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Introduction
Scope of the thesis

Inspired by techniques that were proven successful in statistical physics, namely
the Ising model, we are interested in studying game dynamics. This thesis
explores the interdisciplinary connection between discrete mathematics, precisely
the concept of maximum cut, statistical physics and the class of potential games.
Potential applications could lie in the research of prediction of cancer evolution.

Organization of the thesis
The thesis is organized as follows: At the beginning, there are the preliminaries

and general introduction to topics that need to be understood to follow the central
part of the thesis. The preliminary chapter consists of basics from discrete math
and graph theory. In this section, the notion of cuts is being introduced. It is
followed by an introduction to algorithmic game theory, which is the core part of
the thesis. In this section, the solution concept of Nash equilibrium is presented
together with the notion of a normal-form game. The last introduction section
is about computational complexity, namely the PLS class and its characteristics.
After the introduction, the chapter about potential games follows. Chapter 3 gives
a basic introduction to statistical physics and presents the Ising model, which
is the crucial model that originated in statistical mechanics and is further used
in our considerations. Chapter 4 is the main part of the thesis, where the core
ideas are being put together. Here, the connection between statistical physics and
algorithmic game theory is established by mapping one area onto the other. At
the end, there is a conclusion chapter stating possible future work in this area.
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1 Preliminaries
1.1 Introduction to Graph Theory

This section introduces reader to the basic notions from discrete mathematics
and graph theory. The definitions presented here are sourced from [1]. For further
details, the reader is referred to this source.

1.1.1 Graphs
Definition 1 (Graph). A graph G is a pair (V, E), where V is a set of vertices
of G and E is a set of 2-element subsets of V called the set edges of G.

Below are examples of graphs, that will be used further in the thesis:

Definition 2. The path Pn is defined by the set of vertices V = {0, 1, ..., n} and by
E = {{i − 1, i} : i = 1, 2, ..., n}, the set of edges connecting each pair of successive
vertices.

Definition 3 (Bipartite graph). Graph G is bipartite if it is possible to divide the
set V into two disjoint sets V1 and V2 such that each edge e ∈ E connects a vertex
from partition V1 to a vertex from partition V2. I.e. E ⊆ {{v, v′} : v ∈ V1, v′ ∈ V2}.

Definition 4 (Subgraph). Let G and H be graphs. If V (G) ⊆ V (H) and
E(G) ⊆ E(H), then G is a subgraph of H.

Definition 5 (Directed graph). A graph G = (V, E), is a directed graph defined
by the set of vertices V and by the set of edges E being a subset of the Cartesian
product V × V . The ordered pairs (x, y) ∈ E are called the directed edges. We
say that a directed edge e = (x, y) is an edge from x to y.

Figure 1.1 (a) Path P9. (b) Subgraph. (c) Directed graph.
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1.1.2 Cuts
In this section, max-cut is going to be described. The definitions are sourced

from [2], [3] and [4].

Definition 6 (Max-Cut problem). Let G = (V, E) be an undirected graph, where
each edge e ∈ E is carries a weight we ∈ N+. A cut of G is defined as a partition of
the vertices into two subsets (U, V \U) where ∅ ̸= U ̸= V , typically being represented
by the subset U . Let δ(U) = {{u, v} ∈ E : u ∈ U ∧ v /∈ U} denote the set of edges
crossing the cut U . The weight of the cut U is given by w(U) = ∑︁

e∈δ(U) we. The
objective of the Max-Cut problem, is to find a cut U∗ such that the weight w(U∗)
is maximal.

As optimization problem, the version of minimization (Min-Cut) can be solved
in polynomial time while the Max-Cut is classified as NP-complete which means
that finding the Max-Cut is hard. Hence, several heuristics were designed for
this problem. We concentrate on one of them called local search under the
Flip-neighborhood.

Definition 7 (Flip-neighborhood). Let U ′ be a cut obtained from the cut U
by transferring a vertex from one partition of the cut to the other. The flip
neighborhood N(U) of a cut (U, V \U) includes all the cuts (U ′, V \U ′) where U
and U ′ differ by exactly one vertex.

Definition 8 (Local Max-Cut problem). A cut U is locally optimal if for all
U ′ ∈ N(U), w(U) ≥ w(U ′), where N(U) represents the set of all cuts obtainable
by flipping any single vertex from U to V \ U or from V \ U to U . The goal in
Local Max-Cut is to find a locally optimal cut U∗.

9



1.2 Introduction to Game theory
In this section, the basic terms and definitions from the area of algorithmic

game theory are being introduced.

The terms and concepts discussed in this section are partially derived from [5]
and the lectures on algorithmic game theory by doc. RNDr. Martin Balko, Ph.D.
(lecture notes).

Definition 9 (Normal Form Game). A (finite, n-player) normal form game is
Γ(N, (Si)i∈N, (ui)i∈N) where

• N = {1, 2, ..., n} is a finite set of n players,

• S = S1 × ... × Sn is a set of strategy profiles, where Si is a set of pure
strategies available to player i: 1 ≤ i ≤ n,

• and ui : S → R is the utility function for each player i: 1 ≤ i ≤ n

Note: Si are finite abstract sets.

The strategy set Si represents the set of actions player i can play in the
game. In normal form game, knowing the utility function, all players choose their
strategies simultaneously. When each player chooses its action from their own
strategy set, the resulting strategy profile is obtained: s = (s1, s2, ..., sn) ∈ S and
is then evaluated using the utility function. During the game, players receive
respective payoff by applying their utility function on the current strategy profile.

Notation: throughout the thesis s−i will denote all strategies except for the
strategy of player i. In such case strategy profile can be rewritten as s = (si, s−i).

Payoffs of a normal form game can be represented by the payoff matrix:

Definition 10 (Payoff matrix). Every normal form game Γ can be represented by
a real n-dimensional matrix M = (Ms)s∈S, where Ms = u(s) = (u1(s), ..., un(s)).
Such matrix is called the payoff matrix.

1.2.1 Basic solution concepts
The objective of a player in a game is to maximize the player’s payoff using

appropriate strategies. However, the complexity of optimizing player’s payoff
increases with the increasing number of players as the best strategy depends on
the choices of the other players. That’s why the notions of solution concepts were
introduced. Solution concept is a mapping from the set of all normal-form games,
mapping each game Γ to a set of strategy profiles of Γ.

Definition 11 (Pure Nash equilibrium (PNE)). A strategy si is called a best
response for player i ∈ N against a collection of strategies s−i if ui(si, s−i) ≥
ui(s′

i, s−i) for all s′
i ∈ Si. A state s ∈ S is called a pure Nash equilibrium if si is

a best response against the other strategies s−i for every player i ∈ N.
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Remark. Pure Nash equilibria are not necessarily unique.

From the definition it can be seen that pure Nash equilibrium is a state in which
no player can unilaterally increase its utility by taking a different strategy.

1.2.2 Normal form game example: Prisonner’s dilemma
Prisonner’s dilemma is one of the classic examples of algorithmic game theory.

There are two players (criminals) which are being imprisoned and that cannot
communicate with each other.
Each of them has two options: either betray the other criminal by testifying that
the other prisonner commited the crime, or to remain silent. If they both decide
to testify, they will both remain in prison for five years. If Player 1 testifies, but
the other player remains silent, then Player 1 is set free and the Player 2 stays
in prison for ten years, and vice versa. In case that they both decide to remain
silent, both of them will stay in prison for only two years.

The corresponding payoff matrix of such game would then look as follows:

Testify Remain silent
Testify (-5, -5) (0, -10)

Remain silent (-10, 0) (-2, -2)

Table 1.1 A normal form of the Prisoner’s dilemma game.

Despite the seeming advantage for both prisoners to remain silent, the game’s
equilibrium is reached when both players choose to testify against each other. The
reason it that otherwise one of them can change his action to testify and improve
his payoff.
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1.3 Introduction to Computational Complexity

1.3.1 Complexity basics
The notions and concepts such as polynomial time, P, NP, and NP-completeness

are central to the field of computational complexity. Their purpose is to categorize
decision problems based on the resources (i.e. time) required to solve them. This
section provides formal definitions and explanations of these terms, introducing
the reader to the necessary vocabulary in order to comprehend the problematic of
the thesis.

For further details on the discussed notions, the reader is referred to [2] and
[6].

Definition 12 (Decision problem). Given a finite alphabet Σ, a decision problem
is a language L ⊆ Σ∗, where Σ∗ denotes the set of all possible strings (including
empty string) that can be formed from symbols in Σ. The decision problem entails
determining for any given string l ∈ Σ∗, whether l ∈ L. It is nontrivial if L ̸= ∅
and L ̸= Σ∗.

Definition 13. An algorithm is said to run in Polynomial Time if its running
time can be expressed as O(nc) for some constant c, with n representing the size
of the input.

In simple words: When we say an algorithm runs in polynomial time, we mean
the amount of time it takes to run the algorithm is proportional to a polynomial
function of the size of the input, that can be for example the number of vertices
in a graph or the number of digits in a number. Polynomial time algorithms are
considered to be efficient because their running time grows at a manageable rate
as the size of the input increases.

Definition 14 (P class). P is the set of decision problems solvable in polynomial
time.

Definition 15 (NP class). NP refers to the class of decision problems for which
polynomial-time verifiers exist, i.e the problem L ∈ Σ∗ is in NP class if there is a
polynomial-time algorithm V (l, X), that satisfies the following:

• If l ∈ L, then ∃X, s.t. V (l, X) = Y ES.

• If l /∈ L, then ∀X, V (l, X) = NO.

Additionally, the length of X must be polynomial in the size of I.

Note that the input X to the verifier V is often called a witness.

To illustrate, for an NP problem, no known polynomial-time algorithms exist
for solving it directly. However if one is provided with a proposed solution, then
verifying its correctness can be done easily. The class of problems where a YES
answer can be supported by a proof of polynomial length that is verifiable in
polynomial time, is called NP.
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Naturally, any problem that belongs to the class P is also considered to be in
the NP class, since the verifier V could simply disregard the provided solution X
and solve the problem instance I directly. Hence, P ⊆ NP holds.

Definition 16 (Polynomial reduction). Let L1, L2 ⊆ Σ∗. We say that L1 is
polynomially reducible to L2, denoted as L1 ≤p L2 if there exists a polynomial-time
computable function f : Σ∗ → Σ∗, s.t. x ∈ L1 iff f(x) ∈ L2.

Stating that L1 ≤p L2 means that L2 is at least as difficult as L1. To illustrate,
L1 is not more difficult than L2, meaning that if one solves the decision problem
for L2, it is possible to solve the decision problem for L1 by employing a function
f .

Definition 17 (NP-hardness). A decision problem L ⊆ Σ∗ is NP-hard if for every
L′ ∈ NP: L′ ≤p L.

Remark. In the case of NP-hardness, the problem doesn’t necessarily need to be
in NP, meaning that possibly L can be some language that is harder than NP.

Definition 18 (NP-completeness). Problem L ⊆ Σ∗ is NP-complete if:

1. L is in NP, and

2. For any other problem L′ in NP, L′ ≤p L.

Example: MAX cut is NP-complete.

If P ̸= NP (Conjecture), then the mentioned complexity classes are visualized in
1.2

Figure 1.2 Complexity Class schema if P ̸= NP holds.

1.3.2 Polynomial-Time Local Search (PLS)
Building on the previously presented basic concepts of computational complex-

ity, following subsection introduces the class of Polynomial Local Search (PLS)
problems being a branch of complexity theory designed to reason about local
search problems.

In simple words, PLS is a complexity class that encompasses heuristics. Prob-
lems in PLS are defined by local search procedures where one starts with an initial
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solution and iteratively improves it by moving to better neighboring solutions
according to some local criterion, until no more improvements can be made. The
set of possible solutions is typically being exponential in size, making exhaustive
search impractical.

The PLS problem can be imagined as attempting to climb some mountain
top in a landscape by walking. One climbs up to the top of a hill (i.e. a local
optimum), but that hill might not be the tallest mountain in the entire range (i.e.
the global optimum). Being at the top of one hill does not necessarily indicate
that there isn’t a higher peak elsewhere. Finding the highest peak requires a
broader search algorithm that might not be practical.

PLS (Polynomial Local Search) class, defined by [7], formalises the problems
of searching for local optima (i.e. heuristics). Formally:

Definition 19 (PLS class). PLS class describes a problem that is either a
minimization or maximization problem, where:

• I is the set of instances recognizable in polynomial time,

• ∀i ∈ I: Si is a finite set of solutions,

• ∀i ∈ I: costi : Si → N is a cost function on the solutions, and

• ∀s ∈ Si: Ni(s) is the set of ”neighbouring” solutions to s

The notion of ”neighbouring solutions” can be imagined as such solutions that
can be obtained by minor alteration of the solution s.

Moreover, for the problem to be in PLS class, the following three algorithms
must exist:

1. Algorithm A1, generates an initial solution s ∈ Si for any instance i ∈ I.

2. Algorithm A2 confirms whether the proposed solution s is valid for given
instance i ∈ I and computes its respective cost, i.e. costi(s).

3. Algorithm A3, for given instance i ∈ I and a solution s ∈ Si, explores
neighboring solutions of s and returns solution s′ ∈ N(i, s) with better
valuation, meaning a lower cost for a minimization problem or higher cost
for a maximization problem, or confirms that s is locally optimal.

Many well-known problem belong to the PLS class, such as the local max-cut.

Local max-cut

A standard form of local search for the Max-Cut problem is the FLIP approach
defined in 7 which moves vertices across the two cut partitions until the local
optimum is reached.

Let’s consider an arbitrary cut U on a graph G = (V, E), where for simplicity
all edges have weight w(e) = 1. We then choose a vertex v ∈ V for which moving

14



it to the opposite partition would result in a cut with larger value, meaning that
more edges would cross the cut U . This process is being repeated until the flip of
any vertex wouldn’t increase the resulting weight of the cut.

The process is visualized on the following figure:

Figure 1.3 Local search for local-max-cut. (a) denotes an arbitrary cut. In (b), the
cut value is increased as a result of moving vertex 4 from one partition to the other. In
(c), the best possible local result is obtained.

PLS Reductions and Completeness

A local search problem L from PLS is said to be PLS-reducible to another
local search problem L′, when there are polynomial-time algorithms A1 and A2
such that:

1. A1 maps instances of L to instances of L′,

2. A2 maps pairs of (solution, instance) for instances of L′ which are produced
by A1 back into solutions of L, and

3. for all instances i of L, if s is a local optimum for instance A1(i) of L′, then
A2(s, A1(i)) is a local optimum for i.

In simpler terms, if you can convert one local search problem into another
using a polynomial process, and if solving the second problem gives you a solution
to the first, then the first problem is reducible to the second.

By definition, if a local search problem L is PLS-reducible to another local
search problem L′, then finding a local optimum for L′ using a polynomial-time
algorithm guarantees a polynomial-time algorithm for finding a local optimum for
L. Moreover, a PLS-reduction is transitive.

We say that a problem L in PLS is PLS-complete if any problem in PLS is
reducible to L. Being PLS-complete means that the problem is one of the most
difficult in the PLS class, such that if one finds a polynomial-time solution to this
problem, he effectively has a method to solve all PLS problems efficiently.

The notions from this subsection were sourced from [8] and from the original
publication of [7], where is also stated that PLS-complete problems exist.
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2 Potential games
2.1 Potential games

A potential game is a game for which there exists a potential function Φ such
that, for any unilateral deviation by any of the players, the change in Φ is equal
to the change in cost incurred by the deviating player.

In this chapter, the class of potential games is going to be defined. Information
in the chapter consists of findings from the following publications: [9], [10], [11],
[12], [13], [14] and the course notes on Algorithmic Game Theory by Prof. Dr.
Thomas Kesselheim (lecture notes).

Definition 20 (Potential function of a game). Let Γ(N, S, u1, u2, ..., un) be a
game with a finite number of players N = {1, 2, ..., n}, the set of strategies of
Player i being Si and the utility function of Player i being ui : S → R, where
S = S1 × S2 × ... × Sn is the set of strategy profiles. A function Φ : S → R is a
potential function for Γ, if for every i ∈ N and for every s−i ∈ S−i

ui(si, s−i) − ui(s′
i, s−i) > 0 iff

Φ(si, s−i) − Φ(s′
i, s−i) > 0

where s−i denotes the strategies of all other players except the player i, that is
s−i = (s1, ..., si−1, si+1, ..., sn).

Note that when no confusion may arise Γ(N, S, u1, u2, ..., un) will be denoted by
Γ. Also note that the notion of a potential function is sometimes referred to in
the literature as ordinal potential.

Definition 21 (Ordinal Potential game). Γ is called an ordinal potential game if
there is a function Φ : S → R such that for all players i ∈ N and strategy profile
s = (s1, ..., sn) ∈ S,

ui(si, s−i) − ui(s′
i, s−i) > 0 iff

Φ(si, s−i) − Φ(s′
i, s−i) > 0

Definition 22 ((Exact) Potential game). A Game is a potential game if there
exists a potential function Φ : S → R such that for all players i ∈ N with strategy
si,

Φ(si, s−i) − Φ(s′
i, s−i) = ui(si, s−i) − ui(s′

i, s−i)

Definition 23 (Weighted Potential game). Let w = (wi)i∈N be a vector of positive
numbers, i.e. weights. A function Φ : S → R is a w-potential for a game Γ if for
every player i ∈ N with strategy si,

Φ(si, s−i) − Φ(s′
i, s−i) = wi · (ui(si, s−i) − ui(s′

i, s−i))

Observation 2.1.1. Potential game and Weighted potential game are subsets of
ordinal potential games.
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In summary, in order to determine whether a given game is a potential game, it is
necessary to verify whether the game possesses a potential function. To illustrate,
this involves determining whether there exist a function that aligns with every
unilateral deviation by any player. If such function exists, the game is classified
as a potential game, otherwise, it is not. It is thus important to realize, that
potential may not exist.

2.1.1 Determining if a game is a potential game
Consider a Rock-Paper-Scissors game with the following payoff matrix:

Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

Table 2.1 A payoff matrix for Rock-Paper-Scissors game.

To determine whether the game has a potential, we will apply the definition
of a potential game 22. Let’s assume there exists a potential function Φ and that
Φ(R, R) = 0, then:

• When Player 1 unilaterally changes its strategy from R to P , while Player
2 keeps playing strategy R, then Player 1’s payoff increases by 1. Hence
Φ(P, R) − Φ(R, R) = u1(P, R) − u1(R, R) = 1 − 0 = 1.
Φ(P, R) = 1.

• Similarly, when Player 2 switches from R to P while Player 1 keeps playing
R, the Player 2’s payoff increases by 1. Hence:
Φ(R, P ) − Φ(R, R) = u2(R, P ) − u2(R, R) = 1 − 0 = 1.
Φ(R, P ) = 1.

Φ(P, R) = Φ(R, P ) = 1, thus so far it seems that a potential function might exist.

• Now, consider Player 1 switching from P to S against Player 2’s R. Player
1’s payoff decreases by 2:
Φ(S, R) − Φ(P, R) = u1(S, R) − u1(P, R) = −1 − 1 = −2
Φ(S, R) = 1 − 2 = −1

• Similarly, consider Player 2 switching from P to S against Player 1’s R.
Player 2’s payoff decreases by 2:
Φ(R, S) − Φ(R, P ) = u2(R, S) − u2(R, P ) = −1 − 1 = −2
Φ(S, R) = 1 − 2 = −1

Now we will check for consistency by considering Player 1’s and Player 2’s strategies
(P, S) and (S, P ):

• For Φ(P, S), we would expect Player 1’s unilateral deviation from R to P ,
against Player 2’s strategy S:
Φ(P, S) − Φ(R, S) = u1(P, S) − u1(R, S) = −1 + 1 = 0
Φ(P, S) = Φ(R, S) = −1
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• For Φ(S, P ), from Player 2’s unilateral deviation from R to P , against Player
1’s strategy S:
Φ(S, P ) − Φ(S, R) = u2(S, P ) − u2(S, R) = −1 + 1 = 0
Φ(S, P ) = Φ(S, R) = −1

The problem arises when considering the strategy (S, S). Based on the previous
results, Φ(S, S) needs to satisfy
Φ(S, S) − Φ(R, S) = u1(S, S) − u1(R, S) = 0 − (−1) = 1
Φ(S, S) − Φ(S, R) = u2(S, S) − u2(S, R) = 0 − (−1) = 1

The contradiction arises from the sequence of strategies R to P to S to R:
Φ(P, R) − Φ(R, R) = 1
Φ(S, R) − Φ(P, R) = −2
Φ(R, R) − Φ(S, R) = 2

As the latter sequence is a cycle, the result should be 0, but 1 − 2 + 2 ̸= 0.

Thus, we reach a contradiction, as it is impossible to assign a potential function
Φ, such that the unilateral change in strategy for both players always corresponds
to the change in their payoffs. Therefore, the Rock-Paper-Scissors game does not
have a potential function and is not a potential game.

2.1.2 Existence of PNE in Potential Games
Theorem 2.1.2 (Existence of PNE in Potential Games). Every potential game
Γ has at least one Pure Nash equilibrium.

Proof. Let s∗ be a pure strategy maximizing the potential function Φ. Note that
a potential always has the maximum as there is a finite set of strategies. Thus:

Φ(s∗
i , s∗

−i) ≥ Φ(s′
i, s∗

−i)

for all i ∈ N, s′
i ∈ Si.

From the definition of the potential function 20:

Φ(s∗
i , s∗

−i) − Φ(s′
i, s∗

−i) = ui(s∗
i , s∗

−i) − ui(s′
i, s∗

−i) ≥ 0

Hence ui(s∗
i , s∗

−i) − ui(s′
i, s∗

−i) ≥ 0 and s∗
i is a pure Nash equilibrium.

2.2 Congestion Games
Congestion games represent a class of games, that have been studied mainly

in the area of computer science, since their introduction by [15]. They were often
studied from the point of analyzing the price of anarchy, i.e. the ration between
solution achieved by the worst-case Nash equilibrium and the optimal solution.
Congestion games being the special example of potential games, belong to the
most extensively studied classes of games in the area of algorithmic game theory.
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2.2.1 Definitions and characterizations
Definition 24 (Congestion game). A congestion game is a tuple
Γ(N, R, (Si)i∈N), (cr)r∈R, (ci(s))i∈N), where:

• N = {1, ..., n} is a set of players,

• R = {1, ..., m} is a set of resources,

• ∀i ∈ N , Si ⊆ 2R is a set of strategies of player i,

• ∀r ∈ R, cr : {1, ..., n} → R is a cost function being non-negative and
non-decreasing,

• ∀i ∈ N , ci(s) = ∑︁
r∈si

cr(|{i; r ∈ si}|) is a cost of i-th player for given
strategy profile s.

In the thesis we will be interested mainly in the congestion games on graphs.

Definition 25 (Network congestion game). Let’s consider a graph G = (V, E).
The set of resources R corresponds to the set of edges E. For each player i ∈ N ,
there exists an origin-destination pair (oi, di), s.t. the strategy set Si corresponds
to the set of paths from oi to di.

The goal of each player is to choose a strategy that minimizes its total cost. Note,
that network congestion games are sometimes in the literature also being referred
to as routing games.

Example of a congestion game

As example, consider the network congestion game with two players. The
origin-destination path for both players is to get from point A to D and the cost
function for each edge is defined as ce(x) = x, where x is the number of players
that are using the edge e.

Let the strategy profiles S1 and S2 for players 1 and 2 be the following:
S1 = S2 = {s1 : A → B → D, s2 : A → B → C → D, s3 : A → C → D}.

Suppose that at first, players choose their strategies arbitrarily, i.e. Player 1
chooses s1 and Player 2 chooses s2. Then costs of the resources will be the
following:
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Figure 2.1 Network congestion game.

Thus the respective costs for each player are: c1(s1) = 3, c2(s2) = 4.

Note however, that if Player 2 would switch its strategy from s2 to s3, the costs
of both players would decrease. In such setting: c1(s1) = 2, c2(s2) = 2.

Hence, the player’s strategy choice impacts his final cost. The goal of the players
is thus to generate a sequence of improvement steps to decrease their costs. The
latter proceeds as follows: game starts from an arbitrary state s0 and generate
an improvement sequence of states s0, s1, ... etc. If there is no improvement step
(st, s′) from state st to s′, then st is a pure Nash equilibrium. Otherwise, there is
an improvement step (st, s′) and it would be possible to set st+1 = s′. Improvement
step equivalently means that as long as there is a player not playing a best response
strategy, he is encouraged to switch to a strategy that is a better response. After
finitely many steps, a Pure Nash equilibrium is reached: this holds due to the
following theorem of [15];
Theorem 2.2.1 (Rosenthal 1973). For every congestion game, every sequence of
improvement steps is finite.

The proof of Rosenthal’s theorem is based on the argument of a potential
function, called Rosenthal’s potential function, Theorem 2.1.2 and Theorem 2.3.1:

Definition 26 (Rosenthal’s potential). For every state s, let

Φ(s) =
∑︂
r∈R

cr(s)∑︂
k=1

cr(k)

2.3 Congestion games are potential games
For the thesis, we have chosen the class of congestion games because of the

nice properties they have and that we will further use in other areas of science.
Moreover, congestion games are a specific example of potential games, which as
seen before always posses a pure Nash equilibrium 2.1.2.
Theorem 2.3.1 (Rosenthal 1973). Every congestion game is a potential game
with Φ potential.
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Proof. Let si and s′
i be strategies for player i. Let s be the strategy profile

for all players with strategy si and s′ the strategy profile with si = s′
i. Let

Φ(s) = ∑︁
r∈R

∑︁cr(s)
k=1 cr(k) be defined as in Definition 26. For player i’s strategy si

and s′
i we have:

Φ(s) =
∑︂

r∈s∩s′

cr(s)∑︂
k=1

cr(k) +
∑︂

r∈si\s′
i

cr(s)∑︂
k=1

cr(k) +
∑︂

r∈s′
i\si

cr(s)∑︂
k=1

cr(k) +
∑︂

r∈R\(s∪s′)

cr(s)∑︂
k=1

cr(k)

Φ(s′) =
∑︂

r∈s∩s′

cr(s′)∑︂
k=1

cr(k) +
∑︂

r∈si\s′
i

cr(s′)∑︂
k=1

cr(k) +
∑︂

r∈s′
i\si

cr(s′)∑︂
k=1

cr(k) +
∑︂

r∈R\(s∪s′)

cr(s′)∑︂
k=1

cr(k)

As only a single player i’s strategy is changed, for r ∈ s′
i\si, cr(s′) = cr(s) + 1

and for r ∈ si\s′
i, cr(s) = cr(s′) + 1, where cr(s) is the number of players using

resource r.

The first and fourth term in Φ(s) and in Φ(s′) are the same, hence:

Φ(s) − Φ(s′) =(
∑︂

r∈si\s′
i

cr(s)∑︂
k=1

cr(k) +
∑︂

r∈s′
i\si

cr(s)∑︂
k=1

cr(k))−

(
∑︂

r∈si\s′
i

cr(s′)∑︂
k=1

cr(k) +
∑︂

r∈s′
i\si

cr(s′)∑︂
k=1

cr(k))

=
∑︂

r∈si\s′
i

cr(s) −
∑︂

r∈s′
i\si

cr(s′)

Let the utility ui(si) be the sum of player i’s costs when playing si:

ui(si) =
∑︂
r∈si

cr(s) =
∑︂

r∈si∩s′
i

cr(s) +
∑︂

r∈si\s′
i

cr(s)

ui(s′
i) =

∑︂
r∈si∩s′

i

cr(s′) +
∑︂

r∈si\s′
i

cr(s′)

⇒ ui(si) − ui(s′
i) =

∑︂
r∈si\s′

i

cr(s) −
∑︂

r∈s′
i\si

cr(s′)

= Φ(s) − Φ(s′)

2.3.1 Pure Nash equilibria in Congestion Games and PLS
In this part, we explain by example that effective equilibria calculations belong

to PLS class and thus it makes good sense to ask if they are PLS-complete. The
following example has been obtained thanks to the discussions with my supervisor
M. Loebl.

Example: Routing game as PLS problem

Let’s consider (G, oi, di, i ∈ N) as input instance. In this case, the feasible
solutions are equivalent to the strategy profiles s = (s1, ..., sn), where for each
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strategy profile s, neighboring feasible solutions are all unilateral deviations. The
cost of e is defined as ce(k) = k for k ∈ N , i.e. cost is identity based on the number
of players using the edge e. Cost of a solution s will be defined as Rosenthal
potential Φ(s). Note that the latter is related to cost ce through Theorem 2.3.1.

For congestion game to be in PLS class, we define the following three algorithms:

• A1: Initial solution are arbitrary paths oi, di for each i ∈ N .

• A2: It is straightforward to verify if a set is a strategy profile. We calculate
its potential by formula in 26.

• A3: Given a stratey profile s, we need to find out if there is a unilateral
deviation of s of lower potential. By the defining property of a potential
game 22(i.e. in a unilateral deviation step, the change in the Rosenthal
potential is equal to the corresponding change in the cost of the deviating
player.) it is equivalent to check if for some player i there is s′

i so that the
cost ci(s′

i, s−i) < ci(si, s−i).

This is done as follows:
Define weights w(s, i) : E → N by w(s, i)(e) = |{j ̸= i; e ∈ sj}| + 1.
Let P be the shortest path oidi. If w(s, i)(P ) < w(s, i)(si) then we switch s to
(P, s−i). Otherwise s is the local optimum.
Observation 2.3.2. The set of local optima is the same as the set of Pure Nash
equilibria.

2.4 Future work with congestion games
Note, that for the thesis, we chose specifically congestion games for their nice

and natural properties applicable in other fields of science. Notably, there are
some special cases of congestion games, such as max-cut games, that happened to
have appeared also in the area of statistical physics. This relation will be discussed
in the next chapters of the thesis.
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3 Statistical Physics
3.1 Introduction

Statistical physics is a branch of physics that uses statistical methods in order
to explain and predict the behavior of systems that are composed of a large
number of particles. Its is to understand and provide an explanation on how
complex behaviours can emerge from the interactions of large numbers of identical
elementary components.

The principles of statistical physics rely on two steps: starting with a probabilistic
description of the microscopic system and only then reinstating the determinism
at the macroscopic level. The information presented in this chapter is sourced
from [16].

3.2 Ising Model
Ising model is one of the standard models used in statistical mechanics. It

represents a powerful tool to study magnetic systems (sometimes also refered to
as a ferromagnetic Ising model) and was proven successful in describing a large
spectrum of different problems in various fields of physics.

3.2.1 2D Ising Model
As an example, let’s consider a two-dimensional lattice L, which is a square

grid of side length L: L = {(i, j) | 1 ≤ i, j ≤ L}. At every site (i, j) ∈ L, there
is an Ising spin σi,j ∈ {−1, +1}. Collection σ : V (L) → {−1, +1} of all spins is
called a state.

As illustrated in figure 3.1, a spin σi on each vertex i, is typically being visualized
by an upward-pointing arrow if σi = +1 (colored red) while a downward-pointing
arrow signifies σi = −1 (colored blue).

Figure 3.1 Configuration of a 2D Ising model with the lattice size L = 5.
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In the Ising model, the total energy of the system is determined by the interaction
term −σiσj for each pair (i, j) of nearest neighboring sites, where the energy
is being minimized when the spins σi and σj at these sites align in the same
direction.

Definition 27 (Energy of state σ). The energy of σ is defined as sum over all
pairs of nearest sites:

H(σ) = −J
∑︂
⟨i,j⟩

σiσj

, where

• J , coupling constant, represents the interaction strength between neighboring
sites .

Figure 3.2 Spin interaction with its nearest neighbors: red spins indicate all the spins
that the blue spin interacts with

3.2.2 Role of temperature in the Ising model
Definition 28 (Gibbs distribution). The probability π(s) for the system to be
found in the state s is given by the Gibbs distribution:

π(s) = e−βH(s)

Z(β)

where β = 1/(kBT ) is referred to as the inverse temperature, with kB being the
Boltzmann’s constant. This favours states with minimal energy which are called
ground states.

Definition 29 (Partition function). The normalization constant Z(β) of the
Gibbs distribution is called the partition function, defined as

Z(β) =
∑︂

s:V →{1,−1}
e−βH(s)

The Gibbs distribution is important for understanding how energy is dis-
tributed among the states of a system and for predicting the system’s macroscopic
properties. The partition function Z serves as the normalization factor in the
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Gibbs distribution and determines the critical temperature β−1
C , that can be

interpreted as temperature of a macroscopic change in the model. Existence of
the critical temperature for the 2D Ising model was proved by [17] who for these
findings received the Nobel Prize in 1968. The crucial importance of the finding
was that he was the first to predict macroscopic physical phenomena called the
Phase transition, using microscopic mathematical model, namely Z(β).
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4 Putting it all together
4.1 Equivalence of Max-cut and Ground State

To see how these two problems are equivalent, consider mapping of Ising
model onto a graph where vertices represent sites and edges represent interactions
between the neighboring pairs of sites.

4.1.1 Ising model on a graph
The Ising model can be defined on a graph as follows: Let G = (V, E) be an

undirected graph, with V = {v1, ..., vn} and E being a set of edges representing
the interactions between pairs of vertices. Each vertex i is associated with a spin
variable σi. These spins can interact with each other and are again, taking values
+1 for up or −1 for down.

For each pair of interacting spins σi, σj, there exists a corresponding edge
(i, j) ∈ E. The state of the model, denoted by s, represents assignment of all n
variables σi. Energy of the state s is given by:

H(s) = −
∑︂

e={i,j}∈E

w(e)σiσj

The system prefers lower energy states, i.e., those s that minimise H(s). These
are the ground states.

4.1.2 Max-cut revisited:
The Max-Cut problem starts with an undirected graph G = (V, E) with a set

of vertices V and a set of edges E between the vertices. The weight w(e) of an
edge e ∈ E is a positive real number. As seen before, a cut is a set of edges that
separates the vertices V into two disjoint sets U and U\V and the value of a cut
is defined as the sum of all weights of edges connecting vertices in U with vertices
in U\V . In MAX-CUT problem, the goal is to compute a cut of maximum total
value.

4.1.3 Problem mapping:
Observation 4.1.1. States in Ising model ≡ edge-cuts.

One can convert the cut problem to the Ising model by rewriting the weight
of each cut U ⊆ V in terms of the Ising energy function. If s : V → {−1, 1} and
U = {vi; si = 1}, then the weight of corresponding cut is:

U(s) =
∑︂

e={i,j}∈E,si ̸=sj

w(e) = 1
2

⎛⎝−
∑︂

e={i,j}∈E

w(e)sisj +
∑︂

e={i,j}∈E

w(e))
⎞⎠

= 1
2

∑︂
e={i,j}∈E

w(e) + 1
2H(s)
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4.1.4 Summary:
The Max-Cut problem aims at partitioning the nodes so that the cost of the

resulting cut is maximised. Therefore, the Max-Cut problem is essentially reduced
to determining the minimum energy state of the Ising model, where Jij = wij:

max(s : U(s)) = min(s : H(s))

The sources for this section are from the following publications, where the
equivalence is explained mroe in detail: [18], [19] and in [20].

4.2 Max-Cut Game as a Potential Game
This part has been obtained thanks to the discussions with my supervisor M.

Loebl. Local-max-cut can be perceived as cut game.

Definition 30 (Local-max-cut as cut game). Let players correspond to vertices
of graph G(V, E), let {−1, 1} be possible individual strategies and let strategy
profile be each state s : V → {−1, 1}. Strategy profile s is a spin assignment and
corresponds to a cut.

4.2.1 Classical approach
Given strategy profile s, we define, for v ∈ V , the cost of v by

cv(s) = −
∑︂

e={u,v}∈E

w(e)susv

Each player aims to minimize its cost cv(s). Equivalently each player v aims to
maximize wv(s) = ∑︁

e={u,v}∈E:su ̸=sv
w(e), which is the total weight of his incident

edges crossing the cut. In the game, players prefer strategy profiles s of minimal
energy H(s).

H(s) = −
∑︂

e={u,v}∈E

w(e)susv

Hence, Ising energy is the potential of the game. Consequently, local max-cuts
correspond to the pure Nash equilibria of the defined cut game.

4.2.2 Dynamics approach
We consider potential games evolving using logit dynamics defined by the

potential.

Definition 31 (Logit dynamics). Given strategy profile s, fixed rationality level
T > 0, choose player v uniformly at random, have v choose strategy s′

v ∈ Sv with
probability:

e−T Φ(s′
v ,s−v)∑︁

t∈Sv
e−T Φ(t,s−v)

, where Φ is the potential.
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Logit dynamics induces an irreducible and time-reversible Markov chain on
the se S with unique stationary distribution (called Gibbs distribution).

π(s) = e−T Φ(s)∑︁
s∈S e−T Φ(s)

If the potential game we study is the cut game, Φ is the energy potential and
the Gibbs distribution is used to predict critical behaviour of the Ising model.
This leads to the question:

Question 4.2.1. Does there exist critical T for some games analogous to criticality
of the Ising model for which there is a natural interpretation?

Our main proposition is that it is possible to define the critical T of Ising model
for general congestion games, where the potential Φ would substitute the energy.

The topic of this section is further described in [6], [21], [22].
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Conclusion and Future Work
4.3 Application in cancer modelling

The interest in the particular application of cancer evolution, comes from the
publication of [23], which was the original motivation for the topic of this thesis.

While there were many attempts to model the cancer growth once the cancer
melanoma is formed and after cancer is already diagnosed by the professionals,
not much attention was given to the period before the cancer formation.

Problem:
The question we are posing is whether there is some sequence of cell interactions
on the microscopic level leading to the macroscopic result in the form of a tumor.
Our Question 4.2.1 suggests a possible tool for a novel approach to this problem.

There are numerous papers on the cancer evolution after the macroscopic detection,
using evolutionary game theory and coordination games such as [24], [25] and [26],
but none examining what’s happening before.

4.4 Future work
In the future, aside of cancer modelling, we would like to examine the potential

games more deeply and begin to focus on the problem of minimum bisection. We
believe that it would be interesting to study the potential equivalence of maximum
cut and the problem of minimum bisection from the algorithmic game theory
perspective. We can see many applications of min bisection in statistical physics
(see. [27]), but none in the area of algorithmic game theory. Our proposition is to
extend these ideas to this field.
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