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Introduction

The original idea of constructing a public-key cryptosystem (PKC) based on error-
-correcting codes came from McEliece [1]. The proposed PKC used Goppa codes
with Hamming distance, and its security was derived from a general decoding
problem for linear codes, which is NP-complete. Unfortunately, code parameters,
and therefore public keys also, had to be taken large.

A further modification of the McEliece scheme was introduced by Gabidulin,
Paramonov and Tretjakov [2]. Their cryptosystem was based on Maximum Rank
Distance (MRD) codes, a class similar to Maximum Distance Separable (MDS)
codes, but with the rank distance instead of Hamming distance. MRD codes
are well-structured since they use a finite field extension and view the larger field
as a vector space over its subfield. The distance between two codewords is given
by the rank of the matrix representing their difference.

Several attacks on the GPT cryptosystem were published over the years,
among which Overbeck’s attacks [3] were some of the most efficient. Multiple
countermeasures were reviewed to withstand Overbeck’s attack, e.g. the Smart
approach proposed in [4] with special choosing of a distortion matrix. How-
ever, some deficits of this approach were found, including the transformation
of the public key to apply Overbeckeck’s attack published by Kalachi [5].

In this thesis, another method is chosen. Instead of utilising linear codes
over finite fields, codes over Galois rings are applied as in [6]. The first chapter
deals with the construction and description of Galois rings. Linear codes based
on the modul theory are studied within the second chapter. In Chapter Three,
the distance of codewords different from Hamming one is presented. Moreover,
its properties are there thoroughly examined to understand the generalisation
of MRD codes. The final chapter focuses on Gabidulin codes over Galois rings,
presenting the decoding algorithm and verifying that the GPT PKC is correct
also in this scenario.



1. GGalois Rings

First of all, it might be relevant to set up the terminology. Let a commutative
ring R, which always contains identity, be given. An ideal I C R shall be denoted
by I < R, and the fact that elements ay,...,a, € R generates the ideal I shall
be expressed as I = (aj,as,...,a,) = a;R+a R +---+a,R. If a maximal ideal
M < R exists unique then (R, M) is a local ring, and K = R/ 2 1s its residue

field. The set of units of the ring RisR* ={a € R|Fb € R :a-b=1},
and b € R is said to be a nilpotent element of R provided 0" = 0 for some

n € N. Any ring homomorphism f : R — S satisfying f(Mg) C Mg, where
(R, MR), (S, Mg) are local rings, will be called local.

Example 1. Let p be a prime and n be a positive integer. Then, (Zyn, pZyn)
is a local ring with the residue field Zp”/pzpn ~ T,

Claim 1. Let R be a finite commutative ring with identity and M be the set
containing all nilpotent elements of R. Suppose that {0} C M.

1. If m € M then (1 —m) € R*.
2. M is an ideal.
3. If M is maximal then M = R\ R* and (R, M) is a local ring.

Proof. 1. Choose m € M and find n € N such that m"™ = 0. Thus,

n—1 n—1
(I—m)-> m' =) (mi—mi+1) =1-m"=1.
i=0 i=0

2. Let r € R,a,b € M and nq,ny € N such that a™ = 0 = b"2. Assume,
without loss of generality, n; > ny. Clearly, 0 € M. Denote ng = ny; + no.
Compute

no—1
(at by =a® b0+ Y (n.°> a'bmm
i—1 \ !

nl_l . . n()—l . .
— Z <n0> azbnoflfz 4 Z (n(]) azbnoflfz
1 ]

i=1 i=nq

ni—1 no\ ..o 1. no—1 no\ ,_ L
=0 ) (z’)albﬂl Ty (z)a =

i=1 i=n1
so (a+0b) € M. It is apparent that (r-a)™ = r™ -a™ = 0. Hence, M is really
an ideal of R.

3. Since no nilpotent is a unit, it is enough to prove that any element which
is not nilpotent is a unit. Choose x € R\ M. Clearly R/ 3/ is a field since
M is maximal, and therefore, there exists y € R\ M satisfying z -y =1 —m
for a appropriate m € M. However, according to 1., the element (1 —m) is a unit,
and for this reason, z - (y - (1 —m)™!) = 1 and x is a unit.

Finally, every non-trivial ideal I < R must be a part of M because every
non-nilpotent element of R is a unit. The uniqueness of M is now evident.

]



1.1 Polynomials Modulo Prime-Power Residues

Let a prime p and n € N be determined subsequently. Irreducible polynomials
over the commutative ring Z,» are pivotal for constructions in the succeeding
sections. Thus, it is essential to properly define them and present their properties
and connections to irreducible polynomials over Z,. To begin with, let us describe
which polynomials in Z,» [x] are units and which are nilpotent elements. The proof
of the following more general theorem will be omitted.

Theorem 2. [7, Proposition 1.3.1] Let R be a commutative ring with identity
and f(z) = Y fiz" € R[z]. Then,
i=0

1. fisaunit in R[z] <= fo € R* and f1,..., f,, are nilpotent in R,
2. f is a nilpotent in Rlz| <= fo, fi,..., fm are nilpotent in R,
3. f is a zero-divisor <= dJa € R\ {0} such that a - f(z) = 0.

Consider a projection ¢ : Z,» — Z, defined as a — a mod p and extend

it to u: Zplz] — Zylz], > ax® — Y ¢(a;)x’. Tt is not difficult to see that
i=0 i=0

both the maps ¢ and p are surjective ring homomorphism with kernels pZ»
and pZyn[z|, respectively. Let us clarify here that an epimorphism is always
a surjective homomorphism and not a more general concept from the category
theory. Our goal for the first two sections is to determine some induced ring
epimorphism fi of quotient rings Z»" m/] and Zp[x]/J, where I and J are ideals
of Zyn[z] and Z,[z] in the specified order. For that, we need to explore the relation

between polynomials over Z, and Z,.. In this chapter, we mind a construction
from the work by Flamini et al. [7].

Definition 3. Let f € Z,»[z] be non-zero. Then f is said to be:
« regular provided there is no non-zero g € Z,n[z| such that f-g =0,

o irreducible provided it is not a unit, and if g,h € Z,n|x] exist such that
f =g - h, then either g or h is a unit.

Lemma 4. Let f € Z,n[z]| be a regular polynomial such that p(f) is an irreducible
in Z,[x]. Then, f is irreducible in Zn|[x].

Proof.  Firstly, observe that f cannot be a unit in Zy[z] as p(f) is irreducible
in Z,[x]. Let f € Zyn|x] be the product of polynomials g, h € Z,n[z]. It follows
pu(f) = u(g) - p(h). Since p(f) is irreducible, then one of u(g) and p(h) must
be a unit in Z,[z] and the other cannot be. Suppose, without loss of generality,
(g) = 1, which means that g(z) = 1 + pg(x) for suitable § € Zy»[z]. As stated
by Theorem [2] pg is nilpotent in Z,[z]. For arbitrary a € Z,, the element
b=1+p-aisaunitin Zy according to Claim [1I] Theorem [2] asserts that
g(x) =1+ pg(x) € Zyn[z]*. In conclusion, f is irreducible in Z,»[z].
O
Let F, C F,» be a finite field extension for some r € N. Recall that an element
a € Fyr is primitive provided « generates the multiplicative group F)., denoted
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by F. = (a). We shall say that an element /3 is primitive over I, if an extension
F, of F, exists such that § € I, is primitive. By a primitive polynomial over Z,,
the minimal polynomial of a primitive element over Z, is meant. Irreducible
polynomials over Z,», whose projections to Z,[x] are primitive polynomials, play
a substantial role in the construction proposed in the ensuing chapter. Therefore,
it is beneficial to name these polynomials and to provide a simple example of them.

Definition 5. A polynomial f € Z,»[x] is basic irreducible if pu(f) is irreducible
in Z,[z]. Furthermore, if ;1(f) is the minimal polynomial of a primitive element
over Zjy, the polynomial f is said to be basic primitive.

FExample 2. The list of all irreducible polynomials of degree 2 over Z, together
with their projections to Zs[x] is provided in Table The table indicates
the irreducibility of the projections in Zs[x], as well. Let us remark the presented
polynomials from Zg4[x] were computed in Wolfram Mathematica by setting all
possible coefficients and checking whether the constructed polynomial has roots
over Zy.

Irreducible f € Zy[x] pu(f) € Zolx]  p(f) irreducible

+(2? 4 2) 9
+(2% 4 22 + 2) * X
+(2? + 1) 9
+(2? 4 22 + 3) (z+1) X
+(2? +x+1)
+(2* + 2 +3) et /

+(2? + 3z + 1)
+(2? + 3z + 3)

Table 1.1: Irreducible polynomials of degree 2 in Z4[z]

A natural question is how to find a polynomial f from Z,n[z], which projection
p(f) is irreducible in Z,[z]. The answer is to start with an irreducible polynomial
over Z, and lift it to the Zn[z]. In the rest of the first section, the Hensel’s lift
is described. Let us start by a lemma based on the Bezout’s identity.

Lemma 6. Let f,g,h € Z,[z] be non-zero such that deg(f) < deg(g) + deg(h)
and g,h are coprime. Then, the unique polynomials u,v € Z,[z] exist which
satisfy deg(u) < deg(h), deg(v) < deg(g) and f =u-g+v- h.

Proof. Since Z,[x] is an Euclidean domain, it is possible to perform the
Extended Euclidean Algorithm (EEA) on the given polynomials g,h to com-
pute the coefficients ug, vy € Z,[z] of the Bezout’s identity. Thus, deg(ug) <
deg(h),deg(vg) < deg(g) and 1 = wpg + voh. Multiply the equation by f
to obtain f = (uof)g + (vof)h. Compute u = (ugf) mod h, ¢ = (upf) div h



and v = qg + vo f. Apparently, ugf = gh + v and degu < degh. Furthermore,

f=(qh+u)g+ (vof)h = ug + (q9 + vof)h = ug + vh,
deg(v) + deg(h) = deg(vh) = deg(g(gh) + vofh) = deg(guof + vofh — gu)
= deg(f — gu) < max(deg(f), deg(u) + deg(g))
< deg(h) + deg(g),

and therefore, deg(v) < deg(g).

It remains to show the uniqueness. Assume that the proposition hold for two
pairs u, v, 4,0 € Zy|z], i.e. ug+vh = tg+7vh. Clearly, (u—1u)g = (0 —v)h, which
implies ¢g | (0 — v) as g, h are coprime. Since degg > deg (0 — v), the difference
© — v must be the constant zero. Consequently, u — % = 0 as well.

O

The prior lemma may be generalised for more than just two polynomials g, h.
The generalised version is vital in order to justify lifting of polynomials from Z,[z]
to Zyn|x].

Lemma 7. Let f.q1,...,9m € Z,[x] satisfy deg(f) < Z deg(g;) and each pair

gi,9; is coprime for ¢,7 € N,i < j < m. There ex1st the unique polynomials
Ui, ..., Uy € Zy[z] satisfying deg(uz) < deg(g;) for every positive integer i, 1 < m,
and f: > u; I1 g5
=1 7j=1
J#i

Proof.  Set dy = f and, for every i € N,7 < n, g = H g; and g; = H g;-
Jj=i+1 j;éz
It is evident that ¢! = 1 and deg(dy) = deg(f) < Z deg(g;). According
to Lemma |§| applied to do, g1, 97, the unique dy,u, E Z »x] exist satisfying
do = dy - g1 +uq - g}, deg(dy) < deg(g}) and deg(u;) < deg(g1). Now, assume that
we already have d;, u; € Z,[z] such that d;_, = d; - g; +u; - gj, deg(d ) < deg(gj)
and deg(u;) < deg(g;) for every positive integer j,j < i, where i € N,i < m.
It directly follows that deg(d;—;) < deg(g;_,) = deg (H;“:Z gj) = deg(g;)+deg(g;).
Apply Lemma [6] again to obtain the unique diy1,uip1 € Zplx] which fulfill
deg(dir1) < deg(giyy), deg(uir1) < deg(gir1) and di = divy - gip1 + Uit - G-
Put e; = d; 11[1 g; for every ¢,0 < i < m. Choose ¢ € N,¢ < m, and compute
.7
UG = Uigj - H g; = (diey — digi) 1:[ g; = di—1 Z'Hl gj — d; ljlgj = €1 — €.
In addition, eo =dy = f and e, = ]d mde =0 because deg(dfn) < deg(gs,) = 0.
Altogether, Z U;G; = g:(e,- 1—¢)=¢et+en=f+0=Ff.

=1

Assume that the proposition is true for uq, .. um,ﬁl, I TS Z »lz]. Now,

we show, without loss of generality, u; = u;. Since Z u;g; = Z U;G;, then
’l,

also (uy —1)g, = Z( — u;)g;. Note that g; divides Z (W; —wi)Gi 88 Joy -y Uy
=2

are divisible by g. Consequently, g1 | (w1 —1u1)g1. However g1 and g, are coprime,
so g1 must divide (u; — @;). Deduce that uy — @; = 0 as deg(u; — @) < deg g;.
O



The constructive approaches from the last two proofs can be easily converted
into algorithms. The same may be said about the construction, which we present
in the proof of the theorem below known as Hensel’s lemma. So, the question
of how to find a basic irreducible polynomial over Z,» is answered. Moreover,
it provides the means to produce even basic primitive polynomials.

Theorem 8 (Hensel’s lemma). Let f € Z[z] be monic and g1,..., g € Z,[x]

m
be pairwise coprime monic polynomials satisfying f = [ ¢; (mod p). For every
i=1

k € N, polynomials gik), IS Z,xx] exist, which meet the conditions:
Lf=1 g™ (mod p*),

2.V1<i<m:gM =g, (mod p),

(2

3.V1I<i<m:le(g) =1

Proof. Choose k € N and define the sets K = {1,...,k} and M = {1,...,m
Denote g; = [[ g; and gi(l) = g; for every i € M. The plan is to use Lemma |7
=1
e
iteratively for j € K to construct g(j) g € Zyilx] meeting the conditions.

Notice that the case j = 1 follows from the hypothesns Assume that we already

have g(]) o, g¥) € Z,,[z] fulfilling the conditions 1.-3. for some j € K,j < k.

Define d = p <(f— i gfj)) /pj) € Z,[z] and §;V) = i g\ for each i € M.
i=1 s=1

SFi
Evidently, deg(d) < deg(f) = Z g;. For d,qg1,...,9,, Lemma [7| states that
Uty ..., Uy € Zy|x] exist unique Wthh satisfy deg(uz) < deg(gz) for each i € M,
and d = g: u;g; in Zy[z]. Derived from 2., d = Z wig; = Z u; G (mod p).
i=1 '

=

Set gV ™ = g9 4 piu, for every i € M. Since pid = f — H g7 (mod pt1),

then H g(] ) = f—p/d (mod p’*). Verify that the first condition is fulfilled

ﬁ gi(jH ﬁ ( +p]Uz) = ﬁ gi(j) +p iuigi(j)a
= =1 =1 i=1
=f+p (iuig}(j) — d) =f (mod p/th).
i=1

U+1) ()

The second condition is clear as g; = ¢g;) = ¢; (mod p). Choose i € M,

ij)) =lc(g:) = 1.

C
Jr
=
~—
I
—
@)
—
Q/\

and observe deg(u;) < deg(g;), so lc(
[

Corollary 9. Let » € N. Then, a monic basis primitive polynomial in Zn|z]
of degree 7, which divides z?"~! — 1, exists.

Proof. Denote k = p" — 1. From finite fields construction, we know there exists
a monic irreducible polynomial f, € Z,[x] of degree r which divides (z* — 1).

7



Thus, f is primitive. Since (2% — 1) = k- 2! = —2?" =2 in Z,[z], it cannot have
multiple roots. Set g,(z) = % € Z,[x], which seems to be monic and coprime
with f,. Theorem yields monic polynomials f, g € Zyn[z] such that u(f) = f,,
w(g) = gp and (2% — 1) = f(x)g(x) in Z,[z]. Hence, f is monic basic primitive.
[l
We reformulate the constructions from the proofs of Lemma [6, Lemma
and Theorem 8| to algorithms. Remark that EEA on input ¢, h € Z,[z]| outputs
the tuple (a,b,d) € Z,[z]* such that ged(g,h) =a-g+0b- h.

Algorithm 1 Linear combination of two coprime polynomials
Require: p prime, f,g,h € Z,[z] \ {0}, deg(f) < deg(g) + deg(h), ged(g,h) =1
Ensure: u,v € Zy[z],deg(u) < deg(h),deg(v) < deg(g) : f=u-g+v-h

(uo, vo, g) < EEA(g, h)

u < (up - f)mod h; q < (up- f) divh;v<q-g+uvy-f

return (u,v)

Algorithm 2 Linear combination of multiple coprime polynomials

Require: p prime, m € N, f,g1,...,9m € Zy[z] \ {0},deg(f) < gdeg(gi)
and Vi, j € N;i < j <m:ged(g,g9) =1 =

Ensure: uy,...,uy, € Zy[z],Vi € N;i <m : deg(u;) < deg(g;), f = 21% IT g,

do<—f;9§%ﬁ9i;i<—1
while : <m Cio1
g7 g/, div g
(di,u;) < Algorithm [(p,d;_1, g, 97); i i + 1
end while
return (ug, ..., Uy,)

Algorithm 3 Hensel’s lift
Require: pprime, m,k € N, f € Z[z] monic, g1, ..., gm € Zy[z] monic, Vi, j € N,

i<j<m:gcd(g,9;) =1and f= ﬁ g; (mod p)
i=1

Ensure: ggk), o, g € Z,[x] monic, Vi,j €N, i < j<m: ggk) = ¢; (mod p)
and f = 1] ¢/ (mod p)
i=1
1415+ 1

while : <m do
gi(l)<—gi;z'<—i+1
end while

while j < k do
d < ((f— I g{> diva) mod p*1, i < 1
i=1
(U1, ..., up) < Algorithm [2(p,m,d, g1, ..., gn)
while : < m do

g g+ plug i i 1
end while
j+—7+1
end while
return (g%k), . ,gﬁ,ﬂf))




1.2 The Construction of Galois Rings

Due to Corollary @] it is possible to determine an induced ring epimorphism
it of quotient rings [x]/I and P[x]/J for I < Zyn[z] and J < Z,[z]. Firstly,
recall the ring epimorphisms:

¢ Lyn — Ly, a— a mod p, (1.1)
p: Lpn[z] — Zplz], > a’ — > ¢(a;)a’, (1.2)
i=0 i=0

Now, consider a monic basic irreducible polynomial G,, € Z,[x] of degree
r such that it divides ¥ — 1 in Zn[z] for k = p” — 1. The existence of such
Gy, follows from Corollary [9] Denote g,,(z) = u(Gp,(x)) € Zy[z]. Clearly,
gpr is @ monic primitive polynomial of degree r dividing x* — 1 in Z,[z]. We can
define

Ly [2] G, L Lyl (o) = Fors [+ (Gp) = () + (g)- (13)

r—1 i
Elements of the quotient rlng pr 7] ( ) are of the form ) a;2"+(G,,), where
7 l:O
ao, - - ., Gr—1ZLyn, so there is (p”)" = p™ of them. The next step is to verify that

is a well-defined homomorphism of rings with the kernel (p + (G,,)).
Choose f, g € Zyn[z], then

S+ (Gp)) 0 filg + (Gpr)) = (1(f) + (9pr)) © (1(9) + (9pr))

(w
pu(f) o pu(g) + (gpr) = 1(f 0 9) + (gps)
= i(fog+G,p,), where o € {+,}.

Now, consider f,g € Z,[z]. As stated by Theorem , there are f,g € Zyn|[x]
fulfilling p(f) = f and u(g) = g. Subsequently, we have i(f +(Gp,)) = f+ (gp.)
and ji(g + (Gp,)) = g + (gpr). Moreover, if f # g (mod g,,) then, inevitably,
f # g (mod p,Gp,), which implies f # ¢ (mod G,,). It results in i being
a well-defined ring epimorhism. Compute the kernel of ji:

feker(in) <= a(f +(Gpr)) = (9pr) = (u(f) =0V pu(f) € (gpr))
— (fe@V fe(G)) < felp+(Gp)),

which means ker(f1) = (p + (G,,)). Utilising the first isomorphism theorem,

L[]
( /<Gp,r)>/(p + (Gp7’r‘)) ~ Fpr. (14)

This give us M = (p+ (G,,)) is a maximal ideal of Lpn [x]/<G L) which consists

of all nilpotent elements. Based on Claim [1] the set of all nllpotents of a finite
commutative ring composes an ideal, which is unique provided it is maximal.

Therefore, (ZP” [] (G,,) M ) is a local ring.

Define ¢ = z + (G,,) and R = L[] (G ) Then, £ € R and it is a root
of the polynomial G,, over R, because Gp,rﬁf) = Gpr(2) + (Gpr) = (Gpr),

9



and the evaluation map is a polynomial ring homomorphism. It is clear that
R = Z,»[¢], and, for arbitrary f € Zyn|x], there exist unique zp, ..., 21 € Zyn

such that f + (Gp,) = Z zi&h.

Denote by « the prOJeCtIOIl f(€), then considering the construction, o must
be a primitive root of ¢,, = u(G,,) € Z,[x]. Based on the fact that « is of order
k = p" — 1, we show ¢ is also of order k. Denote by [ the order of £. Since &
is the root of G, which divides (z* — 1), it is apparent that &* —1=0and [ | k.

If I < kthen 1 =p(l) =q (§l> = 1(€)! = o, which contradicts the order of «
is k. Thence, [ = k.

Now, the definition (|1.3) can be expressed in a more understandable and still
equivalent form:

B Zple] — Bl = Zzzwzwz (L5)

Remark. Let R = Ly [:C]/(Gpr)' Then,

e [i defined as in (1.5)) is a ring epimorphism with the kernel pR,
« R is a commutative ring of characteristic p" and cardinality (p")" = p™"

« R* = R\ pR, and pR is the unique maximal ideal of R containing all
nilpotent elements of R,

+ (R,pR) is a local ring with the residue field R/pR ~ F,,
o There exists an element £ of order £k = p" — 1 in R.

The following theorem, which proof is beyond the scope of this thesis, is crucial
to justify the consecutive definition. Readers can find more about the Galois
theory for local rings in Bini and Flamini’s work [7].

Theorem 10. [7, Theorem 5.1. 8] Let f, g € an [z] be monic basic irreducible
polynomials of degree r. Then, L[] ()= L[] ()"

Definition 11. Let » € N. The finite, commutative, local ring of cardinality

(p™)" and characteristic p™ is called the Galois ring GR(p",r). The additive
r—1 .

representation of any element z € GR(p™,r) is z = 3 2", where £ € GR(p™, r)
i=0

has order p" — 1 and zp, ..., 21 € Zpn

FExample 3. Trivial cases:

« GR(p',r) = Ly|z] (gpr) = F,r, where g, € Z,[x] is the minimal polynomial

of some primitive o € Fpr,

« GR(p",1) = Ly 2] o~ Zyn for some a € Zyn

(z —a)

10



1.3 The Structure of Galois Rings

In the previous section, the construction of the Galois ring GR(p", r) was shown
together with the additive representation of its elements. Now, it is vital to look
closer at the structure of the Galois rings and their ideals. The primary idea
is to determine when p and its powers divide a € GR(p", r). Division by prime p
is meant in a formal sense as p is not invertible, i.e. p divides a, denoted by p | a,
provided b € GR(p",r) exists such that a = p - b.

Definition 12. R is called chain ring if R is a principal ideal ring, which is local.

Claim 13. Let GR(p™,r) be a Galois ring. Then, for any ideal I of GR(p",r),
a non-negative integer j exists satisfying j < n and I = (p/). Thus, GR(p",r)
is a principal ideal ring.

Proof.  Firstly, recall that Z is a Noetherian ring since it is the principal ideal
domain. Then Z,n ~ Z/(pn), Ly |z] and Ly [x]/(Gpr)’ where G,,, € Z,n[z] basic
irreducible, are Noetherian too. Properties of Noetherian rings are described
in the publication by Grove [§].

Secondly, we show that R = GR(p™, r) is uniserial. Consider I, J ideals of R
such that I € J,J € I and choosei € I,5 € J. Then i,j ¢ R*, because if i € R*
then J C I = R, and symmetrically I C R = J, if j € R*. As a result, 1,7
are nilpotents, so 4, j € (p), and one may find exponents e;,e; € N and elements
a,b € R\ pR = R* such that i = ap® and j = bp%. Suppose, WLOG, that
e; > ej. Then, i = ap® = ap®~%b~' - bp% € J as bp% = j € J, and therefore,
I C J, a contradiction.

Let I be an ideal of R. If (p) C I then I = (1) = (p°) as (p) is the maximal

ideal. Assume that I C (p). There must exist elements aj,...,a; € R such
that I = (a,...,q;), because R is Noetherian. Moreover, it is possible to find
an positive integer 7,7 < [, which satisfies (a;) C (a;) for each j =1,..., I since R

is uniserial. Thence, I = (a;) C pR, which is equivalent with that p divides a;.
As a result, a; = z - p’ for appropriate j € N and z € R*.
O

Corollary 14. A Galois ring GR(p", ) is a chain ring.

We proved that (0) C (p") C (p"') C --- C (p) C (p°) = (1) are the only
ideals of GR(p™,r). Observe that = can be expressed as = = y; + -+ + Yp_1
provided z € (p'), where y; € (p’), j = i,...,n — 1. Let us now formalise
this representation of the Galois ring’s elements using powers of p.

Theorem 15. Let k = p” — 1, R = GR(p™,r) be a Galois ring and £ € R have
order k. The unique monic basic primitive polynomial G,, € Z,|x] of degree
r exists which divides (2% — 1) in Zyn[z] and has a root £. Moreover, the ring

R =7Zy[¢ = Lipr M/(Gp L) and any z € R has the unique p-adic representation
n—1 ) )
2= zp', where zg,...,2,01 € {0}U{" | i=0,1,... .,k —1}. (1.6)
i=0

Furthermore, z € R* if and only if z5 # 0, and z is 0 or a zero divisor otherwise.

11



Proof.  Let us start with the uniqueness of the polynomial G, as its existence
follows from Corollary [9] and the existence of element & of order k = p" — 1
from the remark above Theorem . Assume that G, G,, € Zyn[z] exist
and meet the given conditions. Then, gedy , [z](GW,C’p,r) # 1 as both share

the same root £. Since both G, ., G, are irreducible and have the same degree,
one can be rewritten using the other as G, = a-G,,, where a € Z,». Since both
are monic, a = 1.

n—1 . .
Define S = { > zip' | 2oy, 2nm1 €{0FU{E|0< i< kz}} and choose some
i=0

n—1 . .
z = Yy zp €85, Set yio = zp' and x;9 = y;0 mod & for every integer ¢,
i=0

Yi,j—1—"Tij—1

0 <@ < r. Recursively compute y; ; = and z; ; = y;; mod § for j € N,

j < n. Notice that every z;p" € Z,»[¢], and therefore, z; ; € Z,» for every pair 4, j
r—1 /m—1 .
as before. It can be concluded z = 3 ( x”) & €Zplé] and S C Zyn[E].
7=0 \i=0
To prove the p-adic representation is now enough to show no &° is divisible
by p, where i € Z,0 < i < k. As a consequence, we have |S| = (p")" = |Z[¢]|
and S = Zpn[¢]. Assume, for a contradiction, a non-negative integer i exists such
that 7 < k and p divides £'. Thus, & = p- £ for some £ € Zyn[z]. In this scenario,
(€)™ = p"€" = 0, which contradicts that the order of € is k.
Denote R = GR(p", 7). It has been shown in Section that R* = R\ pR

and pR contains all nilpotent elements of R. Now, it is apparent the element
n—1 .

z = Y zp'is a unit in R if and only if p t 2z, which can happen if and only
i=0

if z9 # 0. Hence, if 2y = 0 then z is zero or a zero divisor.

]

Definition 16. Let £ € GR(p™,7) be of order k = p" — 1. The Teichmiiller set
of the Galois ring GR(p™,r) is T, = {0} U{¢ |i=0,...,k—1}.

Based on the previous theorem, every power of the element & of order p” — 1
is a unit in GR(p",r). Recall the ring epimorphism fi : Zy[¢] — Zy[c] defined
as fi(§) = ain , where « is primitive of order p” — 1. Based on the p-adic
representation, it can be deduced ji maps the Teichmiiller set 7, to the residue
field of GR(p™, 7). Let us define operations @& and © on 7, as & ®&; = &3 provided
fi(§1)+i(&2) = i(€3), and 661 = & if —fi(&1) = fu(&2) for any &1, &, &3 € Tr. Then,
it is an immediate result that (7., ®,S,-,0,1) is a finite field, and i restricted
to T, is a field isomorphism.

Corollary 17. Let R = GR(p™,7),k = p" — 1, an integer i € Z satisfy 0 <i < k,
and ¢ € pR. Then
n—1 .
LpR={E 2 |20 mn € T,
i=1

2. |[R*| = kp"=V" since R* = (£) - 7, where (£) is the cyclic group of order k

n—1

generated by € and m = {1+ d | d € pR} is a group of order (p")" ",

3. The order of £’ is j € N which satisfies j | k, and the order of 1+cisal € N
fulfilling [ | p"~1,

12



4. If z € R* is of order [ dividing k, then z = & for 0 < j < k. Specially,
for [ = k, we have z = &, where 1 < j < k and ged(j, k) = 1.

We commence this section by demonstrating the proposed properties of Galois
rings, their additive representation and Teichmiiller sets.

FExample 4. Let p be an odd prime, n be a positive integer and » = 1. This
example provides the Teichmiiller set 7 of the Galois ring GR(p", 1) >~ Zyn.
Consider a generator « € Z, of the cyclic multiplicative group Z;. Certainly,
o is of order (p — 1) in Z7. In this trivial situation, Hensel’s lift is not necessary
because Z, C Zy» and « also lies in Zyn. Since |Zyn| = o(p") = (p— 1) - p" 1,
where ¢ is Euler’s totient function, the order of v in Zy, needs to be (p — 1) - p°
for some e € {0,...,n — 1}. 1
Define £ = o?"'. Note that &1 = (apn_l>p_1 = (a(p’l)pey =1
and & # 1 for all i € N,i < p, or otherwise 1 = (o )?"""~
In conclusion, € is of order (p — 1) in Z,» and T = {0} U (£).

e . .
, a contradiction.

Example 5. This example describes the Galois ring for p = 2,n = 2, and r = 3.
We have to find some & of order 22 — 1 = 7 over Z,. Fortunately, it is possible
to choose £ as any root of basic primitive polynomial of degree 3 in Zgz[z] since
7 is a prime number, e.g.

Gos(r) =2° + 322 + 20 +3 € Zy[z] and & =2+ (Gas).

Recall the ring epimorphisms:

¢ Ly — Lo, a — a mod 2,
f: Za|x] — Zox], Y oaia’ =Y ola)a
i=0 i=0

2

: Z4[w]/(G2,3) = Za[€] — ZQ[I]/(QZP)) =Zafa), D ml e Z Plzi)a

=0

=

where g3 = p(Gas) = 23 + 22 + 1 and a = ji(£). Doubtless, Z,[¢] ~ GR(2%,3)
and Zs[a] ~ Fs.

Teichmiiller set is T3 = {0,1,&, 2, €2426+1, 362436 +1, 26243643, €24+ 36 +2}
and 1(73) = {0,1,,0?,0* + 1, 0> + a + 1,a + 1,0 + a} = Zy[a]. The unique
maximal ideal of Z4[¢] is 2Z4[¢] = {a + b€ + €2 | a,b,c € {0,2}}, which is the
only non-trivial ideal of this ring.

Example 6. Let p = 2,n = 3,r = 4. Now, some £ generating a cyclic group
of order 2* — 1 = 15 = 3 -5 has to be chosen. Thus, it is not possible to choose
arbitrary ¢ like in the previous example.

Consider g4 = ' +x+1 € Zy[z], which is irreducible polynomial of degree 4.
Moreover, go4 divides (z'® — 1) and is primitive. Compute by Algorithm
(Hensel’s lift) the polynomial Go 4 = a* + 423 + 622 + 3x + 1 € Zys[z] satisfying
Go4 = gos (mod 2) and Gy | (2" — 1) in Zgs[z]. Define £ as the formal root

z+ (Ga4) of Gay in Los [x]/(Gg 4) and, analogously, & = z + (g24) € Lola] (goa)

13



Hence, we have the ring epimorphisms:

¢ Ly — Yo, a — a mod 2,
p: Lg|w] — Zo[x], Y aixt =Y ¢la;)
i=0 i=0

3 3
il =l = Bl =2l 3 ag e Y ezl
’ ’ i=0 i=0
In this scenario, Zg[¢] ~ GR(2?,4) and Zs|a] ~ Fy,.
Now, the Teichmiiller set T; = {0} U {¢'}}2, has 16 elements. Remark that
3

any element of Zg[¢] can be expressed as 3 2,6 — 232921 29. Thus,
i=0

T _ 0000, 0001, 0010, 0100, 1000, 4257, 2534, 5766,
713073, 4525, 5214, 6353, 3112, 5715, 3363, 7425’

A(Th) = 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100,] _ o
HU4) =N 1011, 0101, 1010, 0111, 1110, 1111, 1101, 1001 [ — "'

Finally, non-trivial ideals of Zg[¢] are:

3

(2) = {Z zi€' | 29,...,23 € {0,2,4,6}} = {23222120 | 20,...,23 € {0,2,4,6}},

i=0
3

(22) =(4) = {Z 2i€ | 29,...,23 € {0,4}} = {z22120 | 20,...,23 € {0,4}}.

1=0

Therefore, (0) < (4) < (2) < Zg[¢] and (2) is the maximal ideal.

1.4 Automorphisms of (Galois Rings

Let F, < F,» be an extension of finite fields of degree m € N. Recall the Galois
group of F,m over F, is Gal(F,~/F,) consisting of all F,-automorphisms of F,m
with respect to the composition of maps. It is well known fact of finite field
theory that the Frobenius automorphism o : Fym — F,m defined as o(a) = a?
for a € F,m generates Gal(F,m /F,). Let us begin by presenting a generalisation
of the Frobenius automorphism. In this section, we refer to Chapter 14.6 of Wan’s
work [9].

Theorem 18. Let 7, = {0} U (£) be the Teichiiller set of GR(p™,r) for r € N.
Define a map

r—1 r—1
7: GR(p",r) — GR(p", 1), Zaiﬁi — Zaifpi. (1.7)
i=0 i=0

Then, 7 is a Zyn-automorfphism of GR(p",r) called the generalised Frobenius
automorphism.

14



Proof.  Choose ag,...,a,-1,bo,...,b,_1 € Zypn. Then

r—1

r—1 r—1 r—1 r—1
P(Sae) 7 (The) = S+ et = o+ ner
=0 1=0

=0 =0 =0
r—1 r—1 r—1
=T (Z(ai + bi)fz) =T <Z a; &’ + Z bi£i> )
=0 1=0 1=0
r—1 ] r—1 ) r—1 o1 ] r—1
T (Z aﬁ) T (Z bﬁ) =D @l Y b =% > abg™
=0 1=0 =0 1=0 k=0 0<s,5<r

(i+7) mod r=k

r—1 r—1 r—1
:T(z 5 aibjgk) _; (z al.g.zbig),
k=0 0<s,5<r 1=0 =0

(i+7) mod r=k

T(a) =a VYa & Zyn.

Thus, 7 is a non-zero endomorphism fixing the subring Z,» of GR(p",r). For all
i, 0 < i < r, we have €7 # 0, so it can be deduced the kernel of 7 is trivial, and 7
is injective. Consequently, 7 is the ring automorphism.
O
Choose (¢ from the Teichmiiller set 7.. Then 7(() = (P, and the generalised
Frobenius automorphism 7 acts on 7, identical to the Frobenius automorphism
o on F,-. However, it should not be surprising since 7, ~ [F,-. Being equipped
with the generalised Frobenius automorphism, the next step is to introduce Galois
groups over Galois rings.

Definition 19. Let R be a Galois ring GR(p",r) and S be a subring of R.
The Galois group of R over S, denoted by Gal(R/S), is the group consisting
of all S-automorphisms of R with the operation composition of maps.

Recall the ring epimorphism i : GR(p",r) — K, a — a + (p) defined in (L.5),
where K ~ F,r is the residue field of GR(p",r). The symbol ~ is written
over an argument instead of f for brevity from now on, i.e. @ = fi(a) for any
a € GR(p", 7). The relation between the Galois groups Gal(GR(p",r)/Zy»)
and Gal(K/F,) can be established after verifying that the composition of ~
with any ring automorphism of GR(p", ), which fixes Z,n, is well-defined.

Lemma 20. Let w € Gal(GR(p",7)/Zyn). Define a map

w: GR(p",r) — GR(p",r), ar w(A), (1.8)

where A € GR(p",r) satisfies A = a. Then, w is a well-defined F,-automorphism
of the residue field.

Proof. Consider A, B,C, D € GR(p",r) such that A = B + pC. Denote
a=A,b= DB and d = D. For these elements,

=
S
I
£
=
£
>
I

w(A) - w(D) = w(a) - w(d),
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so w is a well-defined endomorphism.

If 0 =w(a) = w(A), then w(A) = p- E for E € GR(p",r). Furthermore,
w(A") = w(A)"™ = 0, which means A" = 0. It directly follows that A € pGR(p", r)
and a = A = 0, so ker(@) = {0}. Now, @ is the injective endomorphism,
and therefore, an automorphism of GR(p™,r). Finally, observe that for every

A€ Zy and a = A, we have w(a) =w(A) = A =a.
0

Finally, the promised relation between the Galois groups over Galois rings
and finite fields can be figured. We state the connection between the generalised
and the classical Frobenius automorphism of GR(p",r) and GR(p", 1) ~ F,r
respectively, from which the relation will become clear.

Theorem 21. Let 7 be the generalised Frobenius automorphism of GR(p",r).
Then, 7 = o is the Frobenius automorphism of GR(p", r) >~ F,-, and 7 generates

the Galois group Gal(GR(p",r)/Zn).

Proof. Let K be the residue field GR(p",r) ~ F,». Lemma [20| asserts that 7
is a well-defined FF,-automorphism of K. Let £ € GR(p",r) be of order p" — 1,
and set o = £. Then, « is primitive in K and 7(a) = 7(§) = & = of = o(a).
As a result, 7 = ¢ since an image of a primitive element uniquely determines
a field homomorphism.

Choose w € Gal(GR(p",r)/Z,»). Note that a field automorphism must map
a primitive element to another primitive element, or otherwise it is not bijective.
Combining this argument with Corollary , w(&) = & for some i such that
0<i<p —1and ged(i,p" — 1) = 1. It is apparent that 0(a) = w(€) = & = o'
According to Lemma the automorphism w lies in Gal(K/F,), so j € N exists,
which fulfills @ = 07 as o generates Gal(K/F,). It can be concluded that i = p/
and w = 77, because o = @(a) = o7 (a) = a”’.

[]
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2. Codes over a (alois ring

Let R be a Galois ring GR(p",r) and 7, its Teichmiiller set for some prime
number p and natural numbers n and r, fixed from now on. The i*® coordinate
of x € R™ will be denoted by x;, where i, m € N satisfying ¢« < m.

2.1 Modules over Galois Rings

It is essential to introduce other important concepts before describing codes
over aring. A set M with binary operations + : M xM — M and - : RxM — M
is said to be an R-module provided M(+) is an abelian group and for each
ri,7o € R and my, my € M, the ensuing properties are valid

L7y - (my +my) =7y -my + 7y - my,
2.1 (rg-my) = (ry - 7r9) - my,

3. (rp+re) -my =r;-my+ry-my,
4. 1-m; = m,.

Consider a non-empty subset N of M. Then, N is a submodule of M, denoted
by N < M, on the condition that N is closed under the addition and the scalar
multiplication inherited from M. Let X = {x,..., Xy} be a subset of M for some

k
ke Nand (X) = > xR ={rm x4+ - +rg-xx | r,...,7% € R}, where
i=1

the operations + and - are inherited from M. It is evident that X C (X)
and (X) < M. Furthermore, (X) is the smallest submodule of M which contains
X with respect to inclusion.

Definition 22. Elements xi,...,X; are called generators of an R-module M

k
given that k is an positive integer and M = " x;R, which will be represented
i=1

by M = (x1,...,X). A tuple X = (x1,...,Xy) is known as a basis of the module
M. If X has minimal cardinality among the bases of M then X is minimal and k
is defined to be the rank of M, written as rank(M). The minimal basis X is free
if the following implication is valid

Vx € XJzm€R: ) ze-x=0 = Vx € X :2=0. (2.1)

xeX
Finally, an R-module, for which exists an free basis, is free.

Example 7. A module RF is free for every k € N. On contrary, (p'R)* is not free
for every 7,k € N.

Definition 23. The Kronecker delta is a function 6;; : N x N — {0,1} C R
defined as d;; = 1 and ¢;; = O for each 7, j € N which differs. The standard basis
of an module R* is (4y,...,d;), where k € N and §; = (8;1,...,0:) for every
© € N non-greater than k.
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Let N be a submodule of M. Then, the submodule N defines an equivalence
~y on M by the rule x ~y y if and only if (x —y) € N. The set of equivalence
classes of ~x with operations +, - specified for every r € R and elements x,y € M
as (x+N)+(y+N) = (x+y)+N and r- (x+N) = (r-x)+ N forms an R-module
called a factor (or quotient) module, represented by M/ N-

Mappings between modules preserving operations play a substantial role.
More precisely, let M and N be modules over R and a map ¢ from M to N
satisfy p(r-x+s-y) =7 -px)+s-¢(y) for all r,s € R, x,y € M. Then,
¢ is called a module homomorphism, especially a monomorphism if injective,
an epimorphism if surjective, or an isomorphism if bijective. The kernel of ¢
is ker(yp) = {x € M | ¢(x) = o} and the image of ¢ is Im(p) = {p(x) | x € M }.
The fundamental properties of every module homomorphism are summarized
in the remark below, which proof is omitted as it basically copies the group
version.

Remark. Let M and N be two R-modules and ¢ : M — N a homomorhism
between them.

1. ¢ is fully determined by images of basis elements.
2. ker(yp) is a submodule of M and Im(y) is a submodule of N.
3.  is injective if and only if its kernel is trivial.

4. ¢ : M/ker(gp) — N,x + ker(¢) — ¢(x) is a well-defined monomorphism
and M/ker(w) ~ Im(yp).

FEzample 8. Any abelian group G(@) with inverse operation © and an identity
element e can be viewed as a module over Z with the scalar product ® : ZxG — G
defined for all n € N and ¢g € G as follow:

e NOJg=gDg®d---® g with n operands g,
e 0Og=c¢,
« ((n)og=6(m0og).

Being able to determine whether the given R-module M is free or not has
a significant impact, as displayed in upcoming sections. Let us present the first,
almost trivial characterisation of free R-modules.

Theorem 24. Let M be an R-module of rank k. Then, M is free if and only
if M ~ RF. Besides, if M is free then any minimal basis of M is free.

Proof.  Choose some R-module M of rank k& € N. Remark that R* is free
by Ezample [7| so any module isomorphic to R is free. Suppose that M is free.
Let B = (my,...,my) be a minimal basis of M and S be the standard basis
of R¥. Define a map ¢ : R¥ — M by the formula ¢(d;) = m;, where i € N,i < k.
It is apparent that ¢ is a module homomorphism, which is surjective as it maps
the free basis of R* to the given minimal basis of M of rank k. Due to M being
free, |[M| = (|R|)* = |R*| and ¢ is a module isomorphism.
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k
Let scalars zy, ..., 2z, € R satisfy Y z;m; = o. By applying the isomorphism,

=1
k k k k

© <Z zidl-) = > zip(;) = X zzm; = o and Y z;6; € ker(p). Consequently, all
i=1 i=1 i=1 i=1

the scalars zy,. .., 2, are zero as ker(yp) = {o}, and B is a free basis.

O

The fundamental objective of this section is to comprehend the structure

of an R-module and to be able to decompose it into powers of p, as shown
in Dréapal’s work [10, Section L.5].

Definition 25. Let M be an R-module and u € M. The height of u is minimal
non-negative integer ¢ meeting the condition p’ - u = o. The socle of M, denoted
by Soc(M), is the set of all elements of M which have height at most 1.

Choose m € N. It is not difficult to notice the socle of a free module R™
is (p"~1 - R)™. Furthermore, it can be extended to a statement that (p"~*- R)™
consists of elements with height at most ¢, for © = 0,...,n. The following claim
introduces the basic properties of an element’s height and how to compute it.

Claim 26. Let M be an R-module, u = (u1,...,u,) € M and k € {0,1,...,n}.
Then,

1. u has height n — k if and only if v with at least one coordinate invertible
exists and satisfies u = p* - v,

2. u has height 0 if and only if u = o, and u has height n if and only if at least
one coordinate of u is a unit,

3. Vr € R* : r - u has the same height as u,

4. if u has height h € N then uR ~ R/th,

5. elements of M with height at most ¢ form a submodule M; of M for each
i € 2,0 <i<n. If Misasubmodule of R™, then M; = M N (p"'R)™,
and M; = (p""'by,...,p" 'b;) whenever M has a free basis (by,...,by).

Proof.  Consider the p-adic representation, presented in Theorem [15] of each

n—1 .
coordinate u; = Y 2 ;-p’, 1 = 1,...,m, with the coefficients from the Teichmiiller
5=0

set 7. Set h =n —min(hy, ..., hy), where h; is for i = 1,...,m defined as

- {min{0§j<n|zi,j7éo}, if u; £ 0,

n, otherwise.

n . n—1 .
For each i = 1,...,m, observe that p" - u; = p" - 2 zigV = X Zig phti =0

j=hi Jj=hi

as j > h; > n — h. Furthermore, we have h, = n — h for some k = 1,...,m,
n—1 .

e p"louy = 3 2 p"Tl = 24, - p" ' # 0. Hence, the height of u is h.
Jj=hg

1. Assume that u has height n — k. Then, n — k = h =n —min(hy, ..., hy),
which can happen if and only if i € N exists for all 7 € N which fulfills 7,7 < m
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—1
and h; = k < h;. It can be equivalently rewritten as u; = Z zjp - p' for all
j=1,...,m, where at least one z;;, #0,7=1,...,m. Let v have the coordinates

=Y zy-p*, i=1,...,m. In conclusion, u has height h = n — k if and only

if u=p* - vand v, € R\ pR =R" for some i € N,i <n.

2. It is a direct consequence of 1.

3. For any 7 € R* we can write u=r"'- (r-u) from what is clear that both
elements need to have the same height.

4. Assume that u has height h € N. Define a map ¢ : R - uR,z — z - u.
Then, for any z,y € R, we have p(z +y) = (z + y)u = zu+ yu = ¢(z) + ¢(y)
and p(z-y) = (x-y)u = z(y -u) = x - p(y). Furthermore, p(z) = z-u = o
for z € R if and only if p" divides x, which is equivalent to € p"R. Thus,
¢ is a module homomorphism with ker(p) = p"R and the assertion is implied
by the first isomorphism theorem as R/th ~ uR.

5. Choose i € N,7 < n, and define M; as the set composed of all elements
of M with height at most i. Pick any v,w € M; and r € R. Then r-v € M, can
be deduced from that p' - (r-v;) =r-(p"-v;) =r-0=0, j € N,j < m, which
means p' - (r - v) = o. Analogically, p* - (v; + w;) = p* - v; + p' - w; = 0 for every
jeEN,j<m,sop'-(v+w)=o0and v+we M.

Let M be a submodule of R™. In accordance with 1., a € M; if and only
if p"~* divides all ay, ..., a,,, which occurs if and only if a € M N (p" 'R )™

Finally, let M has a free basis (by,...,b;). Denote N = (p" by, ..., p" "),

!

so clearly N C M,. Let a € M; \ N. Then, a # o and a = }_ z;b; for some
=1

z1,...,2 € R such that p”_i does not divide z; for some j = 1,...,l. Thus,

p'z; # 0 and o = p'a = Z p'zbs. In consequence, (by,...,b;) is not the free
basis, a contradiction. Hence M; € N and M; = N.

m
Derived from the initial point of Claim the height of an element u over R
can be computed as the maximal e = 0,1, ..., n satisfying p® | u, which means

that p divides all coordinates of u. In other words, all the coordinates of u lie
in p°’R. Obviously, v such that u = p° - v cannot be defined as %, because there
is no inverse of p. However the symbol = can be viewed as the map from pR to R

determined by Z Gpt Z ¢;p L. Evidently, this map can be coordinate-wise
expanded to the map > (pR) — R™ for any m € N.

Lemma 27. Algorithm [4is correct and runs in time O(m - n? - r - log*(p)).

Proof.  The correctness follows from Claim [26] Note that the cycle iterates
at most n times, in each iteration it computes m divisions %, which can be done
in time O(n - 7 -log*(p)). Thus, the algorithm runs in O(m - n? - r - log*(p)).
O
Based on the second and the fifth point of Claim [26] {o} and Soc(M)
are the only submodule of an R-module M with elements of height at most
0 and 1, respectively. However, the socle of M can be viewed as a vector
space over the finite field 7, ~ /pR ~ [F,-, where the first isomorphism
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Algorithm 4 Computing the element’s height
Require: u
Ensure: u=p
if u = o then
return 0,9
end if
h<+n
V< u
while h > 0 do
if p | u then
h<h—-1
vV %
else
break
end if
end while
return h,v

"= . v, where h is height of u and v has the height n

is shown in the paragraph under Definition while introducing operations
on 7., and the second one is presented in (1.4)). In conclusion, Soc(M) is free
over the field 7, and a criterion for the module M to be free can be derived.

Lemma 28. Let M be an R-module generated by by, ..., b;. Then, (by,..., by)
is a free basis of M over R if and only if the socle of M has a free basis
(p" by, ..., p" b)) over T,.

Proof. Set I ={1,...,1}, B=(by,...,b) and C = (p" 'by,...,p" 'by).

“<«<=": Every by, ...,b; appears to have height n. Assume that El: a;b; =0
for some aq,...,a; € R, where at least one of them is non-zero. Take tlhelz minimal
exponent e € N U {0} meeting the condition p°a;b; € Soc(M) for every i € I,
which is, according to Claim , equivalent to that p"~! divides all pay, . .., p°a;.
Since C' is a free basis of Soc(M), p°a;b; = o for all i € I. Find f € NU {0},
f < e, such that p"~! divides each p’ai,...,p’a;, and p/a;b; € Soc(M) \ {o}
for some ¢ € I. It can be done as there exist ¢ € [ satisfying a;b; # o, but this
contradicts the minimality of e.

“ = 7: Suppose that M has a free basis B over R. Undoubtedly, the socle
of M is generated by C over 7, as Claim [26 . implies p"~'b; € Soc(M) for every

i€ 1. Let ay,...,a €7, satisfy Z a;p" 'b; = o. It is a direct consequence that
=1

a;p"~1 = 0 for each i € I since B is the free basis of M. Equivalently, p divides
ai,...,a; € T, and therefore, a; = 0 for every i € I.
O
Keep in mind in the third assertion of Claim [26]that the R-module generated
by some element u of height h over R is isomorphic to the factor module / 'R
A further step is to show that any R-module can be decomposed into cychc
submodules of certain heights.
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Lemma 29. Every finitely generated R-module can be expressed as a direct

t
sum of cyclic modules iE:BO u; R such that u;R ~ R/pij for every j = 1,...,1
and some positive integer m;.

Proof. Choose an R-module M and consider a submodule M; of M composed
by elements of height at most ¢, where i € Z,0 < ¢ < n. Find the minimal
ke 7,0 <k <n, such that M = M. The lemma is proven by mathematical
induction on k. Firstly, assume £ = 0. Then M = {o}, and there is nothing
to prove. Secondly, if £ = 1 then M = Soc(M) and it is enough to take uy, ..., uy
a basis over the finite field 7.

Next, assume k > 1 and the hypothesis is valid for £ — 1. Consider a factor
module M/ V,» Which is finitely generated, and its every element is of height
less than k. According to the inductive hypothesis, there are vi,..., v, € M

satisfying ]W/]W1 = é (v;j+M;)R. Forevery j = 1,...,s, denote by h; the height
j=1
of v; + M; in ]\4/.]\417 ie. 0 < ]’Lj < k. So, phj(Vj + Ml) = o + M,, which
implies p"iv; € M, \ {0} because h; is the minimal such integer. Furthermore,
phj+1vj =oin M, and v;R ~ R/pthR as stated by Claim
Now, denote by N a submodule of M generated by vy, ..., v,. If it is shown

ryvy = -+ = r,vg = 0 whenever _Zl rjv; = o for some ry,...,rs € R, then
]:

N = éV]’R. Let ry,...,rs € R satisty Xs: rjv; = o. For every j = 1,...,s,
complge1 the exponent e; € NU {0} and t}ie:1unit ¢; € R* such that r; = p% - ¢;.
Thus, i rj(vj+M;) =0+ M in M/Ml, and based on the already proven part,
(V1 i_}\/[l) =+ =r4(vs+ M;) = o+ M;. Choose i € N;i < s. Note that

¢i(v; + M) has the same height as v; + M; according to Claim and ph~lv;
is not in M by the properties of h;. Asaresult, e; > h; > 1. Additionally, the sum

o= Y rv; = Y pigv; = p- 3 p%lgv; implies that Y p%lgv; € My
j=1 j=1 5=1 j=1

and i p“tqi(v; + My) = o+ M; in M/Ml' Repeating the exact argument,
j=1

P g (v + M) = -+ = p=Tlg(vs + M) = o+ M;. Specially, e; — 1 > h;.
It is now clear that all p* q;vq,...,p%qsvs are o in M.

Define N; = N N M,. It is possible to find the complement N+ of N; in M,
because M; = Soc(M) can be regarded as a vector space over T,. N1 seems

t
to be a subspace of M;, and so wy,...,w; € R™, which satisfy N* = @ w;R,
i=1

exist. Particularly,

NANEYEY NANLAM, = NE AN, = {o}

_ 1
| NN N — M=N®N-.
N+N-"= N+Ni+N-=N+M =M

s t
Finally, we have M = <G§ VjR) @ (GB W,-R).
j=1 i=1

O
Consider uy,...,u; specifying the cyclic decomposition of some module M
over R. It is demonstrated in the ensuing theorem that uy,...,w correspond

22



to elements of a free basis over R lifted to appropriate heights. In other words,
let vq,...,v; € Soc(M) \ {o} be p multiples of uy, ..., u,, in the specified order.
For each i = 1,...,[, run Algorithm |4/ on v; to obtain w; of height n satisfying

v; = p" 'w;,. In the described situation, (W1,...,w;) is a free basis and

Soc(M @VR<M 69u1R<69WZ (2.2)

Theorem 30. Let m € N and M be an R—submodwlllle of Rm. There exists a free
basis (vi,...,Vv,) of R™ which satisfies M = @ p®v;R for some exponents

i=1
€1, em €{0,1,...,n}.

Proof. Lemma [29| affirms that M = @ w,R for some uy,...,u; € M. Denote
=1

by I the set {1,...,l}. For every i € I execute Algorithm l on the input wu;
to obtain the height hi € {0,1,...,n— 1} of u; and v; € R™ of helght n fulfilling

u, = p" v, SetV—<v1,.. ,vi). Let aj,...,a; € R satisfy Zazvl—o

Assume, for a contradiction, there exists j € I, for which is a; non—zero Find
the minimal e € NU {0} meeting the condition p®a;v; € M for each i € I. Since

I
M = @& p""iv,R, then, for every i € I,
=1

pla;v; =0 < p" | pa;v; 2 p" | pfa; <= pa; = 0.
However, a; # 0, thus f € NU {0} must exist satisfying f < e and p/a;v; € M
for every i € I, a contradiction with the minimality of e. Hence, V has a free
basis (vi,...,v;). As a result of Claim [26] and Lemma [28] Soc(V) has a free
basis C' = (p" 1vy,...,p" vy).

Remind that the socles Soc(M) and Soc(R™) may be viewed as vector spaces
over the finite field 7.. Moreover, Soc(M) = Soc(V') and Soc(M) is a subspace
of Soc(R™), because M is the submodule of R™. Thus, it is possible to extend
C' by wyq,...,u, € R™ into a basis of the Soc(R™) of dimension m. Thence,
the outputs of Algorithm [4]run gradually on w41, ..., u, are vigq, ..., vy, each
of the height n, such that u; = p" v, for every i =1+ 1,...,m.

Define N as a submodule of R™ generated by vy, ..., v,,. Apparently, Soc(V)
has a basis (p"~'vy,...,p" " 'v,,), which means that N is free in accordance
with Lemma [28] Derived from Theorem [24] N ~ R™, which implies N = R™

l m
because N C R™. Consequently, M = @ p®v,R = @ p®viR, where e; = n — h;
i=1 i=1

forl<i<lande =nforl<i<m.
O
The preceding lemma and theorem do not explain how to acquire some free
basis over R, which can be lifted by multiplying by p into the cyclic decomposition
of an R-module M. However, Algorithm [5] introduced in Section solves
this issue.

2.2 Matrices over (alois Rings

Let R**! represent the module composed of all matrices over R of type k x I,
where k,I € N. Pick a matrix A € R**! and indices 4,j € N satisfying i < k
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and j < [. The i*" row of A will be represented by A?, the j' column of A by A
and the entry of A at position (i,j) by a;;, alternatively A[s, j] if more clarity
is needed. An identity matrix of order k£ will be denoted by I} and a zero matrix
of type k x [ (or order k) by Ogx; (or Og).

Definition 31. Let k,/ € N and A € R¥*!. Select any i, € N such that 7,5 < k
and ¢ # j. Elementary row operations are

« A] & AJ: switching the i*" and j* row within A,
o A7+ u-A7;u € R*: multiplying the i*® row by a unit,
« A7+ A7+t A%t € R: adding a multiple of j* row to the i*".

Elementary column operations can be defined symmetrically. A matrix F of order
k is elementary if E was obtained from [ by only one elementary operation.

Gauss elimination works almost the same as in linear algebra over a field.
The only exception is that it is impossible to multiply rows or columns of a given
matrix by non-invertible elements, which was the main reason for the preceding
definition.

Definition 32. Let k,l € N and A € R**.. If there exists B € R satisfying
B - A = I, then A is left invertible and B is A’s left inverse. Symmetrically
for C' € R¥! fulfilling A - C = I}, A is right invertible and C is its right inverse.
If k = [ and there exists B € R*** such that B-A = I;, = A- B then A is invertible
and B is the inverse of A, denoted by A~

The product of matrices over Galois rings preserves the invertibility exactly
as in linear algebra over finite fields. Since it is applicable, the formalisation
of this statement is to be found below.

Lemma 33. Let k,/ € N and A € R¥! B € R™™ be left (right) invertible.
Then A - B is left (right) invertible.

Proof. Since A and B are left invertible, matrices X € R™** and Y € R™*/,
which satisfy X-A = I, and Y - B = [,,, exist. The product Y - X is a left inverse
of A- Bbecause Y- X - (A-B)=Y - (X-A)-B=Y - -B=1,. Thence, A-B
is left invertible. Since (A-X)" = X7 - AT the same holds for right invertible
matrices.
O
Now, it is substantial to display that invertible matrices over Galois rings exist.
We present the most fundamental invertible matrices, but they are beneficial
in the following sections on multiple occasions.

Ezample 9. Let k € N. The following matrices of order k£ over R are invertible:
1. An elementary matrix: It is enough to take an elementary matrix
of the opposite elementary operation (A} <> A%, A7 < u™"-A], A} < Aj—t-A7).
2. A permutation matrix, i.e. there is only one entry equal 1 in each row
and each column, others are 0: Observe that (P$)" -P§ = d;; for any permutation
matrix P € R*** and integers i, j such that 0 < i,j < k. Hence, PT - P = I,
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3. A triangular matrix with units on the main diagonal: Let a matrix
U be a such upper triangular. Deﬁne entries d;; = 0 for 1 < j <i <k, d = uy

for 1 <4 <n,and dj; = —uy; Z dipup; for 1 <1 < j < k. Then, D = (dij)fj 1

is the inverse of U since D - U i 1s an upper triangular matrix as the product of two
upper triangular matrices and for every .7 € N,7 < 7 < k, we have

k j j—1 j—1 j—1
D dinung =Y dinung =Y dipup; + dijuj; = dipup; + _uj_jl > dinung | - gy,
h=1 h=i h=i h=i h=i
which apparently equals d;;.

Now, it is sufficient to state that any transposed lower triangular matrix
is an upper triangular matrix and, therefore, invertible.

It is evident that a triangular matrix over R with zero divisor z on the main
diagonal is not invertible as there is no » € R for which r -z = 1. Another
example of an invertible matrix over R is a transition matrix between free bases
of a free R-module.

Lemma 34. Let M be a free R-module of rank m € N, and B and C' be two free
bases of M. Denote by B’ and C’ the matrices of order m over R, where the rows
are the basis elements of B and C, respectively. Then, the unique invertible
matrix @ of order m over R, which satisfies Q) - B’ = (', exists.

Proof.  Choose a free R-module M be of rank m € N. Let B = (by,...,by,)
and C' = (cq,...,¢y) be two free bases of M. Since M = (B), for each i € N,

m
i < M, there exist z;i,...,2;,m € R satisfying ¢; = > z;;b;. Symmetrically,
j=1

Yi1, - - - Yim € R exist such that b, = i yijcj as M = (C), where i € N,i < m.
j=1
Set @ = (2i;)1=; and P = (yi;){"=,- Then, we have

<Zazn bt]> = (cij)i5ey = € (2.3)

4,j=1

t=1

i.j=1

Observe that B’ P-C’ P-Q-B’, which implies P-Q = I,,, and P = Q.
Suppose that matrices @)1, Q) of order m over R are invertible and satisfy
Q,-B = C" = Q,-B. It is apparent that B’ = Q;' - C' = Q' - Qs - B’
Consequently, Q7' - Qs = I,,, and Q; = Qs.
m
The determinant of a matrix A over a Galois ring, denoted by det(A), may
be defined analogously to the case over a finite field. Terminology from linear
algebra concerning determinants, e.g. minors, cofactors and adjugate matrices,
may be straightforwardly generalised for Galois rings. Now, we can propose
a condition for a matrix to be invertible based on its determinant.

Theorem 35. Let £ € N and A € R¥*. Then A is invertible if and only
if the determinant of A is a unit, which can happen if and only if the determinant
of A is not divisible by p.
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Proof. 1t can be proven in the same way as in linear algebra. Let A be a matrix
of order k over R. Define K = {1,...,k} and a matrix M;; of order (k — 1)
created from A by omitting the i*" row and j* column, where 7,5 € K. Recall
the adjugate matrix of A defined as adj(4) = ((—1)"*/ det(M;))F,_;. Then,
adj(A) - A = det(A) - Iy is a consequence of the Laplace expansion. Clearly,
if det(A) € R* then A~ = det(A) 'adj(A). On the other hand, if A~ exists
then 1 = det(l) = det(A™1A) = det(A™!) - det(A), and so det(A) € R*.

Let us suggest an alternative, algorithmic approach. Let a matrix A € R***
be given. Then A can be transformed into its row echelon form B by elementary
row operations. It is well-known that switching rows may change only the sign
of the determinant, multiplying a row by a unit u increase the determinant u-times
and adding a multiple of one row to another does not change the determinant.
The same holds for matrices over Galois rings, as these properties are based solely
on the definition of the determinant and application of permutations. Hence,
det(A) = det(B).

Derived from the third point in Ezample [9] and the ensuing observation,
the matrix B is invertible if and only if its main diagonal consists of units. This
is equivalent to saying that the product of main diagonal entries is a unit, which
is exactly det(B) = ﬁ bii. The last equivalence is based on Theorem

=1 0

Consider a matrix A € R** for some k,l € N and define f4 : R! — R*
by the formula f4(x) = A-x for x € R!. The map fa appears to be a module
homomorphism. Thus, the image and the kernel of the matrix A can represent
the homomorphism f4’s image and kernel, written as Im(A) = Im(f4) < R*
and ker(A) = ker(f4) < R'. In this situation, the rank of Im(A) is meant
by the rank of the matrix A, written as rank(A).

Claim 36. Let k,l € N and A € R Then |[Im(A)]| - |ker(A4)| = p™.

Proof.  Apply the first isomorphism theorem on an R-module homomorhism
! !
fa: R — R* x + Ax and obtain Im(A) = Im(f4) =~ R/ker(fA) = R/ker(A)'
Hence, |Im(A)| - |ker(A4)| = |R|" = p'™".
O
Let us finish this section about matrices by proposing another characterisation
of the left (right) invertible matrices, depending on whether the module generated
by A’s columns (rows) is free. These conditions are the direct generalisation
of equivalences that a matrix over a finite field is left or right invertible if and only
if it has the full column or row rank.

Theorem 37. Let k,l € N and A € R**.
1. A is right invertible if and only if (A7,..., A%) is a free basis of Im(A"),
2. A is left invertible if and only if (A§,..., Af) is a free basis of Im(A),

Proof. 1. Let B € R™* satisfy A- B = I,. Then, for any i € N,i < k,
k

we have §; = Al - B. Find #,...,% € R fulfilling > 2, - Al = o. Therefore,
i=1
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k k k
o= (Zzi-A;-") -B=Y 2z -A-B=1Y z-3d; but (d1,...,0;) is a free basis
i=1 ' =1

=1 A

of R*. Hence all zy, ..., 2z, must be zero, so A7,..., Al is a free basis of Im(A").

Suppose that B = (A7,..., A7) is a free basis of Im(A"), i.e. k <I. Consider
a homomorhism f4 : R! — R defined as x — A - x, which needs to be surjective
for the same reason as in linear algebra. Consequently, there exists a preimage
x; € R! such that fa(x;) = A-x; = §;, where j € N and j < k. Define a matrix
X=(x;] |xx)€R"F and compute A- X = (Ax; | -+ | Axy ) = .

2. A consequence of 1. applied on AT since (A-B)" =BT - AT,

2.3 Linear Codes

The significant difference between defining linear codes over a field and a Galois
ring is the necessity of utilising modules instead of vector spaces. Remark that
the subsequent definition yields also for any commutative ring. In this section,
terminology and notation from the work of Dougherty and collaborators [I1]
are adopted.

Definition 38. Any R-submodule C of R™ is said to be a linear code of length
m and rank | over R, referred to as an [m,l|g-code, assuming C is of rank I.
Elements of a linear code are called codewords.

Let C be an [m,l|g-code. The free rank of the code C, denoted by frank(C),
is defined as the rank of the largest free submodule of C with respect to inclusion.
The linear code C is called free provided rank(C) = frank(C). The Hamming
weight of ¢ € C, denoted by wy/(c), is the number of its non-zero coordinates,
and the Hamming distance between ¢,d € C is dy(c,d) = wy(c —d). Finally,
the number dy(C) = min{dy(c,d) | ¢,d € C : ¢ #d} is known as minimum
Hamming distance of the linear code C.

Some examples illustrating linear codes over the Galois ring R are provided.
To determine if the given code is free, Theorem which claims that any
R-module is free if and only if it is isomorphic to R' for some [ € N, comes
handy:.
Example 10. Let R = GR(32,2) = Z32[£] be a Galois ring with operations defined
modulo polynomial G3(z) = 2% + & + 2 € Zsz2[x]. Consider the following codes:

1. C = {(a0,01,00) | a,b € Z32}, then the code C is not linear as it is not
R-submodule of R? (e.g. 2-(10,31,00) = (20,62, 00) & C).

2. C = {(ab,00,00) | a,b € Zs=}, thus the code C is free linear of the rank 1
as C = R x {0} x {0}.

3. C={(ab,cd,ab+ cd) | a,b,c,d € Zz2}, so a map (ab, cd, ab+ cd) — (ab, cd)
appears to be an isomorphism between C and R?. Therefore, C is the free
linear code of the rank 2.

4. C ={(ab,cd,ef) | a,b,c,d € Zz2, e, f € {0,3,6}}. In this situation, the code
C is generated by codewords (1,0,0), (0,1,0) and (0,0,3£ + 6), i.e. linear
of rank 3, but not free.
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Definition 39. Let C be a [m, []-code over R and by, ..., b; € R™ be generators
b1
b

of C. A generator matriz of C is G = :2 € R™™ and a parity-check matriz

b,
of Cis H € R™U*™ provided H - ¢ = o' if and only if ¢ € C. The dual code
of C is a linear code C* generated by H.

Let K be the residue field R/ »R- Once again, recall the ring epimorhism ~

(or f1): R — K from Section defined by a — a + pR. Consider an induced
map ~ " : R™ — K™ for m € N as element-wise application of the epimorhism —,

ie.am = (al,...,am)m: (@1,...,@m). Then, for any a,b € R™ and any t € R:
§m+Bm:<Ta7@)+(bil77E) = <a1+b17"'7a’m+bm> :a+bm7
t-am=t-a"=({t-ap,....t - Gp) =0 ay,....,L-an)=t-a.

Furthermore, =™ is clearly surjective since ~ is, so a module epimorhism.

!
Claim 40. Let C = @ p“v,R be a [m,[|g-code for ey,... e, € {0,...,n — 1}
i=1
and a free basis V' = (vy,...,v;). Consider a free linear code D over R generated

by V. Then, Soc(C) has a basis W = (p" 'vy,...,p" 'v;) and is isomorphic
to the linear code D™ over the residue field R.

Proof. Theorem affirms that a free basis V' satisfying hypothesis exists.
The socle of D has a basis W over 7, according to Lemma as D has a free
basis V. Moreover, W C C and the code C is certainly a submodule of D. Hence,
W is also a basis of Soc(C).

Consider a map ¢ : D — R™,d > p"~'d. Choose some codewords a,b € D
and r € R. Then, p(a) + ¢(b) = p"la+p"'b = p"!(a+b) = ¢(a+b)
and ¢(r-a) = p"~t-r-a =r-p(a), so p is a module homomorphism. Furthermore,
ker(p) = pD as p"~'d = o if and only if p divides dy, . . ., d,,, and Im(p) = Soc(C)
follows from (V) = W. Hence, Soc(C') ~ D/pD based on the first isomorphism
theorem.

On the other hand, let w be a restriction of the module epimorphism = to D.
Then, ker(w) = pD and Im(w) = D™. Again by using the first isomorphism
theorem, D/pD ~ D", In conclusion, Soc(C) =, D/pp ~,D". .

2.4 Permutation Equivalent Linear Codes

Equipped with the necessary module theory and code terminology, it is now
possible to describe linear codes over the Galois ring R and determine their
equivalence classes.

Definition 41. Let m € N, S = {i € N,;i <m} and C, C’ be [m, []-codes over R.
The codes C and C’ are said to be permutation equivalent provided there exists
a permutation o : S — S such that a codeword (¢i,...,¢,) € C if and only
if (co(1),-- -, Com)) € C', written as C' = o(C).
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The primary intent of this section is to find a “well-behaved” representative
of every equivalence class under the permutation equivalence. The subsequent
definition clarifies which codes are “well-behaved”.

Definition 42. Let m,l € N and C be an [m,[]-code over R with a generator
matrix G € R™™. Then, G is in the systematic form provided

Iy  Goa Goa ... Gon-1 Gon
0 p-Iy, p-Gio ... p-Gina p-Gip
0 0 2L, ... 2. Gype 2. Gan
G=|. Ut Prmest B (9
0 0 0 s pn—Q : Gn72,n71 Pn_2 : Gn72,n
0 0 0 e p Ly P Grlan

where ko, k1,...,k, € NU{0}, i ki = m, and G;; € R¥*% for every i,j such
that 0 < ¢ < j <n. We shall erigg G ~ (D)ko(p)kr(p?)r= ... (p=1)*=1(0)k», where
terms (p*)* for k; = 0 are omitted.

Consider a linear [m, []-code C over R. Theorem |30 asserts that a free basis
B = (by,...,b,,) of R™ exists, which fulfills C = é p“b,;R, where every ¢; € Z
satisfies 0 < e; < n. Now, let us propose a relatio;l:i)etween rows of a generator

matrix of C in the systematic form and the free basis B.

Lemma 43. Let m,l € N, vy,...,v; € R" be of height n and ey, ..., ¢, € NU{0}
be less than n. If a matrix G = (p% - v;)!_; € R™™ is in the systematic form
then (v ...,v;) is a free basis of some submodule of R™.

Proof. Suppose that G is in the systematic form and let C be the code generated
by G. For any i,j € N, 7 < ¢ <[, we have v;; = 1 and v;; = 0. If it is shown
that Soc(C) has a free basis (p"~'vi,...,p" 1v;) then, in line with Lemma [28]
vi,...,V; constitute a free basis.

!
Let z1,...,2 € T, satisfy 3 z;p" 'v; = o. Notice that vy, = 1 and vg; = 0
=1

forany 7,k e N, j < k <. Exﬁress the sum over every coordinate fori =1,... [

l
. _ —1 21€
Q’L:l:O:Esznl’vjlzzlpnlgr,zl:o?
j=1

; L n—1 n—1 n—1 n—1 Z2€gr
e 1=2:0= lejp Vjo = z1p" V12 + 22p = 29p 29 =0,
j:

n—1

l
e i > 2:Suppose that z; = 0 for each j < i. Then, 0 = Y z;p" v = z;p" 1,
j=1
and it is possible to conclude that z; = 0.

Thus, there exists only a trivial zero combination of p"~!vy,...,p" !v; and these

codewords form a free basis of Soc(C).
O
Now, we formulate an algorithm for finding a generator matrix G € R>*™
in the systematic form of some permutation equivalent code to the given
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Algorithm 5 Finding systematic form of a generator matrix

Require: alinear code C over R given by a basis (uy,...,u;) C R™
Ensure: a generator matrix G of ¢(C) in the form (2.5]), a permutation o
141
while 7 <[ do
(hi, v;) < Algorithm [4|(u;)
e n—h;
1 1+1
end while
sort vy, ..., v; by their corresponding exponents e; in non-decreasing order
G+ (peivi)ézl e R™™ o« idg,,
e+ 0
while e < n do
Me <— ez kz +1
14 m:o
ke <= [{me < j < 1| e; = e}
while i < m. + k. do
find j € {i,...,m} such that v = 22 € R*
Gf < G§,0 <00 (i,])
G o' G
J+1
while 7 </ do
if j #1 then
if 7 > i then
(hj,v;) < Algorithm [4(G})
€5 <N — h,j
end if
if G} = o then
G+ (Gg)izlyt# (omit the j** row G from the matrix G)
l+—1-1
Je—=i—1
if m,<j+1<m,+k, then
ke +— k. —1
end if
end if
end if
j—j+1
end while
1 1+1
ke < [{me <j <l|e; =e}
sort G7,..., G} by their corresponding e; in non-decreasing order
end while
e<—e+1
end while
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[m, {]-code. In the algorithm, we use the notation from Definition [31} Gf
denotes the i column of G, G7 is the i*" row of G, g;; is the entry of G at position
(i,4), and Gf «» GS means swapping the " and j* row of G.

Claim 44. Algorithm |5|is correct and on input uy,...,w; € R™ has the time
complexity O (I*(m - s*> +log(l))), s = n - r - log(p).

Proof.  Based on Theorem , there exists a free basis (by,...,b,,) of R™
for every linear code C C R™ such that C = @ p"b;R, fi,..., fm € {0,...,n}.

i=1

Then, Algorithm [5|is trying to find some mc;diﬁed codewords b7, ..., b}, where
each b} is obtained by permutating the coordinates of some linear combination
of b; with ¢; < n, wheret=1,... mand j=1,...,L.

Let uy,...,u; € R™ be given. For each i € N, ¢ < ¢, perform Algorithm
on u; to get the height h; of u; and a codeword v; € R™ of height n meeting
the condition u; = p-v; for e; = n—h;. Assume, WLOG, e; < ey <--- < ¢ < n.
Denote by k. the number of exponents e; = e and by m, the index of the first
u; with the exponent e for every integer e, 0 < e < n. Now, define a matrix
Go = (w;)!_, € R™™ and let C be a code generated by Gy. Notice that the matrix
Gy corresponds to the initialised matrix G in Algorithm [5]

Choose e € Z,0 < e < n. Note, for every integer ¢ satisfying m, <1 < me+k,,
the row G has the height n — e. Therefore, the codeword jf has at least
one invertible coordinate x € R* based on Claim [26| and the “normalisation”
1. G7 is possible. The process of row elimination can only reduce the heights
of rows since C N (p°R)™ is, derived from Claim [26] a submodule of the code C
containing all ¢ € C with height at most n — e. Thus, every operation applied
to the matrix G € R™™ is well-defined. Moreover, for obtained G = (p®v;)!_,,
we have e; < e; < n (sorting and omitting), v;; = 0 = vy, (reduction) and v;; = 1
(normalisation), where i, j, k € N satisfying j < i < k < m, + k.. As a result,
the matrix G is in the systematic form.

Observe that the only transformations applied to Gy in order to obtain G
were elementary row operations, permutation ¢ of the indices of the columns
and omitting of zero rows. Subsequently, there exist a matrix £ € R, which
is the product of elementary matrices corresponding to the applied elementary
row operations, a permutation matrix P € R"™*™ representing the permutation
o acting on the indices of the columns of Gy and a zero matrix O € R{¢=0)xm
satisfying (§) = E-Go-P. Additionally, £ and P are invertible matrices according
to Ezample[9 and Lemma [33]maintaining that the product of invertible matrices
is invertible. Let C’ be the code generated by G and ¢ € C’. Then, x € R! exists
such as ¢ = x - G, which is equivalent to that there exists x € R!, for which
¢ =x-(§). This can happen if and only if y € R exists satisfying ¢ = y -Gy - P.
Equivalently, c- P~ € C, and it confirms that the codes C and C’" are permutation
equivalent.

Remark that every element of R can be stored using s = n - r - log(p) bits
and every codeword of R™ using m - s bits. Lemma 27| proposes that computing
Vi,...,v; can be done in time O (l -m - %) Clearly, sorting them is possible

in time O(I - log(l)). The cycles over e and i give [ iterations of:

1. Finding % € R* using trial division: O (m . ﬁ), * bits needed for p® < p",

T
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2. Gf < GS:O(m - s),

3. 271 - GI: O(m - s?),

4. While j <[ give 1 iterations of:
(a) G} — Gy G} : O(m - s?),

2

(b) Algorithm [} O (m - £),
= O(l-m-s?)
5. sorting GI,...,GJ: O(l - log(l)).
Altogether, the algorithm’s time complexity is O (I>(m - s? + log(l))).
[

Corollary 45. Every linear code C of the length m € N over R is permutation
equivalent to some linear code generated by G ~ (1)%(p)*1 ... (pn=1)kn—1(0)Fn

where ko,kl,...,kneNU{O},iki:m.
i=0

Demonstrating Algorithm [5| to find the systematic form of some code C
can be only beneficial for broadening insight into the algorithm’s functioning
and codes in general.

Example 11. Let R be the Galois ring GR(3?%,2) = Zs:[¢] with operations defined
modulo polynomial G34(x) = 2% 4+ x + 2 € Zs2[z]. Consider codewords

30\ | 10N T 03\ 1 20\ T
vi= (%) vo=(1) va=(0) ,va=[(%2) eR®
= 4oo) "2 \25) "3 \ oo A i :
10 00 11 01

Let C be a linear code generated by vi,3 - vo, vy and 3 - vy.
Emulate Algorithm [5}

4
1. SwapV2andV3toachieveelz():eg§63:1:e4inC:@pei-vi-R,
7

=1
Seavs 03 08 06 00 11
V2 _
2. G4+ 3eye | = <30 33 36 60 00>
6 00 03

3edv, 60 63 6
3. e+ 0:
k0<—2,m0<—1,M0<—2

cevcie /0530330010 » 701 60 66 00 20 01 60 66 00 20
i1 G Glﬁ% 06 03 00 00 11 ) G192GT (46 03 00 00 11 « (00030000 11
: 33 30 36 60 00 33 30 36 60 00 00 30 36 60 00
63 60 66 00 03 63 60 66 00 03 00 60 66 00 03
covcze /01206600 60\ + 701 20 66 00 60 01 00 66 00 60
P2 G Gzﬁc% 00 11 00 00 03 | G2,40°G2 (66 01 00 00 30 « (0001 00 00 30
00 00 36 60 30 00 00 36 60 30 00 00 36 60 30
00 03 66 00 60 00 03 66 00 60 00 00 66 00 60
4. e+ 1:
k1<—2,m1<—3,M1<—4
. GsoGg (0100 6600 60\ Gror.Gy /01 00 66 00 60 01 00 00 00 60
) 00 01 00 00 30 | &3 2 (00 01 00 00 30 00 01 00 00 30
i3 G % (0000366030 — 00 00 03 33 66 | < | 0000 03 33 66
00 00 66 00 60 00 00 66 00 60 00 00 00 00 60
cevcze 0100006000\ » 701 00 00 60 00 01 00 00 00 00
i 4 G G4<2G5 00 01 00 30 00 \ G4,22GL (66 01 00 30 00 « (0001 00 00 00
: 00 00 03 66 33 00 00 03 66 33 00 00 03 00 33
00 00 00 60 00 00 00 00 03 00 00 00 00 03 00



Denote the matrices Go; = 02, G2 = (9) and G2 = ({}). Thus, the output
of the algorithm is indeed the matrix G = ( (I)z g(}; 3%)’1222 in the systematic form,

which generates some code permutation equivalent to C.

Consider some matrix A over R. Let GG be the output of Algorithm |5|applied
to A. Execute Algorithm |5|a second time, now on the G, and denote by D
the result. Then, D is a diagonal matrix with elements p® on diagonal, where
e € {0,1,...,n — 1}. Extend D into D" of the same type as A by zero rows
and columns. Clearly, A is similar to D'

Claim 46 (Smith normal form). Let X € R™™ for some m,l € N. Then,
there exists invertible matrices Q € R>*!, P € R™™ and the diagonal matrix
Y = diag(1,...,1,p,...,p" 1,0,...,0) € R>*™ satisfying Y = Q - X - P, which
is called the Smith normal form of X.

Proof.  Let X be a matrix of type [ x m over R. Consider a code C generated
by X. Corollary [45|states that a matrix G € R™™ in the systematic form exists,
which generates code D permutation equivalent to C. Lemma suggests that
t < 1. It is possible to compute an invertible matrix @ € R!*!, a permutation
matrix P, € R™™ and a zero matrix O € RI9*™ subject to (§) = Q- X - P,
(executing Algorithm |5/on X). Thence, it suffices to perform column reduction
without interchanging the columns as i*! pivot has value p® and G! = p®v;, where
e; =0,1,...,n and v; is of height n for each i € N,7 <. Denote by £ € R"™*™
the matrix representing the applied elementary column operations. The matrix
FE appears to be invertible as the product of elementary matrices by combination
of Example@and Lemma. In consequence, Y = (4F) =Q-X-Pi-E = Q-X-P
for P = P1 - B
O
Grounded on the described approach, we outline the algorithm for computing
the Smith normal form Y of a given matrix X. Since invertible matrices indicating
the similarity between X and Y are neglected in Section the algorithm
disregards them.

Algorithm 6 Determining the Smith normal form
Require: matrix X of type k x [ over R
Ensure: matrix Y of type k£ x [ over R, which is Smith normal form of X
(Y,0) < Lemma [43(X7, ..., X}), where Y is of type s x [
141
while 7 < s do
J—i+1
while j </ do
Y;(—Y;—%-Yf;j(-j—i-l
end while
141+ 1
end while
while 1 < k do
Y! + o (add zero rows at the bottom of Y until it is of type k x [)
14 1+1
end while
return Y
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3. Maximum Cardinal Rank
Distance Codes

This chapter presents the definition of a different metric from the usually used
Hamming distance. The metric is essential for generalising maximum rank metric
codes over finite fields. Readers who are not familiar with rank metric codes,
especially Gabidulin codes, can find more in [12], [13] or [14].

Let n,r € N, p be a prime, R = GR(p",r) and S = GR(p", 1) = Z,» be Galois
rings, which remain fixed henceforth.

3.1 Cardinal Rank Metric of Matrices

Consider a matrix A of type k x [ over the ring S, then an S-module generated
k

by the columns Af,..., Af of A is exactly Im(A) = > A¢-S. The notation
i=1

utilised in this thesis is slightly different from the one used in [6, Chapter 3],
where the cardinal rank metric was introduced.

Definition 47. Let &,/ € Nand A € S¥*/. The number log,. (|Im(A)]) is defined
to be the cardinal rank of the matrix A and is denoted by rk (A).

Let us look at the basic properties of the cardinal rank metric of any matrix
over the ring S.

Theorem 48. Let k,l € N and A, B € S¥*!.
1. VC € S**l 11k (C) > 0, specially tk (C) = 0 <= C = Opxy,
2. If Im(A) C Im(B) then rk (4) < rk (B),

3. If 3Q € S**¥3P ¢ S™*! both of them invertible, such that A = Q' BP,
then rk (A) = rk (B),

4. tk (A) =1k (AT),
5. tk(A+ B) <tk (A) + 1k (B),

6. If there exist matrices C' € S¥*h and D € S*¥*2 for which ki + ky = k,
Lhi+la=1land A= (§ 9), then rk (A) =1k (C) + 1k (D),

7. rk (A) < rank(A), where the equality is achieved if and only if an S-module
Im(A) is free.

Proof. 1. and 2. follow directly from the definition. To address 3., it suffices
to remark that a map w : Im(B) — Im(A),x — Q~'xP appears to be a module
homomorphism based on the distributive property of matrix multiplication, which
is bijective as w™(y) = QyP~!. Hence, Im(A) ~ Im(B) and |Im(A)| = |Im(B)].

4. Let the matrix B = Q 'AP be the Smith normal form of A for some
invertible matrices € S** and S™! as in Claim . Since the diagonal
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elements of B are the only non-zero entries, it is evident that [Im(B)| = [Im(BT)]|.
Thus, tk (A) = 1tk (QBP~) Z 1k (B) =k (BT) Z 1k ((QBP)T) =1k (AT).

5. Firstly, given that Im(A + B) is generated by the columns of A+ B, which
certainly lie in Im(A) + Im(B), Im(A + B) is an S-submodule of Im(A) 4+ Im(B).
Secondly, let p : Im(A) X Im(B) — Im(A) 4+ Im(B) be defined as p(a,b) =a + b,
where (a,b) € Im(A) x Im(B). Then, p seems to be a module epimorphism.
It directly results in

[Im(A + B)| < [Im(4) + Im(B)| < [Im(4) x Im(B)| = [Im(4)] - [Im(B)].

By taking the logarithm, rk (A 4+ B) < rk (A) 4 rk (B).

6. Since the matrix A is block diagonal with blocks C' and D on the main
diagonal, it can be expressed as Im(A) ~ Im(C) x Im(D). For this reason,
l0g, ([Tm(A)[) = log, ([Tm(C)] - [Im(D)]) = log, ([Im(C)]) + log,. (|Im(D)}).

7. Let (g1,...,8:) be a basis of Im(A) over S and by,...,b; € S* form a free

t t
basis of S*. Then, a map p : S* — Im(A) defined as Y z;b; — X z;g; appears
i=1 i=1

to be a module homomorphism. Additionally, p is surjective since it maps the free
basis of S* to the basis of Im(A). As a result, [Im(A)| = [p(S")| < [S]* = p™.
If Im(A) is free then certainly [Im(A)| = p™. On the other hand, p is bijective
provided |Im(A)| = p™. In consequence, p in an module isomorphism, and Im(A)
is free according to Theorem [24]
O
Let Y € S**! be the Smith normal form of a matrix X, which exists thanks
to Corollary [46] An explicit formula for computing the cardinal rank of X
is founded on the prior theorem.

Corollary 49. Let k,1 € N and X € S¥*!. Let Y € R"™™ be the Smith normal
form of X and define ¢; as the number of pivots of Y equal to p*, i = 0,...,n.

n—1 .t
Then, rk(X) = X %
i=0

Proof. Execute Algorithm @ on X to obtain the Smith normal form Y € S¥*!
of X with diagonal blocks I, ply,,...,p" 'I;, , and a zero block O. Doubtless,
rk(O) = 0. Choose i € Z,i < n. Notice that Im (pI;,) = (p'S)" as p" - s =0
for every s € p'S, and only z € S, z < p" ¢, defines a unique z - s. Thus,
log, (|Im (p'I,)|) = log,n (p("*i)'ti) = (=04 Concluded from Theorem ,

3. 6. iy RS (i)
tk(X) =1k(Y) = 3 rk(p'ly,) = X =

]

Algorithm 7 Computing the cardinal rank
Require: matrix X of type £ x [ over S
Ensure: rk(X)
Y <+ Algorithm [6] X)
c 05141
while ¢ < k do
(h,v) + Algorithm [4{'Y?), where v of height n satisfy Y = p"~" . v
c+c+ %; 14—1+1
end while
return c
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Let A and B be two matrices over S of the same type and C' be their difference.
The cardinal rank of C' may be used as a metric between A and B, but the metric
axioms must be verified first.

Corollary 50. Let k£, € N. A map d, which associates a pair of matrices A, B
of the same type k x [ over S with a value rk (4 — B) € Q, is a metric over S¥*!.

Proof. Choose A, B,C € S**! and regard Theorem .

1. Non-negativity: According to the theorem’s first assertion, rk (A — B) > 0
and rk (A — B) = 0 if and only if A = B.

2. Symmetry: tk (A — B) =tk ((—1})(B — A)) 483 1k (B—A).

3. The triangle inequality:
485
rk(A—C)=1k((A-B)+(B—-0C)) < tk(A—B)+1k(B-C)

Hence, (S¥*!,d) is a metric space.
O
Before providing the codeword version of the cardinal rank used in the code
theory, the cardinal rank of matrices is illustrated on three simple but non-trivial
examples without figuring out the Smith normal form.

Example 12. Let S = Z3z2. Compute rk (A),rk (B) and d(A, B) for the matrices
0822

A= (0063), B= ((l)ggg) € S3x4,
3006 8006
Rewind the notation: G¢ is the i*" column of a matrix G, G! is the i*" row

of G, g;; is the entry of G at the position (3, j).

0822\ 8A5 0122\ AS+TAS 0100\ A5+AS /0100
1.A:(0063> ~(0063) ~ (0063) ~ (OOGO)
3006 3006/ AS+7AS \3006/ AG+AS \3000

We have an S-module Im(A) = {(gﬁ) ’xl, X9, X3 € S}, where the second
z3

and the third coordinate seems to lie in the maximal ideal 3S = {0, 3,6}.

Therefore, [Im(A)] =933 = 81 and the cardinal rank of the matrix A

is 1k (A) = logy(|Im(A)|) = logy(81) = 2.

060\ BS+3BS 1000\ BS+1BS 1000
133) ~ (0133) ~ (0100)
006 8066/ BS+6BS \8060

1060\ 7BS
2. B:(0433> ~2(
8006

oo

r1—x3
Now, it is clear that Im(B") = {( o >

6x3
0

Im(BT)| = 9-9-3 = 243 as the third coordinate can be only from 3S.
Consequently, tk (B) "2* rk (BT) = logy(|lm(BT)|) = log,(81 - 3) = 2.

2\ C$+C$ 1002\ C5+7C§ /1000
0) ~ (0530) ~ (0130)
1/ cg+3Cs \000 1 2C5 0001

1, X9, T3 € S} has cardinality

8852\ Ci«<Cq{ /18
3.C:A—B:(0530) 1~4(05
4000/ 7cg,5¢5 \00

owaut

1

80) = Im(C) = {(%g) ‘171,5172,1‘3 € S}
Hence, the module generated by the columns of C'is free and has cardinality
[Im(C)| = 93. Thus, d(A, B) =1k (A — B) =1k (C) = loge(|Im(C)|) = 3.

C5+6Cy ( 1
~ 0
0
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3.2 Cardinal Rank Metric of Codewords

Let B ={&1,...,&.} be a free basis of R over S. The coordinate vector of a € R

relative to the basis B, denoted by [a]p, is a codeword (ay, s, ..., a,)" over S

provided a = Y «; - &. Similarly, [a]g = ([a1]s | ... | [am]s) € S is said
i=1

to be the coordinate matrix of a = (ay,...,a,) € R™ relative to B, where

m € N. Straightforwardly, [-|p : R™ — S"™™ is a module isomorphism since
ker([-]g) = {o}, [a]p + [b]sp = [a+ b|p and [s-a]p = s [a]p for any a,b € R™
and s € S.

Lemma 51. The cardinal rank of the coordinate matrix of a and the induced
cardinal rank distance between the coordinate matrices of a and b are basis
invariant for any m € N and a,b € R™.

Proof. Let m € N and B = {&,...,&},C = {(,...,(} be two free bases
of R over S. Set @ = ([C1]s]| ... |[¢]s) € S™". Due to both B and C being
the free bases, the matrix () is invertible by Lemma applied to the trasposed
(). Observe that [c|p = @ [c]¢ for all c € R™. Choose any a,b € R™. Compute

the cardinal rank of a rk ([a]¢) = tk (Q~! - [a]¢) 183 1k ([a]g) and the distance
between a and b

d([alc, [ble) = rk([a]e — [be) = rk ([a — ble) = rk (Ja — b]s) = d([a]s, [b]s).

]
Let a € R™ for a positive integer m. Lemma [51]justifies defining the cardinal

rank of a as the cardinal rank of its coordinate matrix relative to any free basis
of R over S.

Definition 52. Let m € N and B be a free basis of R over S. The cardinal rank
of a € R™istk (a) = rk ([a]) 5 and the cardinal rank distance between a,b € R™
is dg (a,b) =rk (a — b).

Remark. (R™,dg) is a metric space in accordance with Corollary [50]

Let £ € R have order p" — 1. Due to Section , E=(1,¢&...,67
is a free basis of R over S. Choose a € R. Let ag,aq,...,a,_1 € S satisfy
r—1 .
a= Y a;&'. Denotebya,_q:...:a;1:a¢ the aditive representation of a. Notice that
i=0

this representation of a almost coincides with [a]z. Now, we depict the cardinal
rank of codewords and the induced distance between them utilising Example [12]
Ezample 13. Let S = GR(3?%,1) = Z32 and R = GR(3?,3) = S[¢] with operations
defined modulo polynomial Gs 3(z) = x*+2x+1 € S[z], where ¢ is the formal root
of G 3 of the order 3* —1 = 26. Consider a free basis B = {1,£,£?} of the ring R
over S. Compute the cardinal ranks rk (a),rk (b) and the cardinal rank distance
dr (a,b) for a = (3:0:0,0:0:8, 0:6:2,6:3:2), b = (8:0:1, 0:4:0, 0:3:6, 6:3:0) € R™.

1 falp = (8083) = rk(a) =rk(fa]s) "' 2,

2 bl = (§358) = rk(b) = vk ([bls) ",
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3. c=a—b = (4:0:8,0:5:8,0:3:5,0:0:2) = [c]g = (
— dg(a,b) =1k (a — b) = 1k (c) = 1k ([¢]5) “Z*? 3.

O

8
5
0

Wt
ooN

)

Theorem [48| proposes that multiplying any matrix A by an invertible matrix
B, for which the product A - B is defined, does not change the cardinal rank of
A. We generalise this property to the cardinal rank of a codeword.

Lemma 53. Let m € N, x € R™ and T' € S™*™ be a invertible matrix. Then,
rk(x) = rk(x - 7).

Proof. Let B be a free basis of R over S. If we show that [x - T)p = [x]p - T

then the conclusion follows from Theorem [48, Choose i € N such that i < m

and compute [x-T¢|p = [lej . T]] = Zl [z - Ty)p = > (2] 5-Ts = [x]p-T%.
j= j=

B J=1

Hence,
b Tlp = (b Tl | - [ T5ls) = (Il T

W T) = X T
]

Let K = R/pR and L = S/pS be the residue fields of R and S respectively.
Apparently, L is a subfield of K since S is the subring of R. Recall the Teichmuller
sets 7, of R and 7 of S from Definition Then, the field isomorphisms
T ~ K~ TF, and T ~ L ~ F, are derived from the remark in Section
and the paragraph above Corollary . Let B = {&,...,&} be a free basis
of R over S. If possible, we aim to propose a more direct way of computing
the cardinal rank. Let this notation be established henceforth.

Theorem 54. Let m € N and x € R™ of the height i for ¢ € N,7 < n. Then,
rk(x) > -tk (p'-x) =i £, where ¢ = dimy (Im([p' 'x]p)). Furthermore,
the equality rk(x) =i - rk(p"~! - x) is achieved for non-zero x if and only if there

is no coordinate of x divisible by p? "1,

Proof. Let m € N and x € R™ be of the height ¢« € N,7 < n. Define a matrix
X =[x]p €8 Sety=p"! -x€Soc(R") and Y = [y]g € S"™*™. It results
inY =p~!- X and Im(Y") C Soc(Im(X)), which implies

C

tk(y) = logn ([Im(Y)|) = log,. (p°) = —, (3.1)

where ¢ is the dimension of the vector space Im(Y") over T.

Let (p"1fB1,...,p"18,) be a free basis of Im(Y) over 7 and M be a module
generated by B = (fi,...,0.) over S, which is free in light of Lemma [2§|
Compute v € R™ of height n satisfying x = p"~* - v by Algorithm . Firstly,
assume that no coordinate of v is divisible by p, which implies Im(V') is free,
where V' = [v]g. However, Soc(Im(V)) = p"! - Im(V) = Im(Y) = Soc(M)
and both Im(V) and M are free S-submodules of S!. Thus, Im(V) = M and

rk(v) = log,. (|M]) = log,. (p™°) = ¢ = n - 1k(y). (3.2)

Return attention to x = p"~* - v and the S-module Im(X) = p"~* - M = (B')
for B/ = (p"'B4,...,p" 'B.). Note that B’ is already a minimal basis of Im(X)
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as 3 is the free basis of M. As a consequence,

{ESl S ) . (33)

S1,...,81 € pn_i : S}|> = 10gp”<pilc) = 7

F5(x) = o[ X)) = g,

~ log,, ( {isl 5
=1

where p' is the cardinality of p"~* - S.
Secondly, assume a coordinate of v divisible by p exists. Compute u,w € R™,
which satisfies v = u + w, no coordinate of u is divisible by p and w has height

h € Nh < n. Since p"!'-u=p"!.-v—p"lw=p"!. v, then rk(u) c
and rk(p"‘u) X L€ by the already proven part. Clearly, p'-Im(U) C p'-Im(V),

where U = [u]p and 1,0 < | < h. Finally, rk (plu) <tk (plv).

51,...,5168}‘

The previous theorem states the lower bound for the cardinal rank of element
x with height h € N, h < n. However, the equality within the bound is achieved
if and only if the coordinates of zﬁ generates a free S-module. On the other
hand, it is always possible to use Algorithm [7] grounded on Corollary [49]

Rewind the ring epimorhism = : R — K, a — a+pR, and the induced module
epimorphism ™ : R™ — K™, a — (ay, ..., a,,) for some m € N. Theorem
about the p-adic representation implies that 7, = K and 7 = L. Remark that
the operations on 7, were determined utilising the ring epimorphism —. Then,
B = {El, e ,Er} is a basis of the field K over L. To clarify over which ring
is the cardinal rank and the induced distance meant, denote for each a,b € R™

rks(a) = log,. (|Img([a]p)|) and ds(a,b) = rks(a — b), (3.4)
tky, (8™) = log, ([Tmy,([@"]5)]) and  dg (8™, B7) =1k, (8™ —b™). (3.5)

Let C be an [m,l]r-code and a,b be codewords of C. Thus, using the proposed
notation, the cardinal rank of a € R™ over S is rk(a) = rkg(a), and the cardinal
rank distance between a,b € R™ over S is dg(a,b) = dg(a,b). In the same
manner, the minimal cardinal distance of C over S is dg(C) = dg(C). Denote
by £ = C" the code of length m over K and by d =a™,e = b its codewords.
Hence, the cardinal rank of d € K™ over L is rk(d) = rky(d), the cardinal rank
distance between d,e € K™ over L is dg(d,e) = dp(d,e), and the minimal
cardinal distance of £ over L is dg(€) = di(€). Hopefully, the reason why rk
and dg are distinguished based on the ring over which they are taken is clear
now.
Claim 55. Let m € N, a € R™. Then rkg (a) > rks (p"'a) = %nam)'
Proof. Let m € N and a € R™ be given. Compute d € R™ with all coordinates
from 7, and e € (pR)™ such that a = d+e, which is possible due to Theorem
being used for each entry of a. Denote the matrices A = [a]g, D = [d]p €
S™™ and C = [@a™]z € L™™. It can be directly derived that p"~'a = p"~'d
and p" A = [p"talp = [p"'d]p = p"'D.

Define a map @ = Soc(S") — L" for any x € S" by w(p" ! - x) = X"
Drawn from the proof of Claim [40] w is a module isomorphism. Observe that
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T, T

DAY = w(p DY) = (@5 = [4)],, = [ailg = C forany i = 1,...,m,
where it was used that @™ = d, and the basis B of K over L is the projection
of the basis B of R over S. Furthermore, w(Img(p" *A)) = Imy,(C) since for any

x € Img(p" ' A) there exist coefficients ty,...,t,, € T such that x = Z tip" LA

and @(x) = Z w(tp"tAS) = f: t;D§" Z t;C¢. Conclude from Theorem
that rkg(a) 2 n-rkg(p"'a) > rkg(p"'a) and

log, (|Tm,(C)]) _ rky(a™)
log,,(p") n

tks(p"'a) = log, (|Ims (p" " A)|) =

Y

which finalises the proof.
O
Let a € R™. Regard two S-modules M = Im([a]g) and N = (aj,...,an)s.
Clearly, both of them are fully determined by the codeword a. Denote by 8 € R™
the codeword composed of the basis B elements. Consider a map v : M — N
defined as v(x) = B-x' for x € M, which appears to be a module homomorphism.
In addition, v is bijective since v~! <§ ziai> = in: zilailg for z1,...,2, € S

] .

=1

as B - [a]p = a. Consequently, we have rank(M) = rank(N). We finish this
section by relating the rank of N to the cardinal rank of a.

Corollary 56. Let A = (ay,...,a,)s be the S-submodule of R for some m € N
and a € R™. Then rk(a) < rank(A) and rank(A) < |n-rk(a)].

Proof.  Choose m € N and a € R™. Put A = (ay,...,a,)s and ¢ = rk(a).
The first inequality ¢ < rank(A) is derived from Theorem [48 Next, based

on Claim , rkp,(@™) < n - ¢, which can be rewritten as dimy, (Z) < |n-cl.
According to Claim , Soc(A) ~ A and therefore dimy(Soc(A)) = dimy, (Z)
The rest follows from rank(A) = rank(Soc(A)) = dimy(Soc(A)).

[l

3.3 Cardinal Rank Metric Codes

When linear code C of length m € N over R = GR(p", r) uses the cardinal rank
metric dr as the distance of its two codewords, C is called a cardinal rank metric
code. Additionally, dg(C) = min{dg(a,b) | a,b € C;a # b} is the minimum
(cardinal rank) distance of C instead of dy(C).

Briefly turn to the standard theory of error-correcting codes over finite fields,
which has among its main goals finding the largest possible code for the given
minimal distance. Definitely, the most known upper bound for the size of a code
C of the length n € N over F, with the minimal Hamming distance d € N
is the Singleton bound which states that |C| < ¢"~?*!. Moreover, the Singleton
bound can be restated as dyn(C) < n —k+1 for a linear code C of the dimension
k € N. Lastly, linear codes that achieve equality in the bound are called maximum
distance separable (MDS) codes. Analogically, the same inequality holds also
for the rank distance defined as dg(ci,c2) = rank([c; — cq]p) for codewords
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c1,¢2 € C, where B is some basis of F, over F, for prime p,p | ¢. Maximum rank
distance (MRD) codes are linear codes which reach the upper bound with the rank
distance. Additional information concerning linear codes over finite fields can
be found in the book by Bruen et al. [15].

Remark. 1t is not difficult to notice that the cardinal rank distance equals the rank
distance for linear codes over a finite field.

Theorem 57 (Singleton-like bound). Let I,m € N and C be a cardinal rank
metric [m,[|gr-code. There exist integers ey, ...,e, € {0,...,n — 1} and a free
basis V = (vy,...,v;) fulfilling C = (p®'vy,...,p"v;)r. Let D = (V)r. Then,

dL(@m) <m—l—|—1
n - n '

ds(C) = ds(Soc(C)) = (3.6)

Proof. ~ Theorem states that there exist a free basis V. = (vy,...,v))
of an-R-submodule of R™ and exponents ey,...,e; € {0,1,...,n — 1}, which

!
satisfy C = @ p“v;R. Consider a free linear code D generated by V. According
i=1

to the Singleton bound for the [m, lx-code D™, we have dy (D) < m—I+1. If we
manage to prove that dg(C) = & (D ) and dr, (fm) < dy(D™) then the minimal
cardinal rank distance of C is dg(C) = ds(C) = dL(f ) < d”@m) < melbil

Let B be a free basis of R over S. Thus, B is a basis of the field K over L.
Choose any a,b € D" and denote by M € L™™ the coordinate matrix [a — b]z.
Let us direct attention to the cardinal rank distance between a and b:

dp(a,b) = rky(a — b) = log, (|Imy(M)]) = rank(M) = dimy, <i1 M - ]L)

< {MCS i€ N,i <m: M £ o}| = wy(a — b) = dy(a, b)

Next, find ¢ € C meeting the condition rkg(c) = dg(C), which may be done
as dg(C) = min{rks(a —b) | a,b € C;a# b} = min{rks(c) | c € C\ {o}}.
Since Img ([p- ¢]p) C Img ([c|p) and rkg(p - ¢) < rkg(c), it is now evident that
p-c = o and ¢ € Soc(C). Hence, dg(C) = ds(Soc(C)). Execute Algorithm
on c to obtain d € D of height n satisfying ¢ = p"~! - d. Additionally, Claim

asserts that rks(p"~'d) = e (d7)
f € D such as 0 < rky, (fm> < 1k (am) Tn this scenario, p"~'f must remain

Assume, for a contradiction, there exists

non-zero, because if p"'f = o then f € pD and ' = o, which contradicts
rky, (fm) > 0. Moreover, p"~'f € Soc(C) \ {o} and rkg(p" ! - f) < rkg(p"~! - d),
a contradiction with the minimality of rk(c). Finally, it is possible to conclude

ds(C) = ds(Soc(C)) = rks(e) = "T) _ a.@™)

n n

O

Corollary 58. If Soc(C;) = Soc(Cz), where Cy, Cy are cardinal rank metric codes
of the same length over R, then dz(C;) = dg(Cs).

Proof. Absolutely, dz(C1) &2 dr(Soc(Ch)) = dr(Soc(Cs)) & dr (Cy).
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3.4 Maximum Cardinal Rank Distance Codes

A class of cardinal rank metric codes which achieve the Singleton-like bound (i3.6))
is studied in this part. The class clearly generalises MRD codes over finite fields.

Definition 59. Mazimum cardinal rank distance (MCRD) codes are cardinal
rank metric codes, which reach equality in the Singleton-like bound (3.6)).

Let C,D be [m, [|r-codes such that D is free and Soc(C) = Soc(D). Thanks
to the Singleton-like bound, dg(C) = M. If C is MCRD then clearly D™

is MRD and D is MCRD since dg(D) = 2(2°)
nothing about the code C" over K.

. Remark that we know almost

Corollary 60. Let [,m € N and C be a free cardinal rank metric [m, lJr-code.

Then, dg(C) = () and ¢ is MCRD if and only if C" is MRD.

n Y

Proof.  According to Claim it suffices to state Soc(C) is isomorphic to '
(© & )

as D in Claim |40 is exactly our code C. Hence, we have dg = -~
and the equivalence is the direct consequence of this equality.
m

Note that in the preceding proof, C equals the free code D only when C
is also free. It may sound trivial, but it is vital to keep it in mind as for a codeword
¢ € Soc(C), which satisfies rk(c) = dz(C), the codeword p'~" - ¢ does not have
to be located in a non-free MCRD C. Accordingly, the projection €™ does not
have to be in C, i.e. C is not required to be MRD. Let us introduce some
necessary conditions for codes to be MCRD.

Theorem 61. Let [;m € N satisfy 2l < m < min(n,r), and C be a MCRD
[m, []r-code with a generator matrix G € R™™ in the systematic form, i.e.

-[ko GO,I GO,Q GO,n—l GO,n
0 p-Iy p-Gia ... P Gin p-Gin
0 0 p2 : Ikz p-- GQ,n—l p2 . G2,n
G=| . . . . . ;
0 0 0 pn—2 : anQ n—1 pn 2 Gn72 n
0 0 0 pn—l Ikn,l pn_l anl n

where ko, k1, ..., k, € NU{0} satisfy i ki =m,and G, ; € RF>ki where i, j € Z,
i=0

n

i—1 i
0<i<j<mn Denoted=dg(C)=""F m; = .Zokj and M, = Zokj_l
J= Jj=
for every i € {0,...,n}. Put F = (piGi’n);:Ol c Rix(m=0)

1. The [m — [,l]gr-code D generated by F' is MCRD.

2. Every row of F' may have maximally [ — 1 coordinates of height less than
the height of the whole row.

3.Vie{0,....n—1}Vj € {my, ...

n

’Mi} : (n_z)d <rk (G;) < (”_i)(m—miﬂ-i-l).
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Proof. 1. Assume, for a contradiction, that D is not MCRD. So, there exists
a non-zero f € D, which satisfies rk(f) < ™=2+l Find x € R’ such that

f = x-F, and compute ¢c = x-G = (e f) € C for appropriate e € R’
Obtain minimal ¢ = 0,1,...,n fulfilling p’ - ¢ € Soc(C), and figure the upper
bound rk(p'e) < log,.(p') = L as for every coordinate of pe, there is maximally
p possible coefficients from S. Thence,

rk(p'c) = rk ((pie om,l) + (ol pif)) %5 rk ((pie om,l)) +rk ((ol p’f))
= rk(p'e) + rk(p'f) < ! + mz2lEl d,
n n
a contradiction with C being MCRD.

2. Let A = (d4,...,6,,) be the standard basis of R™ over R, which is free.
Denote e = dg(D) = =241 a5 D is MCRD by 1. Assume, for a contradiction,
that ¢ € N, 4 <[, exists, for which the row F] of height h; has at least [ coordinates
of the height less than h;. On other hand, f = phi=t.§;- F = p"~1.F’ € Soc(D)
must have the cardinal rank rk(f) > e since f # o and D is MCRD. At the same
time, there is at least [ coordinates of f equal to 0. It may be deduced that
rk(f) < log,.(p™ ) = ™2l = ¢ — L which cannot happen.

3. Let A be as before. Choose any non-negative integers i and j meeting
the conditions ¢ < n and m; < j < M;. Set h; = n — i and consider a codeword
c=phit.§;-G=pht. G} € C. Then, c € Soc(C) as G’ € (p'R)™, and c has
rk(c) > d, because C is MCRD. In accordance with Theorem applied to G
of the height h;, rk(G7) > h; - d. Moreover, G} = (oj_l Pt onj y), where
j—1 zeros from the row-echelon form of G are followed by the pivot p"~¢ and other
M; — j zeros of the current block p"~'I;,. Specially, y = p" (Gjmirrs---+jm)
is the last part of G} as m;1 = M; + 1. Hence, the 7 row of G has the cardinal
rank rk(G%) < log,. (phi'(m_mi““)) = M, because G of the height h;
has at most (m — m;,1 + 1) non-zero coordinates.

O

Now, let us focus on only free MCRD codes over Galois rings. We can state
the necessary conditions for generator matrices in the systematic form and codes
themselves much more clearly.

Corollary 62. Let I,m € N satisfy 20 < m < min(n,r), and C be a free MCRD
[m, l|r-code with a generator matrix G = (]z F) € R">™. Denote d = =11,

1. Every row of G has the cardinal rank n - d.
2. No entry of F' is divisible by p and the code generated by F' over R is free.
3. The number of codewords in C of the cardinal rank d is at least [(p” — 1).

4. A tuple (1, fi;, f2j,- -, fi;) is a free basis of some S-submodule of R for
every j € N, j <m — L.

Proof. 1. In the case of C being free, we have ky = [ and k; = 0 for all
i € N,i <n, where k,...,k, are from the systematic form (2.5)). Theorem
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implies n - d < 1k(G}) < w for j € N, j <[. Subsequently, tk(G) =n-d
by simplifying the inequalities.

2. Choose any i € N;i < n. Then, we have rk(G}) = n - d as a result of 1.
Theorem [54| proposes that rk(G7) > n-rk(p"'G7) and the equality is achieved
if and only if no coordinate of G} is divisible by p. Since C is MCRD, we have
rk(p"~'Gl) = d. Hence, no coordinate of G! is divisible by p, so neither is any
coordinate of F7.

3. Let B=(1,&,...,£1) be a free basis of R over S for £ € R of order p" —
Choose some x € 7, \ {0} and i € N,i < [. Abbreviate p"~! - G} € Soc(C) to g.
Remark that g # o based on the previous point, from what = - g € Soc(C) \ {o}
follows directly. Set X = ([z]gz | [z -&]z |-+ | [z &) € S”". Then, X seems
to be the matrix of a module homomorphism y : R™ — R™, a — x - a relative
to the basis B, because

[z-a]p = ([z-alp |- |[r-amlp) = (X -[ai]p [ --- [ X -[am]p) = X - [a]5.

Especially, x is bijective since x ' (y) =27 ' -y foranyy e R™ asz € T,, x # 0.
Hence, the matrix X is invertible. Consequently, it is derived from Theorem
that rk(z - g) = rk(X - [g]) = rk([g]s) = rk(g) = d. As a result, there exists
at least [ - (p” — 1) codewords in C of the cardinal rank d, where [ is the number
of possible rows of G and (p" — 1) is the number of appropriate x € 7, \ {0}.

4. Assume, for contradiction that j € N;7 < m — [, and s¢,s1,...,5 € S

exist, which fulfill Z s F,j = 0, where Fy; = 1, and s; - f;; # 0 for some

ie{0,1,...,1}. Grounded the second point, s; - f;; # 0 if and only if s;; # 0.
Define a codeword c=s-G e fors=(sy,...,5). In this situation, ¢; = s;

!

forallt € N, ¢t <[, and ¢;4; = s~F§ = . 8¢ fij = —s0. Let B be a free basis of R
t=1

over S as above and e € {0,1,...,n — 1} be minimal such that p¢ - ¢ € Soc(C).

S1 82 ... S —So
00 .. 0O

Set a =p°- (¢1,...,¢,¢44), s0 [alp = p° - ( S ) and rk(a) = X based

00 .. 00

on Claim [49| It is a direct consequence that rk(p®c) < ™= < d since the other

(m — 1 — 1) columns of [p°c|]p may generate an S-module of cardinality at most
p™~=1 a contradiction with C being MCRD.

O
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4. Gabidulin Codes

Gabidulin codes over finite fields, firstly introduced by Gabidulin [12], are one
of the most well-known MRD codes. Construction of these codes relies entirely
on the Frobenius automorphism and its iterations. Abbreviate the i power
of p to [i] for i € N. Any Gabidulin [n, k] ..-code is generated by some matrix

) — kv . . .
(g][-Z 1]), nl - where the vector g € F.. has Fy-linearly independent coordinates.
1=1,7=

4.1 Gabidulin Codes over Galois Rings

Let R,S be Galois rings GR(p™,r), GR(p™,1) and 7,, T be theirs Teichmiiller
sets in the given order, where p is a prime and n,r are positive integers. Denote
by K the residue field of R and by LL the residue field of S. Continue by recalling
the generalised Frobenius automorphism 7 of R (Theorem defined for ¢ € R
of order k = p" — 1 as 7(§) = &P. Deduced from Theorem [21] 7 generates
the Galois group Gal(R/S). Furthermore, for every ¢ € 7, and e € N, it holds
that 7¢(¢) = ¢2° = ¢l

This section aims to define Gabidulin codes over Galois rings, consistent
with the definition over finite fields, and provide their fundamental properties.
Gabidulin codes, utilising the cardinal rank metric, are introduced in the article
by Epelde and Rua [6]. However, here, we commence with the matrix approach
rather than the linearised polynomials’.

Theorem 63. Let m € N satisfy m < min(n,r) and g € R™. Let G be a matrix
of order m over R with entries 771(g;) for 4,5 € N,i,j < m. Then, Im(G")
is a free R-module with a free basis (GY,...,G!) if and only if rk(g) = m.

Proof. “ = 7: If there exists coordinate of g divisible by p, then there is entire
column of G divisible by p and also pivot of the Smith normal form of GG divisible
by p. Now, assume there is no coordinate of g divisible by p and rk(g) < m,

m
ie. Y s;-g; =0 for some sq,...,5s, €S and at least one s; # 0. Then for every
i=1
i=0,....,0=Tlalsor | X s;-9; | = X s;-7"(g9;) = 0. Hence, at least one column
j=1 j=1

of G can be eliminated and the number of pivots of the Smith normal form of G
is less than m. Rows of GG cannot form a free basis in both cases.

“ <= " Let X be the coordinate matrix of g relative to some basis of R
over S. Since m = rk(g) = log, (|Im(X)|), it needs to be true that columns of X
form a free basis of Im(X) over S as there is m of them. Specially, no coordinate
of g can be divisible by p, which means that p { 7!(g;) for every i,j € N,
j < m, since Theorem affirms that 7 is the S-automorhism. It directly
results in p"~! - 77 (g;) € Soc(R) \ {0}. Derived from Theorem the unique
non-zero bj; € T, which satisfies p"~' - b;; = p"~t - 7771(g;), exists for each
1,7 € NJ7<m.

Suppose that there exist zq,...,2, € 7, for which g:l z(p" -Gl = o

and at least one of the coefficients is non-zero. Choose j eN satisfying 7 < m.
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In the given situation,

m

0= Zzz p TN g) = ZZZ p" by =t ZZZ by =p" ! Zzz : b?f”-
=1 =1 =1

=1

Define a polynomial L(X) = Sz X1 ¢ 7:X] and the evaluation map
i=1

A:T. = T.as a — L(a). The map X\ seems to be a field homomorphism
as the characteristic of 7, equals p. Besides, a € 7, is a root of L if and only
if a € ker(\), and ker(\) = {0}, because ker(A) is an ideal of the field 7,
and 1 ¢ ker(\). Now, p"~!'- L(bj1) = 0 can occur if and only if L(bj;) = 0,
but b;; # 0, a contradiction.

It is shown that f: a; (p"~' - GI) = o over 7, if and only if all ay, . .., a,, equal
i=1

0. Therefore, (p"*G7, ... ,p" 'G")) is a basis of a vector space Soc(Im(G"))
over 7,. Lemma [28|implies that (G7,...,G" ) is a free basis of Im(GT) < R™.
O
Consider g € R™ of cardinal rank m € N. Denote by g; the codeword
(7" Yg1),..., 7 (gm)) for each i € N4 < m. It can be deduced from the last
theorem combined with Theorem that (g1,...,g) is a free basis of some
R-module isomorphic to R! for every positive integer [, < m.

Definition 64. Let [,m € N be such that [ < m < min(n,r) and a codeword
g € R satisfy rk(g) = m. The Gabidulin code of length m and rank [ over R
generated by g, denoted by Gabg(m, [, g), is a cardinal rank metric [m, [Jg-code
with a generator matrix

g1 . gm
a — T(:gl) : T(gm) (4‘1)
o) o T gm)

It is beyond any doubt, if the field F,» and the Frobenius automorphism o of
IF,r are taken instead of the Galois ring R and 7, then Gabg , (m,[,g) is a cor-
rectly defined Gabidulin [m, {],--code. Significantly, the projection of a Gabidulin
code over the Galois ring is a Gabidulin code over its residue field, written
as Gabg(m,1,g) = Gabg(m,1,g™).

Corollary 65. Any Gabidulin code over R is free.

Immediate result of the preceding corollary and Lemma [40|is that the socle of
Gabgr(m, (1, g) is isomorphic to Gabg(m,[,g™) for any m,[ € N satisfying | < m,
and g € R™ fulfilling rk(g) = m.

Corollary 66. Any Gabidulin code over R is MCRD.

Proof. It is a combination of Corollary [65] and Corollary [60] as a Gabidulin
code over a finite field is MRD.
[l
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Example 14. Let p = 5, n = 5, r = 4 and R be the Galois rings of characteristic 5°
and cardinality 5. Denote by G5 4(7) = x*+4502% 483022+ 1892z + 3124 a basic
primitive polynomial over Zss, which divides ¥ — 1 for k = 5* — 1, computed
by the Hensel’s lift (Algorithm of (z* + 2z + 4) € Zs[x]. Set & =z + (G54).
Based on Section [1.2] ¢ is of order k and B = (1,£,£%,€3%) is a basis of R

over S o~ Z,». Any element Z a;£" € R is represented by the tuple as:as:ai:aq.

Consider g = (0:11:9:0, 0 0 31:124,19:0:934:0, 87:0:21:0) € R*. If the cardinal
rank of g equals 4, the g generates a Gabidulin code of length 4 over R. Let us
compute the Smith normal form of X = [g]p:

0124 0 0 cosxe /10 0 0 - r /10 0 0
N o— (9 8193021 ) XiTXe (81 9 93421 | X2T0MXT (g 1 451 1044
=10 0 0 ) so05xr \ 01100 1359% 011 0 0
0 0 19 87 1 \0 0 19 87 5 00 19 87 (4.2)
X543114xy (L0 0 0 N Xriog7axy (1000 1676X}; 1000 '
(B ) e (G0 ) s (4000)
1234X5 N0 19 87 / Xi+3106X35 \ 00826/ X5+2506X3 \ 001

Thence, rk(g) = 1k(X) = rk(l;) = 4 and g is a generator of Gabgr(m,![,g)
with a generator matrix
_ (9 g2 g3 g4\ _ ( 0:11:9:0  0:0:31:124  19:0:934:0  87:0:21:0
G (T(gl) 7(g2) 7(g3) 7’(94)) (r(o 11:9:0) 7(0:0:31:124) 7(19:0:934:0) 7 (87:0:21: 0))

_ ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0 )
481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008

(4.3)

Prior to concluding this section, a way for computing a parity-check matrix
of Gabidulin codes, which are in the form (4.1)), is presented as in the section
III.D of Kamche and Mouaha’s work [16].

Theorem 67. Let [;m € N satisfy [ < m < min(n,r), and g € R™ fulfill
tk(g) = m. Consider h € R™ with coordinates h; = 7/T17™( fzm) for each 1,
1 < i < m, where F' = (f;;)i%—, is the inverse of a matrix G = (7" (g;))i"=,
Then, the cardinal rank of h is m and H = (7'~ (h;)){“;"", is a parity-check
matrix of Gabgr(m, [, g).

Proof. Theorem |63| proposes that (G7,...,G" ) is free basis of Im(G"), so G
is invertible by Theorem Hence, the entries fi1, ..., fmm € R of the matrix
F =G are correctly introduced, and for every i € N such that ¢« < m, we have

dim = GI - F¢, Z 7 Y(g:) - fi;. Denote by F’ the matrix of order m over R

with entries f]; = (TJ "(fim)) for i,5 € {1,...,m}. Compute the entry [;;

of L =G - F' at the position (4, j):

ZTZ 1 ft] ZTi_l(gt) "(fom) = ZTJ m( . 1_j+m(gt)'ftm)
t=1

t=1

e Siisjimm L if1—m <i—j <0,
=T (ZT I (gt)'ftm> :{( s .

=1 li; e R , otherwise.

Thus, the product L is a lower triangular matrix with units on the main diagonal,
so L is invertible as shown in Ezample[9] Moreover, F' = F - L is also invertible
due to Lemma [33] Deduced from Theorem [37] the columns of F’ constitute
a free basis of Im(F”). In this case, Theorem dictates that rk(F’{) = m.
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Since 7 is the S-automorphism of R, applying 7 to the coordinates of F'] cannot
change its cardinal rank, and we have rk(h) = m as h = F'}, ;. Consequently,

hy .. B |
H — 7—(].11) . T(f'Lm) h:F:‘,lC-H F/{C—FQ (44)
) T (B F',

is a generator matrix of the Gabidulin [m, m — [|gr-code Gabg (m,m — [, h).

It remains to verify c- H' = o if and only if ¢ € Gabgr(m, [, g) is valid for any
codeword ¢ € R™. Denote by G; the matrix created from G by omitting the last
(m—1) rows. Choose ¢ € R™. Express the homogeneous system ¢c- H' = o using

the equations

c-H =o EIXERZ:c-F’:()(,O)F<,::F}LEI)<€RZ:c:(x,o)-L’l-F’1
F<::G;IEIXERl:c:(x,0)~L’1-G
«— xecR:y=(x,0)- L' Ae=y-G.

Remark that L1 is also lower triangular, which is displayed in Ezample @ Then,
necessary, z € R! exists and satisfies y = (x,0) - L™! = (z,0). In conclusion,
c-H" =oif and only if ¢ = (z,0) - G = z - G, for some z € R".

[

Corollary 68. Let [;m € N satisfy | < m < min(n,r), and g € R™ fulfill
rk(g) = m. Then, Gabgr(m,1,g)* is a free [m, m — []-code, which is MCRD.

4.2 Linearised Polynomials

Gabidulin codes are usually represented by linearised polynomials, which get
evaluated at each coordinate of the generating codeword. Linearised polynomials
over R have to be introduced and their properties understood to formalise this
approach. Linearised polynomials in this thesis are applications of more general
Skew polynomials over Galois rings studied in multiple publications, for example,
by Kamche and Mouaha [16].

Definition 69. A linearised polynomial over R of degree d is any polynomial
d )

of the form F(X) = Y f; - 7/(X) with the coefficients from R and f; # 0. Let
i=0

P(R) be the set of all linearised polynomials over R. The degree of F' € P(R)
is denoted by deg(F') and deg(0) is defined as —oo. Define, for every d € N, the set
Ps(R), which contains linearised polynomials of degree less than d, and the set
Pi(R) composed of monic linearised polynomials of degree exactly (d — 1), i.e.

F(X) = 71(X) + G(X) for G € Pay(R).

The main idea behind the definition of linearised polynomials is that they
should represent module endomorphisms of the ring R viewed as the S-module,
denoted by Rg. The addition and subtraction of linearised polynomials defined
in the same way as in R[z] are consistent with module endomorphisms’ addition
and subtraction. To have the multiplication of linearised polynomials consistent
with the composition of module endomorphisms, a different multiplication than
the one used in R[z] must be established.
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Theorem 70. (P(R),+,—,0,0,¢) is a non-commutative ring, where ¢(X) = X
and o is defined for F,G € P(R) as (F o G)(X) = F(G(X)).

Proof. Commence by observing that (P(R),+, —,0) is truly an abelian group,
dg , dg , d ,
because R is. Choose F' = Z fim X)), G = Z g Y X),H = z’f R (X))
i=0

from P(R). Let p; equal zero for every P = Z pimH(X) € P(R) and i € Z such

that ¢ < 0 or ¢ > d,. Denote the sums d; = df +dg,dy = dy +dp, d3 = dg + dp,
and the maximums di» = max(dy,dy),dss = max(ds,ds). Firstly, verlfy that
(P(R),0,¢) is a monoid, i.e. the operation o is associative and ¢ is an identity:

(FoG)oH)(X) = (FoG)(H(X)) = F(GH(X))) = F((Go H)(X))
=(Fo(GoH))X),
(€0 F)(X) =e(F(X)) = F(X) = F(e(X)) = (Foe)(X)

Secondly, it has to be shown that the operation o is distributive with respect
to the addition:

dig 1

(Fo G+ H)(X) = F(G+ H)(X) = 33 ;70 + i)™ (X)
—Zozof] (g:5)7 +z%i%fj hiy)r LX) = (F(G) + F(H))(X)

= (FoG)(X) + (Fo H)(X),

(F +G) o H)(X) = (F + G)(H(X)) = zzu )P ()P (X)
Y ) +Zig] )T (X) = (F(H) + GU))(X)

=0 57=0 =0 j=

=(FoH)(X)+ (GoH)(X).

Let £ € R be of order p” — 1. Consider P(X) =¢- X, Q(X) = 7(X) € P(R).
Then, (Po@Q)(X) =¢-7(X) and (Qo P)(X) =7(£- X) = 7(§) - 7(X) are not
equal. Thence, (P(R),+,—,0,0,¢) is a non-commutative ring.

[

Remark. Theorem can be also proven by providing an isomorphism between
(P(R),+,—,0,0,¢) and Ends(Rg), where Endg(Rg) is a non-commutative ring
consisting of all S-module endomorphisms of the ring R viewed as an S-module.

Consider F,G € P(R) and set dy = deg(F') and d, = deg(G). It is apparent
that deg(F' + G) < max(dr,dg) and deg(F o G) < dp + dg. Let G be monic
and dg = dp — dg. Therefore, the product F o G is exactly of degree dg. Now,
we demonstrate that in this situation, Q;, @, € Pyy+1(R) and Ry, R, € Py, (R)
meeting the condition F = Go Q; + R, = @), o G + R, exist.

Definition 71. Let F,G € P(R). One shall say that G is the left (right) divisor
of Fand F is left (right) divisible by G provided there exists a non-zero @) € P(R)
satisfying F = GoQ (F = Qo G).
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Algorithm 8 Left and right division with remainder

Require: F = Z f[it(X) € Psp11(R),G = Zgz “(X) € Pi (R

Ensure: QZ,QT GPdF dc-i-l(R) R, R, Epdc( ) F=GoQ+R, =Q,oG+R,
dQ%dF—dG,Z%dF
while ¢ > dg do

4 min(dQ,i) o
Qimdg T % fi— X g7 (a;)
j=i—dg+1

min(dq,?) )
bicdg < fi— X b (gi-)

j=i—dg+1
14+ 1i—1

end Wdhile

Ql(— fCLZTZ(X) RZFF—GOQZ

Q, + ZbT( )y By = F = QoG
return (QlthRlv r)

Theorem 72. Let dp,dg € N, ' € Py,.(R) and G € P;_(R). Set dg = dr —dg.
Then, there exist left and right quotient @Q;, @, € Py, 11(R) and left and right
remainder Ry, R, € Py, (R) such that F =GoQ,+ R, =Q, oG+ R,.

Proof. 1t is enough to display that Algorithm |8|is correct. Let F' € Py 41(R)
and G € Pj_,,(R) be given. Denote dy = dp —dg and m; = min(dg, ) for i € Z,
0 <i<dp. Let Q. € Pyy+1(R) be the right quotient of division with remainder,
computed as in the algorithm on inputs F,G. Firstly, determine boundaries
for indices 4, j such that 7 iterates over coefficients of F', j iterates over coefficients
of Qg, and (i — j) iterates over coefficients of G. Clearly, we have 0 < i < dp,
0<j<dgand0<1i—j<dg. The third pair of inequalities can be rewritten
as j <1 < dg + j, which, combined with the second pair of inequalities, gives
that max (0,7 — dg) < j < min(dg,i) = m,;. Next, express the product @, o G:

dr m;
Q,o0G = Z ( Z bjTj(gi_j)) 7(X) (4.5)

=0 \j=max(0,i—dg)

= ZF ( % bjTj(gi—j)) TZ(X)‘I' GZ_O (ibjTj(gi_j)) TZ(X) (46)

i=dg \j=i—dg

Observe that f; = Z b7 (gi—j) = bi—ae + Z b;77(gi—;) since gap = 1,
Jj=i—dg j=i—dg+1
where i € N, dg < i < dp. By integrating the equation with the observation,

dp dag—1 m;
B =F—Q,0G=3 fr'(X) Z [ (X) =3 (Zbﬂ(gi-n) T(X)

dg—1 m;
Z (fz Z:b T (gi_j)) 7(X) € P (R).

Thus, the requirements for the right division are fulfilled. The left division may
be proven analogically using that 779 = 7779¢ as 7 is fully defined by the image
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of £ € T, of order p" — 1, and 77(§) = £ = ¢

0
Ezample 15. Let R = GR(5%,4), G54(z) = z* + 45023 + 83022 + 1892z + 3124
over Zss[z], &€ = x + (G54) and B = (1,&,£6%,€3) be as in Ezample The
left division with the remainder for the ensuing linearised polynomials U and V/
is provided:

U(X) = (1646:2004:1497:825)7%(X ) + (2018:1595:473:3039) 7 (X ) + (1824:1381:2671:2340) X
V(X) T(X) + (2:4:2:1)X

Let us simulate Algorithm [8/on U and V instead of F' and G, where all arith-
metic is done in Wolfram Mathematica.

dg=2—-1=1
1 . .
i=21a1=7"[us =D v ;7 (a5) | =7 (u2) = 7°(1646:2004:1497:825)
= 98:0:0:1123
1
i=1:a9=7%" (ul — Z'Ui_j’ri_j(aj)) =73 (ul — UoTO((Il)>
j=1

7'3((2018:1595:473:3039) — (2:4:2:1) - (28:0:0:1123))
77 ((2018:1595:473:3039) — (2662:589:666:549))
72 ((2481:1006:2932:2490)) = 0:91:2875:1

Q(X) = i:ajrj(X) = Q(X) = (28:0:0:1123)7(X) + (0:91:2875:1) X

VoQ(X)=v7(a1)m*(X) + (voar + v17(ag))7(X) + voaoX
= 7(28:0:0:1123)7% (X)) + ((2:4:2:1)(28:0:0:1123) + 7(0:91:2875:1) ) 7(X )+
+ ((2:4:2:1)(0:91:2875:1)) X
= (1646:2004:1497:825) 72 (X ) + (2018:1595:473:3039) 7 (X )+
+ (1824:1381:2671:2340) X = U(X)
RX)=U-VoQ=0

Hence, V' is the left divisor of U.

Let F' be a linearised polynomial over R. We shall say that a € R is a root
of F' over R provided F'(a) = 0. One of the most essential properties of linearised
polynomials is that the set of all roots of F' over R forms an S-module. Let us
focus on proving that.

Definition 73. The kernel of a linearised polynomial F' € P(R) is the set of all
its roots over R and is denoted by ker(F).

Lemma 74. The kernel of any F' € P(R) is an S-submodule of R. Additionally,
ker(F) is free, if F' € P/(R) for t € N.
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Proof. Choose F' = Z fi7(X) € P(R). Suppose that (i, (s € ker(F') and s € S.
Then, ¢ + (2,5 - G E ker(F) since

Zfz (G +¢G) = Zf( (G) + THG)) Zfz (¢1) +Z.fz =
=0

t

ZfzSTCIZZ

1=0

Suppose that f; = 1 and find minimal basis x = (xi1,...,x;) of ker(F).
Assume there exists ¢« € N, < [, for which y; € pR. Find maximal exponent
e € N and a unit v € R* satisfying x; = p® - v. It results in 7¢(v) € R*

-1
and F(x;) =p°- F(v) = p° <7‘t(v) + > fiT”(U)). Hence, F(x;) = 0 if and only
i=0

if F(v) € p"°R. This can happen if and only if F(v) =0, and x is not minimal
in that case.
Now, there is no element of x divisible by p. Let z,...,2 € S satisfy

!
> zix; = 0 and at least one of them is non-zero. Find e = 0,...,n — 1
i=1
and yi,...,y € R such that z; = p® -y, for each ¢ € N,;7 < [, and y; € R”

for some j € N non-greater [. In the given situation,

! ! !
dzixi=0 <= p" D zixi <= PV D uixi = D yixi=0.
=1 =1 =1 =1

!
Consequently, x; = — 2 %Xn which contradicts that x is the minimal basis.
i=1 Y
i#]
It may be concluded that x is a free basis of ker(F).
O
Thanks to the preceding lemma, we know that roots of a monic linearised
polynomial F' over R form a free S-module. This statement may be generalised
for linearised polynomials with the leading coefficient being a unit. At first sight,
it may not be clear how large the rank of ker(F') is, even though the intuition
likely advises that the rank is connected to degree. Before providing the relation,
introduce a useful notation. Consider F' € P(R) and x € R™ for some m € N.
The codeword (F'(xy),..., F(z,,)) € R™ is referred to as F(x).

Claim 75. Let m € N and F € P}, (R). Then rank(ker(F)) < m.

Proof. Denote [ = rank(ker(F)). Lemma [74]asserts that the kernel of F is a free
S-module, and therefore there exists a free basis x = (x1, . .., x1) of ker(F") over S.
Set A = (77" (x;))} ;=1 € R™, which columns compose a free basis of Im(A)
over R by applying Theorem Grounded on Theorem (37 - the matrix A
is invertible, so g € R! exists unique such as A - g' = (—7!(x;))\_,. Define

l .
GX)=7(X)+ X ¢g;- 7 X)) € Py (R). Then, for every i = 1,...,l, we have
=1

! , !
Glu) =706+ 2 g7 06) = 7 06) + 2 AT = 7'(x) = 7'(x) = 0, which
means that (xi,...,x:)s C ker(G).
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Suppose y € ker(G) \ (x1,...,x1)s exists. Finde =0,...n—1 and x;,1 € R*
such that y = p®- x;41. Note that 0 = G(y) = p®- G(x;41) can happen if and only
if p"~¢ | G(x1+1), which is equivalent to G(x;4+1) = 0 as G is monic and p 1 x41.
Thus, 141 € ker(F). Set z = (x1,...,x141) € R, Theorem implies
rk(z) = [+ 1. Consider B = (7'~'(x;))i5L; with the columns forming a free

basis of Im(B) over R as stated by Theorem On the other hand, G(z) =
if and only if Z BS-g; = (— (Xg))é+11 = —By, |, which contradicts (BS,...,Bf, ;)

being the free ba81s Hence, ker(G) = (x1,...,x1)s and I < m.
[l

Let g € R™ has cardinal rank m. Proof of the prior claim provides a way
to construct a linearised polynomial F'; whose kernel is precisely (g1, ..., gm)s-
Now, we show that there is exactly one such F.

Lemma 76. Let m € N, x € R™ satisfy rk(x) = m and G € P(R). There
exists the unique F' € Py, (R) such that ker(F') = (x1,...,%,)s. Furthermore,
G(x) = o if and only if G = H o F for some H € P(R).

Proof.  The existence of F' follows directly from the construction of linearised
polynomial G in Claim [75[s proof. Assume that we already have F' € Py, (R)
with ker(f) = (z1,...,2,)s. Choose d € N and G € P4(R). Put dg = d —m.
Compute the right quotient @ € Pg,41(R) and the right remainder R € P, (R)
fulfilling G = Q o F' + R performing Algorithm [8] If R = 0 then, undoubtedly,
G(x) = o.

Let R = Z r, 71 X) for dgr = deg(R) € N. Assume, for contradiction, that

R(x) = o. Deﬁne codewords b; = (7' '(z;))7., € R™, where i = 1,...,m.
Then B = (by,... ,bm) is a free basis over R due to Theorem [63] Express

the codeword R(x) = Z rr T (x) = Z r;b; = 0, so B cannot be free as dg < m

and rq, # 0, a contradlctlon It may be concluded that G(x) = R(x) # o.
Finally, let G € P}, (R) satisty ker(G) = (z1,...,zm)s. Then, by already
proven part, there exists H € P(R) such that G = H o F. Since both F' and G
are monic of degree m, H must equal € and F’' must equal G.
O
Before concluding this part about linearised polynomials, we extend the prior
lemma to address the general case in which there is no requirement on the cardinal
rank.

Theorem 77. Let m € N and x € R™ be non-zero. Denote ¢t = |n - rk(x)].
Then, there exists F' € Py (R) satisfying F(x) =

Proof.  Let d € N be the rank of an S-module A = (z4,...,2,)s. Denote
by B = (p" tvy,...,p" lvg) a free basis of Soc(A) over T. Clearly, vy, ...,v4
are units of R, or otherwise there exists ¢ € N meeting the conditions i < d
and p"~'v; = 0, which implies B is not the free basis. Set v = (vy,...,v4) € R%
In line with Theorem tk(v) =n-4=d.

Derived from Lemma [76] the unique G € Pj,(R) exists which satisfies
ker(G) = (vy,...,vq)s. Thence, A seems to be a submodule of ker(G), because
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Soc(A) = (B)s = Soc(ker(G)) and ker(G) is free. Consequently, G(x) = o.
To finalise the proof, define F/(X) = 77¢(X) o G(X), which seems to be monic
of degree t.

[

4.3 Decoding Gabidulin Codes

Any Gabidulin [m,l]Jr-code can be viewed as the set of linearised polynomials
of degree less than [ evaluated on the generating codeword, i.e.

Gabr(m,l,g) ={F(g) | F € P(R)} (4.7)

for any g € R™ of cardinal rank m. Numerous publications, between them the one
by Epelde and Rua [6], prefer to define Gabidulin codes using the equation .
The lemma [78| validates this equation.

Lemma 78. Let [, € N such that [ < m < min(n,r) and g € R™ satisfy
rk(g) = m. Then, for every ¢ € R™, a linearised polynomial F' € P;(R), which
fulfills ¢ = F(g), exists if and only if ¢ € Gabr(m,[,g).

Proof. Suppose that G = (Tifl(gj))éfl,j:l is a generator matrix of Gabg(m, [, g).
Assume that ¢ € Gabr(m,l,g), so ¢ = z- G for z € R!. Define a linearised

l )
polynomial F' = 3 z; - 771(X). Then F € P/(R) and
=1

!
VieNi<m:F(g)=Y z 7o) =2z -Gf=¢ (4.8)

Jj=1

l .
Now, let F(X) = > 2z - 7 1(X) € Pi(R). Hence, F(g) € Gabr(m,l,g)
i=1

follows from the equations ([4.g).
O
Consider positive integers m and [ satisfying [ < m < min(n,r). Choose
g € R™ with the full cardinal rank and abbreviate Gabg(m,l,g) to G. Let
c € G be a sent codeword over some channel and e € R™ be the received
codeword. In theory, if dg(c,e) < dr(G) then the code G is able to detect errors,
and if dz(c,e) < dRT(g) then G is even capable of correcting errors and recovering
the original c.
A decoding algorithm for Gabidulin codes over Galois rings can be grounded
on a division of linearised polynomials as proposed in Kamche and Mouaha’s
work [I6, Chapter 3]. The lemma |79 encompasses the principal idea of decoding.

Lemma 79. Let I,m € N be such that [ < m < min(n,r) and g € R™ have
full cardinal rank. Set G = Gabgr(m,l,g), k = %! and t = [nk]. Assume that
there exist codewords ¢ € G and y € R™ such that dg(c,y) < k. Let F € P(R)
meet the condition F(g) = ¢. Define b = (7'(y;))™, € R™ and a block matrix

A= (G Y) of type m x (I + 2t) over R, where

g T(g) ... T (q) yi () .. T (W)
. : . . 7Y:— . . . .

G = : : . : : : . :
gm T(Gm) o T (gm) Ym TWm) - T (Ym)
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Then, u € R, v € RY, which solve the linear system A - (31) =b', exist.
I+t t

Especially, U = 3 w;7771(X) and V = 74(X) + 3 0,77 (X)) satisfy U = Vo F
i=1 i=1

and U(g) = V(c).

Proof. Begin by proving the existence of solutions. Set d = dr(c,y), f4 = |nd]

and f, = [nk|. Due to Theorem (77 there exists W € P (R) such that

W(y — ¢) = o, which implies W(y) = W( ) = Wo F(g). Deﬁne u € R
and v € R/ by the subsequent formulas

I+ fr
U — Tf;rfd(W o F(X Z u; - ) € Pris (R), (4.9)

V= Tfk_fd(W(X) _|_ Zvl 6 Pkarl(R) (4.10)
Choose i € N, i < m, and verify that the i*" coordinate of A- (31) equals Tfk(yi):

I+ fr
(4-(57)). = L7 o Zfﬂ Yy = Ulg:) = V) + (3
4.11
D s o ) - Wi h =)

(#4.10)

=0 since WoF(g;)=W (y;)
Suppose that solutions u € R!*/* and v € R/* of the linear system are given.
Set U = z up- T (X) € Py (R)and V = 7/k(X )+z v HX) € Pr i (R).

Derived from the first line of ([({.11)), b=U(g) — V(y ) + b and so U(g) = V(y).
Observe that (U—VoF)(g) =U(g)—VoF(g) =V(y)—-V(F(g) =V(y—F(g))
and tk((U — V o F)(g)) = tk(V(y — F(g))) < rk(y — F(g)) < k. Once again
using Theorem [77] a monic linearised polynomial H of degree at most f; exists,
which satisfies H({U — V o F')(g)) = 0. So the degree of H' = H((U —V o F) is

deg(H') < deg(H) + max(deg(U),deg(Vo F)) < fr,+ fr +1—1

:2-{n-m_lJ—Fl—lgm—l—i—l—l:m—l.
2n

In accordance with Theorem there exist G' € Py, (R) and @ € P(R) such
that ker(G") = (g1,...,9m)s and H' = Q o G'. Since deg(H') < deg(G"), both @
and H’ must be constant zeros. In conclusion, U = V o I, because H is monic
and non-zero.

]

Let g,y € R™ and U,V € P(R) be given as in Lemma [79] In this scenario,
F € Pi(R), which satisfies F(g) € Gabgr(m,[,g) and dgF(c),y < L can
be computed by the left division of U by V. As a result, the decoding algorithm

is described below.

Theorem 80. Let m,l € N be such that | < m < min(r,n) and g € R™ satisfy
rk(g) = m. Let y € R™ and ¢ € Gabg(m,[,g). Then, Algorithm [9) outputs ¢
on the input m, {, g,y if and only if dg(y,c) < ”;—;l
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Algorithm 9 Decoding for Gabidulin codes
Require: m,l € N, g,y € R™ such that rk(g) =
Ensure: ¢ € Gabgr(m, [, g) such that dg(c,y) <
b |
G (PN, Y (=77 )i jmn b (TR (),
Ze{(uv)[ueR* veR : G u"+Y v =bT} = {(u],v,)};.:1
J<1
while j < t do
U« Zuﬂ X)),V

(Q, —, R, —) < Algorithm
i ((F = 0) r (nle.O(e) <
return Q(g)
end if
j+—7+1
end while
return |

m
m—,orJ_

)+Zvﬂ T H(X)

V)
)) then

Proof. 1f dr(y,c) < mnl then it is clear using Lemma Assume that Q(g)
is the output of Algorithm @ applied to m, [, g,y. It is evident that @ € P;(R)
since U = VoQ for U € PlﬂmT_zJ (R) and V € P”[L,ZJH(R). Set ¢ = Q(g),

so ¢ € Gabgr(m,l,g) in line with Lemma . In conclusion, dg(y,c) < 2t

as the algorithm returned c, i.e. the conditions R = 0 and dg(y,c) < ";—:Ll Were
met.
O
Refer to the matrices G € R™ I+ 'y € R™** of types m x (I+k) and m x k
over R, respectively, and the codeword b € R™ from Algorithm [9] Similarly,
as described in Epelde and Rua’s work [6, Section 5.2], the system of linear
equations G-u' +Y -v' = b' may be partially precomputed since the matrix
G is fixed given the Gabidulin code. Divide the matrices GG, Y and the codeword
b into two blocks: G = (g;) and Y = (g), where the first blocks consist

of first [ + k rows, and b = (b1 bz) is divided accordingly. Thence, the matrix

(g1 is invertible by applying Theorem to G and following Theorem .
Consequently, G-u' +Y -v' =b' if and only if G;-u, +Y;-v/ = b/ for both
i € {1,2}. This is equivalent to

(Yo — GoGTY1) - v = by — GyGi'b] Au' =G (b] —Yivh),

where matrices G7' and Gy - G7' can be computed beforehand.

We illustrate the decoding for Gabidulin codes in an example, by which we end
this section. A good understanding of decoding is essential as a PKC is grounded
on it.

Example 16. Let R = GR(5°,4), S = GR(5°,1), the basic primitive polynomial
Gsa(z) = 2444502 +8302% +18922+ 3124 over Zss [x], £ = x+ (G5 4) and the free
basis B = (1,£,£2,€%) of R over S all be such as in Ezample Consider
g = (0:11:9:0,0:0:31:124,19:0:934:0,87:0:21:0) € R*, which satisfy rk(g) = 4 by (4.2).
Thus, the Gabidulin code G = Gabg (4,2, g) has the generator matrix G € R***
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from (4.3

G — ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0 )
481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008 / *

Set z = (0:91:2875:1, 28:0:0:1123) € R? and the codeword ¢ € G determined by z,

s\ T ST T
z -G = (268222904277522133) Let e = < 1250:2500:1250:625 ) be an error
715:2361:358:1251 625:1250:625:1875

: 4-2 _ 1
codeword. We have to verify that rk(e) < 5z = . Thus,

ie. ¢ =

1250 1875 625 1875 625 2500 1875 2500 625 2500 1875 2500
o= (B i) ~ (et )~ (00 4 ) ) @12
2500 625 1250 625 2500 625 1250 625 0 0 0 0
where the first row of [e]p is multiplied by an integer 1563, and afterwards,
an 3121-multiple of the first row is added to the second and the fourth row
and an 3122-multiple to the third row. Using Claim [48] the cardinal rank of e
is tk(e) = rk(le]p) = rk([e];) = logss(|Imle]}]) = logss(5) = £. Therefore,
the code G is able to correct a codeword y € R* corrupted by the error e, i.e.

y=c+e (4.13)
= (1288:2465:1023:5667 2763:935:832:3119, 807:2279:2025:2758, 1340:486:983:1). '

Now, we perform Algorithm |§| to decode corrupted y. Note that {%J = 1.

Let A = (Gl — yT‘ bT> be an augmented matrix representing the linear system
Giu'—vy' =b' for Gy = (ijl(g,-))?fm:l and b = (7(y;))i;. In the described
scenario,

0:11:9:0 7(0:11:9:0) 7'2(0:11:9!0) —y1 | 7(1288:2465:1023:566)
A— 0:0:31:124 7(0:0:31:124) 72(0:0:31:124) —y2 | 7(2763:935:832:3119)
| 19:0:934:0 7(19:0:934:0) 72(19:0:934:0) —y3 | T(807:2279:2025:2758) | °
87:0:21:0 7(87:0:21:0) 72(87:0:21:0) —yq4 7(1340:486:983:1)

which equals

0:11:9:0 481:948:631:3119  2030:2999:3121:2565 1837:660:2102:2559 | 816:2358:2015:2618
0:0:31:124 1770:1098:2806:1799  803:3001:2882:671 362:2190:2293:6 691:175:1139:2651
19:0:934:0 2638:1089:2965:1596  1990:328:30:3019 2318:846:1100:367 | 2138:2015:3001:937
87:0:21:0  229:1959:2934:1008  302:1913:3048:2955 1785:2639:2142:3124 | 2541:735:1190:2905

Multiply the first row by (1496:2942:2382:1854) and after that, add the first row
multiplied by (0:0:3094:3001), (3106:0:2191:0) and (3038:0:3104:0) to the second row,
the third row and the fourth row in the specified order:

0:0:0:1 819:1118:1949:1280 1955:1395:1625:719 1862:1666:1223:847 | 1216:2409:1415:1530
0:0:0:0 3106:3042:1188:2065 3013:546:3:910 2103:1328:33:2881 928:1524:2206:235

0:0:0:0 2153:636:1502:2899 14:743:1269:649  1802:254:2258:1062 | 2685:278:2863:1578
0:0:0:0 3122:1359:2862:811  99:2933:2044:2200  343:1891:499:1541 646:194:829:224

Now, normalise the second row by multiplying it by (2206:1228:1982:2394). Then,
reduce the first, the third and the fourth row by adding the second row multiplied
by (2306:2007:1176:1845), (972:2489:1623:226) and (3:1766:263:2314), respectively:

0:0:0:1 0:0:0:0 367:420:1492:1940  625:3034:250:3124 964:2940:201:1626
0:0:0:0 0:0:0:1  1937:1388:23:422  1222:1875:1875:2002 | 2432:2100:1949:879
0:0:0:0 0:0:0:0 1448:2994:3029:315 2500:1250:1875:2500 | 1433:179:729:2401
0:0:0:0 0:0:0:0 1878:2010:1407:1711 2500:1250:625:2500 | 698:2197:1793:2213
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Finally, multiply the third row by a scalar (1996:2689:1247:1124). Subsequently, add
(2758:2705:1633:1185), (1188:1737:3102:2703) and (1247:1115:1718:1414)-multiple of the third
row to the first, the second and the fourth row in the given order:

0:0:0:0 0:0:0:1 0:0:0:0 2472:625:2500:127
0:0:0:0 0:0:0:0 0:0:0:1 1875:1875:0:0
0:0:0:0 0:0:0:0 0:0:0:0 1875:1875:2500:1875

2481:381:432:615
2896:754:2747:2700

0:0:0:1 0:0:0:0 0:0:0:0 1250:534:875:2499
( 2500:1875:625:2500

1875:1875:2500:2500 )

Thence, it is possible to straightforwardly compute v; € R and u € R3, which
satisfy G;-u' —v; -y’ =b':

v = (2:4:2:1)

4.14
u = (1824:1381:2671:2340, 2018:1595:473:3039, 1646:2004:1497:825 ) ( )

Define linearised polynomials
U(X) = (1646:2004:1497:825) 72 (X ) 4 (2018:1595:473:3039)7 (X ) + (1824:1381:2671:2340) X
V(X)=7(X)+ (2:4:2:1) X.

Conclude from Ezample [15, Q(X) = (28:0:0:1123)7(X) + (0:91:2875:1) X satisfies
U(X) =V oQ(X). Undoubtedly, the coefficients of ) are the coordinates of z
in the reversed order, so truly Q(g) = z - G = c. Since the left remainder is zero
and dg(y, Q(g)) = rk(e) < 1, Algorithm @ would output Q(g) € G.

4.4 GPT Cryptosystem

Gabidulin et al. [2] presented a modification of the McEliece cryptosystem, known
as the GPT cryptosystem, to effectively utilise the Gabidulin codes. In this
section, a version of the GPT PKC over Galois rings is derived from the Smart
approach for GPT Cryptosystem [4].

Let x € R™, A € R™ and I C {1,...,m} be given. Then, the codeword
composed of the x’s coordinates with the indices from [ shall be denoted by x;.
Similarly, the matrices created by omitting the rows and the columns of A, which
indices are not contained in I, shall be written as A;. and A.;, respectively. Now,
let us depict the GPT cryptosystem over a Galois ring by its building blocks: key
generation, encryption, and decryption algorithms.

Algorithm 10 GPT Cryptosystem Key Generation
Require: p prime, a,l,m,n,r,t € N, I <m <min(r,n) and 2 < a <t
Ensure: a public key Kpup, = (Gpub, €), a private key Koy = (&, Gpriv, T, 1)
R < GR(p", 1)
choose a random g € R™ such that rk(g) = m, G <+ (77"!(g;))
compute F € R™! satisfying G - F = I
choose x € R® for which rank(Im(x)s) = a and rk(x) < a
Xy (Ti_l(xjnéﬁl,j:l
choose X5 € R¥*(t=9) guch that rank(Im(X;)s + Im(Xs)g) =t
X+ (X1 X)
choose invertible matrices S € R™*! and T € S(m+)x(m+t) " compute 7!
Goub <= S+ (X G) - T; Gy = F - 57!
choose e € N, e < ’g—;l
return (Gpun, €), (8, Gpriv, T4, 1)

Im
i=1,j=1
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Algorithm 11 GPT Cryptosystem Encryption
Require: x € R, Kyu, = (Gpun, €)
Ensure: ¢ = Encg,,, (x)

choose z € R™* such that rk(z) <e

return x - Goup, + 2

Algorithm 12 GPT Cryptosystem Decryption
Require: ¢ € R™ Kpiv = (8, Gpriv, T, 1)
Ensure: x = Dec;gpm( c),or L
d<(c- T~ ){t+1,...,m+t}
y + Algorithm [9(m, [, g,d)
if y#1 then
return y - Gy
else
return L

end if

Lemma 81. The decryption of the GPT cryptosystem is correct.

Proof.  Suppose that Kuub, Kpiv and ¢ = x - Gpu, + z are given, where x € R/
and z € R™" satisfying rk(z) < e. Denote I = {t + 1,...,t + m}. Begin
by computing ¢ - T7' = (x- Gpuw +2) - T ' =x-5- (X G) +2-T7. Thus,

d:(c-T‘l)I=<X'S'<X G)+z-T" ) (x-S (x G)>1+<Z'T_1>1
=(x-9)- (X G) +(=:T7) =(x-9)- G+ (=-T7),.

According to Lemma [53] tk(z-T~') = rk(z). Observe that omitting coordinates
cannot increase the cardinal rank, so rk((z - T7');) < rk(z - T~1'). It directly
results in rk((z-T7');) < e < 2L, Therefore, Algorithm @ applied to d returns
the codeword y = x - S - G due to Theorem [80] Finally, it is possible to obtain
the original message x as

y'Gpriv:X'S'G'F-Sil:X.S.S*1:

where the existence of the right inverse F' of the generator matrix G is deduced
from Theorem [63] and Theorem [37]
m

Note that the matrix Gy, can be omitted from the private key KCpyiy to create
a more memory-efficient version. In this scenario, the message x can be obtained
from the decoded message y = x - A by solving the system of linear equalities
with the matrix A, where A = (Gpup - T_1>.{t+1,...,t+m} =5-G.

The final stage in this thesis is to display a specific instance of the described
GPT cryptosystem. Although the ensuing example is straightforward, performing
the decryption is non-trivial. However, some preparations have already been
made in the previous examples. We remark here that computations were made
partially in Wolfram Mathematica and partially in SageMath.
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Example 17. Setup is the same as in Ezample Let R = GR(5°,4), Sqr(5°,1),
Gsa(z) = x* + 45023 + 83022 + 1892z + 3124 be basic primitive over Zss|z].
Consider £ = x + (G5 4) of order (5* — 1) = 624 and the basis B = (1,&, &%, &?)
of R over S.

Key generation: Let a =1 =t =2 and m = 4. The equation implies
that the codeword g = (0:11:9:0, 0:0:31:124, 19:0:934:0, 87:0:21:0) € R* has cardinal rank
rk(g) = 4. Recall the generator matrix G € R*** from (4.3))

G — ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0 )
481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008 / »

we have to compute its right inverse:

0:11:9:0 481:948:631:3119
GT I — 0:0:31:124 1770:1098:2806:1799
4 19:0:934:0 2638:1089:2965:1596
87:0:21:0  229:1959:2934:1008
0:0:0:1  819:1118:1949:1280 1496: 2942 2382 1854 0:0:0:0
~ 0:0:0:0 3106:3042:1188:2065 : 0:0:0:0
0:0:0:0 2153:636:1502:2899 2394'2614:1925 2873 0:0: 0:0:0:0
0:0:0:0 3122:1359:2863:811 1699:944:867:2435  0:0:0: 0 0:0:0:1
0:0:0:1 0:0:0:0 2237:638:681:600 2174:2621:756:1894 0:0:0:0
~ 0:0:0:0 0:0:0:1 591:2149:2982:10 2206:1228:1982:2394 0:0:0:0
0:0:0:0 0:0:0:0 2761:1067:48:2506 1772:1892:811:1818 0:0:0:0
0:0:0:0 0:0:0:0 1 1846:2063:1907:2148 236:2635:1956:2423 0:0:0:1
_ (I F-r
— \ 02| O2x

Thus, G- F = I,. Next, take x = (0:1:111:11,125:0:0:0) € R?. The rank of the matrix
[x]p appears to be 2. It is not difficult to see that rk(x) < 2 since the second
coordinate is divisible by 5. Define matrices

( 0:1:111:11 125:0:0:0 ) c R2X2,

X = 0:1:111:11 125:0:0:0 _
T\ 7(0:1:111:11) 7(125:0:0:0) / — \ 1661:3054:1013:1565 875:2250:3000:1125
1:13:12:10 0:189:1294:0
S=( ) € R¥2,

0:1:0:2549  19:0:178:0
1138 1209 363 2795 1683 1205 (4.15)
2949 2635 2331 680 2663 1598
T — | 532 1463 263 2996 1523 835 | o g6x6
= | 2350 271 1016 43 567 2755 ~
2483 396 1817 3097 1976 2000
890 673 2213 448 419 3012
Next, find the inverse of S since it is required that S be invertible:
S T _ 1:13:12:10 0:189:1294:0 | (.0:0:1 0:0:0:0)
2 0:1:0:2549  19:0:178:0 | 0:0:0:0 0:0:0:1
~o (0001 STIB058:409:1939 | 10TT1509:1085:1601 0:0:0:0 )
0:0:0:0 961:2041:1227:2631 | = 352:2012:86:2142  0:0:0:1
o (QO01 0:0:0:0 | 3028:1288:10.2462  2UT:1784:1515:603 ) | gt
0:0:0:0 0:0:0:1 | 13115208, 1760:1333 3% 146314741515 ) 2

Analogously, perform elementary row operations on an augmented matrix (7" | I4 )
over the ring S to yield -1 € S6:

1138 1209 363 2795 1683 12051 0 0 0 O O 1 218 2826 840 2591 910 2952 0 0 0 O O
2949 2635 2331 680 2663 1598 |0 1 0 0 0 O 0 378 2832 1645 2429 2383|802 1 0 0 0 O
532 1463 263 2996 1523 835 |0 0 1 0 O O | ., | O 1112 3081 2991 1236 1090|1411 0 1 0 0 O
2350 271 1016 43 567 2755|0 0 0 1 0 O 0 471 541 1043 2342 1755 300 0 O 1 O O
2483 396 1817 3097 1976 20000 0 0 0 1 0 0 2852 484 1752 2898 1845|1434 0 0 0 1 O
890 673 2213 448 419 3012|0 0 0 O O 1 0 403 2698 2848 679 2487|845 0 0 0 0 1
1 0 2284 470 3042 412 | 340 1719 0 0 0 O 1 0 0 37 2257 2313 | 706 1756 1297 0 0 O
0 1 1694 2840 643 461 | 184 2042 0 0 0 O 0 1 0 2237 2083 1102|2765 2209 702 0 0 O
~ | 0 0 603 1161 1845 958 |3053 1171 1 0 0 O [ ., [ O O 1 2987 2615 411 | 1026 1282 767 0 0 0
0 0 2667 903 2614 249 |1136 718 0 1 0 0 0 0 0 199 284 987 12294 374 1286 1 0 O
0 0 446 2072 312 2698|1666 1216 0 0 1 0 0 0 0 1120 2772 642 | 320 1319 1668 0 1 0
0 0 1266 2078 925 1079|1693 2074 0 0 0 1 0 0 0 1786 2835 2628|2777 937 853 0 0 1
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1 0 0 0 3115 2632|3059 69 1529 3062 0 0O 100 0 0 42 (2934 1314 2594 1787 1630 0O
0 1 0 0 241 2821|2543 2072 1384 1512 0 0 0 1 0 0 0 2115|1493 2380 2280 52 92 0
~ | 00 1 0 1273 1755|2554 395 324 2262 0 O [ ., [ O O 1 0 O 1462| 29 1594 687 2382 1251 0
0 0 0 1 1666 2863 | 781 2326 1514 424 0 0 00 0 1 0 2482 356 1784 2210 964 2192 0O
0 0 0 0 2477 332 | 600 2449 2863 120 1 0 0000 1 366|925 1062 1669 810 1413 0O
0 0 0 0 2359 1810|1661 2951 3099 2111 0 1 00000 916 | 86 818 303 69 1108 1
1 00 0 0 0]2227 2723 308 2260 1934 2313
01000 01828 1235 110 3112 222 2860
~ | 00100 02502 343 1916 1585 970 1943 | _ (16 ’ T—l) .
000 1 0 0]1284 823 154 47 2151 973
0000 1 0]1014 394 1391 914 1830 2299
0 0 0 0 0 1]2621 2273 2733 956 588 1061

Finally, the public and the private matrix can be determined

2537:106:906:213  2683:2453:2340:2018 \ |
872:1963:1177:2439  924:1871:1075:1537

— — 708:459:3096:2135 656:397:2388:2676
GPUb =5 (X G) T= 2617:200:1915:2323  101:1941:1296:2110 ’
52:1103:336:2350 2851:2615:427:1975 (4 16)
2047:3106:2745:2649  2337:2739:2250:641 :

Gpriv = F- S_1

3057:1079:1808:2431 2135:2694:200:1519
0:0:0:0 0:0:0:0

(2918:2474:2460:1810 256:428:2711:1876 )
0:0:0:0 0:0:0:0

We have successfully generated the public key Kyu, = (Gpub, %) and the private
_ -1
key ICpriv - (g> GpriV7 T at)-
s _ (419:678:3114:2871 \ T 2
Encryption: Let z = (2]9:578:3114:2871) * € R” be a message. We must choose
an codeword from R and verify that it has cardinal rank at most %
2500:1875:2500:1250 \ |
1875:625:1875:2500
e = 0:0:0:0
2500:1875:2500:1250
0:0:0:0
1250:2500:1250:625
1250 2500 0 1250 0 625 625 1250 0 625 0 1875 625 1250 0 625 0 1875
le]p = (2500 1875 0 2500 0 1250) (2500 1875 0 2500 0 1250) _ ( 00000 )
)

1875 625 0 1875 0 2500 1875 625 0 1875 0 2500
2500 1875 0 2500 0 1250 2500 1875 0 2500 0 1250 0 0 00 O0 O

where the first row of [e]p is multiplied by an integer 1563. Then, the first row
multiplied by 3121, 3122 and 3121 is added to the second, third, and fourth rows in
the specified order. Refer to Claim [48|to calculate the cardinal rank of the error
codeword rk(e) = rk([e]p) = rk([e]}) = logss(|Imle]]) = logss(5) = . Thus,
e is correctable. Let ¢ = Enck,, (z) be obscured by e, i.e.

2537:106:906:213  2683:2453:2340:2018 2500:1875:2500:1250 T
872:1963:1177:2439  924:1871:1075:1537 1875:625:1875:2500
c= 708:459:3096:2135 656:397:2388:2676 (419:678:3114:2871 ) + 0:0:0:0
- 2617:200:1915:2323  101:1941:1296:2110 747:2453:901:2223 2500:1875:2500:1250

52:1103:336:2350 2851:2615:427:1975 0:0:0:0
2047:3106:2745:2649  2337:2739:2250:641 1250:2500:1250:625

1686:751:2752:1989 \ |
1636:749:708:1012

2280:2090:2736:1334
1266:2671:383:2272
2136:12:2061:636
115:247:2771:147

The ciphertext ¢ in now ready to be transmitted to the recipient whose public
key was utilised in the encryption.
Decryption: Denote by I the set of indices {3,...,6}. Then,

1686:751:2752:1989 \ | 2227 2723 308 2260 1934 2313

1636:749:708:1012 1828 1235 110 3112 222 2860

d=c- T—1 — 2280:2090:2736:1334 . 2502 343 1916 1585 970 1943
- - 1266:2671:383:2272 1284 823 154 47 2151 973
2136:12:2061:636 1014 394 1391 914 1830 2299

115:247:2771:147 2621 2273 2733 956 588 1061

2128:573:317:2046 \ |
875:1250:1000:3000
_ | 1288:2465:1023:566
= | 2763:953:832:3119 )
807:2279:2025:2758
1340:486:983:1

d; = (1288:2465:1023:5667 2763:953:832:3119, 807:2279:2025:2758, 1340:486:983:1).
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Note that d; corresponds to y in Example[16] so Algorithm [9]executed on input
1913:590:1648:2441 \ T

(4,2,g,d;) outputs y = (gégggggggggggggfggl) . It remains to multiply the decoded
715:2361:358:1251

codeword y by the matrix G,y from the left

1913:590:1648:2441 \ | 2918:2474:2460:1810 256:428:2711:1876
Z/ _ G, = 2138:2810:207:1244 3057:1079:1808:2431 2135:2694:200:1519
=Yy priv. 7 | 2682:2904:775:2133 0:0:0:0 0:0:0:0
715:2361:358:1251 0:0:0:0 0:0:0:0
= (419:678:3114:2871, 747:2453:901:2223),

which, clearly, equals the original message z.
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Conclusion

The thesis objective is to describe error-correcting codes over Galois rings instead
of finite fields as a potential strengthening of code-based cryptography. The main
focus is on the class of codes utilising the cardinal rank metric, which is a natural
generalisation of the rank metric introduced by Gabidulin. Throughout the work,
the constructive rather than the existential approach is chosen. The immediate
benefit is the possibility to formulate algorithms. Algorithms [4] to |8| are our
own contribution; the rest is slightly modified to use the cardinal rank metric.
Essential notions are even illustrated in examples, none of which is borrowed.

Chapter One establishes the construction of Galois rings and studies their
fundamental properties. This is necessary to comprehend the concept of codes
and their distinctions from the standard code theory. The subsequent chapter
introduces modules over Galois rings and explains the decomposition into powers
of p. Our additions here are namely Theorem [24] Claim [26] Lemma [28]
Theorem [37] Claim [40] and Claim [44]

The central point of the third chapter is to characterise the cardinal rank
together with its induced metric and demonstrate them. A connection between
the cardinal rank metric over the Galois ring and the rank metric over its residue
field is presented, which clarifies the relation between MCRD and MRD codes.
The significance lies in Corollary providing formula for the cardinal rank
metric, Theorem [54| with Claim [55|is advantageous for proving the generalised
version of Singleton bound (Theorem , and necessary conditions for codes
to be MCRD are asserted in Theorem [61] and Corollary

The final chapter discusses Gabidulin codes as representants of MCRD codes,
grounded on matrices and linear polynomials. Linear polynomials are examined
thoroughly as the efficient decoding algorithm is based on them. The version
of the GPT cryptosystem over Galois rings is a direct cryptographic application
of Gabidulin codes. In this part, we contribute with the proof of Theorem [63]
Theorem [70] Theorem Claim [75] and Lemma [81]
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List of Abbreviations

EEA Extended Euclidean Algorithm providing the greatest common divisor
and the coefficients of Bezout’s identity

MDS Maximum Distance Separable, in terms of codes over finite fields, codes
that achieve the equality in Singleton bound for the Hamming distance

MRD Maximum Rank Distance, in terms of codes over finite fields, codes that
achieve the equality in Singleton bound for the rank distance

MCRD Maximum Cardinal Rank Distance, in terms of codes over Galois rings,
codes that achieve the equality in Singleton-like bound for the cardinal rank
distance

PKC Public Key Cryptosystem

WLOG Without Loss Of Generality

Notation

GR(p",r) Galois ring of characteristic p™ and cardinality p™"
7, Teichmiiller set {0,1,&,£2,...,67 71} C GR(p",r), where £ has order p" — 1

T Teichmiller set T;

r—1 .
Gr_1:0r_2o:...:a9 The additive representation of an element Y a;&°, where £ has
i=0

order p" — 1
[i] The i*" power of a prime p modulo p"

7 The generalised Frobenius automorphism of GR(p", r) defined using the aditive
r—1 . r—1 .
representation as 7 ( zl{Z) = Y 26 where € has order p” — 1
=0 i=0

Modules

Let R = GR(p",r), S = GR(p", 1) and M, N be R-modules.

M < N M is a submodule of N

Mg The module M viewed as an S-module

(x1,...,X;)r The R-module generated by xy,...,x; R can be omitted
rank(M) The rank of a module M, the minimal number of M’s generators
Soc(M) The submodule of a module M composed of elements with height < 1

0;; The Kronecker delta; 6;; = 1 and d,;; = 0 provided @ # j
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8; The element (&;1,...,d;) of an R-module R*

x; The codewords composed of coordinates of x € R™ which indices lies in the set
IC{l,....,m}

~ The projection R — R/pR defined by a — a + pR; a ring epimorphism

~™ The induced projection R™ — (R/pR>m; (a1,...,am) = (ai,...,am);
a module epimorphism

Matrices

Let A be a matrix over R = GR(p", r) of type k x I, S = GR(p", 1) be a subring
of R and B = (f,...,0,) be a free basis of R over S.

A¢ The i column of A

A’ The i*® column of A

a;; The entry of a matrix A at position (4, j)

Ay The matrix composed of the rows A7, i € I C{1,...,k}
A.; The matrix composed of the columns A¢, i € I C {1,...,l}
I, The identity matrix of order k

Orx; The zero matrix of type k x [

0, The zero matrix Oy

Img(A) The image of A; the S-module generated by the columns Af,..., Af,
where S is a subring of R and can be omitted

ker(A) The kernel of A; the set of x € R! such that A-x" = o
rank(A) The rank of Im(A)
rk(A) The cardinal rank of A defined as log,.(|Tm(A)|)

[z]p A coordinate vector (z1,...,2,) € S" of z € R relative to the free basis B
such that x = 2161 +--- + 2.6,

[x]p A coordinate matrix ([z1]g| ... | [zx]) € S”* of x = (x1,...,2;) € RF

rks(x) The cardinal rank of x € R¥ defined as rk([x]g); S can be omitted

68



Linear codes

Let C be a linear code of length m over R and ¢,d € C.
[m, []r-code A linear code of length m and rank [ over R; R can be omitted
wy(c) The Hamming weight of ¢; the number of non-zero coordinates of ¢

d#(c,d) The Hamming distance between ¢ and d defined as wy(c — d)

(o

(

#(C) The minimum Hamming distance of C; min{dy(e,f) | e,f € C : e # f}
dgr(c,d) The cardinal rank distance between ¢ and d defined as rk(c — d)
dz(C) The minimum cardinal rank distance of C; min{dg(e,f) | e,f € C : e # f}
ds(c,d) The cardinal rank distance between ¢ and d over S
ds(C) The minimum cardinal rank distance of C over S
Gabr(m,[,g) The Gabidulin [m,(|r-code with a generator matrix G € R™*!

such that ¢g;; = 77'(g;), i = 1,...,1,j = 1,...,m, provided rk(g) = m

Linearised polynomials

d )
P(R) The set of all linearised polynomials > a; - 7(X) with coefficients from R
=0

deg(F) The degree of a linearised polynomial ' € P(R) defined as the minimal
d .
non-negative integer d for F' # 0 such that F = Y f; - 7/(X) and f; # 0,
i=0
and —oo for ' =10

Pa(R) The set of F € P(R) such that deg(F) < d

Pi(R) The set of FF € P(R) such that deg(F)=d—1and f3_1 =1

¢ The linearised polynomial £(X) = X; the identity of P(R)

F o G The product of F,G € P(R) defined as the evaluation F(G(X))
ker(F') The kernel of F' € P(R); the set of all its roots over R

F(x) The codeword (F(z1),...,F(zy)), where FF € P(R) and x € R¥
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