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Introduction
The original idea of constructing a public-key cryptosystem (PKC) based on error-
-correcting codes came from McEliece [1]. The proposed PKC used Goppa codes
with Hamming distance, and its security was derived from a general decoding
problem for linear codes, which is NP-complete. Unfortunately, code parameters,
and therefore public keys also, had to be taken large.

A further modification of the McEliece scheme was introduced by Gabidulin,
Paramonov and Tretjakov [2]. Their cryptosystem was based on Maximum Rank
Distance (MRD) codes, a class similar to Maximum Distance Separable (MDS)
codes, but with the rank distance instead of Hamming distance. MRD codes
are well-structured since they use a finite field extension and view the larger field
as a vector space over its subfield. The distance between two codewords is given
by the rank of the matrix representing their difference.

Several attacks on the GPT cryptosystem were published over the years,
among which Overbeck’s attacks [3] were some of the most efficient. Multiple
countermeasures were reviewed to withstand Overbeck’s attack, e.g. the Smart
approach proposed in [4] with special choosing of a distortion matrix. How-
ever, some deficits of this approach were found, including the transformation
of the public key to apply Overbeckeck’s attack published by Kalachi [5].

In this thesis, another method is chosen. Instead of utilising linear codes
over finite fields, codes over Galois rings are applied as in [6]. The first chapter
deals with the construction and description of Galois rings. Linear codes based
on the modul theory are studied within the second chapter. In Chapter Three,
the distance of codewords different from Hamming one is presented. Moreover,
its properties are there thoroughly examined to understand the generalisation
of MRD codes. The final chapter focuses on Gabidulin codes over Galois rings,
presenting the decoding algorithm and verifying that the GPT PKC is correct
also in this scenario.
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1. Galois Rings
First of all, it might be relevant to set up the terminology. Let a commutative
ring R, which always contains identity, be given. An ideal I ⊆ R shall be denoted
by I ≤ R, and the fact that elements a1, . . . , an ∈ R generates the ideal I shall
be expressed as I = (a1, a2, . . . , an) = a1R + a2R + · · ·+ anR. If a maximal ideal
M ≤ R exists unique then (R, M) is a local ring, and K = R⧸M is its residue
field. The set of units of the ring R is R∗ = {a ∈ R | ∃b ∈ R : a · b = 1},
and b ∈ R is said to be a nilpotent element of R provided bn = 0 for some
n ∈ N. Any ring homomorphism f : R −→ S satisfying f(MR) ⊆ MS, where
(R, MR), (S, MS) are local rings, will be called local.
Example 1. Let p be a prime and n be a positive integer. Then, (Zpn , pZpn)
is a local ring with the residue field Zpn⧸pZpn

≃ Fp.

Claim 1. Let R be a finite commutative ring with identity and M be the set
containing all nilpotent elements of R. Suppose that {0} ⊊ M .

1. If m ∈M then (1−m) ∈ R∗.

2. M is an ideal.

3. If M is maximal then M = R \R∗ and (R, M) is a local ring.

Proof. 1. Choose m ∈M and find n ∈ N such that mn = 0. Thus,

(1−m) ·
n−1∑︂
i=0

mi =
n−1∑︂
i=0

(︂
mi −mi+1

)︂
= 1−mn = 1.

2. Let r ∈ R, a, b ∈ M and n1, n2 ∈ N such that an1 = 0 = bn2 . Assume,
without loss of generality, n1 ≥ n2. Clearly, 0 ∈ M . Denote n0 = n1 + n2.
Compute

(a + b)n0 = an0 + bn0 +
n0−1∑︂
i=1

(︄
n0

i

)︄
aibn0−1−i

=
n1−1∑︂
i=1

(︄
n0

i

)︄
aibn0−1−i +

n0−1∑︂
i=n1

(︄
n0

i

)︄
aibn0−1−i

= bn2 ·
n1−1∑︂
i=1

(︄
n0

i

)︄
aibn1−1−i + an1 ·

n0−1∑︂
i=n1

(︄
n0

i

)︄
ai−n1bn0−1−i = 0,

so (a + b) ∈ M . It is apparent that (r · a)n1 = rn1 · an1 = 0. Hence, M is really
an ideal of R.

3. Since no nilpotent is a unit, it is enough to prove that any element which
is not nilpotent is a unit. Choose x ∈ R \ M . Clearly R⧸M is a field since
M is maximal, and therefore, there exists y ∈ R \M satisfying x · y = 1 − m
for a appropriate m ∈M . However, according to 1., the element (1−m) is a unit,
and for this reason, x · (y · (1−m)−1) = 1 and x is a unit.

Finally, every non-trivial ideal I ≤ R must be a part of M because every
non-nilpotent element of R is a unit. The uniqueness of M is now evident.
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1.1 Polynomials Modulo Prime-Power Residues
Let a prime p and n ∈ N be determined subsequently. Irreducible polynomials
over the commutative ring Zpn are pivotal for constructions in the succeeding
sections. Thus, it is essential to properly define them and present their properties
and connections to irreducible polynomials over Zp. To begin with, let us describe
which polynomials in Zpn [x] are units and which are nilpotent elements. The proof
of the following more general theorem will be omitted.

Theorem 2. [7, Proposition 1.3.1] Let R be a commutative ring with identity
and f(x) =

m∑︁
i=0

fix
i ∈ R[x]. Then,

1. f is a unit in R[x] ⇐⇒ f0 ∈ R∗ and f1, . . . , fm are nilpotent in R,

2. f is a nilpotent in R[x] ⇐⇒ f0, f1, . . . , fm are nilpotent in R,

3. f is a zero-divisor ⇐⇒ ∃a ∈ R \ {0} such that a · f(x) = 0.

Consider a projection ϕ : Zpn −→ Zp defined as a ↦→ a mod p and extend
it to µ : Zpn [x] −→ Zp[x],

m∑︁
i=0

aix
i ↦→

m∑︁
i=0

ϕ(ai)xi. It is not difficult to see that
both the maps ϕ and µ are surjective ring homomorphism with kernels pZpn

and pZpn [x], respectively. Let us clarify here that an epimorphism is always
a surjective homomorphism and not a more general concept from the category
theory. Our goal for the first two sections is to determine some induced ring
epimorphism µ̃ of quotient rings Zpn [x]⧸I and Zp[x]⧸J , where I and J are ideals
of Zpn [x] and Zp[x] in the specified order. For that, we need to explore the relation
between polynomials over Zp and Zpn . In this chapter, we mind a construction
from the work by Flamini et al. [7].

Definition 3. Let f ∈ Zpn [x] be non-zero. Then f is said to be:

• regular provided there is no non-zero g ∈ Zpn [x] such that f · g = 0,

• irreducible provided it is not a unit, and if g, h ∈ Zpn [x] exist such that
f = g · h, then either g or h is a unit.

Lemma 4. Let f ∈ Zpn [x] be a regular polynomial such that µ(f) is an irreducible
in Zp[x]. Then, f is irreducible in Zpn [x].

Proof. Firstly, observe that f cannot be a unit in Zpn [x] as µ(f) is irreducible
in Zp[x]. Let f ∈ Zpn [x] be the product of polynomials g, h ∈ Zpn [x]. It follows
µ(f) = µ(g) · µ(h). Since µ(f) is irreducible, then one of µ(g) and µ(h) must
be a unit in Zp[x] and the other cannot be. Suppose, without loss of generality,
µ(g) = 1, which means that g(x) = 1 + pg̃(x) for suitable g̃ ∈ Zpn [x]. As stated
by Theorem 2, pg̃ is nilpotent in Zpn [x]. For arbitrary a ∈ Zpn , the element
b = 1 + p · a is a unit in Zpn according to Claim 1. Theorem 2 asserts that
g(x) = 1 + pg̃(x) ∈ Zpn [x]∗. In conclusion, f is irreducible in Zpn [x].

Let Fp ⊆ Fpr be a finite field extension for some r ∈ N. Recall that an element
α ∈ Fpr is primitive provided α generates the multiplicative group F∗pr , denoted
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by F∗pr = ⟨α⟩. We shall say that an element β is primitive over Fp, if an extension
Fq of Fp exists such that β ∈ Fq is primitive. By a primitive polynomial over Zp,
the minimal polynomial of a primitive element over Zp is meant. Irreducible
polynomials over Zpn , whose projections to Zp[x] are primitive polynomials, play
a substantial role in the construction proposed in the ensuing chapter. Therefore,
it is beneficial to name these polynomials and to provide a simple example of them.

Definition 5. A polynomial f ∈ Zpn [x] is basic irreducible if µ(f) is irreducible
in Zp[x]. Furthermore, if µ(f) is the minimal polynomial of a primitive element
over Zp, the polynomial f is said to be basic primitive.

Example 2. The list of all irreducible polynomials of degree 2 over Z4 together
with their projections to Z2[x] is provided in Table 1.1. The table indicates
the irreducibility of the projections in Z2[x], as well. Let us remark the presented
polynomials from Z4[x] were computed in Wolfram Mathematica by setting all
possible coefficients and checking whether the constructed polynomial has roots
over Z4.

Irreducible f ∈ Z4[x] µ(f) ∈ Z2[x] µ(f) irreducible

±(x2 + 2)
x2 ✗±(x2 + 2x + 2)

±(x2 + 1) (x + 1)2 ✗±(x2 + 2x + 3)
±(x2 + x + 1)

x2 + x + 1 ✓
±(x2 + x + 3)
±(x2 + 3x + 1)
±(x2 + 3x + 3)

Table 1.1: Irreducible polynomials of degree 2 in Z4[x]

A natural question is how to find a polynomial f from Zpn [x], which projection
µ(f) is irreducible in Zp[x]. The answer is to start with an irreducible polynomial
over Zp and lift it to the Zpn [x]. In the rest of the first section, the Hensel’s lift
is described. Let us start by a lemma based on the Bezout’s identity.

Lemma 6. Let f, g, h ∈ Zp[x] be non-zero such that deg(f) < deg(g) + deg(h)
and g, h are coprime. Then, the unique polynomials u, v ∈ Zp[x] exist which
satisfy deg(u) < deg(h), deg(v) < deg(g) and f = u · g + v · h.

Proof. Since Zp[x] is an Euclidean domain, it is possible to perform the
Extended Euclidean Algorithm (EEA) on the given polynomials g, h to com-
pute the coefficients u0, v0 ∈ Zp[x] of the Bezout’s identity. Thus, deg(u0) <
deg(h), deg(v0) < deg(g) and 1 = u0g + v0h. Multiply the equation by f
to obtain f = (u0f)g + (v0f)h. Compute u = (u0f) mod h, q = (u0f) div h
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and v = qg + v0f . Apparently, u0f = qh + u and deg u < deg h. Furthermore,

f = (qh + u)g + (v0f)h = ug + (qg + v0f)h = ug + vh,

deg(v) + deg(h) = deg(vh) = deg(g(qh) + v0fh) = deg(gu0f + v0fh− gu)
= deg(f − gu) ≤ max(deg(f), deg(u) + deg(g))
< deg(h) + deg(g),

and therefore, deg(v) < deg(g).
It remains to show the uniqueness. Assume that the proposition hold for two

pairs u, v, ũ, ṽ ∈ Zp[x], i.e. ug +vh = ũg + ṽh. Clearly, (u− ũ)g = (ṽ−v)h, which
implies g | (ṽ − v) as g, h are coprime. Since deg g > deg (ṽ − v), the difference
ṽ − v must be the constant zero. Consequently, u− ũ = 0 as well.

The prior lemma may be generalised for more than just two polynomials g, h.
The generalised version is vital in order to justify lifting of polynomials from Zp[x]
to Zpn [x].

Lemma 7. Let f, g1, . . . , gm ∈ Zp[x] satisfy deg(f) <
m∑︁

i=1
deg(gi) and each pair

gi, gj is coprime for i, j ∈ N, i < j ≤ m. There exist the unique polynomials
u1, . . . , um ∈ Zp[x] satisfying deg(ui) < deg(gi) for every positive integer i, i ≤ m,
and f =

m∑︁
i=1

ui

m∏︁
j=1
j ̸=i

gj.

Proof. Set d0 = f and, for every i ∈ N, i ≤ n, g∗i =
m∏︁

j=i+1
gj and gĩ =

m∏︁
j=1
j ̸=i

gj.

It is evident that g∗m = 1 and deg(d0) = deg(f) <
m∑︁

i=1
deg(gi). According

to Lemma 6 applied to d0, g1, g∗1, the unique d1, u1 ∈ Zp[x] exist satisfying
d0 = d1 · g1 + u1 · g∗1, deg(d1) < deg(g∗1) and deg(u1) < deg(g1). Now, assume that
we already have dj, uj ∈ Zp[x] such that dj−1 = dj · gj + uj · g∗j , deg(dj) < deg(g∗j )
and deg(uj) < deg(gj) for every positive integer j, j < i, where i ∈ N, i < m.
It directly follows that deg(di−1) < deg(g∗i−1) = deg

(︂∏︁m
j=i gj

)︂
= deg(gi)+deg(g∗i ).

Apply Lemma 6 again to obtain the unique di+1, ui+1 ∈ Zp[x] which fulfill
deg(di+1) < deg(g∗i+1), deg(ui+1) < deg(gi+1) and di

⋆= di+1 · gi+1 + ui+1 · g∗i+1.
Put ei = di

i∏︁
j=1

gj for every i, 0 ≤ i ≤ m. Choose i ∈ N, i ≤ m, and compute

uigĩ = uig
∗
i ·

i−1∏︁
j=1

gj
⋆= (di−1 − digi)

i−1∏︁
j=1

gj = di−1
i−1∏︁
j=1

gj − di

i∏︁
j=1

gj = ei−1 − ei.

In addition, e0 = d0 = f and em = dmg∗0 = 0 because deg(dm) < deg(g∗m) = 0.
Altogether,

m∑︁
i=1

uigĩ =
m∑︁

i=1
(ei−1 − ei) = e0 + em = f + 0 = f .

Assume that the proposition is true for u1, . . . , um, ũ1, . . . , ũm ∈ Zp[x]. Now,
we show, without loss of generality, u1 = ũ1. Since

m∑︁
i=1

uigĩ =
m∑︁

i=1
ũigĩ, then

also (u1− ũ1)g̃1 =
m∑︁

i=2
(ũi − ui)gĩ. Note that g1 divides

m∑︁
i=2

(ũi − ui)gĩ as g̃2, . . . , g̃m

are divisible by g. Consequently, g1 | (u1− ũ1)g1̃. However, g1 and g̃1 are coprime,
so g1 must divide (u1 − ũ1). Deduce that u1 − ũ1 = 0 as deg(u1 − ũ1) < deg g1.

6



The constructive approaches from the last two proofs can be easily converted
into algorithms. The same may be said about the construction, which we present
in the proof of the theorem below known as Hensel’s lemma. So, the question
of how to find a basic irreducible polynomial over Zpn is answered. Moreover,
it provides the means to produce even basic primitive polynomials.

Theorem 8 (Hensel’s lemma). Let f ∈ Z[x] be monic and g1, . . . , gm ∈ Zp[x]
be pairwise coprime monic polynomials satisfying f ≡

m∏︁
i=1

gi (mod p). For every

k ∈ N, polynomials g
(k)
1 , . . . , g(k)

m ∈ Zpk [x] exist, which meet the conditions:

1. f ≡
m∏︁

i=1
g

(k)
i (mod pk),

2. ∀1 ≤ i ≤ m : g
(k)
i ≡ gi (mod p),

3. ∀1 ≤ i ≤ m : lc
(︂
g

(k)
i

)︂
= 1.

Proof. Choose k ∈ N and define the sets K = {1, . . . , k} and M = {1, . . . , m}.
Denote gĩ =

m∏︁
j=1
j ̸=i

gj and g
(1)
i = gi for every i ∈ M . The plan is to use Lemma 7

iteratively for j ∈ K to construct g
(j)
1 , . . . , g(j)

m ∈ Zpj [x] meeting the conditions.
Notice that the case j = 1 follows from the hypothesis. Assume that we already
have g

(j)
1 , . . . , g(j)

m ∈ Zpj [x] fulfilling the conditions 1.-3. for some j ∈ K, j < k.
Define d = µ

(︃(︃
f −

m∏︁
i=1

g
(j)
i

)︃/︂
pj

)︃
∈ Zp[x] and gĩ

(j) =
m∏︁

s=1
s ̸=i

g(j)
s for each i ∈ M .

Evidently, deg(d) < deg(f) =
m∑︁

i=1
gi. For d, g1, . . . , gm, Lemma 7 states that

u1, . . . , um ∈ Zp[x] exist unique which satisfy deg(ui) < deg(gi) for each i ∈ M ,
and d =

m∑︁
i=1

uigĩ in Zp[x]. Derived from 2., d ≡
m∑︁

i=1
uigĩ ≡

m∑︁
i=1

uigĩ
(j) (mod p).

Set g
(j+1)
i = g

(j)
i + pjui for every i ∈ M . Since pjd = f −

m∏︁
i=1

g
(j)
i (mod pj+1),

then
m∏︁

i=1
g

(j)
i = f − pjd (mod pj+1). Verify that the first condition is fulfilled

m∏︂
i=1

g
(j+1)
i =

m∏︂
i=1

(︂
g

(j)
i + pjui

)︂
≡

m∏︂
i=1

g
(j)
i + pj

m∑︂
i=1

uigĩ
(j),

≡ f + pj

(︄
m∑︂

i=1
uigĩ

(j) − d

)︄
≡ f (mod pj+1).

The second condition is clear as g
(j+1)
i ≡ g

(j)
i ≡ gi (mod p). Choose i ∈ M ,

and observe deg(ui) < deg(gi), so lc
(︂
g

(j+1)
i

)︂
= lc

(︂
g

(j)
i

)︂
= lc(gi) = 1.

Corollary 9. Let r ∈ N. Then, a monic basis primitive polynomial in Zpn [x]
of degree r, which divides xpr−1 − 1, exists.

Proof. Denote k = pr − 1. From finite fields construction, we know there exists
a monic irreducible polynomial fp ∈ Zp[x] of degree r which divides (xk − 1).

7



Thus, f is primitive. Since (xk − 1)′ = k · xk−1 = −xpr−2 in Zp[x], it cannot have
multiple roots. Set gp(x) = xk−1

fp
∈ Zp[x], which seems to be monic and coprime

with fp. Theorem 8 yields monic polynomials f, g ∈ Zpn [x] such that µ(f) = fp,
µ(g) = gp and (xk − 1) = f(x)g(x) in Zpn [x]. Hence, f is monic basic primitive.

We reformulate the constructions from the proofs of Lemma 6, Lemma 7
and Theorem 8 to algorithms. Remark that EEA on input g, h ∈ Zp[x] outputs
the tuple (a, b, d) ∈ Zp[x]3 such that gcd(g, h) = a · g + b · h.
Algorithm 1 Linear combination of two coprime polynomials
Require: p prime, f, g, h ∈ Zp[x] \ {0}, deg(f) < deg(g) + deg(h), gcd(g, h) = 1
Ensure: u, v ∈ Zp[x], deg(u) < deg(h), deg(v) < deg(g) : f = u · g + v · h

(u0, v0, g)← EEA(g, h)
u← (u0 · f) mod h; q ← (u0 · f) div h; v ← q · g + v0 · f
return (u, v)

Algorithm 2 Linear combination of multiple coprime polynomials

Require: p prime, m ∈ N, f, g1, . . . , gm ∈ Zp[x] \ {0}, deg(f) <
m∑︁

i=1
deg(gi)

and ∀i, j ∈ N, i < j ≤ m : gcd(gi, gj) = 1
Ensure: u1, . . . , um ∈ Zp[x],∀i ∈ N, i ≤ m : deg(ui) < deg(gi), f =

m∑︁
i=1

ui

m∏︁
j=1
j ̸=i

gj

d0 ← f ; g∗0 ←
m∏︁

i=1
gi; i← 1

while i ≤ m do
g∗i ← g∗i−1 div gi

(di, ui)← Algorithm 1(p, di−1, gi, g∗i ); i← i + 1
end while
return (u1, . . . , um)

Algorithm 3 Hensel’s lift
Require: p prime, m, k ∈ N, f ∈ Z[x] monic, g1, . . . , gm ∈ Zp[x] monic, ∀i, j ∈ N,

i < j ≤ m : gcd(gi, gj) = 1 and f ≡
m∏︁

i=1
gi (mod p)

Ensure: g
(k)
1 , . . . , g(k)

m ∈ Zpk [x] monic, ∀i, j ∈ N, i < j ≤ m : g
(k)
i ≡ gi (mod p)

and f ≡
m∏︁

i=1
g

(k)
i (mod pk)

i← 1; j ← 1
while i ≤ m do

g
(1)
i ← gi; i← i + 1

end while
while j < k do

d←
(︃(︃

f −
m∏︁

i=1
gj

i

)︃
div pj

)︃
mod pj+1, i← 1

(u1, . . . , um)← Algorithm 2(p, m, d, g1, . . . , gm)
while i ≤ m do

g
(j+1)
i ← g

(j)
i + pjui; i← i + 1

end while
j ← j + 1

end while
return

(︂
g

(k)
1 , . . . , g(k)

m

)︂
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1.2 The Construction of Galois Rings
Due to Corollary 9, it is possible to determine an induced ring epimorphism
µ̃ of quotient rings Zpn [x]⧸I and Zp[x]⧸J for I ≤ Zpn [x] and J ≤ Zp[x]. Firstly,
recall the ring epimorphisms:

ϕ : Zpn −→ Zp, a ↦→ a mod p, (1.1)

µ : Zpn [x] −→ Zp[x],
m∑︂

i=0
aix

i ↦→
m∑︂

i=0
ϕ(ai)xi, (1.2)

Now, consider a monic basic irreducible polynomial Gp,r ∈ Zpn [x] of degree
r such that it divides xk − 1 in Zpn [x] for k = pr − 1. The existence of such
Gp,r follows from Corollary 9. Denote gp,r(x) = µ(Gp,r(x)) ∈ Zp[x]. Clearly,
gp,r is a monic primitive polynomial of degree r dividing xk − 1 in Zp[x]. We can
define

µ̃ : Zpn [x]⧸(Gp,r) −→
Zp[x]⧸(gp,r) ≃ Fpr , f + (Gp,r) ↦→ µ(f) + (gp,r). (1.3)

Elements of the quotient ring Zpn [x]⧸(Gp,r) are of the form
r−1∑︁
i=0

aix
i +(Gp,r), where

a0, . . . , ar−1Zpn , so there is (pn)r = pnr of them. The next step is to verify that µ̃
is a well-defined homomorphism of rings with the kernel (p + (Gp,r)).

Choose f, g ∈ Zpn [x], then

µ̃(f + (Gp,r)) ◦ µ̃(g + (Gp,r)) = (µ(f) + (gp,r)) ◦ (µ(g) + (gp,r))
= µ(f) ◦ µ(g) + (gp,r) = µ(f ◦ g) + (gp,r)
= µ̃(f ◦ g + Gp,r), where ◦ ∈ {+, ·}.

Now, consider f̄ , ḡ ∈ Zp[x]. As stated by Theorem 8, there are f, g ∈ Zpn [x]
fulfilling µ(f) = f̄ and µ(g) = ḡ. Subsequently, we have µ̃(f +(Gp,r)) = f̄ +(gp,r)
and µ̃(g + (Gp,r)) = ḡ + (gp,r). Moreover, if f̄ ̸≡ ḡ (mod gp,r) then, inevitably,
f ̸≡ g (mod p, Gp,r), which implies f ̸≡ g (mod Gp,r). It results in µ̃ being
a well-defined ring epimorhism. Compute the kernel of µ̃:

f ∈ ker(µ̃) ⇐⇒ µ̃(f + (Gp,r)) = (gp,r) ⇐⇒ (µ(f) = 0 ∨ µ(f) ∈ (gp,r))
⇐⇒ (f ∈ (p) ∨ f ∈ (Gp,r)) ⇐⇒ f ∈ (p + (Gp,r)),

which means ker(µ̃) = (p + (Gp,r)). Utilising the first isomorphism theorem,(︃
Zpn [x]⧸(Gp,r)

)︃
⧸(p + (Gp,r)) ≃ Fpr . (1.4)

This give us M = (p + (Gp,r)) is a maximal ideal of Zpn [x]⧸(Gp,r), which consists
of all nilpotent elements. Based on Claim 1, the set of all nilpotents of a finite
commutative ring composes an ideal, which is unique provided it is maximal.
Therefore,

(︃
Zpn [x]⧸(Gp,r), M

)︃
is a local ring.

Define ξ = x + (Gp,r) and R = Zpn [x]⧸(Gp,r). Then, ξ ∈ R and it is a root
of the polynomial Gp,r over R, because Gp,r(ξ) = Gp,r(x) + (Gp,r) = (Gp,r),
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and the evaluation map is a polynomial ring homomorphism. It is clear that
R = Zpn [ξ], and, for arbitrary f ∈ Zpn [x], there exist unique z0, . . . , zr−1 ∈ Zpn

such that f + (Gp,r) =
r−1∑︁
i=0

ziξ
i.

Denote by α the projection µ̃(ξ), then considering the construction, α must
be a primitive root of gp,r = µ(Gp,r) ∈ Zp[x]. Based on the fact that α is of order
k = pr − 1, we show ξ is also of order k. Denote by l the order of ξ. Since ξ
is the root of Gp,r, which divides (xk− 1), it is apparent that ξk− 1 = 0 and l | k.
If l < k then 1 = µ̃(1) = µ̃

(︂
ξl
)︂

= µ̃(ξ)l = αl, which contradicts the order of α
is k. Thence, l = k.

Now, the definition (1.3) can be expressed in a more understandable and still
equivalent form:

µ̃ : Zpn [ξ] −→ Zp[x]⧸(gp,r) = Zp[α],
r−1∑︂
i=0

ziξ
i ↦→

r−1∑︂
i=0

ϕ(zi)αi (1.5)

Remark. Let R = Zpn [x]⧸(Gp,r). Then,

• µ̃ defined as in (1.5) is a ring epimorphism with the kernel pR,

• R is a commutative ring of characteristic pn and cardinality (pn)r = pnr,

• R∗ = R \ pR, and pR is the unique maximal ideal of R containing all
nilpotent elements of R,

• (R, pR) is a local ring with the residue field R⧸pR ≃ Fpr ,

• There exists an element ξ of order k = pr − 1 in R.

The following theorem, which proof is beyond the scope of this thesis, is crucial
to justify the consecutive definition. Readers can find more about the Galois
theory for local rings in Bini and Flamini’s work [7].

Theorem 10. [7, Theorem 5.1.8] Let f , g ∈ Zpn [x] be monic basic irreducible
polynomials of degree r. Then, Zpn [x]⧸(f) ≃

Zpn [x]⧸(g).

Definition 11. Let r ∈ N. The finite, commutative, local ring of cardinality
(pn)r and characteristic pn is called the Galois ring GR(pn, r). The additive
representation of any element z ∈ GR(pn, r) is z =

r−1∑︁
i=0

ziξ
i, where ξ ∈ GR(pn, r)

has order pr − 1 and z0, . . . , zr−1 ∈ Zpn .

Example 3. Trivial cases:

• GR(p1, r) = Zp[x]⧸(gp,r) ≃ Fpr , where gp,r ∈ Zp[x] is the minimal polynomial
of some primitive α ∈ Fpr ,

• GR(pn, 1) = Zpn [x]⧸(x− α) ≃ Zpn for some α ∈ Zpn .
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1.3 The Structure of Galois Rings
In the previous section, the construction of the Galois ring GR(pn, r) was shown
together with the additive representation of its elements. Now, it is vital to look
closer at the structure of the Galois rings and their ideals. The primary idea
is to determine when p and its powers divide a ∈ GR(pn, r). Division by prime p
is meant in a formal sense as p is not invertible, i.e. p divides a, denoted by p | a,
provided b ∈ GR(pn, r) exists such that a = p · b.

Definition 12. R is called chain ring if R is a principal ideal ring, which is local.

Claim 13. Let GR(pn, r) be a Galois ring. Then, for any ideal I of GR(pn, r),
a non-negative integer j exists satisfying j ≤ n and I = (pj). Thus, GR(pn, r)
is a principal ideal ring.

Proof. Firstly, recall that Z is a Noetherian ring since it is the principal ideal
domain. Then Zpn ≃ Z⧸(pn),Zpn [x] and Zpn [x]⧸(Gp,r), where Gp,r ∈ Zpn [x] basic
irreducible, are Noetherian too. Properties of Noetherian rings are described
in the publication by Grove [8].

Secondly, we show that R = GR(pn, r) is uniserial. Consider I, J ideals of R
such that I ̸⊆ J, J ̸⊆ I and choose i ∈ I, j ∈ J . Then i, j ̸∈ R∗, because if i ∈ R∗
then J ⊆ I = R, and symmetrically I ⊆ R = J , if j ∈ R∗. As a result, i, j
are nilpotents, so i, j ∈ (p), and one may find exponents ei, ej ∈ N and elements
a, b ∈ R \ pR = R∗ such that i = apei and j = bpej . Suppose, WLOG, that
ei ≥ ej. Then, i = apei = apei−ej b−1 · bpej ∈ J as bpej = j ∈ J , and therefore,
I ⊆ J , a contradiction.

Let I be an ideal of R. If (p) ⊂ I then I = (1) = (p0) as (p) is the maximal
ideal. Assume that I ⊆ (p). There must exist elements a1, . . . , al ∈ R such
that I = (a1, . . . , al), because R is Noetherian. Moreover, it is possible to find
an positive integer i, i ≤ l, which satisfies (aj) ⊆ (ai) for each j = 1, . . . , l since R
is uniserial. Thence, I = (ai) ⊆ pR, which is equivalent with that p divides ai.
As a result, ai = z · pj for appropriate j ∈ N and z ∈ R∗.

Corollary 14. A Galois ring GR(pn, r) is a chain ring.

We proved that (0) ⊂ (pn) ⊂ (pn−1) ⊂ · · · ⊂ (p) ⊂ (p0) = (1) are the only
ideals of GR(pn, r). Observe that x can be expressed as x = yi + · · · + yn−1
provided x ∈ (pi), where yj ∈ (pj), j = i, . . . , n − 1. Let us now formalise
this representation of the Galois ring’s elements using powers of p.

Theorem 15. Let k = pr − 1, R = GR(pn, r) be a Galois ring and ξ ∈ R have
order k. The unique monic basic primitive polynomial Gp,r ∈ Zpn [x] of degree
r exists which divides (xk − 1) in Zpn [x] and has a root ξ. Moreover, the ring
R = Zpn [ξ] = Zpn [x]⧸(Gp,r), and any z ∈ R has the unique p-adic representation

z =
n−1∑︂
i=0

zip
i, where z0, . . . , zn−1 ∈ {0} ∪ {ξi | i = 0, 1, . . . , k − 1}. (1.6)

Furthermore, z ∈ R∗ if and only if z0 ̸= 0, and z is 0 or a zero divisor otherwise.
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Proof. Let us start with the uniqueness of the polynomial Gp,r as its existence
follows from Corollary 9 and the existence of element ξ of order k = pr − 1
from the remark above Theorem 10. Assume that Gp,r, G̃p,r ∈ Zpn [x] exist
and meet the given conditions. Then, gcdZpn [x](Gp,r, G̃p,r) ̸= 1 as both share
the same root ξ. Since both Gp,r, G̃p,r are irreducible and have the same degree,
one can be rewritten using the other as Gp,r = a · G̃p,r, where a ∈ Zpn . Since both
are monic, a = 1.

Define S =
{︃

n−1∑︁
i=0

zip
i | z0, . . . , zn−1 ∈ {0} ∪ {ξi | 0 ≤ i < k}

}︃
and choose some

z =
n−1∑︁
i=0

zip
i ∈ S. Set yi,0 = zip

i and xi,0 = yi,0 mod ξ for every integer i,

0 ≤ i < r. Recursively compute yi,j = yi,j−1−xi,j−1
ξ

and xi,j = yi,j mod ξ for j ∈ N,

j < n. Notice that every zip
i ∈ Zpn [ξ], and therefore, xi,j ∈ Zpn for every pair i, j

as before. It can be concluded z =
r−1∑︁
j=0

(︃
n−1∑︁
i=0

xi,j

)︃
ξj ∈ Zpn [ξ] and S ⊆ Zpn [ξ].

To prove the p-adic representation is now enough to show no ξi is divisible
by p, where i ∈ Z, 0 ≤ i < k. As a consequence, we have |S| = (pr)n = |Zpn [ξ]|
and S = Zpn [ξ]. Assume, for a contradiction, a non-negative integer i exists such
that i < k and p divides ξi. Thus, ξi = p · ξ̃ for some ξ̃ ∈ Zpn [x]. In this scenario,
(ξi)n = pnξ̃

n = 0, which contradicts that the order of ξ is k.
Denote R = GR(pn, r). It has been shown in Section 1.2 that R∗ = R \ pR

and pR contains all nilpotent elements of R. Now, it is apparent the element
z =

n−1∑︁
i=0

zip
i is a unit in R if and only if p ∤ z, which can happen if and only

if z0 ̸= 0. Hence, if z0 = 0 then z is zero or a zero divisor.

Definition 16. Let ξ ∈ GR(pn, r) be of order k = pr − 1. The Teichmüller set
of the Galois ring GR(pn, r) is Tr = {0} ∪ {ξi | i = 0, . . . , k − 1}.

Based on the previous theorem, every power of the element ξ of order pr − 1
is a unit in GR(pn, r). Recall the ring epimorphism µ̃ : Zpn [ξ] → Zp[α] defined
as µ̃(ξ) = α in (1.5), where α is primitive of order pr − 1. Based on the p-adic
representation, it can be deduced µ̃ maps the Teichmüller set Tr to the residue
field of GR(pn, r). Let us define operations ⊕ and ⊖ on Tr as ξ1⊕ξ2 = ξ3 provided
µ̃(ξ1)+µ̃(ξ2) = µ̃(ξ3), and ⊖ξ1 = ξ2 if −µ̃(ξ1) = µ̃(ξ2) for any ξ1, ξ2, ξ3 ∈ Tr. Then,
it is an immediate result that (Tr,⊕,⊖, ·, 0, 1) is a finite field, and µ̃ restricted
to Tr is a field isomorphism.

Corollary 17. Let R = GR(pn, r), k = pr−1, an integer i ∈ Z satisfy 0 ≤ i < k,
and c ∈ pR. Then

1. pR =
{︃

n−1∑︁
i=1

zip
i | z1, . . . , zn−1 ∈ Tr

}︃
,

2. |R∗| = kp(n−1)r since R∗ = ⟨ξ⟩ · π, where ⟨ξ⟩ is the cyclic group of order k
generated by ξ and π = {1 + d | d ∈ pR} is a group of order (pr)n−1,

3. The order of ξi is j ∈ N which satisfies j | k, and the order of 1+c is a l ∈ N
fulfilling l | pn−1,
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4. If z ∈ R∗ is of order l dividing k, then z = ξj for 0 ≤ j < k. Specially,
for l = k, we have z = ξj, where 1 ≤ j < k and gcd(j, k) = 1.

We commence this section by demonstrating the proposed properties of Galois
rings, their additive representation and Teichmüller sets.
Example 4. Let p be an odd prime, n be a positive integer and r = 1. This
example provides the Teichmüller set T of the Galois ring GR(pn, 1) ≃ Zpn .

Consider a generator α ∈ Zp of the cyclic multiplicative group Z∗p. Certainly,
α is of order (p− 1) in Z∗p. In this trivial situation, Hensel’s lift is not necessary
because Zp ⊆ Zpn and α also lies in Zpn . Since |Zpn| = φ(pn) = (p − 1) · pn−1,
where φ is Euler’s totient function, the order of α in Z∗pn needs to be (p− 1) · pe

for some e ∈ {0, . . . , n− 1}.
Define ξ = αpn−1 . Note that ξp−1 =

(︂
αpn−1

)︂p−1
=

(︂
α(p−1)pe

)︂pn−1−e

= 1
and ξi ̸= 1 for all i ∈ N, i < p, or otherwise 1 = (αipe)pn−1−e , a contradiction.
In conclusion, ξ is of order (p− 1) in Zpn and T = {0} ∪ ⟨ξ⟩.
Example 5. This example describes the Galois ring for p = 2, n = 2, and r = 3.
We have to find some ξ of order 23 − 1 = 7 over Z4. Fortunately, it is possible
to choose ξ as any root of basic primitive polynomial of degree 3 in Z22 [x] since
7 is a prime number, e.g.

G2,3(x) = x3 + 3x2 + 2x + 3 ∈ Z4[x] and ξ = x + (G2.3).

Recall the ring epimorphisms:

ϕ : Z4 −→ Z2, a ↦→ a mod 2,

µ : Z4[x] −→ Z2[x],
m∑︂

i=0
aix

i ↦→
m∑︂

i=0
ϕ(ai)xi,

µ̃ : Z4[x]⧸(G2,3) = Z4[ξ] −→ Z2[x]⧸(g2,3) = Z2[α],
2∑︂

i=0
ziξ

i ↦→
2∑︂

i=0
ϕ(zi)αi,

where g2,3 = µ(G2,3) = x3 + x2 + 1 and α = µ̃(ξ). Doubtless, Z4[ξ] ≃ GR(22, 3)
and Z2[α] ≃ F8.

Teichmüller set is T3 = {0, 1, ξ, ξ2, ξ2+2ξ+1, 3ξ2+3ξ+1, 2ξ2+3ξ+3, ξ2+3ξ+2}
and µ̃(T3) = {0, 1, α, α2, α2 + 1, α2 + α + 1, α + 1, α2 + α} = Z2[α]. The unique
maximal ideal of Z4[ξ] is 2Z4[ξ] = {a + bξ + cξ2 | a, b, c ∈ {0, 2}}, which is the
only non-trivial ideal of this ring.
Example 6. Let p = 2, n = 3, r = 4. Now, some ξ generating a cyclic group
of order 24 − 1 = 15 = 3 · 5 has to be chosen. Thus, it is not possible to choose
arbitrary ξ like in the previous example.

Consider g2,4 = x4 +x+1 ∈ Z2[x], which is irreducible polynomial of degree 4.
Moreover, g2,4 divides (x15 − 1) and is primitive. Compute by Algorithm 3
(Hensel’s lift) the polynomial G2,4 = x4 + 4x3 + 6x2 + 3x + 1 ∈ Z23 [x] satisfying
G2,4 ≡ g2,4 (mod 2) and G2,4 | (x15 − 1) in Z23 [x]. Define ξ as the formal root
x + (G2,4) of G2,4 in Z23 [x]⧸(G2,4), and, analogously, α = x + (g2,4) ∈ Z2[x]⧸(g2,4).
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Hence, we have the ring epimorphisms:

ϕ : Z8 −→ Z2, a ↦→ a mod 2,

µ : Z8[x] −→ Z2[x],
m∑︂

i=0
aix

i ↦→
m∑︂

i=0
ϕ(ai)xi,

µ̃ : Z8[x]⧸(G2,4) = Z8[ξ] −→ Z2[x]⧸(g2,4) = Z2[α],
3∑︂

i=0
ziξ

i ↦→
3∑︂

i=0
ϕ(zi)αi.

In this scenario, Z8[ξ] ≃ GR(23, 4) and Z2[α] ≃ F16.
Now, the Teichmüller set T4 = {0} ∪ {ξi}14

i=0 has 16 elements. Remark that
any element of Z8[ξ] can be expressed as

3∑︁
i=0

ziξ
i ↦→ z3z2z1z0. Thus,

T4 =
{︄

0000, 0001, 0010, 0100, 1000, 4257, 2534, 5766,
3073, 4525, 5214, 6353, 3112, 5715, 3363, 7425

}︄
,

µ̃(T4) =
{︄

0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100,
1011, 0101, 1010, 0111, 1110, 1111, 1101, 1001

}︄
≃ F16.

Finally, non-trivial ideals of Z8[ξ] are:

(2) =
{︄ 3∑︂

i=0
ziξ

i | z0, . . . , z3 ∈ {0, 2, 4, 6}
}︄

= {z3z2z1z0 | z0, . . . , z3 ∈ {0, 2, 4, 6}},

(︂
22
)︂

= (4) =
{︄ 3∑︂

i=0
ziξ

i | z0, . . . , z3 ∈ {0, 4}
}︄

= {z3z2z1z0 | z0, . . . , z3 ∈ {0, 4}}.

Therefore, (0) ≤ (4) ≤ (2) ≤ Z8[ξ] and (2) is the maximal ideal.

1.4 Automorphisms of Galois Rings
Let Fp ≤ Fpm be an extension of finite fields of degree m ∈ N. Recall the Galois
group of Fpm over Fp is Gal(Fpm/Fp) consisting of all Fp-automorphisms of Fpm

with respect to the composition of maps. It is well known fact of finite field
theory that the Frobenius automorphism σ : Fpm −→ Fpm defined as σ(a) = ap

for a ∈ Fpm generates Gal(Fpm/Fp). Let us begin by presenting a generalisation
of the Frobenius automorphism. In this section, we refer to Chapter 14.6 of Wan’s
work [9].

Theorem 18. Let Tr = {0} ∪ ⟨ξ⟩ be the Teichüller set of GR(pn, r) for r ∈ N.
Define a map

τ : GR(pn, r) −→ GR(pn, r),
r−1∑︂
i=0

aiξ
i ↦→

r−1∑︂
i=0

aiξ
pi. (1.7)

Then, τ is a Zpn-automorfphism of GR(pn, r) called the generalised Frobenius
automorphism.

14



Proof. Choose a0, . . . , ar−1, b0, . . . , br−1 ∈ Zpn . Then

τ

(︄
r−1∑︂
i=0

aiξ
i

)︄
+ τ

(︄
r−1∑︂
i=0

biξ
i

)︄
=

r−1∑︂
i=0

aiξ
pi +

r−1∑︂
i=0

biξ
pi =

r−1∑︂
i=0

(ai + bi)ξpi

= τ

(︄
r−1∑︂
i=0

(ai + bi)ξi

)︄
= τ

(︄
r−1∑︂
i=0

aiξ
i +

r−1∑︂
i=0

biξ
i

)︄
,

τ

(︄
r−1∑︂
i=0

aiξ
i

)︄
· τ
(︄

r−1∑︂
i=0

biξ
i

)︄
=

r−1∑︂
i=0

aiξ
pi ·

r−1∑︂
i=0

biξ
pi =

r−1∑︂
k=0

∑︂
0≤i,j<r

(i+j) mod r=k

aibjξ
pk

= τ

(︄
r−1∑︂
k=0

∑︂
0≤i,j<r

(i+j) mod r=k

aibjξ
k

)︄
= τ

(︄
r−1∑︂
i=0

aiξ
i ·

r−1∑︂
i=0

biξ
i

)︄
,

τ(a) = a ∀a ∈ Zpn .

Thus, τ is a non-zero endomorphism fixing the subring Zpn of GR(pn, r). For all
i, 0 ≤ i < r, we have ξpi ̸= 0, so it can be deduced the kernel of τ is trivial, and τ
is injective. Consequently, τ is the ring automorphism.

Choose ζ from the Teichmüller set Tr. Then τ(ζ) = ζp, and the generalised
Frobenius automorphism τ acts on Tr identical to the Frobenius automorphism
σ on Fpr . However, it should not be surprising since Tr ≃ Fpr . Being equipped
with the generalised Frobenius automorphism, the next step is to introduce Galois
groups over Galois rings.

Definition 19. Let R be a Galois ring GR(pn, r) and S be a subring of R.
The Galois group of R over S, denoted by Gal(R/S), is the group consisting
of all S-automorphisms of R with the operation composition of maps.

Recall the ring epimorphism µ̃ : GR(pn, r)→ K, a ↦→ a + (p) defined in (1.5),
where K ≃ Fpr is the residue field of GR(pn, r). The symbol is written
over an argument instead of µ̃ for brevity from now on, i.e. a = µ̃(a) for any
a ∈ GR(pn, r). The relation between the Galois groups Gal(GR(pn, r)/Zpn)
and Gal(K/Fp) can be established after verifying that the composition of
with any ring automorphism of GR(pn, r), which fixes Zpn , is well-defined.

Lemma 20. Let ω ∈ Gal(GR(pn, r)/Zpn). Define a map

ω̄ : GR(pn, r) −→ GR(pn, r), a ↦→ ω(A), (1.8)

where A ∈ GR(pn, r) satisfies A = a. Then, ω̄ is a well-defined Fp-automorphism
of the residue field.

Proof. Consider A, B, C, D ∈ GR(pn, r) such that A = B + pC. Denote
a = A, b = B and d = D. For these elements,

ω̄(a) = ω(A) = ω(B) + ω(pC) = ω(B) + ω(pC) = ω̄(b) + p · ω(C) = ω̄(b),
ω̄(a + d) = ω(A + D) = ω(A) + ω(D) = ω(A) + ω(D) = ω̄(a) + ω̄(d),
ω̄(a · d) = ω(A ·D) = ω(A) · ω(D) = ω(A) · ω(D) = ω̄(a) · ω̄(d),
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so ω̄ is a well-defined endomorphism.
If 0 = ω̄(a) = ω(A), then ω(A) = p · E for E ∈ GR(pn, r). Furthermore,

ω(An) = ω(A)n = 0, which means An = 0. It directly follows that A ∈ pGR(pn, r)
and a = A = 0, so ker(ω̄) = {0}. Now, ω̄ is the injective endomorphism,
and therefore, an automorphism of GR(pn, r). Finally, observe that for every
A ∈ Zpn and a = A, we have ω̄(a) = ω(A) = A = a.

Finally, the promised relation between the Galois groups over Galois rings
and finite fields can be figured. We state the connection between the generalised
and the classical Frobenius automorphism of GR(pn, r) and GR(pn, r) ≃ Fpr

respectively, from which the relation will become clear.

Theorem 21. Let τ be the generalised Frobenius automorphism of GR(pn, r).
Then, τ̄ = σ is the Frobenius automorphism of GR(pn, r) ≃ Fpr , and τ generates
the Galois group Gal(GR(pn, r)/Zpn).

Proof. Let K be the residue field GR(pn, r) ≃ Fpr . Lemma 20 asserts that τ̄
is a well-defined Fp-automorphism of K. Let ξ ∈ GR(pn, r) be of order pr − 1,
and set α = ξ. Then, α is primitive in K and τ̄(α) = τ(ξ) = ξp = αp = σ(α).
As a result, τ̄ = σ since an image of a primitive element uniquely determines
a field homomorphism.

Choose ω ∈ Gal(GR(pn, r)/Zpn). Note that a field automorphism must map
a primitive element to another primitive element, or otherwise it is not bijective.
Combining this argument with Corollary 17, ω(ξ) = ξi for some i such that
0 ≤ i < pr − 1 and gcd(i, pr − 1) = 1. It is apparent that ω̄(α) = ω(ξ) = ξi = αi.
According to Lemma 20, the automorphism ω̄ lies in Gal(K/Fp), so j ∈ N exists,
which fulfills ω̄ = σj as σ generates Gal(K/Fp). It can be concluded that i = pj

and ω = τ j, because αi = ω̄(α) = σj(α) = αpj .
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2. Codes over a Galois ring
Let R be a Galois ring GR(pn, r) and Tr its Teichmüller set for some prime
number p and natural numbers n and r, fixed from now on. The ith coordinate
of x ∈ Rm will be denoted by xi, where i, m ∈ N satisfying i ≤ m.

2.1 Modules over Galois Rings
It is essential to introduce other important concepts before describing codes
over a ring. A set M with binary operations + : M×M →M and · : R×M →M
is said to be an R-module provided M(+) is an abelian group and for each
r1, r2 ∈ R and m1, m2 ∈M , the ensuing properties are valid

1. r1 · (m1 + m2) = r1 ·m1 + r2 ·m2,

2. r1 · (r2 ·m1) = (r1 · r2) ·m1,

3. (r1 + r2) ·m1 = r1 ·m1 + r2 ·m1,

4. 1 ·m1 = m1.

Consider a non-empty subset N of M . Then, N is a submodule of M , denoted
by N ≤ M , on the condition that N is closed under the addition and the scalar
multiplication inherited from M . Let X = {x1, . . . , xk} be a subset of M for some
k ∈ N and ⟨X⟩ =

k∑︁
i=1

xiR = {r1 · x1 + · · · + rk · xk | r1, . . . , rk ∈ R}, where
the operations + and · are inherited from M . It is evident that X ⊆ ⟨X⟩
and ⟨X⟩ ≤M . Furthermore, ⟨X⟩ is the smallest submodule of M which contains
X with respect to inclusion.

Definition 22. Elements x1, . . . , xk are called generators of an R-module M

given that k is an positive integer and M =
k∑︁

i=1
xiR, which will be represented

by M = ⟨x1, . . . , xk⟩. A tuple X = (x1, . . . , xk) is known as a basis of the module
M . If X has minimal cardinality among the bases of M then X is minimal and k
is defined to be the rank of M , written as rank(M). The minimal basis X is free
if the following implication is valid

∀x ∈ X ∃zx ∈ R :
∑︂
x∈X

zx · x = o =⇒ ∀x ∈ X : zx = 0. (2.1)

Finally, an R-module, for which exists an free basis, is free.

Example 7. A module Rk is free for every k ∈ N. On contrary, (piR)k is not free
for every i, k ∈ N.

Definition 23. The Kronecker delta is a function δij : N × N → {0, 1} ⊆ R
defined as δii = 1 and δij = 0 for each i, j ∈ N which differs. The standard basis
of an module Rk is (δ1, . . . , δk), where k ∈ N and δi = (δi1, . . . , δik) for every
i ∈ N non-greater than k.
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Let N be a submodule of M . Then, the submodule N defines an equivalence
∼N on M by the rule x ∼N y if and only if (x− y) ∈ N . The set of equivalence
classes of∼N with operations +, · specified for every r ∈ R and elements x, y ∈M
as (x+N)+(y+N) = (x+y)+N and r ·(x+N) = (r ·x)+N forms an R-module
called a factor (or quotient) module, represented by M⧸N .

Mappings between modules preserving operations play a substantial role.
More precisely, let M and N be modules over R and a map φ from M to N
satisfy φ(r · x + s · y) = r · φ(x) + s · φ(y) for all r, s ∈ R, x, y ∈ M . Then,
φ is called a module homomorphism, especially a monomorphism if injective,
an epimorphism if surjective, or an isomorphism if bijective. The kernel of φ
is ker(φ) = {x ∈M | φ(x) = o} and the image of φ is Im(φ) = {φ(x) | x ∈M}.
The fundamental properties of every module homomorphism are summarized
in the remark below, which proof is omitted as it basically copies the group
version.
Remark. Let M and N be two R-modules and φ : M −→ N a homomorhism
between them.

1. φ is fully determined by images of basis elements.

2. ker(φ) is a submodule of M and Im(φ) is a submodule of N .

3. φ is injective if and only if its kernel is trivial.

4. φ̃ : M⧸ker(φ) → N, x + ker(φ) ↦→ φ(x) is a well-defined monomorphism
and M⧸ker(φ) ≃ Im(φ).

Example 8. Any abelian group G(⊕) with inverse operation ⊖ and an identity
element e can be viewed as a module over Z with the scalar product⊙ : Z×G→ G
defined for all n ∈ N and g ∈ G as follow:

• n⊙ g = g ⊕ g ⊕ · · · ⊕ g with n operands g,

• 0⊙ g = e,

• (−n)⊙ g = ⊖(n⊙ g).

Being able to determine whether the given R-module M is free or not has
a significant impact, as displayed in upcoming sections. Let us present the first,
almost trivial characterisation of free R-modules.

Theorem 24. Let M be an R-module of rank k. Then, M is free if and only
if M ≃ Rk. Besides, if M is free then any minimal basis of M is free.

Proof. Choose some R-module M of rank k ∈ N. Remark that Rk is free
by Example 7, so any module isomorphic to Rk is free. Suppose that M is free.
Let B = (m1, . . . , mk) be a minimal basis of M and S be the standard basis
of Rk. Define a map φ : Rk ↦→M by the formula φ(δi) = mi, where i ∈ N, i ≤ k.
It is apparent that φ is a module homomorphism, which is surjective as it maps
the free basis of Rk to the given minimal basis of M of rank k. Due to M being
free, |M | = (|R|)k = |Rk| and φ is a module isomorphism.
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Let scalars z1, . . . , zk ∈ R satisfy
k∑︁

i=1
zimi = o. By applying the isomorphism,

φ

(︄
k∑︁

i=1
ziδi

)︄
=

k∑︁
i=1

ziφ(δi) =
k∑︁

i=1
zimi = o and

k∑︁
i=1

ziδi ∈ ker(φ). Consequently, all

the scalars z1, . . . , zk are zero as ker(φ) = {o}, and B is a free basis.

The fundamental objective of this section is to comprehend the structure
of an R-module and to be able to decompose it into powers of p, as shown
in Drápal’s work [10, Section I.5].

Definition 25. Let M be an R-module and u ∈M . The height of u is minimal
non-negative integer i meeting the condition pi · u = o. The socle of M , denoted
by Soc(M), is the set of all elements of M which have height at most 1.

Choose m ∈ N. It is not difficult to notice the socle of a free module Rm

is (pn−1 ·R)m. Furthermore, it can be extended to a statement that (pn−i ·R)m

consists of elements with height at most i, for i = 0, . . . , n. The following claim
introduces the basic properties of an element’s height and how to compute it.

Claim 26. Let M be an R-module, u = (u1, . . . , um) ∈M and k ∈ {0, 1, . . . , n}.
Then,

1. u has height n − k if and only if v with at least one coordinate invertible
exists and satisfies u = pk · v,

2. u has height 0 if and only if u = o, and u has height n if and only if at least
one coordinate of u is a unit,

3. ∀r ∈ R∗ : r · u has the same height as u,

4. if u has height h ∈ N then uR ≃ R⧸phR,

5. elements of M with height at most i form a submodule Mi of M for each
i ∈ Z, 0 ≤ i ≤ n. If M is a submodule of Rm, then Mi = M ∩ (pn−iR)m,
and Mi = ⟨pn−ib1, . . . , pn−1bl⟩ whenever M has a free basis (b1, . . . , bl).

Proof. Consider the p-adic representation, presented in Theorem 15, of each
coordinate ui =

n−1∑︁
j=0

zi,j ·pj, i = 1, . . . , m, with the coefficients from the Teichmüller

set Tr. Set h = n−min(h1, . . . , hm), where hi is for i = 1, . . . , m defined as

hi =
⎧⎨⎩min{0 ≤ j < n | zi,j ̸= 0}, if ui ̸= 0,

n, otherwise.

For each i = 1, . . . , m, observe that ph · ui = ph ·
n−1∑︁
j=hi

zi,j · pj =
n−1∑︁
j=hi

zi,j · ph+j = 0

as j ≥ hi ≥ n − h. Furthermore, we have hk = n − h for some k = 1, . . . , m,
i.e. ph−1 · uk =

n−1∑︁
j=hk

zk,j · ph+j−1 = zk,hk
· pn−1 ̸= 0. Hence, the height of u is h.

1. Assume that u has height n− k. Then, n− k = h = n−min(h1, . . . , hm),
which can happen if and only if i ∈ N exists for all j ∈ N which fulfills i, j ≤ m
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and hi = k ≤ hj. It can be equivalently rewritten as uj =
n−1∑︁
l=k

zjl · pl for all
j = 1, . . . , m, where at least one zik ̸= 0, i = 1, . . . , m. Let v have the coordinates
vi =

n−1∑︁
l=k

zil · pl−k, i = 1, . . . , m. In conclusion, u has height h = n− k if and only

if u = pk · v and vi ∈ R \ pR = R∗ for some i ∈ N, i ≤ n.
2. It is a direct consequence of 1.
3. For any r ∈ R∗ we can write u = r−1 · (r · u) from what is clear that both

elements need to have the same height.
4. Assume that u has height h ∈ N. Define a map φ : R → uR, x ↦→ x · u.

Then, for any x, y ∈ R, we have φ(x + y) = (x + y)u = xu + yu = φ(x) + φ(y)
and φ(x · y) = (x · y)u = x(y · u) = x · φ(y). Furthermore, φ(x) = x · u = o
for x ∈ R if and only if ph divides x, which is equivalent to x ∈ phR. Thus,
φ is a module homomorphism with ker(φ) = phR and the assertion is implied
by the first isomorphism theorem as R⧸phR ≃ uR.

5. Choose i ∈ N, i ≤ n, and define Mi as the set composed of all elements
of M with height at most i. Pick any v, w ∈Mi and r ∈ R. Then r ·v ∈Mi can
be deduced from that pi · (r · vj) = r · (pi · vj) = r · 0 = 0, j ∈ N, j ≤ m, which
means pi · (r · v) = o. Analogically, pi · (vj + wj) = pi · vj + pi · wj = 0 for every
j ∈ N, j ≤ m, so pi · (v + w) = o and v + w ∈Mi.

Let M be a submodule of Rm. In accordance with 1., a ∈ Mi if and only
if pn−i divides all a1, . . . , am, which occurs if and only if a ∈M ∩ (pn−iR)m.

Finally, let M has a free basis (b1, . . . , bl). Denote N = ⟨pn−ib1, . . . , pn−ibl⟩,
so clearly N ⊆ Mi. Let a ∈ Mi \ N . Then, a ̸= o and a =

l∑︁
j=1

zjbj for some

z1, . . . , zl ∈ R such that pn−i does not divide zj for some j = 1, . . . , l. Thus,
pizj ̸= 0 and o = pia =

l∑︁
t=1

piztbt. In consequence, (b1, . . . , bl) is not the free
basis, a contradiction. Hence, Mi ⊆ N and Mi = N .

Derived from the initial point of Claim 26, the height of an element u over R
can be computed as the maximal e = 0, 1, . . . , n satisfying pe | u, which means
that p divides all coordinates of u. In other words, all the coordinates of u lie
in peR. Obviously, v such that u = pe · v cannot be defined as u

pe , because there
is no inverse of p. However, the symbol ·

p
can be viewed as the map from pR to R

determined by
n−1∑︁
i=a

ζip
i ↦→

n−1∑︁
i=a

ζip
i−1. Evidently, this map can be coordinate-wise

expanded to the map ·
p

: (pR)m → Rm for any m ∈ N.

Lemma 27. Algorithm 4 is correct and runs in time O(m · n2 · r · log2(p)).

Proof. The correctness follows from Claim 26. Note that the cycle iterates
at most n times, in each iteration it computes m divisions ui

p
, which can be done

in time O(n · r · log2(p)). Thus, the algorithm runs in O(m · n2 · r · log2(p)).

Based on the second and the fifth point of Claim 26, {o} and Soc(M)
are the only submodule of an R-module M with elements of height at most
0 and 1, respectively. However, the socle of M can be viewed as a vector
space over the finite field Tr ≃ R⧸pR ≃ Fpr , where the first isomorphism
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Algorithm 4 Computing the element’s height
Require: u
Ensure: u = pn−h · v, where h is height of u and v has the height n

if u = o then
return 0, δ1

end if
h← n
v← u
while h > 0 do

if p | u then
h← h− 1
v← u

p

else
break

end if
end while
return h, v

is shown in the paragraph under Definition 16 while introducing operations
on Tr, and the second one is presented in (1.4). In conclusion, Soc(M) is free
over the field Tr and a criterion for the module M to be free can be derived.

Lemma 28. Let M be an R-module generated by b1, . . . , bl. Then, (b1, . . . , bl)
is a free basis of M over R if and only if the socle of M has a free basis
(pn−1b1, . . . , pn−1bl) over Tr.

Proof. Set I = {1, . . . , l}, B = (b1, . . . , bl) and C = (pn−1b1, . . . , pn−1bl).
“⇐= ”: Every b1, . . . , bl appears to have height n. Assume that

l∑︁
i=1

aibi = o
for some a1, . . . , al ∈ R, where at least one of them is non-zero. Take the minimal
exponent e ∈ N ∪ {0} meeting the condition peaibi ∈ Soc(M) for every i ∈ I,
which is, according to Claim 26, equivalent to that pn−1 divides all pea1, . . . , peal.
Since C is a free basis of Soc(M), peaibi = o for all i ∈ I. Find f ∈ N ∪ {0},
f < e, such that pn−1 divides each pfa1, . . . , pfal, and pfaibi ∈ Soc(M) \ {o}
for some i ∈ I. It can be done as there exist i ∈ I satisfying aibi ̸= o, but this
contradicts the minimality of e.

“ =⇒ ”: Suppose that M has a free basis B over R. Undoubtedly, the socle
of M is generated by C over Tr as Claim 26 implies pn−1bi ∈ Soc(M) for every
i ∈ I. Let a1, . . . , al ∈ Tr satisfy

l∑︁
i=1

aip
n−1bi = o. It is a direct consequence that

aip
n−1 = 0 for each i ∈ I since B is the free basis of M . Equivalently, p divides

a1, . . . , al ∈ Tr, and therefore, ai = 0 for every i ∈ I.

Keep in mind in the third assertion of Claim 26 that the R-module generated
by some element u of height h over R is isomorphic to the factor module R⧸phR.
A further step is to show that any R-module can be decomposed into cyclic
submodules of certain heights.
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Lemma 29. Every finitely generated R-module can be expressed as a direct
sum of cyclic modules

t⨁︁
i=0

uiR such that ujR ≃ R⧸pmj R for every j = 1, . . . , l

and some positive integer mj.

Proof. Choose an R-module M and consider a submodule Mi of M composed
by elements of height at most i, where i ∈ Z, 0 ≤ i ≤ n. Find the minimal
k ∈ Z, 0 ≤ k ≤ n, such that Mk = M . The lemma is proven by mathematical
induction on k. Firstly, assume k = 0. Then M = {o}, and there is nothing
to prove. Secondly, if k = 1 then M = Soc(M) and it is enough to take u1, . . . , ut

a basis over the finite field Tr.
Next, assume k > 1 and the hypothesis is valid for k − 1. Consider a factor

module M⧸M1
, which is finitely generated, and its every element is of height

less than k. According to the inductive hypothesis, there are v1, . . . , vs ∈ M

satisfying M⧸M1
=

s⨁︁
j=1

(vj +M1)R. For every j = 1, . . . , s, denote by hj the height

of vj + M1 in M/M1, i.e. 0 < hj < k. So, phj (vj + M1) = o + M1, which
implies phj vj ∈ M1 \ {o} because hj is the minimal such integer. Furthermore,
phj+1vj = o in M , and vjR ≃ R⧸phj+1R as stated by Claim 26.

Now, denote by N a submodule of M generated by v1, . . . , vs. If it is shown
r1v1 = · · · = rsvs = o whenever

s∑︁
j=1

rjvj = o for some r1, . . . , rs ∈ R, then

N =
s⨁︁

j=1
vjR. Let r1, . . . , rs ∈ R satisfy

s∑︁
j=1

rjvj = o. For every j = 1, . . . , s,

compute the exponent ej ∈ N ∪ {0} and the unit qj ∈ R∗ such that rj = pej · qj.
Thus,

s∑︁
j=1

rj(vj + M1) = o + M1 in M⧸M1
, and based on the already proven part,

r1(v1 + M1) = · · · = rs(vs + M1) = o + M1. Choose i ∈ N, i ≤ s. Note that
qi(vi + M1) has the same height as vi + M1 according to Claim 26, and phi−1vi

is not in M1 by the properties of hi. As a result, ei ≥ hi ≥ 1. Additionally, the sum
o =

s∑︁
j=1

rjvj =
s∑︁

j=1
pej qjvj = p ·

s∑︁
j=1

pej−1qjvj implies that
s∑︁

j=1
pej−1qjvj ∈ M1

and
s∑︁

j=1
pej−1qj(vj + M1) = o + M1 in M⧸M1

. Repeating the exact argument,

pe1−1q1(v1 + M1) = · · · = pes−1qs(vs + M1) = o + M1. Specially, ei − 1 ≥ hi.
It is now clear that all pe1q1v1, . . . , pesqsvs are o in M .

Define N1 = N ∩M1. It is possible to find the complement N⊥ of N1 in M1
because M1 = Soc(M) can be regarded as a vector space over Tr. N⊥ seems
to be a subspace of M1, and so w1, . . . , wt ∈ Rm, which satisfy N⊥ =

t⨁︁
i=1

wiR,
exist. Particularly,

N ∩N⊥
N⊥⊆M1= N ∩N⊥ ∩M1 = N⊥ ∩N1 = {o}

N + N⊥
N1⊆N= N + N1 + N⊥ = N + M1 = M

⎫⎪⎬⎪⎭ =⇒ M = N ⊕N⊥.

Finally, we have M =
(︄

s⨁︁
j=1

vjR
)︄
⊕
(︃

t⨁︁
i=1

wiR
)︃

.

Consider u1, . . . , ul specifying the cyclic decomposition of some module M
over R. It is demonstrated in the ensuing theorem that u1, . . . , ul correspond
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to elements of a free basis over R lifted to appropriate heights. In other words,
let v1, . . . , vl ∈ Soc(M) \ {o} be p multiples of u1, . . . , um in the specified order.
For each i = 1, . . . , l, run Algorithm 4 on vi to obtain wi of height n satisfying
vi = pn−1wi. In the described situation, (w1, . . . , wl) is a free basis and

Soc(M) =
l⨁︂

i=1
viR ≤M =

l⨁︂
i=1

uiR ≤
l⨁︂

i=1
wiR. (2.2)

Theorem 30. Let m ∈ N and M be an R-submodule of Rm. There exists a free
basis (v1, . . . , vm) of Rm, which satisfies M =

m⨁︁
i=1

peiviR for some exponents
e1, . . . , em ∈ {0, 1, . . . , n}.

Proof. Lemma 29 affirms that M =
l⨁︁

i=1
uiR for some u1, . . . , ul ∈ M . Denote

by I the set {1, . . . , l}. For every i ∈ I, execute Algorithm 4 on the input ui

to obtain the height hi ∈ {0, 1, . . . , n− 1} of ui and vi ∈ Rm of height n fulfilling
ui = pn−hi · vi. Set V = ⟨v1, . . . , vl⟩. Let a1, . . . , al ∈ R satisfy

l∑︁
i=1

aivi = o.
Assume, for a contradiction, there exists j ∈ I, for which is aj non-zero. Find
the minimal e ∈ N ∪ {0} meeting the condition peaivi ∈M for each i ∈ I. Since
M =

l⨁︁
i=1

pn−hiviR, then, for every i ∈ I,

peaivi = o ⇐⇒ pn | peaivi
p ∤vi⇐⇒ pn | peai ⇐⇒ peai = 0.

However, aj ̸= 0, thus f ∈ N ∪ {0} must exist satisfying f < e and pfaivi ∈ M
for every i ∈ I, a contradiction with the minimality of e. Hence, V has a free
basis (v1, . . . , vl). As a result of Claim 26 and Lemma 28, Soc(V ) has a free
basis C = (pn−1v1, . . . , pn−1vl).

Remind that the socles Soc(M) and Soc(Rm) may be viewed as vector spaces
over the finite field Tr. Moreover, Soc(M) = Soc(V ) and Soc(M) is a subspace
of Soc(Rm), because M is the submodule of Rm. Thus, it is possible to extend
C by ul+1, . . . , um ∈ Rm into a basis of the Soc(Rm) of dimension m. Thence,
the outputs of Algorithm 4 run gradually on ul+1, . . . , um are vl+1, . . . , vm, each
of the height n, such that ui = pn−1vi for every i = l + 1, . . . , m.

Define N as a submodule of Rm generated by v1, . . . , vm. Apparently, Soc(N)
has a basis (pn−1v1, . . . , pn−1vm), which means that N is free in accordance
with Lemma 28. Derived from Theorem 24, N ≃ Rm, which implies N = Rm

because N ⊆ Rm. Consequently, M =
l⨁︁

i=1
peiviR =

m⨁︁
i=1

peiviR, where ei = n− hi

for 1 ≤ i ≤ l and ei = n for l < i ≤ m.

The preceding lemma and theorem do not explain how to acquire some free
basis over R, which can be lifted by multiplying by p into the cyclic decomposition
of an R-module M . However, Algorithm 5 introduced in Section 2.3 solves
this issue.

2.2 Matrices over Galois Rings
Let Rk×l represent the module composed of all matrices over R of type k × l,
where k, l ∈ N. Pick a matrix A ∈ Rk×l and indices i, j ∈ N satisfying i ≤ k
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and j ≤ l. The ith row of A will be represented by Ar
i , the jth column of A by Ac

j

and the entry of A at position (i, j) by aij, alternatively A[i, j] if more clarity
is needed. An identity matrix of order k will be denoted by Ik and a zero matrix
of type k × l (or order k) by 0k×l (or 0k).

Definition 31. Let k, l ∈ N and A ∈ Rk×l. Select any i, j ∈ N such that i, j ≤ k
and i ̸= j. Elementary row operations are

• Ar
i ↔ Ar

j : switching the ith and jth row within A,

• Ar
i ← u ·Ar

i ; u ∈ R∗: multiplying the ith row by a unit,

• Ar
i ← Ar

i + t ·Ar
j ; t ∈ R: adding a multiple of jth row to the ith.

Elementary column operations can be defined symmetrically. A matrix E of order
k is elementary if E was obtained from Ik by only one elementary operation.

Gauss elimination works almost the same as in linear algebra over a field.
The only exception is that it is impossible to multiply rows or columns of a given
matrix by non-invertible elements, which was the main reason for the preceding
definition.

Definition 32. Let k, l ∈ N and A ∈ Rk×l. If there exists B ∈ Rl×k satisfying
B · A = Il then A is left invertible and B is A’s left inverse. Symmetrically
for C ∈ Rk×l fulfilling A · C = Ik, A is right invertible and C is its right inverse.
If k = l and there exists B ∈ Rk×k such that B ·A = Ik = A·B then A is invertible
and B is the inverse of A, denoted by A−1.

The product of matrices over Galois rings preserves the invertibility exactly
as in linear algebra over finite fields. Since it is applicable, the formalisation
of this statement is to be found below.

Lemma 33. Let k, l ∈ N and A ∈ Rk×l, B ∈ Rl×m be left (right) invertible.
Then A ·B is left (right) invertible.

Proof. Since A and B are left invertible, matrices X ∈ Rl×k and Y ∈ Rm×l,
which satisfy X ·A = Il and Y ·B = Im, exist. The product Y ·X is a left inverse
of A · B because Y ·X · (A · B) = Y · (X · A) · B = Y · B = Im. Thence, A · B
is left invertible. Since (A · X)⊤ = X⊤ · A⊤, the same holds for right invertible
matrices.

Now, it is substantial to display that invertible matrices over Galois rings exist.
We present the most fundamental invertible matrices, but they are beneficial
in the following sections on multiple occasions.
Example 9. Let k ∈ N. The following matrices of order k over R are invertible:

1. An elementary matrix: It is enough to take an elementary matrix
of the opposite elementary operation (Ar

i ↔ Ar
j , Ar

i ← u−1 ·Ar
i , Ar

i ← Ar
i−t·Ar

j).
2. A permutation matrix, i.e. there is only one entry equal 1 in each row

and each column, others are 0: Observe that (Pc
i)⊤ ·Pc

j = δij for any permutation
matrix P ∈ Rk×k and integers i, j such that 0 ≤ i, j ≤ k. Hence, P⊤ · P = Ik.
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3. A triangular matrix with units on the main diagonal: Let a matrix
U be a such upper triangular. Define entries dij = 0 for 1 ≤ j < i ≤ k, dii = u−1

ii

for 1 ≤ i ≤ n, and dij = −u−1
jj

j−1∑︁
h=i

dihuhj for 1 ≤ i < j ≤ k. Then, D = (dij)k
i,j=1

is the inverse of U since D ·U is an upper triangular matrix as the product of two
upper triangular matrices and for every i.j ∈ N, i ≤ j ≤ k, we have

k∑︂
h=1

dihuhj =
j∑︂

h=i

dihuhj =
j−1∑︂
h=i

dihuhj + dijujj =
j−1∑︂
h=i

dihuhj +
⎛⎝−u−1

jj

j−1∑︂
h=i

dihuhj

⎞⎠ · ujj,

which apparently equals δij.
Now, it is sufficient to state that any transposed lower triangular matrix

is an upper triangular matrix and, therefore, invertible.
It is evident that a triangular matrix over R with zero divisor z on the main

diagonal is not invertible as there is no r ∈ R for which r · z = 1. Another
example of an invertible matrix over R is a transition matrix between free bases
of a free R-module.

Lemma 34. Let M be a free R-module of rank m ∈ N, and B and C be two free
bases of M . Denote by B′ and C ′ the matrices of order m over R, where the rows
are the basis elements of B and C, respectively. Then, the unique invertible
matrix Q of order m over R, which satisfies Q ·B′ = C ′, exists.

Proof. Choose a free R-module M be of rank m ∈ N. Let B = (b1, . . . , bm)
and C = (c1, . . . , cm) be two free bases of M . Since M = ⟨B⟩, for each i ∈ N,

i ≤ M , there exist xi1, . . . , xim ∈ R satisfying ci =
m∑︁

j=1
xijbj. Symmetrically,

yi1, . . . , yim ∈ R exist such that bi =
m∑︁

j=1
yijcj as M = ⟨C⟩, where i ∈ N, i ≤ m.

Set Q = (xij)m
i,j=1 and P = (yij)m

i,j=1. Then, we have

Q ·B′ =
(︄

m∑︂
t=1

xit · btj

)︄m

i,j=1
= (cij)m

i,j=1 = C ′, (2.3)

P · C ′ =
(︄

m∑︂
t=1

yit · ctj

)︄m

i,j=1
= (bij)m

i,j=1 = B′. (2.4)

Observe that B′
(2.4)= P ·C ′ (2.3)= P ·Q ·B′, which implies P ·Q = Im and P = Q−1.

Suppose that matrices Q1, Q2 of order m over R are invertible and satisfy
Q1 · B′ = C ′ = Q2 · B′. It is apparent that B′ = Q−1

1 · C ′ = Q−1
1 · Q2 · B′.

Consequently, Q−1
1 ·Q2 = Im and Q1 = Q2.

The determinant of a matrix A over a Galois ring, denoted by det(A), may
be defined analogously to the case over a finite field. Terminology from linear
algebra concerning determinants, e.g. minors, cofactors and adjugate matrices,
may be straightforwardly generalised for Galois rings. Now, we can propose
a condition for a matrix to be invertible based on its determinant.

Theorem 35. Let k ∈ N and A ∈ Rk×k. Then A is invertible if and only
if the determinant of A is a unit, which can happen if and only if the determinant
of A is not divisible by p.

25



Proof. It can be proven in the same way as in linear algebra. Let A be a matrix
of order k over R. Define K = {1, . . . , k} and a matrix Mij of order (k − 1)
created from A by omitting the ith row and jth column, where i, j ∈ K. Recall
the adjugate matrix of A defined as adj(A) = ((−1)i+j det(Mji))k

i,j=1. Then,
adj(A) · A = det(A) · Ik is a consequence of the Laplace expansion. Clearly,
if det(A) ∈ R∗ then A−1 = det(A)−1adj(A). On the other hand, if A−1 exists
then 1 = det(Ik) = det(A−1A) = det(A−1) · det(A), and so det(A) ∈ R∗.

Let us suggest an alternative, algorithmic approach. Let a matrix A ∈ Rk×k

be given. Then A can be transformed into its row echelon form B by elementary
row operations. It is well-known that switching rows may change only the sign
of the determinant, multiplying a row by a unit u increase the determinant u-times
and adding a multiple of one row to another does not change the determinant.
The same holds for matrices over Galois rings, as these properties are based solely
on the definition of the determinant and application of permutations. Hence,
det(A) = det(B).

Derived from the third point in Example 9 and the ensuing observation,
the matrix B is invertible if and only if its main diagonal consists of units. This
is equivalent to saying that the product of main diagonal entries is a unit, which
is exactly det(B) =

k∏︁
i=1

bii. The last equivalence is based on Theorem 15.

Consider a matrix A ∈ Rk×l for some k, l ∈ N and define fA : Rl → Rk

by the formula fA(x) = A · x for x ∈ Rl. The map fA appears to be a module
homomorphism. Thus, the image and the kernel of the matrix A can represent
the homomorphism fA’s image and kernel, written as Im(A) = Im(fA) ≤ Rk

and ker(A) = ker(fA) ≤ Rl. In this situation, the rank of Im(A) is meant
by the rank of the matrix A, written as rank(A).

Claim 36. Let k, l ∈ N and A ∈ Rk×l. Then |Im(A)| · | ker(A)| = plnr.

Proof. Apply the first isomorphism theorem on an R-module homomorhism
fA : Rl −→ Rk, x ↦→ Ax and obtain Im(A) = Im(fA) ≃ Rl

⧸ker(fA) = Rl
⧸ker(A).

Hence, |Im(A)| · | ker(A)| = |R|l = plnr.

Let us finish this section about matrices by proposing another characterisation
of the left (right) invertible matrices, depending on whether the module generated
by A’s columns (rows) is free. These conditions are the direct generalisation
of equivalences that a matrix over a finite field is left or right invertible if and only
if it has the full column or row rank.

Theorem 37. Let k, l ∈ N and A ∈ Rk×l.

1. A is right invertible if and only if (Ar
1, . . . , Ar

k) is a free basis of Im(A⊤),

2. A is left invertible if and only if (Ac
1, . . . , Ac

k) is a free basis of Im(A),

Proof. 1. Let B ∈ Rl×k satisfy A · B = Ik. Then, for any i ∈ N, i ≤ k,
we have δi = Ar

i · B. Find z1, . . . , zk ∈ R fulfilling
k∑︁

i=1
zi · Ar

i = o. Therefore,
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o =
(︄

k∑︁
i=1

zi ·Ar
i

)︄
· B =

k∑︁
i=1

zi ·Ar
i · B =

k∑︁
i=1

zi · δi, but (δ1, . . . , δk) is a free basis

of Rk. Hence all z1, . . . , zk must be zero, so Ar
1, . . . , Ar

k is a free basis of Im(A⊤).
Suppose that B = (Ar

1, . . . , Ar
k) is a free basis of Im(A⊤), i.e. k ≤ l. Consider

a homomorhism fA : Rl → Rk defined as x ↦→ A ·x, which needs to be surjective
for the same reason as in linear algebra. Consequently, there exists a preimage
xj ∈ Rl such that fA(xj) = A · xj = δj, where j ∈ N and j ≤ k. Define a matrix
X = ( x1 | · · · | xk ) ∈ Rl×k and compute A ·X = ( Ax1 | · · · | Axk ) = Ik.

2. A consequence of 1. applied on A⊤ since (A ·B)⊤ = B⊤ · A⊤.

2.3 Linear Codes
The significant difference between defining linear codes over a field and a Galois
ring is the necessity of utilising modules instead of vector spaces. Remark that
the subsequent definition yields also for any commutative ring. In this section,
terminology and notation from the work of Dougherty and collaborators [11]
are adopted.
Definition 38. Any R-submodule C of Rm is said to be a linear code of length
m and rank l over R, referred to as an [m, l]R-code, assuming C is of rank l.
Elements of a linear code are called codewords.

Let C be an [m, l]R-code. The free rank of the code C, denoted by frank(C),
is defined as the rank of the largest free submodule of C with respect to inclusion.
The linear code C is called free provided rank(C) = frank(C). The Hamming
weight of c ∈ C, denoted by wH(c), is the number of its non-zero coordinates,
and the Hamming distance between c, d ∈ C is dH(c, d) = wH(c− d). Finally,
the number dH(C) = min{dH(c, d) | c, d ∈ C : c ̸= d} is known as minimum
Hamming distance of the linear code C.

Some examples illustrating linear codes over the Galois ring R are provided.
To determine if the given code is free, Theorem 24, which claims that any
R-module is free if and only if it is isomorphic to Rl for some l ∈ N, comes
handy.
Example 10. Let R = GR(32, 2) = Z32 [ξ] be a Galois ring with operations defined
modulo polynomial G3,2(x) = x2 + x + 2 ∈ Z32 [x]. Consider the following codes:

1. C = {(a0, b1, 00) | a, b ∈ Z32}, then the code C is not linear as it is not
R-submodule of R3 (e.g. 2 · (10, 31, 00) = (20, 62, 00) ̸∈ C).

2. C = {(ab, 00, 00) | a, b ∈ Z32}, thus the code C is free linear of the rank 1
as C = R × {0} × {0}.

3. C = {(ab, cd, ab + cd) | a, b, c, d ∈ Z32}, so a map (ab, cd, ab + cd) ↦→ (ab, cd)
appears to be an isomorphism between C and R2. Therefore, C is the free
linear code of the rank 2.

4. C = {(ab, cd, ef) | a, b, c, d ∈ Z32 , e, f ∈ {0, 3, 6}}. In this situation, the code
C is generated by codewords (1, 0, 0), (0, 1, 0) and (0, 0, 3ξ + 6), i.e. linear
of rank 3, but not free.
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Definition 39. Let C be a [m, l]-code over R and b1, . . . , bl ∈ Rm be generators

of C. A generator matrix of C is G =

⎛⎜⎝ b1
b2
...

bl

⎞⎟⎠ ∈ Rl×m and a parity-check matrix

of C is H ∈ R(m−l)×m provided H · c⊤ = o⊤ if and only if c ∈ C. The dual code
of C is a linear code C⊥ generated by H.

Let K be the residue field R⧸pR. Once again, recall the ring epimorhism
(or µ̃): R → K from Section 1.2 defined by a ↦→ a + pR. Consider an induced
map m : Rm → Km for m ∈ N as element-wise application of the epimorhism ,
i.e. am = (a1, . . . , am)m = (a1, . . . , am). Then, for any a, b ∈ Rm and any t ∈ R:

am + bm = (a1, . . . , am) +
(︂
b1, . . . , bm

)︂
=
(︂
a1 + b1, . . . , am + bm

)︂
= a + bm

,

t · am = t · am = (t · a1, . . . , t · am) = (t · a1, . . . , t · am) = t · am
.

Furthermore, m is clearly surjective since is, so a module epimorhism.

Claim 40. Let C =
l⨁︁

i=1
peiviR be a [m, l]R-code for e1, . . . , em ∈ {0, . . . , n − 1}

and a free basis V = (v1, . . . , vl). Consider a free linear code D over R generated
by V . Then, Soc(C) has a basis W = (pn−1v1, . . . , pn−1vl) and is isomorphic
to the linear code Dm over the residue field R.

Proof. Theorem 30 affirms that a free basis V satisfying hypothesis exists.
The socle of D has a basis W over Tr according to Lemma 28 as D has a free
basis V . Moreover, W ⊆ C and the code C is certainly a submodule of D. Hence,
W is also a basis of Soc(C).

Consider a map φ : D → Rm, d ↦→ pn−1d. Choose some codewords a, b ∈ D
and r ∈ R. Then, φ(a) + φ(b) = pn−1a + pn−1b = pn−1(a + b) = φ(a + b)
and φ(r ·a) = pn−1 ·r ·a = r ·φ(a), so φ is a module homomorphism. Furthermore,
ker(φ) = pD as pn−1d = o if and only if p divides d1, . . . , dm, and Im(φ) = Soc(C)
follows from φ(V ) = W . Hence, Soc(C) ≃ D⧸pD based on the first isomorphism
theorem.

On the other hand, let ω be a restriction of the module epimorphism m to D.
Then, ker(ω) = pD and Im(ω) = Dm. Again by using the first isomorphism
theorem, D⧸pD ≃ D

m. In conclusion, Soc(C) ≃φ
D⧸pD ≃ω D

m.

2.4 Permutation Equivalent Linear Codes
Equipped with the necessary module theory and code terminology, it is now
possible to describe linear codes over the Galois ring R and determine their
equivalence classes.

Definition 41. Let m ∈ N, S = {i ∈ N, i ≤ m} and C, C ′ be [m, l]-codes over R.
The codes C and C ′ are said to be permutation equivalent provided there exists
a permutation σ : S → S such that a codeword (c1, . . . , cm) ∈ C if and only
if (cσ(1), . . . , cσ(m)) ∈ C ′, written as C ′ = σ(C).
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The primary intent of this section is to find a “well-behaved” representative
of every equivalence class under the permutation equivalence. The subsequent
definition clarifies which codes are “well-behaved”.

Definition 42. Let m, l ∈ N and C be an [m, l]-code over R with a generator
matrix G ∈ Rl×m. Then, G is in the systematic form provided

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik0 G0,1 G0,2 . . . G0,n−1 G0,n

0 p · Ik1 p ·G1,2 . . . p ·G1,n−1 p ·G1,n

0 0 p2 · Ik2 . . . p2 ·G2,n−1 p2 ·G2,n
... ... ... . . . ... ...
0 0 0 . . . pn−2 ·Gn−2,n−1 pn−2 ·Gn−2,n

0 0 0 . . . pn−1 · Ikn−1 pn−1 ·Gn−1,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.5)

where k0, k1, . . . , kn ∈ N ∪ {0},
n∑︁

i=0
ki = m, and Gi,j ∈ Rki×kj for every i, j such

that 0 ≤ i < j < n. We shall write G ∼ (1)k0(p)k1(p2)k2 . . . (pn−1)kn−1(0)kn , where
terms (pi)ki for ki = 0 are omitted.

Consider a linear [m, l]-code C over R. Theorem 30 asserts that a free basis
B = (b1, . . . , bm) of Rm exists, which fulfills C =

m⨁︁
i=1

peibiR, where every ei ∈ Z
satisfies 0 ≤ ei ≤ n. Now, let us propose a relation between rows of a generator
matrix of C in the systematic form and the free basis B.

Lemma 43. Let m, l ∈ N, v1, . . . , vl ∈ Rm be of height n and e1, . . . , el ∈ N∪{0}
be less than n. If a matrix G = (pei · vi)l

i=1 ∈ Rl×m is in the systematic form
then (v, . . . , vl) is a free basis of some submodule of Rm.

Proof. Suppose that G is in the systematic form and let C be the code generated
by G. For any i, j ∈ N, j < i ≤ l, we have vii = 1 and vij = 0. If it is shown
that Soc(C) has a free basis (pn−1v1, . . . , pn−1vl) then, in line with Lemma 28,
v1, . . . , vl constitute a free basis.

Let z1, . . . , zl ∈ Tr satisfy
l∑︁

i=1
zip

n−1vi = o. Notice that vkk = 1 and vkj = 0
for any j, k ∈ N, j < k ≤ l. Express the sum over every coordinate for i = 1, . . . , l:

• i = 1 : 0 =
l∑︁

j=1
zjp

n−1vj1 = z1p
n−1 z1∈Tr=⇒ z1 = 0,

• i = 2 : 0 =
l∑︁

j=1
zjp

n−1vj2 = z1p
n−1v12 + z2p

n−1 = z2p
n−1 z2∈Tr=⇒ z2 = 0,

• i > 2 : Suppose that zj = 0 for each j < i. Then, 0 =
l∑︁

j=1
zjp

n−1vji = zip
n−1,

and it is possible to conclude that zi = 0.

Thus, there exists only a trivial zero combination of pn−1v1, . . . , pn−1vl and these
codewords form a free basis of Soc(C).

Now, we formulate an algorithm for finding a generator matrix G ∈ Rl×m

in the systematic form (2.5) of some permutation equivalent code to the given
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Algorithm 5 Finding systematic form of a generator matrix
Require: alinear code C over R given by a basis (u1, . . . , ul) ⊂ Rm

Ensure: a generator matrix G of σ(C) in the form (2.5), a permutation σ
i← 1
while i ≤ l do

(hi, vi)← Algorithm 4(ui)
ei ← n− hi

i← i + 1
end while
sort v1, . . . , vl by their corresponding exponents ei in non-decreasing order
G← (peivi)l

i=1 ∈ Rl×m, σ ← idSm

e← 0
while e < n do

me ←
e−1∑︁
i=0

ki + 1
i← me

ke ← |{me ≤ j ≤ l | ei = e}|
while i < me + ke do

find j ∈ {i, . . . , m} such that x = gij

pe ∈ R∗
Gc

i ↔ Gc
j, σ ← σ ◦ (i, j)

Gr
i ← x−1 ·Gr

i

j ← 1
while j ≤ l do

if j ̸= i then
Gr

j ← Gr
j − gji ·Gr

i

if j > i then
(hj, vj)← Algorithm 4(Gr

j)
ej ← n− hj

end if
if Gr

j = o then
G← (Gr

t )
l
t=1,t̸=j (omit the jth row Gr

j from the matrix G)
l← l − 1
j ← j − 1
if me ≤ j + 1 < me + ke then

ke ← ke − 1
end if

end if
end if
j ← j + 1

end while
i← i + 1
ke ← |{me ≤ j ≤ l | ei = e}|
sort Gr

i , . . . , Gr
l by their corresponding ej in non-decreasing order

end while
e← e + 1

end while
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[m, l]-code. In the algorithm, we use the notation from Definition 31: Gc
i

denotes the ith column of G, Gr
i is the ith row of G, gij is the entry of G at position

(i, j), and Gc
i ↔ Gc

j means swapping the ith and jth row of G.

Claim 44. Algorithm 5 is correct and on input u1, . . . , ul ∈ Rm has the time
complexity O (l2(m · s2 + log(l))), s = n · r · log(p).

Proof. Based on Theorem 30, there exists a free basis (b1, . . . , bm) of Rm

for every linear code C ⊆ Rm such that C =
m⨁︁

i=1
pfibiR, f1, . . . , fm ∈ {0, . . . , n}.

Then, Algorithm 5 is trying to find some modified codewords b∗1, . . . , b∗l , where
each b∗j is obtained by permutating the coordinates of some linear combination
of bi with ei < n, where i = 1, . . . , m and j = 1, . . . , l.

Let u1, . . . , ut ∈ Rm be given. For each i ∈ N, i ≤ t, perform Algorithm 4
on ui to get the height hi of ui and a codeword vi ∈ Rm of height n meeting
the condition ui = pei ·vi for ei = n−hi. Assume, WLOG, e1 ≤ e2 ≤ · · · ≤ et < n.
Denote by ke the number of exponents ei = e and by me the index of the first
ui with the exponent e for every integer e, 0 ≤ e < n. Now, define a matrix
G0 = (ui)t

i=1 ∈ Rt×m, and let C be a code generated by G0. Notice that the matrix
G0 corresponds to the initialised matrix G in Algorithm 5.

Choose e ∈ Z, 0 ≤ e < n. Note, for every integer i satisfying me ≤ i < me+ke,
the row Gr

i has the height n − e. Therefore, the codeword Gr
i

pe has at least
one invertible coordinate x ∈ R∗ based on Claim 26, and the “normalisation”
x−1 ·Gr

i is possible. The process of row elimination can only reduce the heights
of rows since C ∩ (peR)m is, derived from Claim 26, a submodule of the code C
containing all c ∈ C with height at most n − e. Thus, every operation applied
to the matrix G ∈ Rl×m is well-defined. Moreover, for obtained G = (peivi)l

i=1,
we have ej ≤ ei < n (sorting and omitting), vij = 0 = vik (reduction) and vii = 1
(normalisation), where i, j, k ∈ N satisfying j < i ≤ k < me + ke. As a result,
the matrix G is in the systematic form.

Observe that the only transformations applied to G0 in order to obtain G
were elementary row operations, permutation σ of the indices of the columns
and omitting of zero rows. Subsequently, there exist a matrix E ∈ Rt×t, which
is the product of elementary matrices corresponding to the applied elementary
row operations, a permutation matrix P ∈ Rm×m representing the permutation
σ acting on the indices of the columns of G0 and a zero matrix O ∈ R(t−l)×m

satisfying ( G
O ) = E·G0·P . Additionally, E and P are invertible matrices according

to Example 9 and Lemma 33 maintaining that the product of invertible matrices
is invertible. Let C ′ be the code generated by G and c ∈ C ′. Then, x ∈ Rl exists
such as c = x · G, which is equivalent to that there exists x ∈ Rt, for which
c = x · ( G

O ). This can happen if and only if y ∈ Rt exists satisfying c = y ·G0 ·P .
Equivalently, c ·P−1 ∈ C, and it confirms that the codes C and C ′ are permutation
equivalent.

Remark that every element of R can be stored using s = n · r · log(p) bits
and every codeword of Rm using m ·s bits. Lemma 27 proposes that computing
v1, . . . , vl can be done in time O

(︂
l ·m · s2

r

)︂
. Clearly, sorting them is possible

in time O(l · log(l)). The cycles over e and i give l iterations of:

1. Finding Gi,j

pe ∈ R∗ using trial division: O
(︂
m · s2

r

)︂
, s

r
bits needed for pe ≤ pn,
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2. Gc
i ↔ Gc

j : O(m · s),

3. x−1 ·Gr
i : O(m · s2),

4. While j ≤ l give l iterations of:

(a) Gr
j −Gj,i ·Gr

i : O(m · s2),

(b) Algorithm 4: O
(︂
m · s2

r

)︂
,

=⇒ O(l ·m · s2)

5. sorting Gr
i , . . . , Gr

l : O(l · log(l)).

Altogether, the algorithm’s time complexity is O (l2(m · s2 + log(l))).

Corollary 45. Every linear code C of the length m ∈ N over R is permutation
equivalent to some linear code generated by G ∼ (1)k0(p)k1 . . . (pn−1)kn−1(0)kn ,
where k0, k1, . . . , kn ∈ N ∪ {0},

n∑︁
i=0

ki = m.

Demonstrating Algorithm 5 to find the systematic form of some code C
can be only beneficial for broadening insight into the algorithm’s functioning
and codes in general.
Example 11. Let R be the Galois ring GR(32, 2) = Z32 [ξ] with operations defined
modulo polynomial G3,2(x) = x2 + x + 2 ∈ Z32 [x]. Consider codewords

v1 =
(︄ 30

05
33
00
10

)︄⊤
, v2 =

(︄ 10
11
12
20
00

)︄⊤
, v3 =

(︄ 03
06
00
00
11

)︄⊤
, v4 =

(︄ 20
21
22
00
01

)︄⊤
∈ R5.

Let C be a linear code generated by v1, 3 · v2, v3 and 3 · v4.
Emulate Algorithm 5:

1. swap v2 and v3 to achieve e1 = 0 = e2 ≤ e3 = 1 = e4 in C =
4⨁︁

i=1
pei · vi ·R,

2. G←
(︄ 3e1 v1

3e2 v2
3e3 v3
3e4 v4

)︄
=
(︃ 30 05 33 00 10

03 06 00 00 11
30 33 36 60 00
60 63 66 00 03

)︃
3. e← 0 :

k0 ← 2, m0 ← 1, M0 ← 2

i← 1: G
Gc

1↔Gc
2←
(︃ 05 30 33 00 10

06 03 00 00 11
33 30 36 60 00
63 60 66 00 03

)︃
Gr

1←02·Gr
1←
(︃ 01 60 66 00 20

06 03 00 00 11
33 30 36 60 00
63 60 66 00 03

)︃
←
(︃ 01 60 66 00 20

00 03 00 00 11
00 30 36 60 00
00 60 66 00 03

)︃
i← 2: G

Gc
2↔Gc

5←
(︃ 01 20 66 00 60

00 11 00 00 03
00 00 36 60 30
00 03 66 00 60

)︃
Gr

2←40·Gr
2←
(︃ 01 20 66 00 60

00 01 00 00 30
00 00 36 60 30
00 03 66 00 60

)︃
←
(︃ 01 00 66 00 60

00 01 00 00 30
00 00 36 60 30
00 00 66 00 60

)︃
4. e← 1 :

k1 ← 2, m1 ← 3, M1 ← 4

i← 3: G
Gc

3↔Gc
3←
(︃ 01 00 66 00 60

00 01 00 00 30
00 00 36 60 30
00 00 66 00 60

)︃
Gr

3←27·Gr
2←
(︃ 01 00 66 00 60

00 01 00 00 30
00 00 03 33 66
00 00 66 00 60

)︃
←
(︃ 01 00 00 00 60

00 01 00 00 30
00 00 03 33 66
00 00 00 00 60

)︃
i← 4: G

Gc
4↔Gc

5←
(︃ 01 00 00 60 00

00 01 00 30 00
00 00 03 66 33
00 00 00 60 00

)︃
Gr

4←22·Gr
4←
(︃ 01 00 00 60 00

00 01 00 30 00
00 00 03 66 33
00 00 00 03 00

)︃
←
(︃ 01 00 00 00 00

00 01 00 00 00
00 00 03 00 33
00 00 00 03 00

)︃
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Denote the matrices G0,1 = 02, G0,2 = ( 00
00 ) and G1,2 = ( 11

00 ). Thus, the output
of the algorithm is indeed the matrix G =

(︂
I2 G0,1 G0,2
02 3·I2 3·G1,2

)︂
in the systematic form,

which generates some code permutation equivalent to C.
Consider some matrix A over R. Let G be the output of Algorithm 5 applied

to A. Execute Algorithm 5 a second time, now on the G⊤, and denote by D
the result. Then, D is a diagonal matrix with elements pe on diagonal, where
e ∈ {0, 1, . . . , n − 1}. Extend D into D′ of the same type as A by zero rows
and columns. Clearly, A is similar to D′.
Claim 46 (Smith normal form). Let X ∈ Rl×m for some m, l ∈ N. Then,
there exists invertible matrices Q ∈ Rl×l, P ∈ Rm×m and the diagonal matrix
Y = diag(1, . . . , 1, p, . . . , pn−1, 0, . . . , 0) ∈ Rl×m satisfying Y = Q · X · P , which
is called the Smith normal form of X.

Proof. Let X be a matrix of type l ×m over R. Consider a code C generated
by X. Corollary 45 states that a matrix G ∈ Rt×m in the systematic form exists,
which generates code D permutation equivalent to C. Lemma 43 suggests that
t ≤ l. It is possible to compute an invertible matrix Q ∈ Rl×l, a permutation
matrix P1 ∈ Rm×m and a zero matrix O ∈ R(l−t)×m subject to ( G

O ) = Q ·X · P1
(executing Algorithm 5 on X). Thence, it suffices to perform column reduction
without interchanging the columns as ith pivot has value pei and Gr

i = peivi, where
ei = 0, 1, . . . , n and vi is of height n for each i ∈ N, i ≤ l. Denote by E ∈ Rm×m

the matrix representing the applied elementary column operations. The matrix
E appears to be invertible as the product of elementary matrices by combination
of Example 9 and Lemma 33. In consequence, Y = ( G·E

O ) = Q·X ·P1·E = Q·X ·P
for P = P1 · E.

Grounded on the described approach, we outline the algorithm for computing
the Smith normal form Y of a given matrix X. Since invertible matrices indicating
the similarity between X and Y are neglected in Section 3.1, the algorithm
disregards them.
Algorithm 6 Determining the Smith normal form
Require: matrix X of type k × l over R
Ensure: matrix Y of type k × l over R, which is Smith normal form of X

(Y, σ)← Lemma 43(Xr
1, . . . , Xr

k), where Y is of type s× l
i← 1
while i ≤ s do

j ← i + 1
while j ≤ l do

Yc
j ← Yc

j −
yij

yii
·Yc

i ; j ← j + 1
end while
i← i + 1

end while
while i ≤ k do

Yr
i ← o (add zero rows at the bottom of Y until it is of type k × l)

i← i + 1
end while
return Y
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3. Maximum Cardinal Rank
Distance Codes
This chapter presents the definition of a different metric from the usually used
Hamming distance. The metric is essential for generalising maximum rank metric
codes over finite fields. Readers who are not familiar with rank metric codes,
especially Gabidulin codes, can find more in [12], [13] or [14].

Let n, r ∈ N, p be a prime, R = GR(pn, r) and S = GR(pn, 1) = Zpn be Galois
rings, which remain fixed henceforth.

3.1 Cardinal Rank Metric of Matrices
Consider a matrix A of type k × l over the ring S, then an S-module generated
by the columns Ac

1, . . . , Ac
k of A is exactly Im(A) =

k∑︁
i=1

Ac
i · S. The notation

utilised in this thesis is slightly different from the one used in [6, Chapter 3],
where the cardinal rank metric was introduced.

Definition 47. Let k, l ∈ N and A ∈ Sk×l. The number logpn(|Im(A)|) is defined
to be the cardinal rank of the matrix A and is denoted by rk (A).

Let us look at the basic properties of the cardinal rank metric of any matrix
over the ring S.

Theorem 48. Let k, l ∈ N and A, B ∈ Sk×l.

1. ∀C ∈ Sk×l : rk (C) ≥ 0, specially rk (C) = 0 ⇐⇒ C = 0k×l,

2. If Im(A) ⊆ Im(B) then rk (A) ≤ rk (B),

3. If ∃Q ∈ Sk×k ∃P ∈ Sl×l, both of them invertible, such that A = Q−1BP ,
then rk (A) = rk (B),

4. rk (A) = rk
(︂
A⊤

)︂
,

5. rk (A + B) ≤ rk (A) + rk (B),

6. If there exist matrices C ∈ Sk1×l1 and D ∈ Sk2×l2 , for which k1 + k2 = k,
l1 + l2 = l and A = ( C 0

0 D ), then rk (A) = rk (C) + rk (D),

7. rk (A) ≤ rank(A), where the equality is achieved if and only if an S-module
Im(A) is free.

Proof. 1. and 2. follow directly from the definition. To address 3., it suffices
to remark that a map ω : Im(B)→ Im(A), x ↦→ Q−1xP appears to be a module
homomorphism based on the distributive property of matrix multiplication, which
is bijective as ω−1(y) = QyP−1. Hence, Im(A) ≃ Im(B) and |Im(A)| = |Im(B)|.

4. Let the matrix B = Q−1AP be the Smith normal form of A for some
invertible matrices Q ∈ Sk×k and Sl×l as in Claim 46. Since the diagonal
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elements of B are the only non-zero entries, it is evident that |Im(B)| = |Im(B⊤)|.
Thus, rk (A) = rk (QBP−1) 3.= rk (B) = rk

(︂
B⊤

)︂ 3.= rk
(︂
(QBP−1)⊤

)︂
= rk

(︂
A⊤

)︂
.

5. Firstly, given that Im(A + B) is generated by the columns of A + B, which
certainly lie in Im(A) + Im(B), Im(A + B) is an S-submodule of Im(A) + Im(B).
Secondly, let ρ : Im(A)× Im(B)→ Im(A)+ Im(B) be defined as ρ(a, b) = a + b,
where (a, b) ∈ Im(A) × Im(B). Then, ρ seems to be a module epimorphism.
It directly results in

|Im(A + B)| ≤ |Im(A) + Im(B)| ≤ |Im(A)× Im(B)| = |Im(A)| · |Im(B)|.

By taking the logarithm, rk (A + B) ≤ rk (A) + rk (B).
6. Since the matrix A is block diagonal with blocks C and D on the main

diagonal, it can be expressed as Im(A) ≃ Im(C) × Im(D). For this reason,
logpn(|Im(A)|) = logpn(|Im(C)| · |Im(D)|) = logpn(|Im(C)|) + logpn(|Im(D)|).

7. Let (g1, . . . , gt) be a basis of Im(A) over S and b1, . . . , bt ∈ St form a free
basis of St. Then, a map ρ : St → Im(A) defined as

t∑︁
i=1

zibi ↦→
t∑︁

i=1
zigi appears

to be a module homomorphism. Additionally, ρ is surjective since it maps the free
basis of St to the basis of Im(A). As a result, |Im(A)| = |ρ(St)| ≤ |S|t = pnt.
If Im(A) is free then certainly |Im(A)| = pnt. On the other hand, ρ is bijective
provided |Im(A)| = pnt. In consequence, ρ in an module isomorphism, and Im(A)
is free according to Theorem 24.

Let Y ∈ Sk×l be the Smith normal form of a matrix X, which exists thanks
to Corollary 46. An explicit formula for computing the cardinal rank of X
is founded on the prior theorem.

Corollary 49. Let k, l ∈ N and X ∈ Sk×l. Let Y ∈ Rr×m be the Smith normal
form of X and define ti as the number of pivots of Y equal to pi, i = 0, . . . , n.
Then, rk(X) =

n−1∑︁
i=0

(n−i)·ti

n
.

Proof. Execute Algorithm 6 on X to obtain the Smith normal form Y ∈ Sk×l

of X with diagonal blocks It0 , pIt1 , . . . , pn−1Itn−1 and a zero block O. Doubtless,
rk(O) = 0. Choose i ∈ Z, i < n. Notice that Im (piIti

) = (piS)ti as pn−i · s = o
for every s ∈ piS, and only z ∈ S, z < pn−i, defines a unique z · s. Thus,
logpn (|Im (piIti

)|) = logpn

(︂
p(n−i)·ti

)︂
= (n−i)·ti

n
. Concluded from Theorem 48,

rk(X) 3.= rk(Y ) 6.=
n−1∑︁
i=0

rk(piIti
) =

n−1∑︁
i=0

(n−i)·ti

n
.

Algorithm 7 Computing the cardinal rank
Require: matrix X of type k × l over S
Ensure: rk(X)

Y ← Algorithm 6(X)
c← 0; i← 1
while i ≤ k do

(h, v)← Algorithm 4(Yr
i ), where v of height n satisfy Yr

i = pn−h · v
c← c + h

n
; i← i + 1

end while
return c
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Let A and B be two matrices over S of the same type and C be their difference.
The cardinal rank of C may be used as a metric between A and B, but the metric
axioms must be verified first.

Corollary 50. Let k, l ∈ N. A map d, which associates a pair of matrices A, B
of the same type k× l over S with a value rk (A−B) ∈ Q, is a metric over Sk×l.

Proof. Choose A, B, C ∈ Sk×l and regard Theorem 48.

1. Non-negativity: According to the theorem’s first assertion, rk (A−B) ≥ 0
and rk (A−B) = 0 if and only if A = B.

2. Symmetry: rk (A−B) = rk ((−Ik)(B − A)) 48.3= rk (B − A).

3. The triangle inequality:

rk (A− C) = rk ((A−B) + (B − C))
48.5
≤ rk (A−B) + rk (B − C)

Hence, (Sk×l, d) is a metric space.

Before providing the codeword version of the cardinal rank used in the code
theory, the cardinal rank of matrices is illustrated on three simple but non-trivial
examples without figuring out the Smith normal form.
Example 12. Let S = Z32 . Compute rk (A) , rk (B) and d(A, B) for the matrices
A =

(︂ 0 8 2 2
0 0 6 3
3 0 0 6

)︂
, B =

(︂ 1 0 6 0
0 4 3 3
8 0 0 6

)︂
∈ S3×4.

Rewind the notation: Gc
i is the ith column of a matrix G, Gr

i is the ith row
of G, gij is the entry of G at the position (i, j).

1. A =
(︂ 0 8 2 2

0 0 6 3
3 0 0 6

)︂ 8Ac
2∼
(︂ 0 1 2 2

0 0 6 3
3 0 0 6

)︂ Ac
3+7Ac

2∼
Ac

4+7Ac
2

(︂ 0 1 0 0
0 0 6 3
3 0 0 6

)︂ Ac
4+Ac

3∼
Ac

4+Ac
1

(︂ 0 1 0 0
0 0 6 0
3 0 0 0

)︂

We have an S-module Im(A) =
{︃(︃

x1
6x2
3x3

)︃ ⃓⃓⃓⃓
x1, x2, x3 ∈ S

}︃
, where the second

and the third coordinate seems to lie in the maximal ideal 3S = {0, 3, 6}.
Therefore, |Im(A)| = 9 · 3 · 3 = 81 and the cardinal rank of the matrix A
is rk (A) = log9(|Im(A)|) = log9(81) = 2.

2. B =
(︂ 1 0 6 0

0 4 3 3
8 0 0 6

)︂ 7Bc
2∼
(︂ 1 0 6 0

0 1 3 3
8 0 0 6

)︂ Bc
3+3Bc

1∼
(︂ 1 0 0 0

0 1 3 3
8 0 6 6

)︂ Bc
4+1Bc

3∼
Bc

3+6Bc
2

(︂ 1 0 0 0
0 1 0 0
8 0 6 0

)︂

Now, it is clear that Im(B⊤) =
{︄(︄

x1−x3
x2
6x3
0

)︄ ⃓⃓⃓⃓
x1, x2, x3 ∈ S

}︄
has cardinality

|Im(B⊤)| = 9 · 9 · 3 = 243 as the third coordinate can be only from 3S.
Consequently, rk (B) 48.4= rk

(︂
B⊤

)︂
= log9(|Im(B⊤)|) = log9(81 · 3) = 5

2 .

3. C = A−B =
(︂ 8 8 5 2

0 5 3 0
4 0 0 0

)︂ Cc
1↔Cc

4∼
7Cc

1,5Cc
4

(︂ 1 8 5 2
0 5 3 0
0 0 0 1

)︂ Cc
2+Cc

1∼
Cc

3+3Cc
1

(︂ 1 0 0 2
0 5 3 0
0 0 0 1

)︂ Cc
4+7Cc

1∼
2Cc

2

(︂ 1 0 0 0
0 1 3 0
0 0 0 1

)︂
Cc

3+6Cc
2∼
(︂ 1 0 0 0

0 1 0 0
0 0 0 1

)︂
=⇒ Im(C) =

{︃(︂ x1
x2
x3

)︂ ⃓⃓⃓⃓
x1, x2, x3 ∈ S

}︃
Hence, the module generated by the columns of C is free and has cardinality
|Im(C)| = 93. Thus, d(A, B) = rk (A−B) = rk (C) = log9(|Im(C)|) = 3.
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3.2 Cardinal Rank Metric of Codewords
Let B = {ξ1, . . . , ξr} be a free basis of R over S. The coordinate vector of a ∈ R
relative to the basis B, denoted by [a]B, is a codeword (α1, α2, . . . , αr)⊤ over S
provided a =

r∑︁
i=1

αi · ξi. Similarly, [a]B = ([a1]B | . . . | [am]B) ∈ Sr×m is said
to be the coordinate matrix of a = (a1, . . . , am) ∈ Rm relative to B, where
m ∈ N. Straightforwardly, [·]B : Rm → Sr×m is a module isomorphism since
ker([·]B) = {o}, [a]B + [b]B = [a + b]B and [s · a]B = s · [a]B for any a, b ∈ Rm

and s ∈ S.

Lemma 51. The cardinal rank of the coordinate matrix of a and the induced
cardinal rank distance between the coordinate matrices of a and b are basis
invariant for any m ∈ N and a, b ∈ Rm.

Proof. Let m ∈ N and B = {ξ1, . . . , ξr}, C = {ζ1, . . . , ζr} be two free bases
of R over S. Set Q = ([ζ1]B | . . . | [ζr]B) ∈ Sr×r. Due to both B and C being
the free bases, the matrix Q is invertible by Lemma 34 applied to the trasposed
Q. Observe that [c]B = Q · [c]C for all c ∈ Rm. Choose any a, b ∈ Rm. Compute
the cardinal rank of a rk ([a]C) = rk (Q−1 · [a]C) 48.3= rk ([a]B) and the distance
between a and b

d([a]C , [b]C) = rk ([a]C − [b]C) = rk ([a − b]C) = rk ([a − b]B) = d([a]B, [b]B).

Let a ∈ Rm for a positive integer m. Lemma 51 justifies defining the cardinal
rank of a as the cardinal rank of its coordinate matrix relative to any free basis
of R over S.

Definition 52. Let m ∈ N and B be a free basis of R over S. The cardinal rank
of a ∈ Rm is rk (a) = rk ([a])B and the cardinal rank distance between a, b ∈ Rm

is dR (a, b) = rk (a − b).

Remark. (Rm, dR) is a metric space in accordance with Corollary 50.
Let ξ ∈ R have order pr − 1. Due to Section 1.2, Ξ = (1, ξ, . . . , ξr−1)

is a free basis of R over S. Choose a ∈ R. Let a0, a1, . . . , ar−1 ∈ S satisfy
a =

r−1∑︁
i=0

aiξ
i. Denote by ar−1: . . . :a1:a0 the aditive representation of a. Notice that

this representation of a almost coincides with [a]Ξ. Now, we depict the cardinal
rank of codewords and the induced distance between them utilising Example 12.
Example 13. Let S = GR(32, 1) = Z32 and R = GR(32, 3) = S[ξ] with operations
defined modulo polynomial G3,3(x) = x3+2x+1 ∈ S[x], where ξ is the formal root
of G3,3 of the order 33−1 = 26. Consider a free basis B = {1, ξ, ξ2} of the ring R
over S. Compute the cardinal ranks rk (a) , rk (b) and the cardinal rank distance
dR (a, b) for a = (3:0:0, 0:0:8, 0:6:2, 6:3:2), b = (8:0:1, 0:4:0, 0:3:6, 6:3:0) ∈ R4.

1. [a]B =
(︂ 0 8 2 2

0 0 6 3
3 0 0 6

)︂
=⇒ rk (a) = rk ([a]B) Ex 12.1= 2,

2. [b]B =
(︂ 1 0 6 0

0 4 3 3
8 0 0 6

)︂
=⇒ rk (b) = rk ([b]B) Ex 12.2= 5

2 ,
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3. c = a − b = (4:0:8, 0:5:8, 0:3:5, 0:0:2) =⇒ [c]B =
(︂ 8 8 5 2

0 5 3 0
4 0 0 0

)︂
=⇒ dR (a, b) = rk (a − b) = rk (c) = rk ([c]B) Ex 12.3= 3.

Theorem 48 proposes that multiplying any matrix A by an invertible matrix
B, for which the product A · B is defined, does not change the cardinal rank of
A. We generalise this property to the cardinal rank of a codeword.

Lemma 53. Let m ∈ N, x ∈ Rm and T ∈ Sm×m be a invertible matrix. Then,
rk(x) = rk(x · T ).

Proof. Let B be a free basis of R over S. If we show that [x · T ]B = [x]B · T
then the conclusion follows from Theorem 48. Choose i ∈ N such that i ≤ m

and compute [x ·Tc
i ]B =

[︄
m∑︁

j=1
xj · Tji

]︄
B

=
m∑︁

j=1
[xj · Tji]B =

m∑︁
j=1

[xj]B ·Tji = [x]B ·Tc
i .

Hence,
[x · T ]B =

(︂
[x ·Tc

1]B
⃓⃓⃓

. . .
⃓⃓⃓
[x ·Tc

m]B
)︂

=
(︂
[x]B ·Tc

1

⃓⃓⃓
. . .

⃓⃓⃓
[x]B ·Tc

m

)︂
= [x]B · T .

Let K = R⧸pR and L = S⧸pS be the residue fields of R and S respectively.
Apparently, L is a subfield of K since S is the subring of R. Recall the Teichmuller
sets Tr of R and T of S from Definition 16. Then, the field isomorphisms
Tr ≃ K ≃ Fpr and T ≃ L ≃ Fp are derived from the remark in Section 1.2
and the paragraph above Corollary 17. Let B = {ξ1, . . . , ξr} be a free basis
of R over S. If possible, we aim to propose a more direct way of computing
the cardinal rank. Let this notation be established henceforth.

Theorem 54. Let m ∈ N and x ∈ Rm of the height i for i ∈ N, i ≤ n. Then,
rk(x) ≥ i · rk (pi−1 · x) = i · c

n
, where c = dimT (Im([pi−1x]B)). Furthermore,

the equality rk(x) = i · rk(pi−1 · x) is achieved for non-zero x if and only if there
is no coordinate of x divisible by pn−i+1.

Proof. Let m ∈ N and x ∈ Rm be of the height i ∈ N, i ≤ n. Define a matrix
X = [x]B ∈ Sr×m. Set y = pi−1 · x ∈ Soc(Rm) and Y = [y]B ∈ Sr×m. It results
in Y = pi−1 ·X and Im(Y ) ⊆ Soc(Im(X)), which implies

rk(y) = logpn(|Im(Y )|) = logpn(pc) = c

n
, (3.1)

where c is the dimension of the vector space Im(Y ) over T .
Let (pn−1β1, . . . , pn−1βc) be a free basis of Im(Y ) over T and M be a module

generated by β = (β1, . . . , βc) over S, which is free in light of Lemma 28.
Compute v ∈ Rm of height n satisfying x = pn−i · v by Algorithm 4. Firstly,
assume that no coordinate of v is divisible by p, which implies Im(V ) is free,
where V = [v]B. However, Soc(Im(V )) = pn−1 · Im(V ) = Im(Y ) = Soc(M)
and both Im(V ) and M are free S-submodules of Sl. Thus, Im(V ) = M and

rk(v) = logpn(|M |) = logpn (pn·c) = c = n · rk(y). (3.2)

Return attention to x = pn−i · v and the S-module Im(X) = pn−i ·M = ⟨β′⟩
for β′ = (pn−iβ1, . . . , pn−iβc). Note that β′ is already a minimal basis of Im(X)
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as β is the free basis of M . As a consequence,

rk(x) = logpn(|Im(X)|) = logpn

(︄⃓⃓⃓⃓
⃓
{︄

c∑︂
l=1

sl · pn−i · βl

⃓⃓⃓⃓
⃓ s1, . . . , sl ∈ S

}︄⃓⃓⃓⃓
⃓
)︄

= logpn

(︄⃓⃓⃓⃓
⃓
{︄

c∑︂
l=1

sl · βl

⃓⃓⃓⃓
⃓ s1, . . . , sl ∈ pn−i · S

}︄⃓⃓⃓⃓
⃓
)︄

= logpn(pi·c) = i · c
n

(3.3)

where pi is the cardinality of pn−i · S.
Secondly, assume a coordinate of v divisible by p exists. Compute u, w ∈ Rm,

which satisfies v = u + w, no coordinate of u is divisible by p and w has height
h ∈ N, h < n. Since pn−1 · u = pn−1 · v − pn−1w = pn−1 · v, then rk(u) (3.2)= c

and rk(pn−iu) (3.3)= i·c
n

by the already proven part. Clearly, pl · Im(U) ⊂ pl · Im(V ),
where U = [u]B and l, 0 ≤ l < h. Finally, rk

(︂
plu

)︂
< rk

(︂
plv

)︂
.

The previous theorem states the lower bound for the cardinal rank of element
x with height h ∈ N, h ≤ n. However, the equality within the bound is achieved
if and only if the coordinates of x

pn−h generates a free S-module. On the other
hand, it is always possible to use Algorithm 7 grounded on Corollary 49.

Rewind the ring epimorhism : R → K, a ↦→ a+pR, and the induced module
epimorphism m : Rm → Km, a ↦→ (a1, . . . , am) for some m ∈ N. Theorem 15
about the p-adic representation implies that Tr = K and T = L. Remark that
the operations on Tr were determined utilising the ring epimorphism . Then,
B =

{︂
ξ1, . . . , ξr

}︂
is a basis of the field K over L. To clarify over which ring

is the cardinal rank and the induced distance meant, denote for each a, b ∈ Rm

rkS(a) = logpn (|ImS([a]B)|) and dS(a, b) = rkS(a − b), (3.4)
rkL (am) = logp (|ImL([am]B)|) and dL

(︂
am, bm)︂ = rkL

(︂
am − bm)︂

. (3.5)

Let C be an [m, l]R-code and a, b be codewords of C. Thus, using the proposed
notation, the cardinal rank of a ∈ Rm over S is rk(a) = rkS(a), and the cardinal
rank distance between a, b ∈ Rm over S is dR(a, b) = dS(a, b). In the same
manner, the minimal cardinal distance of C over S is dR(C) = dS(C). Denote
by E = Cm the code of length m over K and by d = am, e = bm its codewords.
Hence, the cardinal rank of d ∈ Km over L is rk(d) = rkL(d), the cardinal rank
distance between d, e ∈ Km over L is dR(d, e) = dL(d, e), and the minimal
cardinal distance of E over L is dR(E) = dL(E). Hopefully, the reason why rk
and dR are distinguished based on the ring over which they are taken is clear
now.

Claim 55. Let m ∈ N, a ∈ Rm. Then rkS (a) > rkS (pn−1a) = rkL(am)
n

.

Proof. Let m ∈ N and a ∈ Rm be given. Compute d ∈ Rm with all coordinates
from Tr and e ∈ (pR)m such that a = d+e, which is possible due to Theorem 15
being used for each entry of a. Denote the matrices A = [a]B, D = [d]B ∈
Sr×m and C = [am]B ∈ Lr×m. It can be directly derived that pn−1a = pn−1d
and pn−1A = [pn−1a]B = [pn−1d]B = pn−1D.

Define a map ϖ = Soc(Sr) → Lr for any x ∈ Sr by ϖ(pn−1 · x) = xr.
Drawn from the proof of Claim 40, ϖ is a module isomorphism. Observe that
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ϖ(pn−1Ac
i) = ϖ(pn−1Dc

i) = [di]B
r =

[︂
di

]︂
B

= [ai]B = Cc
i for any i = 1, . . . , m,

where it was used that am = dm, and the basis B of K over L is the projection
of the basis B of R over S. Furthermore, ϖ(ImS(pn−1A)) = ImL(C) since for any
x ∈ ImS(pn−1A) there exist coefficients t1, . . . , tm ∈ T such that x =

m∑︁
i=1

tip
n−1Ac

i

and ϖ(x) =
m∑︁

i=1
ϖ(tip

n−1Ac
i) =

m∑︁
i=1

tiDc
i
r =

m∑︁
i=1

tiCc
i . Conclude from Theorem 54

that rkS(a) ≥ n · rkS(pn−1a) > rkS(pn−1a) and

rkS(pn−1a) = logpn(|ImS(pn−1A)|) =
logp(|ImL(C)|)

logp(pn) = rkL(am)
n

,

which finalises the proof.

Let a ∈ Rm. Regard two S-modules M = Im([a]B) and N = ⟨a1, . . . , am⟩S.
Clearly, both of them are fully determined by the codeword a. Denote by β ∈ Rm

the codeword composed of the basis B elements. Consider a map ν : M → N
defined as ν(x) = β·x⊤ for x ∈M , which appears to be a module homomorphism.
In addition, ν is bijective since ν−1

(︃
m∑︁

i=1
ziai

)︃
=

m∑︁
i=1

zi[ai]B for z1, . . . , zm ∈ S
as β · [a]B = a. Consequently, we have rank(M) = rank(N). We finish this
section by relating the rank of N to the cardinal rank of a.

Corollary 56. Let A = ⟨a1, . . . , am⟩S be the S-submodule of R for some m ∈ N
and a ∈ Rm. Then rk(a) ≤ rank(A) and rank(A) ≤ ⌊n · rk(a)⌋.

Proof. Choose m ∈ N and a ∈ Rm. Put A = ⟨a1, . . . , am⟩S and c = rk(a).
The first inequality c ≤ rank(A) is derived from Theorem 48. Next, based
on Claim 55, rkL(am) < n · c, which can be rewritten as dimL

(︂
A
)︂
≤ ⌊n · c⌋.

According to Claim 40, Soc(A) ≃ A and therefore dimT (Soc(A)) = dimL

(︂
A
)︂
.

The rest follows from rank(A) = rank(Soc(A)) = dimT (Soc(A)).

3.3 Cardinal Rank Metric Codes
When linear code C of length m ∈ N over R = GR(pn, r) uses the cardinal rank
metric dR as the distance of its two codewords, C is called a cardinal rank metric
code. Additionally, dR(C) = min{dR(a, b) | a, b ∈ C; a ̸= b} is the minimum
(cardinal rank) distance of C instead of dH(C).

Briefly turn to the standard theory of error-correcting codes over finite fields,
which has among its main goals finding the largest possible code for the given
minimal distance. Definitely, the most known upper bound for the size of a code
C of the length n ∈ N over Fq with the minimal Hamming distance d ∈ N
is the Singleton bound which states that |C| ≤ qn−d+1. Moreover, the Singleton
bound can be restated as dH(C) ≤ n− k + 1 for a linear code C of the dimension
k ∈ N. Lastly, linear codes that achieve equality in the bound are called maximum
distance separable (MDS) codes. Analogically, the same inequality holds also
for the rank distance defined as dR(c1, c2) = rank([c1 − c2]B) for codewords
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c1, c2 ∈ C, where B is some basis of Fq over Fp for prime p, p | q. Maximum rank
distance (MRD) codes are linear codes which reach the upper bound with the rank
distance. Additional information concerning linear codes over finite fields can
be found in the book by Bruen et al. [15].
Remark. It is not difficult to notice that the cardinal rank distance equals the rank
distance for linear codes over a finite field.

Theorem 57 (Singleton-like bound). Let l, m ∈ N and C be a cardinal rank
metric [m, l]R-code. There exist integers e1, . . . , em ∈ {0, . . . , n − 1} and a free
basis V = (v1, . . . , vl) fulfilling C = ⟨pe1v1, . . . , pelvl⟩R. Let D = ⟨V ⟩R. Then,

dS(C) = dS(Soc(C)) =
dL
(︂
Dm

)︂
n

≤ m− l + 1
n

. (3.6)

Proof. Theorem 30 states that there exist a free basis V = (v1, . . . , vl)
of an-R-submodule of Rm and exponents e1, . . . , el ∈ {0, 1, . . . , n − 1}, which
satisfy C =

l⨁︁
i=1

peiviR. Consider a free linear code D generated by V . According

to the Singleton bound for the [m, l]K-code Dm, we have dH(Dm) ≤ m−l+1. If we
manage to prove that dS(C) = dL(Dm)

n
and dL

(︂
Dm

)︂
≤ dH(Dm) then the minimal

cardinal rank distance of C is dR(C) = dS(C) = dL(Dm)
n
≤ dH(Dm)

n
≤ m−l+1

n
.

Let B be a free basis of R over S. Thus, B is a basis of the field K over L.
Choose any a, b ∈ Dm and denote by M ∈ Lr×m the coordinate matrix [a − b]B.
Let us direct attention to the cardinal rank distance between a and b:

dL(a, b) = rkL(a − b) = logp (|ImL(M)|) = rank(M) = dimL

(︄
m∑︂

i=1
Mc

i · L
)︄

≤ |{Mc
i | i ∈ N, i ≤ m : Mc

i ̸= o}| = wH(a − b) = dH(a, b)

Next, find c ∈ C meeting the condition rkS(c) = dS(C), which may be done
as dS(C) = min{rkS(a − b) | a, b ∈ C; a ̸= b} = min{rkS(c) | c ∈ C \ {o}}.
Since ImS ([p · c]B) ⊂ ImS ([c]B) and rkS(p · c) < rkS(c), it is now evident that
p · c = o and c ∈ Soc(C). Hence, dS(C) = dS(Soc(C)). Execute Algorithm 4
on c to obtain d ∈ D of height n satisfying c = pn−1 ·d. Additionally, Claim 55
asserts that rkS(pn−1d) = rkL(dm)

n
. Assume, for a contradiction, there exists

f ∈ D such as 0 < rkL

(︂
fm
)︂

< rkL

(︂
dm
)︂
. In this scenario, pn−1f must remain

non-zero, because if pn−1f = o then f ∈ pD and fm = o, which contradicts
rkL

(︂
fm
)︂

> 0. Moreover, pn−1f ∈ Soc(C) \ {o} and rkS(pn−1 · f) < rkS(pn−1 · d),
a contradiction with the minimality of rk(c). Finally, it is possible to conclude
dS(C) = dS(Soc(C)) = rkS(c) = rkL(dm)

n
= dL(Dm)

n
.

Corollary 58. If Soc(C1) = Soc(C2), where C1, C2 are cardinal rank metric codes
of the same length over R, then dR(C1) = dR(C2).

Proof. Absolutely, dR(C1)
(3.6)= dR(Soc(C1)) = dR(Soc(C2))

(3.6)= dR(C2).
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3.4 Maximum Cardinal Rank Distance Codes
A class of cardinal rank metric codes which achieve the Singleton-like bound (3.6)
is studied in this part. The class clearly generalises MRD codes over finite fields.

Definition 59. Maximum cardinal rank distance (MCRD) codes are cardinal
rank metric codes, which reach equality in the Singleton-like bound (3.6).

Let C,D be [m, l]R-codes such that D is free and Soc(C) = Soc(D). Thanks
to the Singleton-like bound, dS(C) = dL(Dm)

n
. If C is MCRD then clearly Dm

is MRD and D is MCRD since dS(D) = dL(Dm)
n

. Remark that we know almost
nothing about the code Cm over K.

Corollary 60. Let l, m ∈ N and C be a free cardinal rank metric [m, l]R-code.
Then, dS(C) = dL(Cm)

n
, and C is MCRD if and only if Cm is MRD.

Proof. According to Claim 40, it suffices to state Soc(C) is isomorphic to Cm

as D in Claim 40 is exactly our code C. Hence, we have dS(C) (3.6)= dL(Cm)
n

and the equivalence is the direct consequence of this equality.

Note that in the preceding proof, C equals the free code D only when C
is also free. It may sound trivial, but it is vital to keep it in mind as for a codeword
c ∈ Soc(C), which satisfies rk(c) = dR(C), the codeword p1−n · c does not have
to be located in a non-free MCRD C. Accordingly, the projection cm does not
have to be in Cm, i.e. Cm is not required to be MRD. Let us introduce some
necessary conditions for codes to be MCRD.

Theorem 61. Let l, m ∈ N satisfy 2l < m ≤ min(n, r), and C be a MCRD
[m, l]R-code with a generator matrix G ∈ Rl×m in the systematic form, i.e.

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik0 G0,1 G0,2 . . . G0,n−1 G0,n

0 p · Ik1 p ·G1,2 . . . p ·G1,n−1 p ·G1,n

0 0 p2 · Ik2 . . . p2 ·G2,n−1 p2 ·G2,n
... ... ... . . . ... ...
0 0 0 . . . pn−2 ·Gn−2,n−1 pn−2 ·Gn−2,n

0 0 0 . . . pn−1 · Ikn−1 pn−1 ·Gn−1,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where k0, k1, . . . , kn ∈ N∪{0} satisfy
n∑︁

i=0
ki = m, and Gi,j ∈ Rki×kj , where i, j ∈ Z,

0 ≤ i < j < n. Denote d = dR(C) = m−l+1
n

, mi =
i−1∑︁
j=0

kj and Mi =
i∑︁

j=0
kj − 1

for every i ∈ {0, . . . , n}. Put F = (piGi,n)n−1
i=0 ∈ Rl×(m−l).

1. The [m− l, l]R-code D generated by F is MCRD.

2. Every row of F may have maximally l − 1 coordinates of height less than
the height of the whole row.

3. ∀i ∈ {0, . . . , n−1}∀j ∈ {mi, . . . , Mi} : (n−i)d ≤ rk
(︂
Gr

j

)︂
≤ (n−i)(m−mi+1+1)

n
.
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Proof. 1. Assume, for a contradiction, that D is not MCRD. So, there exists
a non-zero f ∈ D, which satisfies rk(f) < m−2l+1

n
. Find x ∈ Rl such that

f = x · F , and compute c = x · G =
(︂
e f

)︂
∈ C for appropriate e ∈ Rl.

Obtain minimal i = 0, 1, . . . , n fulfilling pi · c ∈ Soc(C), and figure the upper
bound rk(pie) ≤ logpn(pl) = l

n
as for every coordinate of pie, there is maximally

p possible coefficients from S. Thence,

rk(pic) = rk
(︂(︂

pie om−l

)︂
+
(︂
ol pif

)︂)︂ 48.5
≤ rk

(︂(︂
pie om−l

)︂)︂
+ rk

(︂(︂
ol pif

)︂)︂
= rk(pie) + rk(pif) <

l

n
+ m− 2l + 1

n
= d,

a contradiction with C being MCRD.
2. Let ∆ = (δ1, . . . , δm) be the standard basis of Rm over R, which is free.

Denote e = dR(D) = m−2l+1
n

as D is MCRD by 1. Assume, for a contradiction,
that i ∈ N, i ≤ l, exists, for which the row Fr

i of height hi has at least l coordinates
of the height less than hi. On other hand, f = phi−1 · δi · F = phi−1 ·Fr

i ∈ Soc(D)
must have the cardinal rank rk(f) > e since f ̸= o and D is MCRD. At the same
time, there is at least l coordinates of f equal to 0. It may be deduced that
rk(f) ≤ logpn(pm−2l) = m−2l

n
= e− 1

n
, which cannot happen.

3. Let ∆ be as before. Choose any non-negative integers i and j meeting
the conditions i < n and mi ≤ j ≤ Mi. Set hi = n − i and consider a codeword
c = phi−1 · δj ·G = phi−1 ·Gr

j ∈ C. Then, c ∈ Soc(C) as Gr
j ∈ (piR)m, and c has

rk(c) ≥ d, because C is MCRD. In accordance with Theorem 54 applied to Gr
j

of the height hi, rk(Gr
j) ≥ hi · d. Moreover, Gr

j =
(︂
oj−1 pn−i oMi−j y

)︂
, where

j−1 zeros from the row-echelon form of G are followed by the pivot pn−i and other
Mi − j zeros of the current block pn−iIki

. Specially, y = pn−i(gjmi+1 , . . . , gjm)
is the last part of Gr

j as mi+1 = Mi + 1. Hence, the jth row of G has the cardinal
rank rk(Gr

j) ≤ logpn

(︂
phi·(m−mi+1+1)

)︂
= hi·(m−mi+1+1)

n
, because Gr

j of the height hi

has at most (m−mi+1 + 1) non-zero coordinates.

Now, let us focus on only free MCRD codes over Galois rings. We can state
the necessary conditions for generator matrices in the systematic form and codes
themselves much more clearly.

Corollary 62. Let l, m ∈ N satisfy 2l < m ≤ min(n, r), and C be a free MCRD
[m, l]R-code with a generator matrix G =

(︂
Il F

)︂
∈ Rl×m. Denote d = n−l+1

n
.

1. Every row of G has the cardinal rank n · d.

2. No entry of F is divisible by p and the code generated by F over R is free.

3. The number of codewords in C of the cardinal rank d is at least l(pr − 1).

4. A tuple (1, f1j, f2j, . . . , flj) is a free basis of some S-submodule of R for
every j ∈ N, j ≤ m− l.

Proof. 1. In the case of C being free, we have k0 = l and ki = 0 for all
i ∈ N, i ≤ n, where k0, . . . , kn are from the systematic form (2.5). Theorem 61
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implies n · d ≤ rk(Gr
j) ≤

n·(m−l+1)
n

for j ∈ N, j ≤ l. Subsequently, rk(Gr
j) = n · d

by simplifying the inequalities.
2. Choose any i ∈ N, i ≤ n. Then, we have rk(Gr

i ) = n · d as a result of 1.
Theorem 54 proposes that rk(Gr

i ) ≥ n · rk(pn−1Gr
i ) and the equality is achieved

if and only if no coordinate of Gr
i is divisible by p. Since C is MCRD, we have

rk(pn−1Gr
i ) = d. Hence, no coordinate of Gr

i is divisible by p, so neither is any
coordinate of Fr

i .
3. Let B = (1, ξ, . . . , ξr−1) be a free basis of R over S for ξ ∈ R of order pr−1.

Choose some x ∈ Tr \ {0} and i ∈ N, i ≤ l. Abbreviate pn−1 ·Gr
i ∈ Soc(C) to g.

Remark that g ̸= o based on the previous point, from what x · g ∈ Soc(C) \ {o}
follows directly. Set X = ([x]B | [x · ξ]B | · · · | [x · ξr−1]B) ∈ Sr×r. Then, X seems
to be the matrix of a module homomorphism χ : Rm → Rm, a ↦→ x · a relative
to the basis B, because

[x · a]B = ([x · a1]B | · · · | [x · am]B) = (X · [a1]B | · · · | X · [am]B) = X · [a]B.

Especially, χ is bijective since χ−1(y) = x−1 · y for any y ∈ Rm as x ∈ Tr, x ̸= 0.
Hence, the matrix X is invertible. Consequently, it is derived from Theorem 48
that rk(x · g) = rk(X · [g]B) = rk([g]B) = rk(g) = d. As a result, there exists
at least l · (pr − 1) codewords in C of the cardinal rank d, where l is the number
of possible rows of G and (pr − 1) is the number of appropriate x ∈ Tr \ {0}.

4. Assume, for contradiction, that j ∈ N, j ≤ m − l, and s0, s1, . . . , sl ∈ S
exist, which fulfill

l∑︁
t=0

st · Ft,j = 0, where F0,j = 1, and si · fij ̸= 0 for some
i ∈ {0, 1, . . . , l}. Grounded the second point, si · fij ̸= 0 if and only if sij ̸= 0.
Define a codeword c = s · G ∈ C for s = (s1, . . . , sl). In this situation, ct = st

for all t ∈ N, t ≤ l, and cl+j = s ·Fc
j =

l∑︁
t=1

st ·ftj = −s0. Let B be a free basis of R
over S as above and e ∈ {0, 1, . . . , n − 1} be minimal such that pe · c ∈ Soc(C).

Set a = pe · (c1, . . . , cl, cl+j), so [a]B = pe ·

⎛⎝ s1 s2 ... sl −s0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 0

⎞⎠ and rk(a) = 1
n

based

on Claim 49. It is a direct consequence that rk(pec) ≤ m−l
n

< d since the other
(m − l − 1) columns of [pec]B may generate an S-module of cardinality at most
pm−l−1, a contradiction with C being MCRD.
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4. Gabidulin Codes
Gabidulin codes over finite fields, firstly introduced by Gabidulin [12], are one
of the most well-known MRD codes. Construction of these codes relies entirely
on the Frobenius automorphism and its iterations. Abbreviate the ith power
of p to [i] for i ∈ N. Any Gabidulin [n, k]Fqm -code is generated by some matrix(︂
g

[i−1]
j

)︂k,n

i=1,j=1
, where the vector g ∈ Fn

qm has Fq-linearly independent coordinates.

4.1 Gabidulin Codes over Galois Rings
Let R, S be Galois rings GR(pn, r), GR(pn, 1) and Tr, T be theirs Teichmüller
sets in the given order, where p is a prime and n, r are positive integers. Denote
by K the residue field of R and by L the residue field of S. Continue by recalling
the generalised Frobenius automorphism τ of R (Theorem 18) defined for ξ ∈ R
of order k = pr − 1 as τ(ξ) = ξp. Deduced from Theorem 21, τ generates
the Galois group Gal(R/S). Furthermore, for every ζ ∈ Tr and e ∈ N, it holds
that τ e(ζ) = ζpe = ζ [e].

This section aims to define Gabidulin codes over Galois rings, consistent
with the definition over finite fields, and provide their fundamental properties.
Gabidulin codes, utilising the cardinal rank metric, are introduced in the article
by Epelde and Rúa [6]. However, here, we commence with the matrix approach
rather than the linearised polynomials’.

Theorem 63. Let m ∈ N satisfy m ≤ min(n, r) and g ∈ Rm. Let G be a matrix
of order m over R with entries τ i−1(gj) for i, j ∈ N, i, j ≤ m. Then, Im(G⊤)
is a free R-module with a free basis (Gr

1, . . . , Gr
m) if and only if rk(g) = m.

Proof. “ =⇒ ”: If there exists coordinate of g divisible by p, then there is entire
column of G divisible by p and also pivot of the Smith normal form of G divisible
by p. Now, assume there is no coordinate of g divisible by p and rk(g) < m,
i.e.

m∑︁
i=1

si · gi = 0 for some s1, . . . , sm ∈ S and at least one si ̸= 0. Then for every

i = 0, . . . , l−1 also τ i

(︄
m∑︁

j=1
sj · gj

)︄
=

m∑︁
j=1

sj ·τ i(gj) = 0. Hence, at least one column

of G can be eliminated and the number of pivots of the Smith normal form of G
is less than m. Rows of G cannot form a free basis in both cases.

“ ⇐= ”: Let X be the coordinate matrix of g relative to some basis of R
over S. Since m = rk(g) = logpn(|Im(X)|), it needs to be true that columns of X
form a free basis of Im(X) over S as there is m of them. Specially, no coordinate
of g can be divisible by p, which means that p ∤ τ i−1(gj) for every i, j ∈ N,
j ≤ m, since Theorem 18 affirms that τ is the S-automorhism. It directly
results in pn−1 · τ i−1(gj) ∈ Soc(R) \ {0}. Derived from Theorem 15, the unique
non-zero bji ∈ Tr, which satisfies pn−1 · bji = pn−1 · τ i−1(gj), exists for each
i, j ∈ N, j ≤ m.

Suppose that there exist z1, . . . , zm ∈ Tr for which
m∑︁

i=1
zi(pn−1 · Gr

i ) = o
and at least one of the coefficients is non-zero. Choose j ∈ N satisfying j ≤ m.
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In the given situation,

0 =
m∑︂

i=1
zi · pn−1 · τ i−1(gj) =

m∑︂
i=1

zi · pn−1 · bji = pn−1
m∑︂

i=1
zi · bji = pn−1

m∑︂
i=1

zi · b[i−1]
j1 .

Define a polynomial L(X) =
m∑︁

i=1
zi · X [i−1] ∈ Tr[X] and the evaluation map

λ : Tr → Tr as a ↦→ L(a). The map λ seems to be a field homomorphism
as the characteristic of Tr equals p. Besides, a ∈ Tr is a root of L if and only
if a ∈ ker(λ), and ker(λ) = {0}, because ker(λ) is an ideal of the field Tr

and 1 ̸∈ ker(λ). Now, pn−1 · L(bj1) = 0 can occur if and only if L(bj1) = 0,
but bj1 ̸= 0, a contradiction.

It is shown that
m∑︁

i=1
ai (pn−1 ·Gr

i ) = o over Tr if and only if all a1, . . . , am equal
0. Therefore, (pn−1Gr

1, . . . , pn−1Gr
m) is a basis of a vector space Soc(Im(G⊤))

over Tr. Lemma 28 implies that (Gr
1, . . . , Gr

m) is a free basis of Im(G⊤) ≤ Rm.

Consider g ∈ Rm of cardinal rank m ∈ N. Denote by gi the codeword
(τ i−1(g1), . . . , τ i−1(gm)) for each i ∈ N, i ≤ m. It can be deduced from the last
theorem combined with Theorem 24 that (g1, . . . , gl) is a free basis of some
R-module isomorphic to Rl for every positive integer l, l ≤ m.

Definition 64. Let l, m ∈ N be such that l ≤ m ≤ min(n, r) and a codeword
g ∈ Rm satisfy rk(g) = m. The Gabidulin code of length m and rank l over R
generated by g, denoted by GabR(m, l, g), is a cardinal rank metric [m, l]R-code
with a generator matrix

G =

⎛⎜⎜⎜⎜⎝
g1 . . . gm

τ(g1) . . . τ(gm)
... . . . ...

τ l−1(g1) . . . τ l−1(gm)

⎞⎟⎟⎟⎟⎠ (4.1)

It is beyond any doubt, if the field Fpr and the Frobenius automorphism σ of
Fpr are taken instead of the Galois ring R and τ , then GabFpr (m, l, g) is a cor-
rectly defined Gabidulin [m, l]pr -code. Significantly, the projection of a Gabidulin
code over the Galois ring is a Gabidulin code over its residue field, written
as GabR(m, l, g)m = GabK(m, l, gm).

Corollary 65. Any Gabidulin code over R is free.

Immediate result of the preceding corollary and Lemma 40 is that the socle of
GabR(m, l, g) is isomorphic to GabK(m, l, gm) for any m, l ∈ N satisfying l ≤ m,
and g ∈ Rm fulfilling rk(g) = m.

Corollary 66. Any Gabidulin code over R is MCRD.

Proof. It is a combination of Corollary 65 and Corollary 60 as a Gabidulin
code over a finite field is MRD.
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Example 14. Let p = 5, n = 5, r = 4 and R be the Galois rings of characteristic 55

and cardinality 520. Denote by G5,4(x) = x4+450x3+830x2+1892x+3124 a basic
primitive polynomial over Z55 , which divides xk − 1 for k = 54 − 1, computed
by the Hensel’s lift (Algorithm 3) of (x4 + 2x + 4) ∈ Z5[x]. Set ξ = x + (G5,4).
Based on Section 1.2, ξ is of order k and B = (1, ξ, ξ2, ξ3) is a basis of R
over S ≃ Zpn . Any element

3∑︁
i=0

aiξ
i ∈ R is represented by the tuple a3:a2:a1:a0.

Consider g = (0:11:9:0, 0:0:31:124, 19:0:934:0, 87:0:21:0) ∈ R4. If the cardinal
rank of g equals 4, the g generates a Gabidulin code of length 4 over R. Let us
compute the Smith normal form of X = [g]B:

X =
(︃ 0 124 0 0

9 31 934 21
11 0 0 0
0 0 19 87

)︃
Xc

1↔Xc
2∼

2999Xr
1

(︃ 1 0 0 0
31 9 934 21
0 11 0 0
0 0 19 87

)︃
Xr

2+3094Xr
1∼

1389Xr
2

(︃ 1 0 0 0
0 1 451 1044
0 11 0 0
0 0 19 87

)︃
Xr

3+3114Xr
2∼

1234Xr
2

(︃ 1 0 0 0
0 1 451 1044
0 0 1 619
0 0 19 87

)︃
Xr

2+2674Xr
3∼

Xr
4+3106Xr

3

(︃ 1 0 0 0
0 1 0 0
0 0 1 619
0 0 0 826

)︃
1676Xr

4∼
Xr

3+2506Xr
4

(︃ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)︃ (4.2)

Thence, rk(g) = rk(X) = rk(I4) = 4 and g is a generator of GabR(m, l, g)
with a generator matrix

G =
(︂

g1 g2 g3 g4
τ(g1) τ(g2) τ(g3) τ(g4)

)︂
=
(︂

0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0
τ(0:11:9:0) τ(0:0:31:124) τ(19:0:934:0) τ(87:0:21:0)

)︂
= ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0

481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008 ) .
(4.3)

Prior to concluding this section, a way for computing a parity-check matrix
of Gabidulin codes, which are in the form (4.1), is presented as in the section
III.D of Kamche and Mouaha’s work [16].

Theorem 67. Let l, m ∈ N satisfy l ≤ m ≤ min(n, r), and g ∈ Rm fulfill
rk(g) = m. Consider h ∈ Rm with coordinates hi = τ l+1−m(fim) for each i,
1 ≤ i ≤ m, where F = (fij)m

i,j=1 is the inverse of a matrix G = (τ i−1(gj))m
i,j=1.

Then, the cardinal rank of h is m and H = (τ i−1(hj))m−l,m
i=1,j=1 is a parity-check

matrix of GabR(m, l, g).

Proof. Theorem 63 proposes that (Gr
1, . . . , Gr

m) is free basis of Im(G⊤), so G
is invertible by Theorem 37. Hence, the entries f11, . . . , fmm ∈ R of the matrix
F = G−1 are correctly introduced, and for every i ∈ N such that i ≤ m, we have
δim = Gr

i · Fc
m =

m∑︁
t=1

τ i−1(gt) · ftj. Denote by F ′ the matrix of order m over R

with entries f ′ij = (τ j−m(fim)) for i, j ∈ {1, . . . , m}. Compute the entry lij
of L = G · F ′ at the position (i, j):

m∑︂
t=1

τ i−1(gt) · f ′tj =
m∑︂

t=1
τ i−1(gt) · τ j−m(ftm) =

m∑︂
t=1

τ j−m
(︂
τ i−1−j+m(gt) · ftm

)︂

= τ j−m

(︄
m∑︂

t=1
τ i−1−j+m(gt) · ftm

)︄
=
⎧⎨⎩δ(i−j+m)m , if 1−m ≤ i− j ≤ 0,

lij ∈ R , otherwise.

Thus, the product L is a lower triangular matrix with units on the main diagonal,
so L is invertible as shown in Example 9. Moreover, F ′ = F · L is also invertible
due to Lemma 33. Deduced from Theorem 37, the columns of F ′ constitute
a free basis of Im(F ′). In this case, Theorem 63 dictates that rk(F′c1) = m.
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Since τ is the S-automorphism of R, applying τ to the coordinates of F′c1 cannot
change its cardinal rank, and we have rk(h) = m as h = F′cl+1. Consequently,

H =

⎛⎜⎜⎜⎜⎝
h1 . . . hm

τ(h1) . . . τ(hm)
... . . . ...

τm−l(h1) . . . τm−l(hm)

⎞⎟⎟⎟⎟⎠ h=F′c
l+1=

⎛⎜⎜⎜⎜⎝
F′cl+1
F′cl+2

...
F′cm

⎞⎟⎟⎟⎟⎠ (4.4)

is a generator matrix of the Gabidulin [m, m− l]R-code GabR(m, m− l, h).
It remains to verify c ·H⊤ = o if and only if c ∈ GabR(m, l, g) is valid for any

codeword c ∈ Rm. Denote by Gl the matrix created from G by omitting the last
(m− l) rows. Choose c ∈ Rm. Express the homogeneous system c ·H⊤ = o using
the equations (4.4)

c ·H⊤ = o (4.4)⇐⇒ ∃x ∈ Rl : c · F ′ = (x, o) F ′=F ·L⇐⇒ ∃x ∈ Rl : c = (x, o) · L−1 · F−1

F =G−1
⇐⇒ ∃x ∈ Rl : c = (x, o) · L−1 ·G
⇐⇒ ∃x ∈ Rl : y = (x, o) · L−1 ∧ c = y ·G.

Remark that L−1 is also lower triangular, which is displayed in Example 9. Then,
necessary, z ∈ Rl exists and satisfies y = (x, o) · L−1 = (z, o). In conclusion,
c ·H⊤ = o if and only if c = (z, o) ·G = z ·Gl for some z ∈ Rl.

Corollary 68. Let l, m ∈ N satisfy l ≤ m ≤ min(n, r), and g ∈ Rm fulfill
rk(g) = m. Then, GabR(m, l, g)⊥ is a free [m, m− l]-code, which is MCRD.

4.2 Linearised Polynomials
Gabidulin codes are usually represented by linearised polynomials, which get
evaluated at each coordinate of the generating codeword. Linearised polynomials
over R have to be introduced and their properties understood to formalise this
approach. Linearised polynomials in this thesis are applications of more general
Skew polynomials over Galois rings studied in multiple publications, for example,
by Kamche and Mouaha [16].
Definition 69. A linearised polynomial over R of degree d is any polynomial
of the form F (X) =

d∑︁
i=0

fi · τ i(X) with the coefficients from R and fd ̸= 0. Let
P(R) be the set of all linearised polynomials over R. The degree of F ∈ P(R)
is denoted by deg(F ) and deg(0) is defined as−∞. Define, for every d ∈ N, the set
Pd(R), which contains linearised polynomials of degree less than d, and the set
P∗d(R) composed of monic linearised polynomials of degree exactly (d − 1), i.e.
F (X) = τ d−1(X) + G(X) for G ∈ Pd−1(R).

The main idea behind the definition of linearised polynomials is that they
should represent module endomorphisms of the ring R viewed as the S-module,
denoted by RS. The addition and subtraction of linearised polynomials defined
in the same way as in R[x] are consistent with module endomorphisms’ addition
and subtraction. To have the multiplication of linearised polynomials consistent
with the composition of module endomorphisms, a different multiplication than
the one used in R[x] must be established.
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Theorem 70. (P(R), +,−, ◦, 0, ε) is a non-commutative ring, where ε(X) = X
and ◦ is defined for F, G ∈ P(R) as (F ◦G)(X) = F (G(X)).

Proof. Commence by observing that (P(R), +,−, 0) is truly an abelian group,

because R is. Choose F =
df∑︁

i=0
fiτ

i−1(X), G =
dg∑︁

i=0
giτ

i−1(X), H =
dh∑︁

i=0
hiτ

i−1(X)

from P(R). Let pi equal zero for every P =
dp∑︁

i=0
piτ

i−1(X) ∈ P(R) and i ∈ Z such
that i < 0 or i > dp. Denote the sums d1 = df + dg, d2 = df + dh, d3 = dg + dh,
and the maximums d12 = max(d1, d2), d23 = max(d2, d3). Firstly, verify that
(P(R), ◦, ε) is a monoid, i.e. the operation ◦ is associative and ε is an identity:

((F ◦G) ◦H)(X) = (F ◦G)(H(X)) = F (G(H(X))) = F ((G ◦H)(X))
= (F ◦ (G ◦H))(X),

(ε ◦ F )(X) = ε(F (X)) = F (X) = F (ε(X)) = (F ◦ ε)(X)

Secondly, it has to be shown that the operation ◦ is distributive with respect
to the addition:

(F ◦ (G + H))(X) = F ((G + H)(X)) =
d12∑︂
i=0

i∑︂
j=0

fjτ
j(gi−j + hi−j)τ i−1(X)

=
d1∑︂

i=0

i∑︂
j=0

fjτ
j(gi−j)τ i−1(X) +

d2∑︂
i=0

i∑︂
j=0

fjτ
j(hi−j)τ i−1(X) = (F (G) + F (H))(X)

= (F ◦G)(X) + (F ◦H)(X),

((F + G) ◦H)(X) = (F + G)(H(X)) =
d23∑︂
i=0

i∑︂
j=0

(fj + gj)τ j(hi−j)τ i−1(X)

=
d2∑︂

i=0

i∑︂
j=0

fjτ
j(hj−i)τ i−1(X) +

d3∑︂
i=0

i∑︂
j=0

gjτ
j(hj−i)τ i−1(X) = (F (H) + G(H))(X)

= (F ◦H)(X) + (G ◦H)(X).

Let ξ ∈ R be of order pr − 1. Consider P (X) = ξ · X, Q(X) = τ(X) ∈ P(R).
Then, (P ◦ Q)(X) = ξ · τ(X) and (Q ◦ P )(X) = τ(ξ · X) = τ(ξ) · τ(X) are not
equal. Thence, (P(R), +,−, ◦, 0, ε) is a non-commutative ring.

Remark. Theorem 70 can be also proven by providing an isomorphism between
(P(R), +,−, ◦, 0, ε) and EndS(RS), where EndS(RS) is a non-commutative ring
consisting of all S-module endomorphisms of the ring R viewed as an S-module.

Consider F, G ∈ P(R) and set df = deg(F ) and dg = deg(G). It is apparent
that deg(F + G) ≤ max(dF , dG) and deg(F ◦ G) ≤ dF + dG. Let G be monic
and dQ = dF − dG. Therefore, the product F ◦ G is exactly of degree dQ. Now,
we demonstrate that in this situation, Ql, Qr ∈ PdQ+1(R) and Rl, Rr ∈ PdG

(R)
meeting the condition F = G ◦Ql + Rl = Qr ◦G + Rr exist.

Definition 71. Let F, G ∈ P(R). One shall say that G is the left (right) divisor
of F and F is left (right) divisible by G provided there exists a non-zero Q ∈ P(R)
satisfying F = G ◦Q (F = Q ◦G).
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Algorithm 8 Left and right division with remainder

Require: F =
dF∑︁
i=0

fiτ
i(X) ∈ PdF +1(R), G =

dG∑︁
i=0

giτ
i(X) ∈ P∗dG+1(R)

Ensure: Ql, Qr ∈ PdF−dG+1(R), Rl, Rr ∈ PdG
(R) : F = G◦Ql +Rl = Qr◦G+Rr

dQ ← dF − dG, i← dF

while i ≥ dG do

ai−dG
← τ r−dG

(︄
fi −

min(dQ,i)∑︁
j=i−dG+1

gi−jτ
i−j(aj)

)︄

bi−dG
← fi −

min(dQ,i)∑︁
j=i−dG+1

bjτ
j(gi−j)

i← i− 1
end while
Ql ←

dQ∑︁
i=0

aiτ
i(X), Rl ← F −G ◦Ql

Qr ←
dQ∑︁
i=0

biτ
i(X), Rr ← F −Qr ◦G

return (Ql, Qr, Rl, Rr)

Theorem 72. Let dF , dG ∈ N, F ∈ PdF
(R) and G ∈ P∗dG

(R). Set dQ = dF −dG.
Then, there exist left and right quotient Ql, Qr ∈ PdQ+1(R) and left and right
remainder Rl, Rr ∈ PdG

(R) such that F = G ◦Ql + Rl = Qr ◦G + Rr.

Proof. It is enough to display that Algorithm 8 is correct. Let F ∈ PdF +1(R)
and G ∈ P∗dG+1(R) be given. Denote dQ = dF −dG and mi = min(dQ, i) for i ∈ Z,
0 ≤ i ≤ dF . Let Qr ∈ PdQ+1(R) be the right quotient of division with remainder,
computed as in the algorithm on inputs F, G. Firstly, determine boundaries
for indices i, j such that i iterates over coefficients of F , j iterates over coefficients
of QR, and (i − j) iterates over coefficients of G. Clearly, we have 0 ≤ i ≤ dF ,
0 ≤ j ≤ dQ and 0 ≤ i − j ≤ dG. The third pair of inequalities can be rewritten
as j ≤ i ≤ dG + j, which, combined with the second pair of inequalities, gives
that max(0, i− dG) ≤ j ≤ min(dQ, i) = mi. Next, express the product Qr ◦G:

Qr ◦G =
dF∑︂
i=0

⎛⎝ mi∑︂
j=max(0,i−dG)

bjτ
j(gi−j)

⎞⎠ τ i(X) (4.5)

=
dF∑︂

i=dG

⎛⎝ mi∑︂
j=i−dG

bjτ
j(gi−j)

⎞⎠ τ i(X) +
dG−1∑︂
i=0

⎛⎝mi∑︂
j=0

bjτ
j(gi−j)

⎞⎠ τ i(X). (4.6)

Observe that fi =
mi∑︁

j=i−dG

bjτ
j(gi−j) = bi−dG

+
mi∑︁

j=i−dG+1
bjτ

j(gi−j) since gdG
= 1,

where i ∈ N, dG ≤ i ≤ dF . By integrating the equation 4.6 with the observation,

Rr = F −Qr ◦G =
dF∑︂
i=0

fiτ
i(X)−

dF∑︂
i=dG

fiτ
i(X)−

dG−1∑︂
i=0

⎛⎝mi∑︂
j=0

bjτ
j(gi−j)

⎞⎠ τ i(X)

=
dG−1∑︂
i=0

⎛⎝fi −
mi∑︂
j=0

bjτ
j(gi−j)

⎞⎠ τ i(X) ∈ PdG
(R).

Thus, the requirements for the right division are fulfilled. The left division may
be proven analogically using that τ−dG = τ r−dG as τ is fully defined by the image
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of ξ ∈ Tr of order pr − 1, and τ r(ξ) = ξ[r] = ξ.

Example 15. Let R = GR(55, 4), G5,4(x) = x4 + 450x3 + 830x2 + 1892x + 3124
over Z55 [x], ξ = x + (G5,4) and B = (1, ξ, ξ2, ξ3) be as in Example 14. The
left division with the remainder for the ensuing linearised polynomials U and V
is provided:

U(X) = (1646:2004:1497:825)τ 2(X) + (2018:1595:473:3039)τ(X) + (1824:1381:2671:2340)X
V (X) = τ(X) + (2:4:2:1)X

Let us simulate Algorithm 8 on U and V instead of F and G, where all arith-
metic is done in Wolfram Mathematica.

dQ = 2− 1 = 1

i = 2 : a1 = τ 4−1

⎛⎝u2 −
1∑︂

j=1
vi−jτ

i−j(aj)
⎞⎠ = τ 3 (u2) = τ 3(1646:2004:1497:825)

= 28:0:0:1123

i = 1 : a0 = τ 4−1

⎛⎝u1 −
1∑︂

j=1
vi−jτ

i−j(aj)
⎞⎠ = τ 3

(︂
u1 − v0τ

0(a1)
)︂

= τ 3((2018:1595:473:3039)− (2:4:2:1) · (28:0:0:1123))
= τ 3((2018:1595:473:3039)− (2662:589:666:549))
= τ 3((2481:1006:2932:2490)) = 0:91:2875:1

Q(X) =
1∑︂

j=0
ajτ

j(X) = Q(X) = (28:0:0:1123)τ(X) + (0:91:2875:1)X

V ◦Q(X) = v1τ(a1)τ 2(X) + (v0a1 + v1τ(a0))τ(X) + v0a0X

= τ(28:0:0:1123)τ 2(X) + ((2:4:2:1)(28:0:0:1123) + τ(0:91:2875:1))τ(X)+
+ ((2:4:2:1)(0:91:2875:1))X

= (1646:2004:1497:825)τ 2(X) + (2018:1595:473:3039)τ(X)+
+ (1824:1381:2671:2340)X = U(X)

R(X) = U − V ◦Q = 0

Hence, V is the left divisor of U .
Let F be a linearised polynomial over R. We shall say that a ∈ R is a root

of F over R provided F (a) = 0. One of the most essential properties of linearised
polynomials is that the set of all roots of F over R forms an S-module. Let us
focus on proving that.

Definition 73. The kernel of a linearised polynomial F ∈ P(R) is the set of all
its roots over R and is denoted by ker(F ).

Lemma 74. The kernel of any F ∈ P(R) is an S-submodule of R. Additionally,
ker(F ) is free, if F ∈ P∗t (R) for t ∈ N.
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Proof. Choose F =
t∑︁

i=0
fiτ

i(X) ∈ P(R). Suppose that ζ1, ζ2 ∈ ker(F ) and s ∈ S.
Then, ζ1 + ζ2, s · ζ1 ∈ ker(F ) since

t∑︂
i=0

fiτ
i(ζ1 + ζ2) =

t∑︂
i=0

fi(τ i(ζ1) + τ i(ζ2)) =
t∑︂

i=0
fiτ

i(ζ1) +
t∑︂

i=0
fiτ

i(ζ2) = 0,

F (s · ζ1) =
t∑︂

i=0
fi · s · τ i(ζ1) = s

t∑︂
i=0

fiτ
i(ζ1) = 0.

Suppose that ft = 1 and find minimal basis χ = (χ1, . . . , χl) of ker(F ).
Assume there exists i ∈ N, i ≤ l, for which χi ∈ pR. Find maximal exponent
e ∈ N and a unit υ ∈ R∗ satisfying χi = pe · υ. It results in τ t(υ) ∈ R∗

and F (χi) = pe · F (υ) = pe

(︃
τ t(υ) +

t−1∑︁
i=0

fiτ
i(υ)

)︃
. Hence, F (χi) = 0 if and only

if F (υ) ∈ pn−eR. This can happen if and only if F (υ) = 0, and χ is not minimal
in that case.

Now, there is no element of χ divisible by p. Let z1, . . . , zl ∈ S satisfy
l∑︁

i=1
ziχi = 0 and at least one of them is non-zero. Find e = 0, . . . , n − 1

and y1, . . . , yl ∈ R such that zi = pe · yi for each i ∈ N, i ≤ l, and yj ∈ R∗
for some j ∈ N non-greater l. In the given situation,

l∑︂
i=1

ziχi = 0 ⇐⇒ pn |
l∑︂

i=1
ziχi ⇐⇒ pn−e |

l∑︂
i=1

yiχi ⇐⇒
l∑︂

i=1
yiχi = 0.

Consequently, χj = −
l∑︁

i=1
i ̸=j

yi

yj
χi, which contradicts that χ is the minimal basis.

It may be concluded that χ is a free basis of ker(F ).

Thanks to the preceding lemma, we know that roots of a monic linearised
polynomial F over R form a free S-module. This statement may be generalised
for linearised polynomials with the leading coefficient being a unit. At first sight,
it may not be clear how large the rank of ker(F ) is, even though the intuition
likely advises that the rank is connected to degree. Before providing the relation,
introduce a useful notation. Consider F ∈ P(R) and x ∈ Rm for some m ∈ N.
The codeword (F (x1), . . . , F (xm)) ∈ Rm is referred to as F (x).

Claim 75. Let m ∈ N and F ∈ P∗m+1(R). Then rank(ker(F )) ≤ m.

Proof. Denote l = rank(ker(F )). Lemma 74 asserts that the kernel of F is a free
S-module, and therefore there exists a free basis χ = (χ1, . . . , χl) of ker(F ) over S.
Set A = (τ i−1(χj))l

i,j=1 ∈ Rl×l, which columns compose a free basis of Im(A)
over R by applying Theorem 63. Grounded on Theorem 37, the matrix A
is invertible, so g ∈ Rl exists unique such as A · g⊤ = (−τ l(χi))l

i=1. Define
G(X) = τ l(X) +

l∑︁
i=1

gi · τ i−1(X) ∈ P∗l+1(R). Then, for every i = 1, . . . , l, we have

G(χi) = τ l(χi) +
l∑︁

i=1
gi · τ i−1(χi) = τ l(χi) +

l∑︁
i=1

Ac
i · gi = τ l(χi)− τ l(χi) = 0, which

means that ⟨χ1, . . . , χl⟩S ⊆ ker(G).

52



Suppose y ∈ ker(G) \ ⟨χ1, . . . , χl⟩S exists. Find e = 0, . . . n− 1 and χl+1 ∈ R∗
such that y = pe ·χl+1. Note that 0 = G(y) = pe ·G(χl+1) can happen if and only
if pn−e | G(χl+1), which is equivalent to G(χl+1) = 0 as G is monic and p ∤ χl+1.
Thus, χl+1 ∈ ker(F ). Set z = (χ1, . . . , χl+1) ∈ Rl+1. Theorem 48 implies
rk(z) = l + 1. Consider B = (τ i−1(χj))l+1

i,j=1 with the columns forming a free
basis of Im(B) over R as stated by Theorem 63. On the other hand, G(z) = o

if and only if
l∑︁

i=1
Bc

i ·gi = (−τ l(χj))l+1
j=1 = −Bc

l+1, which contradicts (Bc
1, . . . , Bc

l+1)
being the free basis. Hence, ker(G) = ⟨χ1, . . . , χl⟩S and l ≤ m.

Let g ∈ Rm has cardinal rank m. Proof of the prior claim provides a way
to construct a linearised polynomial F , whose kernel is precisely ⟨g1, . . . , gm⟩S.
Now, we show that there is exactly one such F .

Lemma 76. Let m ∈ N, x ∈ Rm satisfy rk(x) = m and G ∈ P(R). There
exists the unique F ∈ P∗m+1(R) such that ker(F ) = ⟨x1, . . . , xm⟩S. Furthermore,
G(x) = o if and only if G = H ◦ F for some H ∈ P(R).

Proof. The existence of F follows directly from the construction of linearised
polynomial G in Claim 75’s proof. Assume that we already have F ∈ P∗m+1(R)
with ker(f) = ⟨x1, . . . , xm⟩S. Choose d ∈ N and G ∈ Pd(R). Put dQ = d −m.
Compute the right quotient Q ∈ PdQ+1(R) and the right remainder R ∈ Pm(R)
fulfilling G = Q ◦ F + R performing Algorithm 8. If R = 0 then, undoubtedly,
G(x) = o.

Let R =
dR∑︁
i=1

riτ
i−1(X) for dR = deg(R) ∈ N. Assume, for contradiction, that

R(x) = o. Define codewords bi = (τ i−1(xj))m
j=1 ∈ Rm, where i = 1, . . . , m.

Then B = (b1, . . . , bm) is a free basis over R due to Theorem 63. Express
the codeword R(x) =

dR∑︁
i=1

riτ
i−1(x) =

dR∑︁
i=1

ribi = o, so B cannot be free as dR < m

and rdR
̸= 0, a contradiction. It may be concluded that G(x) = R(x) ̸= o.

Finally, let G ∈ P∗m+1(R) satisfy ker(G) = ⟨x1, . . . , xm⟩S. Then, by already
proven part, there exists H ∈ P(R) such that G = H ◦ F . Since both F and G
are monic of degree m, H must equal ε and F must equal G.

Before concluding this part about linearised polynomials, we extend the prior
lemma to address the general case in which there is no requirement on the cardinal
rank.

Theorem 77. Let m ∈ N and x ∈ Rm be non-zero. Denote t = ⌊n · rk(x)⌋.
Then, there exists F ∈ P∗t+1(R) satisfying F (x) = o.

Proof. Let d ∈ N be the rank of an S-module A = ⟨x1, . . . , xm⟩S. Denote
by B = (pn−1v1, . . . , pn−1vd) a free basis of Soc(A) over T . Clearly, v1, . . . , vd

are units of R, or otherwise there exists i ∈ N meeting the conditions i ≤ d
and pn−1vi = 0, which implies B is not the free basis. Set v = (v1, . . . , vd) ∈ Rd.
In line with Theorem 54, rk(v) = n · d

n
= d.

Derived from Lemma 76, the unique G ∈ P∗d+1(R) exists which satisfies
ker(G) = ⟨v1, . . . , vd⟩S. Thence, A seems to be a submodule of ker(G), because
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Soc(A) = ⟨B⟩S = Soc(ker(G)) and ker(G) is free. Consequently, G(x) = o.
To finalise the proof, define F (X) = τ t−d(X) ◦ G(X), which seems to be monic
of degree t.

4.3 Decoding Gabidulin Codes
Any Gabidulin [m, l]R-code can be viewed as the set of linearised polynomials
of degree less than l evaluated on the generating codeword, i.e.

GabR(m, l, g) = {F (g) | F ∈ Pl(R)} (4.7)
for any g ∈ Rm of cardinal rank m. Numerous publications, between them the one
by Epelde and Rúa [6], prefer to define Gabidulin codes using the equation 4.7.
The lemma 78 validates this equation.
Lemma 78. Let l, m ∈ N such that l ≤ m ≤ min(n, r) and g ∈ Rm satisfy
rk(g) = m. Then, for every c ∈ Rm, a linearised polynomial F ∈ Pl(R), which
fulfills c = F (g), exists if and only if c ∈ GabR(m, l, g).

Proof. Suppose that G = (τ i−1(gj))l,m
i=1,j=1 is a generator matrix of GabR(m, l, g).

Assume that c ∈ GabR(m, l, g), so c = z · G for z ∈ Rl. Define a linearised
polynomial F =

l∑︁
i=1

zi · τ i−1(X). Then F ∈ Pl(R) and

∀i ∈ N, i ≤ m : F (gi) =
l∑︂

j=1
zj · τ j−1(gi) = z ·Gc

i = ci (4.8)

Now, let F (X) =
l∑︁

i=1
zi · τ i−1(X) ∈ Pl(R). Hence, F (g) ∈ GabR(m, l, g)

follows from the equations (4.8).

Consider positive integers m and l satisfying l ≤ m ≤ min(n, r). Choose
g ∈ Rm with the full cardinal rank and abbreviate GabR(m, l, g) to G. Let
c ∈ G be a sent codeword over some channel and e ∈ Rm be the received
codeword. In theory, if dR(c, e) < dR(G) then the code G is able to detect errors,
and if dR(c, e) < dR(G)

2 then G is even capable of correcting errors and recovering
the original c.

A decoding algorithm for Gabidulin codes over Galois rings can be grounded
on a division of linearised polynomials as proposed in Kamche and Mouaha’s
work [16, Chapter 3]. The lemma 79 encompasses the principal idea of decoding.
Lemma 79. Let l, m ∈ N be such that l ≤ m ≤ min(n, r) and g ∈ Rm have
full cardinal rank. Set G = GabR(m, l, g), k = m−l

2n
and t = ⌊nk⌋. Assume that

there exist codewords c ∈ G and y ∈ Rm such that dR(c, y) ≤ k. Let F ∈ P∗l (R)
meet the condition F (g) = c. Define b = (τ t(yi))m

i=1 ∈ Rm and a block matrix
A =

(︂
G Y

)︂
of type m× (l + 2t) over R, where

G =

⎛⎜⎜⎝
g1 τ(g1) . . . τ l+t−1(g1)
... ... . . . ...

gm τ(gm) . . . τ l+t−1(gm)

⎞⎟⎟⎠ , Y = −

⎛⎜⎜⎝
y1 τ(y1) . . . τ t−1(y1)
... ... . . . ...

ym τ(ym) . . . τ t−1(ym)

⎞⎟⎟⎠ .
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Then, u ∈ Rl+t, v ∈ Rt, which solve the linear system A ·
(︂

u⊤

v⊤

)︂
= b⊤, exist.

Especially, U =
l+t∑︁
i=1

uiτ
i−1(X) and V = τ t(X) +

t∑︁
i=1

viτ
i−1(X) satisfy U = V ◦ F

and U(g) = V (c).

Proof. Begin by proving the existence of solutions. Set d = dR(c, y), fd = ⌊nd⌋
and fk = ⌊nk⌋. Due to Theorem 77, there exists W ∈ P∗fd

(R) such that
W (y − c) = o, which implies W (y) = W (c) = W ◦ F (g). Define u ∈ Rl+fk

and v ∈ Rfk by the subsequent formulas

U = τ fk−fd(W ◦ F (X)) =
l+fk∑︂
i=1

ui · τ i−1(X) ∈ Pl+fk
(R), (4.9)

V = τ fk−fd(W (X)) = τ fk(X) +
fk∑︂

i=1
vi · τ i−1(X) ∈ P∗fk+1(R). (4.10)

Choose i ∈ N, i ≤ m, and verify that the ith coordinate of A ·
(︂

u⊤

v⊤

)︂
equals τ fk(yi):

(︂
A ·

(︂
u⊤

v⊤

)︂)︂
i

=
l+fk∑︂
j=1

τ j−1(gi)uj −
fk∑︂

j=1
τ j−1(yi)vj = U(gi)− V (yi) + τ fk(yi)

(4.9)=
(4.10)

τ fk−fd(W ◦ F (gi)−W (yi)⏞ ⏟⏟ ⏞
=0 since W◦F (gi)=W (yi)

) + τ fk(yi) = τ fk(yi).
(4.11)

Suppose that solutions u ∈ Rl+fk and v ∈ Rfk of the linear system are given.
Set U =

l+fk∑︁
i=1

ui ·τ i−1(X) ∈ Pl+fk
(R) and V = τ fk(X)+

fk∑︁
i=1

vi ·τ i−1(X) ∈ P∗fk+1(R).
Derived from the first line of (4.11), b = U(g)− V (y) + b and so U(g) = V (y).
Observe that (U−V ◦F )(g) = U(g)−V ◦F (g) = V (y)−V (F (g)) = V (y−F (g))
and rk((U − V ◦ F )(g)) = rk(V (y − F (g))) ≤ rk(y − F (g)) ≤ k. Once again
using Theorem 77, a monic linearised polynomial H of degree at most fk exists,
which satisfies H(U − V ◦ F )(g)) = o. So the degree of H ′ = H((U − V ◦ F ) is

deg(H ′) ≤ deg(H) + max(deg(U), deg(V ◦ F )) ≤ fk + fk + l − 1

= 2 ·
⌊︄
n · m− l

2n

⌋︄
+ l − 1 ≤ m− l + l − 1 = m− 1.

In accordance with Theorem 76, there exist G′ ∈ P∗m+1(R) and Q ∈ P(R) such
that ker(G′) = ⟨g1, . . . , gm⟩S and H ′ = Q ◦G′. Since deg(H ′) < deg(G′), both Q
and H ′ must be constant zeros. In conclusion, U = V ◦ F , because H is monic
and non-zero.

Let g, y ∈ Rm and U, V ∈ P(R) be given as in Lemma 79. In this scenario,
F ∈ Pl(R), which satisfies F (g) ∈ GabR(m, l, g) and dRF (c), y ≤ m−l

2n
, can

be computed by the left division of U by V . As a result, the decoding algorithm
is described below.

Theorem 80. Let m, l ∈ N be such that l ≤ m ≤ min(r, n) and g ∈ Rm satisfy
rk(g) = m. Let y ∈ Rm and c ∈ GabR(m, l, g). Then, Algorithm 9 outputs c
on the input m, l, g, y if and only if dR(y, c) ≤ m−l

2n
.
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Algorithm 9 Decoding for Gabidulin codes
Require: m, l ∈ N, g, y ∈ Rm such that rk(g) = m
Ensure: c ∈ GabR(m, l, g) such that dR(c, y) ≤ m−l

2n
, or ⊥

k ←
⌊︂

m−l
2

⌋︂
G← (τ j−1(gi))m,l+k

i=1,j=1, Y ← (−τ j−1(yi))m,k
i=1,j=1, b← (τ k(yi))m

i=1

Z ←
{︂
(u, v) | u ∈ Rk+l, v ∈ Rk : G · u⊤ + Y · v⊤ = b⊤

}︂
= {(uj, vj)}t

j=1
j ← 1
while j ≤ t do

U ←
l+k∑︁
i=1

uji · τ i−1(X), V ← τ k(X) +
k∑︁

i=1
vji · τ i−1(X)

(Q,−, R,−)← Algorithm 8(U, V )
if ((R = 0) ∧ (dR(y, Q(g)) ≤ m−l

2n
)) then

return Q(g)
end if
j ← j + 1

end while
return ⊥

Proof. If dR(y, c) ≤ m−l
2n

then it is clear using Lemma 79. Assume that Q(g)
is the output of Algorithm 9 applied to m, l, g, y. It is evident that Q ∈ Pl(R)
since U = V ◦ Q for U ∈ Pl+⌊m−l

2 ⌋(R) and V ∈ P∗⌊m−l
2 ⌋+1(R). Set c = Q(g),

so c ∈ GabR(m, l, g) in line with Lemma 78. In conclusion, dR(y, c) ≤ m−l
2n

as the algorithm returned c, i.e. the conditions R = 0 and dR(y, c) ≤ m−l
2n

were
met.

Refer to the matrices G ∈ Rm×(l+k), Y ∈ Rm×k of types m× (l+k) and m×k
over R, respectively, and the codeword b ∈ Rm from Algorithm 9. Similarly,
as described in Epelde and Rúa’s work [6, Section 5.2], the system of linear
equations G · u⊤ + Y · v⊤ = b⊤ may be partially precomputed since the matrix
G is fixed given the Gabidulin code. Divide the matrices G, Y and the codeword
b into two blocks: G =

(︂
G1
G2

)︂
and Y =

(︂
Y1
Y2

)︂
, where the first blocks consist

of first l + k rows, and b =
(︂
b1 b2

)︂
is divided accordingly. Thence, the matrix

G1 is invertible by applying Theorem 63 to G⊤ and following Theorem 37.
Consequently, G · u⊤ + Y · v⊤ = b⊤ if and only if Gi · u⊤i + Yi · v⊤i = b⊤i for both
i ∈ {1, 2}. This is equivalent to

(Y2 −G2G
−1
1 Y1) · v⊤ = b⊤2 −G2G

−1
1 b⊤1 ∧ u⊤ = G−1

1 (b⊤1 − Y1v⊤),

where matrices G−1
1 and G2 ·G−1

1 can be computed beforehand.
We illustrate the decoding for Gabidulin codes in an example, by which we end

this section. A good understanding of decoding is essential as a PKC is grounded
on it.
Example 16. Let R = GR(55, 4), S = GR(55, 1), the basic primitive polynomial
G5,4(x) = x4+450x3+830x2+1892x+3124 over Z55 [x], ξ = x+(G5,4) and the free
basis B = (1, ξ, ξ2, ξ3) of R over S all be such as in Example 14. Consider
g = (0:11:9:0, 0:0:31:124, 19:0:934:0, 87:0:21:0) ∈ R4, which satisfy rk(g) = 4 by (4.2).
Thus, the Gabidulin code G = GabR(4, 2, g) has the generator matrix G ∈ R2×4
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from (4.3)

G = ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0
481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008 ) .

Set z = (0:91:2875:1, 28:0:0:1123) ∈ R2 and the codeword c ∈ G determined by z,

i.e. c = z · G =
(︃ 1913:590:1648:2441

2138:2810:207:1244
2682:2904:775:2133
715:2361:358:1251

)︃⊤
. Let e =

(︃ 2500:1875:2500:1250
625:1250:625:1875
1250:2500:1250:625
625:1250:625:1875

)︃⊤
be an error

codeword. We have to verify that rk(e) ≤ 4−2
2·5 = 1

5 . Thus,

[e]B =
(︃ 1250 1875 625 1875

2500 625 1250 625
1875 1250 2500 1250
2500 625 1250 625

)︃
∼
(︃ 625 2500 1875 2500

2500 625 1250 625
1875 1250 2500 1250
2500 625 1250 625

)︃
∼
(︃ 625 2500 1875 2500

0 0 0 0
0 0 0 0
0 0 0 0

)︃
, (4.12)

where the first row of [e]B is multiplied by an integer 1563, and afterwards,
an 3121-multiple of the first row is added to the second and the fourth row
and an 3122-multiple to the third row. Using Claim 48, the cardinal rank of e
is rk(e) = rk([e]B) = rk([e]⊤B) = log55(|Im[e]⊤B|) = log55(5) = 1

5 . Therefore,
the code G is able to correct a codeword y ∈ R4 corrupted by the error e, i.e.

y = c + e
= (1288:2465:1023:566, 2763:935:832:3119, 807:2279:2025:2758, 1340:486:983:1).

(4.13)

Now, we perform Algorithm 9 to decode corrupted y. Note that
⌊︂

4−2
2

⌋︂
= 1.

Let A =
(︂
G1 − y⊤

⃓⃓⃓
b⊤
)︂

be an augmented matrix representing the linear system
G1·u⊤−v·y⊤ = b⊤ for G1 = (τ j−1(gi))4,3

i=1,j=1 and b = (τ(yi))4
i=1. In the described

scenario,

A =
⎛⎝ 0:11:9:0 τ(0:11:9:0) τ2(0:11:9:0) −y1

0:0:31:124 τ(0:0:31:124) τ2(0:0:31:124) −y2
19:0:934:0 τ(19:0:934:0) τ2(19:0:934:0) −y3
87:0:21:0 τ(87:0:21:0) τ2(87:0:21:0) −y4

⃓⃓⃓⃓
⃓⃓ τ(1288:2465:1023:566)

τ(2763:935:832:3119)
τ(807:2279:2025:2758)

τ(1340:486:983:1)

⎞⎠ ,

which equals⎛⎝ 0:11:9:0 481:948:631:3119 2030:2999:3121:2565 1837:660:2102:2559
0:0:31:124 1770:1098:2806:1799 803:3001:2882:671 362:2190:2293:6
19:0:934:0 2638:1089:2965:1596 1990:328:30:3019 2318:846:1100:367
87:0:21:0 229:1959:2934:1008 302:1913:3048:2955 1785:2639:2142:3124

⃓⃓⃓⃓
⃓⃓ 816:2358:2015:2618

691:175:1139:2651
2138:2015:3001:937
2541:735:1190:2905

⎞⎠
Multiply the first row by (1496:2942:2382:1854) and after that, add the first row
multiplied by (0:0:3094:3001), (3106:0:2191:0) and (3038:0:3104:0) to the second row,
the third row and the fourth row in the specified order:⎛⎝ 0:0:0:1 819:1118:1949:1280 1955:1395:1625:719 1862:1666:1223:847

0:0:0:0 3106:3042:1188:2065 3013:546:3:910 2103:1328:33:2881
0:0:0:0 2153:636:1502:2899 14:743:1269:649 1802:254:2258:1062
0:0:0:0 3122:1359:2862:811 99:2933:2044:2200 343:1891:499:1541

⃓⃓⃓⃓
⃓⃓ 1216:2409:1415:1530

928:1524:2206:235
2685:278:2863:1578

646:194:829:224

⎞⎠ .

Now, normalise the second row by multiplying it by (2206:1228:1982:2394). Then,
reduce the first, the third and the fourth row by adding the second row multiplied
by (2306:2007:1176:1845), (972:2489:1623:226) and (3:1766:263:2314), respectively:⎛⎝ 0:0:0:1 0:0:0:0 367:420:1492:1940 625:3034:250:3124

0:0:0:0 0:0:0:1 1937:1388:23:422 1222:1875:1875:2002
0:0:0:0 0:0:0:0 1448:2994:3029:315 2500:1250:1875:2500
0:0:0:0 0:0:0:0 1878:2010:1407:1711 2500:1250:625:2500

⃓⃓⃓⃓
⃓⃓ 964:2940:201:1626

2432:2100:1949:879
1433:179:729:2401
698:2197:1793:2213

⎞⎠ .
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Finally, multiply the third row by a scalar (1996:2689:1247:1124). Subsequently, add
(2758:2705:1633:1185), (1188:1737:3102:2703) and (1247:1115:1718:1414)-multiple of the third
row to the first, the second and the fourth row in the given order:⎛⎝ 0:0:0:1 0:0:0:0 0:0:0:0 1250:534:875:2499

0:0:0:0 0:0:0:1 0:0:0:0 2472:625:2500:127
0:0:0:0 0:0:0:0 0:0:0:1 1875:1875:0:0
0:0:0:0 0:0:0:0 0:0:0:0 1875:1875:2500:1875

⃓⃓⃓⃓
⃓⃓ 1875:1875:2500:2500

2481:381:432:615
2896:754:2747:2700
2500:1875:625:2500

⎞⎠ .

Thence, it is possible to straightforwardly compute v1 ∈ R and u ∈ R3, which
satisfy G1 · u⊤ − v1 · y⊤ = b⊤:

v1 = (2:4:2:1)
u = (1824:1381:2671:2340, 2018:1595:473:3039, 1646:2004:1497:825)

(4.14)

Define linearised polynomials
U(X) = (1646:2004:1497:825)τ 2(X) + (2018:1595:473:3039)τ(X) + (1824:1381:2671:2340)X
V (X) = τ(X) + (2:4:2:1)X.

Conclude from Example 15, Q(X) = (28:0:0:1123)τ(X) + (0:91:2875:1)X satisfies
U(X) = V ◦ Q(X). Undoubtedly, the coefficients of Q are the coordinates of z
in the reversed order, so truly Q(g) = z ·G = c. Since the left remainder is zero
and dR(y, Q(g)) = rk(e) ≤ 1

5 , Algorithm 9 would output Q(g) ∈ G.

4.4 GPT Cryptosystem
Gabidulin et al. [2] presented a modification of the McEliece cryptosystem, known
as the GPT cryptosystem, to effectively utilise the Gabidulin codes. In this
section, a version of the GPT PKC over Galois rings is derived from the Smart
approach for GPT Cryptosystem [4].

Let x ∈ Rm, A ∈ Rm and I ⊆ {1, . . . , m} be given. Then, the codeword
composed of the x’s coordinates with the indices from I shall be denoted by xI .
Similarly, the matrices created by omitting the rows and the columns of A, which
indices are not contained in I, shall be written as AI· and A·I , respectively. Now,
let us depict the GPT cryptosystem over a Galois ring by its building blocks: key
generation, encryption, and decryption algorithms.

Algorithm 10 GPT Cryptosystem Key Generation
Require: p prime, a, l, m, n, r, t ∈ N, l ≤ m ≤ min(r, n) and 2 ≤ a ≤ t
Ensure: a public key Kpub = (Gpub, e), a private key Kpriv = (g, Gpriv, T−1, t)

R ← GR(pn, r)
choose a random g ∈ Rm such that rk(g) = m, G← (τ i−1(gj))l,m

i=1,j=1
compute F ∈ Rm×l satisfying G · F = Il

choose x ∈ Ra for which rank(Im(x)S) = a and rk(x) < a
X1 ← (τ i−1(xj))l,a

i=1,j=1
choose X2 ∈ Rl×(t−a) such that rank(Im(X1)S + Im(X2)S) = t

X ←
(︂
X1 X2

)︂
choose invertible matrices S ∈ Rl×l and T ∈ S(m+t)×(m+t), compute T−1

Gpub ← S ·
(︂
X G

)︂
· T ; Gpriv ← F · S−1

choose e ∈ N, e ≤ m−l
2n

return (Gpub, e), (g, Gpriv, T−1, t)
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Algorithm 11 GPT Cryptosystem Encryption
Require: x ∈ Rl,Kpub = (Gpub, e)
Ensure: c = EncKpub(x)

choose z ∈ Rm+t such that rk(z) ≤ e
return x ·Gpub + z

Algorithm 12 GPT Cryptosystem Decryption
Require: c ∈ Rm+t,Kpriv = (g, Gpriv, T−1, t)
Ensure: x = DecKpriv(c), or ⊥

d← (c · T−1){t+1,...,m+t}
y← Algorithm 9(m, l, g, d)
if y ̸=⊥ then

return y ·Gpriv
else

return ⊥
end if

Lemma 81. The decryption of the GPT cryptosystem is correct.

Proof. Suppose that Kpub,Kpriv and c = x · Gpub + z are given, where x ∈ Rl

and z ∈ Rm+t satisfying rk(z) ≤ e. Denote I = {t + 1, . . . , t + m}. Begin
by computing c · T−1 = (x ·Gpub + z) · T−1 = x · S ·

(︂
X G

)︂
+ z · T−1. Thus,

d =
(︂
c · T−1

)︂
I

=
(︂
x · S ·

(︂
X G

)︂
+ z · T−1

)︂
I

=
(︂
x · S ·

(︂
X G

)︂)︂
I

+
(︂
z · T−1

)︂
I

= (x · S) ·
(︂
X G

)︂
.I

+
(︂
z · T−1

)︂
I

= (x · S) ·G +
(︂
z · T−1

)︂
I

.

According to Lemma 53, rk(z ·T−1) = rk(z). Observe that omitting coordinates
cannot increase the cardinal rank, so rk((z · T−1)I) ≤ rk(z · T−1). It directly
results in rk((z ·T−1)I) ≤ e ≤ m−l

2n
. Therefore, Algorithm 9 applied to d returns

the codeword y = x · S ·G due to Theorem 80. Finally, it is possible to obtain
the original message x as

y ·Gpriv = x · S ·G · F · S−1 = x · S · S−1 = x,

where the existence of the right inverse F of the generator matrix G is deduced
from Theorem 63 and Theorem 37.

Note that the matrix Gpriv can be omitted from the private key Kpriv to create
a more memory-efficient version. In this scenario, the message x can be obtained
from the decoded message y = x · A by solving the system of linear equalities
with the matrix A, where A = (Gpub · T−1).{t+1,...,t+m} = S ·G.

The final stage in this thesis is to display a specific instance of the described
GPT cryptosystem. Although the ensuing example is straightforward, performing
the decryption is non-trivial. However, some preparations have already been
made in the previous examples. We remark here that computations were made
partially in Wolfram Mathematica and partially in SageMath.
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Example 17. Setup is the same as in Example 16. Let R = GR(55, 4), SGR(55, 1),
G5,4(x) = x4 + 450x3 + 830x2 + 1892x + 3124 be basic primitive over Z55 [x].
Consider ξ = x + (G5,4) of order (54 − 1) = 624 and the basis B = (1, ξ, ξ2, ξ3)
of R over S.

Key generation: Let a = l = t = 2 and m = 4. The equation (4.2) implies
that the codeword g = (0:11:9:0, 0:0:31:124, 19:0:934:0, 87:0:21:0) ∈ R4 has cardinal rank
rk(g) = 4. Recall the generator matrix G ∈ R2×4 from (4.3)

G = ( 0:11:9:0 0:0:31:124 19:0:934:0 87:0:21:0
481:948:631:3119 1770:1098:2806:1799 2638:1089:2965:1596 229:1959:2934:1008 ) ,

we have to compute its right inverse:
(︂

G⊤
⃓⃓⃓
I4
)︂

=
(︃ 0:11:9:0 481:948:631:3119

0:0:31:124 1770:1098:2806:1799
19:0:934:0 2638:1089:2965:1596
87:0:21:0 229:1959:2934:1008

⃓⃓⃓⃓ 0:0:0:1 0:0:0:0 0:0:0:0 0:0:0:0
0:0:0:0 0:0:0:1 0:0:0:0 0:0:0:0
0:0:0:0 0:0:0:0 0:0:0:1 0:0:0:0
0:0:0:0 0:0:0:0 0:0:0:0 0:0:0:1

)︃
∼
(︃ 0:0:0:1 819:1118:1949:1280

0:0:0:0 3106:3042:1188:2065
0:0:0:0 2153:636:1502:2899
0:0:0:0 3122:1359:2863:811

⃓⃓⃓⃓ 1496:2942:2382:1854 0:0:0:0 0:0:0:0 0:0:0:0
1869:305:3050:1853 0:0:0:1 0:0:0:0 0:0:0:0
2394:2614:1925:2873 0:0:0:0 0:0:0:1 0:0:0:0
1699:944:867:2435 0:0:0:0 0:0:0:0 0:0:0:1

)︃
∼
(︃ 0:0:0:1 0:0:0:0

0:0:0:0 0:0:0:1
0:0:0:0 0:0:0:0
0:0:0:0 0:0:0:0

⃓⃓⃓⃓ 2237:638:681:600 2174:2621:756:1894 0:0:0:0 0:0:0:0
591:2149:2982:10 2206:1228:1982:2394 0:0:0:0 0:0:0:0
2761:1067:48:2506 1772:1892:811:1818 0:0:0:1 0:0:0:0

1846:2063:1907:2148 236:2635:1956:2423 0:0:0:0 0:0:0:1

)︃
=
(︂

I2
02

⃓⃓⃓
F ⊤

02×4

)︂
.

Thus, G·F = I2. Next, take x = (0:1:111:11, 125:0:0:0) ∈ R2. The rank of the matrix
[x]B appears to be 2. It is not difficult to see that rk(x) ≤ 2 since the second
coordinate is divisible by 5. Define matrices

X =
(︂

0:1:111:11 125:0:0:0
τ(0:1:111:11) τ(125:0:0:0)

)︂
=
(︂

0:1:111:11 125:0:0:0
1661:3054:1013:1565 875:2250:3000:1125

)︂
∈ R2×2,

S =
(︂

1:13:12:10 0:189:1294:0
0:1:0:2549 19:0:178:0

)︂
∈ R2×2,

T =
⎛⎝ 1138 1209 363 2795 1683 1205

2949 2635 2331 680 2663 1598
532 1463 263 2996 1523 835
2350 271 1016 43 567 2755
2483 396 1817 3097 1976 2000
890 673 2213 448 419 3012

⎞⎠ ∈ S6×6.

(4.15)

Next, find the inverse of S since it is required that S be invertible:(︂
S
⃓⃓⃓
I2
)︂

=
(︂

1:13:12:10 0:189:1294:0
0:1:0:2549 19:0:178:0

⃓⃓⃓
0:0:0:1 0:0:0:0
0:0:0:0 0:0:0:1 )

∼ ( 0:0:0:1 871:3058:409:1939
0:0:0:0 961:2041:1227:2631 | 1077:1599:1085:1601 0:0:0:0

352:2912:86:2142 0:0:0:1 )
∼ ( 0:0:0:1 0:0:0:0

0:0:0:0 0:0:0:1 | 3028:1288:10:2462 2247:1784:1515:603
1211:2298:1769:1333 33:1463:1474:1313 ) =

(︂
I2

⃓⃓⃓
S−1

)︂
.

Analogously, perform elementary row operations on an augmented matrix ( T | I6 )
over the ring S to yield T−1 ∈ S6×6:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1138 1209 363 2795 1683 1205 1 0 0 0 0 0
2949 2635 2331 680 2663 1598 0 1 0 0 0 0
532 1463 263 2996 1523 835 0 0 1 0 0 0
2350 271 1016 43 567 2755 0 0 0 1 0 0
2483 396 1817 3097 1976 2000 0 0 0 0 1 0
890 673 2213 448 419 3012 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 218 2826 840 2591 910 2952 0 0 0 0 0
0 378 2832 1645 2429 2383 802 1 0 0 0 0
0 1112 3081 2991 1236 1090 1411 0 1 0 0 0
0 471 541 1043 2342 1755 300 0 0 1 0 0
0 2852 484 1752 2898 1845 1434 0 0 0 1 0
0 403 2698 2848 679 2487 845 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2284 470 3042 412 340 1719 0 0 0 0
0 1 1694 2840 643 461 184 2042 0 0 0 0
0 0 603 1161 1845 958 3053 1171 1 0 0 0
0 0 2667 903 2614 249 1136 718 0 1 0 0
0 0 446 2072 312 2698 1666 1216 0 0 1 0
0 0 1266 2078 925 1079 1693 2074 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 37 2257 2313 706 1756 1297 0 0 0
0 1 0 2237 2083 1102 2765 2209 702 0 0 0
0 0 1 2987 2615 411 1026 1282 767 0 0 0
0 0 0 199 284 987 2294 374 1286 1 0 0
0 0 0 1120 2772 642 320 1319 1668 0 1 0
0 0 0 1786 2835 2628 2777 937 853 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 3115 2632 3059 69 1529 3062 0 0
0 1 0 0 241 2821 2543 2072 1384 1512 0 0
0 0 1 0 1273 1755 2554 395 324 2262 0 0
0 0 0 1 1666 2863 781 2326 1514 424 0 0
0 0 0 0 2477 332 600 2449 2863 120 1 0
0 0 0 0 2359 1810 1661 2951 3099 2111 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 42 2934 1314 2594 1787 1630 0
0 1 0 0 0 2115 1493 2380 2280 52 92 0
0 0 1 0 0 1462 29 1594 687 2382 1251 0
0 0 0 1 0 2482 356 1784 2210 964 2192 0
0 0 0 0 1 366 925 1062 1669 810 1413 0
0 0 0 0 0 916 836 818 303 696 1108 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 2227 2723 308 2260 1934 2313
0 1 0 0 0 0 1828 1235 110 3112 222 2860
0 0 1 0 0 0 2502 343 1916 1585 970 1943
0 0 0 1 0 0 1284 823 154 47 2151 973
0 0 0 0 1 0 1014 394 1391 914 1830 2299
0 0 0 0 0 1 2621 2273 2733 956 588 1061

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︂
I6

⃓⃓⃓
T−1

)︂
.

Finally, the public and the private matrix can be determined

Gpub = S ·
(︂
X G

)︂
· T =

⎛⎝ 2537:106:906:213 2683:2453:2340:2018
872:1963:1177:2439 924:1871:1075:1537
708:459:3096:2135 656:397:2388:2676
2617:200:1915:2323 101:1941:1296:2110
52:1103:336:2350 2851:2615:427:1975

2047:3106:2745:2649 2337:2739:2250:641

⎞⎠⊤ ,

Gpriv = F · S−1 =
(︃ 2918:2474:2460:1810 256:428:2711:1876

3057:1079:1808:2431 2135:2694:200:1519
0:0:0:0 0:0:0:0
0:0:0:0 0:0:0:0

)︃
.

(4.16)

We have successfully generated the public key Kpub = (Gpub, 1
5) and the private

key Kpriv = (g, Gpriv, T−1, t).
Encryption: Let z = ( 419:678:3114:2871

747:2453:901:2223 )⊤ ∈ R2 be a message. We must choose
an codeword from R6 and verify that it has cardinal rank at most 1

5

e =
⎛⎝ 2500:1875:2500:1250

1875:625:1875:2500
0:0:0:0

2500:1875:2500:1250
0:0:0:0

1250:2500:1250:625

⎞⎠⊤

[e]B =
(︃ 1250 2500 0 1250 0 625

2500 1875 0 2500 0 1250
1875 625 0 1875 0 2500
2500 1875 0 2500 0 1250

)︃
=
(︃ 625 1250 0 625 0 1875

2500 1875 0 2500 0 1250
1875 625 0 1875 0 2500
2500 1875 0 2500 0 1250

)︃
=
(︃ 625 1250 0 625 0 1875

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)︃
,

where the first row of [e]B is multiplied by an integer 1563. Then, the first row
multiplied by 3121, 3122 and 3121 is added to the second, third, and fourth rows in
the specified order. Refer to Claim 48 to calculate the cardinal rank of the error
codeword rk(e) = rk([e]B) = rk([e]⊤B) = log55(|Im[e]⊤B|) = log55(5) = 1

5 . Thus,
e is correctable. Let c = EncKpub(z) be obscured by e, i.e.

c=

⎛⎝⎛⎝ 2537:106:906:213 2683:2453:2340:2018
872:1963:1177:2439 924:1871:1075:1537
708:459:3096:2135 656:397:2388:2676
2617:200:1915:2323 101:1941:1296:2110
52:1103:336:2350 2851:2615:427:1975

2047:3106:2745:2649 2337:2739:2250:641

⎞⎠ ( 419:678:3114:2871
747:2453:901:2223 ) +

⎛⎝ 2500:1875:2500:1250
1875:625:1875:2500

0:0:0:0
2500:1875:2500:1250

0:0:0:0
1250:2500:1250:625

⎞⎠⎞⎠⊤

=

⎛⎝ 1686:751:2752:1989
1636:749:708:1012

2280:2090:2736:1334
1266:2671:383:2272
2136:12:2061:636
115:247:2771:147

⎞⎠⊤ .

The ciphertext c in now ready to be transmitted to the recipient whose public
key was utilised in the encryption.

Decryption: Denote by I the set of indices {3, . . . , 6}. Then,

d = c · T−1 =
⎛⎝ 1686:751:2752:1989

1636:749:708:1012
2280:2090:2736:1334
1266:2671:383:2272
2136:12:2061:636
115:247:2771:147

⎞⎠⊤ ·
⎛⎝ 2227 2723 308 2260 1934 2313

1828 1235 110 3112 222 2860
2502 343 1916 1585 970 1943
1284 823 154 47 2151 973
1014 394 1391 914 1830 2299
2621 2273 2733 956 588 1061

⎞⎠

=
⎛⎝ 2128:573:317:2046

875:1250:1000:3000
1288:2465:1023:566
2763:953:832:3119
807:2279:2025:2758

1340:486:983:1

⎞⎠⊤ ,

dI = (1288:2465:1023:566, 2763:953:832:3119, 807:2279:2025:2758, 1340:486:983:1).
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Note that dI corresponds to y in Example 16, so Algorithm 9 executed on input

(4, 2, g, dI) outputs y =
(︃ 1913:590:1648:2441

2138:2810:207:1244
2682:2904:775:2133
715:2361:358:1251

)︃⊤
. It remains to multiply the decoded

codeword y by the matrix Gpriv from the left

z′ = y ·Gpriv =
(︃ 1913:590:1648:2441

2138:2810:207:1244
2682:2904:775:2133
715:2361:358:1251

)︃⊤
·
(︃ 2918:2474:2460:1810 256:428:2711:1876

3057:1079:1808:2431 2135:2694:200:1519
0:0:0:0 0:0:0:0
0:0:0:0 0:0:0:0

)︃
= (419:678:3114:2871, 747:2453:901:2223),

which, clearly, equals the original message z.
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Conclusion
The thesis objective is to describe error-correcting codes over Galois rings instead
of finite fields as a potential strengthening of code-based cryptography. The main
focus is on the class of codes utilising the cardinal rank metric, which is a natural
generalisation of the rank metric introduced by Gabidulin. Throughout the work,
the constructive rather than the existential approach is chosen. The immediate
benefit is the possibility to formulate algorithms. Algorithms 4 to 8 are our
own contribution; the rest is slightly modified to use the cardinal rank metric.
Essential notions are even illustrated in examples, none of which is borrowed.

Chapter One establishes the construction of Galois rings and studies their
fundamental properties. This is necessary to comprehend the concept of codes
and their distinctions from the standard code theory. The subsequent chapter
introduces modules over Galois rings and explains the decomposition into powers
of p. Our additions here are namely Theorem 24, Claim 26, Lemma 28,
Theorem 37, Claim 40 and Claim 44.

The central point of the third chapter is to characterise the cardinal rank
together with its induced metric and demonstrate them. A connection between
the cardinal rank metric over the Galois ring and the rank metric over its residue
field is presented, which clarifies the relation between MCRD and MRD codes.
The significance lies in Corollary 49 providing formula for the cardinal rank
metric, Theorem 54 with Claim 55 is advantageous for proving the generalised
version of Singleton bound (Theorem 57), and necessary conditions for codes
to be MCRD are asserted in Theorem 61 and Corollary 62.

The final chapter discusses Gabidulin codes as representants of MCRD codes,
grounded on matrices and linear polynomials. Linear polynomials are examined
thoroughly as the efficient decoding algorithm is based on them. The version
of the GPT cryptosystem over Galois rings is a direct cryptographic application
of Gabidulin codes. In this part, we contribute with the proof of Theorem 63,
Theorem 70, Theorem 72, Claim 75 and Lemma 81.
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List of Abbreviations
EEA Extended Euclidean Algorithm providing the greatest common divisor

and the coefficients of Bezout’s identity

MDS Maximum Distance Separable, in terms of codes over finite fields, codes
that achieve the equality in Singleton bound for the Hamming distance

MRD Maximum Rank Distance, in terms of codes over finite fields, codes that
achieve the equality in Singleton bound for the rank distance

MCRD Maximum Cardinal Rank Distance, in terms of codes over Galois rings,
codes that achieve the equality in Singleton-like bound for the cardinal rank
distance

PKC Public Key Cryptosystem

WLOG Without Loss Of Generality

Notation
GR(pn, r) Galois ring of characteristic pn and cardinality pnr

Tr Teichmüller set {0, 1, ξ, ξ2, . . . , ξpr−1} ⊆ GR(pn, r), where ξ has order pr − 1

T Teichmüller set T1

ar−1:ar−2: . . . :a0 The additive representation of an element
r−1∑︁
i=0

aiξ
i, where ξ has

order pr − 1

[i] The ith power of a prime p modulo pr

τ The generalised Frobenius automorphism of GR(pn, r) defined using the aditive
representation as τ

(︃
r−1∑︁
i=0

ziξ
i

)︃
=

r−1∑︁
i=0

ziξ
i[1], where ξ has order pr − 1

Modules
Let R = GR(pn, r), S = GR(pn, 1) and M, N be R-modules.

M ≤ N M is a submodule of N

MS The module M viewed as an S-module

⟨x1, . . . , xk⟩R The R-module generated by x1, . . . , xk; R can be omitted

rank(M) The rank of a module M , the minimal number of M ’s generators

Soc(M) The submodule of a module M composed of elements with height ≤ 1

δij The Kronecker delta; δii = 1 and δij = 0 provided i ̸= j
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δi The element (δi1, . . . , δik) of an R-module Rk

xI The codewords composed of coordinates of x ∈ Rm which indices lies in the set
I ⊆ {1, . . . , m}

The projection R → R⧸pR defined by a ↦→ a + pR; a ring epimorphism

m The induced projection Rm →
(︂R⧸pR

)︂m
; (a1, . . . , am)m = (a1, . . . , am);

a module epimorphism

Matrices
Let A be a matrix over R = GR(pn, r) of type k× l, S = GR(pn, 1) be a subring
of R and B = (β1, . . . , βr) be a free basis of R over S.

Ac
i The ith column of A

Ar
i The ith column of A

aij The entry of a matrix A at position (i, j)

AI· The matrix composed of the rows Ar
i , i ∈ I ⊆ {1, . . . , k}

A·I The matrix composed of the columns Ac
i , i ∈ I ⊆ {1, . . . , l}

Ik The identity matrix of order k

0k×l The zero matrix of type k × l

0k The zero matrix 0k×k

ImS(A) The image of A; the S-module generated by the columns Ac
1, . . . , Ac

l ,
where S is a subring of R and can be omitted

ker(A) The kernel of A; the set of x ∈ Rl such that A · x⊤ = o

rank(A) The rank of Im(A)

rk(A) The cardinal rank of A defined as logpn(|Im(A)|)

[x]B A coordinate vector (z1, . . . , zr) ∈ Sr of x ∈ R relative to the free basis B
such that x = z1β1 + · · ·+ zrβr

[x]B A coordinate matrix ([x1]B | . . . | [xk]B) ∈ Sr×k of x = (x1, . . . , xk) ∈ Rk

rkS(x) The cardinal rank of x ∈ Rk defined as rk([x]B); S can be omitted
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Linear codes
Let C be a linear code of length m over R and c, d ∈ C.

[m, l]R-code A linear code of length m and rank l over R; R can be omitted

wH(c) The Hamming weight of c; the number of non-zero coordinates of c

dH(c, d) The Hamming distance between c and d defined as wH(c− d)

dH(C) The minimum Hamming distance of C; min{dH(e, f) | e, f ∈ C : e ̸= f}

dR(c, d) The cardinal rank distance between c and d defined as rk(c− d)

dR(C) The minimum cardinal rank distance of C; min{dR(e, f) | e, f ∈ C : e ̸= f}

dS(c, d) The cardinal rank distance between c and d over S

dS(C) The minimum cardinal rank distance of C over S

GabR(m, l, g) The Gabidulin [m, l]R-code with a generator matrix G ∈ Rm×l

such that gij = τ i−1(gj), i = 1, . . . , l, j = 1, . . . , m, provided rk(g) = m

Linearised polynomials

P(R) The set of all linearised polynomials
d∑︁

i=0
ai · τ i(X) with coefficients from R

deg(F ) The degree of a linearised polynomial F ∈ P(R) defined as the minimal
non-negative integer d for F ̸= 0 such that F =

d∑︁
i=0

fi · τ i(X) and fd ̸= 0,
and −∞ for F = 0

Pd(R) The set of F ∈ P(R) such that deg(F ) < d

P∗d(R) The set of F ∈ P(R) such that deg(F ) = d− 1 and fd−1 = 1

ε The linearised polynomial ε(X) = X; the identity of P(R)

F ◦G The product of F, G ∈ P(R) defined as the evaluation F (G(X))

ker(F ) The kernel of F ∈ P(R); the set of all its roots over R

F (x) The codeword (F (x1), . . . , F (xk)), where F ∈ P(R) and x ∈ Rk
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