.py: Basic command line arguments parsing and
procedures used by the rest of the modules.

2. parsing.py, splitting.py, grounding.py: Codes that translate the input
FOL axioms into the propositional encoding.

3. minmod.py: Builds the propositional encoding of the constraint A ⪯ π(A).

4. mkdimacs.py: Generates the CNF in DIMACS format encoding the given
instance of the model finding problem.

5. canset.py: Generates a reduced canonizing set for the given instance of
the model finding problem.

6. mace.py: Constructs all non-isomorphic models for the given instance of
the model finding problem.

To use our program, please install the PySAT package available at https:
//pysathq.github.io/. The codes mkdimacs.py, canset.py, mace.py can be
run from the terminal with command line arguments. The specific format of the
command line arguments can be seen by running the codes with the -h argument.
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