
MASTER THESIS

Mykhailo Naumenko

Cryptographically Secure Random
Number Generators

Department of Algebra

Supervisor of the master thesis: Dr. rer. nat. Faruk Göloğlu
Study programme: Mathematics

Study branch: Mathematics for Information
Technology

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

This thesis is dedicated to Dr. rer. nat. Faruk Göloğlu, whose wisdom and
knowledge have been my guiding light throughout this academic journey.

ii

Title: Cryptographically Secure Random Number Generators

Author: Mykhailo Naumenko

Department: Department of Algebra

Supervisor: Dr. rer. nat. Faruk Göloğlu, Department of Algebra

Abstract: The thesis explores the theoretical and practical aspects of Crypto-
graphically Secure Pseudorandom Number Generators (CSPRNGs) in modern
cryptography and computer security. The study delves into theoretical back-
ground, the construction, security measures, and practical implementations of
CSPRNGs, emphasizing their importance in secure communication channels and
cryptographic protocols. Through an extensive literature review, this work high-
lights the challenges in achieving absolute security for pseudorandom number
generators, establishing that they can be constructed from one-way functions
and significantly expanded while maintaining security, provided.

The thesis also examines various well-known CSPRNG algorithms such as Yarrow,
Fortuna, ChaCha20, ISAAC, ANSI X9.17, and others. The security features
and known vulnerabilities are identified from available literary sources. Practical
attacks on these generators, including state compromise, chosen-input attacks,
and backtracking, are analyzed to underscore the importance of robust design
and proactive security measures.

Moreover, the study presents practical implementations of unsecure algorithms
in programming environments, showcasing their application and potential weak-
nesses in real-world scenarios, emphasizing that only verified means should be
used for practical implementations. By analyzing historical and contemporary
attacks, the research underscores the necessity for continuous improvements in
PRNG designs to safeguard against evolving threats.

Keywords: Cryptographically Secure Random Number Generators (CSPRNG),
Pseudorandom Number Generators (PRNG), Yarrow Algorithm, Fortuna Algo-
rithm, Cryptographic Attacks, Entropy Accumulation, Stream Ciphers

iii

Contents

Introduction 3

1 Preliminaries 4

2 Theoretical foundations of CSPRNG 10
2.1 Introduction to PRNGs . 10

2.1.1 Security measure . 11
2.1.2 Reductions . 13
2.1.3 One-way functions . 14

2.2 Cryptographically Secure PseudoRandom Number Generators . . 15
2.3 Constructing PRNG . 20

2.3.1 Expansion . 20
2.3.2 Extension from one-way permutation 20
2.3.3 Extension from one-way function 22

3 Cryptographically secure PRNG used in practice 25
3.1 Yarrow . 26
3.2 Fortuna . 28
3.3 ChaCha20 . 28
3.4 ISAAC . 28
3.5 The ANSI X9.17 PRNG . 30
3.6 The DSA PRNG . 31
3.7 The RSAREF PRNG . 31

4 Practical attacks on PRNGs 33
4.1 MIFARE Crypto-1 . 33
4.2 DUAL EC DRBG . 34
4.3 PS 3 . 35
4.4 Mersenne twister . 36

5 Cryptoanalytical attacks on PRNGs 38
5.1 Cryptanalysis of the Random Number Generator of the Windows

Operating System . 38
5.2 ISAAC . 42
5.3 Schneier Cryptanalytic Attacks on Pseudorandom Number Gener-

ators . 42
5.3.1 The ANSI X.17 PRNG . 42
5.3.2 The DSA PRNG . 45
5.3.3 The RSAREF PRNG . 46

6 Congruential generators 49
6.1 Attacking Congruential Generators 49
6.2 Multiple Recursive Generator . 53
6.3 Attacking truncated MRG . 54

Conclusion 59

1

Bibliography 60

APPENDICES 64

A Mersenne Twister attack. Source code 64

2

Introduction
Cryptographically secure pseudorandom number generators (CSPRNG) are com-
monly used in modern cryptography and computer security applications. The
main motivation behind the study of CSPRNGs is to generate unpredictable
and unbiased sequences of numbers that are suitable for cryptographic purposes.
Cryptographic security requires that the generated numbers are indistinguishable
from truly random numbers, and that no information about the internal state of
the generator can be inferred from the output.

This thesis explores the theoretical foundations of CSPRNGs, focusing on
their construction and analysis. As such, the mathematical properties of Cryp-
tographically Secure PRNGs and the conditions under which a generator can be
considered cryptographically secure will be investigated.

The main goal of the thesis is research on available implementations of Pseu-
dorandom Number Generators in different programming languages and computer
systems, and to explore known practical attacks on generators previously deemed
secure. We will also develop an example of the weakness of the system endangered
by the use of cryptographically insecure Pseudorandom Number Generator.

3

1. Preliminaries
Before diving into the topic of CSPRNGs, several important mathematical con-
cepts have to be described. As such, it will include:

• A negligible parameter,

• Asymptotic notation,

• Family of functions,

• Polynomial-time function,

• Computational hardness and complexity theory P, NP, EXP, etc.,

• Distribution ensemble (also reffered to as probability ensemble).

The above definitions are derived from [2].

Definition 1 (Negligible parameter). Let ε be a positive real number. A param-
eter λ is said to be negligible if, for any positive integer k, there exists a positive
integer N such that for all n > N , the following inequality holds:

|λ(n)| < 1
nk

,

where λ(n) denotes the value of the parameter λ at input of size n.

Definition 2. The expectation of a random variable with a countably infinite set
of possible outcomes is defined as the weighted average of all possible outcomes,
where the weights are given by the probabilities of realizing each given value:

E[X] =
inf∑︂
i=1

Xipi.

Definition 3 (Asymptotic notation). [2, p.5]
Let both k(n) and l(n) be positive numbers. We use the following notation:
l(n) = O(k(n)) if there exists c > 0 such that l(n) ≤ c · k(n),
l(n) = o(k(n)) if for all c > 0 holds that l(n) ≤ c · k(n),
l(n) = Θ(k(n)) if there exists c1, c2 > 0 such that c1 · k(n) ≤ l(n) ≤ c2 · k(n).

Definition 4 (Polynomial parameter). [2, p.6]
Assuming that n ∈ N , number l(n) is a polynomial parameter if l(n) = nO(1)

and l(n) is computable in time nO(1)[2, p.6].

Definition 5 (Family of functions). [2, p.6]
We call fn : {0, 1}n −→ {0, 1}l(n) a family of functions if for all n function fn

can be computed by the same algorithm parameterised by n.
Generally and informally speaking, every function performs the same trans-

formation for inputs of different sizes.
Family of functions serves as a way to formally denote functions with variable

lengths of input and output.

4

Definition 6. Polynomial-time function Function f : {0, 1}n −→ {0, 1}∗ is
a Polynomial-time function if there exists a Turing machine A such that for
all x ∈ {0, 1}n it computes f(x) in time nO(1)

Definition 7 (Computational hardness and complexity theory P, NP, EXP).
In computational complexity theory, a complexity class is a set of decision prob-
lems that share a common level of computational difficulty. Complexity classes
provide a framework for classifying problems based on the resources required
to solve them algorithmically, such as time or space. There is a common notation
for general computation classes. P denotes the set of decision problems that can
be solved by a deterministic Turing machine in polynomial time. A language
L ∈ P if there exists a polynomial-time algorithm A such that for every input x,
A correctly decides if x ∈ L.

NP denotes the set of decision problems for which a solution can be veri-
fied in polynomial time. A language L ∈ NP if there exists an algorithm A
and a polynomial-time algorithm (verifier) V such that for every input x and
a purported by A solution y, V can determine whether y is a valid solution for x.

EXPTIME denotes set of decision problems that can be solved by a deter-
ministic Turing machine in exponential time. A language L ∈ EXPTIME if
there exists an exponential-time algorithm A such that for every input x, A cor-
rectly decides whether x ∈ L.

Definition 8 (distribution ensemble). A distribution ensemble or probability
ensemble isfamily of distributions Dn, where index n is a natural number and
every distribution Dn has similar characteristics for n sufficiently large.

Definition 9 (Expected value). [16, p.9]
The expected value of a random variable with a countably infinite set of

possible outcomes is defined as:

E[X] =
∞∑︂

i=1
xi Pr[X = xi].

Lattices

To understand (CSPRNGs), we must explore key mathematical structures. This
leads us to lattices and the LLL algorithm, which are crucial in cryptography and
widely used in cryptanalysis to test system security.

Definition 10 (Lattice). [12, 13] A lattice L in Rn is a discrete subset of Rn that
can be expressed as

L =
{︄

k∑︂
i=1

aibi | ai ∈ Z, bi ∈ Rn

}︄
,

where {b1, b2, . . . , bk} is a set of linearly independent vectors in Rn, known as
the basis of the lattice.

Let V = (b1|b2| · · · |bk) be the n×k matrix whose columns are b1, b2, . . . , bk,
then determinant of lattice L is defined as

det(L) =
√︂

det(V T V).

5

The Shortest Vector Problem (SVP) in lattice theory is the computational
problem of finding the shortest non-zero vector in a lattice L, i.e., solving for

vmin = arg min
v∈L\{0}

∥v∥,

where ∥ · ∥ denotes the Euclidean norm.

The i-th minimum of a lattice L, denoted as λi(L), is the smallest value
such that there are i linearly independent vectors in L with norms no greater
than λi(L). It represents the radius of the smallest ball that contains i linearly
independent lattice vectors. Clearly, λ1(L) is the norm of the shortest non-zero
vector in L.

The LLL algorithm, developed by A. Lenstra, H. Lenstra, and L. Lovász [12],
is a polynomial-time algorithm for lattice basis reduction that approximates the
solution to the Shortest Vector Problem (SVP). It transforms an arbitrary lattice
basis into a reduced basis where vectors are shorter and more orthogonal, making
the lattice easier to work with for various computational problems.

Definition 11. A basis B = {b1, b2, . . . , bn} for a lattice L ⊆ Rn is LLL-reduced
if it satisfies the following conditions for a given parameter δ with 1/4 < δ < 1:

1. Size Reduction: ∀1 ≤ j < k ≤ n the coefficient of bj in the Gram-Schmidt
orthogonalization of B satisfies

|µk,j| ≤
1
2 ,

where µk,j = ⟨bk,b∗
j ⟩

⟨b∗
j ,b∗

j⟩ and b∗
j are the Gram-Schmidt orthogonalized vectors.

2. Lovász Condition: For all 1 ≤ k < n,

δ||b∗
k||2 ≤ ||b∗

k+1 + µk+1,kb∗
k||2.

These conditions ensure that the vectors in the LLL-reduced basis are rela-
tively short and nearly orthogonal to each other, which is useful for approximating
the shortest vector in the lattice.

The reduction parameter δ is usually set to 3
4 , LLL algorithm is proved to

run in polynomial time for δ = 3
4 . The LLL algorithm guarantees that the first

vector in the reduced basis is within a factor of 2(n−1)/2 of the shortest vector in
the lattice, where n is the dimension of the lattice.

It is proved that for a δ-reduced basis {v1, . . . , vn} of n-dimensional lattice L
the following holds true [6, Lemma 5] [12]:

1. ||vi|| ≤ (4
4δ−1)(n−1)/2λi(L);

2. ||vi|| ≤ (4
4δ−1)(n−1)/4 det(L)1/n.

6

Cryptographic Primitives

LFSR. A linear feedback shift register (LFSR) is a mathematical construct
often used in cryptography and computer science. As a rule, this is a register
with a finite sequence of binary bits (x0, x1, . . . , xn), where n is the length of
the register [25]. The state of the LFSR changes according to the following
pattern: in discrete time steps, the entire register is shifted by one bit, resulting
in one bit (say at the end of the register) being the output of the step. At the same
time, one bit in the beginning of the register is empty after the shift. A new value
for this bit is determined by the linear combination of the rest n bits including
the output bit. This linear combination is defined by a fixed feedback polynomial
that defines the LFSR taps that are used in the calculation. The resulting bit
sequence generated by LFSR exhibits pseudo-random behavior, making it suitable
for applications such as encryption key generation or pseudo-random number
generation.

RC4 stream cipher. Stream cipher RC4 (Rivest Cipher 4) is a symmetric
cipher previously used in cryptography but now no longer considered secure due
to recovered attacks. It functions by generating a pseudorandom stream of bytes,
which is then combined with the plaintext or ciphertext using the XOR operation.
Its structure is very similar to LFSR except for one difference: RC4 operates with
bytes, not bits, which makes it convenient for software implementation whereas
LFSR is adapted for implementation on hardware.

Mathematically, RC4 can be formally described as follows:

• Initialization: The internal state of RC4 is 256 bytes, initialized with values
from 0 to 255.

• Key scheduling algorithm (KSA): KSA reorders the internal state array S
based on the key. This is achieved by performing a series of exchanges.
Swaps are defined by key bytes and the current state of C.

• Pseudo-Random Generation Algorithm (PRGA): After KSA, RC4 enters
the PRGA phase. During PRGA, bytes are generated one at a time from
the state array S and output. This is done by updating the state array
in a non-linear and deterministic way, guided by the current key byte and
the state S.

• Key Stream Generation: The output of RC4 is a pseudo-random key stream
that can be used for encryption or decryption. The key stream is obtained
by reapplying PRGA, creating a sequence of bytes based on the updated
state array S.

In general, RC4 uses the KSA and PRGA procedures to convert the secret key
into a pseudo-random key stream. The generated keystream has the properties of
randomness and is combined with plaintext or ciphertext using XOR for privacy
and cryptographic operations.

Hash function. Hash functions are fundamental cryptographic algorithms that
can be used for a variety of purposes. They accept inputs of any length and

7

produce outputs of a fixed size. Hash functions are designed to be fast and
efficient.

A cryptographic hash function h must have the following properties according
to [1, pp. 322 – 324]:

• Deterministic: x = y implies that h(x) = h(y).

• Fast Computation: The hash function must be able to calculate the hash
value “quickly”, even for large inputs.

• Pre-image resistance: knowing h(x) the task of finding x must be “ineffi-
cient”, impossible in polynomial time.

• Collision resistant: It should be “hard” to find two different inputs x1 ̸= x2
that produce the same hash value h(x1) = h(x2).

• Avalanche effect: A small change in the input data should result in a sig-
nificant change in the hash value.

• Uniformity: The hash function must evenly distribute the outputs across
the output space. Assuming that h is a perfect hash function with an
output of length n ∈ N, it should hold that for x1 ̸= x2 the probability
Pr[[h(x1)]i = [h(x2)]i] = 1

2 for every i ≤ n, where [h(x)]i denotes i-th bit of
h(x).

Examples of hash functions used in practice are: MD5, SHA-1, SHA-256,
Blake2 and further.

Block ciphers. Block ciphers are cryptographic algorithms designed to encrypt
and decrypt fixed-size blocks of data. They form a fundamental building block
of modern symmetric-key encryption systems. In a block cipher, the plaintext is
divided into fixed-size blocks, typically 64 or 128 bits, and each block is trans-
formed into ciphertext using a specific encryption algorithm and a secret key.
Block ciphers are usually constructed using the Feistel network structure, involv-
ing rounds of substitution, permutation, and key mixing operations. The secu-
rity of block ciphers relies on strong secret keys generated through key schedules.
Their construction combines mathematical operations, key management, and se-
curity considerations to enable secure and efficient encryption and decryption in
cryptographic applications.

Examples of block ciphers include AES (Advanced Encryption Standard) and
DES (Data Encryption Standard).

Block ciphers can be used in various modes of operation to provide additional
security features. In the description of the modes below, to simplify the notation,
we denote i-th block of ciphertext and plaintext with Ci and Pi respectively,
EK(x) denotes encryption with key K. Ei

K(x) denotes encryption repeated i
times[23].

• Counter mode (CTR) refers to the encryption mode when block of plaintext
is combined with an encrypted initial vector (IV) using XOR, next block is
combined with IV + 1 and so on.
Ci = Pi ⊕ EK(IV + i)

8

• Electronic codebook (ECB) is a mode, where every block is encrypted sep-
arately without any interaction.
Ci = EK(Pi)

• Cipher block chaining (CBC). In CBC previous block of ciphertext is always
added to the next block of plaintext before encryption.
Ci = EK(Pi ⊕ Ci−1)

• Propagating CBC (PCBC) mode works in the way where combination of
previous block plaintext and ciphertext is always added to the next block
of plaintext before encryption.
Ci = EK(Pi ⊕ Pi−1 ⊕ Ci−1)

• Cipher feedback (CFB). In CFB the next cipher block is created by addition
of encrypted previous cipher block to the next block of plaintext.
Ci = EK(Ci−1)⊕ Pi

• Output feedback (OFB) mode operates in the following way. IV is encrypted
n times to be combined with n-th block of plain text.
Ci = Ei

K(IV)⊕ Pi

In the following table we compare modes of operation mentioned above.

Table 1.1: Encryption and Decryption Properties of Various Modes of Operation
Mode ECB CBC CFB OFB CTR
Parallel Encryption Y N N N Y
Parallel Decryption Y Y Y N Y
Precomputation Possible N N N Y Y
Error Propagation 1 block 1 block 1 block N N
Self-Synchronizing Y Y Y N N
Encryption = Decryption N N Y Y Y

The above table summarizes advantages and disadventages of each mode of
operations. For example, ECB and CTR modes allow parallelization of encryp-
tion, meaning that multiple messages can be processed at the same time as theere
is no dependence on previous encrypted block. Similarly, all mentioned modes
but OFB allow parallelization of decryption.

As we will show later, some modes of operation of a block cipher can be
considered a PRNG.

9

2. Theoretical foundations of
CSPRNG
In this chapter we will dive into computer science background of pseodoran-
domness generators. We will start with important concepts required to define
a PRNG. Then we will define a Cryptographically Secure PRNG and its most
desired properties. We will state and prove that PRNG must be Next-bit un-
predictable: this property can be used as a test of being a PRNG. In the rest of
the chapter we will introduce theoretical constructions of PRNGs from one-way
functions.

2.1 Introduction to PRNGs
This section outlines the concepts and terminology required to formally define
a pseudo-random number generator (PRNG). As such, it introduces the following
definitions:

• Distinguishing probability,

• Cryptographic security and distinguishability,

• Security parameter,

• Time-success ratio and further.

These definitions provide the necessary background for our subsequent dis-
cussion of CSPRNGs. This chapter is based entirely on Pseudorandomness and
cryptographic applications by Michael Luby [2].

Definition 12 (Distinguishing probability). [2, p. 15]
Let A ∈ {An : {0, 1}n −→ {0, 1}} be an instance of a family of functions,

n ∈ N . Let x, y ∈ {0, 1}n be uniformly chosen random inputs to A. The distin-
guishing probability of A for x and y is

δ(n) = |Pr
x

[A(x) = 1]− Pr
y

[A(y) = 1]|.

Family of functions A in the definition above takes role of an adversary algo-
rithm. Its outputs are interpreted as “reject” and “accept” The intention behind
this definition is to measure a difference between sequences: it should accept ev-
ery sequence that “looks like” x and reject every other sequence. This concept
will lead us to the point when one can demonstrate that no adversary algorithm
could tell apart deterministically generated string x and a genuinely random
string y. The definition of distinguishing probability allows an informal defini-
tion of a PRNG:

Informal definition (Pseudorandom generator). [2, p. 20]
Let f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be a function from a family of polynomial-

time functions, where l(n) > n is a polynomial parameter. Let x be a uniformly

10

random chosen input for f , let y be a uniformly randomly chosen from {0, 1}l(n).
Then we say that f is a PRNG if for every polynomial-time adversary A the dis-
tinguishing probability of a for f(x) and y is ”very small”.

It is necessary to provide a rigorous definition of “very small” distinguishing
probability to properly define the PRNG. The number l(n) above plays role of
a stretching parameter. It introduces the fact, that f as a PRNG usually only
extends a random sequence to produce longer sequence. The difference l(n)− n
is usually referred to as a stretching parameter.

2.1.1 Security measure
Following the idea from [2], we will connect “very small” distinguishing probability
with a measurement of security: it has to be small enough to satisfy the security
needs. Let us introduce this and some other ancillary structures that serves to
facilitate the later work.

Definition 13 (The security parameter). [2, p. 24]
A security parameter s(n) is a parameter that is used to determine the level of

security of a cryptographic primitive. The larger the value of s(n), the stronger
the security.

In practice, the security parameter is usually determined by the size of the pri-
vate memory of the computer that the cryptographic scheme utilizes. The private
memory is the memory hidden by the scheme, and it is commonly the primary
target of attackers. Typical example is the key. It is the most wanted information
for every attacker.

By setting the security parameter to the size of the private memory, the scheme
primes the attacker to perform a large number of computations in order to break
the scheme, thus increasing its security. However, the security parameter is not
always set to the size of the private memory, as other factors such as computa-
tional efficiency and practical considerations may also play a role in determining
the appropriate value of s(n).

An example where the security parameter is not equal to the size of the hidden
key is DES. DES cipher has a 64-bit key, but it is referred to as “56-bit effective
key”[1, p.252], because every 8-th bit is a parity bit (it can be computed as a sum
of previous 7 bits). For this example, the size of private memory is 64 bits, but
the security parameter s(n) is only 56 as in a brute force attack, attacker would
need to correctly guess “only” 56 bits.

When discussing attackers it’s essential to establish their role in every cryp-
tographic system. In cryptography, an adversary refers to an entity or a person
who attempts to undermine or compromise the security of a system. Specifically,
in the context of analyzing the security of cryptographic schemes, an adversary
is a computational agent that has some degree of control over the inputs and
outputs of the scheme, and aims to reveal the secret key or other confidential
information.

Definition 14 (Adversary). [2, p. 25]
the adversary is a function family that can be computed by a Turing ma-

chine. Adversary is a function that recovers secret and hence breaks the security

11

of the system. It is assumed to have unlimited computational power, unless
explicitly stated otherwise. Two primary factors are used to evaluate the com-
putational power of an adversary: the total time T (n) the adversary spends on
computation, and the probability of success δ(n) of the adversary in breaking
the security of the system.

Throughout this thesis, we will refer to several types of adversaries. To sim-
plify the perception of the text, allow us to indicate the notation in advance.

• Inverting adversary A for function f is an adversary that computes an ele-
ment of preimage of f(x). The notation is: A(f(x)). It is expected that for
correct output of such adversary holds: A(f(x)) ∈ f−1(f(x)), for arbitrary
input x of function f (f−1(f(x)) denotes the preimage).

• Distinguishing adversary A for x and y (x, y ∈ {0, 1}n, additionally x is
an element of subset of {0, 1}n with some Property) is an adversary that
distinguishes an origin of the input. It returns just one of two possible
messages: “accept(1)” if input appears to have the Property like x does,
and “reject(0)” otherwise.

• Next-bit predicting adversary A for function f is an algorithm that tends
to predict an output f(x) on position i operating with all previous bits on
positions (1 to i− 1). The syntax for such adversary is

A(i, f(x){1,2,...,i−1}),

where x is an arbitrary input of f , i denotes output position that will be
predicted and f(x){1,2,...,i−1} denotes a substring of f(x) on positions 1 to
i− 1.

As stated in definition, adversary is characterized by the computation time
T (n) and success probability δ(n). The following definition combines these as-
pects to define a single performance measure.

Definition 15 (Time-success ratio). [2, p. 25]
Time-success ratio of an adversary A for a primitive f is

R(s(n)) = T (n)/δ(n),

where T (n) is the worst case time bound of A, δ(n) is the success probability of A
for f and s(n) is the security parameter of f .

Although it might be intuitive to use an expected value of time-success ratio
when speaking about effectiveness of adversary, according to [2], the worst case
time bound is still effective for our purposes.

Definition 16 (Security). a primitive f is S(s(n))-secure if every adversary A
for f has time-success ratio R(s(n)) ≥ S(s(n)).

This framework and security definition is essential to present a realistic case
of nondeterministic adversary. Following an example in [2, p. 26], there exists
a natural way to trade off time complexity for a chance to success.

12

2.1.2 Reductions
A reduction is an algorithm for transforming one problem into another. Intu-
itively, reduction uses an algorithm that solves first problem as a subroutine to
solve target problem.

Definition 17 (Oracle adversary). Oracle adversary S is defined as an algorithm
which is given an “oracle access” to another algorithm and exploits its outputs.
Notation SA denotes that oracle adversary S queries adversary A and uses answers
(outputs) of A for own computations. The run time of SA includes the time for
computing A in the oracle calls to A.

To stay compatible with other sources terminology, we should mention that
SA would typically be interpreted as “adversary S that queries oracle A”. It is
still the same thing here: S is called oracle adversary and A is called adversary
because A’s task outside of our oracle scheme is to attack some primitive.

Oracle queries are important part of the uniform reduction which is defined
below.

Definition 18 (Uniform reduction). A “uniform reduction” is a polynomial-time
algorithm that can transform instances of one problem into instances of another
problem in a way that preserves the complexity of the problems. Specifically,
we say that there is a uniform reduction from Primitive 1 to Primitive 2 if there
exists polynomial-time adversary oracle P and adversary oracle S that satisfies
two properties:

• for every instance f of Primitive 1 with security parameter s(n) it holds
that polynomial-time adversary oracle g = P f is inherently an instance of
Primitive 2 with security parameter s′(n),

• given any adversary A for g with Time-success ratio R′(s′(n)), oracle ad-
versary SA is an adversary for f with Time-success ratio R(s(n)).

Moreover, a uniform reduction must map inputs to inputs that are chosen uni-
formly at random.

Security Preserving

The effectiveness of a reduction from f to g is determined by how much of the se-
curity of f is retained in g. To measure this accurately, we compare the success
rates of f and g when they use the same amount of private information. Reduc-
tions can be classified as linear-preserving, poly-preserving, or weak-preserving
to give a rough measure of their security-preserving capabilities.

Definition 19 (reduction security). Let f and g be polynomial-time function
families both having the same security parameter (size of used private memory is
N) and there is a reduction from f to g. Let us denote Adversary A for function
family f has a time-success ratio R(N), and reduction oracle adversary B for g
has a Time-success ratio R′(N).

We call reduction from f to g:

• linear-preserving if R(N) = NO(1) · O(R′(N)),

13

• poly-preserving if R(N) = NO(1) · (R′(N))O(1),

• weak-preserving if R(N) = NO(1) · (R′(NO(1)))O(1).

2.1.3 One-way functions
At this point, a closer look at one-way functions can be taken.

Definition 20 (One-way function). [2, p.27]
Let f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be an instance of a family of polynomial-

time functions with security parameter s(n) = n. Let x be a uniformly random
element of set {0, 1}n. Success probability of an inverting adversary [14] A for f is

δ(n) = Pr[f(A(f(x))) = f(x)].
We say that f is a S(n)-secure one-way function if every adversary has time-
success ratio greater than S(n).

Alternatively, one-way function can be also defined in the following manner.

Definition 21. A function f : {0, 1}∗ −→ {0, 1}∗ is called a (strong) one-way
function if it can be computed by deterministic algorithm A in a polynomial-time,
and every randomised polynomial-time algorithm A′ succeeds in inverting f for
a negligible parameter λ(n) with probability:

Pr[A′(f(x)) ∈ f−1(f(x))] < λ(n),

where n is sufficiently large natural number, and x is an arbitrary binary string
of length n [16, definition 2.2.1].

To review the concordance of above definitions one can compare them and
verify, that strong one-way function as in definition 21 corresponds to (T ′(n)

λ(n))-
secure one-way function in terms of definition 20 (assuming adversary A′ has
run-time T ′(n)).

It is important to hold in mind, that typical assumption on the security level
is such, that every cryptographical primitive is expected to be compromised in
at least exponential time. Meaning that in practise we want to use 2Θ(n)-secure
primitives and stronger. In the above definitions this assumption is hidden behind
the strict inequality that must hold for every positive polynomial nk : it means
that adversary’s complexity is expected to be worse than polynomial. From
definition 1, λ(n) is negligible if for any positive integer k there exists a positive
integer N such that for all n > N it holds that |λ(n)| < 1

nk .
PRNGs exist only under assumption P ̸= NP. So, formally, we do not know

if any PRNG exist in practice. Same holds for one way functions:

Claim 1. P = NP implies that one-way functions do not exist.

Proof. Let f be a one-way function. Then by definition, it’s inverse function
f−1 is in NP complexity class, as f can be computed in the polynomial-time to
verify the output produced by f−1.

But by assumption P = NP. So, f−1 is also in P. Hence, an inverse of f can
be solved in polynomial time by Turing machine with success probability 1.

14

With the introduction of one-way functions, it is natural to consider their
benefits and potential uses. A common method to increase the security of cryp-
tographic algorithms is to use reduction techniques to transform the security of
one problem into that of another. In the context of a CSPRNG, these methods
can be used to convert the unpredictability of one-way functions into the unpre-
dictability of random sequences, providing stronger cryptographic security guar-
antees. In another words, we may use reductions to transform one-way function
and create a CSPRNG.

2.2 Cryptographically Secure PseudoRandom
Number Generators

In this section, we will formally define a cryptographically secure pseudo-random
number generator (CSPRNG). We will start by presenting the basic construction
of a CSPRNG and explaining its properties. We will then introduce the concept
of security for a CSPRNG and discuss the requirements that a generator must
satisfy in order to be considered cryptographically secure.

Finally, we will state and prove the Next-bit Unpredictable Theorem [14,
theorem 6.2.1], which shows that the existence of a one-way function implies
the existence of a CSPRNG. This theorem, therefore, serves as a fundamental
outcome in the theory of CSPRNGs and provides a strong connection between
one-way functions and the design of secure generators.

Definition of CSPRNG A CSPRNG is a deterministic algorithm that pro-
duces a sequence of pseudo-random numbers as output. An input string that
initializes the pseudorandom number generator defining its entire number se-
quence is called a random seed. If the generator is reset with an identical seed, it
will reproduce the exact same sequence of numbers. The generator must satisfy
the following properties:

• Next-bit unpredictability: Given the first k bits of the output, it should be
computationally unfeasible to predict the (k + 1)-th bit with high probabil-
ity.

• Distinguishability from truly random sequences: the output sequence of
the generator should be indistinguishable from a truly random sequence,
even to an attacker with unbounded computational power.

Definition 22 (pseudorandom number generator). [2, p. 50]
Let f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be an instance of a family of polynomial-

time functions with security parameter s(n) = n. Let l(n) > n. Let x be
a uniformly random element of a set {0, 1}n, z be a uniformly random element
of a set {0, 1}l(n). For every distinguishing adversary [14] A the distinguishing
probability for f is

δ(n) =
⃓⃓⃓
Pr[A(f(x)) = 1]− Pr[A(z) = 1]

⃓⃓⃓
.

15

Then, f is a S(n)-secure pseudorandom generator if every adversary has time-
success ratio greater then S(n).

An important property that we want pseudorandom number generator to have
is a next-bit unpredictability. It is needed because should adversary be able to
predict a sequence, it will be distinguishable from a random one.

Definition 23 (Next-bit unpredictable functions). [2, p. 51]
Let f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be an instance of a family of polynomial-

time functions with security parameter s(n) = n. Let l(n) > n. Let x be
a uniformly random element of set {0, 1}n, i be a uniformly random index from
set {1, 2, . . . , l(n)}. The prediction probability of next-bit predicting adversary
[14] A for f is

δ(n) =
⃓⃓⃓
Pr[A(i, f(x){1,2,...,i−1}) = f(x){i}]−

1
2
⃓⃓⃓
.

Then, f is a S(n)-secure next-bit unpredictable if every adversary has time-success
ratio greater than S(n).

Notice, that if the adversary always guesses the wrong bit, it can return as
a result the opposite bit. Hence, the worst adversary’s performance indicator is
success probability of 1/2.

Theorem 2 (PRNG ⇔ Next-bit unpredictable (6.2.1 [14]). Let function
f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be an instance of a family of polynomial-time
functions with security parameter s(n) = n, where l(n) > n. It holds that f is
PRNG if and only if f is next-bit unpredictable. The reduction is linear-preserving
in both directions.

Proof.
“=⇒”
Assume, that A is a next-bit predicting adversary for the function f . So,

A(i, f(x){1,...,i−1}) = f(x)i with the probability

δ′(n) =
⃓⃓⃓
Pr[A(i, f(x){1,2,...,i−1}) = f(x){i}]−

1
2
⃓⃓⃓
.

A has run-time T ′(n) and Time-success ratio R′(n) = T ′(n)
δ′(n) .

Construct oracle adversary SA for f in the sense of pseudorandomness in
the following way. For input z ∈ {0, 1}l(n) oracle SA sends query to A to compute
next-bit prediction pred on input z{1,...,i−1} and compares it with zi. Oracle is
described in Algorithm 1.

Algorithm 1 Oracle SA

Input: z ∈ {0, 1}l(n), i ≤ l(n).
Output: 1 if z is pseudorandom, 0 otherwise.

1: pred ← A(i, z{1,2,...,i−1})
2: if pred = zi then return 1
3: else return 0
4: end if

16

Probability, that SA accepts input f(x) (outputs 1) for random x is δ′(n). At
the same time, the probability that SA accepts a random string is 1

2 , because A
cannot guess the next bit of truly random sequence.

Hence, in the sense of distinction, SA has the following probability of success:

δ(n) =
⃓⃓⃓
δ′(n)− 1

2
⃓⃓⃓
.

SA needs only 1 query, so run time T (n) = T ′(n) + O(1). Hence, the Time-
success ratio is:

T (n)
δ(n) = T ′(n) +O(1)⃓⃓⃓

δ′(n)− 1
2

⃓⃓⃓
= T ′(n) +O(1)

δ′(n) +O(1)

= O
(︂T ′(n)

δ′(n)
)︂
.

◪

“⇐=”
Assume, that A is a distinguishing adversary for f . It’s probability of success

is defined for an arbitrary input of f , x ∈ {0, 1}n, and for an uniformly random
sequence of the same size as the output of f , y ∈ {0, 1}l(n), as

δ′(n) =
⃓⃓⃓
Pr[A(f(x)) = 1]− Pr[A(y) = 1]

⃓⃓⃓
.

WLoG assume that Pr[A(f(x)) = 1] > Pr[A(y) = 1] holds always (there
always exists not-A that returns opposite output):

δ′(n) = Pr[A(f(x)) = 1]− Pr[A(y) = 1].

A has run-time T ′(n) and Time-success ratio R′(n) = T ′(n)
δ′(n) .

Let x ∈ {0, 1}n be uniformly random input to f , let y ∈ {0, 1}l(n) be uniformly
random string. Now consider the sequence of strings that combine pseudorandom
string with truly random string:

D0 = (y1, y2, . . . , yl(n)), [= y]
D1 = (f(x)1, y2, . . . , yl(n)),

...
Di = (f(x)1, f(x)2, . . . , f(x)i, yi+1, . . . , yl(n)),

...
Dl(n) = (f(x)1, f(x)2, . . . , f(x)l(n)). [= f(x)]

Now we consider the probabilities of success of A with any of the strings Di.
We use a telescoping sum to get the inequality. One can notice that the following

17

is true regarding the probabilities of the first and last events in the sequence.
Pr[A(Dl(n)) = 1] = Pr[A(f(x)) = 1] and Pr[A(D0) = 1] = Pr[A(y) = 1]. Hence,

Pr[A(Dl(n)) = 1]− Pr[A(D0) = 1] = δ′(n).
That implies that the mean value of difference is

E
[︄

Pr[A(Di) = 1]− Pr[A(Di−1) = 1]
]︄

= δ′(n)
l(n) .

Construct oracle adversary SA for f in the sense of predictability in the fol-
lowing way.

Algorithm 2 Oracle SA

Input: integer i, (i− 1)-bits long string z
1: choose uniformly in random (ui, . . . , ul(n))
2: b← A(z1, . . . , zi−1, ui, . . . , ul(n))
3: if b = 1 then return ui

4: else return not ui

5: end if

Now let us consider the probability of success for SA. Let Qi−1 denote random
variable of SA(z1, . . . , zi−1) = zi, so that Qi−1 equals 1 if the above equality holds
and 0 otherwise. Let ˜︁zi denote a bit opposite to zi. Note that Pr[ui = zi] = 1

2 as
ui is chosen uniformly random.

Pr[Qi−1] = Pr[Qi−1|ui = zi] Pr[ui = zi] + Pr[Qi−1|ui ̸= zi] Pr[ui ̸= zi] (2.1)

= 1
2 Pr[b = 1|ui = zi] + 1

2 Pr[b = 0|ui ̸= zi] (2.2)

= 1
2 Pr[A(z1, . . . , zi−1, zi, ui+1, . . . , ul(n)) = 1] (2.3)

+ 1
2 Pr[A(z1, . . . , zi−1, ˜︁zi, ui+1, . . . , ul(n)) = 0]). (2.4)

Let us analyse probability that A rejects input (z1, . . . , zi−1, ui, . . . , ul(n)) (in
the algorithm above, A(z1, . . . , zi−1, ui, . . . , ul(n)) is assigned into variable b, hence
we can shorten the notation of the probability to Pr[b = 0]):

1
2 Pr[b = 0|ui ̸= zi] + 1

2 Pr[b = 0|ui = zi] = Pr[b = 0], (2.5)

Pr[b = 0] = 1− Pr[b = 1]. (2.6)

At the same time, the following holds:

• Pr[b = 0|ui ̸= zi] = Pr[A(z1, . . . , zi−1, ˜︁zi, ui+1, . . . , ul(n)) = 0],

• Pr[b = 0|ui = zi] = Pr[A(z1, . . . , zi−1, zi, ui+1, . . . , ul(n)) = 0]
= Pr[A(Di) = 0] = 1− Pr[A(Di) = 1],

• Pr[b = 1] = Pr[A(z1, . . . , zi−1, ui, ui+1, . . . , ul(n)) = 1]
= Pr[A(Di−1) = 1].

18

Substituting the above equalities into equation (2.5) we obtain:
1
2 Pr[A(z1, . . . , zi−1, ˜︁zi, ui+1, . . . , ul(n)) = 0] + 1

2(1− Pr[A(Di) = 1])

= 1− Pr[A(Di−1) = 1].

Finally, by rearranging we get:
1
2 Pr[A(z1, . . . , zi−1, ˜︁zi, ui+1, . . . , ul(n)) = 0] =

= 1− Pr[A(Di−1) = 1]− 1
2(1− Pr[A(Di) = 1])

We can now use these results in (2.1):

Pr[Qi−1] = 1
2 Pr[A(z1, . . . , zi−1, zi, ui+1, . . . , ul(n)) = 1]

+ 1
2 Pr[A(z1, . . . , zi−1, ˜︁zi, ui+1, . . . , ul(n)) = 0])

= 1
2 Pr[A(Di) = 1]

+ 1− Pr[A(Di−1) = 1]− 1
2(1− Pr[A(Di) = 1])

= 1
2 Pr[A(Di) = 1] + 1− Pr[A(Di−1) = 1]− 1

2 + 1
2 Pr[A(Di) = 1]

= 1
2 + Pr[A(Di) = 1]− Pr[A(Di−1) = 1].

Hence, on average it holds

Pr[SA(z1, . . . , zi−1) = zi] = 1
2 + Pr[A(Di) = 1]− Pr[A(Di−1) = 1]

= 1
2 + δ′(n)

l(n) .

To conclude, adversary SA has run-time T ′(n) +O(1) and success probability
δ(n) = 1

2 + δ′(n)
l(n) . Hence, its Time-success ratio R(n) is

T (n)
δ(n) = T ′(n) +O(1)

1
2 + δ′(n)

l(n)

= T ′(n) +O(1)
O(δ′(n)

l(n))

= O(l(n))× O(T ′(n))
O(δ′(n))

= nO(1)O
(︂T ′(n)

δ′(n)
)︂
.

19

2.3 Constructing PRNG
There are multiple ways to construct a new PRNG. We have mentioned earlier in
the text that we can use reductions to transform secure primitives. For example,
it is possible to reduce a one-way function into PRNG. Another straightforward
technique to create a new PRNG is to expand an existing. Both these techniques
are reviewed below.

2.3.1 Expansion
As we have already mentioned above, CSPRNG produces a sequence of pseudo-
random numbers from a selected input seed. Also, every generator must fulfill
properties of Next-bit unpredictability and Undistinguishability from truly ran-
dom sequences.

It is not easy to construct a function that would satisfy stated requirements.
For that reason we might need to expand existing function that is already proved
to be secure: we would like it to generate as wide and big output as possible
without loss in security.

Another problem with using a pseudo-random number generator is that size
of its output may not be sufficient for a given application. The available pseudo-
random number generator might be capable of expanding by just one bit, while in
many applications it is critical that the length of its output be significantly larger
than its input. So it is important to be able to receive the pseudo-random number
generator bits online. The following concept demonstrates that it is possible to
construct a pseudo-random generator that can expand by an arbitrary polynomial
amount of bits using a pseudo-random number generator that can only expand
by one bit.

Stretching construction: Let g : {0, 1}n −→ {0, 1}n+1 be a pseudorandom
number generator. Let g0(x) be equal to x, and g1(x) = g(x). For all i > 1
define:

gi(x) = (g(x)1, gi−1(g(x)2,...,n+1))
Based on [2] such a construction allows to stretch g such that gl(n) is also

a PRNG, and reduction is linear preserving as proved in the source [2].

2.3.2 Extension from one-way permutation
As the chapter name proposes, we can design reduction from one-way functions
to create a PRNG. We already know that PRNGs exist if and only if one-way
functions exist. Before diving into construction of a PRNG from a general one-
way function, let us firstly show a construction from it’s less general instance,
one-way permutation. It has a very favorable property of being bijective.

Construction and its proof rely on concepts of Inner Product Bit and Hidden
Bit Theorem. Combining theoretical results with a stretching construction, we
will be able to construct a PRNG, that stretches n input bits to l(n) output bits.

In the [2], an inner product bit is defined as follows:

Definition 24 (Inner Product Bit). [2, p.64]
Let f ∈ {fn : {0, 1}n −→ {0, 1}l(n)} be an instance of a family of polynomial-

time functions, where the input is private and thus the security parameter is n.

20

Let z ∈ {0, 1}n. Define the inner product bit of f with respect to f(x) and z to be
x⊙ z. Let x, z ∈ {0, 1}n be chosen uniformly at random. Let A be an adversary.
The success probability (prediction probability) of A for the inner product bit of
f is

δ(n) = |Pr[A(f(x), z) = x⊙ z]− Pr[A(f(x), z) ̸= x⊙ z]|.
Then the inner product bit of f is S(n)-secure hidden if every adversary has

a time-success ratio at least S(n).
In other words, the inner product bit of f is hidden if no adversary can

effectively retrieve it knowing only publicly available parameter z and output
f(x).
Theorem 3 (Hidden Bit Theorem). [2, p.65] If f is a one-way function then
the inner product bit of f is hidden. The reduction is poly-preserving.

The proof is stated in the source [2].
The corollary of the Hidden Bit theorem states that for every one-way func-

tion f , its arbitrary input x and any random string z of the same size as x,
and random bit b sequences (f(x), x ⊙ z, z) and (f(x), b, z) are computationally
indistinguishable.

This corollary allows us to construct a following PRNG from a one-way per-
mutation [2, p.74].

Construction of a PRNG from a one-way permutation
Let l(n) = nO(1) > n. Let f : {0, 1}n −→ {0, 1}n be a one-way permutation.

Define polynomial-time function ensemble g : {0, 1}n × {0, 1}n −→ {0, 1}l(n):

g(x, z) = (x⊙ z, f(x)⊙ z, f 2(x)⊙ z, . . . , f l(n)(x)⊙ z),

where f i is the function f composed with itself i times. z is a public input.
Theorem 4. Function g is a PRNG.

Proof. We need to use the stretching construction mentioned above to reach
desired result. Namely, the following construction:

gi(x) = (g(x)1, gi−1(g(x)2,...,n+1)).

From [2, p.52] we know that if g is PRNG then gl(n) is also a PRNG, and
reduction is linear preserving.

So, now we want to prove, that (x⊙ z, f(x)⊙ z, f 2(x)⊙ z, . . . , f l(n)(x)⊙ z) is
PRNG given that f is one-way permutation.

Define g = (x⊙ z, f(x)). Then it follows from extension construction that

g0(x) = x

g1(x) = (g(x)1, g0(g(x)2,...,n+1))
= (x⊙ z, g0(f(x))) = (x⊙ z, f(x))

g2(x) = (g(x)1, g1(g(x)2,...,n+1))
= (x⊙ z, g1(f(x))) = (x⊙ z, (f(x)⊙ z, f(f(x))))

g3(x) = (g(x)1, g2(g(x)2,...,n+1))
= (x⊙ z, g2(f(x))) = (x⊙ z, (f(x)⊙ z, f(f(x))⊙ z, f(f(f(x))))))

21

To make notation more straightforward and tidy, denote function f composed
with itself i times as f i:

g3(x) = (x⊙ z, f(x)⊙ z, f 2(x)⊙ z, f 3(x)).

If we extend this construction repeatedly l(n)+1 times, we obtain the following
result:

gl(n)+1(x) = (x⊙ z, f(x)⊙ z, f 2(x)⊙ z, . . . , f l(n)(x)⊙ z, f l(n)+1(x)).

Hence, gl(n)+1 is a PRNG constructed from g. Limiting the function to hide
all outputs of f , let the final public output of the construct be restricted to
only (x ⊙ z, f(x) ⊙ z, f 2(x) ⊙ z, . . . , f l(n)(x) ⊙ z, f l(n)+1(x)), while the last part,
f l(n)+1(x), can be omitted on output.

For any x ∈ {0, 1}n, f(x) uniquely determines x as f(x) is a permutation. So
no entropy is lost by the application of f and hence as f is uniformly distributed,
f(x) already looks random.

2.3.3 Extension from one-way function
Construct a PRNG from a regular one-way function (instead of permutation)
requires certain changes and additional tools. That is because in case of regular
functions we need to count with a difference of size of a preimage and range of
the function, we need to consider stochastic distribution of input and output as
distributions might be different for preimage and range.

The construction that incorporates all such factors and allows to create a pseu-
dorandom generator from any one-way function requires defining following con-
cepts:

• an entropy to measure amount of information,

• a family of σ(n)-regular one-way functions,

• degeneracy of function to measure an aggregated average number of distinct
inputs mapped to the same output,

• a universal hash function to smooth the entropy using hashing.

Definition 25 (Entropy and information). [2, p.79]
Let Dn be a distribution on {0, 1}n and let X be chosen randomly with respect

to Dn. For every x ∈ {0, 1}n the information of x with respect to X is defined as

infromX(x) = − log
(︂

Pr[X = x]
)︂
,

the entropy of X is defined as the expected information of X:

ent(X) = E[infromX(X)].

22

Definition 26 (Range and preimages of a function). [2, p.91]
Let f : {0, 1}n −→ {0, 1}l(n) be a function. Define range as follows:

Hf (n) = {f(x) : x ∈ {0, 1}n}.

For every possible function value y ∈ Hf (n) define preimage as follows:

pref (y) = {x ∈ {0, 1}n : f(x) = y}.

The intuitive notion of one-to-one function would correspond to the scenario,
when all preimages are of size exactly 1. Some functions may map multiple input
values to a single output value, resulting in a phenomenon known as degeneracy.

Definition 27 (degeneracy). [2, p.91]
Let Dn be a probability ensemble with output length n. Let x be chosen in

random from Dn. Define the degeneracy of f with respect to Dn as

degenDn
f (n) = E

[︂
inforx(X)− inforf(x)(f(x))

]︂
.

Clearly, it is equivalent to degenDn
f (n) = ent(x)− ent(f(x)).

Definition 28 (regular function). [2, p.91]
Function f : {0, 1}n −→ {0, 1}l(n) is σ(n)-regular if |pref (y)| = σ(n) for all

y ∈ Hf (n).

It is not difficult to show that degenf (n) = log(σ(n)).
The last prerequisite is a universal hash function:

Definition 29 (universal hash function). [2, p.84]
Let h : {0, 1}l(n) × {0, 1}n → {0, 1}m(n) be a P-time function ensemble. Let

Y be uniformly chosen from {0, 1}l(n). We say h is a (pairwise independent)
universal hash function if, for all x, x′ ∈ {0, 1}n, x ̸= x′, for all a, a′ ∈ {0, 1}m(n),

Pr [hY (x) = a ∧ hY (x′) = a′] = 1
22m(n) ,

i.e. hY maps every distinct pair x and x′ independently and uniformly.

For an easier notation for fixed y ∈ {0, 1}l(n), h(y, x) is viewed as a function
hy(x) of x that maps (or hashes) n bits to m(n) bits.

Poly-preserving construction for regular one-way functions. Let f :
{0, 1}n → {0, 1}l(n) be a σ(n)-regular one-way function. Denote with d(n) its
degeneracy:

d(n) = ⌈degenf (n)⌉.

Let r(n) be a positive integer valued function. Let z ∈ {0, 1}x×(2r(n)+1). Let
h′ and h′′ be universal hash functions:

h′ : {0, 1}l′ (n) × {0, 1}l(n) → {0, 1}n−d(n)−r(n),

h′′ : {0, 1}l′′(n) × {0, 1}n → {0, 1}d(n)−r(n).

23

Under above assumptions define a pseudorandom generator

g(x, z, y′, y′′) = (h′
y′(f(x)), h′′

y′′(x), x⊙ z, y′, y′′).

Omitting the formality of notation (y′ and y′′ are public inputs, to hash func-
tion, for function defined by some standard those would be a publicly known
constant parameters), the simplified formula can be written as

g(x, z) = (h′(f(x)), h′′(x), x⊙ z).
Here, we simplify the motivation behind this construction. A hash function is

defined to have a property to uniformly distribute its outputs, so even if x or f(x)
are distributed in a special way, the hash function ’normalizes’ them. That is why
hash functions are essential in construction. Next, only a part of f(x) is used
along with x as input for hash functions. That is due to an entropy, an “amount of
information” in those. Parameter d(n) serves to measure the amount of entropy
lost in the function f and h′ extracts just the limited volume of data, while
h′′(x) returns it into the game directly from x, omitting intermediate function f .
Only the parameter r(n) is not explained yet. It is needed simply to ensure that
security is preserved. The reduction of f to g is poly-preserving when r(n) is set
to the logarithm of the security of f .

Detailed proof that reduction of f to g is poly-preserving and g is PRNG is
stated in the source, including proofs of intermediate lemmas.[2, p.93]

24

3. Cryptographically secure
PRNG used in practice
The need to use cryptographically secure random number generators (CSPRNG)
is due to their ability to provide a high degree of unpredictability, which is critical
for security in areas such as data encryption, key generation and authentication.
The practical alternative of pseudo-random sequences generated by deterministic
algorithms are truly random sequences collected from sources that are considered
unpredictable. The most common solution of the need combines both options:
“expensive” and limited in amount True Randomness is collected to later be used
to initialize the internal state of PRNG that can produce “cheaper” randomness.
True Randomness is expensive, because it almost always requires specialised hard-
ware or communication with a third party who collects entropy. While PRNG is
just an algorithm that usually can run on the same device.

Even though, the previous chapters demonstrate that it is not known if they
exist (existence is conditioned by assumption that P ̸= NP), modern commu-
nication technologies are in dire need of using algorithms that are as close as
possible to theoretically ideal.

In this chapter, we will review some examples of such generators. From now
on, this text refers to the notion such as generator or CSPRNG as to a practical
instance of algorithms.

The list of most used generators includes:

• Fortuna: the generator is based on running a block cipher in the counter
mode of operation. By design, the block cipher is not chosen and any trust-
ful and secure primitive can be used. Practical Cryptography[15, p.161]
suggests AES, Serpent or Twofish. Fortuna also includes the entropy ac-
cumulator that collects and stores randomness from various sources to in-
troduce new seed to restart the generator before periodicity shows itself
[23].

• Yarrow: similar as it’s successor, Fortuna mentioned above, Yarrow gener-
ator uses a block cipher in counter mode to generate pseudo-random bytes.
The main reason for deprecation of Yarrow was the fact that it is tightly
tied to the DES cipher, used as a block cipher, and SHA-1 hash algorithm
applied for a reseeding [22]. Both these primitives are not trustworthy to-
day, because of multiple attacks developed lately. DES is not recommended
since standard withdrawal in 2005 [18]. SHA-1 is not recommended by
NIST since 2011, when SHA-2 became the standard [17].

• ChaCha20: the generator is used for the arc4random generating function
in the OpenBSD (a security-focused, free and open-source, Unix-like operat-
ing system based on the Berkeley Software Distribution - BSD). ChaCha20
is based on the stream cipher encryption algorithm, it belongs to the Salsa
family of ciphers. It uses 32-bit operations and 10 iterations of the double
round, a high degree of cryptographic strength and exceptional performance
[27]. ChaCha20 replaced RC4 and DragonFly BSD which both are not con-
sidered trustful anymore.

25

• Blum Blum Shub: proposed in 1986 and proved to be at least as difficult
to solve as the quadratic residuosity problem (hence to be trustful). It
consists of repeatedly performing the operation of squaring modulo M ,
where M is the product of two sufficiently large prime numbers. [28].

• ISAAC (Indirection, Shift, Accumulate, Add, and Count): proposed by
Robert Jenkins [29, section 6.3]. Similarly to RC4, it operates by utilizing
a 256 array of 32-bit integers as its internal state, with results written to
a separate array and read sequentially until exhausted. This process in-
volves a series of computations with array elements, an accumulator, and
a counter. Generation takes just 19 32-bit operations to produce an out-
put string of the same length, making ISAAC highly efficient on 32-bit
platforms.
ISAAC author has also published a version for 64-bit platforms on his web.

In the following text we will take a closer look at the mentioned algorithms.
These generators have different properties and are used in different areas, depend-
ing on the requirements for safety and performance. As an example of a Crypto-
graphically Not Secure Pseudorandom Numbers Generator, we will take a closer
look at a Mersenne Twister - a generator which, among other things, is used
in the default mechanism for obtaining random numbers in the popular Python
language.

3.1 Yarrow
Yarrow is an open-source algorithm offered by Schneier et al. [22]. The most
known variation of Yarrow-160 is designed to be used with 3-DES as a symmetric
cipher and SHA-1 as a hash function. But generally, it can use any symmetric
cipher and any hash function.

In the paper authors defined Yarrow algorithm to consist of the following
major components:

• Entropy Accumulator

• Reseed mechanism

• Generation mechanism

• Reseed control

Entropy accumulation is the process used to set a new unpredictable internal
state of PRNG. As any generation of pseudorandom sequence is a deterministic
algorithm, the important security prerequisite is unpredictable input. To enable
such unpredictable reseed, external entropy has to be collected. Entropy accu-
mulator is a way to store these random inputs. According to Yarrow’s design,
they are collected into two pools just concatenating new inputs to those existing.
Once enough entropy is collected, a hash function is applied to the entire content
of the accumulator.

26

The reseed mechanism is a protocol to change the internal state of the gen-
erator.

For arbitrarily chosen hyperparameter t reseed mechanism is designed in
the following way:

Algorithm 3 Reseed mechanism
Inputs: entropy accumulator (entire content of the entropy accumulator)
Prerequisites and notation: h : {0, 1}∗ → {0, 1}c is a hash function with
output of length c.
EK is the generator symmetric cipher.
Outputs: K - new generator key, C - generator counter, seed file.

1: v0 ← h(entropy accumulator)
2: for i = 1, . . . , t do:
3: vi ← h(vi−1|v0|i)
4: end for
5: K ← h(h(vt, K), k) ▷ new generator key
6: entropy accumulator← 0 ▷ Reset the entropy accumulator.
7: Wipe all used interstate variables.
8: C ← EK(0) ▷ Set generator counter.
9: if the seed file is in use then

10: Rewrite the seed file with the first 2k bits of generator output.
11: end if

The generator. Generator is a functional part of the system.
It uses any symmetric cipher EK in a counter mode, where key K and counter

C serves as an internal state of the generator.

Algorithm 4 Yarrow Generator
Input: C - counter of the generator,
K - the hidden key.
Prerequisites and notation: EK - chosen for the generator symmetric cipher.
Output: R - pseudorandom bits.

1: C ← C + 1 mod 2n

2: R← EK(C)
3: if System time-frequency security parameter exceeded then
4: K ← next k bits of the output. ▷ Apply generator gate.
5: end if

R is the next output block of the generator.
Note that the “generator gate” (steps 3-5 of the algorithm above) is an im-

provement of the algorithm. Security parameter can be set based on system’s
requirements. In Yarrow-160, authors offer to use three-key triple-DES in counter
mode to generate outputs, and to apply the generator gate every ten outputs.

Generally, it is not the rule. And it is possible to set similar algorithm with
different cipher running in a different mode.

27

3.2 Fortuna
Fortuna is an environment built over the Yarrow algorithm. It was designed by
Bruce Schneier and Niels Ferguson in 2003 [23], - 4 years after they published
Yarrow mentioned in the text above.

The generation algorithm itself was not changed. It uses the same principles
as the Yarrow Generator: continuously running the block cipher in counter mode,
encrypting the counter C in every round. What is different is the block size, key
and cipher. Instead of triple-DES in the case of Yarrow, Fortuna recommends
applying ”an AES-like block cipher for the generator; feel free to choose AES
(Rijndael), Serpent, or Twofish for this function.” [23]. Hence, the generator’s
internal state consists of a 256-bit key and a 128-bit counter (for comparison
previous version of Yarrow-160 used 168-effective-bit key (in every byte of each
of the three 64-bit keys the last bit is a parity bit; it is a peculiarity of DES).
Generation changed the primitive function, but patterns stayed the same. Much
more significant change is observed in entropy accumulation. Instead of 2 pools,
now 32 pools are introduced. The overall design is generally very similar to that
of its predecessor. Some parameters have been increased to enhance security;
more secure cryptographic primitives are used.

Fortuna generator is a popular solution in practise. For example, Apple im-
plements it in the iOS, iPadOS, macOS, tvOS and watchOS kernels. [24]

3.3 ChaCha20
ChaCha is a family of cryptographic functions introduced by Daniel J. Bernstein
in 2008 [27]. It is closely related to the Salsa family designed by Berstein in 2005.
Both are stream ciphers that are built up on an add-rotate-XOR pseudorandom
function. ChaCha’s internal state consists of 512 bits ordered as matrix 4x4
of 32-bit words. The initial state is set from the combination of 256-bit key,
128-bit constant, 64-bit counter and 64-bit nonce. The constant is ”expand 32-
byte k” encoded with ASCII (hexadecimal): 0x65787061 0x6e642033 0x322d6279
0x7465206b.

A quarter round (QR(a, b, c, d)) is a fundamental operation in ChaCha that
performs a series of operations on four words of the internal state. It is called
a ”quarter round” because it operates on a quarter of the state array at a time.
QR(a, b, c, d) performs the following transformations and returns words a, b, c, d,
where “word << i” denotes bits left shift by i positions:

a += b; d⊕ a; d << 16;
c += d; b⊕ c; b << 12;
a += b; d⊕ a; d << 8;
c += d; b⊕ c; b << 7;

3.4 ISAAC
The generator was offered in 1996 together with it’s 2 predecessors IA and ABAA
[35]. Requirements for every next version of the generator were adjusted based

28

on performance of the previous.
ISAAC always produces 256 bytes of pseudo-random output. The generator

operates on 32-bit words (the design was offered in 1996, when 64-bit infras-
tructures have not been too popular yet), its state assembly from the following
elements. Following the example from the author of cryptoanalytical attack [36],
we will index every variable to track the state over time. E.g. mmt is the state
of variable mm at time t.

Alias Role (Explanation of its function) Size
(Bytes)

mmt

Internal state array used to generate random
numbers. It is modified during each iteration
of the ‘isaac‘ function.

1024

aat

Accumulator; it is an internal state variable
that gets modified by bitwise operations and
affects the generation of random numbers.

4

bbt

Previous result; another internal state vari-
able that contributes to the generation of
random numbers and is updated in each it-
eration.

4

cct

Counter; an internal state variable that in-
crements once per 256 results and affects
the generation of random numbers.

4

randrslt
Results array where the output sequence of
random numbers is stored. 1024

Table 3.1: Variables used in the ISAAC random number generator

To simplify the notation in the text below, let us introduce the following
function (it replicates function G() in notation from [36] (word << i denotes bits
left shift by i positions:):

Shift(aat−1, i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aat−1 ⊕ (aat−1 << 13); if i (mod 4) = 0
aat−1 ⊕ (aat−1 >> 6); if i (mod 4) = 1
aat−1 ⊕ (aat−1 << 2); if i (mod 4) = 2
aat−1 ⊕ (aat−1 >> 16); if i (mod 4) = 3

With the notation for the ISAAC algorithm established, we can now proceed
to detail the steps of the algorithm itself, as shown in Algorithm 5.

29

Algorithm 5 ISAAC [35, 36]
Inputs: t, aat−1, bbt−1, cct−1, mmt−1
Prerequisites and notation: Shift(aat−1, i)
Outputs: randrslt

1: cct ← cct−1 + 1
2: bbt ← bbt−1 + cct

3: for i = 0, . . . , 255 do:
4: aat ← Shift(aat−1, i) + mmt−1[i + 128 (mod 256)] (mod 232)
5: mmt[i]← mmt−1[(mmt−1[i] >> 2)] + aat−1 + bbt−1 (mod 232)
6: bbt ← mmt[mmt[i] >> 10] + mmt−1[i] (mod 232)
7: randrslt[i]← bbt

8: end for

Because the generator was not released in an analytical form, but only as
a programming code, its notation seems very confusing compared to other PRNGs
described above.

On the other hand, the security of ISAAC does not rely on any other cryp-
tographical function, as it does not employ any secure cryptographical primitive,
but plays such role itself. Such independence can be a key factor to prefer ISAAC
over other options.

3.5 The ANSI X9.17 PRNG
This and following algorithms are discussed in [21] and mentioned several times
in the next section. We introduce just a brief description without much details,
because these PRNGs were almost outdated at the time of the release of [21].
Today some of them might be hacked within minutes.

The ANSI X9.17 is a standard developed by the Accredited Standards Com-
mittee on Financial Services, X9, operating under the procedures of the American
National Standards Institute [39]. Standard recommends the way keys should be
created, stored and used, describing surrounding infrastructure like key entry
standards and Cryptographic service messages structure and format. The stan-
dard requires that ”keys shall be generated so that keys and IVs are random or
pseudorandom” and an example of PRNG is described in the appendix C of [39].
Although, it is not required to use given PRNG, it is the only such algorithm
mentioned in the standard. PRNG requires a use of Data Encryption Algorithm
(DEA) as describe in the ANSI X3.92 1981 standard [40]. This cipher is usually
referred as DES.

Initialization. The generator requires two random vectors to be generated
prior to its first use: a secret DES key K, and a seed value V . K is not re-
set at any time. V is changed every cycle.

Generation. To generate i-th random sequence, firstly, a temporary value Ti

is computed using current timestamp:

Ti = EK(timestamp).

30

Generated random bytes are obtained in the following way:

output[i] = EK(Ti ⊕ Vi).

And finally, the seed should be updated:

Vi = EK(Ti + output[i]).

3.6 The DSA PRNG
Generator intended for generating pseudorandom parameters for the DSA sig-
nature algorithm relies on the hash function primitive - SHA algorithm. Due
to the fact that the generator was approved by NSA[37], it was used for other
purposes as well as for Digital Signature Standard. Digital Signature standard
in its original statement from 1994 [38] orders to use PRNG described below or
”other FIPS approved security methods”. It is supplemented with a reference to
above ANSI X9.17 PRNG: ”One FIPS approved pseudorandom integer generator
is supplied in Appendix C of ANSI X9.17,”Financial Institution Key Management
(Wholesale).” [39]

The generator operates on states Xi. Every output is produced as a hash of
current state combined with an optional parameter Wi. The next state Xi+1 is set
using a combination of current state Xi, and negation of its output 1⊕ outputi.

Figure 3.1: DSA scheme

In later chapters we will refer to this PRNG when studying attacks offered by
Schneier [21]

3.7 The RSAREF PRNG
RSAREF is the free library RSA Data Security, Inc. made available for the pur-
pose of implementing freeware applications. It includes implementation of several
encryption algorithms, including RSA.

RSAREF is an open source software. It is available, for example on the Finnish
University and Research Network [20]. Code is written in C. File r random.c can
be used separately from others (conditioned by importing dependencies as md5
module). So, technically, it is an independent random numbers generator. Follow-
ing rather the notation from the source [21] then from the code itself the RSAREF
PRNG includes following elements:

31

• 16 bytes counter Ci - the state

• method R RandomUpdate to update the state with optional input X:

Ci+1 = Ci + MD5(X) mod 2128

• method R GenerateBytes to produce output and update the state:

outputi = MD5(Ci) mod 2128

Ci+1 = Ci + 1 mod 2128

Additional detail visible in the source code is that pseudorandom numbers
are generated by method R GenerateBytes in the requested quantity. And if
requested quantity is not a multiple of 16, some bytes would stay precomputed
and returned next time a randomness is requested. This detail is important, but
not critical. It only implies that not always current output depends on latest
state. Part of it might have been created using the previous state.

32

4. Practical attacks on PRNGs
In the next part of the thesis, we will look at different ways that security of
random number generators have been broken. We will focus on four real-world
examples:

The MIFARE Crypto-1 case, where the security of a common smart card was
defeated. The DUAL EC DRBG incident, where a number generator used for
security had a secret weakness. The PS 3 attack, showing that even popular game
consoles can be hacked due to significant security design flaws. The Mersenne
Twister, which is a number generator that is not safe for keeping things secret.
These stories will help us understand the various challenges in keeping our digital
world secure.

4.1 MIFARE Crypto-1
MIFARE is a brand focused on the production of a series of integrated circuit chips
of various levels of the ISO/IEC 14443 Type-A 13.56 MHz contactless smart card
standard. MIFARE offer different products with different level of security and
computational requirements. Here we want to focus on one exact family of their
products: MIFARE Classic. It uses a security protocol Crypto-1. Cards with
mentioned solution were widely used in different systems: to manage access, to
verify the owner, as a small payment system. For example, these chips were used
in Czech public transport: Hradecka Karta and Pardubicka Karta. Prague public
transport relies on more modern chips MIFARE DESFire, which was introduced
shortly after the first attacks on the MIFARE Classic family. Chips are used in
multiple countries on every continent.

The first vulnerability was discovered in 2007 and at that time attack offered
was not too efficient, but still according to [34] could be done in a matter of
hours rather than years for a brute force attack. This weakness is hidden in
the Random Number Generator required for the Crypto-1. As such, the schema
includes a LFSR generated by polynomial x16 + x14 + x13 + x11 + 1. Even though
the register has 32 bits, it works with only 16 of them. Hence, a cycle is closed
after 216 iterations.

In a parallel investigation, [31] delves into the weaknesses of the pseudorandom
generator on the MIFARE Classic card. The analysis exposes a practical attack
leveraging the weakness of the generator to facilitate a known plaintext brute-
force approach. As the first step in their attack, the authentication step should
be overcome.

By repeatedly requesting card nonces, the study reveals the same conclusion
as [34] without deep analysis of the chip’s hardware. The nonce, generated by
a Linear Feedback Shift Register (LFSR), exhibits predictability, with the po-
tential to reappear after 0.618s. However, this time is feasible only in theory.
In practice, nonce reappears only a few times per hour - simply because not ev-
ery output of LSFR is used, but only those requested at the moment when nonce
is needed.

Another weakness of the PRNG used in MIFARE was discovered in ”Reverse-
Engineering a Cryptographic RFID Tag” [34] and confirmed in ”A Practical At-

33

tack on the MIFARE Classic” [31]. The generating LFSR is reset to a known
state every time the tag starts operating. This leads to the fact that the response
to the nonce request sent in a fixed time after powering-up the card is very likely
to be the same. Responses might differ due to a timing inaccuracy, but can still
be reduced to just 10 different values of nonce.

Conclusion: however a single weakness of PRNG does not immediately break
apart entire security, the revelation that a skilled attacker can initiate authenti-
cation with precisely the same nonce underlines the urgency for addressing these
inherent weaknesses in the MIFARE Classic protocol to ensure robust security in
practical deployment scenarios.

4.2 DUAL EC DRBG
DUAL EC DRBG is a widely discussed algorithm for generating random num-
bers, encouraged by the NSA in the early 2000s. There is not much information
publicly available about when the development of the algorithm began and ended.
However, it is believed that the NSA has deliberately and systematically pursued
a policy to introduce vulnerabilities into Internet security products in a variety
of ways. However, these opinions are mainly based on statements from industry
participants and former employees. There are no instructions for use and no di-
rect evidence that there is a “back door” specifically and deliberately designed for
inclusion in the standard. Only a hypothesis that existence of such is possible.

Description of the PRNG appeared firstly in ANSI X9.82 draft and then in
an approved standard. It was also included into ISO/IEC 18031:2005. Imple-
mentations were included into multiple cryptographic libraries: RSA Security
(BSAFE library), OpenSSL, Microsoft, Cisco and further. But only BSAFE used
it by default.

Design. The generator includes:

• a state si,

• a function gP (sk−1) used to produce new state sk every cycle,

• and a function gQ(sk) to generate random sequence rk every cycle.

The state s must be reseeded once in reseed interval (it is given by the standard),
values of P and Q are suggested by the standard constants - points on the elliptic
curve P-256 (or P-384 or P-521). Algorithm operates over finite field Fp(Z/pZ),
p is determined by the standard. And the curve is given by equation

y2 = x3 − 3x + b,

where b is determined by the standard.
Function X used below is defined to extract x-coordinate: X(x, y) = x.
Functions gP (x) and gQ(x) are defined as follows:

gP (x) = X(x · P),
gQ(x) = X(x ·Q).

34

The output is a truncated x-coordinate of the resulting point. Depending on
the setup gQ(x) is truncated to rightmost 240, 368 or 504 bits (for P-256, P-384
or P-521 corresponding).

Figure 4.1: DUAL EC DRBG scheme

DUAL EC DRBG is based on the elliptic curve discrete logarithm problem:
given points A and B on an elliptic curve, find x such that A = x·B. However, the
discrete logarithm problem might be much easier for the one who knows certain
relation between points P and Q given in standard. Specially, in case that P and
Q are defined to fulfill P = z · Q and arbitrary z is known by the organisation
that offered constant values for the standard. This is one of hypothesises for the
’backdoor’ to exists. [32]

Following scheme above, the intruder, who knows the output ri, can brute
force truncated 16 bit to guess si · Q. Assume that intruder posses z such that
P = z ·Q. Then, he might compute:

z · si ·Q
= si · z ·Q
= si · P
= si+1

Having guessed correctly si · P , intruder obtains a future state of PRNG and
posses ability to replicate future outputs of PRNG until first reseed.

The value of such z value has not been published yet, and it has not been
proven that someone has ever computed it. But insiders reported media, that
NSA made a lot of efforts to ensure that the scheme had a back door and that
the government could use it at its discretion.

4.3 PS 3
The basic idea of the weakness here does not refer to an insecure generator, but
to a missing generator. According Fail0verflow presentation at the 2010 Chaos
Communication Congress, the group forged the software signature only because

35

the random number was not random per se. Details were not publicised, but
one can deduce from their presentation that the predefined constant was used as
a nonce for ECDSA.

4.4 Mersenne twister
The Mersenne Twister is not suitable for cryptographic purposes where high-
security standards are required as it is not cryptographically secure.

The PRNG has a very long period of the chosen Mersenne prime. The most
used version MT19937 has a period of 219937 − 1. The algorithm below uses
constants for MT19937. Mersenne twister has an internal state of 624 32-bit
words array. It is seeded in a sophisticated way, but the generation algorithm
itself is simple:

Algorithm 6 GetRandom(MT - array with internal state, index - current posi-
tion in MT)

if index ≥ 624 then
MT = twist(MT)
index = 1

end if
y ← MT[index]
y ← y ⊕ ((y >> 11)∧ 0xffffffff)
y ← y ⊕ ((y << 7)∧ 0x9d2c5680U)
y ← y ⊕ ((y << 15)∧ 0xefc60000U)
y ← y ⊕ (y >> 18)

Function twist() rekeys internal state. Same as the generation function, it
uses only add-rotate-XOR operations and ordinary constants.

Attack. From the definition of the function it is easy to see, that one output yi

depends only on 1 word from internal state MT [i]. When 624 outputs in sequence
are known, one can try to find corresponding internal states. To do so SAT solver
can be used. Idea an attack is inspired by an article [33]. Compared with the
original idea, we have managed to predict randomness generated by a built-in
module of Python programming language.

Here is an example of such an attack in Python:

def untemper(out):
y1 = z3.BitVec(’y1’, 32)
y2 = z3.BitVec(’y2’, 32)
y3 = z3.BitVec(’y3’, 32)
y4 = z3.BitVec(’y4’, 32)
y = z3.BitVecVal(out, 32)
s = z3.Solver()
equations = [

y2 == y1 ˆ (z3.LShR(y1, 11)),
y3 == y2 ˆ ((y2 << 7) & 0x9D2C5680),
y4 == y3 ˆ ((y3 << 15) & 0xEFC60000),

36

y == y4 ˆ (z3.LShR(y4, 18))
]
s.add(equations)
s.check()
return s.model()[y1].as_long()

Z3 is a high-performance theorem prover developed at Microsoft Research,
here used in Python.

Recovering internal state from outputs requires all outputs between 2 sequen-
tial calls of twist(). After the internal state is known to an attacker, he can set up
his own copy of MT and proceed with the generation of the same sequence. The
entire attack takes about 10 seconds on a PC with a processor Intel(R) Core(TM)
i5-8350U. The code is available in an appendix A.

Overall neither Mersenne Twister nor the attack is complicated from cryp-
tographic point of view. This section serves to show the importance of using
CSPRNG. Mersenne Twister is known and widely used for its good statistical
properties and distribution, while security is not a goal. MT19937 is used as
a core PRNG in a popular nowaday language Python. Library ’random’ seeds
MT19937 with a system time or with user-defined seed and transforms obtained
32-bit words to correspond range and format required by user.

While practical attacks expose significant vulnerabilities in cryptographic sys-
tems, cryptanalytic attacks are often still too complex on conventional devices.
They often reveal only the subtle nuances of cryptographic schemes, which leads
to better understanding and subsequent strengthening of security measures, but
not so often to an absolute loss of security in an instant.

37

5. Cryptoanalytical attacks on
PRNGs
According to [21] attacks on a PRNG can be classified, and among classes of
attacks, the authors identify the following as the most common:

• Direct Cryptoanalytic Attack.

• Input-Based Attack.
Input attacks may be further divided into known-input, replayed-input, and
chosen-input attacks.

• State Compromise Extension Attacks.

– Backtracking Attacks.
– Permanent Compromise Attacks.
– Iterative Guessing Attacks.
– Meet-in-the-Middle Attacks.

5.1 Cryptanalysis of the Random Number Gen-
erator of the Windows Operating System

In [19], the authors did research on the weaknesses of the Microsoft CryptoAPI
(programming interface that allows developers to secure their Windows-based
applications) utility CryptGenRandom that provides a cryptographically secure
PRNG function. The report on the weaknesses was published in 2007, and ac-
cording to public sources, the weaknesses were fixed by Microsoft by the mid
of 2008. CryptGenRandom, or WRNG (Windows Random Number Generator)
as it is referred to in the source, was used in Windows 2000 and Windows XP.
Microsoft never released the source codes to public, so the study was done with
only a functional version of Windows.

In the study, the first step was to perform an analysis of the Binary Code. It
is worth noting that already in the first step of the study, the authors confirmed
the correctness and importance of Kerckhoffs’s principles. These were briefly
stated by Stephen M. Bellovin as ”design your system assuming that your oppo-
nents know it in detail”. Even though Microsoft’s code is not public, the crypto-
graphic community knows their algorithms.

The authors translated functional implementation of the binary assembly into
the pseudo-code. Having in hand a version of the code written in a high-level pro-
gramming language the authors described the algorithm of the CryptGenRandom
as follows.

38

Algorithm 7 CryptGenRandom(Buffer, Len)
1: Outputs Len bytes to Buffer
2: while Len > 0 do
3: R := R ⊕ get next 20 rc4 bytes()
4: State := State ⊕ R
5: T := SHA-1(State)
6: Buffer := Buffer | T
7: R[0..4] := T[0..4]
8: State := State + R + 1
9: Len := Len - 20

10: end while

All internal variables are 20 bytes long and uninitialized. In the context of
assembly, an uninitialized variable might have any initial value depending on
the stack content. But this does not guarantee that its value is truly random
as the stack is located in a certain part of the memory dedicated to the certain
software. Hence, values stored in the stack might be, and according to authors
are, highly correlated: initial vectors are not truly random, and neither are they
constant.

Every process has its instance of CryptGenRandom running. That means that
should the user work in 2 distinct applications in parallel, each of them would
have different independent states of Windows PRNG. On the other hand, only
State and R are stored on the stack, while RC4 states and auxiliary variables
are located in DLL (Dynamic Link Library). Overall, the security of different
processes does not depend on other processes, one of which could be an attacker.
But on the other hand, this scheme with only one consumer per instance leads
to the low frequency of reinitializing the PRNG internal state.

Function get next 20 rc4 bytes() holds 8 instances of a stream cipher RC4.
On each consecutive call i it returns 20 bytes of (i mod 8)-th stream. When
(i mod 8)-th stream returned more than 16 KB, its key is reset using Windows’
internal source of entropy.

An attack assuming knowledge of CryptGenRandom state at time i

The following part as a whole assumes that an adversary somehow revealed the in-
ternal state of PRNG, namely variables State, R and state of all RC4 stream
ciphers. At the first sight, these assumptions look impossible to happen, but as
described by authors, under certain circumstances they might be disclosed almost
instantly. According to the source, even though the value of the uninitialised vari-
able could look relatively random, it did not seem so at the time experiment was
conducted. New instances of CryptGenRandom are called again after the previous
process was halted and instances created in parallel usually are highly correlated
(Hamming distance of 10 for 160-bit words attests this statement).

The primitive is considered backward secure if knowledge of the current state
does not reveal any information about future states or outputs. This is not
the case for any deterministic algorithm: knowledge of the state and algorithm
itself leads to an intuitive complex attack on backward security. The attacker
needs to run a simulation of CryptGenRandom with chosen parameters.

39

The primitive is forward secure if, from knowledge of its i-th state, it is impos-
sible to derive previous states or outputs. The following text describes authors’
forward-security attack on CryptGenRandom.

The PRNG relies on RC4 for generating pseudo-random output streams,
which are combined with the generator’s state. RC4 is a strong stream cipher
but lacks forward security. This means that if the current state of an RC4 cipher
is known, it is possible to calculate its previous states and outputs with low com-
plexity. Hence, the difficult part in getting all previous states of the generator is
to get all previous values of variables State, R.

In the manner similar to the authors, we will denote:

• Rt - the state of R in the t-th loop of the main loop.

• St - state of State in the t-th loop of the main loop.

• Rt,i or St,i - a state in t-th loop before executing line i of the algorithm.

• RCt denotes the output of get next 20 rc4 bytes() in the t-th iteration.

• And XL denotes the left-most 120 bits of X; XR - right-most 40 bits of X.

An attack with an overhead of 240. The goal is to recover Rt−1, St−1 from
given Rt, St, RCt. RCt−1 can be computed without any additional complications.
It can not be considered as a one-way function when its internal state is known.
Based on the code the following relations can be observed.

St−1,11 = St − Rt − 1
Rt−1, 9 = Rt

L|{0, 1}40 right-most 40 bits are not known at this moment
Rt−1 = Rt−1,9 ⊕ RCt−1

St−1 = St−1,5 = St−1,11 ⊕ Rt−1,9 = (St − Rt − 1)⊕ (Rt
L|Rt−1

R)

The following relation is also observed from the code:

Rt
R = SHA-1(St−1,11)R = SHA-1(St − Rt − 1)R

Applying it to (t− 1) states and substituting the above relations gives us

Rt−1
R = SHA-1

(︄(︂
(St − Rt − 1)⊕ (Rt

L|Rt−1
R)

)︂
− (Rt

L|Rt−1
R)⊕ RCt−1 − 1

)︄
R

According to the assumption, all but one element of the equation above are
known or can be easily computed. Only Rt−1

R is unknown. And Lt−1 can also
be computed when Rt−1

R is available. All 240 possible values can be enumerated
with brute force. SHA-1 property leads to the fact that equality always holds for
the correct value. And for the remaining 240 − 1 it holds with probability 2−40.
As a consequence we expect to have at most constant amount (O(1)) of solutions
to the above equation, only one of them is the desired Rt−1

R .

40

An attack with an overhead of 223. From the general form one can derive
the following equation (for details see source):

Rt−1
R = SHA-1

(︄(︂
(St − Rt − 1)⊕ RCt−1 ⊕ Rt−1

)︂
− Rt−1 − 1

)︄
R

To shorten the notation denote Y = (St − Rt − 1) ⊕ RCt−1, as every element
here is known or can be easily computed. Let ri denote i-th less significant bit of
Rt−1.

Y ⊕ Rt−1 − Rt−1 − 1 =
=

∑︂
i:Yi=0

2iri +
∑︂

i:Yi=1
2i(1− ri)−

∑︂
i=0...159

2iri − 1

=
∑︂

i:Yi=0
2iri +

∑︂
i:Yi=1

2i −
∑︂

i:Yi=1
2iri −

∑︂
i=0...159

2iri − 1

=
∑︂

i:Yi=0
2iri +

∑︂
i:Yi=1

2i −
∑︂

i:Yi=1
2iri − (

∑︂
i:Yi=0

2iri +
∑︂

i:Yi=1
2iri)− 1

= Y − 2 ·
∑︂

i:Yi=1
2iri − 1

= Y − 2 · (Rt−1⋀︂Y)− 1

Here, ⋀︁ denote bitwise ”and”. Overall,

Rt−1
R = SHA-1(Y − 2 · (Rt−1 ∧ Y)− 1)R (5.1)

It is enough now to enumerate only those bits of Rt−1
R that effect output.

In case there are l such bits (Hamming weight of Y is l), the expected overhead
of the attack is Σ40

l=02l Pr[|i : Yi = 1| = l] = Σ40
l=02l

(︂
40
l

)︂
2−40 = 2−40Σ40

l=02l
(︂

40
l

)︂
=

(3/2)40 ≈ 223.
Sum Σ40

l=02l
(︂

40
l

)︂
is computed by Binomial theorem: Σ40

l=0

(︂
40
l

)︂
2l140−l = (1+2)40

Conclusions on Windows attack. The effect of an attack on a CryptGen-
Random is the lack of forward and backward security: an adversary who has
access to the state of the generator at time t can easily calculate previous and
subsequent states and output until the internal state is updated using system en-
tropy. Computing all states and outputs from time t to t + k requires O(k) work,
while computing candidates for states and outputs from t to t − k can be done
with O(223k2)) work. An attacker with access to the state at time t can use this
knowledge to determine all generator states in an ”attack window” that extends
from the last state update before the attack to the first update after the attack.

In combination with an attack on user memory space, when an adversary can
break into the address space of a specific application, for example with a buffer
overflow attack, the above weaknesses become critical. That is a difficult task,
but once it is completed, the adversary gains the current state of PRNG and
consequently all outputs between rekey.

As mentioned above, CryptGenRandom keeps a unique instance for each pro-
cess. Access to the internal state of the generator at a certain point in time allows
an adversary to predict 128 KB of its output data between updates of entropy.

41

For processes with low consumption of randomness with can be critical. For ex-
ample, according to the source, a single browser process would be able to perform
600-1200 SSL connection with this amount of entropy.

We need to note that SSL protocols were deprecated (the latest version SSL
3.0 was deprecated in June 2015) and replaced by more modern TLS. Nowadays
standard is TLS 1.2 (estimated to stay secure approx. until 2026) and TLS 1.3.
But primitives, on which the generator is based, also are not trusted anymore.
RC4 stream cipher was deprecated by NIST in 2014 and the SHA-1 hash function
was formally deprecated by NIST in 2011.

5.2 ISAAC
A cryptoanalytical attack on ISAAC was developed by M. Pudovkina in 2001
[36].

In the paper explaining the attack author firstly identifies non-trivial connec-
tions between variable states in the form of equality. It is stated that generally,
similar PRNG can be generalised to any size by the change in parameters’ length.
Author states that using their method one can effectively propagate knowledge
or guess of current state of generator to previous and future states.

Overall time complexity of an attack is approximetely a square root of brute
force attack, where all possible internal states should be tested.

Note, that the study is called “a known plaintext cryptoanalytical attack on
ISAAC keystream cipher” as it is expected that output of the generator is used
for encryption directly:

ciphertext = plaintext⊕ ISAAC(IV)

To verify that correctness of key (or initial value) guess, one needs to compare
keystreams obtained from revealed key and from real. Keystream can be obtained
from sum of ciphertext and plaintext. Therefor it is a known plaintext attack on
a keystream cipher, but in term of attack on PRNG, it is a known output attack.

5.3 Schneier Cryptanalytic Attacks on Pseudo-
random Number Generators

5.3.1 The ANSI X.17 PRNG
A brief recollection of the design: Ti is a temporary value produced from current
timestamp. K is a permanent constant DES key of the generator. Vi is an internal
state.

process the timestamp: Ti = EK(timestamp)
produce pseudorandom bits: output[i] = EK(Ti ⊕ Vi)
update the internal state: Vi+1 = EK(Ti + output[i])

Direct Cryptanalytic Attack. To perform direct Cryptanalytic Attack re-
quires a cryptoanalysis of DES cipher. About 20 years ago such task was consid-
ered not effective and too costly - no benefit for an attacker. Nowadays, however,

42

DES key might be recovered within few days. Similarly, if triple-DES is used, its
key would require cubical amount of time for an attack. However, even a period
of a week is extremely unreliable, knowing that the key does not change until
the end of the session.

An important detail is hidden behind the fact that ANSI X.17 standard sug-
gests a way to produce DES keys. So, important detail is that not only generator
is vulnerable, but also cipher for which the key and initial vector are produced.
Also, outputting keys means that the PRNG outputs are almost never directly
seen. That implies that intruder is not expected to analyse pseudorandom se-
quence and hence to distinguish it from truly random.

Input-Based Attacks. Assuming a 64-bit block size, PRNG has a weakness
with respect to replayed-input attacks. If attackers can manipulate the system
time, they will be able to distinguish pseudo-random output from truly random
numbers after generating approximately 232 64-bit output. That is because in a
truly random sequence, a collision is expected to happen after about 232 outputs.
However, with a constant timestamp, a collision in X9.17 is expected to require
approximately 263 outputs.

State Compromise Extension Attacks. According to the source the X.17
PRNG does not properly recover form state compromise. [21]. That is knowing
internal state and the generator’s key K, an attacker who knows basic proper-
ties of timestamps used can reproduce previous outputs and predict future with
appropriate effort.

The Permanent Compromise Attack: Deriving the Internal State from Two
Outputs. Assume an attacker who knows the generator’s key K and gained access
to two consecutive outputs output[i, i + 1]. For example, an intruder is commu-
nicating with our vulnerable system pretending to be the third party willing to
communicate through the secure channel and during the key exchange receives
generated sequence. An intruder’s goal is to reveal the internal state V [i + 1].
The brute force attack would require a 64-bit search through all possible V [i + 1]
values. However, it is possible to break through more efficiently.

As stated in the source, it is a reasonable to assume, that an attacker might
gather the timestamp value to the high precision. Knowing time when generator
used a timestamp to about the nearest second leaves just about about 10 bits
of uncertainty - milliseconds. All assumptions above allow to mount a meet-in-
the-middle attack that requires about 211 trial encryption runs. From the PRNG
design we can derive 2 equations to describe an internal state at time i + 1:

Vi+1 = DK(output[i + 1])⊕ Ti+1

Vi+1 = EK(output[i]⊕ Ti)

Trying all possible Ti and all possible Ti+1 2 lists are created: a list of possible
Vi+1 value depending on the value of Ti and a list of possible Vi+1 value depending
on the value of Ti+1. Value that is available in both is the wanted internal state.

The Iterative Guessing Attack. Under the common assumption for all State
Compromise Extension Attacks of revealed generator’s key K assume an impostor
knows previous internal state Vi and output[i + 1] or at least a function of an

43

output (e.g. a plain text and it’s corresponding encrypted with key output[i + 1]
cipher text).

The aim is to reveal internal state Vi+1. Should an impostor succeed, then
it will be possible to repeat an attack once function of output[i + 2] is avail-
able. Basically, it allows to recreate future outputs as long as a little additional
information is available for every of them.

The attack is designed in the following way:

• Using known key K try to guess Ti (an entropy of the timestamp can be
estimated to be low similar to previous example). This leads to about 210

guessed candidates for the internal state Vi+1

V ′
i+1 = EK(EK(Ti ⊕ Vi)⊕ Ti)

• For every candidate V ′
i+1 for all appropriate Ti+1 produce an output and

a function of it.

• The combination of V ′
i+1 and Ti+1 that leads to the eavesdropped function

value is the value that an intruder is looking for.

While revealing of two consecutive outputs is a strong assumption (given that
outputs are encryption keys), a function of output might be much easier to access
for a potential attacker.

Backtracking. To reveal earlier states and outputs attacker does not need
much of an effort:

Assuming that Vi is known and that Ti−1 can be guessed from about 210

options, there are 210 candidates for a previous output:

output[i− 1] = DK(Vi)⊕ Ti−1

and the same amount for previous internal state:

Vi−1 = DK(output[i− 1])⊕ Ti−1

= DK(DK(Vi)⊕ Ti−1)⊕ Ti−1

The correct result among this set can only be recognized by comparing with
eavesdropped function of output[i− 1].

Meet-in-the-middle. The backtracking and iterative guessing attacks work
in a similar way: the entropy introduced in every cycle of generation is brute
forced and the correct parameters are then identified by comparing possibles
results with the only correct one. The meet-in-the-middle uses similar approach.
Assume, nonconsecutive internal states are known: Vi−c and Vi+c. Every round
of generating pseudorandom sequence introduces a little bit of entropy by using
a timestamp, let us assume the same 210 options for each.

Then, starting at Vi−c, we can get 210·c candidates for Vi. And, starting at
Vi+c, we can backtrack to 210·c candidates for Vi. The correct value of Vi must
be in the interception these 2 lists, however there might be more than 1 unique
combination of [Ti−c, . . . , Ti+c] timestamps that lead from Vi−c to Vi+c. According
to Schneier [21] this attack for known states Vi and Vi+8 might return 216 such
combinations.

44

Summary. In general terms, ANSI X9.17 generator was safe, and even complete
exposure of the key (it would seem that this is already the end) leaves some
difficulties, without overcoming which it is impossible to achieve a completely
dominant position. The generator could still be used nowadays after replacing
the primitive function (for example with the supposedly more reliable AES).
However, if the key and/or internal state is exposed, the generator may never
recover without a full reboot.

5.3.2 The DSA PRNG
A brief recollection of the design: xi is an internal state of the generator, Wi is
an optional input.

Figure 5.1: DSA scheme (again)

Direct Cryptanalytic Attack. According to the standard, the primitive used
is a ’one-way function’. Suggested choice are based on either a hash-function SHA-
1 or on DES primitive. However, one can employ more modern primitives to
ensure resistance against cryptanalytical attacks. SHA-1, similar to DES, is not
concidered secure since at least 2005 when first collision attacks were announced
publically. [26]

Input-Based Attacks. Should attackers have the ability to control inputs,
they are able to force PRNG repeat the same output unlimited time. It can be
reached by enforcing Wi optional values:

Wi = Wi−1 ⊕ output[i− 1]⊕ 1(mod 2160)
(= Wi−1 ⊕Xi−1)

State Compromise Extension Attacks. Generally, state compromise is not
the termination of security for the DSA PRNG. Due to the ability to introduce an
unlimited amount of entropy into the system, it can recover over time. However,
with deliberate, careful steps, an attacker can maintain control for a very long
time.

Leaking input effect. This is not an attack, but a disadvantage of an algorithm.
Each new input brings some external influence on the state of the generator.
The disadvantage is that this influence is not multiplied, but is only replaced

45

by the next one, since the attacker does not need to hold and process a lot of
previous external data - it is enough for him to remember the previous output of
the generator, which contains the resulting force of all previous inputs.

The authors suggest, that this problem can be solved with a simple change:
output shall not give a feedback into the next internal state, that is Xi+1 =
1 ⊕ X + i ⊕Wi. Authors state that in this case leaking input effect would not
appear. Nevertheless, Wi is an optional input and it might not be given every
round. Then such a change would be more of a threat than an improvement.
Overall, the solution offered in the source [21] seem to work the best. The change
suggested is define the next internal state in the following manner:

Xi+1 = Xi + hash(output[i] + Wi) mod 216

The Iterative Guessing Attack. An attack relies on the vulnerability intro-
duced with a poor choice of Wi values. Should attackers gain a knowledge of
the internal state and knowledge of Wi pattern they can use both in an iterative
guessing to reproduce the next internal state. For example, when this optional
input has only limited amount of entropy bits, an attacker might restrict a set
of possible values and instead of brute force walk through a much smaller set of
inputs.

The attack itself expects that for every possible Wi using known Xi the output
is produced and used to be compared with an eavesdropped value of real function
of the output such as a DSA signature made with output[i] as its secret parameter
value.

Backtracking. Backtracking is only possible when the previous output is
known along with the current internal state Overall revealing the previous state
does not seem to bring some added value for an attacker who holds previous
output. But it still might come in handy under certain circumstances.

Summary. While the DSA standard’s PRNG proves robust for its intended
purpose — DSA signature parameter generation — it falls short as a multipurpose
cryptographic PRNG. Its suboptimal input handling and slower recovery from
state compromise limits its effectiveness in general cryptographic applications.

5.3.3 The RSAREF PRNG
A brief recollection of the design: Ci - the internal state

• the state can be updated with an optional input X:

Ci+1 = Ci + MD5(X) mod 2128

• Output is produced as a hash of current state:

outputi = MD5(Ci) mod 2128

Ci+1 = Ci + 1 mod 2128

46

Direct Cryptanalytic Attack. Similar to earlier mentioned SHA-1 and DES,
MD5 is not considered secure nowadays. There are publically available libraries
of precomputed hashes and several attacks are designed and published. Assuming
a modern secure hash function is empoyed instead of MD5 there are still some
options:

Partial Precomputation. To simply identify internal state of the generator
seeing its output one may precompute output of the generator for every t-th
value of the counter. Once such value is met in the generated sequence, internal
state can be considered compromised. This type of attack is highly impractical.
Attacker, who expects to eavesdrop 232 outputs must precompute 296 hash values
and search through all hashed for every output.

Timing attack. Increment of the internal state is done in a way that allows
optimise runtime of the algorithm:

/* increment state */
for (i = 0; i < 16; i++)

if (randomStruct->state[15-i]++)
break;

The code leaks some information about the resulting 128-bit counter by how
many 8-bit add operations the computer must execute.

Input-Based Attacks. When a control over inputs is available, it is possible,
to pass the same X prior to every iteration of generation such that MD5(X)
has it’s least significant bits set to all 1. The idea is that after output counter
will be always increment by 1 and another constant number with 1 in all least
significant bits - when combined, result of 2 increments is an addition of number
that ends with all 0. Described strategy forces the PRNG to cycle much faster,
because the low-order n bytes of the counter are fixed, however still hidden from
an attacker.

Another way to affect the internal state by inputs is to feed 2 precomputed
chosen inputs. In no external (not controlled by an attacker) input was provided
during j sequential outputs, attacker can reset internal state to the same as j
outputs ago. It requires availability of 2 values X1 and X2 such that MD5(X1)+
MD5(X2) = −j. Then by passing two chosen inputs after j outputs an attackers
resets the state to

Ci + j + MD5(X1) + MD5(X2) = Ci + j − j

State Compromise Extension Attacks. Backtracking. Same as forward
simulation, backtracking does not appear difficult for an intruder. Knowing in-
ternal state (the value of counter), it is enough to increment it by 1 to simulate
future outputs, and decrement by 1 to reproduce previous outputs.

However backtracking and forward simulation will both work only on the in-
terval, between two unknown inputs were passed to update the state.

Iterative guessing attack. Unless an unpredictable input was passed to update
the state of PRNG, an attacker can compute future states of PRNG and predict
it’s next outputs. Otherwise, knowledge of the state will be lost.

47

Summary. Overall the PRNG was safe to use until it’s primitive - MD5 - was
strong. The RSAREF 2.0 PRNG is susceptible to chosen-input attacks, poten-
tially leading to short cycles. It is also vulnerable to chosen-input timing attacks
that can expose its secret state. Additionally, iterative guessing and backtracking
attacks can enable an attacker to extend their knowledge of the secret state both
backward and forward in time.

With a little improvements, PRNG of such design can remain relatively safe
even nowadays.

• Firstly, more modern one-way function shall be used instead of deprecated
MD5.

• To limit abilities of the potential intruder inputs used for an update of
counter shall be combined with some source of entropy that can not be af-
fected from outside. Authors suggest appending current timestamp and/or
a counter.

• designing the system, technical implementation should pay attention to
prevention of chosen-input attacks and timing attacks.

48

6. Congruential generators
After cryptanalytic attacks on various generators, we now consider congruential
generators. These generators are a fundamental class of pseudorandom number
generators that are widely studied and used due to their mathematical simplicity
and efficiency. However, analyzing and attacking congruential generators poses
interesting and challenging problems.

Congruential generators, including linear congruential generators (LCGs) and
multiple recursive generators (MRGs), produce sequences of numbers based on
linear congruences. Attacks on congruential generators often rely on advanced
mathematical techniques, especially lattice pruning algorithms. Lattice pruning
algorithms such as LLL play a significant role in these attacks, making the analysis
of congruential generators a fascinating and challenging area of research.

A linear congruential generator (LCG) is an algorithm proposed by Derrick
H. Lehmer [3]. The algorithm produces a sequence of pseudo-random numbers
calculated using a linear equation. Generator has a state an and a linear recurrent
equation that defines a transition to the next state:

an+1 = (c · an + b) (mod m), (6.1)

where b and m are natural numbers (0 < b < m), c < m is an integer. The
state itself is an output in each round of generation. As such a generator has
vulnerabilities and cannot be considered secure. However, the generator can
be improved to amend it, and this can be done in two ways. One is to hide
a significant fraction of the internal state, another is to apply a recurrence of
higher rank.

A truncated linear congruential generator (TLCG) is an extension of LCG. It
functions in exactly the same way but truncates internal state to only few bits
prior to output.

As stated in the source [4] LCG and TLCG are the simplest instances of
a general congruential generator that is defined as follows

an+1 =
k∑︂

j=1
cj · φj(an, . . . , a0) (mod m), (6.2)

where modulus m, index k, and coefficients c1, . . . , ck as well as states an, n > 0,
are integers.

6.1 Attacking Congruential Generators
This section is based on the study of Boyar [42] and Krawczyk [41], both sum-
marised in research of Odlyzko[4].

Assumption of the attack is that the analyst or attacker knows structure of
PRNG (that it is a congruential generator as in (6.2)) and knows the functions
φj. Coefficients cj and/or modulus m are hidden.

The task is as follows: given the outputs a1, a2, . . . , an, find the output an+1.
Note, that from definition of generator to run a cycle of generator and produce
first output, some initial values (IV) are required. This IV might be strategically

49

hidden by the design of an attacked system. If that is the case, an attacker would
require to assume another feature of the system: that functions φj do not operate
on all previous states of generator including IV, but only on a limited subset of
last few outputs. Then to perform an attack one do have to firstly eavesdrop first
n outputs to have arguments for the functions φj.

In the following text, without loss of generality assume that IV is known
to an attacker. Odlyzko defines that an attack is successful if it’s runtime is
polynomial in log2 m and k (number of functions φj).[4, 41]

To describe an attack, first introduce the notation. In the forthcoming dis-
cussion to make reading easier, we will use an index j to denote the iteration
of functions φj (we still assume that there are k of those), while an index i will
denote the iterative outputs of the generator an. A total of n outputs (if IV are
available, they are uncounted in this number) are known and the state an+1 is to
be guessed by an attacker.

Let

Bn+1 =

⎛⎜⎜⎜⎜⎝
φ1(an, . . . , a1)
φ2(an, . . . , a1)

...
φk(an, . . . , a1)

⎞⎟⎟⎟⎟⎠ . (6.3)

Note, that indexes are shifted by one on different sides of equation. It comes
from the fact, that Bn+1 defines generator state an+1 using a matrix multiplication
as follows:

c ·Bn+1 =
(︂
c1|c2| · · · |ck

)︂
·

⎛⎜⎜⎜⎜⎝
φ1(an, . . . , a1)
φ2(an, . . . , a1)

...
φk(an, . . . , a1)

⎞⎟⎟⎟⎟⎠ = an+1 (6.4)

Predicting coefficients cj would be a first idea for any deterministic attack.
However, Krawczyk[41] and Boyar [42] offer an alternative solution. Instead of
guessing coefficients, main idea behind the the Krawczyk’s and Boyar’s attacks is
that for all but possibly k values of n there exist integers yi, such that yn+1 ̸= 0
and

yn+1Bn+1 =
n∑︂

i=0
yiBi. (6.5)

According to assumption of an attack, all previous outputs are known as well
as the functions φ. Hence, an attacker can compute the vectors Bi. To make
a prediction of the future state, an attacker tries to find a solution to

Bn+1 =
∑︂

i∈Indn

yiBi, (6.6)

where Indn is a set of indexes i ≤ n such that [Bi]i∈Indn is the largest linearly
independent set of vectors.

There are 2 possible outcomes:
• Solution of (6.6) does not exist. It means that Bn+1 is independent of

previous vectors and attacker adds it to the set of independent vectors.

• There is a solution ŷ. In that case, a prediction ân+1 is computed as:

ân+1 =
∑︂

i∈Indn

yîai (6.7)

50

The above step is the same when m is not still guessed (then computations
are done over the field Q) and when some guess m̂ of the modulus m has been
predicted already (then computations are done over the ring Zm̂).

Once prediction ân+1 is made, true value an+1 is recovered, it can be eaves-
dropped. The prediction and true value might not equal. Then the first prediction
m̂ of the modulus m is made as follows

m̂ = |dân+1 − dan+1|, (6.8)
where d is the LCM of denominators of values in ŷ (the first prediction is made
over Q).

The update of prediction m̂ is defined as

m̂ = gcd(m̂, ân+1 − an+1). (6.9)

We summarise the attack in Algorithm 8 below.
While computations in the Algorithm 8 are simple and straight-forward, their

result is not clear. Possible questions are hidden behind the need to prove fol-
lowing facts:

1. |dân+1 − dan+1| is a multiple of modulus m.

2. gcd(m̂, ân+1 − an+1) is a non-trivial multiple of m.

3. the run-time of an attack is polynomial in log m and k.

First two ensure that algorithm returns correct values. And the third state-
ment implies that algorithm can finish and is efficient.
Proof. (1)

By definition of the Congruential Generator it holds.

an+1 = c ·Bn+1 (mod m). (6.12)

Then, by definition of ân+1:

ân+1 =
∑︂

i∈Indn

yîai (6.13)

≡
∑︂

i∈Indn

yî · c ·Bi (mod m) by (6.12) (6.14)

= c ·Bn+1 as ŷ solves (6.6) (6.15)
≡ an+1 (mod m) (6.16)

So, |ân+1 − an+1| is a multiple of m and a multiplication by d is required to
ensure that computations are done over Z rather than Q (because ŷi might be
a fraction).

Proofs of 2 and 3 rely on many interim claims from sources, therefor will not
be stated here.

51

Algorithm 8 Attack on Congruential Generator
Initial Inputs: a1, . . . , an (first outputs), φ1, . . . , φk (definitions of functions)
Dynamic Inputs: ai - values produced by the generator after each attacker
guess aî

Outputs: modulus m, predictions of future generator outputs aî

1: for i ∈ (1, . . . , n) do:
2:

Bi =

⎛⎜⎜⎜⎜⎝
φ1(ai, . . . , a1)
φ2(ai, . . . , a1)

...
φk(ai, . . . , a1)

⎞⎟⎟⎟⎟⎠ (6.10)

3: end for
4: Indn ← {i}, i ≤ n such that [Bi]i∈Indn is the largest linearly independent set

of vectors,
5: m̂← inf ,
6: i← n + 1 ▷ current sequential number of output

7: while m̂ = inf do ▷ Phase 1 (before first guess of modulus is made)
8: solve for yi ∈ Q:

Bn+1 =
∑︂

i∈Indn

yiBi (6.11)

9: if solution does not exist then
10: Indn ← Indn + {i}
11: else
12: âi+1 ←

∑︁
i∈Indn

ŷiai

13: d← lcm(denominators of yi)
14: m̂← |dân+1 − dan+1|
15: end if
16: end while

17: while m̂ ̸= m do ▷ Phase 2
18: Solve for yi ∈ Zm̂: Bi+1 = ∑︁

i∈Indn
yiBi (mod m̂)

19: if solution does not exist then
20: Indn ← Indn + {i}
21: else
22: âi+1 ←

∑︁
i∈Indn

yîai

23: if âi+1 ̸= ai+1 then
24: m̂← gcd(m̂, âi+1 − ai+1)
25: end if
26: end if
27: end while

52

6.2 Multiple Recursive Generator
A multiple recursive generator (MRG) are an instance of Congruential Genera-
tor, and it generalizes the Linear Congruential Generator. The linear recurrence
used to define MRG has a higher order, the next state ai+n depends on multi-
ple previous states. The following definition is a necessary prerequisite to define
a Multiple Recursive Generator.

Definition 30 (linear recurrent sequence). [6, def 1] The sequence a = (ai)i≥0
over Zm that satisfies a recurrent relation

ai+n = (cn−1 · ai+n−1 + cn−2 · ai+n−2 + · · ·+ c0 · ai) mod m (6.17)

is called a linear recurrent sequence of order n over Zm.
Polynomial f(x) = xn−cn−1x

n−1 +cn−2x
n−2 + · · ·+c0 is called a characteristic

polynomial of sequence a. A set of all sequences generated by polynomial f(x)
over Zm is denoted G(f(x), m).

MRG is a generator that produces linear recurrent sequence. Note, that LCG
defined by (6.1) is also an instance of MRG. In terms of the above definition it
generates a linear recurrent sequence of order 1.

Similarly to linear congruential generators, internal state of MRG can be
additionally truncated prior to outputting it. Assuming, a = (ai)i≥0 is a linear
recurrent sequence, let k = ⌈log(m)⌉ be a length of (m− 1), the greatest number
over Zm. Truncated output yi consists of proportion α of high-order bits of
the corresponding ai. Hence, ai can be divided into secret part zi and output yi:

ai = 2(1−α)kyi + zi (6.18)

MRGs are widely used in cryptography. For example, a stream cipher ZUC is
an instance of it. It serves as a cryptographic primitive for the 3GPP mobile stan-
dards 128-EEA3 and 128-EIA3, included in the Long Term Evolution (4G LTE)
standards starting in Release 11.

In its public specification, ZUC is defined as shift register with similar principle
as LFSR operating on 32-bit long words. The recurring equation for ZUC is:

ai+16 = 215 · ai+15 + 217 · ai+13 + 221 · ai+10

+220 · ai+4 + (1 + 28) · ai (mod 231 − 1).
(6.19)

Note, that 231−1 is not only a prime, but also the greatest value a signed word
can represent in a computer memory. Ensuring, that operation modulo 231−1 are
computationally efficient and a maximum period of MRG is the highest possible
(for prime modulus m, the period is mn − 1). When used in practice, internal
state is further transformed in so-called bit-reorganization layer and a non-linear
function. However, for the following cryptoanalytical attacks, these were ignored,
authors only used ZUC’s MRG to test performance of their theoretical develop-
ments.

As MRGs are instances of general Congruential Generators and they gener-
alize LCGs, some of properties are shared. And techniques of cryptoanalysis of
different congruential generators not only share similar patterns but are directly
used to derive those more general. For example, authors of study about MRGs
[6] refer to Boyar’s and Stern’s studies of LCGs and truncated LCGs [9, 10].

53

6.3 Attacking truncated MRG
The attack is described as the following mathematical problem. Let a = (ai)i≥1 be
a linear recurrent sequence, let yi denote a part of high-order bits of ai. Given first
N truncated elements of sequence a recover modulus m, coefficients c0, . . . , cn−1
and initial state a0, . . . , an−1.

Two articles study the topic. Firstly, Sun et al. offered an attack on MRG
in [6]. Later, Yu et al. offered a significant performance improvement to it
in [5]. Both studies primarily concentrate on exploring methods for recovering
coefficients c0, c1, . . . , cn−1 and modulus m. The authors propose using results of
other studies to restore initial values. We will return to it in the end of the attack
description.

Here’s a step-by-step breakdown of the original method, also referred to as
“Sun-Zhu-Zheng’s” by the names of authors. It consists of 5 stages: searching
linear relations, constructing congruence equations and firstly recovering modu-
lus, than recovering coefficients c0, . . . , cn−1 and finally recovering the initial state
of generator.

Sun-Zhu-Zheng’s Method

1. Searching linear relations: The goal is to find a set of linear relations
for a segment of the sequence a. This is achieved by using a lattice reduction
algorithm to find linear relations with small coefficients.

Firstly, a lattice reduction algorithm is executed for r segments of truncated to
length t elements of sequence a (r > t > n), denoted as Yi = (yi, yi+1, . . . , yi+t−1).
The parameters r and t in practice are selected experimentally.

Clearly, there exist integer coefficients ζ0, . . . ζr−1 such that ∑︁r−1
i=0 ζiYi = 0.

The statement holds true because the number of vectors exceeds their dimension;
thus, they cannot be linearly independent. Additionally, these coefficients are
bounded |ζi| ≤ B [6, lemma 6], [7], where B depends on parameters r, t, and
proportion of high-order bit α.

Then, the norm of vector ζ = (ζ0, . . . ζr−1) is bounded above by
√

rB, as each
its element |ζi| ≤ B.

For a parameter K =
√

r2(r−1)/2B define a lattice

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

KY0 KY1 · · · KYr−1
1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , Yi are treated as columns here. (6.20)

It holds that W = (0, . . . , 0⏞ ⏟⏟ ⏞
t-times

, ζ0, . . . ζr−1)T is in lattice L, at the same time

the shortest vector in L has norm λ1(L) ≤ ||W || ≤
√

rB. Note, that lattice L
could be defined without multiplication of Yi by K and it still would include W .
Also, a motivation of these practise is not explained in the source, we can assume
that it is a practical trick to guide the LLL algorithm towards finding a short
vector of a desired shape. Artificial increase of leading parts of base vectors can be

54

used to control the reduction focus and, hence, ensure that reduced base includes
vectors that start with leading zeros.

Let W0, . . . , Wr−1 be the LLL reduced basis of L. For every vector of basis
W ∈ W0, . . . , Wr−1 holds

||W || ≤ 2(r−1)/2λ1(L) ≤ 2(r−1)/2√rB ≤ K. (6.21)

Let W0 has the form (0, 0, . . . , 0, η0, . . . , ηr−1) such that

r−1∑︂
i=0

ηiYi = 0. (6.22)

Authors claim that there are usually more than one vectors Wi of form
(0, 0, . . . , 0, η0, . . . , ηr−1) [6, Remark 2]. Therefor a single call to lattice reduc-
tion algorithm can produce multiple solutions.

However, the purpose of attack is to recover states ai. While the above lin-
ear relations hold only for truncated outputs yi. Indeed, the desired relation
is U = ∑︁r−1

i=0 ηiAi = 0 , where Ai = (ai, ai+1, . . . , ai+t−1). Note, that relation
ai = 2(1−α)kyi + zi (6.18) and definition of coefficients η0, . . . ηr−1 together imply

U =
r−1∑︂
i=0

ηiAi −
r−1∑︂
i=0

ηiYi⏞ ⏟⏟ ⏞
equals 0

=
r−1∑︂
i=0

ηiZi. (6.23)

Sun [6] show that for an appropriate choice of parameters r and t, relation
U = 0 will be valid. The core idea is first to construct a lattice such that U belongs
to it, and then the previous equation holds if U is shorter than the shortest non-
zero vector of this lattice.

2. Constructing congruence equations: Using coefficients c0 . . . cn−1 that
define linear recurrence, let

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...
0 0 · · · 0 cn−2
0 0 · · · 1 cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.24)

Then, recurrence relation can be expressed as follows:

(ai+j, ai+j+1, . . . , ai+j+n−1) = (ai, ai+1, . . . , ai+n−1)Qj (mod m). (6.25)

Let

⎛⎜⎜⎝
qj,0
...

qj,n−1

⎞⎟⎟⎠ be the first column vector of Qj. Then we can express element

ai+j as follows:

ai+j =
n−1∑︂
l=0

qj,lai+l (mod m). (6.26)

55

Linear relations found in the first step combined with the above expression
implies that the following congruence could hold.⎛⎜⎜⎜⎜⎝

a0 a1 · · · an−1
a1 a2 · · · an
...

at−1 at · · · at+n−2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

g0
g1
...

gn−1

⎞⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎝

0
0
...
0

⎞⎟⎟⎟⎟⎠ (mod m), (6.27)

where
gi = ηi +

r−1∑︂
j=n

ηjqj,i (6.28)

Based on source [8] the following theorem is proven [6]: Let f(x) be a primitive
polynomial over Z/(m) and let a ∈ G(f(x), m), then the congruence stated above
has only the trivial solution (gi ≡ 0 (mod m)).

An attack offered by Sun [6] is primarily designed to address ZUC MRG used
in LTE standard. This and the most of others MRG do use primitive polynomials.
However limiting an attack to standards of ZUC would mean that next two steps
are not required: modulus and coefficients are an integral part of the cipher.

3. Recovering the modulus m: Core idea behind recovering the modulus
is to form a lattice that has a determinant m from construction (because it
exploits the m). Then, we want to investigate a sublattice with known vectors.
Determinant of such sub lattice shall be a multiple of m.

By definition gi = ηi +
∑︁r−1

j=n ηjqj,i. If it holds that gi ≡ 0 (mod m), then there
exists ui ∈ Z such that

ηi = uim−
r−1∑︂
j=n

ηjqj,i (6.29)

Construct the following lattice L(gi):

L(gi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m −qn,i −qn+1,i · · · −qr−1,i

0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.30)

Let η(i) = (ηi, ηn, ηn+1, . . . , ηr−1)T . Then, denoting columns of L(gi) with v,
η(i) is clearly a linear combination of column vectors of L(gi):

η(i) = uv0 +
r−1∑︂
j=n

ηjvj−n+1 ∈ L(gi). (6.31)

Suppose, an attacker knows d distinct truncated sequences of MRG outputs.
Then, following steps 1 and 2 it is possible to find at least d vectors η(i). Denote
them with j: η(i)(j) = (η(j)

i , η(j)
n , η

(j)
n+1, . . . , η

(j)
r−1)T , for j = 0 . . . d− 1.

56

The method uses the determinant of a lattice

M(gi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

η
(0)
i · · · η

(d−1)
i

η(0)
n · · · η(d−1)

n

η
(0)
n+1 · · · η

(d−1)
n+1

...
η

(0)
r−1 · · · η

(d−1)
r−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.32)

to recover the unknown modulus m. Lattice is firstly reduced to remove possibly
not independent vectors. The resulting reduced lattice is shown to have a de-
terminant equal to a multiple of m. Therefore by successively collecting rows of
such matrix, the determinant will tend to equal m.

Authors only provide a heuristic on convergence of the method. They have
shown experimentally that it works, but there is not any known mathematical
proof of such convergence [6].

4. Recovering the coefficients c0, c1, . . . , cn−1: Once the modulus m is
known, the coefficients can be recovered using the extended Euclidean algorithm.

Let L(gi)∗ be the LLL-reduced lattice basis of M(gi) [6.32]. Then, one can
use such a lattice to define a slightly different lattice H to find ci. As proved
in [6, Theorem 3] when modulus m is recovered correctly, lattice generated by
two smallest vectors of reduced basis H is the same as the lattice generated by
(m, 0, 0, . . . , 0) and (−ci, 1, 0, . . . , 0). That means that the 2 × 2 submatrix in

the upper left corner of reduced lattice
(︄

h0,0 h0,1
h1,0 h1,1

)︄
can be transformed into(︄

m 0
−ci 1

)︄
.

Hence, there must exist integers u and v such that uh0,1 + vh1,1 = 1 and at
the same time

ci = uh0,0 + vh1,0 (mod m). (6.33)
As the values of u and v can be determined by the extended Euclidean algorithm,
the coefficient ci will be recovered.

5. Recovering the initial state a0, a1, . . . , an−1: Since truncated outputs of
MRG y0, y1, . . . yn−1 are known, recovering the initial state is equivalent to recov-
ering z0, z1, . . . zn−1, because ai is a concatenation of yi and zi. After transforming
the problem into a problem of finding small integer solutions to systems of linear
congruences [6] uses method described in [11].

Assume a total of d truncated outputs were eavesdropped, that is y0, . . . , yd−1
are known. Recovering hidden parts z0, . . . , zn−1 is sufficient to recover the initial
state.

By substituting the output and hidden bits relation (6.18) into the matrix form
of the recurrence equation defining the sequence a (6.26) the following congruence
is obtained:

57

ai+j =
n−1∑︂
l=0

qj,lai+l (mod m),

2(1−α)kyi+j + zi+j =
n−1∑︂
l=0

qj,l(2(1−α)kyi+l + zi+l) (mod m),

n−1∑︂
l=0

qj,lzi+l − zi+j = 2(1−α)kyi+j −
n−1∑︂
l=0

2(1−α)kqj,lyi+l (mod m).

As we consider entire eavesdropped sequence at once, indexes are i = 0 and
n ≤ j,≤ d−1. Thus, there are n−d congruence equations of d unknown. Denote
vector of all unknown variables z = (z0, . . . zd−1). The congruence equations to
be solved are

n−1∑︂
l=0

qj,lzi+l − zi+j = 2(1−α)k(yi+j −
n−1∑︂
l=0

qj,lyi+l) (mod m), (6.34)

where n ≤ j,≤ d− 1.
To solve it, firstly introduce the following lattice formed with coefficients of

the unknown variables on the left side of the above congruence equations:

L(m, d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m 0 · · · 0 qn,0 qn+1,1 · · · qd−1,n−1
0 m · · · 0 qn,0 qn+1,1 · · · qd−1,n−1
...
0 0 · · · m qn,0 qn+1,1 · · · qd−1,n−1
0 0 · · · 0 −1 0 · · · 0
0 0 · · · 0 0 −1 · · · 0
0 0 · · · 0 0 0 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.35)

Denote by λd the d-th minimum of the lattice L(m, d). The solution of (6.34)
has been solved in [11, Theorem 2.1]. Where it is proved, that there exists at
most one solution z such that:

||z|| ≤ mλ−1
d 2

−(d−1)
2 −1.

By the nature of hidden digits, every hidden part of out put zi is at most
2(1−α)k. Hence, ||z|| ≤ 2(1−α)k

√
d. And when the following condition holds,

hidden parts of output generated by MRG can be recovered with method in [11]

2(1−α)k
√

d ≤ mλ−1
d 2

−(d−1)
2 −1.

58

Conclusion
In conclusion, this thesis has delved into the theoretical basics of Cryptograph-
ically Secure Random Number Generators (CSPRNGs). Our exploration of
available literature has underscored the existing challenges in achieving absolute
PRNG safety. We have determined that PRNG can only exist if P ̸= NP , it can
be constructed from one-way functions, and the output of the random number
generator can be greatly expanded.

In the modern era with nowadays demand of secure communication chan-
nels, the indispensability of a robust supply of random or indistinguishable-from-
random numbers is self-evident. All the most reliable protocols of password
exchange that rely, among other things, on the random nonce. Practical ap-
plications have enthusiastically embraced algorithms designed to generate such
numbers. Through the analysis of these algorithms, along with an examination
of their historical evolution and vulnerabilities, certain conclusions emerge: the
design of any RNG mechanism must meticulously account for potential attacks;
systematic testing against all types of attacks with a proactive consideration of
their possible consequences is crucial.

The most plausible types of attacks are state compromise leading to future
simulation or backtracking, Chosen-Input Attacks. To secure PRNG against
threats, design of such algorithm must possess the ability to rapidly recover after
invasions and unintended exposure of internal states. Moreover, it should be
made impossible to see the direct results of PRNG calculations (for example, use
a one-way function before returning data). Secure PRNG must include an entropy
accumulator, enabling a catastrophic reseed using new data that are independent
of prior states and outputs. Regularly resetting the state, with a new value that
is challenging to predict even in the presence of previous outputs, serves as an
additional layer of defense.

As cryptographic systems continue to evolve, it is imperative to recognize that
the landscape of security is dynamic. Future developments may necessitate fur-
ther refinements in PRNG design and defense mechanisms. This study provides a
foundation for such strives, emphasizing the importance of a proactive and adapt-
able approach to PRNG design, with an awareness of potential vulnerabilities and
a commitment to robust countermeasures against emerging threats.

This final point highlights that keeping information safe is always dynamic.
It reminds us that we must keep working hard to protect against new dangers
in the world of computer security, which keeps changing. This allows us to keep
up with the fast phased technological innovations thus creating a strong foothold
into security protection.

59

Bibliography
[1] Menezes, Alfred J., van Oorschot, Paul C., Vanstone, Scott A.

Handbook of Applied Cryptography CRC Press, 1996. ISBN: 0-
8493-8523-7

[2] Luby, Michael. Pseudorandomness and cryptographic applica-
tions. Princeton computer science notes, Princeton University
Press, 1996. ISBN 80-7378-001-1.

[3] Lehmer, Derrick H. Mathematical methods in large-scale com-
puting units. In: Proceedings of 2nd Symposium on Large-Scale
Digital Calculating Machinery, 1951. pp. 141-146

[4] Brickell, E.F., Odlyzko, A.M. Cryptanalysis: a survey of
recent results. At: Proceedings of the IEEE, 1988. DOI:
10.1109/5.4443.

[5] Yu, HB., Zheng,, QX., Liu,, YJ. et al. An improved method
for predicting truncated multiple recursive generators with
unknown parameters. At: Des. Codes Cryptogr. 91, 2023. pp.
1713–1736 DOI: 10.1007/s10623-022-01175-4

[6] Sun, HY., Zhu,, QX., Zheng,, QX. et al. Predicting trun-
cated multiple recursive generators with unknown parame-
ters. At: Des. Codes Cryptogr. 88, 2020. pp. 1083–1102 DOI:
10.1007/s10623-020-00729-8

[7] Joux, A., Stern,, J. Lattice reduction: a toolbox for the
cryptanalyst. J. Cryptol. 88, 1998. pp. 161–185

[8] David, G.C., Erich, K. On fast multiplication of polynomi-
als over arbitrary algebras. Acta Informatica 28, 1991. pp.
693–701

[9] Boyar, J. Inferring sequences produced by a linear congruen-
tial generator missing low-order bits. At: J. Cryptology 1(3),
1989. pp. 177–184 DOI: 10.1007/BF02252875

[10] Stern, J. Secret linear congruential generators are not cryp-
tographically secure. At: Proceedings of the 28th Annual
Symposium on Foundations of Computer Science–SFCS, 1987. pp.
421-426. DOI: 10.1109/SFCS.1987.51

[11] Frieze, A., Håstad, J., Kannan, R., Lagarias, J., Shamir, A. Re-
constructing Truncated Integer Variables Satisfying Linear
Congruences. At: SIAM J. Comput. 17, 1988. pp. 262-280. DOI:
10.1137/0217016.

[12] Lenstra, A., Lenstra, A., Lovász, L. Factoring Polynomials
with Rational Coefficients. At: Mathematische Annalen. 261,
1982. pp. 515-534. DOI: 10.1007/BF01457454.

60

[13] Micciancio, D., Goldwasser, S. Complexity of Lattice Prob-
lems. A Cryptographic Perspective. 2002 ISBN: 978-0-7923-7688-
0 DOI: 10.1007/978-1-4615-0897-7

[14] Håstad, Johan, Impagliazzo, Russell, Levin,, Leonid A. et
al. A Pseudorandom Generator from any One-way Function.
At: SIAM Journal on Computing, 1999. pp. 1364–1396 DOI:
10.1137/S0097539793244708

[15] Ferguson,, Niels, Schneier, Bruce. Practical cryptography.
2003 ISBN: 978-0471223573

[16] Goldreich, Oded Foundations of cryptography I: Basic Tools.
Cambridge: Cambridge University Press, 2001. ISBN: 978-0-511-
54689-1

[17] Barker, Elaine (NIST), Roginsky, Allen (NIST). Transitions:
Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths 2011 DOI: 10.6028/NIST.SP.800-
131Ar1 available from http://dx.doi.org/10.6028/NIST.SP.800-
131Ar1

[18] Semerjian, Hratch G. - Acting Director, NIST. Fed-
eral Register / Vol. 70, No. 96 2005 available from
http://csrc.nist.gov/publications/fips/05-9945-DES-
Withdrawl.pdf

[19] Dorrendorf, Leo, Gutterman, Zvi, Pinkas,, Benny. Cryptanal-
ysis of the random number generator of the Windows oper-
ating system. At: ACM Trans. Inf. Syst. Secur., 2009. pp. 1-32
DOI: 10.1145/1609956.1609966

[20] RSA Laboratories, a division of RSA Data Security, Inc.
Open source code: RSAREF2.0 [cit. 2024-03-26] available from
https://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa/

[21] Kelsey, John, Schneier, Bruce, Wagner,, David A. et al. Crypt-
analytic Attacks on Pseudorandom Number Generators. At:
In: Vaudenay, S. (eds) Fast Software Encryption. FSE. Lec-
ture Notes in Computer Science, vol 1372.1998 pp. 168-188 DOI:
10.1007/3-540-69710-1 12 ISBN: 978-3-540-69710-7

[22] Kelsey, John, Schneier, Bruce, Ferguson,, Niels. Yarrow-
160: Notes on the Design and Analysis of the Yarrow Cryp-
tographic Pseudorandom Number Generator. At: Heys, H.,
Adams, C. (eds) Selected Areas in Cryptography. SAC. Lecture
Notes in Computer Science, vol 1758. 1999 DOI: 10.1007/3-540-
46513-8 2 ISBN: 978-3-540-46513-3

[23] Ferguson,, Niels, Schneier, Bruce, Kohno,, Tadayoshi. Cryp-
tography Engineering: Design Principles and Practical Appli-
cations. 2010 DOI: 10.5555/1841202 ISBN: 978-0-470-47424-2

61

https://web.archive.org/web/20080625202735/http://csrc.nist.gov/publications/fips/05-9945-DES-Withdrawl.pdf
https://web.archive.org/web/20080625202735/http://csrc.nist.gov/publications/fips/05-9945-DES-Withdrawl.pdf

[24] Article on the web site. Apple Platform Security: Ran-
dom number generation available from support.apple.com/en-
hk/guide/security

[25] Schneier, Bruce. Applied Cryptography: Protocols, Al-
gorithms, and Source Code in C. 2nd Edition 1996 DOI:
10.5555/1841202 ISBN: 978-0-470-47424-2

[26] Schneier, Bruce. Blog. [cit. 2024-04-06] available from
https://www.schneier.com/blog/archives/2005/02/sha1 broken.html

[27] Bernstein, Daniel. ChaCha, a variant of Salsa20 [cit.
2024-04-05] available from https://cr.yp.to/chacha/chacha-
20080128.pdf

[28] Blum, Lenore, Blum, Manuel, Shub, Michael. A Simple Unpre-
dictable Pseudo-Random Number Generator At: SIAM Journal
on Computing. 15 (2), 1986. pp. 364–383 DOI: 10.1137/0215025.
ISSN: 0097-5397

[29] Kneusel, Robet T. Random Numbers and Computers Springer,
2018 ISBN 978-3-319-77697-2

[30] Jenkins, Robert J. Isaac. At: International Workshop on Fast
Software Encryption, pp. 41–49. Springer, 1996.

[31] de Koning Gans, Gerhard, Hoepman, Jaap-Henk, Garcia, Flavio
D. A Practical Attack on the MIFARE Classic. At: Smart Card
Research and Advanced Applications, 2010. pp. 267-282 ISBN:
978-3-540-85893-5

[32] Anonymous blog, 2020. [cit. 2024-04-07] available from
https://medium.com/@popdogsec/dual-ec-drbg-a-look-into-
a-potential-backdoor-395796e24ee6

[33] Kopp, Henning. attacking a random number gen-
erator, 2020. [cit. 2024-04-07] available from
https://web.archive.org/web/20230927191527/https://www.schutzwerk.com/en/blog/attacking-
a-rng/

[34] Nohl, Karsten, Evans, David. Reverse-Engineering a Crypto-
graphic RFID Tag. [cit. 2024-04-05] available from
https://www.usenix.org/legacy/events/sec08/tech/full papers/nohl/nohl.pdf

[35] J. Jenkins Jr. , Robert. ISAAC. At: Gollmann, D. (eds) Fast
Software Encryption. FSE 1996. pp. 41–49 ISBN: 978-3-540-
49652-6 available from https://link.springer.com/content/pdf/
10.1007/3-540-60865-6_41.pdf

[36] Pudovkina, Marina. A known plaintext attack on the ISAAC
keystream generator. 2001 At: IACR Cryptology ePrint
Archive. 2001. 49.

62

https://support.apple.com/en-hk/guide/security/seca0c73a75b/web
https://support.apple.com/en-hk/guide/security/seca0c73a75b/web
https://link.springer.com/content/pdf/10.1007/3-540-60865-6_41.pdf
https://link.springer.com/content/pdf/10.1007/3-540-60865-6_41.pdf

[37] U.S. Department of Commerce. Digital Signature Standard
(DSS). At: NIST FIPS PUB 186, 1994.

[38] Barker, E. Digital Signature Standard (DSS) [includes Change
Notice 1 from 12/30/1996]. At: Federal Inf. Process. Stds.
(NIST FIPS), National Institute of Standards and Technol-
ogy, Gaithersburg, MD, 1994.

[39] Accredited Standards Committee on Financial Services, X9,
operating under the procedures of the American National
Standards Institute. Financial Institution Key Management
(Wholesale). 1985.

[40] American National Standards Institute. ANSI X3.92. 1981.

[41] Krawczyk, Hugo. How to predict congruential generators
At: J. Algorithms, 13. 1992. pp. 527-545 DOI: 10.1016/0196-
6774(92)90054-G

[42] Boyar, J. Inferring a sequence generated by a linear congru-
ence At: 23rd Annual Symposium on Foundations of Computer
Science, 1982. pp. 153-159 DOI: 10.1109/SFCS.1982.73.

[43] Ajtai, M., Kumar, R., Sivakumar, D. A sieve algorithm for
the shortest lattice vector problem. At: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing.
Association for Computing Machinery, New York, NY, USA.
2001. pp. 601–610

[44] Lenstra, A.K., Lenstra, H.W., Lovász, L. Factoring polyno-
mials with rational coefficients. Math. Ann. 261(4), 1982. pp.
515–534

[45] Schnorr, C.P., Euchner, M. Lattice basis reduction: improved
practical algorithms and solving subset sum problems. Math.
Program. 66(2), 1994. pp. 181–199

63

A. Mersenne Twister attack.
Source code

from z3 import *

def untemper(out):
y1 = BitVec(’y1’, 32)
y2 = BitVec(’y2’, 32)
y3 = BitVec(’y3’, 32)
y4 = BitVec(’y4’, 32)
y = BitVecVal(out, 32)
s = Solver()
equations = [

y2 == y1 ˆ (LShR(y1, 11)),
y3 == y2 ˆ ((y2 << 7) & 0x9D2C5680),
y4 == y3 ˆ ((y3 << 15) & 0xEFC60000),
y == y4 ˆ (LShR(y4, 18))

]
s.add(equations)
s.check()
return s.model()[y1].as_long()

def recover_state_mt(numbers):
"""
This function recovers the internal state of MT19937 given a
sequence of outputs. Note that there can be multiple states
of an MT19937 that yield the same sequence of outputs.
"""
state = []
for n in numbers[0:624]:

state.append(untemper(n))
return state

def main():
"""
This function tests the implementation.
We clone the RNG from its output and compare the next
generated outputs of the real and the cloned PRNG. Then,
we try to recover the seed.
"""
import random
random.seed()
a = random.getrandbits(32)
print(f"seed esed: {a}")

random.seed(a)
random_nums = [random.getrandbits(32)]

64

print("real internal state of PRNG:",
f"{random.getstate()[1][0:10]} ...")

print("generating random numbers")
for i in range(623):

random_nums.append(random.getrandbits(32))

print(f"generated numbers: {random_nums[0:10]} ... ")
print("recover internal state of PRNG")
recovered_state = recover_state_mt(random_nums)
print(f"recovered internal state: {recovered_state[0:10]}")

print("continue generting with original sequence")
real_seq = []
for i in range(1000):

real_seq.append(random.getrandbits(32))

print("cloning PRNG")
random.setstate((3,tuple(recovered_state+[624]),None))
copy_seq = []
for i in range(1000):

copy_seq.append(random.getrandbits(32))

print("checking equality of next 1000 outputs" +
" from the real and cloned rng")

for i in range(1000):
assert(real_seq[i] == copy_seq[i])

print(’Success!’)

main()

65

	Introduction
	Preliminaries
	Theoretical foundations of CSPRNG
	Introduction to PRNGs
	Security measure
	Reductions
	One-way functions

	Cryptographically Secure PseudoRandom Number Generators
	Constructing PRNG
	Expansion
	Extension from one-way permutation
	Extension from one-way function

	Cryptographically secure PRNG used in practice
	Yarrow
	Fortuna
	ChaCha20
	ISAAC
	The ANSI X9.17 PRNG
	The DSA PRNG
	The RSAREF PRNG

	Practical attacks on PRNGs
	MIFARE Crypto-1
	DUAL EC DRBG
	PS 3
	Mersenne twister

	Cryptoanalytical attacks on PRNGs
	Cryptanalysis of the Random Number Generator of the Windows Operating System
	ISAAC
	Schneier Cryptanalytic Attacks on Pseudorandom Number Generators
	The ANSI X.17 PRNG
	The DSA PRNG
	The RSAREF PRNG

	Congruential generators
	Attacking Congruential Generators
	Multiple Recursive Generator
	Attacking truncated MRG

	Conclusion
	Bibliography
	APPENDICES
	Mersenne Twister attack. Source code

