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Abstract:

Background: While chess playing software is currently leagues above
how the best human players play the game, engines playing less known
variants of chess (known as fairy chess) are much less explored.

Objectives: Come up with an exact definition of fairy chess, then
develop a general engine capable of playing any such game and evalu-
ate which strategical approaches taken from chess generalize the best
onto its variations.

Methods: We developed a minimax based engine capable of playing
multiple games based on its configuration with a modular evaluation
function, built multiple versions of this engine differing only in the
static evaluation used and let them play chess variants against each
other to see which was the strongest. First different approaches to
evaluating pieces to count material were tried against each other, then
different approaches to evaluating positions atop the way of counting
material that turned out the best.

Results: Evaluator that estimated the values of pieces by their mo-
bility won the most games against its counterparts (160 of 280 as
opposed to 133.5 and 126.5 of the two other approaches tried). Then
the evaluator evaluating positions by counting available moves won
the most out of all its possible enhancements with 91.5 of 120 games.

Conclusions: The best approach to play any chess variant if we have
to use one strategy for all of them we found was based on mobility of
pieces, using a combination of both how much mobility they’re likely
to have in a random position and how much mobility they actually
have in the particular position that is evaluated.
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Introduction
Over the course of chess’s long history, starting with the Indian Chaturanga, the
game has evolved into many different variants united by a few core concepts,
in part due to a natural evolution of the rules and in part due to the work of
chess enthusiasts creating new variants for the joy of it - those variants eventually
becoming known as fairy chess. Later, chess’s more popular variants became a
challenge for computer programmers – first the goal was to make computers beat
the best of human players and once that was accomplished, the challenge changed
to creating the best chess engines for games of computers against computers.

This work focuses on generalizing the principles of chess-playing software onto
a larger variety of chess-like games. In the beginning I will look at known chess-
like or fairy chess games and identify some of their common characteristics to
define what I will consider a chess variant for the purpose of this work.

The next goal of this work is to create an engine capable of reading the rules
for a variant of chess and then playing the variant against a human player or
another engine. Most importantly the engine’s purpose is experimentation with
fairy chess variants, so its implementation has to have enough modularity to allow
building different engines applying different strategies (given them as notions used
by the evaluation function) to the games played. The last goal of this work then is
to experimentally test those engines in games against each other and infer which
concepts from chess programming generalize best into similar games.

The first chapter will focus on describing variants of fairy chess. The second
chapter will talk about existing works related to the topic. The third chapter will
define fairy chess pieces and therefore fairy chess for the purpose of this work.
The fourth chapter will describe the workings of the engine and the fifth chapter
will go into more depth on its technical implementation. In the sixth chapter we
will describe the particular engines we actually built and in the seventh chapters
we will present the results of them playing against each other.
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1. Fairy chess games
Before making a generalized chess engine, it is necessary to describe what gener-
alized chess is. Historically, there have been many board games similar to chess
(from here referred to as FIDE chess whether due to a coincidence, sharing its
ancestor with FIDE chess i.e. being derived from chaturanga – or explicitly be-
ing invented as a variation to make chess more interesting. In this chapter I will
attempt to describe the commonalities of chess-like games.

1.1 What is Fairy Chess
Fairy chess is a loosely defined term used for games that are similar to FIDE chess
but differ in some rules. For the needs of this thesis, I will use the phrase to also
mean FIDE chess, shogi, xianqgi and other games that are for historical reasons
not called fairy chess despite fitting this definition. Commonalities of fairy chess
variants include a playing board of discrete cells (typically square) and being
played on a turn by turn basis with moves consisting mainly of moving pieces
from place to place (how exactly they may move is further discussed in Chapter
3). In the following sections I will describe the most common modifications.

1.1.1 Different starting positions
The most popular example of chess with different starting position is chess960
– a variant using the standard set of pieces with all the non-pawn pieces’ ranks
shuffled randomly (requiring only that bishops are of opposite colours and rooks
are on opposing sides of the king) [4]. A similar variant shuffle chess relaxes those
restrictions and includes games where that may not be the case – both rooks may
end up on one side of the king or both bishops may be of the same color.

Variants not included among those are ones where some pieces start on rows
other than the first and second/seventh and eight, like advance chess 1.1 or
corridor chess 1.2. Furthermore, there are games with different sets of standard
pieces – Pritchard mentions double knight chess 1.3 where bishops are replaced
with knights and knight supreme chess 1.4 where both bishops and rooks are
replaced by knights [13].

Figure 1.1: Advance chess starting position
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Figure 1.2: Corridor chess starting position

Figure 1.3: Double knight chess starting position

Figure 1.4: Knight supreme starting position
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Lastly Pritchard describes variants that start with an empty board and pieces
are placed on it by players in an alternating fashion for the first sixteen moves
until they are all on the board and the game begins.

1.1.2 Different pieces
Some fairy chess variants introduce new pieces, either defined as combinations of
orthodox pieces (amazon as the combination of the queen and the knight or the
chancellor as the combination of bishop and knight) or introducing patterns that
are not present in the orthodox pieces at all.

Movement patterns of new pieces are usually defined by a list of atomic pat-
terns (see Betza’s notation 12) where that is possible. More elaborate ways
of combining the atomic patterns have been developed to describe complicated
pieces such as Betza’s crooked bishop [2] or Aronson’s rhinos [1].

In many cases however the atomic patterns are not descriptive enough – no-
tably if the piece does not capture in the standard way of moving to a place where
an opposing piece stood or if the validity of its moves depends on other factors
than pieces standing in its way. Examples include pieces that have to leap over
others to make a move such as the grasshopper or the xiangqi cannon as well as
pieces whose movement patterns are influenced by where on the board they are
such as the xiangqi soldier or the edgehog [13].

Furthermore, there are variants in which each player has different set of pieces
to play with, most notable one of them being the 64-variant (8 possible choices
of armies for either side) Betza’s Chess with different armies [3].

Of special note are games where the pawn behaves noticeably different. Being
the least valuable piece, i.e. one not worth being traded for anything other than
a pawn, a well-protected pawn structure in FIDE chessis difficult to alter and as
such in a way defines the character of the position more so than the positions of
more mobile pieces. As Kramnik has written about the sideways pawns variant:
”Even after having looked at how AlphaZero plays Pawnside chess, the principles
of play remain somewhat mysterious―it is not entirely clear what each side should
aim for. The patterns are very different, and this makes many moves visually
appear very strange, as they would be mistakes in classical chess.” [15]

1.1.3 Different game objective
While the most common goal in chess-like games is to capture (or checkmate, as
the game ends right before the inevitable capture is to take place) the opponent’s
king, this needn’t always be the case.

Very popular variants include loser’s chess (which is also interesting for its
mechanic of capturing pieces being compulsory, i.e. all non-capturing moves
being illegal if at least one capture is possible) with the goal of losing all your
pieces or the triple check chess where the player who manages to check opponent’s
king three times is victorious.

Another common goal is to capture all of the opposing pieces – the king
typically has no special value in such variants. An interesting variant is extinction
chess, where the goal is to capture all pieces of a particular kind – here the king
is not a royal piece (player doesn’t have to evade checks and it is even possible to
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Figure 1.5: Masonic chess

promote a pawn to a king) but it’s unimpressive mobility along with being only
one of its kind at the start make it a natural target.

1.1.4 Board shapes
Aside from the boards being bigger – either rectangular as in superchess or capa-
blanca chess or larger squares as in shogi – there are variants utilizing more alien
topologies. Besides the cylindrical boards where pieces are allowed to move from
one side to the other, Pritchard mentions a Möbius variant played similarly to
cylindrical chess but with the pieces’ position being mirorred whenever they pass
from column a to h or vice versa over what would be the edge of the board in
FIDE chess – this variant has challenges regarding pawn orientation when they
get mirrored.

A natural extension of the cylinder variant is a torus variant, connecting the
bottom and the top edges as well as the left and the right edge. This is of course
unplayable with the orthodox starting position, as black would immediately be
in check – the solution given by Philip Cohen is to start the game with board
empty and let the players place pieces in an alternating fashion, each restricted
to their first half of the board [13].

There are also variants that don’t restrict themselves to square cells, com-
monly using hexagonal or triangular cells – those games of course have to use a
piece set completely different from pieces used on a square board. Games retain-
ing some semblance of square cells but rearranging them in a way that makes the
board’s properties very different include masonic chess 1.5 and circular chess 1.6.

Lastly, there are games where instead of one 2D dimensional board, the pieces
move over a set of boards stacked vertically, making the game three-dimensional.
Raumschach [5] is a variant attempting to translate the movement patterns of
2D pieces into 3D – rook and knight are generalized into 3D easily, but the
bishop is split into two pieces – the bishop moving over planar diagonals and the
unicorn, moving over spatial diagonals. Other 3D games, such as peruvian army
chess separate pieces into two groups – one restricted to the bottom board, one
restricted to the top.

1.1.5 More alien game mechanics
Many games were invented that are similar to chess yet contain rules that don’t
fit well into any of the above categories. Examples include games with hidden
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Figure 1.6: Circular chess

information such as chess in disguise where each player assembles their own
starting position and doesn’t reveal which piece is which until moving it.

Other games employ move mechanics that are not played by any piece in
particular, such as putting pieces into play from hand in shogi or crazyhouse,
pivoting rows and columns in pivot chess or the central squares in twist chess, or
mirroring pieces in mirror chess.

Not even the rule of players alternating after each move is always abided by –
Marseilles chess lets a player play two moves before letting the opponent answer
with several variants specifying which kinds of moves can be played in succession
(including dividing the board into halves, dividing pieces by which side they
started at, allowing only a non-pawn and a pawn move in succession...)

1.2 Analysis of requirements – Fairy Chess for
the purpose of this work

The goal I have set for this work is to create an engine that would be capable of
playing fairy chess. However, due to how wide the space of such games is, it’d
be unreasonable to attempt to support all of them – especially considering that
there isn’t even a truly exhaustive definition of a fairy chess game.

1.2.1 Supported chess games
Based on the games mentioned above and while trying to make programming
such engine feasible, we have decided the engine will support chess games that
satisfy the following requirements:

• Players alternate move by move.

• Starting position is given, i.e. it is not created by players after the game
starts.

• Every possible move belongs to a particular piece that plays it.

• Board is composed of square cells arranged in a square or rectangular grid.

9



• The goal of the game is checkmating the enemy king (stalemate can be
redefined to be another victory condition for the side whose opponent has
no moves as it is in xiangqi).
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2. Related works
In this chapter I will describe existing works related to the topics of my thesis,
namely systems used to describe generalized chess pieces as well as existing en-
gines capable of playing multiple chess variations if given some description of its
rules.

2.1 Generalized chess notations
There are several systems to describe fairy chess pieces based on how they can
move. I will describe how they work and what – if any – are their limitations.

2.1.1 Betza’s notation
Betza’s notation is a system developed by Ralph Betza [8] that divides chess
moves into nine atomic patterns plus two extra patterns for staying in place and
moving anywhere.

The patterns can – except for U – be written as tuples of (a,b) where a is the
number of squares moved in a given direction and b is the number of squares in
a direction orthogonal to it.

• W – (1,0)

• F – (1,1)

• D – (2,0)

• H – (3,0)

• N – (2,1)

• A – (2,2)

• C – (3,1)

• Z – (3,2)

• G – (3,3)

• O – (0,0) – piece that can stay in place as a valid move

• U – universal leaper, can move to any square on the board

A piece in Betza’s notation is described as a set of atomic pieces with modifiers
for each atom.

An atom has to specify the number of moves in one direction they can do in
repetition as long as they don’t run into any obstacles. It can be further modified
by specifying:

• which directions the atomic piece can move in
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• whether the given atomic piece is only applicable for captures or only for
moving onto unoccupied places.

• whether the atomic piece can jump over other pieces (it can also be specified
that the piece has to jump over another to move at all)

• that the atomic piece treats the board as a cylinder

• that the atomic piece must change the direction of its movement every
step – it is also possible to define a piece that alternates between several
movement patterns

The drawback of this notation with regards to standard chess is its inability
to describe the following:

• moves with conditions regarding moves played in the past, such as castling,
en passant capture or pawn’s double jump

• moves summoning new pieces on the board such as pawn promotion

• double moves such as castling

• moves capturing a piece not on the moving piece’s destination square such
as en passant capture

2.1.2 XBetza notation
XBetza notation [9] is an evolution of Betza’s notation that is used by the GNU
XBoard chess interface. It includes additional features that allow the description
of standard chess:

• modifier ’i’ to specify an atom only applies if the piece hasn’t yet moved

• modifier ’e’ to specify a piece can take another piece if that one has just
passed a square that it could take, reserved to pawns

• castling is reserved for the king, but it doesn’t necessarily have to be with
a rook

furthermore it includes features that aren’t relevant to standard chess, but
allow more expressive definitions of pieces:

• modifier ’a’ to allow connecting different atoms into a double move

• annotation ’@’ for putting new pieces on the board from hand – allowing
games like bughose and crazyhouse

• modifier ’t’ to specify that the atom can’t be used to check

XBetza solves most drawbacks of Betza’s notation with regards to standard
chess, but it does so in a way that is self-admittedly ad hoc invented for standard
chess – it still doesn’t have a way to describe a move of two pieces that isn’t
castling or an indirect capture that isn’t en passant. [9]

12



2.1.3 Betza 2.0
Betza 2.0 [9] is a further evolution of XBetza, that allows chaining arbitrary
number of atomic moves into a large move done at once.

As such it allows quite complex description of side effects as the move can be
arbitrarily long and on each step the piece can move somewhere (and thus assert a
condition to play this move), capture a piece or drop a previously captured piece.
It can even check for the piece’s absolute position on the board by including in
the path a place that’d be outside the chessboard in case the piece is in a place
where this movement isn’t allowed.

2.1.4 David Parlett’s notation
A notation for fairy pieces developed by David Parlett [12]. The system divides
movement patterns into 5 directions – forward, diagonally forward, sideways,
backward and diagonally backward. More complex moves can be created by
chaining atomic moves using the . (dot) operator or multiplying a direction
(possibly by n, meaning unlimited distance in a given direction).

A suffix & can be added if a compound movement can be done repeatedly in
the same direction.

Unlike Betza’s notation, the notation assumes all pieces to be symmetrical
over the forward/backward axis.

A chess piece in Parlett’s notation is a string of available moves separated by
commas.

2.1.5 Extensions to Parlett’s notation
Parlett’s notation has been extended with conditional modifiers to tell:

• that the move can only be played if the piece has not yet moved

• that the move can only be used for capture

• that the move can only be used for non-capture

• that the move captures pieces by moving past them as in checkers

• whether the piece can be blocked by obstacles in its path (unlike in Betza
notation, the path is always well-defined)

2.1.6 Fairy Max notation
This notation was developed for Fairy Max (chess engine) ini files, as an extension
of Micro Max’s internal representation of standard chess pieces. A move is defined
by the relative position of a tile and a move descriptor in the format of five
hexadecimal digits, where the last two digits are a descriptor:

• whether the move can be used for capture

• whether the move can be used for non-capture

• whether the move can be used repeatedly in one turn
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• whether the move can hop over an nonempty square without capturing

• if the penultimate digit is nonzero, it is a magic number with an orthodox
chess specific meaning – pawn double step, castling

FairyMax pieces with repeatable move can alternate between two different
atomic patterns, the first two digits being the toggle for the target square position
and the third digit being the toggle for the last digit.

The notation uses absolute orientation of the board and for that reason any
asymmetric piece has to be defined twice – once for black and once for white.
Null move isn’t definable.

2.2 Generalized chess engines
Generalized chess engines are programs capable of playing multiple chess variants,
usually using a configuration file of some sort that they can interpret as rules of
a chess variant.

2.2.1 Fairy Max
The Fairy Max chess engine is an engine derived from the micro-Max chess engine
extended to be able to play with user defined pieces. It understands pieces given
in an engine-specific notation.

Fairy Max is compatible with the GNU XBoard/WinBoard interface, with its
definable pieces being a subset of all those definable by XBetza notation. The
engine evaluation method requires the user to input the value of every custom
piece for the engine to use it.

All chess variants playable with Fairy Max have to have the winning condition
be the capture of all opponent’s royal pieces (in orthodox chess, there’s only one
per side, but Fairy Max supports several)[11].

2.2.2 Fairy Stockfish
Fairy stockfish is an engine derived from the Stockfish chess engine. It allows
definitions of custom pieces in Betza notation with support for using orthodox
chess pieces as shorthands for their Betza definitions.

In addition to Betza notation, the pieces can be further specified by defining
their mobility regions, ability to promote or to take/be taken en passant in con-
figuration flag. The engine has a very rich support for changing game rules that
aren’t dependent on any particular piece, such as:

• non standard victory/draw/loss conditions – including capture the flag type
games, extintion chess, toggling draw by repetition or victory by achieving
a special position

• promotion areas and promotable pieces

• castling ranks

• dropping pieces and rules specifying how to obtain pieces to drop
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• and many more settings typically borrowed from traditional chesslike games
but allowed to be used in non-traditional combinations

The engine is based on Stockfish’s neural network architecture modified to
represent positions in a way that allows for richer definitions of the game and its
state. Multiple Fairy Stockfish neural networks trained for particular games can
be downloaded. The engine also has a handcrafted evaluation function that it
will use if no neural network is available.

2.3 XBoard chess interface
The XBoard interface, originally developed by Tim Mann and currently main-
tained by the GNU project is a graphical interface for chess engines supporting
FIDE chess as well as chess variants.

2.3.1 XBoard communication protocol
When an engine is selected to run under XBoard, it’s started in a way that
XBoard’s commands become its standard input and the program’s standard out-
put is piped to XBoard. The interface sends messages such as:

• xboard – initial message sent on start

• new – reset the board to the default position

• variant NAME – play the following variant

• quit – the chess engine should exit

• force – engine should play neither color, only to be used for checking
legality of moves

• go – engine should play the color that is to move

• white/black – set white/black to move – engine should play the opposite
side than was sent

• st TIME – set time per move, time is a number of seconds

• level MOVES BASE INC – set time control with BASE amount of time at
start, an increment of INC (in seconds) per move, incrementing by BASE
after each MOVE moves

• sd DEPTH – cap the depth of the engine’s search tree at DEPTH

• time N – set engine’s time to N (in centiseconds)

• otim N – set opposite engine to N (in centiseconds)

• MOVE – opponent played move – given as [startSquare][endSquare] in al-
gebraic chess notation, e.g. a1h8; pawn promotion as
[startSquare][endSquare][pieceString], e.g. a7a8q;
castling as e1g1/e1c1/e8g8/e8c8; null move as @@@@
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• draw – opponent offers a draw – if engine replies with offer draw, it is
accepted and game ends

• result RESULT – end of game, result takes values of 1-0, 0-1, 1/2-1/2 or *
(unfinished)

• setboard FEN – set board to the given position

• edit – put engine into edit mode where it accepts editing commands –
[pieceString][square]: place piece on square; x[square]: remove piece;
#: clear board; c: change color of pieces places; .: leave edit mode

• hint – suggest a move to the user

• bk – send some text to the user (the documentation doesn’t specify what
text)

• undo – revert the last move

• hard – turn on engine thinking in opponent’s time

• easy – turn off pondering during opponent’s time

• post/nopost – turn on/off pondering input

There are more commands that XBoard can send, relating to things like player
identification if xboard is running as an internet chess server, management of
resources (how much memory can the engine use, etc.) or playing the four–player
variant bughouse. Full documentation can be found here [14].

The engine sends messages back to the interface as:

• Illegal move: MOVE – inform the interface that what the opponent played
was illegal

• Error (errortype): COMMAND – inform the interface that the engine can’t
understand/doesn’t support a command it received

• move MOVE: play a move, given in the same format as XBoard sends it to
the engine

• RESULT Reason – set the result of the game – the result has to be validated
by the opponent to be valid

• resign – resign from the game

• offer draw – offer draw to the opponent, XBoard will send them a draw
command

• telluser/tellusererror MESSAGE – display a message dialog

• askuser REPTAG MESSAGE – show user a dialog with a textfield – if user
replies, xboard will return REPTAG REPLY command
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3. Fairy chess pieces
In this chapter I will describe what I consider a fairy chess piece for the purpose of
this work, i.e. what pieces will the engine developed be able to play with. Then
I will introduce a definition general enough to capture most of pieces used in
existing fairy chess variants and provide a notation for describing pieces satisfying
that definition.

Unless specified otherwise, the chess variants mentioned in this chapter are
taken from David Pritchard’s Classified Encyclopedia of Chess Variants [13].

3.1 Description of chess pieces
A chess piece is in essence described by how it can move – each move is defined
by its consequences and by the conditions required to make the move legal.

One consequence is almost always moving the piece from one place on the
board, possibly on the square where another piece was, removing it from the
game. In FIDE chess, the target square is given by its relative position to the
piece’s original square but variants such as Pritchard’s start-again chess utilize
moves defined by absolute coordinates. Usually this is the only consequence, but
for a general definition of a piece, there may be side effects:

• Putting a new piece on the board – as is the case during pawn promotion
in FIDE chess pawns or shogi rook, bishop, silver, knight, lance and pawn
– this is not restricted to the target square (i.e. a piece promotion as it gets
replaced by the new), the king and the locust in locust chess can spawn
new pieces without destroying themselves.

• Capturing a piece that is not on the target square – as is the case during en
passant capture in FIDE chess or during any move of the locust in locust
chess.

• Moving another piece from place to place – as is the case during castling in
FIDE chess (this can of course be represented as a combination of capturing
a piece and putting a new piece onto another place).

In FIDE chess the conditions deciding where a piece can move (aside from
the rule that at the end of one’s move, their king must not be in check) typically
require the squares between the source and target to be free and the target to be
either free or occupied by a piece of the opposing color (in some case only one of
those is allowed, such as for pawn capture in FIDE chess). Less commonly used
conditions include:

• Requirements on squares that are not in the path – in Betza’s anti-runners

• Requirement that the moved piece has not yet been moved – in castling or
pawn double move

• Requirement that a given square is not under attack – in castling
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• That a piece is in the way – in the xiangqi chariot or the popular fairy chess
piece grasshoper (a piece that only moves by jumping over another piece
and landing right behind it)

• That the piece is in a particular part of the board – in xiangqi soldier and
in pawn promotion in FIDE chess as well as all the promotions in shogi (for
the standard pawn, not being moved yet and being on the second rank is
equivalent in FIDE chess, on the other hand the fish in Moeser’s fish chess
is a pawn that can move backwards and it can use its double advance move
any time it is on the second rank)

• That another piece is in a given place and has not been yet moved – in
FIDE chess castling

• That another piece has just played a particular move – in en passant capture

• This piece has not yet played a particular move – in Schmittberger’s teleport
chess (or this piece has not yet played it a given number of times in Kevin
Lawless’s super queen chess)

It’s important to note that checking whether a given square is under attack
may in a generalized view lead to situations without a correct resolution – consider
two pieces in opposing corners of a 2x2 board with move ”can move 1 forward if
the square 1 to the left isn’t under attack”.

3.1.1 Fairy piece moves for the purpose of this work
To describe as many of the above mentioned mechanics as possible while making
the engine’s implementation feasible, the generalized definition of a move we will
use will consist of:

• target square – can be defined either in relative position to the piece’s start-
ing square or in absolute position regardless of where the piece is

• list of conditions that have to be satisfied to make the move legal – condi-
tions may be in the form of:

– a certain square is empty, occupied by an opponent, occupied by a
friend, attacked or unattacked

– a certain square is occupied by a piece with a particular flag
– the piece starts in a particular area of the board
– the piece ends in a particular area of the board

• list of consequences of the move aside from moving the playing piece – those
effects may be in the form of:

– piece on a certain square is moved to another square
– a new piece is put onto a given square
– a piece on a certain square is taken
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– a flag is set/unset for a certain piece that is already on the board

The flags mentioned in this definition are set at the start of a game according
to the variant’s rules (in FIDE chess kings, rooks and pawns would start with
a flag that indicates they’re unmoved) and then handled according to the move
effects (in FIDE chess moving a pawn, rook or king unsets the unmoved flag and
advancing a pawn two squares sets the en passant takeable flag). This feature
can be very powerful – it is even possible to forget piece types altogether and
only use flags to distinguish pieces from each other – in most variants that only
makes the variant description more obfuscated for no benefit, but it is useful for
describing variations such as cannibal chess where a piece obtains all the moves
of any piece it captures.

3.2 Notation
To describe any move fitting the description given above, I will use the following
notation.

• A square can be denoted as (rowIndex colIndex) or ($rowIndex $colIndex)
– with dollar signs indicating it is absolute value.

• A condition requiring a square to be unoccupied can then be written as
[square] unoccupied – and equivalently for occupied, opponent, friend, at-
tacked and unattacked.

• A condition requiring a piece on a square to have a certain flag can be
written as [square] *[flag].

• A condition requiring the playing piece to be in a certain part of the chess
board can be written as ROW < [number] or COL < [number].

• An effect moving a piece onto a certain square can be written as [pieceString]
-> [square].

• An effect setting a flag of a piece can be written as [square] +flag.

• An effect unsetting a flag of a piece can be written as [square] -flag.

• An effect moving a piece from one square to another can be written as
[square] -> [square].

A move can then be denoted as { -target [square] -conditions [[condition]] -effects
[[effect]] }. A piece can be denoted as a list of moves in the previous notation
followed by a list of flags this piece can have. If a flag is to only last for the
duration of one move (like the flag indicating a pawn can be captured en passant)
its last character must be an underscore, otherwise the flag is to last until unset
by another effect. If a flag should be set to true at the start of the game, its name
should be preceded by a + symbol.

Since it is very inconvenient to write pieces in this rather verbose notation,
there are tools to enable translation from Betza’s notation (described in section
2.1.1) into this notation as well as shorthands to describe pieces indescribable in
Betza’s notation more conveniently – those shorthands include:
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• defining variables to iterate over a set of values and create multiple moves
that way

• using a | operator to describe multiple options in one effect, i.e. multiple
moves differing in the effect only or multiple options in one condition, i.e.
a move that requires at least one of the |-separated conditions satisfied to
be legal

• using promotion [ROW </> n COL </> n] -> [piecesStrings] to indicate a
promotion zone – use opromotion if the promotion is optional like in Shogi

A variant can then be defined by a config file consisting of:

• one line per piece in the format of [pieceName] {move1}{move2}... flag1
flag2...

• an empty line followed by 8 lines describing the default position by piece
names separated by spaces
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3.3 Definitions of some popular chess games
In this section we will show how the rules of some chess variants can be written
using the notation described above.

For convenience, the management of the ”unmoved” flag is ignored, the pro-
gram assumes it automatically.

3.3.1 FIDE chess
Fide chess can be defined (with explanation given piece by piece) as:

p fmW1fcF1 promotion t[ROW = 7] -> b|n|r|q
{-square (2 0) -conditions (1 0) empty (2 0) empty (0 0) *unmoved
-effects (2 0) +en_passant_takeable}
{-square (1 1) -conditions (0 1) *en_passant_takeable

(1 1) empty -effect . -> (0 1)}
{-square (1 -1) -conditions (0 -1) *en_passant_takeable

(1 -1) empty -effect . -> (0 -1)}
_en_passant_takeable

fmW1cF1

is the Betza notation for a piece that has a forward move as the atomW restricted
to a distance of 1 and a capture move as the atom F, the whole expression expands
to

{-square (1 0) -conditions (1 0) empty}
{-square (1 1) -conditions (1 1) opposite}
{-square (1 -1) -conditions (1 -1) opposite}

describing three moves – one straght forward onto an empty square and two
forward and to the side onto a square occupied by an opponent. The promotion
specification makes it so that the whole line actually expands into

{-square (1 0) -conditions (1 0) empty t[ROW != 7]}
{-square (1 1) -conditions (1 1) opposite t[ROW != 7]}
{-square (1 -1) -conditions (1 -1) opposite t[ROW] != 7]}
{-square (1 0) -conditions (1 0) empty t[ROW = 7]
-effect b|n|r|q -> (1 0)}
{-square (1 1) -conditions (1 1) opposite t[ROW = 7]
-effect b|n|r|q -> (1 1)}
{-square (1 -1) -conditions (1 -1) opposite t[ROW] = 7]
-effect b|n|r|q -> (1 -1)}

to assert that if the pawn’s target is on the eigth row, it has to promote and if it
isn’t, then it can not promote.

The last three moves describe respectively the pawn’s double move with set-
ting the en_passant_takeable and indirectly capturing a piece with that flag
set on the left or the right to the pawn.

n N1

21



N1

is Betza’s N atom restricted to distance of 1. It expands to
{-vars a in [1,2] -square (a 3-a) -conditions (a 3-a) empty|opposite}

to describe a move in any direction in the shape (1, 2).
r W

W

is Betza’s unrestricted W atom. On an 8x8 board it expands to
{-vars a in <1,7> b in <1,a) -square (a 0)
-conditions (b 0) empty (a 0) empty|opposite}
{-vars a in <1,7> b in <1,a) -square (-a 0)
-conditions (-b 0) empty (-a 0) empty|opposite}
{-vars a in <1,7> b in <1,a) -square (0 a)
-conditions (0 b) empty (0 a) empty|opposite}
{-vars a in <1,7> b in <1,a) -square (0 -a)
-conditions (0 -b) empty (0 -a) empty|opposite}

to describe the moves of a rook. Note that the (0 -b) empty conditions get united
over all moves with the same target square, i.e. over all combinations of a and b
with the same a, asserting that all squares in the rook’s path are empty.
b F

F

is Betza’s unrestricted F atom. On an 8x8 board it expands to
{-vars a in <1,7> b in <1,a) -square (a a)
-conditions (b b) empty (a a) empty|opposite}
{vars a in <1,7> b in <1,a) -square (-a a)
-conditions (-b b) empty (-a a) empty|opposite}
{vars a in <1,7> b in <1,a) -square (a -a)
-conditions (b -b) empty (a -a) empty|opposite}
{-vars a in <1,7> b in <1,a) -square (-a -a)
-conditions (-b -b) empty (-a -a) empty|opposite}

to describe the moves of a bishop.
q WF

The queen is just the combination of a rook and a bishop.
k W1F1
{-square (0 2)
-conditions (0 1) empty (0 1) unattacked (0 2) empty (0 3) *unmoved

(0 0) *unmoved (0 0) unattacked
-effects (0 3) -> (0 1)}
{-square (0 -2)

-conditions (0 -1) empty (0 -1) unattacked (0 -2) empty (0 -2)
unattacked (0 -3) empty (0 -4) *unmoved (0 0) *unmoved
(0 0) unattacked

-effects (0 -4) -> (0 -1)}

22



F1

is Betza’s F atom restricted to distance of 1. It expands to

{-vars a in [1, -1] b in [1, -1] -square (a b)
-conditions (a b) empty|opposite}

W1

is Betza’s W atom restricted to distance of 1. It expands to

{-vars a in [1, -1] - square (a 0) -conditions (a 0) empty|opposite}
{-vars a in [1, -1] - square (0 a) -conditions (0 a) empty|opposite}

The last two moves describe short and long castling, asserting neither king
nor rook have moved and that none of the squares the king will move over are
attacked.

3.3.2 Shogi
Shogi without placing pieces from hand can be defined as:
玉　 W1F1
飛　 W opromotion [ROW > 5]-> 竜
竜　 WF1
角　 F opromotion [ROW > 5]-> 馬
馬　 FW1
金　 W1fF1
銀　 fW1F1 opromotion [ROW > 5]-> 金
珪　 ffN1 opromotion [ROW > 5]-> 金
香　 fW opromotion [ROW > 5]-> 金
歩　 fW1 opromotion [ROW > 5]-> 金

The opromotion shorthand expands into new moves that replace the piece by
its promoted version. F opromotion [ROW > 5]-> 馬 then expands into

{-vars a in <1,7> b in <1,a) -square (a a)
-conditions (b b) empty (a a) empty|opposite}
{vars a in <1,7> b in <1,a) -square (-a a)
-conditions (-b b) empty (-a a) empty|opposite}
{vars a in <1,7> b in <1,a) -square (a -a)
-conditions (b -b) empty (a -a) empty|opposite}
{-vars a in <1,7> b in <1,a) -square (-a -a)
-conditions (-b -b) empty (-a -a) empty|opposite}

{-vars a in <1,7> b in <1,a) -square (a a)
-conditions (b b) empty (a a) empty|opposite [ROW > 5]
-effects 馬 -> (a a) }
{-vars a in <1,7> b in <1,a) -square (-a a)
-conditions (-b b) empty (-a a) empty|opposite [ROW > 5]
-effects 馬 -> (-a a) }
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{-vars a in <1,7> b in <1,a) -square (a -a)
-conditions (b -b) empty (a -a) empty|opposite [ROW > 5]
-effects 馬 -> (a -a) }
{-vars a in <1,7> b in <1,a) -square (-a -a)
-conditions (-b -b) empty (-a -a) empty|opposite [ROW > 5]
-effects 馬 -> (-a -a) }

If there was promotion instead of opromotion, the non-promoting moves
would have a condition [ROW <= 5] to assert that a non-promoting move into/out
of the promotion zone is illegal, i.e. the promotion is obligatory.

3.3.3 Locusts chess
Locusts chess can be defined using the following rules. Out of all the mentioned
variants, this may be the one most alien to traditional chess, none of its pieces
can be even partially written using Betza’s notation.

k {-vars a in <2,11> b in <2,11> -square ($a $b) -conditions ($a $b) empty
-effects l -> (0 0)}

The king can move to any unoccupied place on the board, leaving behind a locust
(l).

l
{-vars a in <1, 11> b in <1,a-1) -square (a 0)

-conditions (a-1 0) opposite
(a 0) empty (b 0) empty -effects . -> (a-1 0) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (0 a)
-conditions (0 a-1) opposite
(0 a) empty (0 b) empty -effects . -> (0 a-1) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (-a 0)
-conditions (-a+1 0) opposite
(-a 0) empty (-b 0) empty -effects . -> (-a+1 0) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (0 -a)
-conditions (0 -a+1) opposite
(-a 0) empty (0 -b) empty -effects . -> (0 -a+1) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (a a)
-conditions (a-1 a-1) opposite
(a a) empty (b b) empty -effects . -> (a-1 a-1) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (-a a)
-conditions (1-a a-1) opposite
(-a a) empty (-b b) empty -effects . -> (1-a a-1) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (a -a)
-conditions (a-1 1-a) opposite
(a -a) empty (b -b) empty -effects . -> (a-1 1-a) e -> (0 0)}

{-vars a in <1, 11> b in <1,a-1) -square (-a -a)
-conditions (1-a 1-a) opposite
(-a -a) empty (-b -b) empty -effects . -> (1-a 1-a) e -> (0 0)}
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The locust’s move -vars a in <1, 11> b in <1,a-1) -square (a 0)
-conditions (a-1 0) opposite (a 0) empty (b 0) empty
-effects . -> (a-1 0) e -> (0 0) jumps over an opposing piece ((a-1 0)
opposite) to an empty place ((a 0) empty), captures it indirectly (. -> (a-1
0)) and leaves a leo (e) behind. The condition (b 0) empty asserts there are no
pieces between the starting square and the piece jumped over.

Its other moves are the same pattern in different directions.

e
{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (a 0)

-conditions (b 0) opposite|friend (a 0) opposite
(c 0) empty (d 0) empty
-effects (b 0) -> (b 0)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (-a 0)
-conditions (-b 0) opposite|friend (-a 0) opposite
(-c 0) empty (-d 0) empty
-effects (-b 0) -> (-b 0)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (0 a)
-conditions (0 b) opposite|friend (0 a) opposite
(0 c) empty (0 d) empty
-effects (0 b) -> (0 b)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (0 -a)
-conditions (0 -b) opposite|friend (0 -a) opposite
(0 -c) empty (0 -d) empty
-effects (0 -b) -> (0 -b)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (-a a)
-conditions (-b b) opposite|friend (-a a) opposite
(-c c) empty (-d d) empty
-effects (-b b) -> (-b b)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (a a)
-conditions (b b) opposite|friend (a a) opposite
(c c) empty (d d) empty
-effects (b b) -> (b b)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (-a -a)
-conditions (-b -b) opposite|friend (-a -a) opposite
(-c -c) empty (-d -d) empty
-effects (-b -b) -> (-b -b)}

{vars a in <1,11> b in <1,a-1> c in <b+1,a-1> d in <1,b-1> -square (a -a)
-conditions (b -b) opposite|friend (a -a) opposite
(c -c) empty (d -d) empty
-effects (b -b) -> (b -b)}

The leo’s move vars a in <1,11> b in <1,a-1> c in <b+1,a-1>
d in <1,b-1> -square (a 0) -conditions (b 0) opposite|friend
(a 0) opposite (c 0) empty (d 0) empty
-effects (b 0) -> (b 0) jumps over any piece ((b 0) opposite) onto an op-
posing piece ((a 0) opposite). Unlike the locust that jumps to the square right
after the piece jumped over (the platform), the leo can jump any distance as
long as there are no pieces between its starting position and the platform ((c
0) empty)) and no pieces between the platform and its ending position ((d 0)
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empty). The effect (b 0) -> (b 0) is there to differentiate moves with same
target square but different place of the platform from each other.

Its other moves are the same pattern in different directions.
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4. Engine
To compare different strategies applicable to fairy chess games, I needed an engine
capable of understanding their rules and playing those games.

4.1 Analysis of requirements for the engine
The engine required the following features:

• It had to be able to learn to play (in terms of playing moves in accordance
to the rules) a variant from its configuration file as described in section on
notation (Section 3.2).

• It had to be able to play a game both against a human opponent and against
another engine.

• It had to have a simple way of changing its evaluation function.

Existing engines either don’t support all the movement patterns I wanted to
support like FairyMax 14 or don’t allow me to experiment with their evaluation
function like FairyStockfish 14.

4.2 High level overview
The engine wrapper if given a valid configuration file is able to set the starting
position and then play one side of the game – it’s notified of opponent’s moves and
replies with moves of its own, trying to win the game – it can use multiple com-
munication protocols for receiving/sending moves as long as they’re implemented
using the engine’s interface.

The chess engine I’ve written consists of several interconnected parts. An
image can be seen in 4.1. In the following sections I will describe what those
parts are and how the engine uses them.

4.3 Game rules representation
Once initialized by a game configuration file, the engine contains an array of all
pieces used in the game. The pieces are each associated with moves they can play
– those are then used to figure out which positions can follow from another in a
game tree as well as when the game is over due to a checkmate or a stalemate.
This way the same engine can play multiple different games if it is instantiated
with different list of pieces.

Furthermore the engine knows the starting position of the variant it is cur-
rently playing that is to be set at the start or any subsequent restart of the
game.

27



Figure 4.1: Overview of the engine components – connections indicate that the
component closer to Engine Wrapper owns the one further away

4.4 EngineThread
The engine thread searches through the position tree using a depth first min-
max algorithm. Until the maximal depth, each discovered position is passed to a
MovesIterator to iterate over all possible continuations. Positions at max depth
are evaluated statically by the engine’s Evaluator.

4.5 Evaluator
The engine utilizes an Evaluator class to provide static evaluations of positions
at the bottom of the search tree – changing the implementation of this class will
have large impact on how the engine plays in a game – later in this work I will be
comparing different Evaluator classes in games against each other to see which
principles are useful for which variants.

Heuristics that have been used by chess players such as Ralph Betza [2] and
Steve Mayer [10] to estimate the value of chess pieces and some of which I will
implement in the engine’s evaluators include the following:

• mobility over an empty board – in one move or in several moves, placed at
a random square

• mobility over a board in terms of which squares can be reached regardless
of the number of moves it takes – discounting colorbound pieces or even
pieces like the Alfil (Betza’s (2,2) atom) that can only ever reach about one
eighth of the chessboard

• mobility over a board with randomly placed obstacles – in one move or in
several moves, placed at a random square

• checkmating potential – a piece that can attack multiple squares immedi-
ately next to each other is more dangerous in terms of delivering a check-
mate than one that can’t – this changes if the king has a different movement
pattern, in such cases mirroring the king’s movement may be the better
heuristic for checkmate potential.
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• special abilities potential – pieces that can place new pieces on board can
be very powerful, as can be pieces that can destroy opposing pieces without
jumping on their square. Both the likelihood that the move with a given
special effect can be played and the actual magnitude of its impact when
played are to be taken into account.

Furthermore, the evaluator should take into account how the value of a piece
differs based on where on the board it is:

• mobility over an empty board in one or several moves when starting on a
particular square

• mobility over a board with randomly placed obstacles in one or several
moves when starting on a particular square

• proximity to places where moves with a positional condition given in abso-
lute numbers can be played, e.g. promotion zones in Shogi or FIDE chess

• relative safety especially in case of the king but to some extent all valuable
pieces

Lastly, an evaluator may benefit from taking into account concepts that can’t
fully be expressed in terms of what was mentioned above, such as proximity of
pieces to the king, teamwork of pieces in a position (protection of each other,
jointly controlled squares...), positional weak points and more.

More on evaluators will be in the following chapter on their technical realiza-
tion.

4.6 MovesIterator
In its simplest implementation just a wrapper over a vector of positions, the
MovesIterator is a class that given a position iterates over all the positions that
may follow from it. Various implementations of MovesIterator can use heuristics
regarding the order in which they iterate over the child positions to attempt to
maximize the benefit of alpha/beta pruning in minmax search done by the engine
thread.

Heuristics employed by the iterators will consist of the following:

• strongest piece heuristic – the most valuable piece is most likely to have the
best move

• monotonous static evaluation heuristic – if a child position has a good static
evaluation, it is likely that it will turn out as a good move even as examined
into more depth

• capture move heuristic – a move that captures an opposing piece is more
likely to be a good move, the more powerful that piece is the more likely it
is to be a good move – this is in fact very similar to the monotonous static
evaluation heuristic, since the moves that change the static evaluation the
most are usually capturing moves.
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4.7 EngineWrapper
Technically speaking not a part of the engine – it’d be more accurate to say
the engine is a part of the wrapper – the wrapper encapsulates the engine and
the communication protocol used to communicate with the opponent (depending
on the protocol either over a server or in a peer to peer fashion). It also keeps
information about the game’s current position as well as tables of pieces, symbol
tables used to translate positions as understood by the protocols into positions
as understood by the engine and tables used for hashing of positions.

4.8 TranspositionTable
Hashtable used by engine as a cache of previously seen positions. The table
stores entries of either exact evaluation, upper bound evaluation or lower bound
evaluation and optionally the best available move. Zobrist hashing [17] is used
to map positions to entry buckets.

30



5. Technical solution
In this chapter I will describe how the engine’s components mentioned in the
previous chapter are implemented using C++ and how they actually work when
playing a game.

5.1 EngineWrapper
The EngineWrapper is an object that encapsulates the engine itself and a com-
munication object capable of sending/receiving moves from the opponent. It is
also responsible for maintaining the game state, both in terms of storing data
related to the variant being played (more on it in the following section) as well as
storing the current board for the game being played. A diagram of its component
can be seen in 5.1.

5.2 Game rules representation
The engine wrapper remembers a vector of pieces. Each piece is represented by a
vector of its possible moves and each move is represented by a vector of conditions
that have to be satisfied for it to be playable and a vector of effects that take
place if it’s played.

Since the conditions for different moves of one piece are very often shared
among several pieces (all pieces described by the slider pattern, such as rooks
which will for example share the condition (0 1) empty for all moves to (0 ?)),
the fetching of all available moves of a piece is done at once. The vector of all
conditions relating to the moves of a piece is stored in the piece with individual
moves only have a list of indices into the vector – when the engine looks for
available moves of a piece, it creates an array of truth values for this list of
conditions, evaluating each of them only once. A diagram of how pieces are
represented can be seen in 5.2.

5.3 Transposition Table
The transposition table is implemented using an unordered map from positions
to cache entries. Each cache entry contains the following:

• evaluation value for the given position

• indicator of exactness of the evaluation – either EXACT if the position
was evaluated by examining all of its subtree to a given depth, or UP-
PER_BOUND if the position was evaluated until it was found that it’s
evaluation was lower than the current alpha and it wasn’t examined fur-
ther or LOWER_BOUND if it was found that it’s evaluation was higher
than the current beta and it was not examined further

• Depth to which this particular position was evaluated when this cache result
was obtained
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Figure 5.1: Diagram of EngineWrapper and its main constituents

Figure 5.2: Diagram of objects representing the game rules

32



• Best move playable in this position – only if the evaluation is EXACT

When cleaning up, the transposition table removes those entries that have
the lowest deep, i.e. those whose evaluation is likely least accurate and was least
expensive to obtain.

5.4 EngineThread
The engine thread uses a depth-first search in the following fashion:

• receive a node – a position, the player to move (MIN/black or MAX/white)
and its associated depth, alongside the alpha and beta of the relevant part
of the tree traversed so far.

• If the node is in cache with indicator EXACT, return its evaluation.

• If the node is in cache with indicator UPPER_BOUND and the current
beta is higher than this upper bound, return the upper bound so the parent
call can continue.

• If the node is in cache with indicator LOWER_BOUND and the current
alpha is higher than this lower bound, return the lower bound so the parent
call can continue.

• If the node is not at the maximal depth, the search will expand it. If it is
at maximal depth, the engine will evaluate it statically using its Evaluator
object.

5.4.1 Expanding a node
To expand a node of the search tree, the depth evaluation method is parame-
terized by an implementation of MovesIterator. It uses the iterator to generate
children of the original node and then (if the child position isn’t in cache, in which
case it can just return the cached value) call itself recursively on them until either:

• The player to move is MIN and the current child’s evaluation is lower than
the current alpha – going further would be a waste of resources – return
the current node’s eval as this child’s eval with the sign that it is an upper
bound.

• The player to move isMAX and the current child’s evaluation is higher than
the current beta – going further would be a waste of resources – return the
current node’s eval as this child’s eval with the sign that it is a lower bound.

• The child’s evaluation is MAXINT and current player is MAX or MININT
and the current player is MIN, signifying that a king was taken and the
node has been an illegal position. Return child’s evaluation with the sign
that it was exact.

• there are no more children to investigate – return the minimal evaluation
of a child encountered if playing as MINor the maximal if playing as MAX
with the exactness sign of the child node.
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Note on checkmates and stalemates: The engine saves resources by not check-
ing legality of moves with regards to king’s safety. Instead, every valid evaluator
implementation is required to evaluate a position with the king missing as MAX-
INT if the black king is missing or MININT if the white is missing and the engine
thread will never investigate such position further – this means the engine will
never play a move leading to a possibility of immediate capture of the king if it
has any other option. Checkmates and stalemates can then be detected as nodes
where all of their children have MAXINT or MININT evaluation.

5.5 MoveIterator
Moves iterator is given a starting position and provides a way to iterate over its
children using a getNext() and a hasNext() method. Aside from just being a
container of the positions, its goal is to maximize the benefit of the alpha/beta
pruning by iterating over the child positions from best to worst. The interface
allows both eager and lazy ways of iteration.

5.5.1 Eager iterators
Eager iterators are ones that generate all positions at once and then iterate over
them. Their advantage is the ability to use heuristics based on sorting all the
generated positions, such as the monotonous static eval assumption. They can
implement all the heuristics of lazy evaluators and some more, their disadvantage
being that if they’re actually good at putting more important positions first,
they’ll waste most of their effort creating ones that will never be examined.

The iterators implemented like this are:

• Monotonous moves iterator: Orders child nodes by their static evaluation
(ascending or descending dependent on which player is expanding the node).

• Faster monotonous moves iterator: Orders child nodes by the cumulatively
computed part of their static evaluation (more on this in section about
evaluators – operation during playing moves), saving time by forgoing the
possibly expensive full evaluation.

• Strongest piece iterator: Orders child nodes by the overall evaluation (mean
over all its positional evaluation, as described in chapter on static evalua-
tors) of the piece playing the move.

• Capture move iterator: iterates first over nodes reached by a capturing
move, then over nodes reached by a non-capturing move.

5.5.2 Lazy iterators
Lazy move iterators generate children positions on demand. While they can’t sort
the children vector, they can implement heuristics using information available in
the moves themselves (capture move heuristic, strongest piece heuristic...) and
if they’re actually able to maximize the alpha/beta pruning, they’ll save extra
work that’d be spent on creating positions that weren’t worth exploring.
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While the iterator interface is designed to allow such iterators, I didn’t im-
plement any iterator like that.

5.6 Evaluator
The evaluator is a class implementing static evaluation of positions. Since we
want to use one general implementation for multiple chess variants, the evaluator
does a lot of work at its initialization when it’s given the rules and is now trying
to figure out how to evaluate positions of this particular variant.

5.6.1 Initialization
On initialization, the evaluator receives a vector of pieces with their moves and it
has to fill an unordered map with entries in the form of piece_id, row_index,
col_index assigning numeric values to how a piece of the given id on the given
square impacts the position’s evaluation. This unordered map also has to have
entries with negative values for piece_id to evaluate black pieces – typically it
will be symmetric but it doesn’t have to be (there may be games where black
and white share some pieces but their armies differ in others making the shared
piece’s usefulness in combination with others different). Furthermore, if the piece
definitions include flags, the evaluator will fill another unordered map with entries
in the form of piece_id, flag_id, row_index, col_index mapped to numer-
ical values indicating how a piece having a given flag will impact the position’s
evaluation.

After filling those tables, the evaluator may do any other work depending
on how its non-static evaluation should work – notably the KingSafetyEvaluator
creates a table for each piece that tells how long it’ll need to go from any given
square to any other square on an empty board.

5.6.2 Operation during playing moves
Whenever a move is played (either in the actual game or in its simulation during
the engine’s minmax search), the engine will call evaluator’s methods
placePiece(piece_id, row_index, col_index)
removePiece(piece_id, row_index, col_index)
setFlag(flag_id, piece_id, row_index, col_index)
unsetFlag(flag_id, piece_id, row_index, col_index).
The evaluator doesn’t actually change the position in any way, it only updates
its evaluation accordingly. The evaluator doesn’t check whether the piece is in
fact on the given square.

5.6.3 Static evaluation
To evaluate a position at the bottom of a search tree, the engine uses an Evaluator
class. The evaluation calculation consists of two parts:

• sum of the values of pieces at their positions
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• position based inferences that can’t be measured just by the such as prox-
imity to the king, rooks on free files, piece coverage...

This distinction is of particular importance due to the fact that the first part is
recalculated from the previous value whenever a piece is taken away or put onto
the board, lessening the demand on resources. On the other hand, recalculating
the second part would be expensive and in fact pointless, as there are no guar-
antees about how exactly a particular move changes it – it has to be done anew
whenever the search tree bottoms out.

5.6.4 Composite evaluator
To make comparing different approaches to evaluation easier, there is a class tem-
plate that allows combining multiple evaluators. The CombinedEvaluator<T...>
is parameterized with a list of evaluators, summing their partial normalized eval-
uations of a position to arrive at a conclusion.

The class ScaledEvaluator<typename T,int Up, int Down> is an evalua-
tor that simply takes another evaluator T and returns its evaluation scaled by
Up/Down – by itself it’d play exactly the same as T, but it is useful to give
different weights to partial evaluations in the context of a CombinedEvaluator.

Lastly, any evaluator that tries to account for the promotion potential (or
any other move that places new pieces on the board, if the variant has such) of
pieces has to know the evaluation of those pieces – and it can’t provide them
itself, as it’d get stuck in an infinite recursive call if it tried to – for that reason,
it has to be parameterized by an evaluator that doesn’t take values of other
pieces into account. The drawback of an evaluator like that is that it isn’t likely
to work well for pieces with multiple levels of promotion (ones that promote to
a piece that promotes to another) – this could be to an extent mitigated by a
PotentialEvaluator parameterized by another PotentialEvaluator with the latter
one (or only the last one if we wanted more layers) parameterized in a way
that evaluates pieces in a way independent of other pieces’ evaluations. On the
other hand, such promotion patterns aren’t something I’ve ever seen in any chess
variant.

5.6.5 Normalization of evaluators
To make CombinedEvaluator more useful, it is needed that their member eval-
uators give values within the same order of magnitude. For that reason, the
evaluators using a table of pieces’ evaluations have them scaled in a way that the
magnitude of the vector [evalOfPiece1, evalOfPiece2, evalOfPiece3...] is 1 000
000. Evaluators using a table of pieces’ positions will scale them in a similar way,
using the mean over all squares of a piece as its evaluation for the purpose of
figuring out the scaling factor. Bottom evaluators that don’t use a table at all
will return values rescaled to be in range from -(1 000 000)/sqrt(num_pieces) to
+(1 000 000)/sqrt(num_pieces).
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5.7 Communication Protocol
The engine supports two communication protocols, the XBoard interface’s proto-
col and my own communication protocol with one caveat – the XBoard commu-
nication protocol was not designed to support all the variations the engine can
implement, so there are variants that can’t be played using this protocol.

5.7.1 XBoard protocol
This is the protocol implemented by the XBoard interface [14] as specified in
chapter on Related Works. It is used if the engine is started via the XBoard
chess interface, which sets the program to receive XBoard’s input on stdin and
to send its stdout to XBoard.

The limitation of this protocol is ignoring special effects of moves played (aside
from pawn promotion and castling) – the engines receiving its output therefore
can’t differentiate between different moves with equal final square differing only
in their effects.

5.7.2 Custom communication protocol
This protocol is a peer to peer communication protocol that allows all variants
playable with pieces defined using the notation given in previous chapters.

5.7.3 Game initiation
One instance of engine is to run listening for incoming connection at a given port.
Once another engine connects to it, the connecting engine sends a message setting
up the variant and the position.

New variant message is as follows:

{
type: "new_variant",
variant: string
}

New position message is as follows:

{
type: "new_position",
board:{
pos: {
squares: [[{piece_id: int, flags: long_int}]]
},
white: bool,
moves: int
}
}

Then the connecting engine tells the other one which side to play.
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{
type: "play_color",
white: bool
}

If white was set to false, the connecting engine will start playing as white,
otherwise it will await the opponent’s move.

5.7.4 Playing moves
Moves are sent in the form of:

{
type: "move",
move: string,
effects: string
}

Where move is a string like (a b) -> (c d) and effects string is a string
of the move’s effects as they’re given in definition of the move, i.e. (a b) ->
(c d) for a moving effect [piece_string] -> (a b) for a new piece effect, and
+-[flag_string] -> (a b) for setting/unsetting a flag.
For example white’s short castling would be denoted as

{
type: "move",
move: "($0 $4) -> ($0 $6)",
effects: "($0 $7) -> ($0 $5)"
}

A piece utilizing its once-per-game teleport move in Schnittberger’s teleport
chess would look like

{
type: "move",
move: "($0 $2) -> ($3 $7)",
effects: "-teleport -> ($3 $7)"
}

38



6. Evaluators and iterators
So far I have outlined how the engine will work and what strategies it may use
in playing a game. Now the goal is to find out what effect will those approaches
have on the engine’s decision making, which heuristics will prove superior over
others in actual games.

In this chapter I will describe in more detail the approaches to evaluation of
chess variant positions, as well as approaches to iteration heuristics that will be
used by the engine.

6.1 Evaluators to be compared
In this section I will describe the logic implemented by the evaluators that (or the
combinations thereof) will be compared to each other during the experiments.

Note: ”Board randomly populated by obstacles” is a board with randomly
placed pieces that have black or white color (i.e. they can be captured or be the
platform for a grasshopper piece), but are not any kind of piece defined by the
variant and don’t have any flags. ”Random valid position” is a position reached
from the starting position of the variant by a random sequence of valid moves.

6.1.1 Static mobility evaluator
Evaluator that assumes the piece’s value is dependent on how many different
squares it can go to. Specifically it looks at:

• How many squares the piece can on average reach when placed on an empty
board.

• How many squares the piece can on average reach when placed on a board
randomly populated by obstacles.

• How many squares the piece can on average reach when placed into a ran-
dom valid position.

The evaluator considers sequences of 1, 2 and 3 moves of the piece.
The equation used for each square is:

P_1 + P_2/2 + P_3/4
where P_n is the number of different positions that reached by all sequences

of n moves of the given piece.
This evaluator calculates one number for each piece and copies it to all piece,

row, col fields for that piece – it doesn’t take into account the pieces’ positions.
A similar evaluator was proposed by I. J. Good in Five Year Plan for Auto-

matic Chess [7].

6.1.2 Location-dependent mobility evaluator
Evaluator that works like the static mobility evaluator, but it stores the value of
the piece for each square separately.
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6.1.3 Position-dependent mobility evaluator
Evaluator that only looks at the number of available moves in the current position
– it uses no evaluation tables.

The evaluator considers only the single next move (it has to do the brunt of
its work during game time rather than during initialization and considering more
would be akin to adding an extra depth to the search tree).

The evaluation returned is:
[number of moves white's pieces have - number of moves black's pieces have]

This evaluation method was mentioned I. J. Good in A five-year plan for
automatic chess [7].

6.1.4 Static capturing ability evaluator
Evaluator that works similar to the static mobility evaluator, but instead of which
squares it can go to, it looks at which pieces it can capture. Specifically it looks
at:

• How many pieces on average it can capture when placed on a random square
on a board randomly populated by obstacles.

• How many pieces on average it can capture when placed into a random
valid position.

The evaluator considers the total number of captured pieces in 1, 2 and 3 moves
of the piece.

The equation used for each square is: C_1 + C_2/2 + C_3/3,
where C_n is the total number of captures in all combination of n moves the

piece could play.
This evaluator calculates one number (the mean result over all squares) for

each piece and copies it to all piece, row, col fields for that piece – it doesn’t
take into account the pieces’ positions.

6.1.5 Location-dependent capture ability evaluator
Evaluator that works like the static capturing ability evaluator, but it stores the
value of the piece for each square separately.

6.1.6 Position-dependent capture ability evaluator
Evaluator that only looks at the number of available capture moves in the current
position – it uses no evaluation tables.

The evaluator considers only the single next move (it has to do the brunt of
its work during game time rather than during initialization and considering more
would be akin to adding an extra depth to the search tree).

The evaluation returned is:
[number of capturing moves white's pieces have - number of capturing moves black's pieces have],
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6.1.7 Static potential evaluator
Evaluator that estimates the strength of the piece by estimating how much the
piece’s moves can change the position’s evaluation.

This evaluator has to be parameterized by an inner evaluator class to know
how to evaluate the aftermath of effects taking place. Specifically this evaluator
looks at the maximal change in evaluation according to its inner evaluator over
all possible sequences of moves of the piece.

The evaluator considers sequences of 1,2 and 3 moves of the piece.
The equation for each square is:

maxDE_1 + maxDE_2/2 + maxDE_3/4, where maxDE_n is the expected maximal
evaluation change over all sequences of n moves the piece could play.

This evaluator calculates one number (the average of square values) for each
piece and copies it to all piece, row, col fields for that piece – it doesn’t take
into account the pieces’ positions.

6.1.8 Position-dependent potential evaluator
Evaluator that works similarly to the static potential evaluator, but stores the
evaluation for each square separately.

6.1.9 Position soundness evaluator
Evaluator that looks at how many pieces in the current position are protected
by another piece, i.e. pieces positioned so that if they were captured, a friendly
piece would be able to capture the attacker – it uses no evaluation tables. The
king doesn’t count as protected, as capturing its capturer would be pointless.

The evaluation value is:
[number of white's capture moves with target on a white non-king piece]

-[number of black's capture moves with target on a black non-king piece].

6.1.10 King safety evaluator
Evaluator that assumes a position is better if many friendly pieces are close to
the king and few opposing pieces are.

The evaluator has to be parameterized by another to know how dangerous
which pieces are.

It looks at how far (in terms of number of moves needed to get onto the king’s
square as well as number of squares to get within 1 square of it) the pieces are
from the king and how dangerous they are.

The evaluation value is:
[sum over all white's pieces:
p_D * (2/(p_PO) + 1/(p_PO1)
+ 2/(p_PM) + 1/(p_PM1)]
- [sum over all black's pieces:
p_D * (2/(p_PO)+ 1/(p_PO1)
+ 2/(p_PM) + 1/(p_PM1)],

where:
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• p_D is the piece’s dangerousness according to a provided inner evaluator,

• p_PO is how many moves it’d take to get to the opponent’s king over an
empty board,

• p_PO1 is how many moves it’d take to get within one square from opponent’s
king over an empty board,

• p_PM is how many moves it’d take to get to own king over an empty board,

• p_PM1 is how many moves it’d take to get within one square from own king
over an empty board.

6.1.11 Simple king safety evaluator
Evaluator that assumes a position is the better the further our king is from in
the center.

The evaluation value is:
([row of black king] * [number rows - row of black king]
- [row of white king] * [number rows - row of white king])
/ [number rows]^2 / 4
+ ([col of black king] * [number columns - col of black king]
- [col of white king] * [number columns - col of white king]
/ [number columns^2] /4.

6.2 Iterators to be tested
In this section I will describe the heuristics used by the iterators that will be tested
to see which provide the biggest benefit in terms of minimizing the number of
nodes that have to be resolved until the EngineThread arrives at a result.

6.2.1 Monotonous evaluation iterator
The iterator assumes that the evaluation is likely to change monotonously, i.e.
the move that has the best desired impact at depth 0 will likely have the best
desired impact at depth 1 and so on until the bottom of the search.

6.2.2 Faster monotonous evaluation iterator
The iterator assumes that the evaluation is likely to change monotonously, i.e.
the move that has the best desired impact at depth 0 will likely have the best
desired impact at depth 1 and so on until the bottom of the search. Unlike the
Monotonous evaluation iterator, this iterator only looks at the cumulative part of
the evaluation function, saving time that’d be needed to go through the possibly
expensive static evaluation.

6.2.3 Captures first iterator
This iterator assumes capture moves are more likely to be good moves than
noncapture moves, it iterates over capturing moves first.
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6.2.4 Strongest piece moves iterator
This iterator assumes the strongest piece (according to a given inner evaluator)
is the most likely to have the best move, it iterates over the moves of pieces
according to their value in its evaluator’s piece table.
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7. Experiments
In this section, I will present the results of the evaluators playing games against
each other, to see which playing strategies generalize soundly into chess variations
and create the best generalized chess engine and which – if any – are misleading
or inferior to other approaches. Furthermore, I will present results of different
iterators helping engines find the best moves in the same positions to see which
of them provide the best speedup.

7.1 Experiment settings
In this section I will describe how exactly the conditions of the engines’ games
against each other were set up.

7.1.1 Evaluators comparing method
The comparing of evaluators consists of having an engine using one evaluator
play against another engine utilizing a different evaluator. Each pair of engines
is to be tested on multiple chess variants.

Besides the results of the games themselves, we will take note of how long
different evaluators took to play a move when using different moves iterators.

7.1.2 MovesIterators comparing method
Since a different MovesIterator implementation by itself won’t change how the
engine plays (except in the case the depth evaluation of two positions is the
exact same), their goal is just to maximize how much benefit is gained from A/B
pruning. The metrics we will focus on are the iterator’s impact on the branching
factor of the search tree as well as the actual wall-time per move when using an
iterator to account for iterator’s own overhead.

7.1.3 Used evaluators
Since the amount of possible evaluators created by parameterizing a CombinedE-
valuator is very high, it was necessary to choose a select few evaluators to compare
experimentally.

All the evaluators used in this chapter are a combination of a static table
evaluator (from here referred to as base evaluator), chosen from:

• Static Mobility Evaluator – from here referred to as SME

• Static Potential Evaluator (using Static Mobility Evaluator as the inner
evaluator) – from here referred to as SPE

• Static Captures Evaluator – from here referred to as SCE

and an evaluator to evaluate the pieces’ positions (from here referred to as position
evaluator), chosen from:
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• none

• position mobility/potential/captures evaluator (always using the one de-
rived from the combination’s static evaluator)

• King Safety Evaluator (using the combination’s static evaluator as its inner
evaluator)

• Simple King Safety Evaluator

• Immediate Mobility Evaluator

• Immediate Captures Evaluator

• Position Soundness Evaluator

This gives us a total of 21 evaluators.

7.1.4 Variants played
The variants played were as follows:

• FIDE chess

• Nutty Knights from Ralph Betza’s chess with different armies [3]

• Colorbound Clobberers from Ralph Betza’s chess with different armies [3]

• Locusts by Yu Ren Dong [6] – modified by being played at an 8x8 board to
make the games faster

• Shogi – without putting pieces into play from hand

7.2 Results
In this section I will present the results of the experiments.

7.2.1 Comparison of base evaluators
To figure out which of the base evaluators gives us the best estimate of the relative
values of fairy chess pieces, I had them play multiple games against each other
using different position evaluators.

Specifically, each combined evaluator mentioned above played 4 games of each
variant against two opponents that used an alternative static evaluator and the
same position evaluator, making it 420 games in total with each base evaluator
present in two thirds of them. After each game, the engines were awarded 1 point
for a victory, half a point for a draw and 0 points for a loss. The results can be
seen in table 7.1.

Full breakdown of the games played and their results for each engine pair can
be found in attachments 54.
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Evaluator Wins / Games played
SME 160 / 280
SPE 133.5 / 280
SCE 126.5 / 280

Table 7.1: Results of games with different base evaluators

Engine Wins
By itself 53 / 120

Position Mobility 78 / 120
King Safety 63.5 / 120

Simple King Safety 32.5 / 120
Immediate Mobility 91.5 / 120
Immediate Captures 43.5 / 120
Position Soundness 58 / 120

Table 7.2: Results of games with different position evaluators

7.2.2 Comparison of position evaluators
In this experiment, seven variations of Static Mobility Evaluator were used:

• Static Mobility Evaluator without any enhancement

• Static Mobility Evaluator + Position Mobility Evaluator scaled by 1/100

• Static Mobility Evaluator + King Safety Evaluator scaled by 1/100

• Static Mobility Evaluator + Simple King Safety Evaluator

• Static Mobility Evaluator + Immediate Mobility Evaluator

• Static Mobility Evaluator + Immediate Captures Evaluator

• Static Mobility Evaluator + Position Soundness Evaluator

ehe scalings for Position Mobility Evaluator and King Safety Evaluator were cho-
sen somewhat arbitrarily – using them without downscaling led to a very reckless
styl of play where they’d sacrifice a lot of material for very slight positional ben-
efit. Each played 4 games of each variant against every evaluator in the group.
Results can be seen in table 7.2.

Full breakdown of the games played and their results for each engine pair can
be found in attachments 58.

7.2.3 Speed of evaluator-iterator pairs
In this experiment, I let each evaluator-iterator pair in the following table play
first three moves in a game of fide chess (my moves were always e4 first, followed
by developing the queen onto an unattacked square and then moving it to another
unattacked square) and measured the average branching factor of each node that
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Engine/Iterator Base Monotonous Monotonous faster Strong piece Capture move
SME by itself 13,14,13 8,7,7 8,6,5 12,11,12 11,8,7

SME position mobility 9,10,11 6,5,6 6,5,6 9,7,8 5,4,4
SME King safety 8,8,11 5,5,6 4,3,3 9,8,8 5,5,5

SME Simple King safety 11,12,17 8,8,8 7,4,5 11,12,13 10,5,6
SME ImmediateMobility 10,15,15 7,10,9 6,5,5 6,8,7 6,6,5
SME ImmediateCaptures 8,8,10 7,8,8 5,4,4 8,9,11 7,5,4
SME PositionSoundness 10,15,15 7,10,8 6,5,5 6,8,7 6,6,5

Average 11.57 7.29 5.10 9.05 5.95

Table 7.3: Branching factors of iterator-engine pairs on each move

was searched as well as the actual time it took the engine to play its three moves.
The branching factor can be seen in table 7.3 and the resulting wall times in table
7.2.3.

Engine/Iterator Base Monotonous Monotonous faster Strong piece Capture move
SME by itself 58s 44s 21s 35s 28s

SME position mobility 40s 36s 20s 20s 21s
SME King safety 400s 640s 54s 192s 109s

SME Simple King safety 78s 58s 20s 64s 23s
SME ImmediateMobility 400s 676s 70s 150s 79s
SME ImmediateCaptures 210s 460s 51s 160s 81s
SME PositionSoundness 5028s 8100s 1320s 1745s 1200s

Table 7.4: Wall speeds of iterator-engine pairs over all three moves

7.3 Discussion
7.3.1 Comparison of evaluators
According to the results shown in table 7.1, the base evaluators seem relatively
evenly matched, with the mobility one having slight edge over its counterparts.

As shown in table 7.2, all enhancements of the base evaluator except Simple
King Safety and Immediate Captures have shown to give improvements over just
using the base evaluator. The most successful ones are ones focused on mobility
– the ImmediateMobility evaluator actually counting the moves each player can
play in a position and the PositionMobility evaluator estimating their number
based on where each piece is placed, echoing the idea that mobility is the most
important factor in chess-like games.

The differences between combined evaluators differing in base evaluators are
much smaller than those between combinations differing in position iterators,
likely because while different base evaluators are relatively similar (they all work
by counting pieces, just differing in how they estimate value of each of them), the
approaches employed by position evaluators differ vastly from each other.

7.3.2 Speed of iterator-evaluator pairs
The results presented in tables 7.3 and 7.2.3 show that all iterator heuristics
managed to lower the branching factor compared to the baseline, with Faster
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Monotonous Iterator providing the most significant improvement, followed closely
by Capture Move Iterator and then after a bigger gap by Monotonous iterator
and Strong Piece iterator.

The impact on wall speed of using a smart iterator has proved quite signifi-
cant – the Capture Move and Monotonous Faster iterators have both increased
the playing speed of all engines at least twice. The Strong Piece iterator is some-
what less effective, but it still delivers significant improvement. The Monotonous
Iterator is the only one that has a negative effect on wall speed in some cases.

It seems that while the Monotonous Iterator reduces the branching factor over
naive iteration, its overhead for evaluators with more expensive static evaluation
is so high it actually worsens the wall-time measurement. It also doesn’t seem to
reduce branching more than its faster variant that ignores non-cumulative part
of evaluation. A plausible explanation may be that the non-cumulative part is
less likely to move monotonously over the course of a game than the cumulative
part.
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Conclusion
In this work, we have described popular variants of chess and fairy chess, identified
some of their common characteristics and defined a notation that can describe
large subset of theirs.

Then we implemented an engine capable of understanding the defined notation
and playing the games described it in a way that allowed easy extensibility and
experimentation with its evaluation function.

Next, we built variants of the aforementioned engine and used them in games
against each other to test which of the evaluation function concepts are best to
figure out a winning strategy. Results suggest the most important thing is piece
mobility, both with regards to evaluating individual pieces as well as to evaluating
a position of equal material. Experiments with iteration heuristics hinted that
approaches using static evaluation of the intermediate nodes or notions strongly
linked to it, such as captures of opposing pieces, are the most useful in terms of
maximizing the benefit of A/b pruning.

The main drawbacks include the fact that the engine is rather slow and there-
fore it has to use rather shallow depths to play at a reasonable speed – either more
powerful pruning heuristic have to be used (engines such as Stockfish go as low
as 1.5 [16] compared to around 5 of our engine with the most successful iteration
heuristics tried) or the engine’s representation of game rules and subsequently its
way of using it to expand game tree nodes would have to be reworked to allow
faster operation.

Due to the sheer number of possibilities given by the CombinedEvaluator,
there is a lot of space for future work – it could be quite interesting to see what
benefit – if any – could more complex combinations of evaluation functions yield
over the tuples of one base evaluator and one position evaluator that were tested
as well as to use ScaledEvaluators in a more purposeful manner to find out what
weights of the partial evaluators provide the best performance.
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A. Attachments
The repository with code for the engine used in this thesis can be found at
https://gitlab.mff.cuni.cz/teaching/nprg045/peskova/bp-otmar.
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A.1 Games between engine pairs - different base
evaluators

In this section, detailed results of each match between a pair of engines are shown.
Each pair played four games of each variant with each engine playing twice as
black and twice as white once with depth 4 and then with depth 5. Each engine
was awarded 1 point for each victory, half a point for each draw and 0 points for
each loss.

Game Wins SME Wins SCE
FIDE chess 2.5 1.5

Nutty Knights 2 2
Colorbound Clobberers 2.5 1.5

Locust chess 2 2
Shogi 1.5 2.5

Figure A.1: Results SME vs SCE

Game Wins SME Wins SPE
FIDE chess 1.5 2.5

Nutty Knights 2 2
Colorbound Clobberers 2 2

Locust chess 2 2
Shogi 1 3

Figure A.2: Results SME vs SPE

Game Wins ScE Wins SPE
FIDE chess 2.5 1.5

Nutty Knights 2.5 1.5
Colorbound Clobberers 1 3

Locust chess 1 3
Shogi 1 3

Figure A.3: Results SCE vs SPE

Game Wins Combined ME Wins Combined CE
FIDE chess 3 1

Nutty Knights 3 1
Colorbound Clobberers 4 0

Locust chess 1 3
Shogi 2 2

Figure A.4: Results Combined ME vs Combined CE

Game Wins Combined ME Wins Combined PE
FIDE chess 3 1

Nutty Knights 3 1
Colorbound Clobberers 2.5 1.5

Locust chess 1 3
Shogi 1 3
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Figure A.5: Results Combined ME vs Combined PE

Game Wins Combined CE Wins Combined PE
FIDE chess 3 1

Nutty Knights 1 3
Colorbound Clobberers 2.5 1.5

Locust chess 2 2
Shogi 2 2

Figure A.6: Results Combined PE vs Combined CE

Game Wins SCE + ImmM Wins SME + ImmM
FIDE chess 2 2

Nutty Knights 2 2
Colorbound Clobberers 1.5 2.5

Locust chess 0 4
Shogi 2 2

Figure A.7: Results ImmM CE vs ImmM ME

Game Wins SME + ImmM Wins SPE + ImmM
FIDE chess 2 2

Nutty Knights 4 0
Colorbound Clobberers 1.5 2.5

Locust chess 2 2
Shogi 2 2

Figure A.8: Results ImmM ME vs ImmM PE

Game Wins SCE + ImmM Wins SPE + ImmM
FIDE chess 3.5 0.5

Nutty Knights 1.5 2.5
Colorbound Clobberers 1.5 2.5

Locust chess 1 3
Shogi 1.5 2.5

Figure A.9: Results ImmM CE vs ImmM PE

Game Wins SCE + King Wins SPE + King
FIDE chess 3.5 0.5

Nutty Knights 2 2
Colorbound Clobberers 2.5 1.5

Locust chess 1 3
Shogi 2.5 1.5

Figure A.10: Results King CE vs King PE
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Game Wins SME + King Wins SPE + King
FIDE chess 2.5 1.5

Nutty Knights 2 2
Colorbound Clobberers 2.5 1.5

Locust chess 2 2
Shogi 3.5 0.5

Figure A.11: Results King ME vs King PE

Game Wins SCE + King Wins SME + King
FIDE chess 0.5 3.5

Nutty Knights 2.5 1.5
Colorbound Clobberers 0.5 3.5

Locust chess 2 2
Shogi 3 1

Figure A.12: Results King CE vs King ME

Game Wins SME Wins SCE
FIDE chess 3 1

Nutty Knights 3 1
Colorbound Clobberers 2.5 1.5

Locust chess 2 2
Shogi 1 3

Figure A.13: Results SimpleKing ME vs SimpleKing CE

Game Wins SPE Wins SCE
FIDE chess 1.5 2.5

Nutty Knights 3 1
Colorbound Clobberers 2 2

Locust chess 4 0
Shogi 2 2

Figure A.14: Results SimpleKing PE vs SimpleKing CE

Game Wins SME Wins SPE
FIDE chess 2.5 1.5

Nutty Knights 3 1
Colorbound Clobberers 2 2

Locust chess 2 2
Shogi 1.5 2.5

Figure A.15: Results SimpleKing ME vs SimpleKing PE

Game Wins SME Wins SCE
FIDE chess 2.5 1.5

Nutty Knights 3 1
Colorbound Clobberers 2 2

Locust chess 2 2
Shogi 1 3

56



Figure A.16: Results Position Soundness ME vs PositionSoundness CE

Game Wins SME Wins SPE
FIDE chess 2.5 1.5

Nutty Knights 3 1
Colorbound Clobberers 3.5 0.5

Locust chess 4 0
Shogi 2 2

Figure A.17: Results Position Soundness ME vs PositionSoundness PE

Game Wins SPE Wins SCE
FIDE chess 0.5 3.5

Nutty Knights 1.5 2.5
Colorbound Clobberers 1.5 2.5

Locust chess 2 2
Shogi 2.5 1.5

Figure A.18: Results Position Soundness PE vs PositionSoundness CE

Game Wins SME Wins SCE
FIDE chess 3 1

Nutty Knights 2 2
Colorbound Clobberers 2.5 1.5

Locust chess 1 3
Shogi 2.5 1.5

Figure A.19: Results ImmC ME vs ImmC CE

Game Wins SME Wins SPE
FIDE chess 2.5 1.5

Nutty Knights 2.5 1.5
Colorbound Clobberers 3 1

Locust chess 1 3
Shogi 1.5 2.5

Figure A.20: Results ImmC ME vs ImmC PE

Game Wins SPE Wins SCE
FIDE chess 3 1

Nutty Knights 2 2
Colorbound Clobberers 1.5 2.5

Locust chess 3 1
Shogi 2 2

Figure A.21: Results ImmC PE vs ImmC CE
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A.2 Games between engine pairs - different po-
sition evaluators

Game Wins SME Wins SME+King
FIDE chess 2.5 1.5

Nutty Knights 2 2
Colorbound Clobberers 0.5 3.5

Locust chess 2 2
Shogi 2.5 1.5

Figure A.22: Results Base vs King

Game Wins SME Wins SME+SimpleKing
FIDE chess 2.5 1.5

Nutty Knights 2 2
Colorbound Clobberers 2 2

Locust chess 3 1
Shogi 3 1

Figure A.23: Results Base vs Simple King

Game Wins SME Wins 100:1 SME+PME
FIDE chess 1 3

Nutty Knights 0.5 3.5
Colorbound Clobberers 0.5 3.5

Locust chess 2 2
Shogi 1.5 2.5

Figure A.24: Results Base vs Combined

Game Wins SME Wins SME + ImmM
FIDE chess 1 3

Nutty Knights 0 4
Colorbound Clobberers 0.5 3.5

Locust chess 2 2
Shogi 1 3

Figure A.25: Results Base vs ImmM

Game Wins SME Wins SME + ImmC
FIDE chess 2 2

Nutty Knights 2.5 1.5
Colorbound Clobberers 2 2

Locust chess 3 1
Shogi 2 2

Figure A.26: Results Base vs ImmC
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Game Wins 100:1 Wins SME + SimpleKing
FIDE chess 1.5 2.5

Nutty Knights 3 1
Colorbound Clobberers 2 2

Locust chess 4 0
Shogi 4 0

Figure A.27: Results Combined vs SimpleKing

Game Wins 100:1 Wins SME + King
FIDE chess 3 1

Nutty Knights 3.5 0.5
Colorbound Clobberers 3 1

Locust chess 3 1
Shogi 2 2

Figure A.28: Results Combined vs King

Game Wins 100:1 Wins SME + ImmM
FIDE chess 1 3

Nutty Knights 1.5 2.5
Colorbound Clobberers 1.5 2.5

Locust chess 2 2
Shogi 2.5 1.5

Figure A.29: Results Combined vs ImmM

Game Wins MixedMEE Wins SME + ImmC
FIDE chess 3.5 0.5

Nutty Knights 3.5 0.5
Colorbound Clobberers 1 3

Locust chess 3 1
Shogi 3.5 0.5

Figure A.30: Results Combined vs ImmC

Game Wins SME + SimpleKing Wins SME + King
FIDE chess 1 3

Nutty Knights 0 4
Colorbound Clobberers 2 2

Locust chess 3 1
Shogi 0.5 3.5

Figure A.31: Results SimpleKing vs King

Game Wins SME + SimpleKing Wins SME + ImmM
FIDE chess 0 4

Nutty Knights 0 4
Colorbound Clobberers 1.5 2.5

Locust chess 1 3
Shogi 1.5 2.5
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Figure A.32: Results SimpleKing vs ImmM

Game Wins SME + SimpleKing Wins SME + ImmC
FIDE chess 0.5 3.5

Nutty Knights 2 2
Colorbound Clobberers 1.5 2.5

Locust chess 3 1
Shogi 2 2

Figure A.33: Results SimpleKing vs ImmC

Game Wins SME + King Wins SME + ImmM
FIDE chess 1.5 2.5

Nutty Knights 1 3
Colorbound Clobberers 1 3

Locust chess 3 1
Shogi 1.5 2.5

Figure A.34: Results King vs ImmM

Game Wins SME + King Wins SME + ImmC
FIDE chess 3.5 0.5

Nutty Knights 2 2
Colorbound Clobberers 2 2

Locust chess 3 1
Shogi 3.5 0.5

Figure A.35: Results King vs ImmC

Game Wins SME + ImmM Wins SME + ImmC
FIDE chess 3.5 0.5

Nutty Knights 1.5 2.5
Colorbound Clobberers 2.5 1.5

Locust chess 4 0
Shogi 2.5 1.5

Figure A.36: Results ImmM vs ImmC

Game Wins SME Wins SMEPS
FIDE chess 0.5 3.5

Nutty Knights 0 4
Colorbound Clobberers 2.5 1.5

Locust chess 4 0
Shogi 2.5 1.5

Figure A.37: Results Base vs Position Soundness
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Game Wins 100:1 Wins SMEPS
FIDE chess 2 2

Nutty Knights 3.5 0.5
Colorbound Clobberers 2.5 1.5

Locust chess 2 2
Shogi 1.5 2.5

Figure A.38: Results Combined vs Position Soundness

Game Wins ImmC Wins SMEPS
FIDE chess 0.5 3.5

Nutty Knights 3.5 0.5
Colorbound Clobberers 1.5 2.5

Locust chess 0 4
Shogi 1 3

Figure A.39: Results ImmC vs Position Soundness

Game Wins ImmM Wins SMEPS
FIDE chess 2 2

Nutty Knights 2 2
Colorbound Clobberers 2 2

Locust chess 2 2
Shogi 2.5 1.5

Figure A.40: Results ImmM vs Position Soundness

Game Wins SME + King Wins SMEPS
FIDE chess 2.5 1.5

Nutty Knights 1 3
Colorbound Clobberers 3 1

Locust chess 4 0
Shogi 1.5 2.5

Figure A.41: Results King vs Position Soundness

Game Wins SME + SimpleKing Wins SMEPS
FIDE chess 0 4

Nutty Knights 1 1
Colorbound Clobberers 1.5 2.5

Locust chess 3 1
Shogi 0.5 3.5

Figure A.42: Results Simple King vs Position Soundness
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